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Abstract

This study investigated the strengthening effects from grouting of rock specimens containing flaws of
varying length and dip angle via numerical modelling. For this purpose, two- and three-dimensional
numerical simulations of rock specimens containing grouted and non-grouted flaws were carried out in
the finite element method (FEM) programs Abaqus/Standard and RS2. The basis for the numerical model
design was the methodology behind experimental uniaxial compression tests of grouted rocks performed
by Le et al. (2018). The findings suggest that grouting improves the strength of rocks containing open
flaws. Moreover, the grout reinforcement effect is most pronounced for specimens containing the longest
flaws and for specimens containing flaws that are rotated 75-90◦ from the loading axis. Both literature
and the computed stress plots suggest that stress reduction around the flaw tip is one mechanism behind
the grout reinforcement effect. Another aim of the current study was to verify the numerical models
against the available lab results from Le et al. (2018). The numerical and experimental results show
good agreement based on the following observations: (1) both the numerical and experimental tests
produced tensile cracks initiating from the flaw tip and growing parallel to the applied load and (2)
the numerical yielded elements contour plots and experimental crack patterns qualitatively show similar
failure modes. However, two crack types that were observed in lab tests of grouted specimens — a tensile
crack originating from the middle-area of the grouted flaw and a shear crack initiating from the rock-
grout interface — do not occur in the 2D numerical models. This thesis therefore suggests that further
three-dimensional finite element analyses — where the flaw boundary is modelled with interface elements
— are carried out.
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Sammendrag

Denne masteroppgaven undersøkte den forsterkende effekten fra injeksjon av bergprøvestykker som in-
neholder åpne sprekker av varierende lengde og fallvinkel, gjennom numerisk modellering. Til dette
form̊alet ble to- og tredimensjonale numeriske simuleringer av prøvestykker som inneholder injiserte og
ikke-injiserte sprekker utført i elementmetodeprogrammene Abaqus/Standard og RS2. Den numeriske
modelleringen tok sikte p̊a å etterprøve enaksielle trykkforsøk av injiserte og ikke-injiserte prøvestykker,
som ble utført i laboratorium av Le et al. (2018). De numeriske modellene ble derfor oppbygd etter
metodikkbeskrivelsen av de nevnte laboratorieforsøkene. Funnene antyder at injeksjon forbedrer styrken
av berg som inneholder åpne sprekker. Videre er den forsterkende effekten mest tydelig for prøvestykkene
som inneholder de lengste sprekkene, og for de prøvestykkene som inneholder sprekker rotert 75 − 90◦

fra kompresjonsaksen. B̊ade litteratur og beregnede spenningsplott foresl̊ar at spenningsreduksjon rundt
sprekketuppen er en av mekanismene bak forsterkningseffekten. Et annet m̊al med oppgaven var å ver-
ifisere de numeriske modellene mot de tilgjengelige eksperimentelle resultatene fra Le et al. (2018). De
numeriske og eksperimentelle resultatene stemmer godt basert p̊a de følgende observasjonene: (1) B̊ade de
numeriske og eksperimentelle testene produserte strekkbrudd som initieres fra sprekketuppen og vokser
parallelt med den p̊asatte lasten, og (2) de numeriske bruddelement-konturplottene og de eksperimentelle
sprekkemønstrene viser kvalitativt lignende bruddmoduser. To sprekketyper som ble observert i lab-
oratorieforsøkene, forekommer likevel ikke i de todimensjonale numeriske analysene. Dette gjelder en
sprekketype som åpnes i strekkmodus og utvikles fra midtomr̊adet p̊a injiserte preeksisterende sprekker,
samt en sprekketype som opptrer som skjærbrudd langs berg-mørtel-grenseflaten til injiserte preeksis-
terende sprekker. Derfor foresl̊as det at videre tre-dimensjonale numeriske analyser, der sprekkeflaten
modelleres med overflateelementer, utføres i fremtidig forskning.
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1 Introduction

Rock mass grouting can be defined as the injection of a fluid, such as cement or epoxy, into a rock
mass under pressure. In tunneling, grouting is performed for the purposes of ground water control or
improvement of rock mass stability. Grouting is fundamental in areas with high requirements for water
control, for example in urban areas. In rock masses of low quality, grouting can be performed for ground
reinforcement. For rock masses with a high amount of discontinuities, ground reinforcement is especially
relevant. This thesis examines fracture behaviour of grouted, fractured rock specimens via numerical
modelling.

Fractures and fracture networks are features of great interest in rock mass grouting. Fractures provide
flow paths for injection fluids (grouts) in rock masses. Cement suspensions are often used as injection
fluids, and are expected to behave as non-Newtonian fluids (Mo and Skjetne, 2016, Liu et al., 2017,
Bohloli et al., 2019). The properties of the fracture walls, such as aperture width and roughness, affect
the flow and penetration length of non-Newtonian injection fluids (Brown, 1987, Barton et al., 1985,
Barton and de Quadros, 1997, Saeidi et al., 2013). The grouting outcome therefore depends on the
presence of fractures and their properties, in addition to the grout properties and grouting pressure.
Several studies have indicated that fractured rock masses show pronounced strengthening effects after
grouting (Liu et al., 2017, Le et al., 2018, Wang et al., 2019). Before discussing grouted rock mechanics,
it is however necessary to provide an introduction to fracture mechanics of intact rocks. This is given in
the following section.

1.1 Fracture mechanics of intact rock

The theoretical strength of a solid depends on the atomic bond strength, and can be quantified as the
applied stress necessary to break the atomic bonds in the material. Moreover, preexisting grain boundaries
make up weakness planes in the material. The practical material strength is therefore 10 to 100 times
lower than the theoretical strength for bulk materials (Sun and Jin, 2012b). In rocks, grain boundaries,
pores and microcracks exist; depending on rock type and stress history.

Figure 1: Schematic of a wing crack,
that initiates on the tip of a preexist-
ing flaw with length 2a and dip angle
α. The crack initiates due to high stress
concentrations at the flaw tip and grows
parallel to σ1.

Fracture failure implies that the failure of a material is caused by
fracture propagation (Sun and Jin, 2012a). At the tips of pre-
existing material flaws — such as microcracks, micropores and
grain boundaries — stress concentrations of magnitudes higher
than the material strength occur (Sun and Jin, 2012b). Fracture
growth initiates at tips of the material flaws in shear, tensile or
tearing modes, and they propagate in the direction of the local
maximal principal stress (σ1) and perpendicular to the direction
of the local minimal principal stress (σ3) (Kranz, 1979, Hoek and
Martin, 2014). Figure 1 is a schematic of crack development at
the tips of a preexisting flaw with length 2a and dip angle α in
local stress condition. Specifically, the figure illustrates a wing
crack, which is a crack type that initiates at the tips of inclined
penny-shaped flaws and grows parallel to σ1 (Ashby and Sammis,
1990).

It is well established that macro-scale fractures in intact rocks are
formed by coalescence of microscopic structures such as microc-
racks, micropores and grain boundaries (Kranz, 1979, Eberhardt
et al., 1999, Hoek and Martin, 2014). For the purpose of quanti-
fying stress-induced damage in rocks, Eberhardt et al. (1999) con-
ducted cyclic uniaxial compression tests on rock specimens. The
test procedure included measurements of acoustic emissions, which
is the rapid energy release that occurs when molecular bonds are
broken. Acoustic emission events were used to quantify mechanical
events such as initiation, growth or coalescence of microfractures.
The tests showed that the microcrack population gradually built
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up with repeated loading. During the loading cycles, the Young’s modulus and Poisson’s ratio gradually
decreased and increased respectively. When the microcrack population reached the crack damage thresh-
old at approximately 0.75 of the uniaxial compressive strength, unstable crack growth would result in an
inevitable critical failure plane in the specimen (Eberhardt et al., 1999).

Figure 2: This photomicrograph
(see scale bar) shows an en pas-
sant interaction between micro-
cracks (Kranz, 1979). The micro-
cracks link at location a.

Via scanning electron microscope observations, Kranz (1979) studied
interactions between microcracks and between microcrack and micro-
pores in granites. The interaction types between existing microcracks,
en echelon and en passant, emerged from the study. En echelon inter-
actions were characterized by either extension cracks growing parallel
to the direction of the maximum principal stress or shear cracks. High
shear stress concentrations between the crack tips is typical for this
interaction type. The en passant interactions can be described as two
cracks approaching each other in parallel planes until either one crack
joins the side of the other crack, or the growth paths deviate from each
other and follow the direction of the applied stress field (Kranz, 1979).
See Figure 2. Kranz (1979) further found that material between cracks
can be stress relieved. Moreover, combinations of en echelon and en
passant are usual, and the micro-scale interactions are complicated.
Kranz (1979) concluded that the magnitude and direction of the stress
experienced by the microcracks deviates from the applied stress field.

In failure analyses, the intermediate principal stress, σ2 is often assumed
to have little influence on the failure process (Hoek and Martin, 2014).
Compared to the dimensions of rock specimens, mineral grain sizes are

relatively small. Therefore, rock specimen are often considered a homogeneous and isotropic material,
and discussed in two dimensions (Hoek and Martin, 2014). In two-dimensional failure analysis, failure
criteria are used. Failure criteria are functions for prediction of shear and/or tensile failure of rocks based
on the stress conditions and known material parameters. Within rock engineering, the Mohr-Coulomb
criterion (MC-criterion) is a commonly used failure criterion. The criterion expresses the shear strength
of a material, τ , as a linear function of the applied normal stress, σn, with the cohesion, c and angle of
internal friction, φ of the material. The MC-criterion is expressed as follows (Labuz and Zang, 2012):

τ = σn tanφ+ c. (1)

In two-dimensional failure analysis, Eq. 1 is used with the Mohr circle, a circle with a diameter σ1 − σ3.
When the Mohr circle is tangent to Eq. 1, the stress state and material strength is associated with failure
(Labuz and Zang, 2012).

As indicated in this section, fracture mechanics is characterized with complicated interactions on micro-
scopic levels. Still, a considerable amount of literature is published in this area, and several principles are
well established. However, few studies have investigated on the effect of grouting in failure mechanics.
The following part of this thesis moves on to presenting recent studies on fracture mechanics of grouted
rocks.

1.2 Fracture mechanics of grouted rock

Recent studies have found that grouting increases the shear strength parameters of fractured rock spec-
imens (Liu et al., 2017, Le et al., 2018, Wang et al., 2019). Grouting has additionally been found to
improve the rock mass quality in terms of increased Q-value (Zolfaghari et al., 2015). Liu et al. (2017)
performed shear loading tests on grouted and non-grouted fractured sandstone specimens (with persistent
fractures). An example specimen in the grouting mold is shown in Figure 3 a). The stress-displacement
data showed a peak shear strength increase by 106-170% and a residual shear strength increase by 54-
72% after grouting with cement (Liu et al., 2017). In shear loading tests of fractured rock-like specimens,
Wang et al. (2019) found that that the shear strength improvement was higher when using cement grouts
of lower w/c number (w/c = 0.6). Furthermore, failure characteristics analyses suggested that the failure
mode is affected by grouting. The non-grouted specimens demonstrated a typical plastic failure type,
while the failure mode of the grouted specimens were typical brittle (Liu et al., 2017, Wang et al., 2019).
Liu et al. (2017) proposed a schematic stress-displacement curve, which is shown in Figure 3 b).
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A study by Le et al. (2018) examined the failure modes of grouted and non-grouted fractured specimens
in further detail. The study included uniaxial compression tests of specimens containing open or grout-
infilled non-persistent flaws of varying lengths and dip angles. Le et al. (2018) concluded that the grout
reinforcement effect is ascribed to two mechanics: The shear strength parameters (φ and c) in the model-
fracture interface are increased and stress concentrations at the flaw tips are reduced. An interesting
finding that emerged from this study was that the cracks did not always initiate at the tip of the flaw
for specimens with a grouted flaw (Le et al., 2018). In some cases, the primary cracks initiated close to
the middle of the flaw. Consequently, two new fracture types that occur in specimens with grouted flaws
were suggested. This thesis is based on the study by Le et al. (2018). A detailed review of the proposed
fracture types (and other findings) is therefore presented in Chapter 2.

The Intact (non-fractured) rock specimens demonstrated higher strength properties than the grouted
(fractured) specimens in the research by Liu et al. (2017), Wang et al. (2019) and Le et al. (2018). Intact
rock or high quality rock masses are in other words unlikely to benefit from grouting — at least from a
strength reinforcement perspective. Also, these types of rock masses provide limited flow paths or area
to transport or hold the grout. Consequently, intact rocks and high quality rock masses were not the
primary focus of this study.

As presented in this section, most research on the strengthening aspects of grouting has been carried out
in laboratory studies. To the author’s knowledge, no large-scale in-situ tests of grout reinforcement of rock
masses are available. Numerical modelling can be a suitable tool to examine a large-scale problem such
as fracture mechanics of a grouted rock mass. Before modelling the mechanical behaviour of grouted rock
masses, it is however necessary to build and validate numerical models against the available lab results
of grouted rock specimens. This outlines the motivation for this thesis. The following section presents
the research aims and report structure.

a) b)

Figure 3: a) Specimen after grouting (in grouting mold) from Liu et al. (2017). b) Schematic stress-displacement
curves for grouted and non-grouted fractured specimens (Liu et al., 2017).

1.3 Research task

The goal of this study was to examine the failure modes in specimens containing grouted and non-
grouted, open flaws (fractures) under uniaxial compression. The research was based on the work by Le
et al. (2018), and aimed to verify these experimental results using numerical modelling.

The finite element method (FEM) codes Abaqus/Standard and RS2 were used for the numerical simula-
tions of uniaxial compression tests of the grouted and non-grouted rock specimens. The FEM programs
returned contour plots of yielded elements (according to the MC-criterion) and stress conditions, which
were used to address the research goal. The task was assessed through several objectives, which specifi-
cally set out to achieve the following points:

• examine the stress distribution in the specimen, both close to the flaw and far field;

• explore how flaw dip angles and flaw lengths affect the failure modes and stress distribution in the
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model; and

• compare the observed yielding patterns from the numerical modelling with the experimental results
described by Le et al. (2018).

1.4 Report structure

The next parts of this thesis are organised as follows:

Chapter 2 provides detailed information about crack types that have been observed in uniaxial
compression tests by Le et al. (2018), and other results that emerged from these tests.

Chapter 3 lays out the basic principles behind the finite element method and why the method
was chosen.

Chapter 4 moves on to documenting the methodology behind the performed numerical simulations
of uniaxial compression tests.

Chapter 5 presents the results of the numerical simulations.

Chapter 6 compares the experimental results from Chapter 2 with the numerical results from
Chapter 5 and discusses the differences.

Chapter 7 describes the agreement between the simulations from this research. This includes com-
paring results from different programs and models using different assumptions. Errors, challenges
and assumptions are discussed.

Chapter 8 rounds off this thesis with conclusions and suggestions for further research.
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2 Crack Types in Grouted and Non-Grouted Specimens

In 2018, Le et al. published a study on the mechanical properties and cracking behaviour under uniaxial
compression of rock-like specimens containing a single, grouted flaw (as mentioned in the introduction).
Specimens containing ungrouted flaws were also tested. This chapter presents the methodology and
results from the work by Le et al. (2018) in more depth.

2.1 Specimen preparation, material properties and testing procedure from
Le et al. (2018)

The specimens used for the project were made from cement mortar (fine sand, Portland 42.5 cement and
water mixed with weight ratio 2:1:0.5). Cement mortar was used to replicate rock specimens, and does
not come with e.g. weathering or developed fracture planes (which occur in natural rock masses) that
could influence the test results. The cement mortar was cast in square prismatic steel molds containing a
single 1 mm thick steel sheet of varying lengths (10-30 mm) and orientations (1-90◦ from the horizontal
line). The specimens had the following dimensions: Height of 100 mm, depth of 50 mm and width of
50 mm. After the first 24 hours of curing, the steel sheets were pulled out to make the open flaws. The
total curing time for the specimens was 28 days in constant humidity and temperature. For half of the
specimens, the open flaw was injected with epoxy resin (Bisphenol A) and left to cure for an additional 3
days. Figure 4 shows a specimen containing an ungrouted flaw and a sketch of the geometry. In addition
to an intact specimens (without flaw), Le et al. (2018) tested 42 combinations of specimens containing
a grout-infilled or unfilled flaw of varying dip angle (α) and length (2a). The combinations are listed in
Table 1.

Table 1: Tested flaw geometries from Le et al. (2018).

Specimen type 2a (mm) t (mm) α (◦)
Intact specimen 0 0 N/A
Specimens with grouted flaw 10 1 0, 15, 30, 45, 60, 75, 90

20 1 0, 15, 30, 45, 60, 75, 90
30 1 0, 15, 30, 45, 60, 75, 90

Specimens with ungrouted flaw 10 1 0, 15, 30, 45, 60, 75, 90
20 1 0, 15, 30, 45, 60, 75, 90
30 1 0, 15, 30, 45, 60, 75, 90

In supplement to studying the cracking behaviour from the uniaxial compression tests, Le et al. (2018)
obtained the uniaxial compressive strength (UCS), Poisson’s ratio (ν), deformation modulus (E), cohe-
sion, internal friction angle and tensile strength (σt) of the intact model material (cement mortar) and
epoxy. These are listed in Table 2. Le et al. (2018) also tested the shear strength properties for surfaces
of the ungrouted flaw (because the flaw walls can come into contact during loading) and the epoxy filled
flaw. The ungrouted flaw surface had a cohesion, cj of 0 Mpa and friction angle φj of 35.6◦. For the
grout infilled flaw surface, cj and φj were 2 Mpa and 42.5◦ respectively.

The specimens were fitted with horizontal and vertical strain gauges, and loaded uniaxially on the shorter
specimen edges until failure (Le et al., 2018). To minimize fabrication and recording errors, the test of
each flaw geometry was repeated three times (on identical specimens).

Table 2: Material parameters for intact model material (rock-like material/cement mortar) and epoxy from Le
et al. (2018).

UCS (MPa) E (GPa) ν φ (◦) c (MPa) σt (MPa)
Intact specimen 42.0 19.6 0.18 41.6 10.0 4.1
Epoxy resin 62.8 1.2 0.45 21.9 30.2 22.6
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Figure 4: A sketch of the specimen geometry (left), and a specimen with an ungrouted flaw before subjected to
uniaxial compression tests (right) (Le et al., 2018).

2.2 Strengthening effect and crack types from Le et al. (2018)

As described earlier, Le et al. (2018) loaded the specimens, which contained flaws with varying length
and geometry, uniaxially until failure. In the uniaxial compression tests, Le et al. found that the failure
mode and mechanical properties of the specimens were affected by both grouting, length and dip angle
of the preexisting flaw. These results are presented in detail in the following sections.

2.2.1 Increased mechanical properties after grouting

The specimens with grouted flaws demonstrated higher UCS and deformation modulus than their non-
grouted counterparts (Le et al., 2018). UCS for the specimens containing grouted and ungrouted flaws
are given in Figure A1 in Appendix A. Moreover, the strengthening effect can be measured in terms of a
strengthening factor Ds:

Ds =
UCSg − UCSu

UCSu
, (2)

where UCSg and UCSu are the UCS of the specimens containing a grouted and ungrouted flaw, respec-
tively (of equal flaw geometry). Figure 5 plots Ds as a function of flaw dip angle for the three different
flaw lengths (10 mm, 20 mm and 30 mm). As seen in the plot, the grouting reinforcement effect was
most pronounced for the specimens containing the longer flaws. For the 10 mm flaws, the UCS-values
were closer to the UCS of the intact specimen (42 MPa). Furthermore, the dip angle had the clearest
effect on grout reinforcement for the 30 mm fracture. Regardless of flaw length, the strengthening factor
was lowest for α = 90◦. The next section moves on to presenting the crack types and failure modes that
occurred in the specimens. Crack combinations explain why the flaw length and dip angle affect the
strength improvement.
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Figure 5: The strengthening factor Ds for grouting of flaws of varying length and dip angles (Le et al., 2018).

2.2.2 Crack types observed in grouted and ungrouted flaws

Coherent to expectations, Le et al. (2018) observed that the failure mode depended on the dip angle and
length of the preexisting flaw, and whether the flaw was grouted or not. Further, the observed failure
modes of the specimens were combinations of different crack types. Note that the term ”flaw” refers to
the preexisting flaw in the specimen. Moreover, the term ”cracks” points to the fracture development in
the specimen. In total, nine different crack types were observed in the study (Le et al., 2018). Table 3
presents the crack types, their initiation point and propagation pattern:

Table 3: Crack types observed by Le et al. (2018). The crack initiation point and crack development are described
in the table. See Figures 6 and 7.

Crack name - type Initiation point Crack development
I-tensile Flaw tip or close to flaw tip First perpendicular to flaw, finally parallel to loading direction
II-tensile Flaw tip or close to flaw tip Parallel to loading direction
III-anti-tensile Flaw tip Finally parallel to loading direction
IV-shear Tip of ungrouted flaw Parallel to flaw plane
V-far-field tensile Far from flaw Almost parallel to loading direction
VI-surface spalling Flaw tip and specimen edge Small scale spalling (combined with tensile cracks)
VII-corner spalling Specimen corner or edge Large scale spalling (usually initiates after tensile cracks)
VIII-mid-flaw tensile At grouted flaw, at midflaw Parallel to loading direction, finally cuts through grouted flaw
IX-interface shear Rock-grout interface Parallel to flaw plane

Figures 6 and 7 present sketches of the crack types that occurred in specimens containing ungrouted flaws
and specimens containing grouted flaws respectively. As seen in Table 3, crack type IV is a shear crack
that developed from the tip of the ungrouted flaw along the flaw direction. This crack type only occurred
in specimens with ungrouted flaws, and is thus only included in Figure 6. Furthermore, Le et al. (2018)
discovered two new crack types — type VIII and IX. These are shown in Figure 7. Type VIII is a tensile
crack that initiated at the grout infilled flaws, often at a distance away from the flaw tips. The tensile
crack further propagated along the loading direction and cut through the grouted flaw. Type IX is a
shear crack that occurred at the interface between the rock-like material and the grout, and propagated
in the direction of the flaw. Type VIII and IX only occurred in specimens containing grouted flaws (Le
et al., 2018).
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2.2.3 Flaw geometry and filling and their effect on crack types

This section presents and compares the cracking behavior that occurred in the grouted and ungrouted
specimens during the study by Le et al. (2018).

Ungrouted flaws

The crack types I-VII occurred in the unfilled flaw specimens (see Figure 6). No clear relation between
far-field cracks and spalling (types V, VI and VII) and crack geometry was found for the unfilled flaws
(Le et al., 2018). For most of the specimens containing an ungrouted flaw, tensile crack types II initiated
first, followed by secondary cracks of types I-tensile, III-anti-tensile and/or IV-shear. In some cases, the
anti-tensile crack was however the first appearing primary crack (Le et al., 2018). Moreover, a pronounced
correlation between flaw length and cracking behaviour was found for the ungrouted specimens. For the
specimens with the longest flaws (2a=30 mm), the distance to the lateral side is shorter, making it more
likely for the primary tensile crack (II or III) to reach the lateral side of the specimens before initiation of
secondary cracks (Le et al., 2018). For the 30 mm cracks with 45◦ ≤ α ≤ 75◦, secondary cracks (IV-shear)
appeared before the specimen failed. Table A1 in Appendix A gives an overview of the crack types that
were observed for each combination of flaw length and dip angle by Le et al. (2018).

Figure 6: The crack types that were observed under uniaxial compression of specimens containing ungrouted
flaws (Le et al., 2018). The shown crack types are tensile crack (T), shear crack (S), far-field crack (F), Surface
spalling (Ss) and corner spalling (Cs).
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Grouted flaws

In the specimens containing grouted flaws (as presented in Figure 7), the crack types I-II and V-IX
occurred (Le et al., 2018). The length and dip angle of the grouted flaw was found to have no effect on
the presence of spalling and far-field tensile cracks (types V-VII). For the specimens containing grouted
flaws of length 10 mm, the failure mode was similar to the failure mode of the intact specimen. The
dominating crack types in these specimens were far-field tensile cracks and spalling. Moreover, the crack
developed in the lateral side of the specimen in some cases. Except for one specimen (α = 60◦), tensile
cracks did not initiate from the flaw tips of the grouted 10 mm flaws. Figure 8 presents the cracking
behaviour of the intact specimen (no preexisting flaw) and two specimens with grouted 10 mm flaws (Le
et al., 2018). Le et al. (2018) concluded that the grout effectively reduced the effect of the flaw for short
flaw lengths.

Tensile cracks of type I, II and III did not occur in every grouted specimen, as opposed to the specimens
containing ungrouted flaws. In fact, anti-tensile cracks (type III) never occurred in the grouted specimens.
For some specimens (α = 60 and 75◦), tensile cracks of type I and II still dominated the critical failure
plane, combined with shear cracks of type IX (grout-rock interface). In the other cases, coalescence of far
field tensile cracks (type V), mid-flaw tensile cracks (type VIII) and spalling (type VI and VII) established
the critical failure plane (Le et al., 2018). Table A2 in Appendix A presents an overview of the observed
crack types in specimens containing grouted flaws.

Figure 7: The crack types that were observed under uniaxial compression of specimens containing grouted flaws
(Le et al., 2018). The shown crack types are tensile crack (T), shear crack (S), far-field crack (F), Surface spalling
(Ss) and corner spalling (Cs). (Because type III was not observed in grouted specimens, the type III sketch was
edited out of the original image from Le et al. (2018))
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Comparison of cracking behaviour around grouted and ungrouted flaws

As described in the previous section, grouting both changes the cracking behaviour of specimens contain-
ing geometrically equal flaws and improves the mechanical properties of the specimen (Le et al., 2018).
In the specimens with unfilled flaws, tensile cracks initiated at or close to the flaw tips in every case.
However, in the grouted specimens, tensile cracks often initiated at the mid-section of the flaw. Le et al.
(2018) thus concluded that grouting can reduce the stress concentration at flaw tips. Figure 9 compares
the cracking behaviour of grouted and ungrouted specimens containing a 20 mm long flaw with a dip
angle of 30◦. The grouted specimen exhibits failure caused by type VIII-tensile cracks and spalling. The
critical damage of the ungrouted specimens is caused by type II-tensile cracks. Moreover, the grouted
specimen failed at an applied uniaxial load of ca. 40 MPa, while the ungrouted specimen failed at ca. 27
MPa (Le et al., 2018).

Grouting was found to change the crack-initiation position and coalescence pattern (Le et al., 2018).
The strengthening effect from grouting was most pronounced for the specimens containing the longest
flaws (30 mm) and lowest angles (α ≤ 30◦). As Le et al. (2018, p. 1) concludes: ”Grouting improves
the strength of grouted specimens through the following two mechanisms: (1) by increasing the shear-
strength parameter values of the interface between the grout and model material and (2) by reducing the
stress concentration at the flaw tips.”

The uniaxial compressions tests by Le et al. (2018) lay the groundwork for the numerical analyses per-
formed in this thesis. The chapters that follow move on to the theory and methodology behind the
performed finite element analyses.

Figure 8: Failure modes for specimens with short grouted flaws (left and middle) and intact specimen (right)
(edited after Le et al. (2018)). The cracking behaviour for the specimens containing grouted 10 mm flaws were
similar to the cracking of the intact specimen. Cs is corner spalling, blue line marks tensile crack, orange line
highlights grouted flaw.
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Figure 9: Specimens containing grouted flaws (left) and ungrouted flaws (right) of dip angle 30◦ and length 20
mm (Le et al., 2018). Yellow line marks the type VIII tensile crack.
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3 The Finite Element Method

The finite element method is a versatile tool that can be applied to problems in a variety of fields —
from structural problems, such as loading of a rock, to e.g. fluid dynamics or acoustics. In a structural
analysis, FEM takes a structure, splits it into smaller elements of simple shapes and calculates the
nodal displacements, which are the primary unknown variables (Kurowski, 2004). FEM is a popular
and versatile method for structural problems. The method allows easy adjustment of for example model
geometry, material parameters and loading conditions, and FEM was therefore chosen for this project.

This chapter gives a brief introduction to the basic theory behind a structural finite element analysis
(structural FEA). Finally, the two FEM codes Abaqus and RS2 are presented.

3.1 Basic FEM principles

In FEA, the solution domain is defined with a mesh. The mesh divides the structure geometry into
elements, which are joined together by shared nodes (Kurowski, 2004). The mesh can be considered
an assembly of linear elastic springs connected at the nodes (Ottosen and Petersson, 1992). For one
individual spring, the relation between an applied force, f , and the displacement, us, is governed by the
spring stiffness, k:

f = kus. (3)

At each node, and in the meshed system, there is static equilibrium between the applied nodal forces and
internally generated nodal forces. For an assembly of nodes, equilibrium between the external forces [F]
and internal forces [I] can be expressed as follows (Dassault Systèmes, 2014):

[F]− [I] = [0]. (4)

A schematic drawing of the applied external load and the internal nodal forces for a meshed structure is
given in Figure 10. In the drawn case, at the internal nodes, the sum

∑6
i=1 Ii alone equals 0.

Figure 10: Schematic drawing of the external forces applied on a meshed structure (F ) and the internal forces
at the nodes (I).

Equation systems expressing force equilibrium, stiffness properties, and nodal displacement are estab-
lished for the entire mesh (Ottosen and Petersson, 1992). The total system of equations — and the
fundamental FEM equation — can be expressed as

[F] = [K] · [u], (5)

where [F] is the known vector of total force, [K] is the known total stiffness matrix and [u] is the unknown
vector of nodal displacements (Kurowski, 2004). For a linear-elastic system, the numerical solution is
obtained from calculation of one system of equations (Dassault Systèmes, 2014).
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The stiffness matrix [K] depends on the model geometry, material properties and boundary conditions. In
a linear-elastic problem, E and ν define the material behaviour completely (Kurowski, 2004). Moreover,
boundary conditions are known displacements/loads or constrains against translation or rotation of the
rigid body. If [K] is singular (det[K] = 0), no unique solution of the system of equations exists. This
can be seen as rigid body motion (Dassault Systèmes, 2014). To achieve a unique numerical solution,
boundary conditions must therefore be defined.

When the nodal displacements are computed, stress and strain values for each element can be found. In
a linear-elastic system, the material response can be described by Hooke’s law (Ottosen and Petersson,
1992). In a one-dimensional stress state, Hooke’s law gives:

σ = Eε, (6)

where the strain, ε, can be expressed

ε =
du

dx
. (7)

In two- or three-dimensional stress states, Eq. 6 and Eq. 7 are expressed with tensors. For a one-
dimensional problem, for example the loading of an elastic bar with a length L and cross-sectional area
A, force equilibrium is given by the second-order ordinary differential equation:

d

dx

(
AE

du

dx

)
+ b = 0; 0 ≤ x ≤ L, (8)

where b is the bulk force per unit length (Ottosen and Petersson, 1992). Once boundary conditions are
given, Eq. 8 can conveniently be solved numerically. This emphasizes the importance of properly defined
boundary values in FEA.

3.2 Solving nonlinear numerical problems

The previous section presented principles for linear-elastic numerical problems. For many structural prob-
lems, including rock specimen analyses, a linear-elastic material behaviour assumption is not adequate.
In structural FEA, there are different sources of nonlinearity, including:

• Nonlinear materials — the material follows a nonlinear load/displacement curve (Kurowski, 2004).

• Nonlinear geometry — the geometry changes the structure stiffness during the analysis (Kurowski,
2004).

• Nonlinear boundaries — the boundary conditions change during the analysis (Dassault Systèmes,
2014).

This section briefly presents material nonlinearity. Elasto-plastic materials are an example of materials
that exhibit a nonlinear load-displacement response (see Figure 11). Elasto-plastic models are defined
with a yield stress, where the material behaves as an linear-elastic material until the yield stress is
reached and the material starts to deform permanently (Kurowski, 2004). In FEM software, the yield
stress can be defined with a failure criterion with various input parameters, such as the MC-criterion.
The chosen failure criterion marks each element to be either yielding or elastic, and the stress over the
yielded elements is redistributed to elastic elements (Griffiths and Lane, 1999).

The following subsections explain how variations of Newton’s method calculate the solution to nonlinear
numerical problems.
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Figure 11: Nonlinear load/displacement curve from Dassault Systèmes (2014) (variable names have been modi-
fied).

3.2.1 The Newton-Raphson method

The Newton-Raphson method is a variation of Newton’s method (Dang et al., 2014). The following
paragraphs aim to explain how the Newton-Raphson method calculates the numerical solution to a
non-linear structural problem. Examples of the convergence criteria from the Abaqus/Standard code
documentation (Dassault Systèmes, 2014) are included. In different FEM codes however, the details and
principles for calculating and accepting numerical solutions may vary from the given examples.

With the Newton-Raphson method, the numerical solution of a nonlinear structure model is computed
by dividing the applied load into increments — smaller portions of the loading step (Dassault Systèmes,
2014). Within each increment, iterations are run to find the displacement that gives an acceptable
equilibrium between the applied and internal loads.

The first Newton-Raphson iteration takes the smaller load increment, ∆F and the initial stiffness, K0

and returns a displacement correction, ca. Following, an updated displacement ua is calculated:

ua = u0 + ca, (9)

where u0 is the initial displacement. At ua, the updated internal force Ia and an updated stiffness Ka

are calculated (see Figure 12). Convergence criteria are then used to control the solution ua.

In Abaqus/Standard, there are two criteria for accepting the incremental response (Dassault Systèmes,
2014): (1) the approximate equilibrium is accepted when the ca is sufficiently small compared to the total
incremental displacement (∆ua):

ca < ∆ua · 1%, (10)

and (2) the incremental force residual, Ra is smaller than a tolerance value (tol),

Ra = F − Ia < tol. (11)

In Abaqus/Standard, tol = 0.5% of the time-averaged force in the structure by default (Dassault Systèmes,
2014).

If the equilibrium is not accepted, the Newton-Raphson method attempts new iterations, using the
updated stiffness Ka and Ra. This gives a new displacement correction value and subsequently a new
displacement. This solution is again checked against the convergence criteria (Equations 10-11). This
process is repeated until an increment converges or the calculations are stopped because a maximum
amount of iterations is reached. Consequently, the stiffness matrix [K] is continuously updated during
the iterations in the Newton-Raphson method. Finally, the numerical solution for the loading step is
the sum of the responses from each increment — if equilibrium is accepted within the specified tolerance
(Dassault Systèmes, 2014)).

For stable systems, Newton-Raphson is a method able to converge with low computational cost (small
number of iterations). In cases with excessive plasticity/yielding, the Newton-Raphson method is less
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robust compared to other variations of Newton’s method (Dang et al., 2014). Other variations of Newton’s
method are briefly presented in the following subsection.

Figure 12: The first iteration with the Newton-Raphson method, from Dassault Systèmes (2014) (variable names
have been modified).

3.2.2 The initial stiffness method and accelerated initial stiffness method

The initial stiffness method is another variation of Newton’s method. Unlike the Newton-Raphson
method, the initial stiffness method uses the initial stiffness matrix, K0, and keeps it constant throughout
the iterations (Dang et al., 2014). The next paragraphs outline the iteration process in the initial stiffness
method.

The initial stiffness method calculates updates values of nodal displacements and internal forces through
iterations. At the i-th iteration, the displacement correction ∆Ui can be calculated by (Dang et al.,
2014):

∆Ui = K−1
0 Ri−1. (12)

Ri−1 is the force residual at the current iteration and K0 is the stiffness of the initial displacement state.
The force residual is again given by the difference between the external and internal forces. When ∆Ui

is known, the total displacement Ui at the current iteration can be found by (Dang et al., 2014):

Ui = Ui−1 + ∆Ui, (13)

where Ui−1 is the known displacement for the previous iteration. New iterations are attempted until
the force residual is sufficiently small. During the iterations Ui approaches the true solution within the
specified error tolerance.

Compared to the Newton-Raphson method, the initial stiffness method may require a high number of
iterations. However, the initial stiffness method can be a robust method for dealing with severe plasticity
problems (Dang et al., 2014).

The accelerated initial stiffness method is a modification of the initial stiffness method. This method
uses an acceleration parameter (α) that scales ∆Ui in the iterations (Dang et al., 2014). Dang et al.
(2014) developed a variation of the accelerated initial stiffness method. Moreover, the performance of
the accelerated initial stiffness method (using α ∈ [0.1 − 10]) was evaluated by comparing the number
of iterations and computation time that the accelerated initial stiffness method and other algorithms
(including the non-accelerated initial stiffness method) spent when solving 4 different three-dimensional
FEA tasks. The solved tasks were e.g. simulation of a cylindrical hole excavated in an elastoplastic
Mohr-Coulomb-medium under a constant initial stress field, and determination of the bearing capacity
of an axially loaded pile in cohesionless soil. In their study, Dang et al. (2014) found that the accelerated
initial stiffness method reduced the required number of iterations and computation time by up to 80%
and 77% respectively (compared to the non-accelerated initial stiffness method).
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3.3 Shape functions and mesh refinement tests

In FEA, each element is described with a shape function — a function that takes the nodal displacements
and returns the displacement field within the element (Kurowski, 2004). The shape functions are typically
polynomials (P ) of a defined order (n):

P (x) = α0 +

n∑
i=1

αix
i,

where α0, α1, ..., αn are constants. The most rudimentary elements follow a linear shape function (first-
order elements). For first-order elements, the strain and stress values are constant within the element.
In FEM-software however, averaging-algorithms are often used to display a continuous stress field within
elements, even when first-order elements are used. Moreover, second-order elements follow a quadratic
shape function, and give a linear stress distribution within the elements. Further, higher order shape
functions can be used (Kurowski, 2004).

According to Kurowski (2004), the shape functions must meet certain requirements, including:

• shape functions are continuous over the entire element; and

• shape functions do not overlap other shape functions at edges shared with several elements.

In two dimensions, each node has two degrees of freedom (DOF) — translation in the first and second
direction. Moreover, a first order triangular element can have up to 3 nodes and 6 DOFs. In second order
elements, nodes are allowed at the element midsides as long as at the element corners. A second order
triangular element can therefore have up to 6 nodes and 12 DOFs (Kurowski, 2004). In other element
types, the nodes can be enriched with extra DOFs. Examples are translation in the third direction and
rotations around the three axes (Dassault Systèmes, 2014).

The mesh resolution can be described by both the order of the element shape functions or the total
amount of elements. In FEA, the resolution of the mesh can be increased to study the convergence
of e.g. maximum stress magnitudes. Mesh refinement can be done with a h-refinement test or a p-
refinement test. In h-refinement, the total number of elements in the mesh is gradually increased (and
shape function order remains constant) (Kurowski, 2004). Conversely, a p-refinement test increases the
order of the element shape function (and keeps the number of elements constant) (Kurowski, 2004).

3.4 Commercial FEM codes

In this thesis, the FEM programs RS2 and Abaqus were used, which are developed by Rocscience Inc.
and Dassault Systèmes Simulia Corp, respectively. This section presents and compares the two programs.
Some important features are summarized in Table 4.

3.4.1 Abaqus

The Abaqus package consists of three analysis products:

• Abaqus/Standard — an implicit general purpose numerical tool;

• Abaqus/Explicit — an explicit numerical tool for dynamic problems; and

• Abaqus/CFD — a tool developed for fluid dynamic problems.

Abaqus/Standard (Dassault Systèmes, 2017) has been used in this study. The program is developed for a
wide range of numerical problems, and therefore offers well-developed and versatile modules for designing
and executing the necessary FEM steps. These include geometric design, material parameters, boundary
conditions, loading, meshing, computation and result visualisation.
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Both 2D and 3D structures can be modelled in Abaqus/Standard. The selection of element types are vast.
Examples are cohesive elements, continuum elements or beam elements. In 2D analysis, the elements can
assume e.g. plane strain or plane stress conditions. Element shape functions can be linear or quadratic.

Material parameters can be applied to different model sections via a variety of implemented failure criteria,
including the MC-criterion. In Abaqus/Standard, the post-yield curve coordinates must be specified by
the user (Dassault Systèmes, 2014). Any consistent unit system can be used in Abaqus, as no unit is
specified in the parameter input and result output.

Abaqus/Standard uses the Newton-Raphson method to implicitly find the numerical solution of the
studied problem. In an implicit algorithm, the increments are solved simultaneously. Additionally,
the program offers possibilities for automatic stabilization (stopping criteria) for unstable problems:
specification of a dissipated energy fraction or specification of a damping factor (Dassault Systèmes,
2014).

3.4.2 RS2

RS2 (Rocscience Inc., 2021b) is developed for structural rock and soil problems, such as tunnel or slope
analyses. The different FEM modules therefore come with settings that are commonly used in rock and
soil problems, and the program can therefore be considered less versatile. For example, the CAD-module
offers few tools to draw complicated geometries. On the other hand, the user can choose from a variety
of different tunnel contours and easily adjust and add them to the model.

RS2 offers 2D plane strain analysis, or computation of axisymmetric 3D (a 2D structure geometry is
rotated around an axis, (Rocscience Inc., 2021a)). Both continuum elements and cohesive elements
(labelled ”joint elements”) can be assigned to the structure. Linear and quadratic shape functions are
available in RS2 (Rocscience Inc., 2021b).

Some of the failure criteria and material descriptions that are implemented in RS2 are often used within
rock engineering. Examples are The Hoek-Brown criterion, Generalized Hoek-Brown criterion and the
MC-criterion. In RS2, the entered parameters must follow either the metric or imperial system (Roc-
science Inc., 2021b).

The initial stiffness method, or the accelerated initial stiffness method can be chosen to calculate the
numerical solution (Rocscience Inc., 2021c). Several stopping criteria are implemented in RS2. Stopping
criteria force the program to accept the equilibrium. These criteria let the user define a tolerance of
energy, force and/or displacement that will end the iterations faster (Rocscience Inc., 2021b).

Table 4: Comparison of RS2 and Abaqus/Standard features.

Feature RS2 Abaqus/Standard
Application Structural rock/soil analysis General-purpose
Iteration method Initial stiffness, accelerated initial stiffness Newton-Raphson
Model dimensions 2D 2D, 3D
Shape functions Linear, quadratic Linear, quadratic
Element families Cohesive (joint), 2D plane strain, Cohesive, 3D stress,

axisymmetric 2D plane stress, 2D plane strain
Unit system Predefined systems (metric or imperial) Any consistent unit system
CAD-module Basic Versatile
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4 Methodology

The simulations that were performed in this thesis set out to simulate uniaxial compression tests of
specimens containing unfilled and grouted open flaws. The 2017-version of Abaqus/Standard (Dassault
Systèmes, 2017) and version 11 of RS2 (Rocscience Inc., 2021b) were used. The uniaxial compression
tests were done through several simulation sets (tasks) to assess different research objectives. These
are outlined in the following Table 5. This chapter presents how the different models and tasks were
performed.

Table 5: An overview of the different simulation sets that were performed in Abaqus/Standard (ABQ) and/or
RS2.

Numerical task Task description RS2 ABQ
Experimental design (2D) The 42 geometry combinations that are listed in Table 1 were X ×

tested for the purpose of examining the stress state and
yielding behaviour of specimens with different 2D flaw geometries.

Code validation (2D) 19 flaw geometries (including models with no flaw) were tested X X
in two programs in 2D to compare the programs.

2D/3D validation 1 flaw geometry was tested in 2D and 3D × X
for validation purposes.

4.1 Experimental design (2D)

This part of the project included repeated uniaxial compression tests on flaws with varying geometries,
grouted and non-grouted. The simulations were done in two dimensions to reduce computational cost.
Several models were made both in Abaqus/Standard (ABQ) and RS2. RS2 was eventually considered
the most suitable code, for three reasons: (1) advanced stopping criteria are implemented in the code,
(2) it uses the accelerated initial stiffness method, which is expected to be robust in severe yielding cases
and (3) it returns specific information about the yield type (shear and/or tension).

However, the first 18 2D models were designed in ABQ. These first simulations indicated that stress
singularities and severe plasticity could be a challenge in this thesis work. During these simulations,
ABQ demonstrated convergence problems when computing the nonlinear models — the models did not
converge with the desired elastoplastic material properties. Consequently, the models had to be rebuilt
in RS2, even though a considerable amount of time (approximately 30 days) had been spent on designing
two-dimensional ABQ models. Further, this section — and all sections related to the 2D experimental
design task — exclusively presents information from the RS2 models. The next sections outline the
details in the RS2 models: from geometry, material properties, boundary conditions to the mesh.

4.1.1 Experimental design — geometry

The numerical models aimed to copy the geometry of the specimens that are shown in Table 1 and Figure
4. Two-dimensional models of 50 mm wide and 100 mm tall specimens with grouted or ungrouted flaws of
varying α and 2a, and a thickness, t = 1 mm, were designed. Figure 13 shows that α is the angle between
the horizontal x-axis and the long sides of the flaws. Moreover, the midpoint of the flaw (mid-length and
mid-thickness) is located at the origin of the model coordinate system. The midpoint of the flaw is also
the midpoint of the specimen. Thus, the outer boundaries of the specimen are a rectangle with opposite
corner coordinates (-0.025,-0.050) and (0.025,0.050) in metres — which is the available length unit in
RS2. To reduce stress singularities, the corners of the flaw were rounded with quart-circles with a radius
of 0.3 mm (4 line segments). In every case, t = 1 mm.

All combinations of α = [0, 15, 30, 45, 60, 75, 90]◦, 2a = [10, 20, 30] mm, grouted and ungrouted were
tested. The model shown in Figure 13 is grouted. An Excel algorithm based on basic trigonometric
principles was made to return flaw vertices coordinates from the input of α and 2a. These coordinates
were imported to material boundary creator in RS2. For each flaw geometry, both an ungrouted model
(where the section within flaw boundary was excavated) and a grouted model (where the section within
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flaw boundary was assigned epoxy material) were made. The remaining part of the model was assigned
rock-like material (rock) properties.

Figure 13: Flaw details for the two-dimensional models. The left figure shows the detailed flaw geometry, the
right figure show the whole specimen.

4.1.2 Experimental design — material properties

In the current simulation set, the material properties were kept equal for all the models. However, each
model was tested with both elastoplastic and linear-elastic material properties — i.e. two simulations were
done for each model. In the elastoplastic models, severe yielding redistributed the stress concentrations
around the flaw. Therefore, it was chosen to also investigate the stress field around the flaw using linear-
elastic material properties. The MC-criterion was used, and the material properties are taken from Table
2. Table 6 summarizes the Poisson’s ratio, Young’s modulus and peak and residual (res.) Mohr-Coulomb
parameters for the elastoplastic and linear-elastic material models (ψ is the dilation angle). The residual
strength values of the elastoplastic materials were set to 0 MPa and 0◦ to model a brittle post-peak
behaviour.

One simulation (the model containing a grouted flaw with 2a = 30 mm and α = 30◦) was repeated with
the material ”Epoxy B (Plastic)” assigned to the flaw. This was done to investigate whether a high
Poisson’s ratio could induce additional yielding around the flaw.

Table 6: Material properties experimental design.

Material Colour E-modulus ν Peak σt Peak φ Peak c Res. σt Res. φ Res. c ψ
(MPa) (MPa) (◦) (MPa) (MPa) (◦) (MPa) (◦)

Rock (Elastic) 19600 0.18 - - - - - - -
Epoxy (Elastic) 1200 0.45 - - - - - - -
Rock (Plastic) 19600 0.18 4.1 41.6 10 0 0 0 0
Epoxy (Plastic) 1200 0.45 22.6 21.9 30.2 0 0 0 0
Epoxy B (Plastic) 1200 0.20 22.6 21.9 30.2 0 0 0 0
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4.1.3 Experimental design — load and boundary conditions

In this simulation set, loading was applied in the boundary conditions. The gravitational stress contri-
bution (specimen weight) is low (<1 Pa), and is thus neglected in the models. Figure 14 shows mesh
and boundary conditions for a model example (grouted model with α = 30◦ and 2a = 20 mm). A dis-
placement of 0.10 mm in negative y-direction was added on the top plate, for all the models (blue lines
in Figure 14). The computed total reaction force in the top nodes were about 1.0 MN, which equals an
average compressive load of 20 MPa. Furthermore, the bottom plate was restrained in y-direction (red
circles in Figure 14). To prevent rigid body motion, the lower right corner of the specimen was fixed in
both x- and y-direction (red triangle in figure 14). The side edges of the specimen were not restrained in
any direction. A free body diagram for the loading condition is given in Figure 10.

One ungrouted model (2a = 20 mm, α = 0◦) was also tested with a lower applied load (-0.05 mm which
equals 8 MPa) to examine where the first yielding initiated. Moreover, one grouted model (2a = 10 mm,
α = 0◦) was tested with a higher applied load (-0.14 mm which equals 28 MPa) to investigate which
secondary yielding patterns that developed.

Figure 14: The mesh and boundary conditions for a model example is shown. The model contains a grouted flaw
with α = 30◦ and 2a = 20 mm. The top plate was assigned a constant displacement of -0.10 mm (blue arrows),
and is free to translate along the x-direction (hence both red circles and displacement symbols are shown). Red
circles indicate that nodes can translate in x-direction. Red triangle indicates that node is restrained in x- and
y-direction.

4.1.4 Experimental design — mesh

For all the models in this set, plane strain 3-noded triangles (first order elements) were assigned to the
entire structure. An example of a meshed model is given in Figure 14. It was aimed to keep approximately
the same mesh density in all models. The same discretization intervals were therefore used on the top
and bottom edges (12 segment discretizations/elements), and on the right and left side edges (24 segment
discretizations), for all models. For the long sides of the flaws, 20, 40 and 60 segment discretizations were
used on the flaws of lengths 10 mm, 20 mm and 30 mm respectively (i.e. 20 discretizations per 10 mm flaw
length). 4 discretizations were placed on the quart circles to include the curved geometry. The remaining
part of the short flaw side was described with 1 element. Further, the mesh was constructed with the
RS2 automesher. The meshes used in the ungrouted and grouted models with equal flaw geometries were
identical around the flaw (except from within the flaw, where the ungrouted open flaw has no elements).
This can be seen in Figure 15. The total number of elements assigned to the flaw and rock section for
each model is included in Tables B3 (ungrouted models) and B4 (grouted models) in Appendix B.
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4.1.5 Experimental design — other settings

The default analysis settings in RS2 were used. This means that the accelerated initial stiffness method
was used to solve the iterations. The used stop criteria are comprehensive — meaning that the solution
is accepted when there is an approximate equilibrium in both energy, force and displacement, with a
tolerance of 0.001. The simulations were run in one loading stage.

Figure 15: The mesh for models containing an ungrouted (left) and a grouted flaw (right) is reused (2a = 10
mm, α = 45◦).

4.2 Code validation (2D)

Before attempting to recreate the 2D models from in RS2 as 3D models in ABQ, it was decided to
compare two-dimensional results from ABQ and RS2. This makes it easier to describe the differences
from the programs, and could also serve as a validation of the RS2 results. This lays out the motivation
behind the code validation task. This section moves on to describing how these models were made.

As mentioned above, the purpose of the code validation simulations was to compare results from the
codes ABQ and RS2. Uniaxial compression tests were therefore simulated in both programs under similar
conditions. In this task, models that were suitable for both programs had to be designed. Therefore,
some modifications were made to the 2D models that were described in the experimental design sections.
This section describes the model details for the code validation simulations in ABQ and RS2, and briefly
argues why changes were made.

4.2.1 Code validation — geometry

RS2 only allows 2D-modelling. Therefore, the models that were compared in ABQ and RS2 were two-
dimensional. Further, the geometric models used in this task were the same as described in Section
4.1.1 and Figure 13. The unit systems are however different in ABQ and RS2, and the used length
and stress units in ABQ were mm and MPa respectively (compared to m and MPa in RS2). 9 different
combinations of flaw length and dip angles were simulated, and both grouted and ungrouted models were
tested. Additionally, an intact model (with no flaw) was examined in each program. This makes up 19
models in each program. These are described in Table 7.
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Table 7: The flaw geometries (2a and α) for the tested models in the code validation task, and the total number
of elements in the mesh. Intact models (without flaws) were also tested.

Geometry Total elements (ABQ) Total elements (RS2)
Intact specimen N/A 576 1000
Ungrouted flaw 0◦ 2120 1574
2a=10 mm 30◦ 2312 1501

60◦ 2222 1498
Ungrouted flaw 0◦ 2334 1806
2a=20 mm 30◦ 2620 1686

60◦ 2696 1686
Ungrouted flaw 0◦ 2690 1874
2a=30 mm 30◦ 3240 1955

60◦ 3152 1950
Grouted flaw 0◦ 2208 1704
2a=10 mm 30◦ 2128 1638

60◦ 2372 1628
Grouted flaw 0◦ 2486 1994
2a=20 mm 30◦ 2782 1888

60◦ 2848 1888
Grouted flaw 0◦ 2908 2152
2a=30 mm 30◦ 3206 2244

60◦ 3360 2236

4.2.2 Code validation — material properties

In this task, it was aimed to keep the material properties equal for each model in ABQ and RS2.
The MC-criterion is implemented in both programs, and was chosen for this task. Several attempts of
creating stable brittle material models in ABQ were done. During these attempts, the effects of different
residual values of the MC-parameters, were tested. However, the ABQ-models — which were solved
with the Newton-Raphson iteration method — demonstrated challenging convergence problems. Thus,
it was chosen to use elasto-perfect-plastic material behaviour in this task, which was found to be the
most numerically stable material model. Additionally, linear-elastic material models were tested. The
parameters for the elastoplastic and linear-elastic material models that were simulated in ABQ and RS2
are given in Table 8. For the rock material, ψ = 25◦ was chosen to increase the stability of the models.
Additionally, the peak and residual σt were increased to 6 MPa due to convergence difficulties in ABQ.

Table 8: Material properties code validation.

Material E-modulus ν Peak σt Peak φ Peak c Res. σt Res. φ Res c ψ
(MPa) (MPa) (◦) (MPa) (MPa) (◦) (MPa) (◦)

Rock (Elastic) 19600 0.18 - - - - - - -
Epoxy (Elastic) 1200 0.45 - - - - - - -
Rock (Plastic) 19600 0.18 6.0 41.6 10 6.0 41.6 10 25
Epoxy (Plastic) 1200 0.45 22.6 21.9 30.2 22.6 21.9 30.2 10

4.2.3 Code validation — load and boundary conditions

The boundary conditions are similar to the boundary conditions that were described in Section 4.1.3
and shown to the left in Figure 14. This means that the bottom plane is secured with rollers (fixed
in y-direction) and one fixed point (fixed in both x- and y-directions). The side edges are free (not
restrained in any direction), and the load is added as 0.14 mm displacement on the top plate (in negative
y-direction). The total nodal reaction force output values were -1373 N in ABQ and -1.393 MN in RS2.
This gives an average applied compression stress of 27 MPa in ABQ and 28 MPa in RS2.

Compared to the displacement load in the experimental design part of the study (0.10 mm), the load
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was increased in this task. This was done to give more developed yielding in the elasto-perfect-plastic
models.

4.2.4 Code validation — mesh

Triangular plane strain first order elements were used for this task. The mesh from the experimental
design task was reused for the RS2 models. Creating identical meshes in RS2 and ABQ was however a
too time-consuming objective. Even if the same amount of elements/discretizations were assigned to the
boundaries, the mesh resolution/number of elements in the different areas did not match in models from
the two programs. 20 segment discretizations per 10 mm flaw length — which was a good density for
the RS2 models — resulted in a too fine mesh in ABQ, and some unwanted mesh irregularities close to
the flaw occurred. 16 discretizations per 10 mm flaw length was instead used in the ABQ-models. This
was conversely too coarse for the RS2-models and resulted in some unwanted effects close to the external
model boundaries. Therefore — instead of attempting to design equal meshes in RS2 and ABQ — it
was aimed to create a mesh that worked well in each program. The amount of elements on the long side
of the flaw therefore differ in the RS2 and ABQ models (as described above). Yet, the same amount of
elements were ascribed to the external boundaries in both programs (12 elements on short sides and 24
elements on long sides). 4 dicretizations were further used on the curved fillets (quart circles) close to
the flaw tip, and the short side of the flaw was given in one discretization in both programs.

Figure 16 compares the meshes around the flaw in ABQ and RS2 for models containing a grouted 30
mm long flaw with α = 60◦. As can be seen in the figure, the mesh in the ABQ model has higher
density, despite a lower number of elements being planted at the flaw boundary. Table 7 included the
total amount of elements for each RS2 and ABQ model. Note that in ABQ, the mesh on the rock section
of the grouted models did not always match the mesh in the rock section of the ungrouted counterpart,
even if the same amount of ”mesh seeds” (discretizations) were planted on the different line segments.

Figure 16: Comparison of the meshes used in ABQ (left) and RS2 (right) for a model containing a grouted 30
mm long flaw with α = 60◦.

4.2.5 Code validation — other settings

The simulations were run in one stage in both programs. RS2 used the accelerated stiffness method, and
ABQ used the Newton-Raphson method. A comprehensive stop criteria with a tolerance of 0.001 was
used in RS2. In ABQ, an automatic stabilization based on a dissipated energy fraction of 0.0002 was
applied. These values are the default tolerance values in the programs.
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4.3 2D/3D validation

The motivation behind this task was to examine the agreement between uniaxial compression test results
from two- and three-dimensional models. A part of this task was to explain the disagreements between
the results. Therefore, several variations of models containing one grouted flaw geometry were made —
instead of comparing several grouted and non-grouted flaw geometries. These tests were carried out in
ABQ, and the following sections describe how these models were made.

4.3.1 2D/3D validation — geometry

In the first two-dimensional analyses in ABQ, the model containing a 1 mm thick grouted flaw with
2a =20 mm and α = 30◦ geometry converged with a high displacement load magnitude compared to
other models. This geometry was thus assumed to be one of the most numerically stable models, and
was therefore chosen for this task.

Two- and three-dimensional models containing a grouted flaw with 2a = 20 mm and α = 30◦ were
compared. The 50 mm wide and 100 mm tall two-dimensional geometries were created as described in
Section 4.1.1.

The 3D geometrical model was creating by extruding a 50 mm × 100 mm rectangle in a depth of 50
mm. One of the 50 mm × 100 mm planes was then partitioned with the flaw geometry 2a = 20 mm,
α = 30◦ and t = 1 mm with fillets at the flaw tips (to exactly match the 2D models). By using the
”Extrude/Sweep Edges” function in ABQ, the flaw geometry was extruded to cut through the 50 mm
deep specimen (swept along the direction orthogonal to the flaw plane axes). The geometric model was
finished by assigning epoxy material to the flaw partition and rock material to the remaining specimen
volume. The 3D model geometry is presented in Figure 17.

Figure 17: The geometry of the three-dimensional model containing a grouted flaw.

4.3.2 2D/3D validation — material properties

The material properties used in this task match the properties that were used in the code validation task.
In this task, σt was increased to 6 MPa to enhance the model stability. Both linear-elastic and elasto-
perfect-plastic material models were tested. Additionally, a few variations of the epoxy with improved
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ν and E-modulus values (epoxy 2 and epoxy 3) were tested. See Table 9. The purpose of the material
variations was to investigate some unexpected nonzero σz values along the flaw boundary in the outer
x-y-plane, where σz was expected to be zero (see Section 5.3.4).

Table 9: Material properties 2D/3D validation.

Material E-modulus ν Peak σt Peak φ Peak c Res. σt Res. φ Res c ψ
(MPa) (MPa) (◦) (MPa) (MPa) (◦) (MPa) (◦)

Rock (Elastic) 19600 0.18 - - - - - - -
Epoxy (Elastic) 1200 0.45 - - - - - - -
Rock (Plastic) 19600 0.18 6.0 41.6 10 6.0 41.6 10 25
Epoxy1 (Plastic) 1200 0.45 22.6 21.9 30.2 22.6 21.9 30.2 10
Epoxy2 (Plastic) 1200 0.18 22.6 21.9 30.2 22.6 21.9 30.2 10
Epoxy3 (Plastic) 10000 0.18 22.6 21.9 30.2 22.6 21.9 30.2 10

4.3.3 2D/3D validation — load and boundary conditions

A top plate displacement of -0.10 mm was assigned to both the 2D- and 3D models. The 2D models are
restrained with rollers and one fixed point on the bottom line and displacement on the top plate (as seen
in Figure 14).

Figure 18 shows the defined boundary conditions of the 3D model. -0.10 mm displacement in y-direction
is assigned to all top plate nodes. Further, all nodes in the bottom plane were restrained in y-direction.
To prevent rigid-body-movement (rotation about the y-axis), additional constraints were assigned to
parts of the bottom plate (Figure 18 b)). In the bottom plate, the nodes on the middle line parallel to
z-direction were fixed in x-direction. Moreover, the nodes on the middle line parallel to x-direction were
fixed in z-direction.

a) b)

Figure 18: The boundary conditions of the 3D models. a) shows the entire model. b) shows the details in the
bottom plate.

4.3.4 2D/3D validation — mesh

Designing the 3D model mesh appeared to be a more complicated task than the 2D mesh design. The
first 3D model results included some non-zero σz buildups at the flaw boundary in the outer x-y-plane,
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where zero σz was expected (see Section 5.3.4). There were additionally some disagreements between
the stress contour plots from the 2D models and the 3D models. For the purpose of examining these
errors further, it was decided to test several meshes. Different mesh densities and geometric orders were
compared. These are presented in the following sections.

3D meshes

An h-refinement test was carried out to compare stress concentrations at points along the flaw (in the
middle and outer plane). This test compared 5 meshes with increasing mesh density. These 5 meshes
consisted of linear (6-noded) triangular prism elements from the 3D stress family in ABQ. Mesh 1 con-
tained the lowest number of elements and mesh 5 contained the highest number of elements. Mesh 1 and
5 are shown in Figure 19. These simulations were run with elastoplastic material properties.

In the 3D analysis, it was also chosen to increase the geometric order of the elements. Second order
(quadratic) element types calculate continuous stress values over the elements. Mesh 5 was therefore
reused with quadratic (15-noded) triangular prism elements. These simulations did not converge with
elastoplastic material properties, and were consequently run with linear-elastic material properties.

2D mesh

2D simulations were run with meshes that matched the meshes of the 3D models. This means that
the mesh on the x-y-planes in the 3D model (which contain the flaw) is similar to the 2D model mesh.
Examples of 2D and 3D meshes with similar resolution can be seen in Figure 36 in Chapter 5 (deformed
mesh 2 and mesh 2 (2D) are compared). In the 2D-models, 3-noded (first order) triangle elements
were used. The 2D models were tested with both plane stress and plane strain element types. This
comparison was done with linear-elastic material properties, as the MC-criterion cannot be run with
plane stress element family in ABQ. Two two-dimensional meshes were tested. The next section gives an
overview of the different models that were used in this task.

Mesh 1: 12060 elements Mesh 5: 47040 elements

Figure 19: The coarsest mesh (mesh 1, left) and the finest mesh (mesh 5, right) that were used in the h-refinement
test.
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Overview of mesh and material combinations

An overview of the properties of the meshes — and which material and stress assumptions that were tested
for each mesh — is given in Table 10. The table includes geometric order, total number of elements and
total number of nodes.

Table 10: An overview of the details of the 2D and 3D meshes. Details of the tested material properties and
stress assumptions are also given.

Mesh Order Elements Nodes Material behaviour Element family
Mesh 1 (3D) Linear 12060 6974 Plastic (epoxy 1,2 and 3) 3D Stress
Mesh 2 (3D) Linear 14180 8140 Plastic (epoxy 1), elastic ”
Mesh 3 (3D) Linear 17832 10088 Plastic (epoxy 1) ”
Mesh 4 (3D) Linear 31836 17700 Plastic (epoxy 1) ”
Mesh 5 (3D) Linear 47040 25755 Plastic (epoxy 1), elastic ”
Mesh 5q (3D) Quadratic 47040 125713 Elastic ”
Mesh 1 (2D) Linear 1206 634 Plastic (epoxy 1) Plane strain
Mesh 2 (2D) Linear 1390 726 Plastic (epoxy 1), elastic Plane strain, plane stress
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5 Results

This chapter presents results from the different simulation tasks. First, the experimental design results
are presented. The second part outlines the code validation results, and the third part reports the 2D/3D
validation results. Results are given as stress contour plots, maximal stress values, yielded element contour
plots and/or yielded element percentages. General tendencies are explained and a few explanations are
given. Results from the different simulation tasks are further discussed and compared in Chapter 6 and
Chapter 7.

5.1 Experimental design

Models containing the 42 different flaw geometry combinations were tested with both linear-elastic and
elastoplastic material properties. This section first presents the linear-elastic results, then it moves on to
presenting the elastoplastic results. In Chapter 6, the results are compared to the experimental results
from Le et al. (2018).

5.1.1 Experimental design — linear-elastic results

In linear-elastic simulations, the stress contour plots of the specimens were studied. The maximum σ1
and minimum σ3 values — and their locations — are summarized in Tables B1 and B2 in Appendix B.
In all cases, the maximum value of σ1,

σ1,max > 0,

and the minimum value of σ3,
σ3,min < 0.

Thus, the maximal compressive stress, σc,max was defined as:

σc,max = σ1,max; (14)

and the maximal tensile stress, σt,max was defined as:

σt,max = |σ3,min|. (15)

The σc,max and σt,max for specimens containing ungrouted and grouted flaws were further plotted in
the Figures 20 and 21. As seen in Figure 20, the σc,max values were significantly lower in most of the
grouted models compared to the ungrouted ones. For the 30 mm long flaw with dip angle 15◦, the
maximal concentrations were reduced by 172 MPa. Conversely, for the flaws with dip angle 90◦, the
stress concentrations were reduced by 1− 3 MPa. The σc,max values were found at the flaw tip for both
ungrouted and grouted models (see Tables B1 and B2).

According to Figure 21, the maximum σt stress concentrations are not reduced after grouting in every
case. For the 10 mm long flaws with α ≥ 30◦, the stress concentrations are 1-12 MPa higher in the grouted
models. In other cases, e.g. flaws with α = 0◦ the σt,max is ca. 12 MPa lower in the grouted models. In
the ungrouted models with α ≤ 30◦, high stress concentrations were found over a larger area, from the
flaw tip to the midflaw. In their grouted counterparts, the high stress concentrations were only located at
the flaw tip (or close to the flaw tip). The tensile stress values were therefore reduced in several locations
around the flaw, even though the maximal concentrations were not reduced. Therefore, the maximum
stress concentration values alone do not adequately describe the stress situations. A few typical contour
plot examples from the linear-elastic models are thus presented in the following paragraphs and figures.
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Figure 20: The maximum compressive stress values for the specimens containing ungrouted flaws (left) and
grouted flaws (right).

Figure 21: The maximum tensile stress values for the specimens containing ungrouted flaws (left) and grouted
flaws (right).

Models containing 30 mm long flaws with α = 30◦

Longer flaws with lower dip angles showed the most pronounced stress reduction due to grouting, accord-
ing to Figure 20. This can also be seen from the contours plots. The results from the different models
showed similar contour plot patterns. The models containing grouted and ungrouted 30 mm long flaws
with α = 30◦ are typical examples. Thus contour plots from these simulations are presented. Figures 22
and 23 show that σ1 stress concentrations are reduced in the grouted models. The detailed stress field
around the flaw tip is provided in Figure 23. The ungrouted flaw shows high σ1 concentrations at the
flaw tip (up to ≈ 230 MPa) and low σ1 concentrations midflaw (≈ 0 MPa). In the grouted case, the
flaw tip σ1 concentrations are ≈ 84 MPa, while the values at the midflaw — and within the flaw — are
around 16 MPa.

The σ3 contour plots for the ungrouted and grouted specimens containing a 30 mm flaw with α = 30◦

are given in Figures 24 and 25. The contour plots include only tensile stress contours (σ3 < 0). In these
models, the maximal tensile stress values were ≈ 10 MPa higher in the grouted models. However, as can
be seen in the figures, the high tensile stress concentrations in the grouted model are located at the flaw
tip at a smaller area compared to the ungrouted model. Figure 25 shows the detailed tensile stress field
around the flaw. In the ungrouted model, the tensile stresses are generally higher around the entire flaw.
Moreover, around the midflaw, and within the flaw, the grouted model results show compressive stress.
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Ungrouted flaw Grouted flaw

Figure 22: σ1 contour plots for linear-elastic models containing ungrouted and grouted flaws, 2a = 30 mm,
α = 30◦. The applied load was 20 MPa on the top plate.

Figure 23: The detailed σ1 contour plots around the flaw, for specimens containing ungrouted and grouted flaws,
2a = 30 mm, α = 30◦. Stress values are given in MPa, lower bar shows length scale. The applied load was 20
MPa on the top plate.
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a) Ungrouted flaw b) Grouted flaw

Figure 24: σ3 contour plots for specimens containing ungrouted and grouted flaws, 2a = 30 mm, α = 30◦. The
plots show tensile stress (σ3 < 0), gray parts are in compressive stress. The applied load was 20 MPa on the top
plate.

Figure 25: The detailed σ3 contour plots around the flaw, for specimens containing ungrouted and grouted flaws,
2a = 30 mm, α = 30◦. The plots show tensile stress (σ3 < 0), gray parts are in compressive stress. Stress values
are given in MPa, lower bar shows length scale. The applied load was 20 MPa on the top plate.
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Models containing 10 mm long flaws with α = 75◦

According to the σc and σt maximal values presented in Figures 20 and 21, grouting does not affect the
maximal stress concentrations for short flaws of high dip angles (α ≥ 75◦). Typical examples for short
flaws with high dip angles are the models containing 10 mm long flaws with α = 75◦. Contour plots from
these models are therefore presented further. The σ1 and σ3 contour plots for the ungrouted and grouted
models show similar patterns and stress values. As seen in Figure 26, the σ1 concentrations at the flaw
tips are about 20 MPa higher in the ungrouted model compared to the grouted model. At the midflaw,
σ1 is approximately 20 MPa in both cases. σ1 is about 5 MPa within the grouted flaw. In Figure 27, the
σ3 contour plots for the models containing 10 mm long flaws with α = 75◦ are shown. At nodes located
a small distances away from the flaws, the σ3 values differ with 0.0-0.7 MPa. Note that the maximum
tensile stress/minimum σ3 in these models were -17 MPa and -18 MPa for the ungrouted and grouted
model respectively. These maximal values were concentrated at the flaw tip in both cases.

Figure 26: Contour plots showing the σ1 contours around the flaw, for specimens containing ungrouted (left)
and grouted flaws (right). 2a =10 mm, α = 75◦. Stress values are given in MPa. The applied load was 20 MPa
on the top plate.

Figure 27: Contour plots showing the σ3 contours around the flaw, for specimens containing ungrouted (left)
and grouted flaws (right). 2a =10 mm, α = 75◦. Stress values are given in MPa. The applied load was 20 MPa
on the top plate.
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5.1.2 Experimental design — elastoplastic results

The elastoplastic series of the experimental design task set out to investigate yielded elements around
the flaw, and far field. The results from each elastoplastic simulation are given in Tables B3 and B4
in Appendix B. The tables include the total amount of yielded elements that were observed in each
simulation and comment on the crack types (yielded elements pattern). This section summarizes the
information in these tables and presents a few typical examples. Note that the results are discussed more
thoroughly and compared to findings from literature in Chapter 6.

No yielded elements were observed within the grout material section/grouted flaw for the grouted models
(the material has relatively high peak c). Moreover, the ungrouted flaw contain no elements. The
following sections therefore focus on the yielding process in the rock material section.

Yielded elements

The ungrouted models registered from 0 to 995 more yielded elements than their grouted counterparts.
Table 11 outlines the percentage of the elements in the rock material section that yielded in the ungrouted
and grouted model simulations. In almost every case, the grouted specimens exhibited less yielding. The
exception is the flaw geometry with 2a = 20 mm and α = 90◦, where both the ungrouted and grouted
models showed 13 yielded elements.

For the longer flaws, the difference in yielding is more significant. When α = 0◦, the yielded elements
percentage is more than 50 percentage points lower for the grouted model than for the ungrouted model.
For high angles (α = 90◦) however, the difference between the ungrouted and grouted specimen is less
than 1 percentage point. For all flaw lengths, the amount of yielded elements decreases when α increases.
Conversely, for the grouted models, flaws with α = 30◦ and α = 45◦ demonstrate the highest percentage
of yielded elements. This may occur because the grout has a higher Poisson’s ratio than the rock (ν = 0.45
compared to ν = 0.18). Therefore, more stress can be induced in the flaw area for certain dip angles.
To investigate this, an extra simulation was performed — where the Poisson number of the epoxy was
reduced to 0.20 (2a = 30 mm, α = 30◦). This resulted in a decrease in the yielded element percentage
from 17% to 7% (see Table B5 in Appendix B).

Yielding patterns — crack types

Table 11 comments briefly on the observed crack type (yielding pattern). If they matched, the cracks
were classified after the crack types that were described in Chapter 2. This means that — if the yield type
(shear or tension) and propagation path matched the crack types presented in Table 3 — they were given
crack names I-IX. Otherwise, a short comment about yield type and location was made. The following
paragraphs and figures present the typical flaw types that were observed in the elastoplastic 2D models.
Appendix C contains a detailed table presenting the yielded elements contour plots for each of the 42
elastoplastic models (see the legend in Figure 28). A few of the cases will be presented in more detail.

Figure 29 compares the yielding contour plots for models with ungrouted (NG) and grouted (G) flaws
of length 20 mm and dip angle 45◦. The legend is shown in Figure 28. The observed crack types in the
ungrouted model were I, II and IV (about 25% of the elements yielded). Additionally, an early antitensile
crack (III) can be seen in this ungrouted model. In the grouted model, type II and some elements yielded
in shear at the flaw tip were found (about 10% of the elements yielded). A more detailed contour plot
of these models is given in Figure 30. Crack types are marked. The following paragraphs present the
tension cracks and shear cracks more systematically.

Tension failure
In the ungrouted and grouted models, elements yielded in tension were always observed at the flaw tip.
Tension yielding that initiated at the flaw tip and propagated parallel to the loading direction (crack
type II) were observed in every case, with three exceptions. In the three cases where II did not occur, the
tensile yielding was not developed enough to decide the propagation direction. During the simulations,
it was observed that the tensile crack types I-III could occur in both grouted and non-grouted models.
Type II was however the most common crack type. Moreover, in the grouted models, type II was often
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the only tension crack that occurred. This is because the grouted models developed less yielded elements
than the ungrouted models under the same loading conditions. This can indicate that type II usually is
the first crack to initiate. Figure 30 shows cases where type II occurred (the grouted specimen is a good
example). Type I is also shown in this figure. An example of type III is shown in Figure 31 b).

Crack type VIII — a tensile crack that developed from the middle-section of grouted flaws, was not
observed in the grouted models that were loaded with 20 MPa. However, crack VIII occurred as a
secondary crack in the grouted model that was loaded with 28 MPa (2a = 10 mm, α = 0◦). Moreover, a
midflaw tensile crack appeared in the models with ungrouted 30 mm long flaws with dip angles 0◦ and
15◦. In these models, 50-55% of the elements yielded. An example of the midflaw tensile crack is shown
in Figure 31 a). The simulation of the model containing a horizontal 20 mm long ungrouted flaw with
reduced load magnitudes (8 MPa) indicated that the midflaw crack was the first crack to initiate.

Shear failure
Shear yielding developed from the flaw tip in every ungrouted model with one exception (10 mm long
flaw with dip angle 75◦). In 12 of 21 of the grouted cases, shear yielding also initiated at the flaw tip.
The propagation path of the shear ”crack” did not always match the propagation path of crack type IV,
which is parallel to the flaw plane. Further, the shear failure pattern that occurred in the grouted models
were similar to the shear failure pattern in the ungrouted models, but less developed. This can be seen in
Figure 30. In this case (2a = 20 mm, α = 45◦) the propagation of the shear yielding was almost parallel
to the flaw plane. In other cases — for example the ungrouted model containing a 30 mm long flaw with
α = 0◦ — the shear yielding pattern deviated about 45-60◦ from the horizontal line. This can be seen in
Figure 31 a). This means that in the cases with pronounced shear yielding, the shear yielding followed
a plane about 45-75◦ from the horizontal line. Some of these elements were yielded in both shear and
tension. The shear yielding plane was parallel to the preexisting flaw plane in the cases where α was 45,
60 and 75◦ and 2a was 20 and 30 mm (ungrouted flaws).

Basic continuum elements were used along the grout-rock interface in these simulations, i.e. infinite shear
strength was assumed along the flaw.

Table 11: The percentage of yielded elements in models containing ungrouted and grouted flaws are compared for
various flaw geometries. Comments are also made about the yielding pattern (crack type).

Flaw geometry Ungrouted flaws Grouted flaws

2a α(◦) Yielded rock % Crack type Yielded rock % Crack type

0 42.9 II, IV, midflaw tensile 2.60 II
15 19.8 II, IV 4.22 II
30 21.4 II, IV 6.20 II, shear at tip

10 mm 45 26.8 II, III, IV 13.3 I, II, shear at tip
60 7.61 I, II, IV 5.67 II, shear at tip
75 6.47 II, shear at tip 1.62 II
90 1.59 II, shear at tip 1.21 II
0 55.8 II, IV, midflaw tensile 1.77 II
15 47.0 I, II, III, IV 4.98 II
30 27.9 I, II, IV 8.96 II, shear at tip

20 mm 45 24.9 I, II, III, IV 10.6 II, shear at tip
60 15.8 I, II, IV 6.64 II, shear at tip
75 7.54 II, shear at tip 2.88 II, shear at tip
90 0.72 tensile at tip 0.72 II
0 54.5 II, IV, midflaw tensile 1.44 II close to tip
15 50.6 II, III, IV, midflaw tensile 8.22 II, shear at tip
30 40.8 I, II, III, IV 17.2 I, II, III, shear

30 mm 45 24.9 I, II, IV 11.5 I,II, shear at tip
60 32.6 I, II, III, IV, midflaw tensile 8.36 II, shear at tip
75 13.0 II, shear at tip 4.86 II, shear at tip
90 0.80 tensile at tip 0.59 tensile at tip
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Elastoplastic stress distribution

The stress distribution in the elastoplastic models was relatively complicated compared to the linear-
elastic stress distribution. In a severely yielded case — an ungrouted flaw with 2a = 30 mm and α = 30◦

— the maximum σ1 and minimum σ3 concentrations were about 19 MPa and -1 MPa respectively.
Moreover, the stress trajectories were rotated about the yielded areas. This can be seen in Figure 32,
which shows the σ1 contour plots for the model including stress trajectories. For the grouted counterpart
(i.e. the grouted flaw with 2a = 30 mm and α = 30◦), the maximum σ1 and minimum σ3 concentrations
were 40 MPa and -17 MPa respectively. The σ1 contour plot for the grouted model is also included in
Figure 32.

Figure 28: Legend for yielded elements contour plots.
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Figure 29: Contour plots of yielded elements around models containing ungrouted (left) and grouted (right) flaws
with length 20 mm and dip angle 45◦. Purple lines mark the external boundaries of the rock specimen. The applied
load was 20 MPa on the top plate. Legend is given in Figure 28.

Figure 30: Detailed contour plots of yielded elements in models containing ungrouted (left) and grouted (right)
flaws with length 20 mm and dip angle 45◦. Ideal tensile crack types (blue lines) and shear crack types (orange
lines) are drawn for comparison. The models continue past the stippled lines. Purple lines show the external
boundaries. The applied load was 20 MPa on the top plate. Legend is given in Figure 28.
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Figure 31: Left contour plot (a) shows a model containing an ungrouted flaw with 2a = 30 mm and α = 0◦.
Right figure (b) shows a model containing a grouted flaw with 2a = 30 mm and α = 30◦. Ideal tensile crack types
(blue lines) and shear crack types (orange lines) are drawn for comparison. The models continue past the stippled
lines. Purple lines show the external boundaries. The applied load was 20 MPa on the top plate. Legend is given
in figure 28.

a) Ungrouted flaw b) Grouted flaw

Figure 32: σ1 for specimens containing ungrouted and grouted flaws with 2a= 30 mm, α = 30◦ including yielded
elements and stress trajectories (red crosses/lines). In the ungrouted model, the applied stress is rotated about
the yielded areas. In the grouted model, the applied stress is less rotated (σ1 is vertical and parallel to the applied
loading direction). The applied load was 20 MPa on the top plate.
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5.2 Code validation

This section outlines the results from uniaxial compression tests of 19 models that were simulated in ABQ
and RS2. In the simulations, both linear-elastic and elastoplastic material behaviour were assumed. The
results from each series are presented and commented in the following subsections.

ABQ and RS2 use opposite stress sign conventions. In ABQ, tensile stress is defined with positive values,
while tensile stress is defined as negative in RS2. This means that the σ1-plots in ABQ are actually
σ3-plots — according to the convention used in RS2 (and in rock mechanics). This report consistently
uses the rock mechanics convention, and the results from ABQ were therefore changed to match this
system.

5.2.1 Code validation — linear-elastic results

Table 12 gives the σ1,max and σ3,min values that were registered in the ABQ and RS2 results. The intact
models showed the best agreement. In both programs, the stress field of the intact models was uniform.
Specifically, σ1 = 28.4 MPa and σ3 = 0.00 MPa over every element in the intact ABQ and RS2 models.
For the models containing grouted and ungrouted flaws, the maximal σ1 concentrations in ABQ deviated
0-30% from the concentrations in RS2. Further, the returned minimum σ3 concentrations were 1-52%
higher or lower in ABQ than in RS2.

The stress contour plots from the linear-elastic series showed similar patterns in both ABQ and RS2. In
fact, the deviation between the programs was highest in local points around the flaw tip. An example
of stress contour plots from the code validation task is given from the elastoplastic series in the next
subsection.

Table 12: The σ1,max and σ3,min values from the linear-elastic simulations in ABQ and RS2 are given. The
percentage error from the RS2 values is calculated for the stress values. For the specimens containing grouted
flaws, the location of the elements that yielded in the elastoplastic series is indicated.

Geometry ABQ-values RS2-values Error from RS2-values
Flaw details α(◦) σ1,max σ3,min Yielding σ1,max σ3,min Yielding σ1,max σ3,min

(MPa) (MPa) (MPa) (MPa) error error

Intact specimen N/A 28.4 0.00 No 28.4 0.00 No 0% 0%

Grouted flaw 0 63.7 -7.75 Midflaw (MF) 67.1 -8.23 MF 5% 6%
2a=10 mm 30 99.7 -52.9 Flaw tip (FT) 82.0 -54.9 FT 22% 4%

60 106 -46.1 FT 109 -36.9 FT 3% 25%
Grouted flaw 0 65.6 -7.01 close to FT 58.4 -7.64 close to FT 12% 8%
2a=20 mm 30 109 -70.9 FT 96.1 -69.1 FT 13% 3%

60 125 -64.6 FT 121 -48.1 FT 3% 34%
Grouted flaw 0 65.4 -7.01 close to FT 57.9 -7.28 close to FT 13% 4%
2a=30 mm 30 118 -81.0 FT 118 -60.4 FT 0% 34%

60 125 -70.6 FT 99.6 -64.9 FT 26% 9%

Ungrouted flaw 0 174 -25.0 N/A 194 -23.9 N/A 10% 5%
2a=10 mm 30 201 -42.2 N/A 155 -37.4 N/A 30% 13%

60 132 -48.9 N/A 172 -35.8 N/A 23% 37%
Ungrouted flaw 0 233 -26.1 N/A 225 -25.6 N/A 4% 2%
2a=20 mm 30 274 -49.2 N/A 224 -43.5 N/A 22% 13%

60 240 -86.0 N/A 234 -56.4 N/A 3% 52%
Ungrouted flaw 0 273 -25.8 N/A 249 -25.6 N/A 10% 1%
2a=30 mm 30 341 -56.1 N/A 330 -46.3 N/A 3% 21%

60 264 -114 N/A 210 -84.0 N/A 26% 36%

5.2.2 Code validation — elastoplastic results

Elastoplastic simulations were only done for the grouted flaws. This is because the models containing
ungrouted flaws did not converge in ABQ with the current material properties. The ungrouted mod-
els converged when the assigned tensile strength of the rock section increased from 6 MPa to 11 MPa.
However, the purpose of this task was to compare the two programs, and the intact and grouted models
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converged and provided a good basis for this comparison. Instead of studying models with an unrealisti-
cally high tensile strength, it was decided to focus on the models that converged. This subsection further
presents the results from the intact and grouted elastoplastic models in ABQ and RS2.

The σ1 contour plots from the elastoplastic ABQ and RS2 models containing a grouted flaw with 2a = 30
mm and α = 60◦ are given in Figure 33. The maximal σ1 concentration at the flaw tip is about 20 MPa
(22%) higher in ABQ, but the remaining values show a difference of 1-2 MPa between the programs (ca.
1% of σ1,max). Overall, the agreement between the programs is good.

Table 12 indicates the yielding patterns that occurred in the grouted models in ABQ and RS2. No
yielded elements were registered in the intact specimens. There is a good agreement between the yield
development in ABQ and RS2. Typical examples of the yielding patterns are shown in Figure 34. This
figure includes the yield contour plots of the models containing grouted 10 mm long flaws with dip
angles 0, 30 and 60◦. Subfigures a) and d) are examples of the midflaw yielding (from ABQ and RS2
respectively). Moreover, the flaw tip yielding pattern is seen in subfigures b) and c) from ABQ, and e)
and f) from RS2. In both programs, the flaw tip yielding propagates about 60◦ from the horizontal line,
and the extent of the yielded zone is about half a flaw length (5 mm) from the flaw tip.

As shown in the given examples, the agreement between ABQ and RS2 is good. The higher deviation is
found at small and local points, and the yielding behaviour and stress contours are similar in every case
where the simulations converged. The mesh is finer in the ABQ models, which is an explanation for the
differences in stress concentration values.

Figure 33: σ1 contour plots for models containing a grouted flaw with 2a = 30 mm and α = 60◦. The left plot
is from ABQ. The right plot is from RS2. The contour interval for both plots is [-1.00,95.00] MPa, as indicated
in the legend. ABQ returned σ1 > 95.00 MPa at some local flaw tip points.

39



Figure 34: The yielded elements for models containing 10mm long grouted flaws with α = [0, 30, 60]◦. The top
row shows the ABQ results, and the bottom row gives the RS2 results.
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5.3 2D/3D validation

2D and 3D uniaxial compression test simulations of models containing a 20 mm long grouted flaw with
dip angle 30◦ were performed. This task tested both elastoplastic and linear-elastic material behaviours,
and several mesh densities and element types. This section presents the results from these simulations.

5.3.1 2D/3D validation — elastoplastic stress results

The following paragraphs present stress values from the elastoplastic simulations. Stress values from
several meshes are compared, and contour plot examples are given. The σ1,max and σ3,min values from
each simulation are presented in Table 13. The convergence error was calculated as follows:

convergence error =

∣∣∣∣ result(n)− result(n− 1)

result(n)

∣∣∣∣ . (16)

As seen in Table 13, the σ3,min values are stable as the mesh density increases. σ3,min is located close to
the flaw tip. Conversely, the σ1,max values appear to approach ca. 60 MPa at mesh 4, but increases to
70.8 MPa (12% increase) in the model with the finest mesh (mesh 5). This is because the mesh at the
σ1,max location (at the curved/filleted part of the flaw tip) were actually slightly coarser at the curved
part of the flaw tip in mesh 5 (and mesh 1) compared to mesh 2, 3 and 4. This adjustment was however
necessary to make the mesh 5 simulation converge. On the other hand, the local mesh resolution around
the σ3,min position, was finer in mesh 5 than mesh 1, 2, 3 and 4.

Table 13: Maximum and minimum stress concentrations for the elastoplastic 2D and 3D models from the mesh
refinement test. The convergence error (conv. error) is included.

# of elements σ1,max (MPa) σ1 conv. error σ3,min (MPa) σ3 conv. error
Mesh 1 (3D) 12060 81.4 unknown -6.01 unknown
Mesh 2 (3D) 14180 63.1 29 % -6.01 0.00 %
Mesh 3 (3D) 17832 63.3 0.32 % -6.03 0.33 %
Mesh 4 (3D) 31836 62.1 1.9 % -6.02 0.17 %
Mesh 5 (3D) 47040 70.8 12 % -6.00 0.33 %
Mesh 1 (2D) 1206 77.7 unknown -10.6 unknown
Mesh 2 (2D) 1390 67.1 16% -9.97 6.3%

Figure 35: σ3 legend
for Figure 36.

The 2D and 3D models did not show exact agreement in maximal stress con-
centrations (as presented in Table 13). Models with approximately similar mesh
resolutions (mesh 1 and 2) were compared in both 2D and 3D. The σ1,max con-
centration was 4 MPa (6%) higher and the and |σ3,min| concentration was 4 MPa
(76%) higher in the 2D model compared to the 3D model (for mesh 2).

Apart from the maximum stress magnitudes at the flaw tips, the contour plots
showed overall good agreement in terms of stress values. However, some pro-
nounced differences were observed around the midflaw area. Figure 36 compares
the σ3-values for the plane strain 2D model and the 3D model (mesh 2). The
figure includes the x-y-plane that cuts through the middle of the 3D model. The
areas within the white marked lines are in tensile stress. As seen in the figure,
tensile stress appears over a larger area — and closer to the midflaw — in the 3D
model than in the 2D model. Close to the midflaw, the stress values over the rock
material is about 2 MPa (in compression) in the 2D model. In the 3D model, the
values were about -0.5 MPa close to the midflaw (rock). The agreement between
the models is relatively poor around the midflaw, as the 2D model returns com-
pressive stress and the 3D model returns tensile stress. However, the tensile stress
magnitudes around the midflaw are low (close to 0 MPa) in the 3D model. The
2D and 3D models show similar stress values within the grouted flaw (7-8 MPa
in both models). Additionally, both models agree on the position of the maximal
tensile stress, which is close to the flaw tip.
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Figure 36: The σ3 contour plots for elastoplastic 2D (plane strain) and 3D models with mesh 2. The white
lines mark the boundary between tensile and compression stress. The figures show deformed meshes and contours,
scaled by a factor of 100. The legend is given in Figure 35.

5.3.2 2D/3D validation — yielded elements

The results from the two- and three-dimensional elastoplastic models gave similar yielding patters: yield-
ing originating from the grouted flaw tip in the direction 60◦ − 90◦ from the horizontal line. Figure 37
shows the actively yielding element contour plots from the 2D and 3D models with mesh 2. The 2D
model returns an AC yield contour plot with constant yield values over each element — either 0 or 1. In
the 3D model, the AC yield contour plot is continuous.

Figure 37: The AC yield contour plots around the tip of the 20 mm long grouted flaw with α = 30◦. 2D and 3D
models using mesh 2 are included. The figures show undeformed meshes and contours.
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5.3.3 2D/3D validation — linear-elastic stress results

Simulations were carried out to compare linear-elastic material models from different element families.
The 20 mm long grouted flaw with dip angle 30◦ was tested with plane strain and plane stress elements
in 2D, and with the ”3D stress” element type in 3D. Table 14 presents the maximum σ1 and minimum
σ3 concentrations for these models, which used mesh 2. In every simulated case, the highest stress con-
centrations were located at the same local points close to the flaw tip. In terms of maximum compression
and tensile stress values, the 3D model and the plane strain 2D models show the best agreement (there
is a 8 MPa difference in σ1,max and 4 MPa difference in σ3,min).

Figure 39 shows the σ3 contour plot for the 2D and 3D simulations using mesh 2. The figures mark the
tensile stress (negative stress values), which reads from the legend in Figure 38. As seen in the contour
plots, the maximum tensile stress values are concentrated in small points close to the flaw tip. Apart
from these concentrated areas, there is roughly good agreement between the stress values between the
models. An obvious exception is the area around the midflaw, where the 3D model shows tensile stress
and the plane strain model shows compression stress (similar for the elastoplastic models). Around the
midflaw, the plane stress model contour plot is intermediate between the plane strain and 3D model.
Additionally, the 3D model has some effects close to the vertical (||ŷ) specimen edges. These values are
however close to 0 MPa.

Maximal stress concentrations for 3D models discretized with a finer mesh of first and second order
elements (mesh 5 and 5q respectively) are also given in Table 16. The 3D model with mesh 5q returned a
63% higher σ1 stress concentration than the 3D model with mesh 2. This is discussed further in Chapter
7.

Table 14: The maximum σ1 and minimum σ3 values from linear-elastic 3D and 2D models using mesh 2 with
different element types.

Element type # of Elements σ1,max (MPa) σ3,min (MPa)
Mesh 2 (3D) 3D stress 14180 62.8 -40.3
Mesh 2 (2D) 2D plane strain 1390 70.7 -36.34
Mesh 2 (2D) 2D plane stress 1390 80.3 -24.1
Mesh 5 (3D) 3D stress 47040 (linear) 73.8 -29.9
Mesh 5q (3D) 3D stress 47040 (quadratic) 101 -60.0

Figure 38: σ3 legend for Figure 39.
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Figure 39: The σ3 tensile stress contour plots for linear-elastic 2D plane strain, 2D plane stress and 3D models
(mesh 2). The figures show undeformed meshes and contours. The legend is given in Figure 38.

5.3.4 2D/3D validation — nonzero σz buildups in the outer x-y-plane of 3D models

Figure 40: Loca-
tions A,B and C (x-y-
plane).

The 3D model contour plots showed some unexpected stress concentrations on
the outer x-y-plane. An example is shown in Figure 41. σz concentrations of
around 3 MPa were registered around the flaw. The far-field σz values were ca.
0 MPa. However, because the x-y-plane is not restrained or loaded in z-direction,
the σz values are expected to be (approximately) 0 MPa over the entire outer
x-y-plane. To examine these effects, the σz values from three locations A,B and
C — see Figure 40 — were registered during the h-mesh-refinement test for the
elastoplastic models. The values were obtained from both the outer x-y-plane and
the x-y-plane that cuts through the middle of the specimen. Values were obtained
from both the elastoplastic models (see Table 15) and linear-elastic models (see
Table 16).

The h-refinement tests on the elastoplastic models that are presented in Table 15
set out to investigate whether the σz flaw concentrations on the outer x-y-plane
were averaging-effects. However, as the mesh density increased, the σz values
remained between -2 to -3 MPa. The tensile stress values on the locations decrease
with 0.84 MPa (point A) to 3.2 MPa (point C) from the outer plane to the middle
plane. Moreover, the σz values around the midflaw (point C) were approximately
the same values as the σ3 values at the midflaw. The mesh refinement test did
not reduce the unwanted nonzero σz buildups.

Mesh 5 (3D) was additionally tested with quadratic shape functions (mesh 5q). This test was done with
linear-elastic material assumptions due to convergence problems. Table 16 compares stress values at the
points A, B and C from linear-elastic models discretized with first order elements (mesh 5) and second
order elements (mesh 5q). The values on the middle x-y-plane are relatively stable as the element order
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increases. On the outer plane, the stress values in point B and C increased by about 2 MPa. However, the
σz values in the outer plane were concentrated over a smaller area close to the material boundary (flaw)
in the mesh 5q simulation. This can be seen in Figure 41. The σz buildups appear more concentrated
around the flaw with the quadratic mesh 5q.

Material tests were carried out to investigate the σz effects around the material boundary of the 20 mm
long grouted flaw with α = 30◦. The test assumed elastoplastic material behaviour and compared the
σz stress values around the flaw for different grouts. Models grouted with epoxy1 (ν = 0.45, E = 1.2
GPa), epoxy2 (ν = 0.18, E = 1.2 GPa) and epoxy3 (ν = 0.18, E = 10 GPa) were compared. As the
Poisson’s ratio value decreased (epoxy2 simulation), the σz tensile values around the flaw in the outer
x-y-plane decreased by almost 2 MPa. Conversely, the midplane values increased by 0.9 and 0.5 MPa at
location B and C respectively. In the epoxy3 model, both ν and E were improved. These results showed
σz concentrations < 1 MPa in the positions A, B and C. In the middle plane, the midflaw tensile stress
values were low (around -0.1 MPa). Overall, these results suggest that higher contrasts in the stiffness
and lateral expansion between the rock and the epoxy at the material boundary induce the local σz stress
concentration effects close to the flaw boundary.

Table 15: σz values in three points along the flaw, obtained from the outer and middle x-y-planes of the elasto-
plastic models. Figure 17 locates the points A, B and C.

Outer x-y-plane Middle x-y-plane
Sigma ZZ (MPa) Sigma ZZ (MPa)

# of Elements Material A B C A B C
Mesh 1 (3D) 12060 Epoxy1 -2.98 -2.58 -2.61 -1.88 -0.733 -0.398
Mesh 2 (3D) 14180 Epoxy1 -3.11 -2.70 -2.70 -2.11 -0.902 -0.404
Mesh 3 (3D) 17832 Epoxy1 -3.09 -3.04 -3.09 -2.11 -0.770 -0.406
Mesh 4 (3D) 31836 Epoxy1 -3.05 -3.55 -3.57 -1.82 -0.906 -0.417
Mesh 5 (3D) 47040 Epoxy1 -2.16 -3.34 -3.33 -1.32 -0.997 -0.402
Mesh 1 (3D) 12060 Epoxy2 -1.07 -1.22 -0.675 -1.57 -1.63 -0.917
Mesh 1 (3D) 12060 Epoxy3 -0.650 -0.340 -0.319 -0.555 -0.131 -0.0815

Table 16: σz values at locations A,B and C from the linear-elastic 3D simulations (see Figure 17) along the
flaw for meshes using first order and second order elements. σ1 and σ3 maximum and minimum values are also
included.

Outer x-y-plane Middle x-y-plane
Sigma ZZ (MPa) Sigma ZZ (MPa)

# of elements # of nodes A B C A B C
Mesh 5 (3D) 47040 25755 -6.35 -3.73 -3.58 -6.57 -1.73 -0.492
Mesh 5q (3D) 47040 125713 -6.19 -5.87 -5.70 -6.57 -1.73 -0.491
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Figure 41: The σz contour plot for the outer x-y-plane of 3D models discretized with mesh 5. Left contour plot
uses first order shape functions, right contour plot uses second order shape functions.
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6 Comparison of Numerical Results and Experimental Results

The current study simulated uniaxial compression tests of rocks containing a single grouted or ungrouted
flaw. The first objective of this study was to compare observed yielding patterns from the numerical
modelling with the experimental results from Le et al. (2018). Simulations of Mohr-Coulomb materials
were done with perfect brittle behaviour or perfect plastic behaviour. Both the perfect plastic and perfect
brittle models agree on the locations of the yield initiation points, which were at the flaw tip or midflaw.
However, the perfect brittle models returned yielded elements plots that resemble cracks most closely
(long, thin yield patterns that grow more in length than width). Conversely, the perfect plastic yield
contour plots appeared more as crushed zones around the flaw (the yield patterns tended to be shorter
and thicker). It follows that the perfect brittle models are more realistic when modelling fracture failure
of rock specimens. This chapter therefore compares the yield contour plot results from the brittle models
(experimental design task) to the cracking behaviour observed in lab experiments by Le et al. (2018).
Moreover, the chapter discusses the strengthening effects after grouting in terms of stress distribution
and yielding patterns. Errors and limitations by the numerical models are addressed in Chapter 7.

6.1 Ungrouted rocks

Table 17 gives the crack types that were observed in the ungrouted lab tests by Le et al. (2018), and the
crack types from the ungrouted numerical models. The following sections compare the cracking behaviour
of the numerical and experimental models.

Table 17: Crack types observed in numerical simulations and the lab results (from Le et al. (2018)) for rocks
containing ungrouted flaws of different length and dip angle combinations.

Flaw geometry Observed crack types (ungrouted flaws)
2a α (◦) Numerical results Experimental lab results

0 II, IV, midflaw tensile II
15 II, IV II, III, (VI)
30 II, IV II, (VI)

10 mm 45 II, III, IV III, (VI)
60 I, II, IV II, IV, (VI)
75 II, shear at tip II
90 II, shear at tip I, (VI, VII)
0 II, IV, midflaw tensile II, (VI)
15 I, II, III, IV II, III, (VI)
30 I, II, IV I, II, (V)

20 mm 45 I, II, III, IV III, (V, VI)
60 I, II, IV I, III, IV, (VI)
75 II, shear at tip III, (VI)
90 tensile at tip I, (V, VII)
0 II, IV, midflaw tensile II, (VI)
15 II, III, IV, midflaw tensile II, (VI)
30 I, II, III, IV II

30 mm 45 I, II, IV III, IV, (VI)
60 I, II, III, IV, midflaw tensile II, IV, (VI)
75 II, shear at tip II, IV, (V, VI)
90 tensile at tip II, (V, VII)

6.1.1 Far-field and spalling crack types not observed in numerical models

The crack types V, VI and VII occurred randomly in the lab experiments, meaning there was no clear
relation between the crack geometry and these crack types. In the numerical results, crack types V-VII
did not occur. Crack type V is a far-field tensile crack and initiates from microcracks and micropores
in the rock material. However, the numerical model contains no microstructures that can act as stress
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concentrators. Thus, cracks cannot initiate at far-field locations in the numerical models, and it follows
that crack type V can’t be expected in the numerical models. Furthermore, the crack types VI and VII
are spalling cracks. Cracks VI and VII accompany tensile cracks or initiate at the specimen corners and
edges. Spalling may result from friction in the contact between the loading plates and the specimen.
The load was further applied directly as a displacement defined on the nodes on the upper specimen
boundary. Moreover, the numerical models are designed with perfectly straight lines connected at ac-
curate 90◦ corners. This loading method did not induce any stress concentrations (or yielding) on the
corners or edges of the modelled specimens. This explains the absence of cracks V-VII in the numerical
models. Thus, crack types V, VI and VII were not expected to develop in the grouted nor ungrouted
numerical simulations that were carried out in this project. The crack types V-VII are therefore written
in parentheses in the tables.

In every experimental case, spalling and far-field tensile cracks were observed. This implies that crack
types V-VII were a part of the failure development and degenerated the strengths of the specimens. In
reality, intact rocks containing no flaws fail by coalescence of microcracks, that eventually make up a
persistent failure plane. In the numerical models containing no flaw, there are no stress concentrators.
This was demonstrated by loading intact models (without flaws) beyond failure. The intact models
returned an uniform stress field (every element showed equal stress values), and all elements therefore
yielded at the same time. This means that the numerical model contains only one stress concentrator —
the flaw. Conversely, the lab specimens contain several microscopic stress concentrators in addition to the
flaw. Due to the lack of microscopic stress concentrators in the numerical models, it could be expected
that more cracks originate from positions around the flaw in the numerical models compared to the lab
specimens. This is further addressed in the following sections. Additional explanations for discrepancies
between the numerical and experimental results are also offered.

6.1.2 Flaw tip tensile cracks

Crack type II was the primary crack in most of the lab test cases. The exceptions were for example
specimens containing ungrouted flaws with dip angle of 45◦. As seen in Table 17, type II occurred in
almost every simulated model with ungrouted flaws. However, in the numerical ungrouted flaw results,
type II was always accompanied by other tensile cracks (I or III) or shear crack (IV). This means that for
matching flaw geometries, more crack types were observed in the numerical results than the experimental
results, for the following possible explanation. In the numerical simulations, every brittle model was
assigned an average load of 20 MPa on the top plate. This loading magnitude exceeds the experimental
UCS of the 30 mm long flaws with dip angles 0, 15, 30 and 60◦ (see Figure A1 in Appendix A). Moreover,
the discrepancies between crack types is most prominent for the long flaws — which have the lowest
experimental UCS values. Conversely, the specimens with the highest experimental UCS (flaws with
α = 90◦) returned the least developed yielding pattern in the numerical results. This may be because the
simulated load is relatively low (20 MPa) compared to their experimental strength (30-36 MPa). There-
fore, the inconsistency between loading magnitudes in the experimental tests and numerical simulations
might explain the discrepancies between the numerical and experimental crack types.

6.1.3 Shear failure indicated in numerical models

Table 17 informs that shear yielding occurred in almost every numerical simulation of ungrouted models.
In every case with severe yielding (all lengths with dip angle up to 60◦), shear yielding patterns initiated
from the flaw tip. The shear yielding propagated 45-75◦ from the horizontal plane, and is referred to
as type IV. Further, less developed shear yielding was also found at the flaw tip for the cases with less
prominent yielding. Conversely, shear cracks (type IV) only occurred in 5 cases in the lab experiments
(for α between 45 and 75◦). This might indicate that the shear strength that were used in the numerical
models was lower than the actual material shear strength. Future numerical models might therefore be
modelled with higher cohesion and internal friction angle.
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6.1.4 Midflaw tensile cracks around ungrouted flaws

Another obvious difference between numerical and experimental results is the midflaw tensile crack that
occurred in the numerical models containing ungrouted flaws of low dip angles. An example of this crack
type was shown in Figure 31. Furthermore, the stress fields from linear-elastic models returned high
tensile stress concentrations at the midflaw for flaws with α ≤ 30◦. This suggests that tensile cracks
could originate from the midflaw position. However, midflaw tension cracks did not occur in the lab
compression tests of ungrouted specimens.

For specimens containing horizontal and ungrouted flaws, the primary crack was type II in the lab
experiments. Conversely, the first crack to initiate in the numerical simulations was the midflaw tensile
crack. This was further demonstrated by reducing the load of the model and registering where the
yielding first developed. It is difficult to explain these differences. However, the linear-elastic models
returned high σ1 concentrations at the tip of the ungrouted horizontal flaws. The linear-elastic stress
field therefore points to both the midflaw and the flaw tips as areas where crack initiation is likely. Thus,
it might be possible that primary cracks can initiate from the midflaw area in lab specimens. In fact, the
photographed failure modes of the specimen containing a 20 mm long horizontal, ungrouted flaw showed
cracking around the midflaw. However, Le et al. (2018) only registered the crack types type II and type
VI (surface spalling) for this specimen. Figure 42 compares the failure mode from the lab results and the
numerical results for the ungrouted 20 mm long horizontal flaw geometry. The numerical results show
more severe cracking (yielding) and include more shear yielding than the experimental results. Apart
from this, the results are similar, despite the fact that no midflaw tensile cracks or shear cracks were
described for this flaw by Le et al. (2018). It can thus be suggested that despite discrepancies in observed
crack types, the numerical and experimental results are consistent.

Figure 42: Left picture shows the failed specimen containing a 20 mm horizontal ungrouted flaw (obtained from
Le et al. (2018)). The right contour plot gives the yielded elements for the numerical model with the same flaw
geometry (see legend in Figure 28). Blue lines are tensile cracks. Orange lines are shear cracks.

In the numerical results, combinations of shear and tensile yielding characterize the failure modes. Some
elements are yielding both in shear and tension. As mentioned in the introduction, cracks initiate at
microscopic levels (Kranz, 1979, Eberhardt et al., 1999, Hoek and Martin, 2014). Moreover, interactions
between microcracks and micropores are complicated, and the stress field experienced by microcracks
differs from the applied stress field by both magnitude and direction (Kranz, 1979). This was also the
case in the numerical simulations. As was seen in Figure 32, the stress field is rotated around the local
yielded areas. Moreover, the yielded elements contour plots from the numerical models contained several
elements that yielded both in shear and tension (Figure 43 b) is a good example). Literature (e.g. Kranz
(1979)) and the numerical results therefore indicates that the tensile cracks that were described from the
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experimental results, might actually experience combinations of shear and tensile stress modes in some
situations. Some of the cracks from Le et al. (2018) may therefore be combinations of shear and tensile
cracks, as opposed to being pure tensile or pure shear cracks, as Le et al. (2018) claimed. Consequently,
the agreement between numerical and experimental results can be good, despite disagreement in crack
modes (shear and/or tensile) or crack types (I-IX).

6.1.5 Ungrouted specimen strength based on flaw length and dip angle

In the numerical simulations, the percentage of the rock elements that yielded decreased when the dip
angle of the ungrouted flaw increased (for all flaw lengths). A low yielded element percentage might
indicate that the model has a higher strength (because the same load is applied to all numerical models).
This might not be an accurate measure because models with different flaw geometries do not have identical
meshes and the exact same total amounts of elements. However, the trend suggested by the elastoplastic
numerical simulations is that the strength of the specimens increases when the dip angle increases from
0 to 90◦.

The linear-elastic simulations returned σt,max peaks on 45◦ or 60◦ (i.e. higher tensile stress concentrations
around these flaws). Moreover, the σc,max peaked on the α = 15◦ for 30 mm long flaws and on α = 45◦

for the 20 mm long flaws. This contradicts the tendencies from the yielded elements results (where the
strength increased steadily with the dip angle — without any clear peaks). However, the maximal stress
values from the linear-elastic simulations might be unrealistically high due to stress singularities (some
values are close to 250 MPa, the top plate load is 20 MPa). The finite maximum concentration values
that are given might therefore just be a function of the mesh resolution around the flaw (might approach
infinity if finer meshes are used). This is discussed in Section 7.2. It follows that the elastoplastic results
(yielded elements) are more realistic than the linear-elastic results. The linear-elastic results should
therefore primarily be used to study tendencies in the stress field, and the returned maximal stress values
should be interpreted with caution.

Le et al. (2018) similarly reported the highest UCS for specimens containing short flaws (2a = 10 mm)
and flaws with high dip angles (α = 90◦), as seen in Figure A1 in Appendix A. However, for the 20 and
30 mm long flaws, the experimental UCS increased for dip angles between 0 and 45◦. This unexpected
outcome was assumed to be due to the decreasing length of the failure path for these dip angles, and
were explained as follows (Le et al., 2018): The flaws with the longer horizontal component of the flaw
length (long flaw length and/or low dip angle) have a shorter distance from the flaw tip to the lateral
side of the specimen. Moreover, this increases the likelihood that the cracks cut through the lateral side
and cause failure of the specimen.

The results from Le et al. (2018) might have been more consistent if they used wider specimens. It
would then be less likely that the primary cracks reached the lateral side of the specimen and potentially
caused failure of the specimen before secondary cracks could develop — which was the case in Le et al.
(2018) (manifested as surprisingly low UCS for 20 and 30 mm long flaws with α = [0, 15, 30]◦). It would
be interesting to see which secondary crack types that develop around long flaws with low dip angles
(2a = [20, 30] mm, α = [0, 15, 30]◦) if wider lab specimens were used. It might be possible that the
midflaw crack — which clearly occurred in the current numerical analyses of e.g. long horizontal flaws —
can appear as secondary cracks in wider lab specimens. This is an interesting issue for further research.
A study similar to the UCS-tests by Le et al. (2018) should therefore be repeated using wider specimens
relative to the horizontal flaw length component. However, before this suggested study is undertaken, a
dimensional analysis should be carried out to investigate the minimum specimen width that is necessary
to prevent cracks from reaching the lateral side of the specimen for the longest flaw. A possible approach
for this dimensional analysis is to take a specimen from Le et al. (2018) where cracks did not reach the
lateral specimen side. Further, the ratio between the specimen width and the horizontal flaw component
of this specimen can be calculated. Finally, the necessary new specimen width is found by multiplying
this ratio by the horizontal component of the flaw that has the longest length and lowest dip angle (that
is going to be studied in the new project).
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6.2 Grouted rocks

In the experimental uniaxial compression tests of specimens containing a grouted flaw, the flaw types I-II
and V-IX occurred. The numerical simulations of the uniaxial loading of grouted models returned four
typical crack types (yielding patterns): Type I-III and shear yielding close to the flaw tip. See Table 18.
As discussed in the previous section, the crack types V-VII are not expected in continuum FEM models
(hence the parenthesis notation). The discussion of grouted specimen failure modes further focuses on
the different crack types that originated from the tip or midflaw area of grouted flaws.

6.2.1 Far-field and flaw-tip tensile cracks in grouted rocks

In every numerical simulation of grouted models, tensile yielding originated from the flaw tip. Conversely,
in 12/21 of the grouted flaw lab cases, no tensile cracks initiated from the flaw tip. This is a pronounced
difference between the numerical results and the experimental results from Le et al. (2018). In for example
the specimen containing a grouted 10 mm long flaw with α = 0◦, crack type V — which initiates in a
position far from the flaw — was the only observed crack type. In other specimens, the critical failure
plane developed in the lateral side of the specimen, and not in the plane containing the grouted flaw.
Moreover, the UCS-values of these specimens were close to the UCS of the intact rock (42 MPa). This
might imply that for these specimens, the preexisting defects such as micropores and microcracks were
more critical stress concentrators than the actual grouted flaw. In the continuum FEM models however,
the flaw — regardless of length and orientation — is the only stress concentrator. This explains why the
yielding initiated from a position around the flaw in every simulated UCS test.

The tensile yielding that occurred in the numerical simulations resemble the typical wing crack. As
mentioned in the introduction, the wing crack initiates at the tips of inclined penny-shaped flaws and
grows parallel to σ1 (see Figure 1). Similarly, yielding initiated at the tips of the grouted (or ungrouted)
flaws and propagated in the direction of the applied load in the numerical models. Examples of yield
contour plots that are similar to the wing crack are seen in Figure 29 (right subfigure) and Figure 45
(bottom row and upper left subfigure). The wing crack pattern was a typical result for the grouted
models, but it also occurred in a few ungrouted cases (for example when α = 75◦).

Table 18: Crack types observed in numerical simulations and the lab results (from Le et al. (2018)) for rocks
containing grouted flaws of different length and dip angle combinations.

Flaw geometry Observed crack types (grouted flaws)
2a α (◦) Numerical results Experimental lab results

0 II (V)
15 II N/A
30 II, shear at tip (V, VII)

10 mm 45 I, II, sheat at tip (V, VI)
60 II, shear at tip II, (VI), IX
75 II (V), IX
90 II N/A
0 II I, (V, VI, VII), VIII
15 II II, (VI), VIII
30 II, shear at tip (V, VI, VII), VIII

20 mm 45 II, shear at tip II, (V, VI),
60 II, shear at tip I, II, (VI), IX
75 II, shear at tip II, (VI), IX
90 II (V, VI, VII), VIII
0 II close to tip (V, VII)
15 II, shear at tip II, (V, VI, VII), VIII
30 I, II, III, shear at tip (V, VI, VII), VIII

30 mm 45 I, II, shear at tip (V, VI), VIII
60 II, shear at tip II, IX
75 II, shear at tip I, (VI), IX
90 tensile at tip N/A
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6.2.2 Midflaw tensile cracks in grouted rocks

Crack type VIII is a tensile crack that initiates from a point away from the grouted flaw tip, develops in
the loading direction and cuts through the grouted flaw. This crack type occurred along with spalling
in the lab tests of grouted specimens (Le et al., 2018). In the grouted perfect brittle numerical models,
this crack type was not observed. However, crack VIII resembles the midflaw tensile crack that occurred
in the simulations of ungrouted models. The ungrouted numerical models were loaded closer to their
experimental UCS than the grouted models. (The simulated load was 20 MPa, the UCS of grouted
models ranged from 35-43 MPa.)

In the perfect plastic models loaded with 28 MPa (code validation task), midflaw yielding developed
around the horizontal flaw (see Figure 34). Consequently, an additional perfect brittle simulation of a
specimen containing a 10 mm long horizontal grouted flaw, loaded with 28 MPa was done. The goal
was to find if crack type VIII or midflaw yielding could develop as a secondary crack type in this model.
The resulting contour plot returned a critical failure plane yielding in tension and shear, which can be
seen in Figure 43. Moreover, shear and tension yielding occurred at the midflaw, and cut through the
grouted flaw as marked in Figure 43. These results prove that midflaw yielding could occur in grouted
simulations if the loading increased.

Figure 43 further compares the simulation of a 10 mm horizontal grouted flaw loaded with 20 MPa and
28 MPa, and the failure modes for this grouted flaw geometry from Le et al. (2018). It can be seen
that the tensile yielding marked as crack type II in Figure 43 a) developed when the loading increased
(Figure 43 b). This yielding pattern resembles the crack type V that was observed by Le et al. (2018)
and is shown in Figure c). A pronounced difference is the plane that yields in shear and tension and cuts
through the specimen in a direction about 45◦ from the applied load. However, the experimental and
numerical results are similar. Moreover, the tensile crack in the experimental results (type V) initiated
at an inhomogeneity in the rock, and the first numerical tensile crack initiated close to the flaw tip (type
II). This implies that the failure modes occurring in the simulated uniaxial compression tests can be
consistent with the lab results, even though the match in crack types is not perfect (which was also the
case for the ungrouted numerical flaws, as discussed in 6.1.4).

Figure 43: Specimens containing a 10 mm long grouted flaw (α = 0◦). a) gives the yielded element contour plots
with an average top plate load of 20 MPa. b) shows the yielded elements when the load is increased to 28 MPa.
c) shows the experimental results (obtained from Le et al. (2018)). Blue lines mark tensile cracks, orange line
outlines the grouted flaw. See legend in Figure 28.
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6.2.3 Shear cracks in grouted rocks

Le et al. (2018) observed crack type IX in the failed grouted rocks with dip angle 60 and 75◦. IX is a
shear crack that initiates at the rock-epoxy interface and propagates in a direction parallel to the flaw
inclination. The numerical models that were loaded with 20 MPa experienced shear yielding at the flaw
tips. IX was however not observed in these results. Intuitively, this crack type is not expected in the
simulated results because the material boundary is modelled with continuum elements and have infinite
shear strength. In future investigations, this boundary can be modelled with interface elements. (This is
further discussed in Chapter 7.) However, when the assigned load on the numerical models are increased,
elements will eventually yield in shear around the flaw. An example of this was given in Figure 43 b).

Similarly to the ungrouted specimen results, shear yielding occurred in many of the grouted model
simulations (12/21 cases). Only 6 shear crack cases developed in the 21 grouted lab tests. This might
again indicate that the shear strength of the numerical models was too low.

6.2.4 Grouted specimen strength based on flaw length and dip angle

In the lab tests, Le et al. (2018) experienced that the UCS for the grouted specimens was lowest for
flaws with α = 60◦. The failure mode of these specimens had combinations of crack type II and IX. Le
et al. (2018) thus concluded that this crack combination efficiently degenerates the specimen strength.
Moreover, the UCS of the grouted lab specimens was highest for specimens containing flaws with dip
angles of 0 and 90◦. Consistent with the lab results, this research found that models containing grouted
flaws with a low dip angle (α = 0◦) and a high dip angle (α = 90◦) returned the lowest amount of yielded
rock elements (0.6-2.6%). However, the amount of yielding was highest for flaws with dip angles from
30 − 60◦, and peaked for the 30 mm long flaw with α = 30◦ (17.2% of the rock elements yielded). The
numerical results are therefore not in complete agreement with the lab results.

A possible explanation for this disagreement might be that the numerical models assigns a grouted
material to the flaw that is both perfectly homogeneous and that accurately fills the flaw void. In the
practical tests, the grout (epoxy) might not adhere perfectly to the rock material at all flaw boundary
locations. Moreover, the density of the flaw might not be continuous over the entire flaw volume for
the following explanation. The specimens containing the grouted flaws were left to cure for 3 days after
injection. During a 3 day curing time, it is possible that the epoxy sinks to the lowest areas of the flaw
(due to gravity) before it hardens — if the specimens were not rotated regularly. It follows that the epoxy
might be more concentrated in the bottom of the injected flaw in practical grouted flaws (see figure 44).
This can result in features such as local areas of lower density and microscopic voids in the upper parts of
the flaws in lab tests. Further, these inhomogeneities can act as stress concentrators that induce cracking
and therefore potentially reduce the specimen strength. Moreover, this effect might be more clear for
flaws with a high inclination angle (if the specimens are stored on their short sides during curing). This is
another possible explanation for why specimens with grouted flaws with inclination angles α = [60, 75]◦

had relatively low UCS (and different crack types) compared to specimens with α ranging from 0-45◦ in
the lab tests.

Figure 44: Schematic of possible grouting results in the time after injection (exaggerated).
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Nevertheless, both experimental and numerical results suggest that the strength of grouted rocks is
highest for grouted flaws with dip angles of 0 and 90◦. Section 6.3.2 discusses the stress field around
grouted (and ungrouted) flaws and possible explanations for why the strength varies with dip angles.

6.3 Grout reinforcement effect

This section addresses the strengthening effects from grouting. First, it outlines the strengthening effects
in terms of yielded elements. It will then go on to discussing how grouting improves the strength of rocks
and which mechanisms that are responsible for the grouting strengthening effect.

6.3.1 Yielding

The experimental design task found that under the same loading magnitude, the percentage of the rock
elements that yielded was reduced by grouting in 20 of 21 cases (see Table 11). Because the same mesh
was used for the rock material section in both the models containing ungrouted and grouted flaws of
the same flaw geometry, mesh effects can be ruled out. The numerical results therefore indicated a
pronounced grout reinforcement effect. This finding is consistent with the results from Le et al. (2018),
where the UCS of the rock was higher for the grouted cases than the ungrouted cases with matching flaw
geometries.

Le et al. (2018) observed that the strengthening factor was highest for the 30 mm long flaws with low
dip angles (α = [0, 15]◦) and lowest for all flaw lengths with dip angles of 90◦ (see Figure 5). The results
from this study further support these observations. Numerical models containing the lowest dip angles
(α = 0 and 15◦) indicated the most evident grout reinforcement effect. For the model containing a 30
mm long flaw, the amount of yielded rock elements decreased from 55% to 1% due to the grouting.
Moreover, the models containing 20 mm long and 10 mm long horizontal flaws produced reductions of
54 and 40 percentage points respectively. Models containing vertical flaws moreover indicated the lowest
strengthening effect. In these cases, the reduction in yielded element percentage ranged from 0.0-0.4%.
These findings are in agreement with those of Le et al. (2018), who reported the highest strengthening
factor on specimens with low flaw dip angles and vice versa. Moreover, vertical flaws are oriented parallel
to the applied load, and clearly had the lowest stress concentrations on the flaw tips in both the grouted
and ungrouted cases. A low strength reinforcement effect was therefore expected for the flaws with the
highest dip angles.

In the literature (Le et al., 2018) and numerical results, the grout reinforcement effect was found to be
most pronounced for long horizontal flaws. This was also the case for the numerical models. An example
of how flaw length affects the grout improvement in numerical models can be seen in Figure 45. The
figure compares the yielded elements for ungrouted and grouted flaws with dip angle 60◦ and varying
flaw lengths. The geometry with 2a = 30 mm shows a significant reduction of yielded elements from the
ungrouted to the grouted model. Conversely, the yielding around the ungrouted and grouted 10 mm long
flaws are more similar.

Le et al. (2018) observed that specimens containing flaws with dip angle of 60◦ had relatively large strength
improvement compared to α = 45◦ and α = 75◦. Overall, the simulated yielded element improvement
decreased when the dip angle increased for most flaw lengths, without any clear peaks. However, the
yielded rock percentage peaked for the grouted flaws with dip angles from 30◦ to 60◦. This indicated
that the grout infilling itself could induce some stress concentrations that caused additional yielding for
some flaw dip angles. This is discussed in the following section.

6.3.2 The stress field before and after grouting

The research by Le et al. (2018) concluded that stress reduction at the flaw tip is one of the mechanisms
behind grout reinforcement (in addition to improved shear-strength along the flaw interface). Moreover,
this thesis examined the stress distribution in numerical models of grouted and ungrouted rocks. The
major result from the stress analysis, is that the stress concentrations were significantly lower in the
grouted models than the ungrouted ones.
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The σ1 and σ3 contour plots produced from the grouted and ungrouted simulations showed significant
stress reduction from grouting. As seen in Figures 24 and 25, the ungrouted stress plots have relatively
high tensile stress values around the midflaw (-16 MPa which was 50% of σt,max), where the grouted
models returned low compressive stress (ca. 0 MPa). In the ungrouted models, the stress is rotated about
the open flaw, which cannot carry stress (unless the loading closes the flaws and gives contact between the
long flaw boundaries). This can further be seen in Figure 32. The stress rotation around the ungrouted
flaws explain the tensile stress concentrations in this area. Moreover, when the flaw is grouted, it may
hold a portion of the applied load. Thus, the entire load does not need to be redistributed around the
flaw. However, the epoxy has a lower Young’s modulus than the rock material (1.2 GPa compared to 19.6
GPa). According to a linear load-displacement curve, the epoxy holds less load than the rock when the
two materials have the same displacement — which is the case for grouted non-persistent flaws, because
the epoxy is captured inside a frame of rock. Thus, some stress still needs to be redistributed around
the flaw in the grouted models. The ability of the grouted model to hold a portion of the applied load
explains why the stress concentrations were lower in the grouted models. The stress reduction results are
in agreement with the findings of Le et al. (2018).

The results also point to the fact that the grouted flaw induces some stress concentrations close to the
flaw. These stress buildups were ascribed to contrasts in stiffness and lateral expansion in the rock and
epoxy material. The epoxy has a higher ν than the rock (0.45 compared to 0.18), and therefore expands
more in the direction orthogonal to the loading direction. However, the epoxy is restrained by the stiffer
rock frame, and will thus not be able to expand. Instead, the epoxy will put additional stress on the
area surrounding the flaw. The experimental design simulation of a model containing a 30 mm long
grouted flaw with α = 30◦ produced the highest degree of yielding around the flaw (amongst the grouted
simulations). 17.2% of the rock elements yielded in this case. When ν was decreased from 0.45 to 0.20,
the amount of yielded rock elements decreased to 7.3%. This may have implications for the choice of
grout qualities in rock mass grouting. The Poisson’s ratio of the grout should not be in great contrast to
the Poisson’s ratio of the rock material. However, the rock-epoxy material boundary was modelled with
infinite shear strength, which might lead to local stress concentrations at the material boundary due to
the stiffness contrasts in the material. This is discussed in Chapter 7.

6.4 Overall agreement between numerical models and literature

This section briefly outlines the most important similarities and differences between the numerical sim-
ulations, the lab work by Le et al. (2018) and other literature (e.g. Kranz (1979), Hoek and Martin
(2014), Ashby and Sammis (1990)). For the ungrouted flaws, the agreement is good in terms of the
initiation points of the tensile cracks. Tensile crack originating from the flaw tip (I, II or III) occurred in
every case, in simulations and lab. However, the numerical models indicated more shear failure than the
experimental results.

The biggest inconsistency between the numerical and the experimental results were the midflaw yield-
ing/type VIII. Type VIII did not occur as primary cracks in the grouted numerical models. Moreover,
the primary cracks always initiated at the flaw tips in the grouted numerical models. In the grouted lab
tests, cracks did not always initiate at the flaw tips, and type VIII was a commonly occurring crack type.
The shear crack IX that developed in grouted lab specimens, was not observed in the numerical models.
This is because the rock/epoxy interface was modelled with infinite shear strength.

There was not a perfect match in observed crack types from simulations and lab experiments. Compared
yielded elements contour plots and photographs of failed lab specimens however indicated that the failure
modes are similar, despite inconsistencies in observed crack types. Moreover, the numerical results are
consistent with other literature (e.g. Kranz (1979), Hoek and Martin (2014), Ashby and Sammis (1990)).
The tensile cracks that initiated at the flaw tips always propagated in the direction of the applied load.
In many cases, the contour plots produced a yield pattern that was similar to the typical wing crack
described by Ashby and Sammis (1990).

In terms of strength improvement, the agreement between the experimental and numerical results was
good. Both implied highest strength improvement for the lowest angles, and vice versa. Grouting was
also found to reduce the stress concentrations at the flaw tip and around the flaw in the numerical models.
Similarly, stress reduction was outlined as an important strengthening mechanism from grouting by Le
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et al. (2018).

The next chapter provides a thorough discussion on the assumptions that were made in the numerical
modelling. Moreover, the chapter provides possible explanations for some of the discrepancies between
the experimental results and the numerical results in more detail.

Figure 45: Yielded elements for ungrouted (top row) and grouted flaws (bottom row) with α = 60◦ and varying
flaws lengths. Circles indicate tensile yielding, crosses mark shear yielding (see legend in Figure 28). A significant
reduction of yielding can be seen in the grouted cases. The applied load is 20 MPa in all models.
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7 Discussion of the Numerical Models

The experimental design simulations of this study investigated the agreement between two-dimensional
numerical models and the laboratory experiments performed by Le et al. (2018). In addition, three-
dimensional numerical analyses of the uniaxial compression tests were carried out. Because RS2 is not
developed for 3D analysis, ABQ (Abaqus/Standard) was used for this purpose. Before 3D models were
made in ABQ, it was chosen to build and compare 2D models in both RS2 and ABQ. This gives a better
understanding of the disagreements between the two-dimensional RS2 models and the three-dimensional
ABQ models, and whether the deviations are attributed to program differences (such as iteration solvers)
or are results of adding the third dimension. Additionally, repeating simulations with several codes might
help validate the results from the two programs.

First, this chapter provides a comparison of the different numerical models. A discussion on general
challenges that occurred in this project follows. Finally, the codes ABQ and RS2 are compared, and
problems and other experience from working with these programs are discussed.

7.1 Agreement between the models

In this thesis, uniaxial compression tests of specimen were modelled with varying material behaviour and
loading magnitudes. Simulations were carried out in the programs RS2 and ABQ. Moreover, both 2D
and 3D simulations were run. This section compares the results and discusses the agreement between
the different models.

7.1.1 Agreement between RS2 and ABQ results

Uniaxial compression tests of models containing 18 different flaw geometries and an intact model were
simulated in RS2 and ABQ. All models were assigned a -0.14 mm displacement in the top plate (about
27-28 MPa in compression). The presented results were the maximal stress values (from linear-elastic
simulations), stress contour plots and yielded elements contour plots (from elastoplastic simulations).

The agreement between the contour plots produced by the two programs was generally good. The σ1
contour plots from the elastoplastic models showed differences between 1-2 MPa in most parts of the
models containing grouted flaws (which makes up 1% of the maximal σ1 magnitudes). Furthermore, the
programs agree on the locations of the maximum stress concentrations (which were at the flaw tips),
and the shapes of the stress contours and yielded elements contours. In the yielded element contour
plots, the location, length and angle of the yielded zone were similar in both programs. At local points
close to the flaw tip, RS2 and ABQ results disagreed on the maximum stress concentrations — both in
the elastoplastic and linear-elastic results. This disagreement was most prominent for the linear-elastic
models. In local points around the flaw tip, the deviation of stress magnitudes from the RS2 to the ABQ
results was up to 50% (linear-elastic models). This may be due to stress singularities, which is discussed
in Section 7.2.

Naturally, the flaw was an important feature in the current study. However, the flaw geometries compli-
cated the models and the meshes. The most simple models — which were the intact models containing
no flaws — showed excellent agreement in terms of the stress values. There was a 0% error between
the σ1 and σ3 values produced by ABQ and RS2, despite different mesh resolutions being used. More-
over, the meshes that were used in ABQ were in most cases considerably finer than the RS2 meshes (up
to 50% more elements in ABQ). The inconsistency between the mesh resolution in ABQ and RS2 —
which is especially prominent around the flaw — is a likely cause for the stress differences between the
two programs. Different stopping criteria and iteration methods are used in the two programs. This
is another possible explanation for the deviation between the results from the elastoplastic (non-linear)
models simulated in ABQ and RS2. This is further discussed in Section 7.2.3.
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7.1.2 2D and 3D models

As mentioned in Chapter 4, the 2D/3D validation task compared results from two- and three-dimensional
uniaxial compression test simulations. Moreover, two- and three-dimensional models containing one flaw
geometry — a 20 mm long grouted flaw with a dip angle of 30◦ — were studied. The assigned top plate
displacement was -0.10 mm (20 MPa in compression) in every simulation. Moreover, the simulations were
repeated with different mesh resolutions (mesh 1-5) and stress assumptions (plane strain, plane stress,
3D stress).

Overall, the agreement between the elastoplastic 2D and 3D models was fair. The most important
agreements and disagreements can be summarized as follows:

1. The maximum compression stress magnitudes were ca. 6% higher in the 2D model compared to
the 3D model;

2. The maximum tensile stress magnitudes were up to 76% higher in the 2D model than the 3D model;

3. The deviation was lower within the grouted flaws (where both the 2D and 3D models showed 7-8
MPa) and in the far-field areas;

4. The maximum stress concentrations were consistently located at the flaw tip in the 2D models
(both plane stress and plane strain) and in the 3D models;

5. The 3D models produced tensile stress around the midflaw area, where the 2D plane strain model
produced compression stress (in the σ3 contour plots);

6. In both the 2D and 3D models, the yielding initiated at the grouted flaw tip and grew in a direction
60-90◦ from the horizontal line.

Together, points 2 and 5 along with Figure 39 indicate that the 3D models produced lower maximum
tensile stress magnitudes because the tensile stress was distributed over a larger area in the 3D models
(compared to the 2D models). Particularly, the 3D model predicted tensile stress around the midpoint
of the flaw, where the 2D models did not predict tensile stress. The midflaw area was also a topic of
discussion in Chapter 6, where disagreements between the experimental (lab) results (Le et al., 2018)
and the perfect brittle 2D models emerged. In the grouted lab cases, primary cracks (type VIII) often
initiated close to the midflaw area. However, in the grouted numerical models, the primary cracks always
initiated at the flaw tips. To sum up, the 3D models produced more tensile stress around the midflaw
(than the 2D models), and the experimental study observed more tensile cracks originating from the
midflaw (than the 2D models). It follows that the stress field produced by the 3D models might be more
consistent with the lab results.

The perfect brittle 2D analysis assumed plane strain conditions (the strain in one direction is assumed to
be zero). Additionally, a linear-elastic 2D analysis with plane stress elements was carried out (the stress
working on the plane was assumed to be zero). The 2D plane stress linear-elastic analysis produced a
σ3 stress field that was more similar to the 3D model σ3 stress field at the midflaw than the 2D plane
strain σ3 stress field (in terms of tensile stress). Because the 3D models appeared more consistent with
the lab results (Le et al., 2018) than the 2D plane strain models, the plane strain assumptions might
not be accurate enough for the current model geometry/problem. This suggests that more 3D models
should be carried out. However, 3D models have a considerably higher computational cost. Moreover,
the current project further experienced challenges with the 3D modelling, including more convergence
problems and the some stress errors around the flaw. Moreover, the attempts of simulating 3D models
with perfect brittle material behaviours were not successful. This implies that the 3D models used in the
current study need to be developed further.

The remaining part of this chapter addresses the challenges experienced with the 3D models that were
simulated in the current thesis work. Moreover, it provides suggestions and recommendations for the
design of 3D models in future simulations of uniaxial compression tests of grouted rocks.
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7.1.3 Unexpected nonzero σz buildups along material boundary in 3D models

Figure 46: The applied load to
the 3D models was applied in y-
direction. The blue plane indi-
cates one of the outer x-y-planes,
where some unexpected σz con-
centrations occurred.

In the current study, the three-dimensional models produced some un-
expected nonzero σz concentrations close to the flaw boundary in the
outer x-y-planes. One of the outer x-y-planes is marked as the blue
plane in Figure 46, which also indicates the directions of the load (σy)
that works on the 3D model. σz concentrations — which go perpendic-
ular to the plane containing the flaw — occurred along the rock-epoxy
boundary. As seen in Figure 46, this plane was not loaded in z-direction.
Additionally, the plane was not restrained in z-direction. The σz values
were therefore expected to be approximately 0 MPa on the entire plane.
Mesh-refinement tests and material tests were carried out to investigate
these unexpected σz concentrations. These tests also examined the stress
values on the x-y-plane that cut through the middle of the specimen. An
objective was to examine whether the unexpected σz buildups could help
explain the tensile stress disagreement between the 2D (plane strain) and
3D models around the midflaw area.

Implications of the mesh-refinement test and material test find-
ings

Increasing the 3D mesh density from mesh 1 with 12060 elements and
mesh 5 with 47040 elements had no considerable effects on the σz con-
centrations around the flaw — in neither of the examined planes (outer
and middle x-y-planes). However, when the element order was increased
from first order (25755 nodes) to second order (125713 nodes), the stress
concentrations in points close to the midflaw actually increased in the outer plane. This is because the
nonzero σz values were more concentrated in a smaller zone surrounding the material boundary — both
on the inside and outside of the flaw. These results indicated that the material boundary itself — i.e. the
shared lines between the rock material elements and epoxy material elements — causes the unexpected
σz concentrations.

The material boundary σz buildups might be explained by the chosen element types and the contrast in
the stiffness (E) and expansion in the z-direction (ν) between the materials. The epoxy has lower E and
higher ν values, and expands more in z-direction than the rock. Moreover, the rock elements and epoxy
elements are connected at shared lines with an infinite shear strength and can therefore not slip. The
inside (epoxy side) of the material boundary is under compression σz, which is stress that works towards
the specimen core. Further, the outside (epoxy side) of the boundary is under tensile σz —indicating that
stresses attempt to push the rock outwards, away from the specimen core. The infinite shear strength is
what prevents the relative movements and captures the σz stress. This hypothesis was further explored
by increasing the E (from 1.2 to 10 GPa) and decreasing ν (from 0.45 to 0.18) in the epoxy to approach
the properties of the rock (E = 19.6 GPa and ν = 0.18). When the contrast in the material behaviour
decreased, the σz concentration along the flaw boundary was reduced significantly in the outer x-y-plane
(from -2.6 MPa to 0.3 MPa at the midflaw). These findings support the idea that the unexpected σz
concentrations were caused by the infinite shear strength material boundary combined with the contrast
in material stiffness.

The mesh-refinement tests and material parameter studies provide explanations for the unexpected σz
concentrations in the outer x-y-planes. During the two- and three-dimensional mesh and material simu-
lations, it was further explored whether the σz buildups are related to the disagreement in stress values
between the 2D and the 3D models at the midflaw (which was discussed in Section 7.1.2). For this pur-
pose, σz values were obtained from the midflaw (location C in Figure 40) in both the middle x-y-plane and
the outer x-y-plane of the model. The unexpected σz effects appeared to be most significant in the outer
x-y-plane, and were reduced when moving inwards in the model. Moreover, the σz values obtained from
point C in the middle x-y-plane remained relatively stable in the mesh refinement tests. In the elastoplas-
tic h-mesh-refinement tests, the middle plane |σz| values increased by 5% when the number of elements
increased. The σz values lay close to the registered σ3 stresses in the midflaw area (ca. -0.4 MPa),
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and no yielding occurred in this area. In the linear-elastic p-refinement test, the stress values at point
C in the middle x-y-plane increased by 0% when the element order increased from linear to quadratic.
Conversely, in the outer x-y-plane (where the unexpected σz concentrations occurred), the values in point
C were more unstable as the mesh refinement increased. From the elastoplastic h-refinement tests, the
|σz| results in the outer x-y-plane increased by 38% at point C. In the linear-elastic p-refinement test,
the outer plane |σz| values increased by 59% at the same location. Taken together, these results indicate
that middle x-y-plane σz values are more stable than the outer plane σz values under mesh refinement.
Therefore, these findings suggest no clear connection between the midflaw tensile stress in the 3D model
(which did not occur in the 2D models) and the unexpected σz effects in the outer x-y-plane. Moreover,
the tensile stress at the midflaw in the 3D models — which was in disagreement with the 2D models —
cannot be claimed to be a modelling error and ruled out.

Suggestions for further research on 3D models

The unexpected σz concentrations and the 2D and 3D disagreement about tensile stress at the midflaw
are issues for further work. Moreover, the mesh-test and material-test results suggest that the use of
regular continuum elements — rather than cohesive elements — may cause errors in the model. Research
that explores 3D flaw geometries modelled with cohesive elements along the rock-grout interface should
therefore be undertaken. In such studies, it would be interesting to compare stress values close to the flaw
boundary when the shear strength of the rock-grout interface is reduced. However, convergence problems
were a noteworthy challenge in the work in Abaqus/Standard. Simulating a 3D compression test of a
rock specimen containing a non-persistent flaw modelled with cohesive elements may thus be relatively
time-consuming or challenging in Abaqus/Standard.

7.2 Challenges with the design

Finite element analysis takes a continuous geometrical model and assigns it material properties, boundary
conditions/loading, and a mesh. The basis for the current analyses was specimen geometries, material
properties and loading procedures from the laboratory experiments by Le et al. (2018). The numerical
simulations aimed to match the lab experiments, and therefore use the given geometry and material
information from the lab tests. However, in order to build FEM models that converged, adjustments
were necessary. This section outlines and discusses challenges in this project, and how they were met.

7.2.1 Challenges with the geometrical model

The flaw is relatively thin compared to the length, and has sharp corners. Therefore, the flaw geometry is
relatively challenging to model. The sharp corners — even with fillets — cause high stress concentrations.
In linear-elastic analysis, these local points may act as stress singularities, which are points where the
stress values do not converge. However, due to the discretization, the method returns finite stress values
in these points. In any case — stress singularities or not — FEM simulations come with a solution
error. This is because a continuous structure is discretized with a finite amount of elements. This error
decreases when the the element size decreases (the number of elements increases). If an infinite amount
of elements were used, the solution error would be zero (Kurowski, 2004).

Stress singularities could be investigated further with mesh refinement tests. Mesh refinement tests are
carried out by increasing the mesh density gradually and checking if the maximal stress values converge
to finite value as the density increased. Mesh-refinement tests were actually performed in this study. In
these tests, the amount of elements (h-convergence test) and the order of the elements (p-convergence
test) were increased. The main purpose of these tests were however to examine effects at the midflaw area,
which is discussed in Section 7.1.3. The h-convergence test was performed with elastoplastic material
properties (the primary area of interest for this test — the midflaw — remained elastic). It follows
that the h-tests did not investigate the sharp corner stress singularities, as the elements around these
points yielded. Moreover, only one step of the p-convergence test was performed. This step returned
high convergence errors (27% for σ1,max and 50% for σ3,min). Only first and second order elements are
available in the ABQ continuum element library. Consequently, performing more p-convergence steps was
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not possible in ABQ. If the convergence error for the next steps (increase in element order), remained
high, it would indicate that the stress values diverge in the point of interest.

Nevertheless, when the structure is modelled with elastoplastic material behaviour, the areas with stress
singularities yield when a certain stress threshold is reached. Yielded elements hold relatively low stress
concentrations. Elastoplastic models can consequently solve stress singularity challenges, and such models
were used in this thesis work.

7.2.2 Challenges with the material properties

Elastoplastic material models were attempted in each simulation set. In RS2, the elastoplastic simulations
were relatively successful, because the models converged with the desired material properties (perfect
brittle). In this case, convergence means that force equilibrium in the iteration process was accepted
within the defined tolerance limits.

As opposed to the success in RS2, perfect brittle models did not converge in ABQ. Possible explanations
for why models converge in RS2 and not ABQ are discussed in Section 7.2.3. It however appeared that
models with severe yielding (which was the case for the brittle models), and especially tension yielding,
do not converge in ABQ. The models were therefore designed with perfect plastic material behaviour,
and with improved tensile strength (σt = 6.0 MPa compared to σt = 4.1 MPa). When these material
parameters were applied to the various flaw geometries, the grouted models converged. Conversely, the
ungrouted models did not converge until the tensile cutoff was increased to 11 MPa. This was assumed
to be a high overestimation of the practical tensile strength, and it was therefore chosen to call off the
ungrouted model simulations in ABQ.

In addition to changing the material behaviour and improving the tensile strength, reducing the load
was attempted. This strategy was not successful — the simulations did not converge until the load was
so low that the entire model remained elastic (i.e. no yielding occurred). It appears that models where
tensile yielding occurs are unstable in ABQ. This may be due to the implementation of the MC-criterion
and tensile cutoff in ABQ, or a general challenge in this program. In future ABQ simulations of similar
structural problems, it could be attempted to model the material tensile strength with different failure
criteria.

However, this was not done in this thesis. The RS2 simulations had returned useful results from perfect
brittle models. Moreover, the linear-elastic stress results are still useful for understanding of the stress
field around the flaw, even if the stress values may diverge or be unrealistically high in certain locations.

7.2.3 Experience with Abaqus/Standard and RS2

In the current study, the FEM codes Abaqus/Standard and RS2 were used. Both RS2 and ABQ include
modules for the basic FEA steps. This includes modules for designing the geometric model, defining ma-
terial properties, applying loading/boundary conditions, meshing, computation and result visualization.
ABQ is a general-purpose product, and RS2 is developed specifically for rock/soil analysis. Advantages,
disadvantages and challenges that occurred in RS2 and ABQ are outlined in this section. The section
focuses on the major challenges that arose during this thesis work. Moreover, recommendations for use
of these programs in future research are given.

RS2 advantages and disadvantages

RS2 was generally a code that worked well in this project. There were however a few disadvantages related
to the geometry design module. 3D analysis was an important part of this study, and is also recommended
for further work (as discussed above). The most important limitation with RS2 is that it does not include
3D modelling (except for axisymmetric models). Moreover, the CAD-module is developed specifically for
e.g. underground excavation and slopes. The program does not include advanced design tools for easy or
fast drawing of all kinds of geometries, including the rotated flaws. Consequently, the 21 flaw geometry
pairs were not designed directly in RS2 (this would have been too time-consuming). The flaw vertex
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coordinates were instead calculated according to trigonometric principles in a spreadsheet and imported
to RS2 before the corner fillets were added in RS2. This method allowed quick and accurate geometry
design, and did not require advanced coding skills. The simple RS2 CAD-module was therefore not a
problem in this project.

RS2 included several advantages for this project. Because RS2 is designed for rock problems, the ma-
terial module allows easy implementation of the MC-criterion. Mohr-Coulomb materials, behaving from
perfectly brittle to perfectly plastic could easily be assigned to the rock specimens. Further, all models
converged in RS2, which is, of course, an essential advantage. RS2 uses the accelerated initial stiffness
method, which was found to be robust in severe yielding cases in a previous study (Dang et al., 2014).
This coincides with the experience from this work — there were no convergence issues and generally low
computational costs (models were computed in under 5 minutes). The comprehensive stopping criteria
— which stops the iteration process when an equilibrium of energy, force and displacement is met within
a specified tolerance limit — may also improve the numerical stability of the model. However, stopping
criteria and high tolerance limits may lead to false convergence and less accurate results. Conversely, use
of lower tolerance limits improves the accuracy, but gives higher computational cost. In this study, many
simulations were repeated, and low computational cost was desirable. The main purpose of the research
was to compare numerical yielding patterns to experimental crack types, and general tendencies were
more interesting to study rather than e.g. obtaining accurate stress values. The default tolerance value
suggestion was therefore used for every simulation.

Moreover, the visualization module of RS2 returns whether the elements yield in shear and/or tension
(unlike ABQ). This was useful when comparing numerical failure patterns to the crack types that were
described in the literature, and therefore provided a better understanding of the numerical results.

Abaqus/Standard advantages and disadvantages

The ABQ geometry design module is versatile and provides tools for designing a variety of 2D and 3D
geometries. Flaw geometries could be designed efficiently and accurately directly in ABQ, in both 2D and
3D. However, ABQ was not fit for simulations that involved low material tensile strength, perfect brittle
behaviour or a high degree of yielding. In these cases, the iteration process did not converge (even with a
high number of maximal iterations). In order to stabilize the ABQ models, elasto-perfect-plastic material
behaviour with a high dilation angle (ψ = φ · 60%) had to be assigned to the rock. Other attempts of
dealing with the convergence problems were adding strain hardening before failure (in brittle models),
testing alternative boundary conditions (for 3D models) and increasing the mesh density around the flaw.
These attempts did not successfully enhance the numerical stability of the elastoplastic problems. The
numerical stability however appeared to depend on the mesh density of the models. This is discussed in
the next paragraph.

ABQ uses the Newton-Raphson method to solve non-linear numerical problems, such as loading of elasto-
plastic media. This may help explain why some models converged in RS2 and not ABQ (as RS2 imple-
ments other versions of Newton’s method). Another possible explanation for the convergence problems
in ABQ might be related to the mesh. During the simulations, it was observed that the models became
more unstable as the mesh density around the flaw increased. A model that converged when a coarse
mesh was applied did not always converge when a fine mesh was applied. Moreover, the implemented
stopping criteria in ABQ were used, but this had no noteworthy effect on the model stability — even
if the tolerance limits were increased. This points to the fact that the convergence problems are re-
lated to the Newton-Raphson method, and possibly how the Newton-Raphson method deals with fine
meshes or meshes where there is high contrast between the element sizes (for example smaller elements
close to the flaw and larger elements far-field). No relevant research on mesh-refinement tests using the
Newton-Raphson method was found in literature search. This could therefore be investigated further by
performing systematic mesh-refinement tests in ABQ, where both meshes with equally sized elements
and meshes with high contrast in element size are compared.
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7.2.4 Program recommendations for further work

In this project, the programs RS2 and ABQ complimented each others to a certain degree. RS2 pro-
duced numerically stable results for two-dimensional numerical analyses with desired material properties.
Further, ABQ simulated 2D and 3D models using adjusted material properties.

A shortcoming with working with both RS2 and ABQ programs in one project, is that they use different
stress conventions. In ABQ, positive stress values are defined as tensile stress. In RS2, positive stress
values are conversely defined as compression stress (and vice versa). This resulted in extra work when
writing this report. To avoid confusion for the reader (and the author), the sign of the all the stress
values from ABQ were changed, and the legends from ABQ were therefore edited in a photo editing
software. Additionally, comparing the yielded elements results from ABQ and RS2 were challenging for
the simulations where first order elements were used. ABQ marks the elements as either actively yielding
(1) or not yielding (0). The RS2 yielded elements contour plot returns the percentage of yielded elements
connected to a node. Further, RS2 takes the nodal yield percentages and returns continuous yield contour
lines within the elements. It was therefore slightly difficult to compare these contour plots. However,
when 3D elements are used, ABQ gives a continuous AC yield plot.

To sum up, RS2 was a good tool for two-dimensional simulation of uniaxial compression tests. Other
supplementing tools (for production of importable lists of geometry coordinates) were however necessary
for convenient model design. As discussed in the above sections, 2D and 3D modelling where special
joint elements (cohesive elements/interface elements) are assigned to the rock/grout boundary is recom-
mended in future work. This can be done relatively conveniently in RS2 by converting the flaw material
boundary to a joint boundary and experimenting with the joint strength parameters. In ABQ, this is
more complicated: a rock part with an excavated flaw (with continuum elements), a thin boundary part
(with cohesive elements) and a flaw filling material part (with continuum elements) need to be designed
and then joined together in the ABQ assembly module. Additionally, the ABQ models might not con-
verge with desired material properties. Therefore, this project recommends using RS2 instead of ABQ
for further 2D joint element analyses. For further 3D analyses (with or without joint/interface/cohesive
elements), a program that uses the accelerated stiffness method might be a better option than ABQ.

63



8 Conclusions and Suggestions for Future Research

This chapter rounds off the current thesis with conclusions and suggestions for further research.

8.1 Conclusions

This thesis set out to examine the strengthening effects from grouting of rock specimens, and how grouting
affects the stress distribution in the specimen. For this purpose, numerical uniaxial compression tests of
rocks containing a single grouted or non-grouted flaw of varying length and dip angle were simulated.
The basis for the numerical model design was the methodology behind experimental uniaxial compression
tests of grouted rocks performed by Le et al. (2018). Another aim of the current study was to verify
the numerical results by comparing the numerical failure modes to the experimental crack types that
occurred in the tests by Le et al. (2018). The numerical simulations were carried out with the FEM
codes RS2 and Abaqus/Standard in two and three dimensions. The following conclusions and significant
findings can be drawn from this thesis:

1. Grouting of flaws resulted in significant reduction of yielding in the numerical rock models. This
suggests that grouting improves the strength of rocks with open flaws. (Consistent with findings
from Le et al. (2018).)

2. The strengthening effect from grouting is more pronounced for rock specimens containing longer
flaws rather than shorter flaws. Moreover, the strength reinforcement is most efficient when the
flaws are orientated at high angles (75-90◦) from the applied uniaxial load. (Consistent with findings
from Le et al. (2018).)

3. The computed σ1 and σ3 contour plots showed an efficient reduction of stress concentrations around
the tips and middle-sections of the flaw when the flaws were grouted, compared to the cases where
the flaws were not grouted. This finding supports the idea of Le et al. (2018), who suggested that
one of the important mechanisms behind grout reinforcement is stress reduction around the flaw
tips.

4. The numerical yielded elements contour plots and experimental failure modes showed similarities
in crack initiation points and propagation path. Specifically, the numerical simulations produced
tensile yielding patterns at the flaw tip that resembled the tensile cracks I, II and III from Le et al.
(2018) and the wing crack described by Ashby and Sammis (1990).

5. For specimens containing a grouted flaw, lab tests indicated more tensile cracks originating from the
midflaw area than the numerical 2D models. Moreover, the grouted numerical 3D models produced
more tensile stress at the midflaw area than the numerical 2D models.

6. For specimens containing an ungrouted flaw of low dip angles (0,15 and 30◦), the numerical 2D
models produced tensile cracks that initiated from the midflaw area. However, Le et al. (2018)
claimed that no midflaw crack occurred in their ungrouted specimens. Conversely, their photo-
graph of a specimen containing a 20 mm long horizontal ungrouted flaw actually showed a crack
growing from the midflaw. Moreover, the numerical stress contour plots produced high tensile stress
concentrations at the midflaw in ungrouted models. These findings point to the midflaw as possible
area for tensile crack initiation in specimens containing ungrouted flaws rotated 0 − 70◦ from the
loading axis.

7. Shear crack type IX from Le et al. (2018) did not occur in the numerical models. This is because
the flaw material boundary was modelled with infinite shear strength.

8. The 3D simulations of a grouted flaw produced unexpected non-zero stress buildups in the direction
normal to both the compression axis and the plane containing the flaw. This effect is likely due
to the fact that the flaw boundary was modelled with continuum elements. Moreover, this obser-
vation suggests that future numerical modelling of grouted flaws assigns interface elements to the
rock/grout boundary.
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9. A 2D simulation where the Poisson’s ratio (ν) of the epoxy/grout was decreased from 0.45 to 0.20,
and a 3D simulation where ν of epoxy/grout was decreased from 0.45 to 0.18 were carried out for
models containing grouted flaws with dip angles of 30◦ (where the rock was modelled with ν = 0.18).
Due to the reduction of ν, less yielding and lower stress concentrations occurred around the flaw.
This finding suggests using a grout with a Poisson’s ratio close to the Poisson’s ratio of the rock in
practical grouting.

Based on remarks 1-4, it can be said that the agreement between the numerical results from the current
study, the experimental results by Le et al. (2018) and other literature (e.g. Ashby and Sammis (1990))
is good. However, due to the inconsistencies described in point 5-7, along with the recommendation in
point 8, this thesis suggests that further three-dimensional numerical analyses — where the rock-grout
material boundary is modelled with interface elements — are carried out. Such analyses might establish
a better understanding of the stress field close to the midflaw area of grouted flaws.

8.2 Suggestions for further research

This section summarizes and elaborates some of the most significant suggestions for further research that
were proposed in Chapter 6 and Chapter 7. Once numerical models are validated against experimen-
tal results, modelling of large-scale problems can be attempted. Large-scale problems can involve e.g.
deformation and failure around a tunnel constructed in a grouted rock mass. This study began the pro-
cess of validation of small-scale problems. However, due to some inconsistencies between numerical and
experimental models, the following suggestions can be applied before attempting large-scale modelling.

Further studies of grout/epoxy interface shear strength

As mentioned in the introduction, literature (e.g. Liu et al. (2017), Wang et al. (2019), Le et al.
(2018)) suggests that grouting can increase the shear strength (cohesion and internal friction angle)
of the grout/rock interface flaws. Moreover, Le et al. (2018) outlined this effect as one of the mechanisms
behind grout reinforcement of rocks. Another suggested grout reinforcement mechanism was stress reduc-
tion around the flaw. The numerical models that were analysed in this study used continuum elements
to model the epoxy (grout) and rock boundary, and therefore assigned infinite shear strength to this
boundary. This is of course an overestimation of the practical shear strength of grout/rock interfaces.
Future numerical analyses should include parameter studies of the shear strength (c and φ) of the material
boundary, by using interface elements. It would be interesting to compare the stress concentrations and
yielding around the flaw for cases with varying c and φ parameters on the material boundaries. Such
analyses could be carried out with 2D models, but should be supplemented or verified with 3D models.

As mentioned in Chapter 7, using infinite shear strength along the material boundary might additionally
cause errors in the model (manifested as unexpected non-zero stress buildups around the flaw boundary in
the unloaded and non-restrained z-direction). This is another reason why this thesis suggested interface
elements in future 3D modelling of grouted rock specimens.

This study experienced convergence problems when using the Newton-Raphson method (which is imple-
mented in Abaqus/Standard) for computation of the non-linear rock models containing flaws. Conversely,
no convergence issues occurred with the accelerated initial stiffness method (which is implemented in
RS2). Therefore, this thesis recommends using codes that uses the accelerated initial stiffness iteration
method for future modelling.

Further studies of grout material properties

In some 2D and 3D simulations, the ν (Poisson’s ratio) of the epoxy was reduced to match the ν of the
rock. The results indicated that when the contrast between ν of the rock and grout/epoxy was reduced,
the stress concentrations and yielding in the rock surrounding the flaw were reduced. A further study
could investigate the stress magnitudes and yielded elements around flaws filled with grouts of varying
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values of ν and E (Young’s modulus). The suggested study should test several flaw dip angles. This
could have implications for the choice of grout material quality in practical rock mass grouting.

Investigation of rough-walled fractures or partially grouted flaws

In this study, grout material was assigned to the entire void of the open flaw. It can therefore be said
that a perfect grouting outcome was assumed. Voids, fractures and discontinuities that occur naturally
in rock masses have rough, uneven surface conditions. Depending on local stress conditions, fractures
can be closed or open at local points. Moreover, fractures can be filled with crushed/weathered rock
material. Therefore, the grouting outcome cannot be assumed to be perfect at all points of the fractures
in real grouting projects.

Further studies that explore rocks or rock masses with uneven or rough-walled fractures that are grouted
unevenly would be interesting. However, such models involve sharp geometries and small voids — which
can produce stress singularities — and might be challenging to model with FEM.
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Appendix

Appendix A Observed crack types and UCS-values from uniaxial compression
tests by Le et al. (2018)

Appendix B Maximal stress magnitudes and yielded element percentages from
the experimental design task

Appendix C Yielded elements contour plots from the experimental design task
(legend is given in Figure 28).
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A Crack Types and UCS-Values from Uniaxial Compression
Tests by Le et al. (2018)

Figure A1: UCS for specimens containing ungrouted flaws (a) and grouted flaws(b), from Le et al. (2018).
Results for different length and inclination angle are plotted.



Table A1: Overview of the crack types that occurred in the specimens containing ungrouted flaws of different
combinations of length (2a) and inclination angle (α). (Snippet from Le et al. (2018).)



Table A2: Overview of the crack types that occurred in the specimens containing grouted flaws of different
combinations of length (2a) and inclination angle (α). ”N/A” indicates that the cracking occured in the lateral
sides of the specimens (not in the sides containing the grouted flaws). (Snippet from Le et al. (2018).)



B Numerical Results

Results Experimental Design linear-elastic models

Table B1: The maximum σ1 and minimum σ3 values and their location, from the linear-elastic models containing
ungrouted flaws (experimental design).

Simulation α(◦) σ1,max (MPa) Location σ3,min (MPa) Location
0 138,54 Flawtip (FT) -17,09 Midflaw (MF)
15 130,15 FT -21,21 Close to FT/MF

Ungrouted flaw 30 110,66 FT -26,72 FT
2a=10 mm 45 110,6 FT -32,56 FT

60 122,85 FT -25,54 FT
75 75,23 FT -16,83 FT
90 29,07 MF -8,82 FT
0 160,74 FT -18,25 MF
15 167,45 FT -23,27 MF

Ungrouted flaw 30 159,87 FT -31,05 Close to FT/MF
2a = 20 mm 45 191,56 FT -65,13 FT

60 167,21 FT -40,25 FT
75 83,15 FT -34,74 FT
90 28,22 FT -7,9 FT
0 177,54 FT -18,28 MF
15 242,52 FT -24,59 MF

Ungrouted flaw 30 228,84 FT -33,07 MF
2a = 30 mm 45 180,52 FT -46,78 FT

60 148,68 FT -59,5 FT
75 127,03 FT -38,18 FT
90 28,75 FT -7,07 FT

Table B2: The maximum σ1 and minimum σ3 values and their location, from the linear-elastic models containing
grouted flaws (experimental design).

Simulation α(◦) σ1,max(MPa) Location σ3,min(MPa) Location
0 46,79 FT -5,82 close to FT
15 56,02 FT -18,57 FT

Grouted flaw 30 58,57 FT -39,21 FT
2a=10 mm 45 66,32 FT -35,03 FT

60 78,1 FT -26,32 FT
75 53,93 FT -17,84 FT
90 26,33 MF -9,17 FT
0 41,68 FT -5,46 close to FT
15 57,23 FT -23 FT

Grouted flaw 30 68,62 FT -49,38 FT
2a = 20 mm 45 95,93 FT -61,42 FT

60 86,37 FT -34,36 FT
75 54,07 FT -24,87 FT
90 26,49 FT -7,63 FT
0 41,37 FT -5,2 close to FT
15 70,5 FT -28,52 FT

Grouted flaw 30 83,94 FT -43,11 FT
2a = 30 mm 45 79,29 FT -47,88 FT

60 71,13 FT -46,38 FT
75 64,61 FT -25,8 FT
90 27,04 FT -6,12 FT



Results Experimental Design elastoplastic models

The following tables, Table B3, Table B4 and Table B5 use the following terminology:

Etotal — The total number of elements assigned to the structure (model)
Erock — The total number of elements assigned to the rock material section
Eflaw — The total number of elements assigned to the grout material section
Erock,Y — The total number of yielded elements in the rock material section
Eflaw,Y — The total number of yielded elements in the grout material section

Table B3: The number of yielded elements in the rock material section, and the percentage of the elements in the
rock section that yielded in the elastoplastic ungrouted series of the experimental design. The table also comments
the observed crack types, as described in table 3.

Simulation α(◦) Etotal Erock Erock,Y Erock,Y /Erock (%) Crack type
0 1574 1574 675 42,9 II, IV, midflaw tensile
15 1422 1422 282 19,8 II, IV

Ungrouted flaw 30 1501 1501 321 21,4 II, IV
2a = 10 mm 45 1710 1710 459 26,8 II, III, IV

60 1498 1498 114 7,61 I, II, IV
75 1422 1422 92 6,47 II, shear at tip
90 1574 1574 25 1,59 II, shear at tip
0 1806 1806 1007 55,8 II, IV, midflaw tensile
15 1826 1826 858 47,0 I, II, III, IV

Ungrouted flaw 30 1686 1686 471 27,9 I, II, IV
2a = 20 mm 45 1894 1894 471 24,9 I, II, III, IV

60 1686 1686 266 15,8 I, II, IV
75 1804 1804 136 7,54 II, shear at tip
90 1806 1806 13 0,72 tensile at tip
0 1874 1874 1022 54,5 II, IV, midflaw tensile
15 1970 1970 996 50,6 II, III, IV, midflaw tensile

Ungrouted flaw 30 1955 1955 798 40,8 I, II, III, IV, midflaw tensile
2a = 30 mm 45 2162 2162 538 24,9 I, II, IV

60 1950 1950 635 32,6 I, II, III,IV, midflaw tensile
75 1975 1975 256 13,0 II, shear at tip
90 1874 1874 15 0,80 tensile at tip



Table B4: The number of yielded elements in the rock material section and epoxy material section and the per-
centage of the elements in the rock section that were yielded in the elastoplastic grouted series of the experimental
design. The table also comments the observed crack types, as described in Table 3.

Simulation α(◦) Etotal Erock Eflaw Erock,Y Eflaw,Y Erock,Y /Erock (%) Crack type
0 1804 1574 230 41 0 2,60 II
15 1552 1422 130 60 0 4,22 II

Grouted flaw 30 1638 1501 137 93 0 6,20 II, shear at tip
2a = 10 mm 45 1832 1710 122 227 0 13,3 I, II, shear at tip

60 1628 1498 130 85 0 5,67 II, shear at tip
75 1552 1422 130 23 0 1,62 II
90 1702 1574 128 19 0 1,21 II
0 1994 1806 188 32 0 1,77 II
15 2046 1826 220 91 0 4,98 II

Grouted flaw 30 1880 1686 194 151 0 8,96 II, shear at tip
2a = 20 mm 45 2036 1894 142 200 0 10,6 II, shear at tip

60 1888 1686 202 112 0 6,64 II, shear at tip
75 2016 1804 212 52 0 2,88 II, shear at tip
90 1994 1806 188 13 0 0,72 II
0 2152 1874 278 27 0 1,44 II close to tip
15 2260 1970 290 162 0 8,22 II, shear at tip

Grouted flaw 30 2244 1955 289 337 0 17,2 I, II, III, shear at tip
2a = 30 mm 45 2368 2162 206 249 0 11,5 I, II, shear at tip

60 2236 1950 286 163 0 8,36 II, shear at tip
75 2270 1975 295 96 0 4,86 II, shear at tip
90 2150 1874 276 11 0 0,59 tensile at tip

Table B5: The number of yielded elements in the rock material section and epoxy material section, and the
percentage of the elements in the rock and epoxy sections that yielded in the elastoplastic grouted model, grouted
with epoxy B (Plastic).

Simulation 2a (mm) α(◦) Etotal Erock Eflaw Erock,Y Eflaw,Y Erock,Y /Erock (%)
Grouted flaw 30 30 2244 1955 289 137 0 7



C     Yielded Elements Contour Plots (Experimental Design) 

 
 



 



 

 
 



 



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f G

eo
sc

ie
nc

e 
an

d 
Pe

tr
ol

eu
m

Eldbjørg Stenrud Nilsen

Numerical Modelling of the Stress
Field and Failure Behaviour of
Grouted Rocks

Master’s thesis in Geotechnology
Supervisor: Alexandre Lavrov

June 2021M
as

te
r’s

 th
es

is


	Figures
	Tables
	Nomenclature
	Introduction
	Fracture mechanics of intact rock
	Fracture mechanics of grouted rock
	Research task
	Report structure

	Crack Types in Grouted and Non-Grouted Specimens
	Specimen preparation, material properties and testing procedure from le2018effect
	Strengthening effect and crack types from le2018effect
	Increased mechanical properties after grouting
	Crack types observed in grouted and ungrouted flaws
	Flaw geometry and filling and their effect on crack types


	The Finite Element Method
	Basic FEM principles
	Solving nonlinear numerical problems
	The Newton-Raphson method
	The initial stiffness method and accelerated initial stiffness method

	Shape functions and mesh refinement tests
	Commercial FEM codes
	Abaqus
	RS2


	Methodology
	Experimental design (2D)
	Experimental design — geometry
	Experimental design — material properties
	Experimental design — load and boundary conditions
	Experimental design — mesh
	Experimental design — other settings

	Code validation (2D)
	Code validation — geometry
	Code validation — material properties
	Code validation — load and boundary conditions
	Code validation — mesh
	Code validation — other settings

	2D/3D validation
	2D/3D validation — geometry
	2D/3D validation — material properties
	2D/3D validation — load and boundary conditions
	2D/3D validation — mesh


	Results
	Experimental design
	Experimental design — linear-elastic results
	Experimental design — elastoplastic results

	Code validation
	Code validation — linear-elastic results
	Code validation — elastoplastic results

	2D/3D validation
	2D/3D validation — elastoplastic stress results
	2D/3D validation — yielded elements
	2D/3D validation — linear-elastic stress results
	2D/3D validation — nonzero z buildups in the outer x-y-plane of 3D models


	Comparison of Numerical Results and Experimental Results
	Ungrouted rocks
	Far-field and spalling crack types not observed in numerical models
	Flaw tip tensile cracks
	Shear failure indicated in numerical models
	Midflaw tensile cracks around ungrouted flaws
	Ungrouted specimen strength based on flaw length and dip angle

	Grouted rocks
	Far-field and flaw-tip tensile cracks in grouted rocks
	Midflaw tensile cracks in grouted rocks
	Shear cracks in grouted rocks
	Grouted specimen strength based on flaw length and dip angle

	Grout reinforcement effect
	Yielding
	The stress field before and after grouting

	Overall agreement between numerical models and literature

	Discussion of the Numerical Models
	Agreement between the models
	Agreement between RS2 and ABQ results
	2D and 3D models
	Unexpected nonzero z buildups along material boundary in 3D models

	Challenges with the design
	Challenges with the geometrical model
	Challenges with the material properties
	Experience with Abaqus/Standard and RS2
	Program recommendations for further work


	Conclusions and Suggestions for Future Research
	Conclusions
	Suggestions for further research

	Bibliography
	Appendix

