This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3119069, IEEE Sensors
Journal

IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2021 1

\. [EEE ;
6 Sensors Council

A multiple-output hybrid ship trajectory predictor
with consideration for future command
assumption

Motoyasu Kanazawa, Robert Skulstad, Guoyuan Li Senior Member, IEEE,, Lars |.Hatledal,
Houxiang Zhang Senior Member, IEEE,

Abstraci— Onboard sensors contribute to data-driven understand-
ing of complex and nonlinear ship dynamics in real time. By using
sensors, precise ship trajectory prediction plays a key role in in-
telligent collision avo!dance. A hybrid_ predictor makes prediction assumption
based on a mathematical model of which error is compensated by
a black-box model. A Multiple-output Hybrid Predictor (MHP), which M
makes a long-horizon prediction at a time based on onboard sensor s
data, was developed in the previous study. However, it can not -

handle a time series of future command assumption. This limitation ' »
hinders an MHP from being applied to the evaluation of future
command assumption in the predictive decision making. A novel
architecture of MHP presented in this study converts a long time
series of future command assumption into a fixed-length model-based-predicted vessel state; then, it is included in inputs
of a black-box error compensator. This idea is robust to multidimensionality of commands and long control horizon.
Assuming a low-fidelity vessel model and a limited data are available, simulation experiments are conducted. The effect
of environmental disturbances and maneuverings on the prediction performance is examined comprehensively for the
first time. The present study successfully incorporates a long time series of future command assumption in an MHP. It
reduces the mean error by 81.8% compared to a model-based predictor and by 45.6% compared to a data-driven predictor
under Beaufort wind force scale 4 wave, wind, and ocean current. Present study expands the application of MHP to the
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predictive decision making of future autonomous ships.
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[. INTRODUCTION

ATA-DRIVEN technologies by exploiting onboard ship

sensor data have gathered significant momentum [1] re-
cently. In particular, the basis of intelligent marine transporta-
tion is better understanding of highly nonlinear and complex
ship dynamics. The intelligent systems lab in NTNU Alesund
is currently working on the development of intelligent au-
tonomous ships through the establishment of “Remote Control
Centre for Autonomous Ship Support: AuReCo”. In AuReCo,
real sensor data are shared with real vessel, digital model of the
vessel, and the remote control centre. By collecting real sensor
data from real ship operation, we aim at the integration of data-
driven measures and domain knowledge, that is referred to as
the hybrid modeling. In particular, by integrating two measures
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in the hybrid modeling, the accurate trajectory prediction of
an own ship (OS) forms a basis of predictive decision making
of autonomous ships. Model Predictive Control (MPC), that
has been widely used in this domain [2], [3], makes trajectory
predictions by using a model based on the assumption of a time
series of commands U = [U(¢t), ..., U(t+klt)..., U(t+ N|t)]
where NN is the number of steps of the control horizon and
U(t+ k|t) is the assumption of command at the k-step future
when the prediction is made at step ¢. Optimization algorithms
of MPC optimize U so that pre-defined cost function is
minimized and only U (¢|t) is applied to the plant. It should
be noted that U(t + k|t) = U(t + k|t + k) is not guaranteed
since the controller updates U (t|t) in real time. In this study,
a Multiple-output Hybrid Predictor (MHP) that handles a time
series U is developed with the aim of better predictive decision
making of autonomous maneuvering.

Algorithms for trajectory predictors by using sensor data are
grouped into model-based, data-driven, and hybrid predictors.
Trajectory prediction made by a mathematical vessel model is
referred to as a model-based prediction [4]. Its advantage is its
physical interpretability. It enables us to develop a predictor
efficiently based on physical understanding of vessel behavior
through experiments. However, a model-based predictor has
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three big problems by nature. First, uncertainties of a mathe-
matical model exist to some degree. As a mathematical model
is a simplification of highly nonlinear and complex phenomena
in reality, errors can not be removed completely. Second, un-
certain environmental disturbances, such as wave and current,
are not able to be accurately incorporated into a mathematical
vessel model due to the lack of accurate measurements since
most vessels are not equipped with accurate wave radars. Even
if it is equipped with them, accuracy of the calculation of wave
forces in real time is yet to be fully developed [5]. Last, the
development of a mathematical model can be prohibitively
expensive.

Machine learning (ML) has an advantage in dealing with
trends and pattern recognition by exploiting a large number
of training data with uncertainty and non-linearity. As modern
vessels are equipped with many sensors including accelerom-
eters and GPS, predictors using ML technology have been
gaining increasing attention in recent years [6]. They are
referred to as a data-driven predictor. The data-driven predictor
is supposed to work well if the given dataset is sufficient,
of good quality, and well-distributed. However, this is an
optimistic assumption in reality. The quality and distribution
of real data fetched from maneuvering history are not tailored
for ML training. The limited amount of dataset could be a
hindrance when a predictor of ships with less maneuvering
experience is developed.

In order to compensate disadvantages of model-based and
data-driven predictors with each other and minimize their
total cost & effort, Skulstad et al. [4] presented a hybrid
predictor of a dynamic vessel model and a Neural Network
(NN). Inputs to the NN are onboard sensor data and outputs
compensate the error between model-based predicted and true
trajectories. According to the definitions of [7], their hybrid
predictor f is grouped into multiple-output strategy. It makes
a multiple-step-ahead prediction at a time [pi4m,...0t+1] =
fu(de, .y dr—ar1, Ut + H — 1|t),...,U(t|t)) + w where t
is time step when making prediction, d is the length of a
time window, ¢ is a state of a system, H is the length of
the prediction horizon, and w is a noise. Conversely, single-
output strategy makes one-step-ahead prediction ¢yy1 =
Ir(dey ey Gr—as1, U(t|t)) + w and iterates the prediction H
times to make H-step prediction. Its structure is simple,
however, its performance for long-horizon prediction is not
guaranteed due to error propagation over the prediction hori-
zon [7]. Moreover, time-consuming iterative prediction would
not be preferable if it is used for real-time decision making.
Skulstad et al. [4] reported their MHP reduced mean prediction
error made by a model-based predictor almost by half at 30s
future. However, they assume a vessel keeps current command
over the prediction horizon U(t + H — 1|t) = ... = U(t]t).
This limitation hinders an MHP from being applied to the
evaluation of the effect of future command assumption on tra-
jectory prediction in the predictive decision making. This study
enables an MHP to handle a time series of future command
assumption. The biggest challenge is ”curse of dimensionality”
due to having multidimensional future command assumption
over the control horizon in the NN. A novel architecture of
an MHP presented in this study converts a long time series

of future command assumption into a fixed-length predicted
vessel state; then, it is included in inputs of a black-box
error compensator. This idea is robust to multidimensionaity
of commands and the long control horizon that have been a
challenge of handling future command assumption in an MHP.

Furthermore, this study performs a comprehensive valida-
tion study. Real data employed by Skulstad et al. [4] are taken
at ports isolated from strong environmental disturbances and
wave measurements are not given in their dataset. Therefore,
the effect of environmental disturbances on the prediction
performance is yet to be investigated. This study utilizes
virtual onboard sensor data under different environmental
disturbances and maneuverings by using the co-simulation
platform Vico [8]. The experiment in this study assumes that
only a low-fidelity vessel model and a limited number of
data are available. The virtual R/V Gunnerus, which is a
Norwegian University of Science and Technology’s research
vessel, is employed. With consideration for future command
assumption, a proposed hybrid predictor consists of a low-
fidelity vessel model and an NN. Contributions of this work
are summarised as follows.

o Present novel MHP architecture successfully handles a
long time series of future command assumption. It ex-
pands the application of MHP to the predictive decision
making of autonomous ships. In the simulation exper-
iment, present study reduces the mean prediction error
by 81.8% compared to the model-based predictor and by
45.6% compared to the data-driven predictor at 30s future
under Beaufort wind force scale 4 level wind, wave, and
ocean current.

o For the first time, this study reveals the effect of environ-
mental disturbances and maneuverings on the prediction
accuracy of the hybrid predictor through a comprehensive
validation study.

This study unfolds as follows. In Section II, related works
are presented. Section III introduces a new structure of an
MHP that enables efficient consideration of future command
assumption. Section IV describes a validation study. Conclu-
sions are given in Section V.

Il. RELATED WORKS
A. Model-based prediction

Since a model-based predictor is based on physical in-
terpretation of vessel behavior, its parameters are identified
efficiently through the selection of a mathematical model,
numerical calculations and experiments, and algorithms of
parameter identifications. The most straightforward mathemat-
ical expression is a holonomic model of which assumption
is that the vessel moves freely on the North-East plane
without considering kinematic and kinetic constraints. It is
applied to many collision avoidance algorithms [9]. Kinematic
models are used in [10]. Aiming at better prediction accuracy,
tremendous research effort has been dedicated to developing
kinetic expressions of vessel dynamics that are referred to
as dynamic models. They are grouped into the response
model, the Abkowitz model, the Mathematical Modeling
Group (MMG) model, and the vectorial representation model
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[11]. The application of dynamic models in control tasks can
be seen in [3]. Although the response model has a limited
number of parameters, it is only applicable to simple course-
keeping tasks as it focuses only on the yaw motion. The other
dynamic models have a large number of parameters to be
identified. Previous researches reported that those parameters
have multicollinearity with each other. Therefore, parameter
identification without losing generality is very challenging
[12]. ML technology is used for efficient parameter identi-
fication of a mathematical vessel model [13]. Triantafyllou
et al. [14] used Kalman Filter (KF) to estimate and predict
ship states online based on a mathematical vessel model. Re-
gardless of the type of a mathematical expression, increasing
cost of parameter identification and preciseness of a model
are in the relationship of the trade-off. Even though efficient
parameter identification using ML technology is on-trend,
discrepancy from reality is inevitable as complex nonlinear
terms are ruled out from formulations through simplifications.
In addition, it is a big problem that the effect of environmental
disturbances is not able to be accurately incorporated into a
model-based prediction due to (1) the lack of accurate real-
time measurement of wave and current in most cases (2) its
mathematical representation has discrepancy from reality [5].

B. Data-driven prediction

In contrast to a model-based predictor, a data-driven pre-
dictor attempts to surrogate vessel behavior without prior
knowledge of its physical formulation by using black-box
models. Thanks to the development of computational process-
ing power, data-driven predictors have been gaining increasing
attention. Previous research employed NNs [6], Support Vector
Machines [15], Gaussian Process Regressions [16], and Auto-
Regressive models [17]. The biggest advantage of a data-
driven predictor is that it is able to deal with non-linearity
and uncertainty through offline and online experiences. On the
other hand, regardless of the type of a data-driven predictor,
its disadvantage is that prediction performance depends on the
quality and amount of collected data.

C. Hybrid predictor

Aiming at compensating disadvantages of model-based and
data-driven predictors with each other, a hybrid predictor
consists of both of them. In order to deal with the low fidelity
of a mathematical model and the effect of environmental
disturbance, NNs have been used to surrogate related terms
in the mathematical model [18], [19].

In addition, it is gaining increasing attention to compensate
the error made by a model-based predictor by using black-
box models. Mei et al. [20] proposed a hybrid model of
a reference vessel model and a random forest. First, their
algorithm searches a reference vessel of which particulars are
similar to those of a targeting vessel in their database; then
the random forest is trained so that it compensates the error
between the true acceleration of the targeting vessel and the
predicted acceleration based on the reference vessel model.
Skulstad et al. [21] made single-step-ahead prediction of
acceleration by using a feed-forward NN which compensates

TABLE |
SENSOR DATA USED IN THE INSIDE VESSEL MODEL AND NN

Input name Unit Range (train-val) | Range (test)
Heading ° 0.0/360.0 0.0/360.0
Surge speed m/s 0.05/4.10 0.16/4.34
Sway speed m/s -0.83/0.84 -0.69/0.70
Yaw rate °/s -3.7/3.4 -2.6/3.9
Wind direction ° 2.3/356.7 2.2/348.7
Wind speed m/s 5.0/7.0 5.0/7.0
Thruster revolution | RPM 26.0/128.0 27.0/128.0
Thruster angle ° -19.6/19.5 -19.7/19.8

the error between true and predicted acceleration made by
a model-based predictor. According to [7], these models are
grouped into single-output prediction strategy which makes
multi-step-ahead prediction by iterating single-step-ahead pre-
diction many times. Its advantage is the flexibility of its simple
structure. However, some disadvantages are known when it
is used for long-horizon prediction [7]. First, a single-output
prediction is tuned for one-step-ahead prediction. It takes a
predicted value as an input instead of measurements in the
iteration. Therefore, the prediction performance in the distant
future is not guaranteed. Second, time-consuming iterative
prediction could be an obstacle of real-time decision making.

Skulstad et al. [4] proposed multiple-output prediction strat-
egy of a hybrid predictor of which NN compensates the error
between the 30s true and model-based predicted trajectories.
They employed real sensor data of 88 separate docking oper-
ations and reported their hybrid predictor reduced the average
distance error almost by half compared to a model-based
predictor at 30s future. Since it makes 30s prediction at a time,
long-horizon prediction performance is checked in the training
process and the error does not propagate over the prediction
horizon. It is notable they assume thruster commands at the
current time are kept over the prediction horizon. Therefore,
it can not evaluate the effect of future command assumption
on trajectory prediction. This is a practical and key limitation
of their study when it is used for predictive decision making.

[1I. AN MHP WITH CONSIDERATION FOR FUTURE
COMMAND CHANGE

Aiming at consideration of future command assumption, a
new structure of an MHP is introduced in this section. In order
to make use of trajectory prediction for the sake of better pre-
dictive decision making, the performance should be evaluated
in terms of the prediction horizon that is longer than the time
to make a change of course and speed [3]. This study evaluates
30s prediction performance that is enough for making a change
of course and speed of the R/V Gunnerus. The hybrid predictor
makes 30s North-East position prediction [Nl, s Niy o, ]\f30]
and [E’l7 e Ery o E},O] where Ny, and E, are predicted North
and East positions made by the hybrid predictor at ks future,
respectively. The real-time measurements of wave, current,
and swell are not given to a predictor since their accurate
measurements are limited in most cases. Therefore, an NN
compensates the error made by the model-based predictor
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Fig. 1. A structure of the proposed hybrid predictor with consideration for future command change

based on a time series of velocities that are informed of how
the vessel is oscillated by Ist-order wave forces and drifted
by 2nd-order wave forces. We do not consider the effect of
ocean current in the predictor. In order to deal with those, one
can develop a hybrid predictor with those sensors and models
based on this study. However, that is out of scope of this study.
Loading conditions are not included in the input features of
the NN as the NN is trained for a specific loading condition
of a specific ship.

A. A structure of the proposed MHP

A structure of the proposed MHP is shown in Fig. 1. It
consists of a model-based predictor highlighted in green and a
Long Short-Term Memory (LSTM), which is one of the most
popular architectures of Recurrent NNs (RNNs), highlighted
in blue. At each time step of the operation scenario, the
relative wind speed at the current time V., the relative wind
angle from bow at the current time ~,.,,, thruster revolution ny
and angle §; at the current time, a thruster revolution vector
n = [ny,ng, ..., 29| and an angle vector § = [J1, da, ..., dag]
for 29s future, and vessel state [No, Eo, %o, uo, v, 70|’ at
the current time are provided to a model-based predictor
where ny is thruster revolution, J; is thruster angle at ks
future. Please note that nsg and d3g are not included in the
inputs since they do not determine the position at 30s future
that is determined by the vessel state and commands at 29s
future. In the application of this study, [N, ..., N3g] and
[El, ...,E},o] are calculated to evaluate the decision making

[0, s n29] and (8o, .., 020). Tk = [Noks By i) T
is a model-based predicted position vector of North, East,
and heading at ks future. Dpp = [Umk, Omks Pmk)? IS a

model-based predicted velocity vector of surge, sway, and
yaw velocities at ks future. 7 is a true position vector and 1/
is a true velocity vector at the current time. A model-based
predictor f,, produces [fm1y-s Tm30s Pmly s Pm3o] =

Fm(M0s 05 Viw,s Yrw, Mo, 1, 00,0). A model-based predicted
trajectory deviates from a true trajectory due to the low fidelity
of the vessel model, the ignorance of the measurement of wave
and ocean current, and wave-frequency motion in [ng, vo]7
Therefore, LSTM f,, aims to compensate the error in North
and East positions made by the model-based predictor. The
error compensation is described as [ANM, ...,ANngo] and
[AE,Ll, ey AEng()] in North and East positions, respectively.
A function of the error compensation is approximated by
the LSTM fn as [Aan’ ...,ANngo,AEn17 ...7AEn3Q] =
fn(sinvo, cos to, 10, Vgw, Bgw, Mo, 60, Afjm3o, Pm3o)  where
Afimso = [Nmso — No, Emso — Eo,¥mso — tho]? with
consideration for future command assumption, Vg, is the
global wind speed at the current time, and [, is the global
wind direction at the current time. g is mapped to sin ¢y and
cos Yy in order to avoid a jumping phenomenon of 1y around
0°. The number of inputs of the NN is 15 and that of outputs
is 60. Finally, predicted North position Nk = Nmk + ANnk
and East position Ek = Emk + AEnk are calculated in the
prediction phase.

B. A vessel model

The advantage of using hybrid predictor is to enhance pre-
diction performance by combining a low-fidelity vessel model
and a limited number of operation data. Therefore, a 3 Degrees
of Freedom (DOF) maneuvering model (1)-(3) is chosen as a
low-fidelity vessel model in the model-based predictor instead
of highly nonlinear and complex 6DOF maneuvering and
seakeeping model used for simulation scenario generation.
The time step of numerical integration is 1s. A model-based
prediction is independent of the Vico system.

(Mgp + M)+ C(v)v+ D)y =gq ()
1= R(y)v )
q = Gwind T Gprop + Gman 3)
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Mpp is the generalized mass matrix, M4 is the generalized
added mass at infinite wave frequency, C' is the coriolis-
centripetal matrix, D is the damping matrix for the model-
based predictor. R is the rotation matrix between body-fixed
coordinate and inertial coordinate. The prediction made by (1)-
(3) deviates from a true trajectory made by a highly nonlinear
and complex vessel model due to the following reasons. This
aims at representing the deviation of a model-based prediction
from a true trajectory in reality.

o Coefficients in (1) are introduced by removing 3rd-
order velocity terms of the highly nonlinear and complex
vessel model used for virtual scenario generation [22].
Therefore, (1)-(3) produce much deviation from a true
trajectory when a vessel maneuvers rapidly.

o (1) has no retardation function.

« Wave forces acting on the vessel are not considered.

e The effect of ocean current is not modeled due to the
ignorance of its measurement.

o The predicted trajectory oscillates around a true trajectory
due to the wave-frequency component in [ng, vo]% .

Three-dimensional wind force qywing is given by (4).

Cx (’Ymu)AFw
CY (’er )ALw (4)
CN (’7rw )ALw Loa

where p, is the air density, C'x, Cy, Cy are the wind
coefficients tuned for the R/V Gunnerus, A, is the frontal
projected area, Ay, is the lateral projected area, and L,, is
the length of the R/V Gunnerus. Mathematical thruster models
provided by manufacturers calculate thruster forces (gprop and
gman) based on vessel state, ng, n, g, and 4. By summing up
wind, thruster, and hydrodynamic forces in the surge, sway,
and yaw direction, total forces and moment acting on the
vessel are calculated. A numerical integration starts with vessel
state at the current time; then [f1, ..., Tm30, Pmil, -y Pm3o] 1S
calculated.

Gwind = 5 Pa ‘/rQw

C. AnLSTM

An NN of the present hybrid predictor has an input layer, an
LSTM layer/layers, and an output layer. The number of LSTM
layers is optimized by hyperparameter tuning framework. An
LSTM consists of three gates; namely, an input gate, an output
gate, and a forget gate. These gates enable an LSTM to
keep valuable information in the recurrent memory and forget
unnecessary information by using a forget gate. It is good at
dealing with long-term time-series information. An LSTM in
Pytorch [23] calculates following functions.

iy = o(Wisxs + bsi + Whihi—1 + bpi) &)
fr =o(Wipxy + bif + Wighi—1 + brg) (6)
g+ = tanh(Wigxy + big + Whghi—1 + brg) @)
0r = 0(Wioxt + bio + Whohi—1 + bno) (3
ct=fitOci—1+i O g )

ht = o; ® tanh(c;) (10)

where i; is the input gate, f; is the forget gate, g; is the cell
input function, oy is the output gate, b terms are bias vectors,
W terms are weight matrices, ¢, is the cell state at time ¢, hy_1
is the hidden state at time ¢ — 1, z; is the input at time ¢, o
is the sigmoid function, and © is the element-wise product of
vectors. The linear activation function is applied to the output
layer.

As explained in the previous subsection, inputs to the LSTM
are 8 sensor measurements at the current time as shown in
Table. I in addition to 7,30 and ,30. Note that RPM is
an abbreviation of Revolution Per Minute in the table. The
mean Squared Error e = £ 5730 {(N}, — Nj.)? + (B}, — E},)*}
of the output vector and true deviation of the model-based
predictor is defined at each time step of each scenario. Ny
and Ej, are true North and East positions at ks future,
respectively. Weights and biases of the LSTM are updated
so that a summation of e over all time steps and scenarios
becomes smaller. Hyperparameters are a set of parameters
tuned before the training of an NN. Since the performance
of an NN is significantly affected by hyperparameters, 5
hyperparameters (The number of LSTM layers nlayer, the
number of units in the hidden layer nunit, learning rate [r,
dropout rate of the input layer dropin, and dropout rate of
recurrent information droprr) are automatically tuned by using
hyperparameter tuning framework opfuna [24] as shown in
Table. II. Optuna searches optimal learning rate in the log
domain as its range of search is wide. The validation loss
converges around 50 trials. Therefore, the number of trials
of parameter search of optuna is set to 50. Adam [25] is
selected as an optimizer. The LSTM is developed in Pytorch
[26] framework in Python. Each input variable and target
values are z-score normalized in the training dataset. Target
values are normalized since it contributed to better prediction
performance in the experiment. The corresponding mean and
standard deviation are applied to the test dataset.

nyy = 200 scenarios are generated in this study. The
advantage of a hybrid predictor over a data-driven predictor is
expected to deal with a limited number of dataset by having
an inside vessel model. Therefore, n,; is fixed as we examine
the prediction performance provided that the number of dataset
is limited. After shuffling the scenarios, ney = 60 scenarios
of ny; = 200 scenarios generated by Vico are randomly
selected as a test dataset and it is kept untouched in the
training process. A training dataset consists of the remaining
Nirain = 140 scenarios and it is split into 5 datasets; then cross
validation is performed. 4 datasets are used for the training
and the other dataset is used for the validation of the trained
LSTM. If prediction accuracy to the validation dataset does
not improve for n, = 200 epochs, the training process is
stopped in order to avoid the over-fitting to the training dataset;
then the best model is used for prediction. We have checked
larger n. > 200 contributes to the marginal improvement
of prediction accuracy in the validation dataset as shown in
Section IV. By switching the validation dataset 5 times, 5
LSTMs are trained independently. Their hyperparameters are
the same. The final prediction to the test dataset is the average
of predictions made by 5 LSTMs. Please note that scenarios in
the training dataset are independent of those in the test dataset.
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Training of the LSTM is performed offline in this study.

TABLE Il
HYPERPARAMETER SEARCH BY optuna [24]
Search range Optimized
Hyperparameter Min Max Hybrid Data-driven
nlayer 1 3 3 2
nunit 10 500 270 410
Ir 0.0001 | 0.1 | 5.1x1073 | 1.1x10~°
dropin 0.0 0.5 | 3.0x1073 | 1.7x1073
droprr 0.0 0.5 0.41 0.07

D. Consideration of future command assumption

A contribution of this study, which is the efficient con-
sideration of future command assumption in an MHP, is
highlighted herein. Being different from the work by Skul-
stad et al. [4], the proposed structure makes model-based
prediction with consideration for a 29s time series of fu-
ture command assumption. Subsequently, a model-predicted
state only at 30s future [A#m30,7m30]” and sensor inputs
at the current time are given to the LSTM. Being differ-
ent from a straightforward formulation of error compensa-
tion by the LSTM [AN,1,..., AN,30, AEp1, ..., AE,3] =
fn (SiIl 1/107 COs 1/10, o, nga Ygw, N0, 10, 607 6)’ an approxima-
tion f, in this study can incorporate the effect of the future
command assumption without expanding the number of input
variables of the LSTM drastically by making use of model-
based predicted future vessel state. By avoiding the curse of
dimentionality, it contributes to the high training efficiency.
This idea is robust to diverse application since the number of
input variables are independent of the number of commands
and the length of the control horizon.

In the training phase, n and § are given by a time history of
a training dataset. In the prediction phase, n and é are given by
a controller. In this study, commands are independent of real-
time trajectory prediction since we focus only on prediction
performance given that commands are given by a controller.
Therefore, n and § are given by a time history of a test
dataset in the prediction phase as well. By using this study, one
can evaluate possible evasive actions based on their predicted
consequences by changing future command assumptions. Sub-
sequently, a controller can change its algorithm from a global
path following to a local evasive action if the collision risk
becomes critical. In order to incorporate this study into a
controller and change control signals based on predicted states,
stability issues will arise. That would be a future challenge in
the control applications of this study.

V. EXPERIMENT
A. Experimental setting

1) A vessel model in Vico: This study employs the virtual
R/V Gunnerus in the validation study. Its physical param-
eters are shown in Table. III. Further details can be found
in https://www.ntnu.edu/oceans/gunnerus. We
conduct the simulation experiments in Vico, which is a Entity-
Component-System-based co-simulation platform. Vico en-
ables a vessel model to be constructed by assembling indepen-
dent black-box models of a hull model, thruster models, and an

TABLE Ill
SPECIFICATIONS OF THE R/V GUNNERUS
Specifications Value
Mass 370t
Deadweight 107t
Length between perpendiculars | 28.9m
Breadth middle 9.6m
Draught 2.7Tm
TABLE IV

TWO SEA STATES USED IN THE SCENARIO GENERATION INSPIRED BY
BEAUFORT WIND FORCE SCALE [27]

Beaufort wind force scale
3: Gentle breeze | 4 : Moderate breeze
Wind speed (m/s) 5.0 7.0
Significant wave height (m) 0.6 1.0
Significant wave period (s) 3.9 5.0
Ocean current speed (m/s) 0.1 0.2

user-defined controller. We generate realistic virtual operation
scenarios by using a vessel model in Vico. The hull model used
in Vico is a 6DOF high-fidelity maneuvering and seakeeping
vessel model of the R/V Gunnerus, which was developed in the
SimVal project [22], [28]. Environmental disturbances (wave,
wind, and current) can be manipulated by users; then, their
forces acting on the vessel are calculated in the black-box hull
model. Thruster models are provided by thruster manufactures.
Further details of Vico and the hull model can be found in [8],
[22], [28].

2) Simulation setup: An original scenario is a 215s time
history. Waves and winds are ramped up from Os to 50s.
The position and velocity of the vessel are reset to zero at
50s. A 160s time history from 55s to 215s is extracted for
an experiment in this study. Hereinafter, the beginning of
the extracted scenario is defined as ¢ = 0s. As each time
step requires a 30s trajectory in the future in the training
process, 130s from ¢ = 0Os to ¢ = 130s is defined as one
scenario. The virtual R/V Gunnerus is equipped with two
azimuth thrusters. The same thruster revolution and angle
are given to them in this study. Maximum change rates of
thruster revolution and angle are set in order to avoid sudden
change of commands. Thruster revolution is set to myax until
t = T,, and then turned back to 0.5n,,x with the maximum
change rate. Thruster angle is set to Jm.x until ¢ = Tg,
and then turned back to zero with the maximum change
rate. In this study, commands are simultaneously applied to

5 § Extracted for training B Extracted for training
Z 54 130s Ry 130s
= —l 2 ——l
Es 2z
E 5 \V4 AV ® 4 V
4 t=0 t =130 o t=0 t =130
& &
55s 55s
4
&
Sl
Q¢
Time(s); Time(s
50s Tn 215s 50s Ts 215s

Fig. 2. Pre-defined time series of thruster revolution and angle
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Fig. 4. Trajectories in the test dataset.

thruster models. This is a reasonable simplification since the
difference between the command and feedback values of the
R/V Gunnerus is very small. In the prediction phase, a time
series of future command values are given to a predictor.
Each scenario is parameterized by a scenario parameter vector
P = [Beaufort wind force scale, max, Omax, Ods Tn, Ts]- Tn €
[20s,50s], T5 € [80s,110s], nmax € [S0RPM, 130RPM],
Omax € [—20°,20°], and 6, € [0°,360°) are randomly selected
for each scenario; then, m,; = 200 unique scenarios are
generated. The time step of scenario generation is 0.05s that
is the default value of the vessel model simulated in Vico
and saved in 1Hz for the training. The vessel in the scenario
is exposed to wind, wave, and ocean current. A calculation
of the first-order wave force, the second-order wave force,
wind force, and the effect of ocean current are done in the
vessel model simulated in Vico by defining the type of wave
and wind spectrum, mean wind speed U,,, significant wave
height H,, significant wave period 7T of the spectrum, ocean
current speed U,, and the global direction of environmental
disturbances 6; to the north. JONSWAP spectrum [29] is
chosen for the type of wave spectrum. The static wind is
applied to the vessel. We generate scenarios under two levels
of environmental disturbances as shown in Table. IV based
on Beaufort wind force scale [27]. Beaufort wind force scale
is level 3: Gentle breeze or level 4: Moderate breeze and
defines the combination of (Hj,Ts,U,, U.) of the scenario.
For the sake of simplicity, #; of wind and ocean current is the
same as that of the wave. Note that §; does not change over
time in one scenario. Half of 200 scenarios are under Gentle
breeze disturbances and the others are under Moderate breeze
disturbances.

Trajectories in the training dataset are shown in Fig. 3 and
those in the test dataset are shown in Fig. 4. We can see that
generated trajectories are different with each other since 7,
Ts5, Nmax> Omax» and 6y are randomized. A trajectory P =
[Beaufort wind force scale = 4,nmy;x = 102.2RPM, dpax =
—9.0°,Ts = 38s,T,, = 96s,0; = 14.4°] is shown in red in
Fig. 4. We can see that the vessel is exposed to Moderate
breeze disturbance from the north and the vessel gradually
turns clockwise.

B. Evaluation metrics

We introduce some metrics for plausible evaluations of
prediction performance. We have n.y = 60 scenarios in the
test dataset, which is 30% of n,y. Prediction error [;;;, =

\/(Nijk - Nijk)z — (Eijr — Eijk)Z of the scenario i, at a js
time step, and ks future is defined where Nj; is a true North
position, Nijk is a predicted North position, F;;, is a true East
position, and E‘ijk is a predicted East position. We introduce
mean prediction error for the prediction horizon l; as (11)
where T' = 130s is the length of a scenario.

Neest 1T'—1

— 11
: :ntestfzzlijk

i=1 j=0

(1)

In order to examine the distribution of prediction error, we
define 9th decile 79°” which is the boundary value of the top
10 percentile of [;;; in the test dataset. We look into how a
summation of prediction error for 30s changes over time of
scenario i as S;; = 22021 lij. It should be noted that gj =
1/nest Yoy Sij and S; = 1/T Z?;ol S;; in the following
sections.

C. Reference predictors

In a validation study, two reference predictors are used
in addition to the proposed hybrid predictor for the sake of
better understanding of the results. In this study, we assume
only a low-fidelity vessel model and a limited number of
data are available. The prediction performance of this study is
evaluated by comparing with that of the model-based predictor
based solely on the given low-fidelity vessel model and
the data-driven predictor trained solely by the given limited
dataset. A model-based prediction is [N;nl, ...,Nn;go]T and
[E;nl, e E,;lgo]T without the error compensation made by the
LSTM. A data-driven predictor is a multiple-output LSTM f;
which produces []\71 — No, ..., N3y — No, E1 — Eg, ..., E3o —
EO]T = fd(Sin 7/)03 COoS %7 Lo, nga nga no, 5Oa n, 5) without
the help of a model-based predictor. Therefore, its dimension
of inputs is 67 and that of outputs is 60. One should note this
experiment does not show the general quantitative limitation
of the model-based and data-driven measures. Their prediction
performance becomes better if a high-fidelity vessel model and
a large dataset are available, however, that is not the scope of
the hybrid modeling.
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Fig. 5. Histories of validation and training losses of the present hybrid
and data-driven predictors with optimized hyperparameters in the 1st
fold of the cross validation

D. Performance validation

In Fig. 5, the top panel shows how validation loss (shown
in red) and training loss (shown in green) of the present
hybrid predictor with optimized hyperparameters changes over
epochs in the 1st fold of the cross validation. The bottom
panel shows that of the data-driven predictor with optimized
hyperparameters.

The small figure in the panel shows the enlarged graph. The
dotted lines show the number of epochs where early stopping
is invoked. The validation loss increases after early stopping
is invoked whereas the training loss keeps decreasing in both
panels. It indicates both of the LSTMs are well-trained while
avoiding overfitting to the training dataset as much as possible
by using appropriate setting of n..

Fig. 6 - Fig. 8 show results of a scenario of which S; of
the present study is the largest among the scenarios in the
test dataset. P = [Beaufort wind force scale = 4,nm,x =
102.2RPM, ax = —9.0°,T5 = 38s, T, = 968,04 = 14.4°]
in this scenario and its trajectory is shown in red in Fig. 4.
Time histories of S;; of present hybrid, model-based, and
data-driven predictors are shown in Fig. 6. Time histories of
heading, surge speed, sway speed, yaw rate, thruster revolution
and thruster angle are shown in Fig. 7. Global wind direction
and speed are not shown in Fig. 7 as they do not change in one
scenario. In Fig. 6, we can see that the prediction performance
of the present hybrid predictor outperforms that of the model-
based and data-driven predictors. The model-based prediction
stays unstable due to the low fidelity of the model and wave-
frequency components in [7, ). In order to remove the wave-
frequency components from the model-based prediction, one
can implement a low-pass filter. However, the tuning of the
low-pass filter takes effort and the time delay of the processed
signal is inevitable. In the beginning of the scenario, the
performances of the hybrid and data-driven predictors are not

as good as that of the hybrid predictor after ¢ = 30s as they
have no sufficient recurrent information. The present hybrid
predictor maintains its prediction error at low levels whereas
the data-driven predictor produces more error. It should be
noted that we do not see the increment of prediction error of
the present study around ¢ = T and ¢ = T,,. It indicates that
the present hybrid predictor successfully handles a time series
of future command assumption while reducing the error made
by the low-fidelity model-based predictor.

Snapshots of predictions at (A) ¢ = 35s and (B) ¢t = 91s
are shown in Fig. 8. At (A), the vessel turns back the thruster
angle from § = —9.0° when making prediction to § = 0° at
t = Ty after making prediction. The dotted line, which is a
true trajectory for 30s, shows that the vessel turns clockwise
in the beginning of the prediction, however, it gradually goes
straight in the last half of the 30s prediction horizon. One can
see that the present hybrid predictor captures this behavior and
its prediction is more accurate than the other predictors. At (B),
the vessel deaccelerates at ¢t = T,, after making prediction. The
model-based prediction ends up with a longer trajectory than
the true trajectory, whereas the prediction performance of the
present hybrid predictor is very good.

The overall prediction performance in the test dataset is
investigated herein. Fig. 9 shows the mean prediction error
11, in the left panel and the 90% boundary value of prediction
error /997 in the right panel over 30s prediction horizon. Solid
lines show the prediction performance under lower disturbance
(Beaufort wind force scale: 3) and dotted lines show that
under higher disturbances (Beaufort wind force scale: 4). In
the left figure, LSTM-based predictors (the data-driven and
hybrid predictors) outperform the model-based predictor. In
particular, the prediction performance of the model-based pre-
dictor under the higher disturbance deteriorates significantly
whereas its effect on LSTM-based predictors are marginal.
In addition, it is discerned that the present hybrid predictor
outperforms the data-driven predictor notably especially at the
longer prediction horizon. In terms of /°%, we see the same
trend in the right figure. It indicates that the present hybrid
predictor contributes to reducing not only mean prediction
error but also the frequency of the large prediction error.

Fig. 10 shows the time history of the mean 30s error
summation S in the test dataset. The range of Ts € [20s, 50s]
and 7T,, € [80s,110s] are highlighted in light blue and yellow
in the figure. Although we see the increment of prediction
error of the data-driven and hybrid predictors in the beginning
of the scenario due to the insufficient recurrent information,
S; of the present hybrid predictor is significantly smaller
than that of the model-based and data-driven predictors. It is
notable that the prediction performance of the present study
does not deteriorate due to the future command change as we
see no increment of error in the range of 75 € [20s, 50s] and
T, € [80s, 110s].

Fig. 11 compares the mean prediction error I, of three
predictors under the disturbances of Beaufort wind force
scale 4 at 30s future. The present hybrid predictor reduces
the prediction error by 81.8% compared to the model-based
predictor based solely on the low-fidelity vessel model and by
45.6% compared to the data-driven predictor trained solely by

1530-437X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



M.KANAZAWA et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (SEPTEMBER 2021)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2021.3119069, IEEE Sensors
Journal

9

200

change

175 —

—
150

o
Bh:
=
g
[o
3:
2
75
=N
=B
=
=

125

100

75

50

30s error summation Sj;(m)

25

Present study
Model-H
Data-dri

ased predictor

40

60

Time making prediction (s)

Fig. 6. Time histories of S;; of 3 predictors

Heading (*)
2 o
s 2

)
S

o

Surge speed (m/s)

044

024

0.0

Sway speed (m/s)

021

Yaw rate (°/s)

Thruster angle (°)

Thruster revolusion (RPM)

60 80 100 120

Time (s)

0 20 40

Fig. 7. Time histories of sensor measurements

= = = True trajectory

120

60 80

Time (s)

20 40

|

s Present study

wmemsm Model-based predictor mmssm Data-driven predictor

210 4

Disturbance
Direction

200 A

190 A
9

North (m)
North (m)

80 180 -

70 170 4

Disturbance
Direction

60

@

50

30 40
East (m)

60

T
110

T T T
140 150 160

East (m)

T T
120 130 170

Fig. 8. Snapshots of predictions at (A)t = 35s and (B)t = 91s of the scenario shown in Fig. 6 and Fig. 7

a limited number of dataset.

In Fig. 12, S;;s made by a model-based predictor, present
study, and the data-driven predictors are plotted. The clockwise
angle of a plot shows the local direction of environmental
disturbances (0° for the head sea and 180° for the following
wave) when making a prediction. The distance from a plot to
the origin shows the value of S;;. It is clear that the prediction
performance of the present study outperforms that of the other

predictors regardless of the local direction of environmental
disturbances. In Fig. 13, S;; and surge speed when making
prediction of the three predictors are plotted. The present study
makes prediction accurately and stably in the whole range
of surge speed. However, the model-based and data-driven
predictors produces much error in the whole range of surge
speed. The results in Fig. 12 and Fig. 13 show the robustness
of the present study under different environmental disturbances
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and maneuverings.

E. Discussion

The presented results indicate the validity and benefit of
proposed predictor that handles multidimensional future com-
mand assumption over the control horizon when only the
low-fidelity vessel model and a limited number of data are
available compared to the model-based predictor based solely
on the low-fidelity vessel model and the data-driven predictor

270° locy,
Tre,
® Present "//(‘,0
® Model-based .,
Mo 5,

* @ Data-driven

—ggo——

Fig. 12.
disturbance

Prediction error S;; and local direction of environmental

trained solely by a limited number of data. It is notable that
no excessive increment of prediction error is seen even though
future command assumption changes significantly over the
control horizon in the experiment. It indicates present work
overcomes the limitation of the conventional MHP. Thereby,
a controller can evaluate the future command assumption
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based on hybrid-predicted future trajectory. It contributes to
better predictive decision making (e.g., MPC, the evaluation
of evasive actions based on its predicted consequences) based
on the hybrid modeling of ship dynamics. In the experiment of
present work, prediction performance of present study in the
test dataset is robust to the local direction of environmental
disturbance and surge speed although the interaction between
environmental disturbances and the ship in the test dataset
is not explicitly included in the training dataset since we
select nexy = 60 scenarios that is independent of the other
Nuain = 140 scenarios in the training dataset. In practice, this
result is very important as it is impossible to enumerate all
possible interactions of environmental disturbances and ships
in the training dataset.

In this study, a best practice of a hybrid predictor is still an
open question. For example, by using a hybrid predictor, how
much can we compromise the fidelity of a vessel model? In
which situation is a hybrid predictor superior to model-based
and data-driven predictors? Future research needs to answer
these questions in order to make this idea more practical to
the industry. In this validation study, thruster commands are
simultaneously applied to actual thruster revolution and angle
since their difference of the R/V Gunnerus is very small. If
they have a large difference and time delay, a function f. that
calculates feedback values from command values is required
in order to apply the present study. As f. can be incorporated
into the NN’s approximation f,, or be developed according to
the characteristics of thrusters, the framework of the present
study will be valid in that case as well.

V. CONCLUSION

This study proposed a new multiple-output hybrid ship
trajectory predictor, that plays a key role in integrating data-
driven measures based on sensor data and domain knowledge,
and examine the performance of its methodology. It can handle
the effect of future command assumption on trajectory pre-
diction, that has been a practical limitation of a conventional
multiple-output hybrid predictor. The proposed idea enables
consideration of future command assumption without a drastic
expansion of the input dimension of an internal neural network
due to having its multidimensional time series over the control
horizon.

Assuming only a low-fidelity vessel model and a lim-
ited number of data are available, prediction performance
of present work is compared to that of the model-based
predictor based solely on a low-fidelity vessel model and the
data-driven predictor trained solely by a limited number of
data. Prediction performance under different types/levels of
environmental disturbances is validated for the first time by
using comprehensive simulation scenarios generated by the
co-simulation platform Vico. The proposed hybrid predictor
works accurately and stably regardless of the local direction
of environmental disturbances and the surge speed. It reduces
the mean prediction error by 81.8% compared to the model-
based predictor and by 45.6% compared to the data-driven
predictor at 30s future under Beaufort wind force scale 4
level wind, wave, and ocean current. It is notable that no
excessive increment of prediction error is seen even though
future command assumption changes significantly over the
control horizon in the experiment.

A presented comprehensive validation study provides the
evidence of the effectiveness of the proposed hybrid predictor
by handling a time series of future command assumption,
that plays a key role in the predictive decision making. In
the future, we plan to share real measurements of onboard
sensor data with the real vessel, its digital model, and the
remote control centre. Present study will be a key algorithm
of utilizing sensor data for better decision making.

Our future work will revolve around three research topics.
First online learning of a hybrid predictor will be a key tech-
nology in order to deal with a change of loading condition in
real time. Second a best practice of a hybrid predictor needs to
be investigated. The effect of the amount / quality of data and
the fidelity of mathematical model on prediction performance
is yet to be fully understood. Last the implementation of
present work into a model predictive controller is needed.
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