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Modeling Periodic Energy-Harvesting Computing Systems
Fatemeh Ghasemi and Magnus Jahre

Abstract—The Internet of Things (IoT) requires Ultra-Low Power (ULP) systems that communicate wirelessly and solely rely on
harvested energy to scalably interact with the environment. This is challenging for IoT developers because (i) energy and performance
are fundamentally intertwined — since capturing sensor samples and communicating more frequently increases energy consumption
— and (ii) the performance versus energy trade-off typically needs to evaluated before ULP-platform selection — as the developer
needs to be sure that a sufficiently performant system can be built before incurring the (substantial) effort of implementing the
application on the ULP-platform. In this paper, we present the Periodic Energy-Harvesting Systems (PES) model which enables such
trade-offs by faithfully modeling the energy impact of changing sampling and communication rates. Across our IoT applications, PES
has an average energy prediction error of only 0.5%. In contrast, the average error of the state-of-the-art EH-model is 77.0%.

Index Terms—Energy-harvesting, Internet of Things, Ultra-Low Power (ULP) platforms, energy modeling.
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1 INTRODUCTION

The Internet of Things (IoT) requires highly efficient Ultra-Low
Power (ULP) systems to enable interacting with the environ-
ment at scale. These ULP systems must communicate wirelessly
and rely solely on energy harvesting — as manually retrieving
100s or 1000s of systems to capture data or change batteries is
costly and impractical. Moreover, relying on wired power or
wired communication would significantly constrain usability
and increase costs. Ideally, such systems should be energy-
neutral [1], i.e., that all of the energy supplied by the energy
harvester is used to maximize application performance.

IoT applications are (typically) sensor-focused and period-
ically retrieve sample(s) from one or more sensor(s), process
the sample(s), and then communicate the sample(s) to a mains-
powered back-end system. The key performance metrics of IoT
applications are hence the sampling frequency — as it determines
the temporal resolution of the captured data — and the com-
munication frequency — which determines how often samples
are sent to the back-end system. Sampling and communicating
more frequently increases energy consumption and meeting
this demand requires physically larger and more costly energy
harvesters. IoT developers hence need to balance the sampling
and communication frequencies (to satisfy performance con-
straints) against the capabilities of the energy harvester (to
satisfy cost and physical size constraints). Unfortunately, the
ULP-platform needs to be chosen early in the development
process because a significant fraction of the development effort
depends on the particularities of the selected platform.

Accurate energy models can address this challenge by en-
abling early-stage analysis of performance versus energy con-
sumption trade-offs. Ideally, the ULP-system is energy-neutral,
i.e., it is positioned at a design point where the system’s average
power consumption is equal to the average power output of the
energy harvester. The benefit of energy-neutral design points is
that they maximize sampling and communication frequencies
subject to the energy provided by the harvester. Moreover, the
platform needs to include sufficient energy storage to account
for variability in energy supply and demand over short and
long time horizons. (We focus on systems with rechargeable
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Fig. 1: IoT application example. The energy-neutral design point is
ideal as it achieves the maximum sustainable sampling and commu-
nication rates subject to the energy provided by the energy harvester.

batteries in this work.) An energy-neutral system will hence
sustain the desired sampling and communication rates whereas
a system that over-consumes energy will be intermittent, i.e.,
sample and communicate at the desired rates in bursts before
running out of energy and becoming inactive.

Figure 1 illustrates the ideal energy-neutral design point.
Initially, the system has a certain amount of stored energy (see
1 ). It then communicates (labeled C) which incurs a relatively

high power consumption since both the processor and the
communication subsystem are active. The amount of stored
energy hence decreases rapidly and reaches a low point at 2 .
The system is then idle and enters a low-power sleep mode
which results in the output of the energy harvester exceeding
the system’s power consumption and the system accumulating
energy (see 3 ). At 4 , the system retrieves a sample from
the sensor, processes it, and stores it in platform-local memory
(labeled S). The power consumption during sampling also
exceeds the output of the harvester, and the amount of stored
energy decreases while sampling. The system is then idle before
capturing another sample. At this point, the system contains as
much energy as it did before the previous communication event
(i.e., the energy-level at 1 and 5 are equal).

Our Periodic Energy-Harvesting Systems (PES) model en-
ables IoT developers to select sustainable near-energy-neutral
design points by faithfully modeling the energy consumption of
computation and communication. In contrast, the state-of-the-
art EH-model [2], [3] only models computation and backup;
backups have a high energy cost in communicating systems
because the connection to the back-end system needs to be re-
established when power returns. Across our IoT applications,
PES predicts energy consumption with an average error of 0.5%
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(maximally 1.4%) relative to our real-hardware baseline and
simulator for energy-feasible and intermittent design points,
respectively. This is a substantial improvement over the EH-
model’s 77.0% average error.

2 THE PES MODEL

IoT application model: IoT applications are typically sensor-
focused and either periodic or reactive. In a periodic system,
sampling and communication occurs at predefined intervals
whereas, in reactive systems, sampling is regular but commu-
nication occurs when the sampled value meets some criteria
(e.g., temperature above a predefined threshold). As prior
work, we model reactive applications by using the minimum
expected arrival rate as the period [4]. IoT applications are
hence fundamentally characterized by how often they collect
samples whereas communication happens in response to one or
more samples being collected. The communication rate hence
depends on the sampling frequency, and we use the parame-
ter communication incidence to denote the (typical) number of
samples collected between each communication event.

We now describe our application model more formally. The
application is characterized by (i) the sampling frequency fs;
(ii) the communication incidence ns; (iii) the active time ta
which is the average processing time per sample; and (iv) the
sample size ds which is the number of bytes of sample data
that will be communicated on average for each sample event.
The sample size is not necessarily equal to the number of bytes
in each sample as data may be aggregated or filtered before
transmission. These parameters define the frequency and dura-
tion of the sampling and communication events, and the system
is idle between events. Without loss of generality, we assume
that the system immediately proceeds with communicating the
sampled data when the last sample is captured.
PES overview. PES enumerates the states the ULP-system can
be in and aggregates the per-state energy consumption to pre-
dict overall energy consumption. We use E to denote aggregate
energy and a subscript to relate energy consumption to system
states. For instance, Ei is the energy consumed while the ULP-
system is idle. PES takes a collection of system-specific energy
and power consumption constants as input. For instance, et
captures the energy cost of transmitting a data packet. The
aggregate energy consumption Ex of type x is (i) the product
of the basic energy cost of the operation ex and the expected
number of operations nx, or (ii) the product of the average
power consumption of the ULP-platform while performing the
operation Px and the time it takes to perform the operation tx.

IoT systems typically operate indefinitely, and we hence
need to consider a specific amount of work when exploring
system configurations. More specifically, we predict the energy
consumption over a fixed number of samples, i.e., the Region of
Interest (RoI). Without loss of generality, we choose a number
of samples that are a multiple of the communication incidence
to simplify the model. Equation 1 explains how PES predicts
ERoI, the overall energy consumption across the RoI:

ERoI = nc × [Et + Ek + ns × Es] + ec + Ei + Eb (1)

More informally, the application collects sensor data at regular
intervals at an energy cost Es per sample. The communication
incidence ns specifies the number of samples per communica-
tion event, and nc is the number of communication events in the
RoI. Hence, we analyze the ULP-system over nc × ns samples.
The energy cost of transmitting data in a single communication
event is Et. Since establishing a connection costs non-negligible
energy, the application connects when it boots (at an energy

cost ec) and then maintains the connection across the RoI which
incurs an energy cost Ek per communication event. The energy
spent while idle and in a low-power sleep mode is Ei. If the
system is forced to power down due to insufficient energy, it
incurs an energy overhead Eb which is due to disconnecting
and backing up application state in a non-volatile memory
before powering down and then reconnecting and restoring
application state when sufficient energy is available.

The minimum energy supplied to the ULP-system Eh-min is
the average power output of the energy harvester Ph times the
minimum time the ULP-system can use to complete the RoI tRoI
(i.e., the sampling period times the number of sampling events):

Eh-min = Ph × tRoI = Ph × (1/fs)× ns × nc (2)

Similarly, ERoI-min is the minimum amount of energy the ULP-
platform consumes across the RoI, i.e., the output of Equation 1
when no energy is used on backup and restore (i.e., Eb equals
0). The ULP-system is energy-neutral when the harvested en-
ergy equals the consumed energy (i.e., Eh-min equals ERoI-min). If
the harvested energy is greater than or equal to the consumed
energy (i.e., Eh-min ≥ ERoI-min), the system is energy-feasible.
Conversely, the system is intermittent if it requires more energy
than the harvester supplies (i.e., Eh-min < ERoI-min).
Compute. PES predicts the energy cost of capturing a single
sample Es by multiplying the average power consumption of
the ULP-system while computing each system or application
task by the average time it uses to process the task:

Es = Psys × tsys +

T∑
i=1

P(i)× P i
s × tis (3)

While many IoT applications treat all samples similarly and
hence have a single task type, it is also common to preform
pre-processing to filter out clearly non-interesting samples.
For such applications, we identify T task types that are well-
characterized by their average runtime and collect the average
runtime and average power consumption of each task type i
(i.e., tis and P i

s , respectively) as well as the probability of each
task type being executed for a sample within the RoI (i.e., P(i)).
The ULP-platform also executes system tasks for tsys seconds at
an average power consumption Psys in each sampling period.
We opt for measuring the power consumption of each task as
the variability can be significant (i.e., from 6.9 mW to 22.9 mW).
Communication. In a periodic IoT application, the amount of
data to be transferred in a communication event is a function of
the average number of bytes captured in each sampling event
(i.e., ds). Moreover, the protocol typically specifies the number
of bytes that can be transferred in a single packet, i.e., the
payload dp. Hence, the energy cost of transferring data is:

Et = np × et = d(ns × ds)/dpe × et (4)

Equation 4 multiplies the number of packets np required to
transfer the ns samples captured within a communication event
by the average energy cost of transferring a packet et. The
amount of data that needs to be transferred is hence ns times
the amount of data communicated for each processing event ds.
Since packet payload is fixed, every packet contains dp bytes.
The last packet is hence not full unless the transmitted number
of bytes is a multiple of the payload size.

The ULP-system needs to transmit packets at regular inter-
vals to keep the connection alive. More specifically, it needs
to transmit at least one packet within each connection interval
tci. The ULP-system hence needs to send empty packets, which
we call keep-alive packets, during connection intervals where
the application does not have data packets to transmit. To
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predict the energy cost of the keep-alive packets, we compute
the number of keep-alive packets and multiply them by their
energy cost ek:

Ek =
( ns

fs × tci
−
⌈ np

npci

⌉)
× ek (5)

We first compute the duration of a communication period by
multiplying the inverse of the sampling frequency (i.e., 1/fs)
by the communication incidence ns. Then, we divide by the
connection interval tci to compute the maximum number of
keep-alive packets. We then subtract the number of connection
intervals where we will send data packets, which is the total
number of data packets np divided by the average number
of data packets transmitted within a connection interval npci.
Finally, we multiply the predicted number of keep-alive packets
by their average energy cost ek to predict the energy used to
keep the connection alive across a communication period Ek.
We empirically determined that the average energy cost of a
keep-alive packet ek is lower than the energy cost of a data
packet et (i.e., 14.7 µJ versus 21.8 µJ per packet), presumably
because keep-alive packets do not carry a payload.
Backup and restore: Although we argue that periodic IoT
applications should strive to be energy-feasible, the variability
of energy harvester output means that it can be costly to avoid
running out of energy altogether. We hence proceed to model
the energy cost of backup and restore.

We predict the expected number of backups nb by first com-
puting the minimum average power consumption across the
RoI PRoI-min which is the minimum energy required to execute
the RoI divided by the minimum time the ULP-system uses
to execute the RoI (i.e., PRoI-min = ERoI-min/tRoI). As mentioned
before, tRoI is the product of the number of samples in the RoI
and the sampling period (i.e., tRoI = 1/fs × ns × nc). The ULP-
system restarts application execution with eresume Joule. It then
over-consumes energy at a rate of Ph−PRoI-min Watt on average
until it reaches the shutdown energy threshold eshutdown. The
expected number of backups nb is hence:

nb =
tRoI

to
=

tRoI × (Ph − PRoI-min)

eshutdown − eresume
if Ph < PRoI-min (6)

In other words, the system will be operational for to seconds on
average before running out of energy which in turn means that
it will run out of energy tRoI/to times while executing the RoI. If
Ph ≥ PRoI-min, the system is energy-feasible and nb equals zero.

The energy cost of each backup is the sum of the energy
spent on disconnecting (i.e., ed) and reconnecting (i.e., ec) as
well as the energy overhead of preparing the non-volatile mem-
ory for reading and writing (i.e., emem), writing the checkpoint,
and reading it back again:

Eb = nb × (ec + ed + emem + db × eb) (7)

The energy cost of a checkpoint is the product of the average
number of bytes it contains db and the energy cost of writing
and reading a byte of data eb. As prior work [2], [3], we find
that backup and restore costs are nearly perfectly linear in the
number of bytes that needs to be read or written.
Idle: ULP-systems use sleep modes, which are low-energy
states where selected components are either power-gated or
clock-gated, to save energy while idle. ULP-platforms com-
monly support different sleep modes which differ in how ag-
gressively they turn off components. The benefit of clock gating
is that the components can retain state and resume execution
faster at the cost of primarily reducing dynamic energy whereas
power gating saves both dynamic and static energy but does
not retain volatile state and resuming execution takes longer.

For these reasons, different applications tend to prefer different
sleep modes. PES hence takes the average power consumption
Pi during the application’s preferred sleep mode as input.

The ULP-platform is idle when it is powered and inactive,
and we predict idle time by first computing the time it takes
the system to process and communicate the samples of the
RoI (i.e., tRoI) and then subtract the time the system is actively
processing and communicating. More specifically, the system
is active for ta seconds for each of the ns × nc samples (i.e.,
ta = tsys +

∑T
i=1 P(i) × tis) and active for tc seconds in each of

the nc communication events. Idle energy Ei is hence:

Ei = Pi × [tRoI − nc × (ns × ta + tc)] (8)

Equation 8 accounts time as active (i.e., ta) if the ULP-processor
is processing samples or performing system tasks, and com-
municating (i.e., tc) if it controls the radio or performs other
protocol-related processing. If necessary, the application can
exploit idle periods during communication to collect samples.

3 EXPERIMENTAL SETUP

We use the Nordic Semiconductor’s nRF52832 SoC [5] as our
experimental platform and measure the instantaneous power
consumption of the SoC at a frequency of 10 kHz using Lyn-
syn [6]. The SoC contains an ARM Cortex M4 processor running
at 64 MHz and an integrated Bluetooth Low Energy (BLE) radio
subsystem. We use Nordic Semiconductor’s S132 BLE protocol
stack and an Android mobile phone as the back-end system.
To validate PES for intermittent design points, we use the solar
panel energy trace from Kraemer et al. [7] to drive an in-house
ULP-system simulator. Our error metric is absolute relative
error (i.e., Error = |Emeasured − Emodel|/Emeasured).

We select a range of IoT benchmarks that occupy different
design points with respect to compute and communication
intensity. More specifically, we run Heart Rate (HR), Glucose
(GL), and Blood Pressure (BP) from the Nordic Semiconductor
SDK [8], AES and GEMM from MachSuite [9], ProtoNN and
Bonsai from SeeDot [10], FFT [11], and the Mean and Variance
(MV) benchmark used to validate the EH-model [2]. To evaluate
PES with time-variable applications, we create MP which first
runs MV to compute the variance of the captured image and
then ProtoNN if the variance is larger than 1%. We further
include MP-I, which is MP configured to run at an intermittent
design point, to validate PES’ backup model.

4 RESULTS

We now evaluate PES and compare to the EH-model [2], [3].
While EH only models compute, it is straightforward to extend
it to model periodic systems that sleep (see Section 2). We refer
to this model as EHS (EH with Sleep). We compare predicted
energy consumption to actual consumption on our hardware
platform (Real) and simulator (Sim) for energy-feasible and
intermittent design points, respectively.

Figure 2 reports predicted energy consumption (normalized
to Real or Sim) and breaks down the energy consumption into
the components of Equation 1. Overall, PES is very accurate
with an average error across all benchmarks of 0.5% (maximally
1.4%); the residual error is mostly due to communication not
being fully deterministic. PES’ prediction error with MP is
only 0.6% which demonstrates that PES can accurately model
a time-variable application. PES is also accurate when MP is
configured to run at an intermittent design point, see MP-I in
Figure 2. In contrast, EH is inaccurate (average error 77.0%),
primarily because it does not model communication. However,
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Fig. 2: PES model validation.
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Fig. 3: Energy-feasible regions for ProtoNN with a solar panel
harvester on three representative dates throughout the year.

we confirm that EH is accurate when applications compute
continuously (i.e., MV). EHS improves accuracy compared to
the EH (i.e., reduces average error from 77.0% to 74.5%), but it
is still inaccurate compared to PES.

Figure 3 shows the energy-feasible region for ProtoNN in
a system with a solar panel energy harvester on three rep-
resentative days throughout the year. We use the solar panel
power output trace by Kraemer et al. [7] which is collected over
a two-year period in Trondheim, Norway. Since Trondheim
is close to the Arctic Circle, there is very limited sunlight
in winter which result in a daily average power output of
merely 0.65 mW on 3. January. In summer, the sun hardly sets
which results in orders of magnitude more power on average
22. July (i.e., 95.0 mW). 21. September is an intermediate case
with an average power output of 11.5 mW. All power traces
exhibit significant variability due to clouds. Figure 3 also shows
the time-feasible and energy-feasible regions of our hardware
platform for ProtoNN on the respective dates; the time-feasible
region indicates the compute capacity of the ULP-system.
The x-axis shows sampling frequency and the y-axis effective
communication frequency. We report effective communication
frequency rather than communication incidence to make power
consumption increase along both axes.

The time-feasible region is the same in Figure 3a, 3b, and 3c
because it is independent of the energy supply. When sampling
frequency is increased from zero, the maximal communication
frequency increases proportionally since every sample is im-
mediately communicated (i.e., communication incidence equals
one). Eventually, the ULP-processor saturates, i.e., it is always
either sampling or communicating the sample. Increasing the
sampling rate further requires increasing the communication
incidence and thereby enable interleaving sampling and com-
munication. This first reduces the effective communication fre-
quency as two samples now have to be captured before they can
be communicated. Then, sampling frequency proportionally
increases the effective communication frequency until the ULP-
processor again saturates. In general, increasing communica-
tion incidence frees processor resources and enables (almost)

regaining the maximum effective communication frequency at
a higher sampling rate; hence the triangular pattern.

The energy-feasible region is the area within the time-
feasible region where the average power output of the energy
harvester is greater than or equal to the average power con-
sumption of the ULP-system. In Figure 3a, ProtoNN maximally
communicates at a rate of 5.8 Hz in which case the sampling
rate is the same (i.e., communication incidence equals 1); the
system requires a battery capacity of 53.3 J. In Figure 3c, the
maximal communication frequency only increases to 10 Hz
because the ULP-system hits its communication latency limit,
i.e., the sample needs to be fully communicated before the ULP-
system has to start communicating the next sample. However,
the sampling rate can be much higher than in January, i.e.,
maximally 298.1 Hz at a communication frequency of 34.8 mHz.
Sustaining this performance-level requires a battery capacity
of 8.2 kJ; supplying this amount of energy storage increases
system cost and physical size and may hence be inappropriate.

5 RELATED WORK

The EH-model [2], [3] enables design-time exploration of en-
ergy harvesting ULP-system design spaces, but it is inaccurate
(see Section 4). Gobieski et al. [12] use an analytical model
to motivate for performing inference within ULP-systems, but
the model only considers energy and hence cannot be used to
explore energy versus performance trade-offs. CatNap [4] guar-
antees that time-critical code will run successfully when suffi-
cient energy is available; otherwise the application degrades
gracefully. CatNap is hence orthogonal to PES as it focuses
on achieving energy-feasible operation at runtime whereas PES
helps developers match sampling and communication rates to
energy harvester capabilities at design time.

6 CONCLUSION

We have now presented our Periodic Energy-Harvesting Sys-
tems (PES) model which enables IoT developers to explore
performance versus energy trade-offs early in the design pro-
cess. Most notably, PES can be used to identify sustainable and
near-energy-feasible design points. Unlike the state-of-the-art
EH-model [2], [3], PES faithfully models communication which
leads to significantly lower energy prediction error.
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