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A B S T R A C T   

Rising incomes (and associated expenditures) have been shown to be a major driver of environmental problems. 
Lately, several studies have pointed to a break between the income driver and biodiversity loss on a per-capita 
level. The increase in land-use efficiency is pointed to as a key factor in this decoupling. However, a lot of the 
previous work on biodiversity footprints has been cross-sectional and there is limited analysis with a temporal 
perspective. In this work, we couple a database that links land use to potential biodiversity impacts for ecor
egions, with a multiregional environmentally-extended input-output database available in a time series, with 
high regional detail. We perform a panel regression analysis for three regional quantile groups and six con
sumption categories that links trends in affluence to trends in biodiversity loss. The findings suggest that high- 
income regions from 2005 to 2015 have an income elasticity of biodiversity footprint higher than one, while the 
production-based accounts show that high-income countries have a declining impact on biodiversity in the time 
period, suggesting a strong outsourcing of biodiversity loss to low-income countries. In the early 2000s a peak in 
biodiversity footprint for the high-income region is not explained by increasing income, but rather consumption 
of traded goods associated with land use in countries in South East Asia prone to biodiversity loss. On a product 
level we find that although food consumption is causing the largest share of biodiversity footprints in all regional 
groups, manufacturing products, shelter, and clothing and footwear have the strongest income elasticity of 
footprint in high-income countries, suggesting that these are consumption areas to focus on as affluence grows, 
particularly in developing regions.   

1. Introduction 

Biodiversity loss is a major concern for the welfare of our ecosystems. 
Extinction rates are currently about 1000 times higher than the back
ground rates (Pimm et al., 2014). Vertebrate species populations have 
declined overall by 60% since 1970 (WWF, 2018) and approximately 
25% of the species (in the well-studied taxonomic groups) are currently 
threatened with extinction according to the International Union for 
Conservation of Nature’s (IUCN) Red List criteria (IUCN, 2019). Land 
use, resulting in habitat loss and degradation, is the pressure with the 
largest relative impact on ecosystems (Millennium Ecosystem Assess
ment, 2005; IPBES, 2019; WWF, 2018). Seventy-seven percent of the ice- 
free landcover has been affected directly by humans (Watson et al., 
2018; Allan et al., 2017), mostly due to agricultural activity (Ellis and 
Ramankutty, 2008), and reduction in the current global forest cover, 
which is estimated to be only 62% of the area it covered prior to humans 
(Steffen et al., 2015). 

Although land use negatively affects ecosystems globally, the effect 
of this land use on ecosystems, as well as the ecosystem responses (and 
hence biodiversity impacts) are not uniform across the globe (WWF, 
2018). While local studies of biodiversity loss and extinctions can resort 
to individual field studies, this is not possible on a global scale. In the 
global Life cycle assessment (LCA) models, species richness is therefore 
used to indicate the potential for species extinctions. The resulting 
biodiversity impacts are measured as “potentially disappeared fraction 
of species“ (PDF) (Verones et al., 2017a). Species-area relationships are 
commonly used to estimate the effects of land use on species richness (e. 
g., Chaudhary and Brooks (2018)). Chaudhary et al. (2015) developed 
land use impact factors estimating the PDF (bird, mammal, amphibian, 
reptile, and plant) per area occupied by specific land use types. These 
species thus act as a proxy for the entire “biodiversity”. This is a 
simplification, of course, as is the assumption that species are equally 
distributed throughout a terrestrial ecoregion. However, the advantage 
of the approach is that it provides a comparable model across the world 
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that is easy to communicate to stakeholders and is based on relatively 
easily available data. The method of Chaudhary et al. (2015) is incor
porated in the standardized life cycle impact assessment (LCIA) method 
LC-IMPACT) and includes regionalization at a rather fine level, i.e. it 
contains information about potential biodiversity impacts for every 
ecoregion. Moreover, it takes the vulnerability of species into account in 
that it tries to consider the fact that some species might be widespread, 
while others are endemic and at higher risk of being pushed to extinction 
(Verones et al., 2020). 

Studies on biodiversity trends indicate that biodiversity continues to 
deteriorate, although at a decreasing rate (Butchart et al., 2010; WWF, 
2018). In the literature, the temporal effects have often been analyzed 
through the perspective of the link between affluence and biodiversity 
loss. However, key policy documents on biodiversity conservation often 
have ambiguous views on the relationship between biodiversity loss and 
economic growth, or neglect the link altogether (Otero et al., 2020). 

An example of an indicator that has linked the state of biodiversity to 
levels of affluence in a temporal dimension is the living planet index 
(LPI) (McLellan et al., 2014). The LPI is an indicator for the global state 
of biodiversity measuring average change in vertebrate population sizes 
(n = 16,704 representing 4005 species) relative to 1970 (WWF and ZSL, 
2018). In the 2014 Living Planet Index, McLellan et al. (2014) used three 
country income groups, finding that low-income countries display 
sharper declines than middle-income countries, while high-income 
countries even had a slightly increasing index compared to the 1970 
baseline. We should, however, be aware that high-income countries 
have caused a substantial part of their biodiversity impacts pre-1970, 
thus the increasing trendline only shows a relative change. However, 
it may also reflect the ability of the high-income countries to pay for 
species conservation, or due to their production-based (PB) approach, it 
might reflect that high income countries have had a less harmful do
mestic biodiversity impact development from 1970 to 2011 compared to 
low- and middle-income countries. PB accounts neglect the biodiversity 
impacts embodied in trade, which can comprise a significant proportion 
of the total biodiversity impact (Lenzen et al., 2012; Moran et al., 2016; 
Marques et al., 2019). As such, the drivers of land use and subsequent 
biodiversity loss are nowadays often remote, “tele-coupled” by global 
value chains, and can be traced to consumption, often in Western 
countries, far from the actual impact on biodiversity. 

In order to provide consumption-based (CB) assessments that solve 
the issues of the PB approach, a range of analyses on the impact that 
trade has on biodiversity has been attempted, some through detailed 
investigation of production areas and traded goods (Chaudhary and 
Kastner, 2016; TRASE, 2020), and some through multi-regional input- 
output (MRIO) analysis (Lenzen et al., 2012; Marques et al., 2019). 
MRIO tables describe the production of goods and services in different 
regions of the world and have trade-linked tables showing the import of 
products as both intermediate and final goods. MRIO analysis compared 
to physical trade approaches has the advantage of modelling multiple 
supply-chain steps but has the disadvantage of often lower sectoral and 
regional detail. Due to the possibility to use MRIO tables to model 
increasingly complex supply chains linked to consumer demands, it has 
been suggested as an appropriate tool to calculate biodiversity footprints 
(i.e., biodiversity loss induced by consumption) (WWF, 2018; Moran 
et al., 2016; Marques et al., 2017). 

MRIO databases such as EXIOBASE (Wood et al., 2015), Eora (Len
zen et al., 2013), and GTAP (Aguiar et al., 2016) have been already 
connected to measures of biodiversity loss in order to give insight into 
these trade (Lenzen et al., 2012) and consumption effects (Marques 
et al., 2019; Marquardt et al., 2019). In the first work on biodiversity 
modelling, Lenzen et al. (2012) connected the IUCN red list of endan
gered species to Eora, which was further refined through a spatialized 
model in Moran et al. (2016). Other attempts have used a pressure- 
impact relationship by characterizing the effect land use has on biodi
versity through eitherPDF (Koslowski et al., 2020; Verones et al., 
2017b), bird species lost (as an indicator of overall biodiversity loss) 

(Marques et al., 2019), or mean species abundance (Wilting et al., 2017; 
Koslowski et al., 2020). 

MRIO analysis has further been used to study biodiversity footprints 
in order to understand the link to affluence and associated consumption, 
by time series work (Marques et al., 2019), by use of cross-sectional 
consumer expenditure survey data (Koslowski et al., 2020), and by 
specific analysis on the effects of consumption (Marquardt et al. (2019). 
Although Koslowski et al. (2020) found there was a correlation between 
affluence and biodiversity loss based on cross-sectional data, they 
observed a decline of 10% in the European per capita footprint between 
the two years included in their study (2005 and 2010). Hence, whilst 
they indicate a decoupling of biodiversity loss from affluence, their 
approach is limited by the years covered in the study. 

In their study with global coverage in the time period 2000–2011, 
Marques et al. (2019) found that increasing population and economic 
growth resulted in increasing impacts on bird diversity, but that the 
impact per unit of GDP decreased between 2000 and 2011. This trend 
was found for all world regions in the study. Further, they found for 
high-income regions such as Western Europe and North America a 
decrease in both PB and CB biodiversity- and ecosystem services impacts 
per unit of GDP, attributing this to one or both of reduced consumption 
within the regions and/or increased efficiency in the origin-regions of 
their imported goods. A decrease in per capita CB biodiversity impacts 
was attributed to decrease in impacts from food consumption in hotels 
and restaurants, and clothing, as well as reduced activity in the con
struction sector, all resulting from the financial crisis. 

Marquardt et al. (2019) compared four types of biodiversity footprint 
indicators using the GTAP database. Three of these were alpha diversity 
indicators which measure local diversity within a site, while the last was 
a gamma diversity indicator which measures global biodiversity. They 
found that household expenditure was positively related to the three 
alpha indicators, while the link to the gamma indicator was weakly 
positive and highly uncertain. In addition, using the gamma indicator, 
they found that human consumption patterns particularly threaten 
tropical biodiversity. 

The existing literature using MRIO to study biodiversity loss have 
largely been descriptive, such as studying the state of biodiversity loss 
for one specific year (Lenzen et al., 2012; Koslowski et al., 2020; Wilting 
et al., 2017; Moran et al., 2016). Some studies break down biodiversity 
impacts into consumption categories, but do not investigate the tem
poral trends in biodiversity loss for different regions (Wilting et al., 
2017; Moran et al., 2016; Marquardt et al., 2019). Marques et al. (2019) 
investigate the temporal changes in biodiversity loss broken down into 
consumption categories for different world regions. In many ways our 
study seeks to verify the findings of Marques et al. (2019) who found 
strong evidence of decoupling, as well as that of McLellan et al. (2014)’s 
production-based approach. In addition, we seek to further Marquardt 
et al. (2019)’s findings which revealed ambiguous results for the gamma 
(global) biodiversity indicator’s correlation with expenditure. We 
expand on Marquardt et al. (2019)’s work by exploring the temporal 
trends in biodiversity loss on an even more detailed regional level. We 
are able to go to a much higher regional detail than Marques et al. 
(2019) and Marquardt et al. (2019) by using EXIOBASE 3rx, a newly 
developed extension of the MRIO database EXIOBASE, where the 
countries previously part of rest-of-the-world (RoW) regions are 
explicitly covered, with a total of 214 regions. It was created based on 
the wish to explicitly cover the extent and diversity of land use for 
countries within the RoW regions, thus the database is tailored for an 
analysis linking biodiversity impacts to land use directly. 

Building on this previous research, we seek to answer the question of 
whether there is a strong link between affluence and biodiversity loss 
from a consumption-based perspective. We aim to capture differences in 
development status of countries and to specifically provide insights into 
product level drivers. With globally applicable methods and metrics to 
quantify biodiversity loss being called for (Chaudhary and Kastner, 
2016), we approach this by linking EXIOBASE 3rx to a database of 

E.L. Bjelle et al.                                                                                                                                                                                                                                 



Ecological Economics 185 (2021) 107059

3

characterization factors (LC-IMPACT) with a similar regional coverage 
as EXIOBASE 3rx. Unlike the LPI, our analysis is on an extinction level (i. 
e., potential species loss), not a population level (i.e., abundance of in
dividuals). Supply-chain impacts are identified in the input-output cal
culations to investigate the difference between CB and PB impacts for 
each region. To investigate the extent of a decoupling between affluence 
and biodiversity impacts, we first examine the trend in biodiversity 
impacts from both a PB and CB perspective in the years covered in 
EXIOBASE 3rx (1995–2015) and then run panel regressions with 
country-fixed effects for six groups of consumption categories (plus total 
consumption) and regions split into three income quantiles. The 
following results are then compared with similar literature findings, 
along with a discussion of limitations and uncertainties. Finally, we 
discuss how these results can be used to mitigate future biodiversity loss. 

2. Methods 

The two data sources used for biodiversity impact calculations are 
the MRIO EXIOBASE 3rx which provide the economic and land use data, 
and the life cycle impact method LC-IMPACT providing characterization 
factors of biodiversity impacts from land use. In the following section we 
explain how the two data sources are combined and how the PB and CB 
biodiversity impacts are calculated. Next, we explain the approach taken 
for measuring decoupling, and finally the approach for the panel 
regression analysis. In this analysis yield is an independent variable, 
which is acquired from the crops data from FAOSTAT (2020). 

Here we take a MRIO approach, using the regionally extended 
version of EXIOBASE 3 (Stadler et al., 2018) called EXIOBASE 3rx (Bjelle 
et al., 2020). The database contains data on 200 sectors and 214 coun
tries describing production requirements and demand. Whilst official 
input-output tables are not available for many of these countries, in 
EXIOBASE 3rx proxy estimates were made based on technology data, 
estimated outputs and trade data. The database contains extensions for 
six land use types (available as 40 detailed land use types upon 
reasonable request) and is available online at DOI: https://doi.org/10. 
5281/zenodo.2654460. 

In previous work (Bjelle et al., 2020), a bilaterally trade-linked 
approach was used to link domestic input-output tables (as per emis
sions embodied in bilateral trade approaches described in Peters et al. 
(2012)). In this paper, we extend that work by using a MRIO approach, 
but through a network-based procedure rather than with fully populated 
tables (Rodrigues et al., 2016). The MRIO and network approaches give 
exactly the same result, but the network approach is computationally 
much less demanding. Full details are in Rodrigues et al. (2016) and not 
repeated here. The advantage of the MRIO approach compared to a 
bilateral trade approach is that full global supply-chains (covering 
processing in multiple countries) are covered in assigning biodiversity 
impacts to final consumers. 

Letting matrices be identified by bold-upper case letters, vectors by 
bold lower-case letters, and scalars by normal lower-case letters, the 
standard environmental CB impact calculations for a specific year using 
EXIOBASE 3rx are given by: 

E = SLY (1) 

Letting r, q and g represent the number of regions, sectors, and 
environmental impact categories (e.g. types of land use) respectively, 
the variables are: 

E: Total impacts (e.g. land use or biodiversity footprint) with di
mensions g by r 

S: The impact multipliers per monetary unit (e.g. km2/million Euro 
for land use) with dimensions g by (r * q) 

L: The Leontief inverse matrix describing the production re
quirements per unit of final demand with dimensions (r * q) by (r * q) 

Y: Final demand given in million euros (current year pricing) with 
dimensions (r * q) by r 

In the multiregional input-output system the diagonal blocks of the 

S, L and Y matrices represent the domestic systems, while the off- 
diagonal blocks represent the traded parts of the systems (the off- 
diagonal parts of the S matrix are zero as there are no traded impact 
multipliers of production). To distinguish between impacts associated 
with specific sectors of consumption or domestic vs. traded consump
tion, the Y matrix can be aggregated, split or diagonalized according to 
the specific impact in question. 

As the inverse of such a large matrix is computationally demanding, 
we use the Taylor series expansion instead: 

E = S
(
I+A+A2 +A3 +A4 +…

)
Y (2) 

A: The coefficient matrix with dimensions (r * q) by (r * q) showing 
domestic and import input-output tables, trade-linked by bilateral trade 
flows as described in Rodrigues et al. (2016). 

Taylor series expansion should theoretically be infinite but con
verges quickly (all elements of A are less than 1), and the calculation was 
cut off at 20 orders here. The PB impacts are similarly calculated as: 

E = Sx̂ (3) 

x̂: The diagonalized vector of total output from EXIOBASE 3rx in 
million Euros (current year pricing) with dimensions (r * q) by (r * q) 

EXIOBASE 3rx includes land use directly caused by households. 
These land uses have varying intensity, but are mainly the subsistence 
use of forest land with very low intensity (see the supporting informa
tion of Bjelle et al. (2020)). Including them in the analysis will likely lead 
to an overestimation of biodiversity impacts since the characterization 
factors do not adjust for these low land use intensities. In addition, direct 
household use is not linked to expenditure on goods and services, which 
complicates the analysis of the link between affluence and impact. For 
these two reasons, we exclude these land uses from the analysis. 

The sections above explain the framework for calculating CB and PB 
land use footprints, but the link to biodiversity impacts is still missing. 
This link and the needed modifications to the framework is explained in 
the following paragraphs. 

Natural systems respond to human pressures in various ways, making 
it difficult to quantify and compare impacts on ecosystems. Biodiversity 
indicators, reflecting biodiversity aspects in simple metrics, can be 
helpful tools to measure changes in natural systems resulting from 
human pressures (WWF, 2018). The use of standardized indicators eases 
the interpretation of nature’s responses to human activity, allows to 
track changes over time, and facilitates consistent comparisons. 

LC-IMPACT is a life cycle impact assessment method combining 
impacts for human health, ecosystem quality and resources. It is freely 
available on www.LC-IMPACT.eu and described in Verones et al. 
(2020). 

Impacts from land use are modelled in LC-IMPACT for land occu
pation (use) and land transformation, but only land use was applied in 
this work. The model is based on the countryside species-area rela
tionship (SAR), taking into account that species may be able to survive in 
the absence of natural habitat, i.e. live in human-modified land only 
(Verones et al., 2019; Chaudhary et al., 2015). Land use impacts are 
modelled for mammals, birds, amphibians, reptiles and plants individ
ually for local losses and then adapted with a “vulnerability score” to 
transform local losses to global species extinction (for more detailed 
information see Verones et al. (2019) and Chaudhary et al. (2015)): 

The countryside SAR predicts how many species are lost (Plost, u, j) of 
taxonomic group u in ecoregion j if the area available changes (from Borg 
to Bnew). It takes the habitat affinity hu, i, j (where land use types are 
represented by i) of species in different habitats into account (based on 
local characterization factors. See De Baan et al. (2013) for more 
details). 

Plost,u,j = Porg,u,j∙

⎛

⎝1 −
Bnew,j +

∑

i
hu,i,j∙Bi,j

Borg,j

⎞

⎠ (4) 
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The average characterization factor per ecoregion and taxon is then 
calculated as: 

CFu,j =

Plost,u,j∙bi,j
Bi,j
∙VSu,j

N∙Pu,world∙VSu,world
(5) 

b is the allocation factor for each land use type i in each ecoregion j 
and VS the vulnerability score for each taxon. N is the number of taxa 
and P and VSu, world are the number of species in taxon u globally and the 
global vulnerability, respectively. Details about the vulnerability score 
are presented in Verones et al. (2019). The CF for animal taxa and for 
plants is the aggregated with a weight of 50% each. Aggregation to 
countries is made based on area-weighted averages over land use type. 

The characterization factors indicate the per unit of area potentially 
disappeared fraction of species (PDF/m2) due to current land use (Bnew) 
relative to the natural state (Borg; i.e., the unimpacted state prior to 
human influence). Biodiversity impacts are calculated by multiplying 
the characterization factors (PDF/m2) with land use data (m2/year) and 
indicate the biodiversity impacts at a certain point in time (PDF/year) 
relative to a hypothetical natural state without any human land use. This 
means that the biodiversity indicator used here represents a snapshot of 
the biodiversity footprint of global land use in a certain year relative to 
the natural state, rather than accounting for the cumulative biodiversity 
impacts of land use over several years. The exposure duration is usually 
included in the characterization factors, reflecting the fact that land 
occupation will most likely not lead to immediate species loss, but a 
potential species extinction over time. As pointed out in Verones et al. 
(2020), these indicators are rather reflecting an increase in the risk of 
extinction rather than an instantaneous loss. 

The regional coverage of global characterization factors of biodi
versity loss in LC-IMPACT makes it a suitable match for EXIOBASE 3rx. 
Most of the regions covered in EXIOBASE 3rx overlap with the LC- 
IMPACT regions. Where the EXIOBASE 3rx country is not covered in 
LC-IMPACT, we use LC-IMPACT values from similar countries to 
approximate the missing country’s characterization factor (e.g. 
Tanzania as a proxy for Zanzibar and China for Taiwan) See SI1 for a full 
overview of the regional bridging. Some countries in LC-IMPACT have 
values equal to zero for certain land use types. This is either due to no 
area being registered for that land use type or missing taxonomic 
coverage. To ensure consistency with EXIOBASE 3rx in that all land use 
is associated with biodiversity loss values, we replace zero-values with 
the smallest recorded value for that specific land use type across all 
regions in LC-IMPACT. As can be seen in SI2 these are mostly tropical 
island states (and Greenland), regions which typically do not contain the 
types of land for which there are zero-values in LC-IMPACT. 

The land use intensities (Sl) for EXIOBASE 3rx are given in km2/ 
Million Euro, while the LC-IMPACT global biodiversity loss character
ization factors (CF) are in PDF/m2. To arrive at biodiversity loss in
tensities (Sb), the total land use associated with production in each 
sector and country of EXIOBASE 3rx (Fb) must first be aggregated to the 
six land use types in LC-IMPACT (See SI1 for aggregation), which are 
annual crops, permanent crops, intensive and extensive forestry, urban 
area, and pasture. These land use types can exist side-by-side and do not 
overlap. Characterization factors per taxa are different for the land use 
types in each country due to the different area shares present, but more 
importantly also due to the species and habitat affinity of species living 
in these areas. 

Next, we replace the land use intensities associated with production 
in each region in EXIOBASE 3rx with biodiversity loss intensities: 

Sb =
106*(Fl*CF)

x
(6) 

Fl: Total land use from EXIOBASE 3rx aggregated to the six LC- 
IMPACT land use categories 

x: Total output from EXIOBASE 3rx in Million Euros. 
In the last step, we calculate the biodiversity footprints using Eq. (2), 

replacing S with Sb. The biodiversity footprint results for the 200 sectors 
in EXIOBASE 3rx are aggregated to six categories of consumption ac
cording to the aggregation key found in SI1. We use biodiversity foot
prints as term for the consumption-based (CB) impacts and refer to the 
production-based (PB) impact as the PB results. 

Some countries are merged or split (e.g. Netherlands Antilles and 
Serbia) throughout the time series of EXIOBASE 3rx. This causes issues 
for time series analysis on individual countries, but not on aggregated 
regions as we use in this work. However, a total of 16 countries have 
unbalanced supply-and use tables for some years (see overview in SI3) 
due to poor raw data availability, or inconsistencies in raw data causing 
the procedure that balances supply-use tables to not find an optimal 
solution. In addition, the macroeconomic data for Sudan and South 
Sudan is inconsistent across the time period. To keep the time series 
figures consistent (to avoid sudden jumps or drops in the figures), we 
exclude these countries from the analysis. For the regression analysis, 
only the specific years with inconsistent data are excluded (reported in 
SI3). 

We measure decoupling (OECD, 2002) of biodiversity impacts as: 

D =

bf t/bf 1995

GDPt/GDP1995

(7) 

D: Decoupling ratio 
bf: Biodiversity footprint or PB impacts 
GDP: The GDP of the region in constant 2005 Euro 
t: year 
Absolute decoupling occurs when the biodiversity impact reduces in 

absolute terms, irrespective of change in GDP, and relative decoupling 
occurs when the biodiversity impact increases, but at a slower rate than 
GDP. 

We follow a similar approach to earlier papers in estimating income 
elasticities of footprint (a modification of income elasticities of demand, 
but the dependent variable being the footprint of a consumption cate
gory rather than the actual consumption), see e.g. Hamilton et al. 
(2018). Instead of arriving at global income elasticities of footprint, we 
build on the findings in McLellan et al. (2014) and group the countries in 
EXIOBASE 3rx into three income quantiles based on their average GDP/ 
cap measured in constant 2005 Euro calculated for EXIOBASE 3 (Stadler 
et al., 2018). Thus, we arrive on region group-specific income elasticities 
of biodiversity footprint. If this elasticity is larger than 1 the interpre
tation is that a 1% increase in GDP/cap leads to a larger than 1% in
crease in biodiversity footprint. The possible mechanisms behind this 
value are explained in the discussion section. 

For testing the robustness of our model, and due to the potential 
explanatory effect of changes in land use efficiency as identified by 
Marques et al. (2019), we include country-specific crop yields as an 
independent variable. This data was gathered from FAOSTAT’s crop 
data that covers the physical production and area harvested for 173 
products for all years of our analysis (1995–2015) (FAOSTAT, 2020). 
The yield was calculated by aggregating over all products to arrive at a 
measure of production (in tons) per area harvested (in hectares). The 
regression function is thus given by: 

ln(bf ct) = αc + β0 + β1(lnGDPpcct)+ β2(lnyieldct)+ ϵct (8) 

α: Time-invariant unobserved heterogeneity (country-fixed effects) 
β0, β1, β2: Regression coefficients 
bf: Biodiversity footprint per capita (in PDF) 
c: Region 
t: Year 
GDPpc: GDP per capita in constant 2005 Euro 
yield: Crop yields 
ϵ: Error term 
We perform the Hausman’s test (Hausman, 1978) to choose between 

a random- or fixed-effects regression model. We check the resulting test 
statistic against the critical value in the chi-squared distribution with 
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two degrees of freedom: χ0.95
2 (2). If the test statistic is larger than this 

critical value, we conclude that only the fixed effects estimation is 
consistent, otherwise both the random effects and fixed effects are 
consistent, but random effects is more efficient. 

We perform tests of model fit to support our choice of random vs. 
fixed effects. These tests are the log-likelihood ratio, Akaike information 
criterion (AIC), Bayesian information criterion (BIC), and root mean 
squared errors. We also perform the Durbin-Watson test to detect 
autocorrelation at lag 1 in the residuals. All model statistics, model fits, 
and country-fixed effects (and their significance) can be found in SI9–12. 
SI9 shows that 77% of the country-fixed effects are significant at level 
0.10. The low R2-values observed for the model with country-fixed ef
fects (SI10) versus the high R2-values for the model with dummy vari
ables explicit for the countries (equivalent to the country-fixed effects 
model) (SI12) indicate that most of the variance is explained by the 
country-fixed effects, rather than the other variables in Eq. (8). 

3. Results 

The global biodiversity footprint has increased by 5–6% from 1995 
to 2015 (Fig. 1 - black dotted line in first column).1 The increase in 
impact is largest in low-income countries (PB account), with a 14% in
crease over the time period, compared to a 3% increase for middle in
come and a 4% decrease for high income. High-income countries have in 
other words managed to achieve absolute decoupling from a PB 
perspective over the last 20 years. In the CB results (second row of 
Fig. 1), biodiversity impacts embodied in imports are accounted for, and 
thus show highly differing trends compared to the PB results. Whilst 
from beginning to the end of the period, we see similar results to the PB 
accounts, there are large intermediary changes. Low-income countries 
have increased footprints by roughly 20% over the period, while the 
middle- and high-income regions have seen a 2% increase – i.e. the 
absolute decoupling does not occur for high income countries in the CB 
account. However, the results are affected by a large spike in the CB 
account for high-income countries around year 2000. This is coupled 
with a reduction in the CB account in low- and middle-income countries 
in similar years, before the trends invert around 2005. 

From a per-capita perspective, the footprint has decreased by 16% 
globally (Fig. 1 - black dotted line in the middle column). The low- 
income region has the largest decrease (18%) which illustrates that 
population growth drives the increased biodiversity impacts in this re
gion. The per capita footprint in the high-income region has decreased 
by 11%. However, up until 2005, the footprint is increasing. To under
stand what is causing the discrepancy between the PB and CB results, 
impacts need to be examined at a product level (which we return to in 
Fig. 2) and the country-level origin and destination results (see SI4). It 
appears that there was a large increase in trade of wood-based materials 
from biodiversity hotspots such as Indonesia, Malaysia, and Papua New 
Guinea to high-income countries such as the United States and Japan. 
This trade subsequently declined in the mid-2000s. It is clear that the CB 
footprint in the high-income region is heavily affected by impacts 
embodied in trade with the low-income region from 1995 to 2005 
(comparing the PB results to the simultaneous increase in absolute CB 
footprint for the high-income region and decrease in CB footprint for the 
low-income region). 

Given the much larger relative increase globally in GDP per capita 
than biodiversity footprint per capita from 1995 to 2015, the decoupling 
index in Eq. (7) is expected to decrease over time. However, the trends 
highly differ for the three region groups. Looking at the decoupling 
figures (right column of Fig. 1), there is a strong relative decoupling 

globally between impact and GDP throughout the time period (D = 0.6). 
Again, the exception is the high-income region from 1995 to 2005, 
where the decoupling is close to unity for the CB-decoupling metric. This 
trend is caused by the sharp relative increase in the CB biodiversity 
footprint per capita in the same period, which increases similarly to the 
GDP per capita in relative terms in this region. The same is not found for 
the PB decoupling as the PB per capita impact stays relatively un
changed in the same period. This suggests increased consumption in the 
high-income region of goods that are produced in biodiversity hotspots. 
Decoupling in the low-and middle-income regions (D = 0.4) is much 
stronger than in the high-income region (D = 0.7) when considering the 
full time period (1995–2015). The decoupling seems to be flattening out 
in all regions for both PB impacts and biodiversity footprints around 
2010 after a rapid decline from 2003 to 2008. After 2010, the decreasing 
trend resumes. 

Whilst the low- and middle-income groups have shown a consistently 
declining trend in the per capita footprint in the time period (Fig. 1 
(middle column) and Fig. 2), total per capita consumption has increased 
(Fig. 2). Increase in consumption largely is due to increases in “Mobility” 
and “Manufactured products”, which are associated with low footprint 
intensities. Consumption of product groups with high footprint in
tensities such as “Food”, and partly “Shelter”, remain relatively un
changed in 2015 compared to 1995. Food consumption makes up the 
largest component (40–61%) of per capita footprints in all regions. 
“Services”, which makes up the main component of consumption in the 
high-income region, has a low footprint intensity, resulting in a rela
tively lower share of the total footprint. From 2004 to 2015, decreasing 
footprint intensities for “Shelter” and “Food” is largely causing the 
downward trend in the per capita footprint. The footprint intensities are 
declining for most consumption categories in all three regions, but 
particularly so for “Food” that is by far the most footprint-intensive 
product group. 

To better understand the relationship between biodiversity footprint 
and affluence, we perform a panel regression analysis where the average 
consumer in each country is represented by a data point over the time 
period (1995–2015). Based on Hausman’s test showing that only the 
fixed effects estimation is consistent in 11 out of 18 cases (see SI11) and 
the focus on temporal changes in footprint in our analysis we chose a 
model with fixed effects. Data points on average consumers are observed 
for the biodiversity footprint and GDP per capita. In addition, we include 
the crop produced per land area for each country. In Fig. 3 these metrics 
are shown as natural logarithms split into the three regions (represented 
by different colors) with linear regression model fits for each year and 
region group (off-diagonal) along with kernel density estimation plots 
on the diagonals. 

The peak of the kernel density estimation plot of the biodiversity 
footprint per capita (first row, first column plot) for the high-income 
region (black graphs) indicates that generally the footprints per capita 
are found at a value somewhat higher than those for the low-income 
group (red graphs), the middle-income group, however, has two 
distinct peaks, one of which are to the right of the high-income group, 
indicating that these observation have a higher biodiversity footprints 
per capita than the distinct peak of the high-income group. 

The scatter plots reveal that apart from a few outliers that indicate 
that the highest footprints are found in the high-income group, while the 
lowest footprints are found in the low- and middle-income groups, there 
is no clear positive correlation between per capita GDP and per capita 
biodiversity footprint. The per capita footprint seems to be decreasing in 
the low-income group with increasing affluence and time (third row, 
first column plot), indicated by increasing color saturation towards the 
top-left corner of the graph. The same is not evident for the two other 
income regions. The efficiency metric (yield) shows a clear trend of in
crease with rising affluence in all income groups (third row, second 
column plot). 

The income elasticities of biodiversity footprint derived from the 
country-fixed panel regressions reveal highly differing trends between 

1 There is a slight difference between the PB- and CB graphs caused by small 
mismatches between production and land-use values in 1995 (the base year for 
this figure) due to imbalances in the data but is within the expected error range 
(about 1%). 
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the regions (Table 1). 
Table 1 is based on results for 2005–2015 to get the most recent 

trends in the income elasticities of footprint (see SI5 for equivalent re
sults for 1995–2004 and 1995–2015). The time period covered in 
Table 1 includes the financial crisis and therefore is particularly inter
esting for studying the response of environmental footprints to changes 
in affluence. For the high-income group, all elasticities are higher than 
one (see explanation on meaning in methods and discussion). As such, 
for the average consumer in high-income countries, there is a distinct 
positive relationship between affluence and biodiversity footprint per 
capita that is not captured for the overall regional average consumer 
(Figs. 1 and 2). For the low- and middle-income groups, most values are 
non-significant, except for “Manufactured products” in both groups, 
“Shelter” in the middle-income group and the negative elasticity for 
“Food” in the low-income group. “Manufactured products” makes up a 
relatively small, but increasing share of the total footprint (Fig. 2), but 
the high- and significant income elasticities of footprint indicate that as 
affluence grows in the future, this consumption category is a concern for 
biodiversity loss. The yield (Eq. (8)) was found to be significant at level 
0.05 for four of the product groups in the middle income region, and not 
significant otherwise (see SI10). 

4. Discussion 

Assuming that the metric in LC-impact, which measures probability 

of extinction is comparable to the metric in the 2014 Living Planet Index 
(McLellan et al., 2014) that estimaes the state of global biodiversity, we 
can compare the trends in the two metrics broken down into three 
regional groups from 1995 and onwards. There are at least three distinct 
similarities in trends of our PB results (Fig. 1) and the 2014 LPI. Firstly, 
the high-income group’s total impact is quite stable, with even a bet
tering state for biodiversity from the early 2000s and onwards. Sec
ondly, in both the middle-income and low-income groups the 
biodiversity has declined, and thirdly, the largest decline is found in the 
low-income group. Although our results do not capture the slight in
crease in biodiversity in the 2014 LPI observed in the period in the mid- 
2000s for the low- and middle-income regions, the similarity in the 
general trend in both sets of results serve as a first robustness check for 
the results at the level of detail presented in our work. The difference 
between PB impacts and CB footprints in Fig. 1 shows the importance of 
both assessing where the biodiversity impact is taking place, and who is 
responsible for the biodiversity impact. Our results show that the 
increasing biodiversity footprints in in the period 1995–2005 is fully 
caused by the high-income consumers, while the two other income 
groups largely cause the increasing impacts after 2006. A comparison 
between CB and PB impacts for the LPI could be a valuable future 
improvement for further robustness checks. 

We show the country-specific biodiversity footprints per capita for 
2015 in SI13. These results largely coincide with findings in the litera
ture. Marquardt et al. (2019) identified Caribbean states, Madagascar 

Fig. 1. Footprints development, total (left) and per capita (middle), as well as decoupling of biodiversity impacts from GDP (right) for PB (top row) and CB (bottom 
row) accounts. Values are relative to 1995. The colors represent the regions grouped by income quantile. CB: Consumption-based, PB: production-based. Global 
values in black dotted line. 
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and Brazil as countries with high per capita footprints and Pakistan, 
Mongolia and Bangladesh as countries with low per capita footprints. 
Our results confirm these trends. Koslowski et al. (2020) found a strong 
relationship between affluence and biodiversity footprints in European 
countries and identified Luxembourg as the country with the highest per 
capita footprint. Of the countries covered explicitly in their study, 
Luxembourg is also the country with the highest per capita footprint in 
our results, although it ranks as low as 44 in our list of all countries. 
Compared to these studies, our results show the significance of per
forming the analysis on a finer regional detail. The top countries ranked 
by biodiversity footprint per capita in our results are small island states 
such as New Caledonia, Seychelles and Dominica that are not explicit in 
Marquardt et al. (2019), but rather aggregated to larger regions. A 
second consequence of finer regional detail is that the relationship be
tween affluence and per capita footprint is more ambiguous in our re
sults compared to Koslowski et al. (2020)’s European results. The top- 
ranking countries in our results are mostly less affluent than European 
countries. Although, we can confirm the trend in European per capita 
footprints with rich countries such as Monaco ranking first, Luxembourg 
second and Liechtenstein third of all European countries (Monaco and 
Liechtenstein are not covered explicitly in their study). 

Our results show on an aggregate regional level a relative decoupling 
of biodiversity loss from affluence (Fig. 1) for all regions (except for the 
high-income from 1995 to 2005). On a global level (SI7), our findings 
share high similarities with Marques et al. (2019). The regression results 

however (Table 1) indicate no sign of decoupling in the high-income 
region. A likely explanation for this is that the high-income region is 
composed of several countries with small populations and high levels of 
affluence. Population differences are not accounted for in the regression 
analysis, meaning e.g. that an average consumer in the US is weighted 
equally to an average consumer in Norway. Thus our regression results 
confirm the trend found by Koslowski et al. (2020) suggesting a high 
correlation between per capita biodiversity footprint and affluence for 
high-income regions. We find a much stronger decoupling for devel
oping regions that typically have seen a great development in land use 
efficiency in the time period covered in our analysis, while the richest 
countries already reached high land use-efficiency pre-1995. 

Food consumption is the main component of the biodiversity foot
print (Fig. 2). The “Food” share makes up half of the footprint globally 
(SI4), compared to 40% found by Wilting et al. (2017). However, “Food” 
has the lowest income elasticity of footprint of all consumption cate
gories in all regions (Table 1). Consumption on “Shelter” is responsible 
for the second highest global share of total biodiversity footprint 
(20.3%) and has an income elasticity of footprint above one for the high- 
income group, but below one for the two other groups. “Services” rank 
third (16.0%) and the income elasticities of footprint is in the middle 
range of all consumption categories in all regions. The two highest in
come elasticities of footprint in the high-income group are for “Clothing 
and footwear” (1.37) and “Manufactured products” (1.94). The share of 
total footprint is increasing for “Manufactured products” for the high- 

Fig. 2. Biodiversity footprint, consumption, and footprint intensities (PDF/EUR) for six consumption groups and the three income groups.  

E.L. Bjelle et al.                                                                                                                                                                                                                                 



Ecological Economics 185 (2021) 107059

8

and middle-income regions and make up 14.0% and 9.4% of the total 
footprint in the two regions respectively. 

Wilting et al. (2017)’s cross-sectional analysis on the relationship 
between the per capita biodiversity footprint and affluence is compa
rable with our results for the high-income group as they use the MRIO 
database WIOD, which has mostly high-income countries explicit (along 
with five RoW regions). Our results correspond well with their findings 
for “Food”, “Manufactured products” (their category is called “Goods”) 
and “Shelter” (“Housing” in their work). The findings differ for “Ser
vices”, where they find a strong positive relationship between affluence 
and biodiversity footprint. Differences in findings can be due to differ
ences in data (they use cross-sectional data), regional aggregation, dif
ferences in biodiversity footprint metric, and the use of RoW regions. 

Income elasticities of biodiversity footprint as we report here, has to 
our knowledge not been investigated in the MRIO literature. A similar 
metric was reported by Clausen and York (2008), who used cross- 
sectional data for 140 countries on the number of threatened marine- 
and freshwater fish species. Their “income elasticity of biodiversity 
footprint” was in the range of 0.06–0.12, which is at the lower end 

compared to our results, except for the low-income region. 
The significance for several of the income elasticities of footprint are 

low (Table 1), so they should be interpreted with caution. We find 
particularly low elasticities for “Food”, while elasticities for “Shelter”, 
“Services”, and “Manufactured products” are high. “Clothing and Foot
wear” has a high elasticity in the high-income region and low elasticities 
in the two other regions. The relationship between income elasticities of 
demand and income elasticities of biodiversity footprint is not neces
sarily straightforward (We report the income elasticity of demand for 
2005–2015 in SI6). Three points below illustrate the connection be
tween income elasticities of demand and income elasticities of biodi
versity footprint and how to interpret the income elasticities of 
biodiversity footprint. Firstly, income elasticities of demand are ex
pected to be close to one since total demand and income have a close to 
one-to-one relationship. This is not the case for the biodiversity foot
print, where global total biodiversity loss has increased by 6.9% from 
1995 to 2015 whilst GDP has increased by about 80% (in constant pri
ces). The income elasticity of biodiversity footprint is in addition to 
being influenced by preferences (also captured in the income elasticity 

Fig. 3. Scatter plots of individual countries with linear regression model fits (off-diagonal) and kernel density estimation (diagonal): Natural logarithms of GDP per 
capita (in 2005 constant Euros), biodiversity footprint per capita (in PDFs), and efficiency (crop per land area). Years are represented with increasing color saturation 
approaching 2015. 

Table 1 
Income elasticities of biodiversity footprint by consumption categories (2005–2015).   

Shelter Food Clothing and Footwear Mobility Manufactured products Services Total 

high 1.18 (***) 1.02 (**) 1.37 (**) 1.25 (**) 1.94 (***) 1.34 (***) 1.3 (***) 
(0.48 1.88) (0.16 1.87) (0.05 2.69) (0.16 2.35) (1.2 2.69) (0.62 2.07) (0.63 1.97) 

middle 0.92 (*) 0.3 () 0.56 () 0.46 () 0.98 (**) 0.77 () 0.62 () 
(− 0.13 1.96) (− 0.53 1.13) (− 0.54 1.66) (− 0.55 1.48) (0.12 1.85) (− 0.78 2.33) (− 0.37 1.6) 

low 0.14 () ¡0.31 (**) 0.19 () 0.14 () 0.38 (**) ¡0.05 () ¡0.0 () 
(− 0.1 0.38) (− 0.56–0.05) (− 0.13 0.5) (− 0.3 0.59) (0.05 0.7) (− 0.34 0.24) (− 0.22 0.21) 

Significance levels: *: p < 0.10 **p < 0.05 ***p < 0.01. 95% confidence intervals in parenthesis. 
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of demand), heavily influenced by the footprint intensity (PDF/EUR), 
which again is dependent on the origin of the biodiversity impact since 
characterization factors greatly vary between regions. Secondly, the 
small changes in per capita biodiversity footprint for the low- and 
middle-income countries in the time period covered are causing several 
of the income elasticities of biodiversity footprint to become non- 
significant. Thirdly, the differences in impact intensities (as discussed 
above) are highlighting some of the focal areas for biodiversity loss 
mitigation through the income elasticities of biodiversity footprint. Ex
amples include “Manufactured products” and “Clothing and footwear” 
for the high-income region. 

The distributional effects of increased land use efficiency on biodi
versity footprint also depends on the impacts embodied in trade. We find 
that the traded part of the biodiversity footprint globally has risen from 
19% in 1995 to 33% in 2015 (SI4), which is in line with other findings 
(Marques et al., 2019; Wilting et al., 2017; Wood et al., 2018), but does 
not correspond with Verones et al. (2017b)’s findings, particularly for 
high-income countries. In 2012 we find the traded share of the footprint 
of the high-income region to be 68%, compared to 6% in Verones et al. 
(2017b). This can in part be explained by their split into four income 
regions, but most likely the difference is caused by their inclusion of the 
biodiversity impact of GHG emissions and water consumption in addi
tion to land use. 

Our results show that the imported share of the footprint is rapidly 
increasing in the low-income (374% increase) and middle-income 
(327% increase) groups, while the increase in the high-income group 
is modest (26% increase). However, the regions differ significantly in 
the imported share of total footprint, with 17%, 24% and 72% for the 
low-, middle-, and high-income groups respectively in 2015. Other 
studies (Marques et al., 2019; Wilting et al., 2017) have focused on the 
high import share of total footprint, but the temporal development in 
our results, showing such a rapid development for the populous devel
oping regions, highlights the importance of also addressing strategies for 
consumption to mitigate biodiversity loss in the future. 

The amount of land use and the geographical location of the land 
used are the dominant drivers for the biodiversity footprint. The 
differentiated response to land use is reflected by distinct species vul
nerabilities to land use types and the importance of some regions for 
global biodiversity (Chaudhary et al., 2015). For this reason, the 
biodiversity footprint in Russia (0.5% of global total) is substantially 
smaller than that of Madagascar (5.9% of global total), even though the 
amount of land use is higher in Russia (4.9% of global total vs 0.7% for 
Madagascar) (SI13). Generally, biodiversity impacts per area land use 
are highest in tropical regions and especially in islands due to higher 
species richness and numbers of endemic species, and highlights the 
importance of where imported products are sourced (Chaudhary and 
Kastner, 2016; Chaudhary and Brooks, 2017). The origin country of the 
biodiversity footprint (see SI4) reveals some interesting trends. For 
example, the growth in footprint for the high-income region observed in 
Fig. 1 can largely be traced back to an increase in footprints sourced 
from low-income countries. Looking at the trends for the high-income 
region’s footprint originating in Indonesia, Malaysia, Philippines, and 
Papua New Guinea we see that in 2005, 17.5% of the high-region’s 
biodiversity footprint can be traced back to these four countries. The 
equivalent share was 14.6% in 1995, and 10.2% in 2013. In addition to 
being highly relevant for outsourcing of biodiversity footprint, it is a 
highly plausible explanation for the differing income elasticities of 
biodiversity footprint observed for the high-income region using 
2005–2015 data (Table 1) compared to using 1995–2004 data (SI5). For 
1995–2004 the origins of the imports are causing the increase in 
biodiversity footprint in the high-income group (Fig. 1). We see a 
distinct break in trends in the high-income group where the location of 
imported land is driving biodiversity loss up until 2005, while income is 
the main driver after 2005. 

In SI4 we trace the footprint sourced from the four countries 
(Indonesia, Malaysia, Philippines, and Papua New Guinea) to the high- 

income region (sheet name: driversFootprint) to the underlying bilateral 
trade data (sheet name: driversTrade), on a detailed sectoral level (the 
200 EXIOBASE sectors). This exercise is a test of validity of our results. 
Trends in footprints should follow the trends in trade for products that 
use resources (in our case land area) in the source country and end up as 
final consumption in the destination country. This is not necessarily the 
case for goods and services that require land use in the source country, 
that is then exported to an intermediate country, goes through pro
cessing, and end up as a final good ultimately consumed in the desti
nation country. Particularly “Products of forestry, logging and related 
services (02)” and “Construction work (45)” show trends of increasing 
share of the high-income region’s total footprint originating in these 
four countries. While similar trends are clearly found in the bilateral 
trade data for the four countries for “Products of forestry, logging and 
related services (02)”, the trend is less distinct for “Construction work 
(45)” in the bilateral trade data, but this would largely be due to 
“Construction work (45)” being an (non-traded) item of final con
sumption that has significant trade of forestry products in its supply- 
chain. For other products, the footprint data show such trends for only 
certain of the four countries. For example, “Oil seeds” originating in 
Malaysia clearly show a peak in 2005 for both bilateral trade and 
footprints. The same is true for “Food products nec” from the Philippines 
in 2001. On the other hand, some of the services, such as “Health and 
social work services (85)” that show a peak in footprints from all four 
countries in 2002, do not show the same trends in the bilateral trade 
data. These examples show that for products that have a short supply 
chain from use of land to consumption, trends in the bilateral trade data 
and footprint data correlate well, while for goods with a longer supply 
chain, the input-output approach is needed to capture the indirect ef
fects of traded goods. 

In SI13 we show the effect of using biodiversity footprint as a metric 
compared to land use when applying a MRIO with high regional detail, 
such as EXIOBASE 3rx. The discussion on pressure footprint (e.g. land 
use) vs. impact footprint (e.g. biodiversity loss) is well covered by Ver
ones et al. (2017b) who use Eora coupled with LC-IMPACT to calculate 
biodiversity footprints. For country-specific results, they find that Brazil 
has a relatively higher impact footprint compared to pressure footprint, 
while the opposite is true for countries such as China and Russia. 
Comparing the land use share and the biodiversity footprint share out of 
the global total, we find similar trends for these countries, although less 
distinct for Brazil, and more distinct for Russia. There are several dif
ferences in approaches between our work and the work of Verones et al. 
(2017b). Although Eora and EXIOBASE 3rx are similar in terms of a 
detailed regional coverage which make them suitable for analyses where 
spatial detail is important, such as for biodiversity, the difference in 
approaches highlight the difference between the databases and show 
how they suit different purposes. Firstly, Eora includes other pressures, 
such as GHG emissions and water that are currently not available for 
EXIOBASE 3rx. Secondly, because of a consistent sectoral classification 
in EXIOBASE 3rx across countries (compared to a variable sector clas
sification for Eora), EXIOBASE 3rx is better suited for analyses on con
sumption categories, such as studying the per capita biodiversity 
footprint drivers. 

In terms of policy implications of our results, there are many aspects 
that could, and should, be taken up in policy design. Firstly, at the 
highest level, we show a strong relationship between affluence and 
biodiversity impact for high-income countries. Thus, policy design must 
effectively engage with this driver. Either we need a systematic shift of 
our view on affluence and its link to consumption (Wiedmann et al., 
2020), or there needs to be significant efforts to offset the effect. As most 
biodiversity loss occurs in low to middle income countries, there are 
obvious implications for consideration of aid directed at biodiversity 
preservation, as well as the instigation of trade-related measures to 
protect or value the biodiversity. In some ways, none of these insights 
are new, although our results do highlight the importance that trade can 
have, especially in driving the spike in the biodiversity footprint of high- 
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income countries during the trade expansion of the 1990’s and early 
2000’s. Considering the increase in deforestation in places like Brazil 
linked to the import of soy and beef cattle products into high income 
countries (Pendrill et al., 2019), there is clearly a stronger need for 
addressing these trade flows and “hidden impacts”. Lessons from inter
national efforts on climate change mitigation may be relevant here, 
including the imposition of border tax adjustments, more recently pro
posed to be in relation to mitigation efforts, membership of “climate 
clubs”, and imposition of effective costing of the externality of climate 
impacts. For biodiversity, similar efforts could be done to offset the price 
signal of importing cheap goods from regions that do not adequately 
price in ecosystem protection. The product group results in our analysis 
reaffirm the importance of the focus on food and forestry products – 
areas where price signals are likely to have significant impacts in the 
global trade market. Alternative options may consider focusing on in
formation to drive changes in consumer choices. Labelling systems here 
have perhaps had mixed levels of success. Certification schemes are now 
common, and ideally would consider the full life-cycle impacts of 
products being labelled, whilst quantitative measures geared towards 
influencing consumer choice through things like biodiversity (or car
bon) footprint indicators on products has arguably had less success. One 
would hope that without blaming consumers, the availability of this type 
of information will better enable consumers in high income countries to 
consider the totality and connection of their choices to global environ
mental issues. 

4.1. Limitations 

Due to low data availability, particularly for developing countries 
and small economies, the supply- and use-tables in EXIOBASE 3rx for 
several of these countries have been estimated using generic coefficients 
(originally from the RoW regions the country belongs to in EXIOBASE 3, 
see Bjelle et al. (2020) and Stadler et al. (2018) for details on compila
tion of the databases). The economic structures of these countries are 
then updated with available raw data on product output (mainly agri
cultural and energy production) and trade, and then re-balanced based 
on country-specific macroeconomic data. This approach is common in 
the MRIO field, as representing the countries is important to ensure 
supply chains are not cut off (Stadler et al., 2014). Representing coun
tries individually is particularly important for biodiversity loss analyses 
because of the high share of global land embodied in the RoW regions 
(Stadler et al., 2014). 

However, there is a high variance in the per capita footprints for 
several of the top-ranking countries. In SI8 the biodiversity footprints 
per capita for all countries and years are shown as boxplots. Unsur
prisingly, island states (particularly in the middle- and low-income 
groups) such as New Caledonia, Vanuatu, Samoa, Dominica, Solomon 
Islands, Sao Tome and Principe, and Madagascar are showing large 
variations in per capita footprint. Tropical island states are expected to 
have a larger spread in per capita footprint because of high character
ization factor values in LC-IMPACT but are in addition among the 
countries with poor raw data availability in EXIOBASE 3rx. Generally, 
the uncertainty in MRIO studies becomes higher as the scope becomes 
more narrow (Moran et al., 2016), which applies to both the sectoral, 
and regional level in our analysis. 

The LC-IMPACT characterization factors are designed to reflect im
pacts of marginal changes in land use and are not balanced at the global 
scale. Hence, when used in combination with global land use data, the 
sum of the country footprints may be higher than expected (see SI4). The 
results represent relative differences between countries and over time, 
but the sum of the country-based impacts does not add up to the actual 
number of global species extinctions. However, this is an issue of scaling 
due to much larger land use area included in EXIOBASE 3rx than in LC- 
IMPACT. Our values are in the same order of magnitude as Marquardt 
et al. (2019) who used a similar approach. 

On the other hand, intensification levels of land use are likely to be a 

source of uncertainty in our results (Marques et al., 2019; Marques et al., 
2017). The land area in EXIOBASE 3rx includes area that is used less 
intensively and should possibly be assigned a lower PDF value than what 
we apply (see the supporting information of Bjelle et al. (2020) for an 
overview of land use types in EXIOABSE 3rx). In this case, the PDF 
values applied will vary based on intensification level of land use, which 
will have distributional impacts that we do not account for. Ensuring 
matching of land use area and intensification level of land use in MRIOs, 
such as EXIOBASE 3rx, and biodiversity loss databases, such as LC- 
IMPACT, is a future improvement that is critical for sound analyses 
using MRIOs for studying biodiversity impacts of consumption. 
Furthermore, the characterization factors do not comprehensively 
differentiate between land use intensities, potentially missing increased 
impacts due to increasing land use efficiencies (and related intensities). 
In addition, there are factors that we do not include that are likely to 
influence biodiversity footprint results, such as the introduction of 
invasive species (Otero et al., 2020) and overexploitation (Marques 
et al., 2017). Although land use is the most important stressor for 
biodiversity, other stressors we do not include, such as GHG emissions, 
can constitute a significant portion of the biodiversity footprint (Wilting 
et al., 2017). Considering multiple stresses together (Oliver and Mor
ecroft, 2014; Haberl et al., 2009) is vital since species extinctions are 
rarely (though occasionally) caused by a single stressor (Verones et al., 
2017b). 

Based on the discussion above we suggest three future improvements 
to increase robustness of biodiversity impact analyses using MRIO. First, 
a high regional detail in MRIOs to account for highly differing charac
terization factors in different ecoregions. Second, to account for all 
stressors including land use, GHG emissions, and water use. Third, to 
align the land use data used in MRIOs to equivalent data in biodiversity 
impact databases such as LC-IMPACT. This includes accounting for 
different land use intensities and to ensure that total land areas match. 

5. Conclusion 

In this work we investigate the changes in drivers of biodiversity loss 
by coupling biodiversity loss characterization factors of land use from 
LC-IMPACT with consumption data from the multiregional input-output 
database EXIOBASE 3rx. We assess the country total biodiversity foot
print, the per capita biodiversity footprint, and the average consumer’s 
footprint over the time period 1995–2015, using a measure of the 
potentially disappeared fractions of species (PDF). Overall, there is a 
6–7% increase in global biodiversity footprint measured in PDF over the 
time period, which gives a relatively strong decoupling of biodiversity 
footprint from growth in affluence. Grouping countries into three 
quantiles according to average income per capita, we find the decou
pling is strongest in the low-income group and weaker in the high- 
income group for biodiversity footprints. The per capita footprints per 
consumption category show overall decreased trends due to decreasing 
footprint intensity per monetary unit, while food consumption is the 
largest component of the footprint as a result of a high footprint intensity 
per monetary unit. The footprint share caused by consumption of 
manufactured products is increasing rapidly in wealthier countries. The 
panel regression analysis shows that the average consumers in the 
richest countries have an income elasticity of biodiversity footprint 
above unity. High elasticities particularly for manufactured products, 
clothing and footwear, and shelter in the high-income region give in
dications about areas of focus for mitigation strategies targeted at con
sumers in high-income countries. A peak in the high-income group’s 
biodiversity footprint in the early 2000s was caused by land embodied in 
imports rather than increasing income, showing the importance of 
addressing trade in policy design. 
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