
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Olaf Liadal

Explainable Research Paper
Recommendation Using Scientific
Knowledge Graphs

Master’s thesis in Computer Science
Supervisor: Krisztian Balog

June 2021M
as

te
r’s

 th
es

is

Olaf Liadal

Explainable Research Paper
Recommendation Using Scientific
Knowledge Graphs

Master’s thesis in Computer Science
Supervisor: Krisztian Balog
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Researchers can �nd themselves lost searching for relevant scienti�c literature in the
large amounts that are published on a daily basis. The arXivDigest service for scienti�c
literature recommendation and similar services are there to keep that from happening.
This thesis explores new methods for the recommendation of scienti�c literature, using
arXivDigest as a laboratory.

We introduce methods for explainable research paper recommendation that exploit
the rich semantic information that is stored in scienti�c knowledge graphs. To enable
these methods to access the information that is available about the researchers they are
producing recommendations for, we also introduce methods that can be used to link
researchers to appropriate entries in a scienti�c knowledge graph. Our methods have
all been deployed and are running live on arXivDigest, where users are able to provide
feedback on the recommendations they receive, and discovered potential links between
users and entries in a scienti�c knowledge graph surface in a suggestion feature.

A user study shows that our recommendation methods are not much better at �nding
the literature that is relevant for users than the arXivDigest baseline recommender
system itself. One of our methods does, however, appear to be better than the baseline
when it comes to explaining recommendations. Ultimately, our methods only scratch
the surface of what is possible, and graph-based research paper recommendation does
show promise.

i

Samandrag

Vitskapsfolk kan føle seg fortapte i søk etter relevant vitskapleg litteratur blant dei store
mengdene som publiserast på dagleg basis. Målet til arXivDigest, som er ein teneste for
anbefaling av vitskapleg litteratur, og andre liknande tenester er at dette ikkje skal skje.
Denne masteroppgåva utforskar nye metodar for anbefaling av vitskapleg litteratur,
med arXivDigest som laboratorium.

Vi introduserer metodar for anbefaling av vitskapleg litteratur som nyttar seg av den
rike semantiske informasjonen som er lagra i vitskaplege kunnskapsgrafar. For å gjere
det mogleg for desse metodane å hente ut den informasjon som er tilgjengeleg om
vitskapsfolka dei produserer anbefalingar for, introduserer vi også �eire metodar som
kan brukast til å kople vitskapsfolk til oppføringar i ein vitskapleg kunnskapsgraf. Alle
metodane våre har blitt tatt i bruk og køyrer hos arXivDigest, der brukarar kan gi
tilbakemelding på anbefalingane dei mottek, og moglege koplingar mellom brukarar
og oppføringar i ein vitskapleg kunnskapsgraf presenterast gjennom ein forslagsfunk-
sjon.

Eit brukarstudie viser at metodane våre ikkje fungerer stort betre enn “baseline”-
systemet til arXivDigest når det kjem til å �nne den litteraturen som er relevant for
brukarar. Éi av metodane våre ser likevel ut til å vere betre enn “baseline”-systemet
når det kjem til å forklare anbefalingar. Metodane våre utforskar berre nokre få av
tallause moglegheiter, og grafbaserte metodar for anbefaling av vitskapleg litteratur
viser potensiale.

iii

Acknowledgments

I would like to thank my supervisor, Professor Krisztian Balog, who has been very
helpful and provided great guidance throughout the entire process of writing this thesis
— on several occasions, at odd times of the day.

v

Contents

1 Introduction 1
1.1 Problem De�nition . 2
1.2 Research Questions . 3
1.3 Main Contributions . 4
1.4 Outline . 4

2 Background 7
2.1 Academic Search . 7
2.2 ArXivDigest . 10
2.3 Scienti�c Knowledge Graphs . 13

3 Related Work 19
3.1 Research Paper Recommendation . 19
3.2 Explainable Recommendation . 22

4 Linking Users to a Scientific Knowledge Graph 25
4.1 Methods . 25
4.2 Implementation . 27
4.3 Evaluation . 29
4.4 Summary . 33

5 Research Paper Recommendation 35
5.1 Methods . 35
5.2 Implementation . 40
5.3 Evaluation . 45
5.4 Summary . 55

6 Conclusion 57
6.1 Answering the Research Questions . 57
6.2 Future Work . 59

Bibliography 61

A Semantic Scholar Profile Ranking Generation 65

vii

Chapter 1

Introduction

Consumers often struggle to �nd their way in seas of available products. It does not
matter whether the consumer is a movie enthusiast looking for their next movie to
watch or a researcher looking to stay on top of new scienti�c publications; unless
the consumer knows just what they are looking for, �nding the products that interest
them can be a tiresome process of trial and error. This is where recommender systems
come in. They aim to reduce the cognitive overload among consumers by guiding
them towards potential products of interest. This thesis focuses on research paper (or
scienti�c literature) recommender systems, addressing the needs of the researchers. We
set aside movie enthusiasts and other consumer groups for this time.

ArXivDigest [19] is a scienti�c literature recommendation service. Researchers can
register as users, specify the �elds or topics they are the most interested in, and register
links to their personal websites and pro�les on other academic literature search and
management services, such as DBLP, Google Scholar, and Semantic Scholar. Users of
the service are allowed to register their own experimental recommender systems and
submit recommendations through the arXivDigest API, through which it is also possible
to retrieve information about the papers that are candidates for recommendation and
access information about users, such as pro�le information, previous recommendations,
and feedback on previous recommendations. All users consent to their information
being “freely” available, and experimental recommender systems are free to use the
information however they want (within reason). Existing arXivDigest recommender
systems utilize the information that is available in many di�erent ways, but there are
signi�cant chunks of information that have been left untouched: the information that
is available about the users externally through personal websites and pro�les at other
service, and the information that is available about the papers that are candidates for
recommendation through external sources. Of external services, Semantic Scholar, for
which users can register links to their pro�les, is of most interest to us. This service
also happens to be a great source of additional information about candidate papers.

1

Chapter 1 Introduction

Table 1.1: Percentages of arXivDigest users who have registered links to their personal web-
sites and pro�les at external academic literature search and management services.

DBLP Google Scholar Semantic Scholar Personal website

Users (%) 31 39 21 35

Semantic Scholar is a project by the Allen Institute for AI which applies arti�cial intel-
ligence to automate the task of extracting meaning from scienti�c literature [37]. The
project has processed huge amounts of literature since its inception, and the extracted
data about authors and papers, which is organized in a scienti�c knowledge graph,
is available through the Semantic Scholar API. The graph includes basic information,
such as author names, paper titles, abstracts, venues, and years of publication, as well
as the relations that exist between authors and papers, such as authorship and citations.
We have previously proposed a method for the extraction of publication metadata from
academic homepages [30]. The ultimate goal was to build an experimental arXivDigest
recommender system exploiting the information extracted from the personal websites of
users. Developing an extraction solution that can extract information from an academic
homepage that is comparable in quality and quantity to the information available about
the owner of the page and their publications through Semantic Scholar is a di�cult
task. For the purpose of developing arXivDigest recommender systems, this task might
even be an unnecessary distraction, as most of the users are researchers, and most
researchers have pro�les on Semantic Scholar.

Has Krisztian Balog published a paper at TREC in the last two years? How many
publications has he authored together with Maarten de Rijke? How many times has
he been cited by Donald Knuth? Do his publications tend to have large impacts on
later publications by other researchers? Answers to these types of questions can be
found with access to the Semantic Scholar pro�le of an author. They all re�ect the
interests of the author in some way and can, if the author is an arXivDigest user, be
used to �nd publications that are likely to be relevant for them. Unfortunately for us, as
seen in Table 1.1, only 21 % of arXivDigest users have registered their Semantic Scholar
pro�les.

1.1 Problem Definition

This thesis focuses on the development of experimental arXivDigest recommender
systems that utilize scienti�c knowledge graphs as sources of information about users
and candidate papers. The speci�c scienti�c knowledge graph used is the scienti�c

2

1.2 Research Questions

literature graph of Semantic Scholar. For the systems to be able to produce recommen-
dations for a user, the Semantic Scholar author ID of the user (which is contained in
the link to the user’s Semantic Scholar pro�le) must be known. We have seen that only
21 % of arXivDigest users have registered links to their Semantic Scholar pro�les. This
percentage is quite low. We are, therefore, going to try to �nd the correct Semantic
Scholar author IDs for as many as possible of the remaining users ourselves.

We are left with two objectives: �nding the missing Semantic Scholar author IDs of
users and developing experimental recommender systems. More formally:

1. Given the information that is available about an arXivDigest user, produce a
ranking of potential Semantic Scholar pro�le candidates for the user.

2. Given the information that is available about an arXivDigest user through both
arXivDigest and the scienti�c literature graph of Semantic Scholar, produce a
ranking of the papers that are candidates for recommendation at arXivDigest,
including explanations for the rank of each paper.

1.2 Research Questions

This thesis will attempt to answer the following research questions:

RQ1 How can an arXivDigest user be linked to an appropriate entry (or author node)
in a scienti�c knowledge graph?

RQ2 In what ways can the information that is available about an arXivDigest user
through an external scienti�c knowledge graph be used to produce scienti�c
literature recommendations for the user?

RQ3 In what ways can a scienti�c knowledge graph be used as an external source of
information about papers that are candidates for recommendation at arXivDigest
when producing scienti�c literature recommendations? Is it feasible to get hold
of the necessary information in reasonable time?

The �rst question will be answered by implementing two methods that search through
the Semantic Scholar Open Research Corpus (S2ORC) dataset [31] and look for Semantic
Scholar author pro�les that match an arXivDigest user in di�erent ways. The simplest
method searches for the user’s name and ranks the authors present in the search results
based on their frequencies of occurrence. The other method, which performed the best
and was used to generate pro�le suggestions for users, searches through the dataset
using both the user’s name and topics of interest and ranks the authors present in the
search results using the BM25 ranking model.

3

Chapter 1 Introduction

The remaining questions will be answered by analyzing and implementing several
recommendation methods that (to di�erent extents) use information from Semantic
Scholar about users and their published papers, collaborators of users (or co-authors)
and their published papers, candidate papers, and authors of candidates papers and
their published papers:

– One method ranks candidate papers based on their venues of publication. The
more papers the user has published at the candidate paper’s venue of publication,
the higher the candidate paper is ranked.

– Two methods look at venue co-publishing between the authors of candidate
papers and the user. These methods rank candidate papers whose authors publish
at the same venues as the user the highest. The �rst method considers only venue
co-publishing in its ranking process. The second one also takes into consideration
the in�uence of the papers published by the candidate paper authors, where the
in�uence of a paper is represented by its in�uential citation count — a metric that
is derived from the paper’s pure citation count and is supposed to better re�ect
the paper’s in�uence on citing papers [40].

– Two methods look at citations. The �rst one ranks candidate papers based on the
degree to which the user has previously cited their authors. The second one looks
to the collaborators of the user and the degree to which they have previously
cited the authors of candidate papers.

– The last method combines the approach of the �rst citation-based method with
the approach of the baseline arXivDigest recommender system, which uses Elas-
ticsearch to rank candidate papers using the topics of interest of the user.

1.3 Main Contributions

The main contributions of this thesis can be summed up in four points:

– Algorithms for linking users to entries in a scienti�c knowledge graph.
– Novel algorithms for research paper recommendation that exploit information

stored in scienti�c knowledge graphs.
– E�cient implementations of these algorithms, deployed live on arXivDigest.
– Experimental methods for evaluation of explainable recommendations.

1.4 Outline

The remainder of this thesis is structured as follows:

4

1.4 Outline

Chapter 2 introduces the �eld of academic search and several academic search tasks,
including research paper recommendation, and describes the arXivDigest service
and platform, and scienti�c knowledge graphs.

Chapter 3 goes more in depth in research paper recommendation and explainable
recommendation.

Chapter 4 describes methods that can be used to link users to entries in a scienti�c
knowledge graph.

Chapter 5 explores ways to use the data that is stored in scienti�c knowledge graphs
to produce scienti�c literature recommendations.

Chapter 6 concludes this thesis by answering the research questions and discussing
future work.

5

Chapter 2

Background

This chapter starts with an introduction of the �eld of academic search, including
descriptions of common academic search tasks and evaluation approaches. After this,
we discuss the arXivDigest platform for personalized scienti�c literature recommen-
dation, which will act as our laboratory in later chapters. Lastly follows a description
of scienti�c knowledge graphs, including a description of Semantic Scholar and its
scienti�c literature graph.

2.1 Academic Search

Academic search is a �eld within information retrieval that focuses on the retrieval of
scienti�c data. This section starts by introducing �ve academic search tasks. A common
aspect of tasks in information retrieval, in general, is the need to evaluate and compare
di�erent approaches. This need can be addressed in several ways; one way, which is
becoming increasingly prevalent, is the use of centralized evaluation infrastructures.
This section rounds o� with descriptions of some of the evaluation infrastructures that
have been deployed for use in the context of academic search tasks.

2.1.1 Academic Search Tasks

We now describe the research paper search, research paper recommendation, collabora-
tor discovery, expert �nding, and reviewer assignment academic search tasks. At the
end of the section, we list other, similar tasks. The descriptions are based on the surveys
conducted by Beel et al. [8] and Khan et al. [26] of the research paper recommendation
�eld and scholarly data, respectively.

7

Chapter 2 Background

Research Paper Search

Research paper search, in the context of academic search engines, deals with the problem
of calculating the relevance of research papers given a search query, and producing
rankings of papers based on their relevance [8]. This type of search is often referred to
as ad hoc search. Semantic Scholar, which will be further introduced in Section 2.3.1,
and CiteSeerX [29] are examples of academic search engines. The TREC OpenSearch
challenge [23] is an example of a research paper search task which allows participants
to develop and test their own retrieval methods with real tra�c provided by CiteSeerX
and another search engine called SSOAR. The TREC OpenSearch experimental platform
and evaluation infrastructure will be described in Section 2.1.2.

Research Paper Recommendation

Research paper recommendation is similar to research paper search, but instead of cal-
culating the relevance of papers given an explicit search query, relevance is calculated
based on context, using traditional (or less so) recommendation methods, such as stereo-
typing, collaborative �ltering and content-based �ltering [8]. Citation recommendation
is another similar task. Both research paper and citation recommendation deal with
producing recommendations based on information available in a certain context. In
research paper recommendation, the context is the user of the system (as in [19]); in
citation recommendation, the context is, e.g., a paper draft [10] or a context of words
[16].

Beel et al. [8] found, in their survey of the research paper recommendation �eld in
2015, that each of the recommendation approaches described in the existing literature
were based on one of several di�erent methods: stereotyping, content-based �ltering,
collaborative �ltering, co-occurrence, graph-based recommendation, global relevance,
and hybrid methods. Section 3.1 will elaborate on these methods.

Collaborator Recommendation

Collaborator recommendation (or similar researcher search) concerns the recommenda-
tion of potential collaborators for researchers [26]. CollabSeer [13] is a collaborator
recommendation service which �nds potential collaborators for researchers based on
collaborator networks and research interests. ScholarSearch [21] is another collaborator
recommendation system, which acts as a search engine. Given the name of a researcher
as a query, it �nds potential collaborators for that researcher by ranking the expertise
pro�les of other researchers against their expertise pro�le. The expertise pro�les are
based on data extracted from publications and academic homepages.

8

2.1 Academic Search

Expertise Retrieval

Expert �nding deals with �nding people with knowledge about a given topic [6]. This
task is quite similar to collaborator recommendation, but instead of ranking researchers
based on their similarity to another researcher, researchers are ranked based on their
estimated level of expertise in a query topic. The “inverse” task of expert �nding is
expert pro�ling, which deals with the problem of identifying the topics of expertise of
researchers.

Reviewer Assignment

The reviewer assignment problem deals with the automatic assignment of reviewers to
papers submitted to conferences [15]. The techniques used to solve this problem are very
similar (and often identical) to the techniques used in research paper recommendation
[8]. In research paper recommendation, small selections of papers are to be picked
from a large corpus and recommended to a large collection of users; in the reviewer
assignment problem, all the papers in a relatively small corpus are to be picked and
assigned to a small collection of reviewers.

Other Tasks

Other academic search tasks include book recommendation [32], academic news feed
recommendation [14], academic event recommendation [27], venue recommendation
[42], and academic dataset recommendation [38]. The �eld of scientometrics, which
deals with analyzing the impact of researchers, research papers, and the links between
them [8], is also highly relevant to academic search.

2.1.2 Evaluation Infrastructures for Academic Search Tasks

There are three main approaches to information retrieval system evaluation: user
studies [25], online evaluations [22], and o�ine (or test collection based) evaluations
[35]. User studies measure user satisfaction through explicit ratings provided by users.
They are considered the optimal evaluation approach, and should generally have at
least two dozen participants in order for the results to have any signi�cance [8]. Online
evaluations measure acceptance rates of retrieval results in real-world systems using
explicit measures, such as click-through rate (CTR). O�ine evaluations use metrics
such as average precision and reciprocal rank to evaluate retrieval results against
some ground truth. They are much more convenient to conduct than user studies and

9

Chapter 2 Background

online evaluations, but are also much less useful, as there is a disconnect between user
satisfaction and system accuracy — often, there is little to no correlation between the
results from user studies and online evaluations and o�ine evaluations.

In their survey of the research paper recommendation �eld in 2015, Beel et al. [8]
found several shortcomings. A highlighted shortcoming was a neglect of user modeling
and user satisfaction, and instead a large focus on o�ine evaluations. In later years,
online evaluations and evaluation infrastructures have gained traction. Evaluation
infrastructures are (typically) cloud-based systems that allow external actors to evaluate
their own retrieval algorithms [36]. The practice is commonly referred to as Evaluation-
as-a-Service (EaaS). In their review of state-of-the-art evaluation infrastructures for
academic shared tasks, Schaible et al. [36] list three important requirements for evalua-
tion infrastructures: (1) the possibility to perform both online and o�ine evaluations,
(2) domain speci�city in evaluations (users of academic retrieval systems are experts,
and behavioral patterns depend on the �eld), and (3) reproducibility.

Many shared tasks in academic search utilize evaluation infrastructures in order to
simplify participation and standardize evaluations. In the TREC OpenSearch challenge
[23], participants are given access to an existing search engine and are able to replace
components of it with their own implementations. The participants produce rankings
of candidate documents for a set of queries that are expected to be issued frequently
by the search engine’s users. These rankings are interleaved with the search engine’s
own rankings, and performance is measured in terms of impressions and CTR. Another
evaluation infrastructure used for academic search tasks is STELLA [11]. The arXivDi-
gest platform [19] for scienti�c literature recommendation, although not used in any
shared tasks, also works as an evaluation infrastructure.

2.2 ArXivDigest

ArXiv1 is an open-access archive for scienti�c articles within many �elds. The service
o�ers access to millions of articles but no simple way to explore them. Several services
exist that try to make it easier for the user to browse arXiv and �nd relevant articles.
One example is Arxiv Sanity Preserver2, which o�ers article suggestions and recom-
mendations in addition to revamped and slightly more user-friendly versions of many
of the features arXiv itself o�ers, such as overviews of recent and new articles and
search. Another example is arXivDigest [19].

1https://arxiv.org/
2http://www.arxiv-sanity.com/

10

https://arxiv.org/
http://www.arxiv-sanity.com/

2.2 ArXivDigest

Figure 2.1: Recommendation shown on the arXivDigest website.

ArXivDigest [19] is a living lab for explainable personalized scienti�c literature recom-
mendation. The platform allows users to register and submit recommendations with
their own experimental recommender systems, and o�ers the owners of systems access
to evaluation metrics and feedback from users. The recommendations that are displayed
to a user on a particular day is an interleaving of the recommendations submitted by
all registered systems, produced by selecting the top-k recommended papers (that
have been published during the last week) from each system. Users can access their
recommendations in two ways. They have the option to subscribe to daily or weekly
digest emails, which contain summaries of the papers they have been recommended in
the last day or week, or they can view all their recommendations on the arXivDigest
website. A recommendation displayed in the web interface of arXivDigest is shown in
Fig. 2.1.

2.2.1 The arXivDigest API

Experimental recommender systems submit their own recommendations through the
arXivDigest API. The API requires a system’s unique API key to be present in the HTTP
headers of all requests made by the system. This API key is obtained by registering
the system on the arXivDigest website. For registered systems, the recommendation
process looks like this:

1. Retrieve API settings, such as user batch size, from /.
2. Retrieve the arXiv IDs of the papers that are candidates for recommendation

from the /articles endpoint. Additional information about each paper can be
retrieved from the /article_data?article_id=[Paper ID] endpoint.

3. Retrieve the IDs for a batch of users from the /users?from=[Start ID] endpoint.
The from query parameter can be incremented by the user batch size in order to
get the next batch of users.

4. Retrieve additional information about the users in the batch from the /user_

info?ids=[User IDs] endpoint.

11

Chapter 2 Background

5. Retrieve the arXiv IDs of the papers that have already been recommended and
displayed for each user in the batch from the /user_feedback/articles?user_

id=[User IDs] endpoint.
6. Assign a score to each candidate paper together with an explanation for the score,

�lter out the papers that have already been recommended, and submit the top
papers for each user to the /recommendations/articles endpoint.

7. Repeat steps 3 to 6 until recommendations have been submitted for all users.

ArXivDigest scrapes arXiv for new papers around midnight each weekday, and the API
accepts recommendations from experimental systems between 00:30 and 03:00 on the
same days. The IDs that are exposed by the /articles endpoint are those of the papers
that have been scraped from arXiv during the last week.

2.2.2 Baseline Recommender System

The baseline recommender system implemented by Gingstad, Jekteberg, and Balog
uses Elasticsearch to score papers. The system indexes the papers that are candidates
for recommendation in Elasticsearch, queries the index for each of the user’s topics of
interest, chooses the top-k topics for each paper based on the relevance scores returned
by the index, and assigns scores to the papers equal to the sum of their relevance to the
top-k topics.

2.2.3 Evaluation Methodology

Central to the evaluation methodology of arXivDigest are impressions and the notion
of reward. An impression is an interleaving of recommendations from multiple systems
that has been seen and potentially interacted with by the user. Multiple user interactions
can be associated with a single impression, and di�erent types of interactions result
in di�erent amounts of reward points: the user saving a recommended paper in their
library gives 5 points, clicking a recommended paper on the website or in an email gives
3 points, and seeing a recommended paper on the website or in an email gives 0 points.
Given an interleaving of recommendations, the reward of a system equals the sum of
the reward points resulting from all the user interactions with the recommendations
submitted by the system. The normalized reward of the system is equal to the system’s
reward divided by the total reward of all the systems in the interleaving, such that the
normalized rewards of all the systems add up to 1.

The performance of systems is monitored continuously, and system owners can see how
the numbers of impressions and the mean normalized rewards of their systems progress
over time on the arXivDigest website. The mean normalized reward of a system is the

12

2.3 Scienti�c Knowledge Graphs

Figure 2.2: Recommendation feedback form on the arXivDigest website.

mean of the system’s normalized rewards for each interleaving in a selected period of
time.

In addition to the types of explicit and implicit user feedback used to calculate system
reward, users can also provide detailed feedback on speci�c recommendations and/or
their explanations through a form, which is shown in Fig. 2.2. Informed by [4], this
form asks the user about the relevance of the recommendation and how satisfactory,
persuasive, transparent, and scrutable they �nd the explanation [19].

2.3 Scientific Knowledge Graphs

Most digitally published scienti�c articles are nothing more than analogues of their
physical counterparts [41]. Organizing scienti�c knowledge (or scholarly data) in
semantic, interlinked graphs is a more structured and machine-readable alternative to

13

Chapter 2 Background

the current mostly document-oriented approach [3]. Scienti�c knowledge graphs have
garnered attention from many teams of researchers, such as the ScienceGRAPH project
with the Open Research Knowledge Graph [24], the Microsoft Academic Knowledge
Graph [18], and Semantic Scholar and its scienti�c literature graph [2].

2.3.1 Semantic Scholar

Semantic Scholar is a team of researchers at the non-pro�t Allen Institute for AI
working on reducing information overload in the scienti�c community by applying
arti�cial intelligence to extract meaning from scienti�c literature [37]. Since the launch
of Semantic Scholar in 2015, more than 180 million papers have been added to the
project’s scienti�c literature graph, which can be explored through a search engine
available at the project’s website3, the Semantic Scholar API, and the Semantic Scholar
Open Research Corpus (S2ORC) [31].

The Scientific Literature Graph

Semantic Scholar’s scienti�c literature graph is constructed using a combination of
traditional natural language processing techniques, such as sequence labeling, entity
linking, and relation extraction [2]. The graph contains several types of nodes: papers,
authors, entities representing unique scienti�c concepts, and entity mentions represent-
ing textual references of entities in papers. Citation edges exist between paper nodes,
authorship edges exist between author and paper nodes, entity linking edges exist
between entity mentions and entities, mention-mention edges exist between mentions
of entities occurring in the same contexts, and entity-entity edges exist between related
entities.

PDFs and metadata of papers are obtained by Semantic Scholar through partnerships
with publishers, pre-publishing services, and web crawling. The metadata provided by
the paper sources is often incomplete, and the papers obtained through web crawling
have no associated metadata at all. A system based on recurrent neural networks is used
to extract all missing metadata from the paper PDFs [2]. This system extracts titles, lists
of authors, and lists of references, where each reference contains a title, a list of authors,
a venue, and a year. Once the metadata of a paper is complete, a paper node and nodes
for its authors are added to the literature graph (if not already present) together with
citation and authorship edges. Duplicate papers are detected and removed based on
metadata similarity. Once the paper and author nodes and citation and authorship
edges are in place for a paper, entities and entity mentions are extracted and linked

3https://www.semanticscholar.org/

14

https://www.semanticscholar.org/

2.3 Scienti�c Knowledge Graphs

{
"aliases": ["K. Balog", "Krisztian Balog"],
"authorId": "1680484",
"dblpId": null,
"influentialCitationCount": 336,
"name": "K. Balog",
"papers": [

{
"paperId" :"fd26c7254eb81124148e84e3cf02dbd88bbc5623",
"title" :"Formal models for expert finding in enterprise corpora",
"url" :"https://www.semanticscholar.org/paper/fd26c7254eb81124148e84e3cf02d ⌋

bd88bbc5623",↪

"year": 2006
}

],
"url": "https://www.semanticscholar.org/author/1680484"

}

Listing 2.1: Response JSON data from the Semantic Scholar API for the author with ID 1680484.
The papers property has been truncated due to its length.

using a system that combines statistical models, hand-engineered, deterministic rules,
and o�-the-shelf entity-linking libraries.

The Semantic Scholar API

Semantic Scholar o�ers access to its collection of author and paper records through
a RESTful API4. The API has two endpoints: the /author/[Author ID] endpoint for
author data and the /paper/[Paper ID] endpoint for paper metadata. Authors are
accessed using their Semantic Scholar author IDs, and papers can be accessed using
several di�erent types of ID, such as arXiv and Semantic Scholar paper IDs.

Listing 2.1 shows the JSON response data for the author with ID 1680484, Krisztian
Balog. The response contains, among other things, the author’s name and aliases, brief
metadata for each paper published by the author, and the author’s in�uential citation
count, which is the sum of the in�uential citation counts of all their published papers.
The in�uential citation count of a paper is inferred by a machine learning model and
is supposed to re�ect a paper’s in�uence — the degree to which the paper is used or
extended by citing papers — more precisely than a pure citation count [40].

4Documentation available at https://api.semanticscholar.org.

15

https://api.semanticscholar.org

Chapter 2 Background

Listing 2.2 shows the JSON response data for the paper listed in the papers property in
Listing 2.1. The response contains, among other things, the paper’s title, abstract, au-
thors, citing papers, referenced papers, year of publication, venue, topics, and in�uential
citation count.

The Semantic Scholar Open Research Corpus

Semantic Scholar’s paper records are also available through the Semantic Scholar Open
Research Corpus (S2ORC) dataset [31]. In 2019, this dataset contained 81.1 million
records — 8.1 million of which included machine-readable full text extracted from paper
PDFs. The size of the dataset has since increased and continues to increase as periodic
(often monthly) updates are released. An example paper record from the dataset is
shown in Listing 2.3. It is similar but not identical in structure (and in the naming of
properties) to the paper records returned by the API.

16

2.3 Scienti�c Knowledge Graphs

{
"abstract": "Searching an organization's document repositories for experts...",
"arxivId": null,
"authors": [

{
"authorId": "1680484",
"name": "K. Balog",
"url": "https://www.semanticscholar.org/author/1680484"

}
],
"citationVelocity": 25,
"citations": [],
"corpusId": 8226656,
"doi": "10.1145/1148170.1148181",
"fieldsOfStudy": ["Computer Science"],
"influentialCitationCount": 56,
"isOpenAccess": true,
"isPublisherLicensed": true,
"numCitedBy": 652,
"numCiting": 21,
"paperId": "fd26c7254eb81124148e84e3cf02dbd88bbc5623",
"references": [],
"title": "Formal models for expert finding in enterprise corpora",
"topics": [],
"url": "https://www.semanticscholar.org/paper/fd26c7254eb81124148e84e3cf02dbd88bbc5 ⌋

623",↪

"venue": "SIGIR",
"year": 2006

}

Listing 2.2: Response JSON data from the Semantic Scholar API for the paper with Seman-
tic Scholar ID fd26c7254eb81124148e84e3cf02dbd88bbc5623. The authors and
abstract properties have been truncated and the citations, references, and
topics properties have been emptied due to their lengths.

17

Chapter 2 Background

{
"id": "38f271d026ff9c20042ca8b49588f6cee0d6bd2a",
"title": "Building A Vietnamese Dialog Mechanism For V-DLG~TABL System",
"paperAbstract": "This paper introduces a Vietnamese automatic dialog...",
"authors": [

{ "name": "An Hoai Vo", "ids": ["66339053"] },
{ "name": "Dang Tuan Nguyen", "ids": ["1748994"] }

],
"inCitations": [],
"outCitations": [],
"year": 2014,
"s2Url":

"https://semanticscholar.org/paper/38f271d026ff9c20042ca8b49588f6cee0d6bd2a",↪

"sources": [],
"pdfUrls": ["http://airccse.org/journal/ijnlc/papers/3114ijnlc04.pdf"],
"venue": "",
"journalName": "",
"journalVolume": "3",
"journalPages": "31-42",
"doi": "10.5121/IJNLC.2014.3104",
"doiUrl": "https://doi.org/10.5121/IJNLC.2014.3104",
"pmid": "",
"fieldsOfStudy": ["Computer Science"],
"magId": "2327911789",
"s2PdfUrl": "",
"entities": []

}

Listing 2.3: JSON paper record from the S2ORC dataset.

18

Chapter 3

Related Work

This chapter takes a closer look at the di�erent classes of methods described in the
existing literature within the �eld of research paper recommendation, and introduces
explainable recommendation — personalized recommendation where recommendations
are accompanied by the reasoning behind them.

3.1 Research Paper Recommendation

In their survey of the research paper recommendation �eld in 2015, Beel et al. [8]
used seven di�erent classes to classify the recommendation methods described in
the existing literature: stereotyping, content-based �ltering, collaborative �ltering,
co-occurrence recommendation, graph-based recommendation, global relevance, and
hybrid recommendation approaches. Hundreds of papers have been published in the
�eld since the 1990s, and there is no clear evidence of any class being better than the
others [8]. In fact, each of the recommendation classes has been shown to perform best
in at least one evaluation. This section describes and compares these recommendation
classes.

3.1.1 Stereotyping

Stereotyping is one of the early recommendation classes, �rst used by Rich [34] in
a recommender system for novels. Inspired by the stereotypes used in psychology
to classify people based on limited information, the Grundy recommender system
classi�ed users based on collections of frequently occurring characteristics among the
users. One of the biggest drawbacks of stereotyping is pigeonholing of users: users are
assigned stereotypes that already exist in the system, no matter how well or bad their
characteristics match any of the stereotypes [8].

19

Chapter 3 Related Work

Few have applied stereotyping for research paper recommendation. Beel et al. [7] used a
stereotyping approach as a baseline and fallback in their reference management system
Docear when other approaches failed to produce recommendations. They reported
mediocre performance, with a CTR of 4 % — versus a CTR greater than 6 % for their
content-based �ltering approaches.

3.1.2 Content-Based Filtering

Content-based �ltering is the most widely used recommendation class for research paper
recommendation [8]. Items are represented by their prominent features, which are based
solely on their contents (e.g., n-grams or tokens if the items are text documents), and
users are recommended items that are similar to the ones they have already expressed
interest in. Features are often represented using the vector space model, and similarity
between documents is calculated using, e.g., the cosine similarity. Items that the user is
interested in are typically items that the user has saved or liked in some way. In the case
of research paper recommendation, papers authored or cited by the user and papers
the user has other types of relations to could also be considered items of interest.

3.1.3 Collaborative Filtering

Collaborative �ltering, as it is known today, was introduced by Konstan et al. [28].
Instead of recommending items that are similar to items the user has already expressed
interest in, like content-based �ltering does, collaborative �ltering recommends items
that like-minded users have expressed interest in [8]. Like-minded users are users that
have rated items similarly. When either of two like-minded users expresses interest in
an item by rating it positively, that item is recommended to the other user. Collaborative
�ltering depends on the ratings provided by users, but users often lack the motivation to
provide ratings of meaningful volume. This is often referred to as the cold-start problem.
Another challenge associated with collaborative �ltering, especially for research paper
recommendation, is sparsity: the number of items can be very high compared to the
number of users.

3.1.4 Co-Occurrence Recommendation

Co-occurrence recommendations are produced by recommending items that frequently
appear together with some source items in some way [8]. An advantage of co-occurrence
recommendation over content-based �ltering is the focus on relatedness — how coupled
items are — instead of similarity. The co-occurrence of items can mean many di�erent

20

3.1 Research Paper Recommendation

things. Small [39] introduced the co-citation measure for research papers. His idea
was that the relatedness of two papers would be re�ected by the frequency of them
appearing together in the bibliographies of other papers. Small’s idea of co-citation
was further developed to take into consideration the proximity of citations within the
body texts of papers and used for research paper recommendation by Gipp and Beel
[20]. Other approaches for research paper recommendation based on co-occurrence
have looked at how often papers are co-viewed during browsing sessions [8].

3.1.5 Graph-Based Recommendation

Graph-based recommendation exploits the inherent connections that exist between items
[8]. In the context of research paper recommendation, the connections between items
are used to construct graphs that show, e.g., how papers are connected by citations, as in
the scienti�c literature graph of Semantic Scholar, which was described in Section 2.3.1.
Edges in a graph can also represent connections that are not inherent to items, such as
the co-citation strength or text similarity of papers. Typically, graph-based methods
for research paper recommendation take one or several papers as input and perform
random walks to �nd relevant papers in their graphs [8].

3.1.6 Global Relevance

Recommendation based on global relevance does not take into consideration the speci�c
characteristics of each user, but assumes that generally popular items are likely to be of
interest to the user [8]. No research paper recommendation approaches are exclusively
built on this idea, but several have used global popularity metrics as additional ranking
factors for recommendations produced with other methods. Some of these approaches
use content-based �ltering to �rst produce user-speci�c recommendations and then
use global metrics (such as citation counts, venues’ citation counts, citation counts of
user a�liations, and paper age) as weights for the recommendations.

3.1.7 Hybrid Approaches

The recommendation methods classi�ed as hybrid approaches combine the other six
recommendation classes in di�erent ways. Of all existing research paper recommen-
dation methods, many have hybrid characteristics, but few are true hybrids — i.e.,
most have a primary recommendation approach and few rely equal parts on di�erent
approaches [8]. One graph-based method with hybrid characteristics mentioned by
Beel et al. draws inspiration from content-based �ltering methods and includes terms

21

Chapter 3 Related Work

extracted from paper titles in its graph. The methods referred to in Section 3.1.6 that
combine content-based �ltering and global metrics also have hybrid characteristics.

3.2 Explainable Recommendation

For certain types of recommender systems, such as ones based on latent factor models,
it can be hard to explain why a speci�c item has been recommended to the user beyond
simply saying that the recommended item was assigned a higher score than other items
by the system [43]. The focus of explainable recommendation is to develop transparent
recommender systems with increased persuasiveness, e�ectiveness, trustworthiness,
and user satisfaction. In their survey on explainable recommendation, Zhang and Chen
[43] adopt a two-dimensional taxonomy to categorize explainable recommendation
methods. The �rst dimension is the information source or format of explanations — the
information used to produce and the way in which explanations are conveyed to the
user. The second dimension is the model that is used to produce explanations.

3.2.1 Explanation Information Sources and Formats

In the early stages of explainable recommendation, systems based on collaborative
�ltering explained their recommendations to the user by simply telling them that the
recommended items were similar to some other items the user had rated highly (or that
similar users had rated the recommended items highly). Zhang and Chen [43] refer
to this type of explanation as relevant-item explanation (or relevant-user explanation).
Another type is feature-based explanation. Explanations of this type are produced simi-
larly to content-based (�ltering) recommendations. One way to produce feature-based
explanations is to tell the user which of the recommended item’s features match the
user’s pro�le, which is made up of the items that the user has expressed interest in
earlier. Opinion-based explanation is another type. Explanations of this type are either
aspect-level or sentence-level. Aspect-level explanation is similar to feature-based expla-
nation, except that aspects (such as color and quality) are usually not directly available
in items or user pro�les, but are instead extracted or learned by the recommendation
model [43]. Sentence-level explanation can be further divided into template-based and
generation-based explanation. Template-based sentence explanation relies on prede-
�ned sentence templates, which are �lled in to produce personalized explanations
for the user. This is is the approach used by the baseline arXivDigest recommender
system described in Section 2.2.2. Generation-based sentence explanation does not
use templates but instead generates explanations automatically using, e.g., machine
learning models trained on user review corpora [43]. Other types of explanation is

22

3.2 Explainable Recommendation

visual explanation, which conveys explanations using, e.g., images with or without
highlighted areas of interest, and social explanation, which provides explanations based
on the social relations of the user.

3.2.2 Explainable Recommendation Models

Explainable recommendation is either model-intrinsic or model-agnostic (or post hoc)
[43]. Model-intrinsic approaches use models that are based on transparent decision
making and are inherently explainable. In model-agnostic approaches, the decision
making is more of a black box, and explanations are produced after-the-fact by separate
explanation models.

Model-Intrinsic Explainable Recommendation

The use of collaborative �ltering described in Section 3.2.1 is one example of model-
intrinsic explainable recommendation. Due to the di�culties associated with explaining
recommendations produced using latent factor models, Zhang et al. [44] introduced
explicit factor models for model-intrinsic explainable recommendation, based on the
idea of tracking the favorite features (or aspects) of the user and recommending items
that perform well on these features [43]. Knowledge graphs have also been used
for explainable recommendation. Catherine et al. [12] used a Personalized PageRank
algorithm to jointly rank movies and entities (actors, genres, etc.) in a way that allowed
the entities to serve as explanations. Ai et al. [1] adopted the use of knowledge graph
embeddings learned over a graph containing di�erent types of user, item, and entity
relations, such as item purchases made by users [43]. Their approach recommended
items for purchase based on their similarity to already purchased items, and explanations
could be produced by �nding the shortest path between the user and recommended
items in the graph. Rule mining has also been used for explainable recommendation.
Balog, Radlinski, and Arakelyan [5] proposed a set-based user modeling approach,
which allowed for natural language explanations to easily be formed based on the
preferences captured by the user models. Many other model-intrinsic explainable
recommendation approaches based on, e.g., topic modeling and deep learning have also
been proposed [43].

Model-Agnostic Explainable Recommendation

If the model used to produce recommendations is too complex to explain, explanations
can be produced post hoc [43]. In some cases, simple statistical information about the

23

Chapter 3 Related Work

recommended items is adequate. As an example, an e-commerce system might explain
a recommendation post hoc with “this item has been bought by �ve of your friends”.
Post hoc explanations have also been produced using association rule mining. Peake
and Wang [33] treated the recommendation model — in their case, one based on latent
factor models — as a black box, and trained association rules on model transactions
— pairs of model input (a user model) and output (recommendations). The learned
association rules were then used to explain the recommendations produced by the
recommendation model (and could also be used to produce the same recommendations).
Many other methods have also been used for post hoc explainable recommendation
[43].

24

Chapter 4

Linking Users to a Scientific
Knowledge Graph

This chapter addresses the �rst problem de�ned in Section 1.1 and explores methods
that can be used to link users to appropriate entries in a scienti�c knowledge graph.
Chapter 1 mentioned that only a small minority of arXivDigest users have registered
their Semantic Scholar pro�les. The users in this group are, conveniently, linked to
the appropriate author nodes in the scienti�c literature graph of Semantic Scholar.
The remaining majority of users is not. The methods of this chapter surface on the
arXivDigest platform as a suggestion feature for Semantic Scholar pro�les. The ultimate
goal is to increase the number of users with links to the correct scienti�c knowledge
graph entries, so that the rich semantic information stored there can be exploited for
generating scienti�c literature recommendations in Chapter 5.

4.1 Methods

This section starts with a formal description of the pro�le matching task. The S2ORC
dataset introduced in Section 2.3.1 serves as the data foundation for the methods of this
chapter. After de�ning the pro�le matching task, we describe how we simplify and
optimize searching through the large amounts of data in this dataset and how the data
is used by di�erent methods for pro�le matching.

4.1.1 Problem Statement

We de�ne pro�le matching to be the task of producing a ranking of the author nodes
in a scienti�c knowledge graph based on their likelihoods of representing the same
person as an arXivDigest user. If we let VA denote the set of author nodes in a scienti�c

25

Chapter 4 Linking Users to a Scienti�c Knowledge Graph

knowledge graph, then the likelihood that any author node a ∈ VA represents the same
person as user u is numerically estimated by a score function score(a, u).

4.1.2 Research Paper Index

We want to search through and �lter the data in the S2ORC dataset in a way that allows
for e�cient pro�le matching. To accomplish this, we create a searchable index of the
paper records in the dataset using Elasticsearch1 and its default BM25 ranking model.
We refer to this searchable index as the research paper index.

4.1.3 Profile Matching

We look at two methods for pro�le matching. The methods de�ne the score function
mentioned in Section 4.1.1 slightly di�erently. Using either method, generating a
ranking of author nodes for a user involves querying the research paper index (one
or more times, depending on the method) using information about the user, such as
their name, �nding the set of author nodes present in the query results, and picking
the top-k author nodes based on their scores.

Frequency-Based

This simple method is designed to favor authors with a high number of publications.
We de�ne the score of author a for user u:

score(a, u) = ∑
p∈u

1(a ∈ p), (4.1)

where u is the top-k set of papers returned by the research paper index when querying
for user u’s name, p is paper p’s set of authors, and 1(a ∈ p) evaluates to 1 if author
a ∈ p and 0 if not.

Score-Based

This method uses not only the name of the user but also the user’s topics of interest,
and — instead of simply counting the number of occurrences of authors in the query
results returned by the research paper index — its output is based on the relevance

1https://www.elastic.co/

26

https://www.elastic.co/

4.2 Implementation

scores returned by the research paper index. We de�ne the score of author a for user u:

score(a, u) = ∑
t∈u

∑
p∈u,t

score(p)1(a ∈ p), (4.2)

where u is user u’s topics of interest, u,t is the top-k set of papers returned by the
research paper index when querying for topic t together with user u’s name, and
score(p) is the score of paper p as returned by Elasticsearch.

Post-Filtering

It is possible that none of the author nodes that are appropriate for a user are contained
in the results returned by the research paper index for the query (or queries) made by
either pro�le matching method, and it is also possible that no appropriate author nodes
exist. To exclude author nodes that are obviously incorrect from the user’s ranking and
increase the probability that the author nodes that are actually present in the ranking
are relevant, we �lter the ranking based on the edit (Levenshtein) distances between
the names of the author nodes and the user’s name.

4.2 Implementation

Our methods are implemented as part of the arXivDigest codebase. Since arXivDigest
itself is implemented in Python, Python was a natural choice of language. We use the
Python Elasticsearch Client2, which is a low-level wrapper around the Elasticsearch
API, to interface with Elasticsearch in our code. The code is available in the arXivDigest
GitHub repository3, and all �le paths in this section are relative to the root of this
repository.

4.2.1 Research Paper Index

Indexing the S2ORC dataset in Elastcsearch is handled by the scripts/index_open_

research_corpus.py script. This script uses the bulk helper functions of the Python
Elasticsearch Client to read the dataset from disk and index it. It accepts three options:

--index is used to specify the Elasticsearch index.
--host is used to specify the Elasticsearch host.

2Documentation available at https://elasticsearch-py.readthedocs.io.
3https://github.com/iai-group/arXivDigest

27

https://elasticsearch-py.readthedocs.io
https://github.com/iai-group/arXivDigest

Chapter 4 Linking Users to a Scienti�c Knowledge Graph

{ "query": { "match": { "authors.name": "John Doe" } } }

Listing 4.1: Example of an Elasticsearch query used in the frequency-based method for a user
with name John Doe.

--path is used to specify the location of the S2ORC dataset. The path should be a
directory containing gzipped batch �les with one JSON paper record per line.

4.2.2 Profile Matching

The two pro�le matching methods are implemented by the scripts/gen_semantic_

scholar_suggestions.py script. This script generates rankings of Semantic Scholar
author IDs for all users who have not registered links to Semantic Scholar pro�les
and have not previously accepted or discarded any pro�le suggestions (through a
suggestion feature that will be described in Section 4.2.3). Rankings are stored in the
semantic_scholar_suggestions database table. The script accepts several options:

--index is used to specify the Elasticsearch index.
--host is used to specify the Elasticsearch host.
--method is used to specify which pro�le matching method should be used and accepts

either score or frequency.
--max-suggestions is used to limit the size of the user rankings. This option defaults

to 5.
-k is used to specify the number of query results from the research paper index (top-k)

to take into consideration for each query that is made. This option defaults to 50.
--max-edit-distance is used to specify the max edit distance (Levenshtein distance)

between the user’s name and the names of the pro�les in their ranking. This
option defaults to 1.

--output is used to direct the output of the script (the generated suggestions) to a
�le instead of writing them directly to the database. If this option is provided,
rankings are generated for all users (not just the ones with missing pro�le links)
and are output in a TREC suggestion format that will be described in Section 4.3.1.

Frequency-Based

Listing 4.1 shows what the Elasticsearch queries used to query the research paper index
for potential author nodes look like using the frequency-based method.

28

4.3 Evaluation

{

"query": {

"bool": {

"must": [

{ "match": { "authors.name": "John Doe" } },

{

"multi_match": {

"query": "database system",

"fields": ["title", "paperAbstract", "fieldsOfStudy"]

}

}

]

}

}

}

Listing 4.2: Example of the Elasticsearch queries used in the score-based method for a user
with name John Doe and an interest t = “database system”.

Score-Based

Listing 4.2 shows what the Elasticsearch queries used to query the research paper index
for potential author nodes look like using the score-based method.

4.2.3 Profile Suggestion Feature

The ranking produced for a user is displayed to them in a popup on the arXivDigest
website as a list of suggested Semantic Scholar pro�les, as shown in Fig. 4.1. The popup,
which is displayed upon login, contains a form with one radio button for each pro�le
present in the ranking, and each radio button contains the name of its respective pro�le
as a link to the pro�le. The user can choose to accept one of the suggestions as their
pro�le or discard them all by selecting the “None of the above” option. Their choice is
logged to the semantic_scholar_suggestion_log database table.

4.3 Evaluation

This section describes the methodology we adopt to evaluate our methods and presents
the results of our evaluations.

29

Chapter 4 Linking Users to a Scienti�c Knowledge Graph

Figure 4.1: The user is able to choose between the available Semantic Scholar pro�le sugges-
tions through a popup which is displayed upon login.

4.3.1 Evaluation Methodology

We evaluate our methods in two steps. First, we perform o�ine evaluations of rank-
ings generated using several di�erent con�gurations of the pro�le matching script.
The con�guration that comes out on top in the o�ine evaluations is then used to
generate rankings that are presented to users on the arXivDigest website as pro�le
suggestions. These suggestions are subject to user feedback, which we look at in our
online evaluations.

O�line Evaluation

The most precise way to evaluate pro�le suggestions is to look at measures such as
recall and mean reciprocal rank (MRR). Calculating these measures requires access to
some sort of ground truth. ArXivDigest has a small user base, so creating a ground
truth table containing the actual Semantic Scholar author IDs of all arXivDigest users
is, therefore, a feasible task. We create the ground truth the following way. Starting
o�, the contents of the users table in the arXivDigest database are dumped to a �le.
A method parses the database dump and extracts the Semantic Scholar author IDs
present in the user-provided Semantic Scholar pro�le links. For the users who have
not provided pro�le links themselves, the method prompts for a link, which we look
up manually with Semantic Scholar’s search engine. Using this method, we are able to
create a ground truth containing the Semantic Scholar author IDs of 84 users (three of
which have two IDs).

30

4.3 Evaluation

We use the trec_eval tool4 to calculate o�ine metrics for us. This tool expects its
input �les — in our case, a ground truth �le and a �le with rankings — to be of certain
formats. The ground truth must be formatted as a qrels5 �le containing four space-
separated columns: topic number (arXivDigest user ID), iteration (always zero and not
used), document number (Semantic Scholar author ID), and relevance (always 1). The
rankings �le must follow a TREC suggestion format where each line represents an
author node (a Semantic Scholar author ID) and contains six space-separated columns:
query ID (arXivDigest user ID), iteration (always Q0), document number (Semantic
Scholar author ID), rank, relevance/score, and run ID. The trec_eval tool is able to
calculate many di�erent metrics. The ones we are the most interested in are: num_q,
which is the number of users (queries) with rankings; num_rel_ret, which is the number
of correct Semantic Scholar author IDs (relevant docment numbers) that are present in
the rankings; recall_5, which is recall@5; and recip_rank, which is the MRR.

We generate and evaluate four sets of rankings against the ground truth: two sets based
on the score-based method, using max edit distances of 1 and 2, and two sets based on
the frequency-based method, using max edit distances of 1 and 2. The commands used
to generate the rankings are available in Appendix A.

Online Evaluation

In our online evaluations, we analyze the feedback submitted by users through the
pro�le suggestion feature described in Section 4.2.3. In particular, we look at the
reciprocal ranks and mean reciprocal rank of accepted and rejected suggestions.

4.3.2 Results

We now present the results of our evaluations.

O�line Evaluation

The o�ine evaluation results can be seen in Table 4.1. We observe that the score-based
method achieves an MRR that is roughly 0.1 higher than the MRR of the frequency-
based method for both max edit distances, and that the smaller max edit distance gives
the best results across the board. Out of the 84 users represented in the ground truth,
the score-based and frequency-based methods generate rankings for 79 and 78 users,

4https://github.com/usnistgov/trec_eval
5Format described here: https://trec.nist.gov/data/qrels_eng.

31

https://github.com/usnistgov/trec_eval
https://trec.nist.gov/data/qrels_eng

Chapter 4 Linking Users to a Scienti�c Knowledge Graph

Table 4.1: Evaluation results for rankings generated using both the score-based and frequency-
based methods, with max edit distance of both 1 and 2. num_q is the number of users
with rankings and num_rel_ret is the number correct Semantic Scholar author IDs
that are present in the rankings.

(a) Max edit distance of 1.

Pro�le matching method num_q num_rel_ret Recall@5 MRR

Score-based 79 75 0.93 0.88
Frequency-based 78 74 0.92 0.79

(b) Max edit distance of 2.

Pro�le matching method num_q num_rel_ret Recall@5 MRR

Score-based 79 74 0.92 0.87
Frequency-based 78 74 0.92 0.77

respectively. The frequency-based method fails to produce a ranking for one user in
addition to the same �ve users that the score-based method fails to produce rankings for.
After taking a closer look at these users, nothing about them stands out when compared
to the others, and it is di�cult to say why neither method was able to produce rankings
for them.

Online Evaluation

The score-based method paired with a max edit distance of 1 achieved the best results
in the o�ine evaluations. The rankings generated with this method were displayed as
pro�le suggestions to users on the arXivDigest website. After six weeks, nine users
had interacted with the suggestions: one user rejected all suggestions (equivalent to
accepting the suggestion with rank 0) and eight users accepted one of their suggestions.
Of the users who accepted suggestions, �ve accepted the suggestions with rank 1 (the
top suggestions) and three accepted the suggestions with rank 2. We get an MRR of
0.72.

Table 4.2 contains the rankings that were presented as suggestions to the users who did
not accept suggestions with rank 1. We can see that the rankings of both David Corney
and John Kane contain suggestions (at the bottom ranks) that are obviously wrong due
to incorrect �rst name initials. After closer inspection, the top suggestion for David
Corney appears to be a duplicate of the accepted suggestion (but a di�erent pro�le).
Both the �rst name initial and last name of Martin Uray’s only (rejected) suggestion

32

4.4 Summary

Table 4.2: The rankings that were presented as suggestions to the users who did not accept
suggestions with rank 1. The name of the suggestion with rank 1 for user Daniel
Gayo-Avello is blank because the suggested pro�le no longer exists.

User Suggestion

Rank Score Name Accepted

David Corney 1 960 D. Corney No
2 51 D. Corney Yes
3 29 M. Corney No
4 23 L. Corney No

Martin Uray 1 160 M. Uray No

Daniel Gayo-Avello 1 1700 – No
2 170 Daniel Gayo-Avello Yes

John Kane 1 190 J. Kane No
2 170 J. Kane Yes
3 39 J. Kane No
4 26 J. Keane No
5 24 D. Kane No

are correct. For Daniel Gayo-Avello, the top suggestion is a pro�le that no longer exists.
This error could be a result of our method using a slightly outdated version of the
S2ORC dataset. For John Kane, the top three suggestions all have correct �rst name
initials and last names, and it is not surprising that our method failed to properly rank
these.

4.4 Summary

The score-based method combined with a max edit distance of 1 performed the best in
the o�ine evaluations. In the online evaluations, this con�guration produced rankings
containing the correct Semantic Scholar author IDs for eight out of the nine users who
interacted with the pro�le suggestion feature on arXivDigest during a period of six
weeks. A few of these users were suggested pro�les with incorrect �rst name initials.
Suggestions like these could have been caught with an additional post-�ltering step.

The online evaluations resulted in an MRR of 0.72, which is considerably lower than
the MRR of 0.88 achieved with the same pro�le matching con�guration in the o�ine
evaluations. Since feedback was submitted by only nine users in the online evaluations

33

Chapter 4 Linking Users to a Scienti�c Knowledge Graph

(compared to the 84 users used in the o�ine evaluations), it is di�cult to compare these
two results. Still, as mentioned in Section 2.1.2, a disconnect between the results of
o�ine and online evaluations is, typically, to be expected.

The goal of this chapter was to increase the number of users with links to the correct
scienti�c knowledge graph entries. Albeit only by eight users, our methods have
managed to increase this number.

34

Chapter 5

Research Paper Recommendation

The methods of Chapter 4 have, if only slightly, increased the number of arXivDigest
users with links to appropriate scienti�c knowledge graph entries. It is time to approach
the second problem de�ned in Section 1.1 and explore applications of the data available
through scienti�c knowledge graphs in the realm of research paper recommendation.
We describe several methods for explainable research paper recommendation and their
implementations.

5.1 Methods

This section starts with a formal description of the explainable research paper recom-
mendation task. After this, we introduce six methods for explainable research paper
recommendation. Each method de�nes a score function score(p, u), which attempts
to quantify the relevance of research paper p for user u, and a sentence template (or
sentence templates), which is �lled in to produce a personalized explanation of the
score that is assigned to the paper. The �rst three methods score candidate papers
based on their venues of publication, the venues the papers’ authors have published
papers at, and the venues the user has published papers at. The last three methods
score candidate papers based on the citation graphs of their authors, the user, and the
user’s collaborators. Table 5.1 summarizes the information that is used by the di�erent
recommendation methods.

Using the terminology of Section 3.1, all of our methods are graph-based, and two have
hybrid characteristics. Frequent Venues, Venue Co-Publishing, Previously Cited, and
Previously Cited by Collaborators rely only on the connections that exist in a scienti�c
knowledge graph, and are purely graph-based. Weighted In�uence incorporates the
(in�uential) citation counts of papers and has additional characteristics typical for global
relevance methods. Previously Cited and Topic Search has additional characteristics that
are typical for content-based methods. Section 3.2 mentioned that a distinction could

35

Chapter 5 Research Paper Recommendation

Table 5.1: Information used by the di�erent recommendation methods to calculate the score
of candidate paper p for user u.

Recommendation method Information used by score(p, u)
Frequent Venues Venues of publication for p and the papers published by

u.
Venue Co-Publishing Venues of publication for all papers published by the

authors of p and the papers published by u.
Weighted In�uence Venues of publication for all papers published by the

authors of p and the papers published by u.
Previously Cited Authors of p and authors cited by u in their published

papers.
Previously Cited by
Collaborators

Authors of p and authors cited by the previous collabo-
rators (co-authors) of u in their published papers.

Previously Cited and
Topic Search

Authors of p and authors cited by u in their published
papers.

be made between model-intrinsic and model-agnostic explainable recommendation
[43]. With transparent decision making and no use of additional explanation models to
produce explanations post hoc, all of our methods are model-intrinsic.

5.1.1 Problem Statement

We de�ne explainable research paper recommendation to be the task of producing a
ranking of the papers that are candidates for recommendation at arXivDigest based
on their relevance to a user. The relevance of each candidate paper p is numerically
estimated for user u by a score function score(p, u). In addition to a score, each ranked
paper is accompanied by an explanation for its score.

5.1.2 Frequent Venues

It is not uncommon for researchers to publish numerous papers at the same venue over
time. This method is based on the assumption that a paper published at a venue that a
user frequently publishes at is more relevant to the user than other papers.

We maintain a set of venues that is continually updated as new venues are discovered
during the recommendation process. We refer to the size of this set as N . Users are
represented as N -dimensional vectors, where each value corresponds to a certain venue

36

5.1 Methods

EACL

ICME

SIGIR

ICTIR

CIKM

TREC

ECIR

Number of papers
published at CIKM

3

3

0

4

12

2

1

Figure 5.1: Vector representation of an author based on the number of papers published by
the author at di�erent venues.

and represents the number of papers the user has published there. Figure 5.1 shows an
example of such a user vector. Papers are also represented as N -dimensional vectors,
where the value corresponding to a paper’s venue is 1 and all other values are zero. We
de�ne the score (or relevance) of research paper p for user u:

score(p,u) = p ⋅ u. (5.1)

This method is very simple, and it is easy to explain to the user why a certain paper has
been recommended. Users are presented with explanations of the form “This article is
published at [venue], where you have published [x] papers.”

5.1.3 Venue Co-Publishing

In the Frequent Venues method, papers are represented by the venues they are published
at. This method represents papers by their authors and is based on the assumption
that a paper is relevant to a user if the authors of the paper have published at the same
venues as the user. Both users and authors are represented using the same type of
N -dimensional vector used for users in the Frequent Venues method. We de�ne the
score of research paper p for user u:

score(p,u) = max
a∈p

sim(a,u), (5.2)

where p is paper p’s set of authors and sim(⋅, ⋅) is the cosine similarity.

If the user has published at the same venue as one of the authors of a candidate paper
more than once, explanations are of the form “You have published [x] times at [venue],
. . . , and [z] times at [venue]. [author] has also published at these venues.” The [venue]s
are placeholders for the common venues at which the user has published the most
papers. If a user has published no more than once at any of the venues that the paper

37

Chapter 5 Research Paper Recommendation

authors have published at, explanations are of the form “You and [author] have both
published at [venue], . . . , and [venue].” In this case, the [venue]s are placeholders for
any of the common venues.

5.1.4 Weighted Influence

This method is similar to the Venue Co-Publishing method. The only di�erence is that
the similarities between the user and the authors of a paper are weighted by the authors’
in�uential citation counts — or vice versa: the in�uential citation counts are weighted
by the similarities. We de�ne the score of research paper p for user u:

score(p,u) = max
a∈Ap

∑
v∈u

inf luence(a, v) × sim(a,u), (5.3)

where u is the set of venues that user u has published papers at and inf luence(a, v) is
the sum of the in�uential citation counts of the papers that author a has published at
venue v. The in�uential citation count metric was explained in Section 2.3.1. In short,
it is a more accurate metric for a paper’s in�uence on citing papers than a pure citation
count.

Explanations for recommendations produced with this method are of the form “[author]
has had in�uential publications at [venue], . . . , and [venue], which are venues you also
publish at.” [author] is a placeholder for the name of the author producing the greatest
score and the [venue]s are placeholders for the venues for which the author has the
greatest in�uential citation counts.

5.1.5 Previously Cited

The previous methods score papers based on which venues they are published at, which
venues their authors have published papers at, and which venues the user has published
papers at. This method moves away from venues and is based on the assumption that
users are interested in new publications from authors they have previously cited. We
de�ne the score of research paper p for user u:

score(p, u) = max
a∈p

numcites(u, a), (5.4)

where p is paper p’s set of authors and numcites(u, a) is the number of times user u
has cited author a.

Explanations for recommendations produced with this method are of the form “This
article is authored by [author], who you have cited [x] times.” [author] is a placeholder
for the name of the author that the user has cited the most times.

38

5.1 Methods

5.1.6 Previously Cited by Collaborators

This method is similar to the Previously Cited method, but instead of looking at whether
the user has cited the authors of a paper, it looks at whether the user’s previous
collaborators have done so. We de�ne the score of research paper p for user u:

score(p, u) = max
a∈p ,c∈u

numcites(c, a), (5.5)

wherep is paper p’s set of authors, u is user u’s set of collaborators, and numcites(c, a)
is the number of times collaborator c has cited author a.

Explanations for recommendations produced with this method are of the form “This
article is authored by [author], who has been cited by your previous collaborator
[collaborator] [x] times.” [author] is a placeholder for the name of the author that
has been cited the most times by any one of the user’s previous collaborators and
[collaborator] is a placeholder for the name of this collaborator.

5.1.7 Previously Cited and Topic Search

This method combines Previously Cited with the approach of the baseline arXivDigest
recommender system described in Section 2.2.2, which queries an Elasticsearch index
containing the candidate papers for the user’s topics of interest. We de�ne the score of
research paper p for user u:

score(p, u) = ∑
t∈u

score(p, t) × max
a∈p

numcites(u, a), (5.6)

where u is user u’s topics of interest, score(p, t) is the score of paper p as returned by
Elasticsearch when querying for topic t ,p is paper p’s set of authors, and numcites(u, a)
is the number of times user u has cited author a. If p is not returned by the index for a
given t , score(p, t) is considered 0.

Explanations are of the following format, which combines the explanation formats of
the base arXivDigest recommender system and Previously Cited: “This article seems to
be about [topic], . . . , and [topic], and is authored by [author], who you have cited [x]
times.” The [topic]s are placeholders for the topics for which Elasticsearch returns the
greatest scores and [author] is a placeholder for the author that the user has cited the
most times.

39

Chapter 5 Research Paper Recommendation

5.2 Implementation

This section describes how our methods have been implemented and how the implemen-
tations are con�gured and deployed. As in Chapter 4, Python is the programming lan-
guage of choice. The code is available at https://github.com/olafapl/arxivdigest_
recommenders. All relevant code is contained in the arxivdigest_recommenders pack-
age in this repository, and all �le paths in this section are relative to the root of this
package.

5.2.1 The Semantic Scholar API

The Semantic Scholar API was introduced in Section 2.3.1. Our systems use this
API as an interface to the scienti�c literature graph of Semantic Scholar to retrieve
additional information about users, papers, and authors that is not available through the
arXivDigest API. By default, the Semantic Scholar API has a rate limit of 100 req/5min.
This limit is a bit low for us, as we want to access information about thousands of
records in relatively short periods of time. We reached out to Semantic Scholar, who
was generous and provided us with a private API key with a rate limit of 100 req/s.

Network Tra�ic Analysis

All the described recommendation methods require information about a substantial
number of papers and authors to be available. Getting hold of this information involves
querying the Semantic Scholar API, and the total number of queries quickly adds up
when we are dealing with thousands of papers and authors. In this section, we perform
an analysis of the complexity of the situation.

We denote the number of papers that are candidates for recommendation n. Retrieving
information about all the candidate papers involves making n requests to the Semantic
Scholar API. The Venue Co-Publishing and Weighted In�uence methods also need
information about the authors of the candidate papers. If papers on average have a
authors, retrieving this information involves making an additional na requests. These
methods need information about the authors’ published papers beyond their titles and
years of publication, and must therefore also retrieve information about all of the papers
published by each author. If authors have p published papers on average, this adds
another nap requests. All the recommendation methods need information about the
users of arXivDigest (with known Semantic Scholar author IDs) and their published
papers. If there are u users, retrieving this information involves making u +up requests.
The Previously Cited by Collaborators method also needs information about the users’

40

https://github.com/olafapl/arxivdigest_recommenders
https://github.com/olafapl/arxivdigest_recommenders

5.2 Implementation

Table 5.2: Equations for the total number of Semantic Scholar API requests made by each of
the recommendation methods. n is the number of papers that are candidates for
recommendation, a is the average number of authors per paper, p is the average
number of papers published by authors, u is the number of users, and c is the average
number of unique collaborators for users.

Recommendation method Requests

Frequent Venues n + u(1 + p)
Venue Co-Publishing (na + u)(1 + p)
Weighted In�uence (na + u)(1 + p)
Previously Cited n + u(1 + p)
Previously Cited by Collaborators n + u(1 + p)(1 + c)
Previously Cited and Topic Search n + u(1 + p)

collaborators and their published papers. If the users have c unique collaborators on
average, this leads to an additional u(c + cp) requests. Table 5.2 contains the �nal
equations for the total number of requests needed for each of the recommendation
methods.

The arXivDigest API typically returns between 3000 and 4000 paper recommendation
candidates. To estimate a and p, we implement a method that (1) selects a random
sample of 1000 papers from the set of papers that are candidates for recommendation,
(2) fetches the metadata of the papers, their authors, and the authors’ published papers
from the Semantic Scholar API, and (3) calculates the average number of authors per
paper and the average number of papers published per author at any time and in the last
�ve years. Using the averages calculated by this method, we get a = 5.34, p = 120 when
looking at papers published at any time, and p = 41.5 when only looking at papers
published in the last �ve years. To estimate c, we implement another method that
fetches the paper metadata of the published papers for all users with known Semantic
Scholar author IDs and calculates the average number of unique collaborators. Using
this method, we �nd that 23 users have registered Semantic Scholar pro�les, and that
the average number of collaborators for these users is 77. Table 5.3 shows the results
of plugging n = 3500, a = 5.34, both p = 120 and p = 41.5, u = 23, and c = 77 into
the equations in Table 5.2. It also contains estimates for how long it would take each
method to complete its estimated number of requests based on a constant request rate
of 100 req/s. We can see that the Venue Co-Publishing and Weighted In�uence methods
produce considerably more tra�c than the other methods. The Previously Cited by
Collaborators method has the greatest absolute increase in requests per extra user of all
the methods, but because its baseline number of requests — i.e., its number of requests
for u = 0 — is low and because we are only dealing with 23 users, this will not pose any

41

Chapter 5 Research Paper Recommendation

Table 5.3: Estimates of the total number of Semantic Scholar API requests needed by each of
the recommendation methods and the time needed to complete the requests. The
request estimates are based on the equations in Table 5.2, using n = 3500, a = 5.34,
u = 23, and c = 77. The time estimates are based on a request rate of 100 req/s.

Recommendation method Requests Time

p = 120 p = 41.5 p = 120 p = 41.5
Frequent Venues 6.3 × 103 4.5 × 103 1.0min 45 s
Venue Co-Publishing 2.3 × 106 8.0 × 105 6.3 h 2.2 h
Weighted In�uence 2.3 × 106 8.0 × 105 6.3 h 2.2 h
Previously Cited 6.3 × 103 4.5 × 103 1.0min 45 s
Previously Cited by Collaborators 2.2 × 105 8.0 × 104 37 min 13 min
Previously Cited and Topic Search 6.3 × 103 4.5 × 103 1.0min 45 s

problems for us.

Network Request Caching

The recommender systems implementing the di�erent recommendation methods are
intended to run on the same machine at the same time, and many of the requests made
to the Semantic Scholar API by the di�erent systems are going to be for the same
resources. As the set of papers that are candidates for recommendation one day is very
similar to the set of papers that are candidates for recommendation the next one, there
is also going to be a signi�cant overlap between the sets of resources requested from
the API on consecutive days. The set of arXivDigest users is also likely to stay mostly
the same from day to day, with the odd additions. We choose to cache author details for
seven days and paper metadata for 30 days in order to lower the number of requests
actually sent to Semantic Scholar.

Python Wrapper

There were no existing Python wrappers for the Semantic Scholar API with support for
response caching, asynchronous requests, and rate limiting, so we implemented one
ourselves. The SemanticScholar wrapper class is located in the semantic_scholar.py

module. Internally, it uses the ClientSession of aiohttp1 to make requests. Responses
are cached in either MongoDB using the motor2 MongoDB Python driver or Redis using

1https://docs.aiohttp.org/en/stable/
2https://motor.readthedocs.io/en/stable/

42

https://docs.aiohttp.org/en/stable/
https://motor.readthedocs.io/en/stable/

5.2 Implementation

async with SemanticScholar() as s2:

author = await s2.author("1680484")

author_papers = await s2.author_papers("1680484")

arxiv_paper = await s2.paper(arxiv_id="2009.11576")

s2_paper = await s2.paper(s2_id="006d90b7e05d261cb5c3dd27f27e02806d664ffa")

Listing 5.1: Using the Semantic Scholar API wrapper to retrieve information about an author,
all the author’s published papers, and a paper using both its arXiv and Semantic
Scholar IDs.

the aioredis3 Redis client library. Rate limiting is handled by the AsyncRateLimiter in
the util.py module. The API wrapper is implemented as an asynchronous context
manager, and is used internally by the recommender systems that will be described in
Section 5.2.2 as shown in Listing 5.1.

5.2.2 Recommender Systems

We implement one recommender system for each of the six recommendation methods
described in Section 5.1. The locations and names of the recommender system classes
implementing the di�erent methods are listed in Table 5.4. At the base of each system is
the ArxivdigestRecommender superclass located in the recommender.py module. This
class does most of the heavy lifting and leaves only the scoring of papers to be de�ned by
its subclasses. Subclasses de�ne the scoring of papers by implementing the score_paper
method, which takes as arguments the data of a user, the user’s Semantic Scholar author
ID, and the arXiv ID of a paper that should be scored. The method should return a
dictionary containing the arXiv ID of the paper, the paper’s score, and an explanation for
the paper’s score. This method is called by ArxivdigestRecommender for each candidate
paper when the recommend method of a recommender system is called. The candidate
papers are then sorted by score, papers with a score of 0 are �ltered out, and the top-k
papers get submitted to arXivDigest as recommendations for the user.

The arXivDigest API for experimental recommender systems was introduced in Sec-
tion 2.2.1. Our recommender systems use this API to retrieve user information and the
arXiv IDs of candidate papers, and to submit recommendations. To summarize, the
process used by our systems looks like this:

1. Retrieve the arXiv IDs of the papers that are candidates for recommendation from
the /articles endpoint.

3https://aioredis.readthedocs.io/en/latest/

43

https://aioredis.readthedocs.io/en/latest/

Chapter 5 Research Paper Recommendation

Table 5.4: Modules and names of the recommender system classes implementing the di�erent
recommendation methods.

Recommendation method Module Class

Frequent Venues frequent_venues.py FrequentVenuesRecommender
Venue Co-Publishing venue_copub.py VenueCoPubRecommender
Weighted In�uence weighted_inf.py WeightedInfRecommender
Previously Cited prev_cited.py PrevCitedRecommender
Previously Cited by Collab-
orators

prev_cited_collab.py PrevCitedCollabRecommender

Previously Cited and Topic
Search

prev_cited_topic.py PrevCitedTopicSearchRecommender

2. Retrieve the IDs for a batch of users from the /users?from=[Start ID] endpoint,
additional information about the users in the batch from the /user_info?ids=

[User IDs] endpoint, and the arXiv IDs of the papers that have already been rec-
ommended for each user in the batch from the /user_feedback/articles?user_

id=[User IDs] endpoint.
3. Assign a score to each candidate paper together with an explanation for the score,

�lter out the papers that have already been recommended, and submit the top
papers for each user to the /recommendations/articles endpoint.

4. Repeat the two previous steps until recommendations have been submitted for
all users.

All interaction with the API is done through the ArxivdigestConnector class of the
arxivdigest.core.connector module in the arXivDigest GitHub repository4.

5.2.3 Deployment

We have implemented six recommender systems and need to distinguish between
them in the evaluation and user feedback dashboard on the arXivDigest website. To
accomplish this, we use separate API keys for all the systems. The API keys, together
with everything else that is con�gurable, are con�gured through a JSON �le located in
one of three locations (in order of priority):

1. %cwd%/config.json; or
2. ~/arxivdigest-recommenders/config.json; or
3. /etc/arxivdigest-recommenders/config.json.

4https://github.com/iai-group/arXivDigest

44

https://github.com/iai-group/arXivDigest

5.3 Evaluation

The default con�guration can be seen in Listing 5.2. All the con�guration options are
explained in Table 5.5. If any of these options are rede�ned in a �le in one of the three
locations, their defaults are overridden.

Each recommender system can be run by executing the module the recommender system
class is located in. As an example, the system implementing the Frequent Venues
method can be run by executing the arxivdigest_recommenders.frequent_venues

module. The con�gured Semantic Scholar API rate limit works only on a per-process
basis, meaning that if two recommenders are run at the same time using this method,
the e�ective rate limit will be double that of what is con�gured. To avoid this problem,
the recommenders can be run in the same process, as in Listing 5.3.

5.3 Evaluation

This section presents the methodology we adopt to evaluate our methods and presents
the results of the evaluations.

5.3.1 Evaluation Methodology

We evaluate our methods in two steps. First, we compare the recommendations pro-
duced by the six implemented recommender systems and the baseline recommender
system described in Section 2.2.2. This shows us if the systems tend to recommend
the same papers and checks if any of them stand out. After this, we move on to a user
study, where we ask for feedback from users on recommendations and explanations
produced by each system.

ArXivDigest is a relatively small platform, and only a small amount of tra�c has been
generated by the users in the period that our systems have been operational. This
means that there is not a whole lot of data (i.e., user interactions and feedback) for us
to use and analyze in online evaluations. Our evaluation methodology does, therefore,
not include online evaluations.

Recommendation Overlap and Uniqueness

We look at the overlap between the sets of papers that have been recommended to the
same users by the di�erent recommender systems, and the uniqueness of the systems’
recommendations. If A and B are the sets of papers recommended to the same user by
two systems a and b, then we de�ne the overlap between A and B to be |A ∩ B|/|A ∪ B|.

45

Chapter 5 Research Paper Recommendation

{
"arxivdigest_base_url": "https://api.arxivdigest.org/",
"mongodb": {

"host": "127.0.0.1",
"port": 27017

},
"redis": {

"host": "127.0.0.1",
"port": 6379

},
"elasticsearch": {

"host": "127.0.0.1",
"port": 9200

},
"semantic_scholar": {

"api_key": null,
"max_requests": 100,
"window_size": 300,
"cache_responses": true,
"cache_backend": "redis",
"mongodb_db": "s2cache",
"mongodb_collection": "s2cache",
"paper_cache_expiration": 30,
"author_cache_expiration": 7

},
"max_paper_age": 5,
"max_explanation_venues": 3,
"venue_blacklist": ["arxiv"],
"frequent_venues_recommender": { "arxivdigest_api_key": null },
"venue_copub_recommender": { "arxivdigest_api_key": null },
"weighted_inf_recommender": {

"arxivdigest_api_key": null,
"min_influence": 20

},
"prev_cited_recommender": { "arxivdigest_api_key": null },
"prev_cited_collab_recommender": { "arxivdigest_api_key": null },
"prev_cited_topic_recommender": {

"arxivdigest_api_key": null,
"index": "arxivdigest_papers",
"max_explanation_topics": 3

},
"log_level": "INFO"

}

Listing 5.2: Default con�guration of the recommender systems.

46

5.3 Evaluation

Table 5.5: Explanations of the properties present in the con�guration �le in Listing 5.2.

Property Explanation

arxivdigest_base_url Base URL of the arXivDigest API.
mongodb MongoDB host and port.
redis Redis host and port.
elasticsearch Elasticsearch host and port.
semantic_scholar Options for the Semantic Scholar API wrapper. max_

concurrent_requests defaults to 100. The default max_
requests of 100 and window_size of 300 (seconds) equate to
a max request rate of 100 req/5min and can be used without
an API key. cache_responses is used to toggle caching, and
cache_backend is used to toggle between the MongoDB (“mon-
godb”) and Redis (“redis”) cache backends.

max_paper_age Papers older than this (in years) are �ltered out when looking
at an author’s published papers. In light of the network tra�c
analysis performed in Section 5.2.1, and because newer papers
are likely to best re�ect an author’s current publishing patterns,
the default value of this option is 5.

max_explanation_venues Max number of venues included in explanations by the Venue
Co-Publishing and Weighted In�uence recommenders.

venue_blacklist Case-insensitive list of venues ignored by the Venue Co-
Publishing and Weighted In�uence recommenders. Many pa-
pers are not published at a speci�c venue, such as TREC, but
are instead available directly on pre-publishing services, such
as arXiv. If two authors who have never published at the same
venues both have many papers with arXiv listed as their venues
of publication, the similarity between these authors is arti�-
cially high if arXiv is not �ltered out as a venue.

frequent_venues_recommender Frequent Venues recommender options.
venue_copub_recommender Venue Co-Publishing recommender options.
weighted_inf_recommender Weighted In�uence recommender options. If the sum of in�uen-

tial citation counts for all papers published by author a at venue
v is smaller than min_influence, inf luence(a, v) is considered
0.

prev_cited_recommender Previously Cited recommender options.
prev_cited_collab_recommender Previously Cited by Collaborators recommender options.
prev_cited_topic_recommender Previously Cited and Topic Search recommender options. index

is the Elasticsearch index for candidate paper indexing and topic
search. max_explanation_topics speci�es the max number of
topics included in explanations.

log_level Minimum logging level (“FATAL”, “ERROR”, “WARNING”,
“INFO”, or “DEBUG”).

47

Chapter 5 Research Paper Recommendation

async def main():

fv = FrequentVenuesRecommender()

vcp = VenueCoPubRecommender()

await asyncio.gather(*[fv.recommend(), vcp.recommend()])

asyncio.run(main())

Listing 5.3: Running two recommender systems at the same time.

If A is the set of papers recommended to a user by system a and C is the set of papers
recommended to the same user by all other systems, then we de�ne the uniqueness of
A to be |A − C|/|A + C|.

The recommendations we look at from each system are produced from the same pool
of 3957 candidate papers for the same 23 users. To enable us to properly compare our
systems against the baseline, we choose to consider only recommendations made to
users with registered Semantic Scholar pro�les.

User Study

Inspired by the recommendation feedback form on the arXivDigest website, which
was described in Section 2.2.3, we perform a user study where we ask users about
the relevance of recommendations and how satisfactory, persuasive, transparent, and
scrutable they �nd the explanations. Nine users are asked to participate. Some of these
have not registered Semantic Scholar pro�les or accepted any of the pro�le suggestions
generated for them in Chapter 4. For these, we use Semantic Scholar author IDs from
the ground truth table created in Section 4.3.1.

Each subject is asked questions related to one recommendation produced by each of the
seven recommender systems. These are the top recommendations (by score) produced
for the subject by each system inside a time window of one week. In addition to the
one explanation that is associated with each recommendation, alternative explanations
are produced for the recommended paper by the six other systems, so that seven
explanations are associated with each recommendation in total. The subjects are asked
two questions about the recommendations themselves, and three questions about each
of their associated explanations. All questions are answered using a linear scale from 1
to 5 — commonly referred to as a Likert scale. The extremes of the scale are accompanied
by labels that di�er slightly from one question to another. The recommendation-related
questions (and their labels) are:

48

5.3 Evaluation

1. “How relevant is this recommendation to you?” (“Not relevant at all”, “Very
relevant”)

2. “How useful is this recommendation to you?” (“Not useful at all”, “Very useful”)

The explanation-related questions (and their labels) are:

1. “How convincing does this explanation sound to you?” (“Not convincing at all”,
“Very convincing”)

2. “Does the explanation help you understand the reasoning behind this recommen-
dation?” (“Not at all”, “Very much”)

3. “Does the explanation enable you to tell if the system has misunderstood your
preferences?” (“Not at all”, “Very much”)

We present the results of the user study using Likert plots. We also look at the correla-
tions between the responses to questions within each category (recommendation-related
and explanation-related) and the internal consistencies of the subjects by analyzing
their responses to each of the �ve question types.

5.3.2 Results

We now present the results of our evaluations.

Recommendation Overlap and Uniqueness

Table 5.6 contains the overlaps between the sets of recommendations made by the seven
recommender systems, and Table 5.7 contains the uniqiueness of the recommendations
made by each system. We observe that the overlap between the Previously Cited and
Previously Cited and Topic Search systems is much greater than the overlap between
any other systems. This is not surprising, as the second method is an extension of
the �rst. Two other closely related systems are Venue Co-Publishing and Weighted
In�uence, but, for these two, the overlap is much smaller. The baseline system stands
out from the rest, with 95 % of its recommendations being unique. Additionally, the
overlap between its recommendations and any other system’s is 1 % at the highest.

User Study

The Frequent Venues system did not produce any recommendations for any subjects,
and was also not able to produce explanations for any of the recommendations made by
the other systems. This recommender is, therefore, not included in any of the presented
results.

49

Chapter 5 Research Paper Recommendation

Table 5.6: Mean overlaps (in %) between the sets of papers that have been recommended by the
seven recommender systems to the same users. The recommendations 23 di�erent
users.

B FV VCP WI PC PCC PCTS

B 100 0 1 0 0 1 1
FV 0 100 1 0 2 1 0
VCP 1 1 100 4 6 3 9
WI 0 0 4 100 10 8 7
PC 0 2 6 10 100 20 56
PCC 1 1 3 8 20 100 15
PCTS 1 0 9 7 56 15 100

Table 5.7: Mean uniqueness of the recommendations produced by the seven recommender
systems.

B FV VCP WI PC PCC PCTS

Unique recommendations (%) 95 65 80 55 19 61 12

Six of the nine users asked to participate responded. Figure 5.2 shows the Likert plots
of these users’ responses to the recommendation-related questions, and Fig. 5.3 shows
the Likert plots of their responses to the explanation-related questions. Each data
point in these plots represents a response from a subject. The labels used to represent
questions in the plots are based on the numbering of the questions in Section 5.3.1.
As an example, RQ1 represents the �rst recommendation-related question and EQ1
represents the �rst explanation-related question. From the Likert plots of the responses
to the explanation-related questions, it is clear that the number of data points varies for
each system. This is not a result of subjects skipping questions, but stems from the fact
that our systems are unable to produce explanations for papers that they assign scores
of 0. Because of this, fewer than six (or seven, if we include the Frequent Venues system)
di�erent explanations were associated with most of the recommendations presented to
the subjects.

There are great contrasts between the systems in Fig. 5.2. The baseline system appears
to receive the most positive feedback, with the Weighted In�uence system following
closely behind. Even though these systems receive the best feedback, they still appear
to produce just as many bad as good recommendations. With almost all responses
being 1 to both RQ1 and RQ2, the Venue Co-Publishing system receives the worst
feedback of all the systems. The feedback for the Previously Cited and Previously Cited
by Collaborators systems are not much better. The Previously Cited and Topic Search

50

5.3 Evaluation

01234 1 2 3 4
Number of responses

RQ2

RQ1 1
2
3
4
5

(a) Baseline.

0123456 1
Number of responses

RQ2

RQ1 1
2
3
4
5

(b) Venue Co-Publishing.

01234 1 2 3
Number of responses

RQ2

RQ1 1
2
3
4
5

(c) Weighted In�uence.

0123456 1
Number of responses

RQ2

RQ1 1
2
3
4
5

(d) Previously Cited.

Figure 5.2: The subjects’ responses to the questions concerning the recommendations pro-
duced by each system.

51

Chapter 5 Research Paper Recommendation

0123456 1 2
Number of responses

RQ2

RQ1 1
2
3
4
5

(e) Previously Cited by Collaborators.

012345 1 2 3
Number of responses

RQ2

RQ1 1
2
3
4
5

(f) Previously Cited and Topic Search.

Figure 5.2: The subjects’ responses to the questions concerning the recommendations pro-
duced by each system (cont.).

system receives slightly better feedback than these three.

Figure 5.3 shows smaller contrasts between the systems than Fig. 5.2. Compared to
the other systems, the baseline receives quite good feedback also on its explanations.
The Previously Cited and Topic Search system receives the most positive feedback
this time around. In general, all the systems appear to receive consistently more
positive responses to the explanation-related questions than the recommendation-
related ones.

The correlations between the responses to the questions within each category
(recommendation-related and explanation-related) are contained in Table 5.8. Un-
surprisingly, responses to questions within the same category tend to move in the
same direction. Table 5.9 contains the means and standard deviations of each subject’s
responses to all �ve types of questions. A few interesting tendencies are revealed by
this data. None of the subjects respond positively on average to the questions regarding
recommendation usefulness and relevance, except for subject 3, who has a (very) slightly
positive mean for RQ2. When it comes to the explanation-related questions, subject
3 responds very positively and with high consistency to all questions, and especially
to questions EQ2 and EQ3. Subject 5 is the least consistent subject for all the question

52

5.3 Evaluation

010 10 20 30
Number of responses

EQ3

EQ2

EQ1 1
2
3
4
5

(a) Baseline.

01020 10 20
Number of responses

EQ3

EQ2

EQ1 1
2
3
4
5

(b) Venue Co-Publishing.

0123456 1 2 3 4 5
Number of responses

EQ3

EQ2

EQ1 1
2
3
4
5

(c) Weighted In�uence.

Figure 5.3: The subjects’ responses to the questions concerning the explanations produced by
each system.

53

Chapter 5 Research Paper Recommendation

0510 5 10 15
Number of responses

EQ3

EQ2

EQ1 1
2
3
4
5

(d) Previously Cited.

01020 10 20
Number of responses

EQ3

EQ2

EQ1 1
2
3
4
5

(e) Previously Cited by Collaborators.

05 5 10 15
Number of responses

EQ3

EQ2

EQ1 1
2
3
4
5

(f) Previously Cited and Topic Search.

Figure 5.3: The subjects’ responses to the questions concerning the explanations produced by
each system (cont.).

54

5.4 Summary

Table 5.8: Correlations between the responses to the questions within each category.

(a) Recommendation-related questions.

RQ1 RQ2

RQ1 1 0.84
RQ2 0.84 1

(b) Explanation-related questions.

EQ1 EQ2 EQ3

EQ1 1 0.61 0.57
EQ2 0.61 1 0.61
EQ3 0.57 0.61 1

Table 5.9: The means and standard deviations of all responses to the �ve types of questions
for each subject.

Subject RQ1 RQ2 EQ1 EQ2 EQ3

r̄ � r̄ � r̄ � r̄ � r̄ �
1 2.4 0.9 2.4 0.9 3.4 1.0 3.6 0.9 3.2 1.1
2 1.9 0.9 1.8 0.4 2.0 1.0 2.4 1.2 3.6 1.5
3 2.5 0.7 3.1 0.8 3.7 1.2 4.8 0.5 4.9 0.4
4 2.7 1.4 2.0 1.2 1.9 1.1 2.0 1.0 1.6 0.6
5 2.8 1.9 2.5 1.7 3.6 1.9 4.3 1.6 3.2 2.0
6 1.6 0.8 1.2 0.4 2.6 1.2 4.2 0.8 3.7 1.1

types, with standard deviations hovering around 2 across the board.

5.4 Summary

The Frequent Venues recommender system was, practically speaking, excluded from
the user study because it did not recommended any papers and was not able to produce
any explanations for any of the participants. When the study was already nearing
its end, a bug was discovered in the implementation of this system that had lead to
candidate papers being unintentionally disregarded. Due to time constraints, however,
it was not possible to redo the user study with a �xed version of this system.

The user study showed us that our recommendation methods are not much better
at recommending papers than the baseline itself (and in some cases worse). One of
our methods, Previously Cited and Topic Search, did, however, appear to be better
than the baseline at explaining recommendations. We said in Section 5.1 that all of
our recommendation methods are examples of model-intrinsic explainable recommen-
dation. That was not wrong, but an interesting observation to make is that, when
the methods are used to produce explanations for recommendations they have not

55

Chapter 5 Research Paper Recommendation

made themselves (as in the user study), they are, in fact, applied for model-agnostic
explainable recommendation.

The perhaps biggest �aw with the user study was its limited size. Section 2.1.2 mentioned
that user studies performed on information retrieval systems should involve at least
two dozen users for any results to be signi�cant [8]. With only six participants, our
study did not meet this requirement. The results we got have, nevertheless, given us
an idea of how our systems stack up against each other and the baseline system when
evaluated by real users. All of the recommender systems used in the user study, except
for the baseline and Previously Cited and Topic Search, rely solely on data retrieved
from Semantic Scholar to score papers. In theory, it would be possible to perform a
similar but larger user study without these two systems, with participants selected from
the large pool of researchers represented in the scienti�c literature graph of Semantic
Scholar. This pool would allow not only for a larger group of participants but also for a
more heterogeneous one than our study’s, which consisted mostly of researchers in
computer science and related �elds. Another �aw with the user study was that, for
most of the recommendations presented to the participants, at least one of the systems
(and often several systems) were unable to produce explanations. For the evaluation of
explanations, this meant that the number of data points varied for each system. With
more time, it would have been possible to �nd relevant papers for all the participants
for which all the systems were able to produce explanations.

The user study was the main focus of our evaluations, and o�ine and online evaluations
were not performed. Online evaluations were excluded due to low tra�c on arXivDigest
and too little user feedback; during the �rst couple weeks that our recommender systems
were operational, very few of the submitted recommendations were seen by users at all,
and no explicit feedback was submitted. Without an increase in overall user activity, it
is unlikely that things would have improved noticeably with more time.

With regard to o�ine evaluations, it would have been possible for us to create a
test collection based on historical interactions. Tables 5.6 and 5.7, from which we
can see that almost none of the recommendations made by the baseline have been
made by our systems, illustrate well some of the issues associated with this type of
evaluation. Bellogin, Castells, and Cantador [9] discuss methodologies for comparing
top-N recommendations using o�ine test collections. One approach, i.e., the TestRatings
methodology is to only consider items that have been rated by the user in the test
collection. This, however, “does not test the recommender’s ability to identify interesting
items from a large pool” [17] and is thus problematic.

56

Chapter 6

Conclusion

In this thesis, we have introduced novel methods for explainable research paper rec-
ommendation that exploit the rich semantic information that is stored in scienti�c
knowledge graphs. To enable these methods to access the information that is available
about the users they are producing recommendations for, we have also introduced
methods that link users to appropriate entries in scienti�c knowledge graphs. This
chapter summarizes our work by answering the research questions posed in Section 1.2
and concludes this thesis by discussing potential improvements to and directions in
which our work can be extended in the future.

6.1 Answering the Research Questions

Section 1.2 posed three research questions. This section revisits and summarizes our
experimental chapters to answer these.

RQ1 How can an arXivDigest user be linked to an appropriate entry (or author node)
in a scienti�c knowledge graph?

We have introduced two methods for pro�le matching, which was de�ned to be the task
of �nding the author node (or nodes) in a scienti�c knowledge graph that is the most
likely to represent the same person as a user pro�le. Both methods search through the
Semantic Scholar Open Research Corpus (S2ORC) dataset, which contains the paper
records of the scienti�c literature graph of Semantic Scholar (the speci�c scienti�c
knowledge graph being used), using Elasticsearch and its default BM25 ranking model.
One method searches for author nodes that match the user’s name. The other method
searches for author nodes that match the user’s name and are listed as authors of papers
that match the user’s topics of interest.

57

Chapter 6 Conclusion

RQ2 In what ways can the information that is available about an arXivDigest user
through an external scienti�c knowledge graph be used to produce scienti�c
literature recommendations for the user?

We have introduced six recommendation methods that use di�erent pieces of informa-
tion about the user. Their information requirements were laid out in the introduction of
Section 5.1 and summed up by Table 5.1. Three methods look at the venues at which the
user has published papers at. Two methods look at the authors that the user has cited
in the past. The last method looks at who the user has collaborated with (co-authors)
and the authors that have been cited by them.

Speaking metaphorically, our recommendation methods have only touched the tip of
the iceberg when it comes to exploiting the information stored in scienti�c knowledge
graphs. This applies not only to information about users, but also to information
about candidate papers, which we will now address in our answer to the last research
question.

RQ3 In what ways can a scienti�c knowledge graph be used as an external source of
information about papers that are candidates for recommendation at arXivDigest
when producing scienti�c literature recommendations? Is it feasible to get hold
of the necessary information in reasonable time?

We focus �rst on the initial part of the question and address the feasibility of retrieving
information afterwards. The recommendation methods we have proposed use di�erent
pieces of information about the papers that are candidates for recommendation. Their
information requirements were laid out in the introduction of Section 5.1 and summed
up by Table 5.1. One method simply looks at the venues candidate papers are published
at, and does not exploit any of the connections that exist between the papers and other
entries in the graph. Two methods look at the authors of candidate papers and the
venues at which they have published papers. One of these methods also looks at the
citation counts (the derived in�uential citation count metric, to be more speci�c) of the
authors’ published papers. The three last methods look at who the authors of candidate
papers have been cited by.

With regard to the feasibility of retrieving the information used by the recommendation
methods, Section 5.2.1 gave an estimate of the network tra�c associated with the
retrieval of this information from the Semantic Scholar API, which acted as our interface
to the scienti�c literature graph of Semantic Scholar — the speci�c scienti�c knowledge
graph used in our implementation. For the two most information-hungry methods, an
estimated 6.3 h would be needed to retrieve all needed information, or 2.2 h if papers
older than �ve years were �ltered out. That is quite a bit of time, but nothing in the
extreme. Section 5.2.1 also discussed how network tra�c could (and would) be reduced

58

6.2 Future Work

with caching. Ultimately, and despite some growing pains, all our systems are currently
up and running. The answer to the second part of this research question is, evidently,
yes — it is feasible to get hold of the necessary information in reasonable time.

6.2 Future Work

The are many ways to further develop our work. This section brie�y describes three of
them.

6.2.1 New User Study

The user study performed in Chapter 5 involved only six subjects. Additionally, one of
the recommendation methods that was supposed be evaluated in the user study was
excluded due to a bug in its implementation. Section 5.4 mentioned the possibility of
performing a larger user study using, e.g., the researchers represented in the scienti�c
literature graph of Semantic Scholar as a participant pool. Possibilities for future work
include redoing the user study and/or performing a larger one.

6.2.2 O�line Evaluation at arXivDigest

We mentioned the three requirements for evaluation infrastructures by Schaible et al.
[36] in Chapter 2. Their �rst requirement is the possibility for performing both online
and o�ine evaluations. In Chapter 5, it was a part of our initial plan was to perform
both online and o�ine evaluations of our recommendation methods, using the existing
abilities of the arXivDigest evaluation infrastructure for online evaluations. Due to
low tra�c on arXivDigest, we eventually had to rule online evaluations out. O�ine
evaluations were not performed either, in part due to them not being possible to perform
with the arXivDigest evaluation infrastructure. Future work could involve developing
arXivDigest to better facilitate o�ine evaluations.

6.2.3 Explainable Research Paper Recommendation

The methods of Chapter 5 are all examples of model-intrinsic approaches to explain-
able recommendation. Section 5.4 pointed out how the the recommendation methods
were used in the user study for both model-intrinsic and model-agnostic explainable
recommendation. The participants of the study expressed the most satisfaction toward

59

Chapter 6 Conclusion

the explanations produced by one of our methods. Future work could involve further
exploring and experimenting with ways to use the information stored in scienti�c
knowledge graphs for both model-intrinsic and model-agnostic explainable research
paper recommendation.

60

Bibliography

[1] Qingyao Ai et al. “Learning Heterogeneous Knowledge Base Embeddings for
Explainable Recommendation”. In: Algorithms 11.9 (2018), p. 137.

[2] Waleed Ammar et al. “Construction of the Literature Graph in Semantic Scholar”.
In: arXiv preprint arXiv:1805.02262 (2018).

[3] Sören Auer et al. “Towards a Knowledge Graph for Science”. In: Proceedings of
the 8th International Conference on Web Intelligence, Mining and Semantics. 2018,
pp. 1–6.

[4] Krisztian Balog and Filip Radlinski. “Measuring Recommendation Explanation
Quality: The Con�icting Goals of Explanations”. In: Proceedings of the 43rd In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval. 2020, pp. 329–338.

[5] Krisztian Balog, Filip Radlinski, and Shushan Arakelyan. “Transparent, Scrutable
and Explainable User Models for Personalized Recommendation”. In: Proceedings
of the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2019, pp. 265–274.

[6] Krisztian Balog et al. “Expertise Retrieval”. In: Foundations and Trends in Infor-
mation Retrieval 6.2–3 (2012), pp. 127–256.

[7] Joeran Beel et al. “Exploring the Potential of User Modeling Based on Mind Maps”.
In: International Conference on User Modeling, Adaptation, and Personalization.
Springer. 2015, pp. 3–17.

[8] Joeran Beel et al. “Research-paper recommender systems: a literature survey”. In:
International Journal on Digital Libraries 17.4 (July 2015), pp. 305–338.

[9] Alejandro Bellogin, Pablo Castells, and Ivan Cantador. “Precision-Oriented Eval-
uation of Recommender Systems: An Algorithmic Comparison”. In: Proceedings
of the �fth ACM conference on Recommender systems. 2011, pp. 333–336.

[10] Chandra Bhagavatula et al. “Content-based citation recommendation”. In: arXiv
preprint arXiv:1802.08301 (2018).

[11] Timo Breuer et al. “STELLA: Towards a Framework for the Reproducibility
of Online Search Experiments.” In: OSIRRC@SIGIR. Ed. by Ryan Clancy et al.
Vol. 2409. CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 8–11.

61

Bibliography

[12] Rose Catherine et al. “Explainable Entity-based Recommendations with Knowl-
edge Graphs”. In: arXiv preprint arXiv:1707.05254 (2017).

[13] Hung-Hsuan Chen et al. “CollabSeer: A Search Engine for Collaboration Discov-
ery”. In: Proceedings of the 11th annual international ACM/IEEE joint conference
on Digital libraries. 2011, pp. 231–240.

[14] Linn Marks Collins et al. “ScienceSifter: Facilitating activity awareness in collabo-
rative research groups through focused information feeds”. In: First International
Conference on e-Science and Grid Computing (e-Science’05). IEEE. 2005, 8–pp.

[15] Susan T. Dumais and Jakob Nielsen. “Automating the Assignment of Submit-
ted Manuscripts to Reviewers”. In: Proceedings of the 15th annual international
ACM SIGIR conference on Research and development in information retrieval. 1992,
pp. 233–244.

[16] Travis Ebesu and Yi Fang. “Neural Citation Network for Context-Aware Citation
Cecommendation”. In: Proceedings of the 40th international ACM SIGIR conference
on research and development in information retrieval. 2017, pp. 1093–1096.

[17] Michael D Ekstrand and Vaibhav Mahant. “Sturgeon and the Cool Kids: Prob-
lems with Random Decoys for Top-N Recommender Evaluation.” In: FLAIRS
Conference. 2017, pp. 639–644.

[18] Michael Färber. “The Microsoft Academic Knowledge Graph: A Linked Data
Source with 8 Billion Triples of Scholarly Data”. In: Proceedings of the 18th In-
ternational Semantic Web Conference. ISWC’19. Auckland, New Zealand, 2019,
pp. 113–129. doi: 10.1007/978-3-030-30796-7_8. url: https://doi.org/10.
1007/978-3-030-30796-7%5C_8.

[19] Kristian Gingstad, Øyvind Jekteberg, and Krisztian Balog. “ArXivDigest: A Living
Lab for Personalized Scienti�c Literature Recommendation”. In: Proceedings of
the 29th ACM International Conference on Information & Knowledge Management
(Oct. 2020).

[20] Bela Gipp and Jöran Beel. “Citation Proximity Analysis (CPA): A new approach
for identifying related work based on Co-Citation Analysis”. In: ISSI’09: 12th
international conference on scientometrics and informetrics. 2009, pp. 571–575.

[21] Sujatha Das Gollapalli, Prasenjit Mitra, and C Lee Giles. “Similar Researcher
Search in Academic Environments”. In: Proceedings of the 12th ACM/IEEE-CS
joint conference on Digital Libraries. 2012, pp. 167–170.

[22] Katja Hofmann, Lihong Li, and Filip Radlinski. “Online Evaluation for Information
Retrieval”. In: Found. Trends Inf. Retr. 10.1 (2016), pp. 1–117.

62

https://doi.org/10.1007/978-3-030-30796-7_8
https://doi.org/10.1007/978-3-030-30796-7%5C_8
https://doi.org/10.1007/978-3-030-30796-7%5C_8

[23] Rolf Jagerman, Krisztian Balog, and Maarten De Rijke. “OpenSearch: Lessons
Learned from an Online Evaluation Campaign”. In: Journal of Data and Informa-
tion Quality (JDIQ) 10.3 (2018), pp. 1–15.

[24] Mohamad Yaser Jaradeh et al. “Open Research Knowledge Graph: Next Gener-
ation Infrastructure for Semantic Scholarly Knowledge”. In: Proceedings of the
10th International Conference on Knowledge Capture. 2019, pp. 243–246.

[25] Diane Kelly. “Methods for Evaluating Interactive Information Retrieval Systems
with Users”. In: Found. Trends Inf. Retr. 3.1–2 (Jan. 2009), pp. 1–224.

[26] Samiya Khan et al. “A survey on scholarly data: From big data perspective”. In:
Information Processing & Management 53.4 (2017), pp. 923–944.

[27] Ralf Klamma, Pham Manh Cuong, and Yiwei Cao. “You Never Walk Alone: Recom-
mending Academic Events Based on Social Network Analysis”. In: International
Conference on Complex Sciences. Springer. 2009, pp. 657–670.

[28] Joseph A Konstan et al. “Grouplens: Applying Collaborative Filtering to Usenet
News”. In: Communications of the ACM 40.3 (1997), pp. 77–87.

[29] Huajing Li et al. “CiteSeerX: an Architecture and Web Service Design for an
Academic Document Search Engine”. In: Proceedings of the 15th international
conference on World Wide Web. 2006, pp. 883–884.

[30] Olaf Liadal. “Publication Metadata Extraction From Academic Homepages”. 2020.

[31] Kyle Lo et al. “S2ORC: The Semantic Scholar Open Research Corpus”. In: arXiv
preprint arXiv:1911.02782 (2019).

[32] Raymond J Mooney and Loriene Roy. “Content-Based Book Recommending Using
Learning for Text Categorization”. In: Proceedings of the �fth ACM conference on
Digital libraries. 2000, pp. 195–204.

[33] Georgina Peake and Jun Wang. “Explanation Mining: Post Hoc Interpretability of
Latent Factor Models for Recommendation Systems”. In: Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
2018, pp. 2060–2069.

[34] Elaine Rich. “User Modeling via Stereotypes”. In: Cognitive science 3.4 (1979),
pp. 329–354.

[35] Mark Sanderson. “Test Collection Based Evaluation of Information Retrieval
Systems”. In: Found. Trends Inf. Retr. 4.4 (2010), pp. 247–375.

[36] Johann Schaible et al. “Evaluation Infrastructures for Academic Shared Tasks”.
In: Datenbank-Spektrum 20.1 (Feb. 2020), pp. 29–36.

[37] Semantic Scholar. Semantic Scholar | About Us. url: https : / / pages .

semanticscholar.org/about-us (visited on 05/22/2021).

63

https://pages.semanticscholar.org/about-us
https://pages.semanticscholar.org/about-us

Bibliography

[38] Ayush Singhal et al. “Leveraging Web Intelligence for Finding Interesting Re-
search Datasets”. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web
Intelligence (WI) and Intelligent Agent Technologies (IAT). Vol. 1. IEEE. 2013,
pp. 321–328.

[39] Henry Small. “Co-Citation in the Scienti�c Literature: A New Measure of the
Relationship Between Two Documents”. In: Journal of the American Society for
information Science 24.4 (1973), pp. 265–269.

[40] Marco Valenzuela, Vu A. Ha, and Oren Etzioni. “Identifying Meaningful Citations”.
In: AAAI Workshop: Scholarly Big Data. 2015.

[41] Herbert Van de Sompel and Carl Lagoze. “All Aboard: Toward a Machine-Friendly
Scholarly Communication System”. In: The Fourth Paradigm (2009), p. 193.

[42] Zaihan Yang and Brian D Davison. “Venue Recommendation: Submitting Your
Paper with Style”. In: 2012 11th International Conference on Machine Learning
and Applications. Vol. 1. IEEE. 2012, pp. 681–686.

[43] Yongfeng Zhang and Xu Chen. “Explainable Recommendation: A Survey and
New Perspectives”. In: Found. Trends Inf. Retr. 14.1 (2020), pp. 1–101.

[44] Yongfeng Zhang et al. “Explicit Factor Models for Explainable Recommendation
based on Phrase-level Sentiment Analysis”. In: Proceedings of the 37th interna-
tional ACM SIGIR conference on Research & development in information retrieval.
2014, pp. 83–92.

64

Appendix A

Semantic Scholar Profile Ranking
Generation

The commands used to generate Semantic Scholar pro�le rankings using both the
frequency- and score-based methods with max edit distances of both 1 and 2 are shown
in Listings A.1 to A.4.

python scripts/gen_semantic_scholar_suggestions.py \
--method frequency \
--output freq_1.txt

Listing A.1: Command used to run the frequency-based method with a max edit distance of 1.

python scripts/gen_semantic_scholar_suggestions.py \
--method frequency \
--max-edit-distance 2 \
--output freq_2.txt

Listing A.2: Command used to run the frequency-based method with a max edit distance of 2.

python scripts/gen_semantic_scholar_suggestions.py --output score_1.txt

Listing A.3: Command used to run the score-based method with a max edit distance of 1.

65

Appendix A Semantic Scholar Pro�le Ranking Generation

python scripts/gen_semantic_scholar_suggestions.py \
--max-edit-distance 2 \
--output score_2.txt

Listing A.4: Command used to run the score-based method with a max edit distance of 2.

66

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Olaf Liadal

Explainable Research Paper
Recommendation Using Scientific
Knowledge Graphs

Master’s thesis in Computer Science
Supervisor: Krisztian Balog

June 2021M
as

te
r’s

 th
es

is

	Introduction
	Problem Definition
	Research Questions
	Main Contributions
	Outline

	Background
	Academic Search
	ArXivDigest
	Scientific Knowledge Graphs

	Related Work
	Research Paper Recommendation
	Explainable Recommendation

	Linking Users to a Scientific Knowledge Graph
	Methods
	Implementation
	Evaluation
	Summary

	Research Paper Recommendation
	Methods
	Implementation
	Evaluation
	Summary

	Conclusion
	Answering the Research Questions
	Future Work

	Bibliography
	Semantic Scholar Profile Ranking Generation

