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Abstract

We explore the cosmological models of the late-time universe based on the holographic principle,

taking into account the properties of the viscosity of the dark fluid. We use the mathematical for-

malism of generalized infrared cutoff holographic dark energy, as presented by Nojiri and Odintsov

(2017). We consider the Little Rip, the Pseudo Rip, and a bounce exponential model, with two

interacting fluids, namely dark energy and dark matter in a spatially-flat Friedmann-Robertson-

Walker universe. Within these models, analytical expressions are obtained for infrared cutoffs in

terms of the particle horizons. The law of conservation of energy is presented, from a holographic

point of view.
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I. INTRODUCTION

Application of the so-called holographic principle [1] allows one to explain the accelerated

expansion of the Universe. An effective way to describe the evolution of the late Universe, is

to make use of the generalized cutoff holographic dark energy model of Nojiri and Odintsov

[2, 3]. Some analyses of this principle to explain the accelerated expansion of the Universe

were carried out in Refs. [4–13]. Recently, the holographic principle has been applied to

the inflationary Universe [14, 15], as well as to bouncing cosmology [16, 17]. It is known

that the theory of holographic dark energy in the late-time Universe is well consistent with

the data of astronomical observations [18–21]. Different applications of the theory of dark

energy were studied in the reviews [22, 23].

The purpose of this article is to obtain a holographic description of the cosmology of

the late Universe, as well as the model with a rebound, with the help of the formalism

of interacting fluids in the presence of viscosity. For the Little Rip, the Pseudo Rip and

a bounce exponential model, infrared radii are calculated in terms of the particle horizon

introduced by Nojiri and Odintsov [3]. In the case of the late-time Universe, in addition

to holographic dark energy we consider also dark matter, unlike the case of the early-time

Universe where the material sector is not considered. As a result, a specific form of the law

of conservation of energy in holographic form is obtained.

II. MODEL OF COUPLED DARK FLUIDS AND HOLOGRAPHIC PRINCIPLE

Let us consider a model of the Universe where there are two interacting fluids, namely

dark energy and dark matter, in a spatially flat Friedmann-Robertson-Walker metric,

ds2 = −dt2 + a2(t)
3∑
i=1

(dxi)2. (1)

We write the dynamic equations in the form [24]

ρ̇+ 3H(p+ ρ) = −Q,

ρ̇m + 3H(pm + ρm) = Q, (2)
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Ḣ = −1

2
k2(p+ ρ+ pm + ρm),

where a is a scale factor, H = ȧ/a is the Hubble parameter and k2 = 8πG is Einstein’s grav-

itational constant with Newton’s gravitational constant G; p, ρ and pm, ρm are the pressure

and the energy density of dark energy and dark matter respectively. The term Q in the

right part of the equations describes the coupling between dark energy and dark matter. A

dot denotes derivative with respect to the cosmic time t.

The Friedmann equation for the Hubble function has the form [24]

H2 =
1

3
k2(ρ+ ρm). (3)

The holographic model of dark energy is based on the holographic principle. We give the

highlights following the terminology in Ref. [1]. When the dark energy is described in this

way it means that the horizon cutoff radius is related to the infrared cutoff. According to the

general holographic energy model [3] the holographic energy density is inversely proportional

to the square of the infrared cutoff LIR,

ρ =
3c2

k2L2
IR

, (4)

where c is a dimensionless parameter.

Since there are no strong arguments about how to choose an infrared radius LIR, we

select the particle horizon Lp or the event horizon Lf [2]. These are defined as

Lp = a

∫ t

0

dt

a
, Lf = a

∫ ∞
t

dt

a
. (5)

In the general case, the infrared cutoff LIR could be a combination of Lp, Lf and their

derivatives; it could contains also the Hubble function, the scale factor, and its derivatives

[3]. In the future, we will assume that the fluid driving the evolution of the universe has a

holographic origin.

III. HOLOGRAPHIC REPRESENTATION OF VISCOUS FLUID MODELS

In this section we will explore the Little Rip, the Pseudo Rip and a bounce exponential

model. We assume that the viscous dark fluid interacting with dark matter is associated

with holographic energy.

3



A. Little Rip cosmology

The characteristic feature of the Little Rip cosmology is that the energy density

monotonously increases with time asymptotically. As a result, infinite time is required

to achieve the singularity. The equation of state parameter is ω < −1, but ω → −1 asymp-

totically. This is a soft variant of the singularity.

Let us consider the Little Rip model with the Hubble function [25]

H = H0e
λt, H0 > 0, λ > 0, (6)

where H0 = H(0), t = 0 is the present time.

Assuming that dark matter is dust, we have pm = 0. Consequently, the law of conservation

of energy for dark matter will take a simpler form

ρ̇m + 3Hρm = Q. (7)

We will use the same coupling as in Ref. [26]

Q = δHρm, (8)

where δ is a positive nondimensional constant. In view of Eq. (8) the solution of Eq. (7) is

[27]

ρm(t) = ρ0 exp

(
δ − 3

λ
H

)
, (9)

where ρ0 is an integration constant.

Let us consider the following equation of state for the viscous fluid [28]:

p = ω(ρ, t)ρ− 3Hζ(H, t), (10)

where ω(ρ, t) is a thermodynamic parameter and ζ(H, t) is the bulk viscosity, which depends

on the Hubble function and on the time t. From thermodynamic considerations it follows

that ζ(H, t) > 0.

Let us consider the simplest case, when the thermodynamic parameter ω(ρ, t) = ω0 and

the bulk viscosity ζ(H, t) = ζ0 are constants. Then Eq. (10) will take the form

p = ω0ρ− 3ζ0H. (11)
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Let us calculate the scale factor

a(t) = a0 exp

(
H0

λ
exp(λt)

)
(12)

and the particle horizon Lp

Lp =
1

λ
exp

(
1

λ
H

)[
Ei

(
−1

λ
H

)
− Ei

(
−1

λ
H0

)]
, (13)

where Ei(bx), b 6= 0 is the integral exponential function [29].

In the holographic language, the Hubble function can be expressed through the particle

horizon Lp [3],

H =
L̇p − 1

Lp
, Ḣ =

L̈p
Lp
−
L̇2
p

L2
p

+
L̇p
L2
p

. (14)

Let us write the corresponding representation of the energy conservation equation of the

Little Rip model

(ω0 + 1)

(
L̇p − 1

Lp

)2

=
1

3
ω0ρ0k

2 exp

[
2(δ − 3)

3ζ0k2
L̇p − 1

Lp

]
, (15)

assuming that λ = 3
2
ζ0k

2.

Thus, we have obtained a reconstruction of the conservation equation as a generalized

form of holographic energy.

B. Pseudo Rip cosmology

We will study a Pseudo Rip model with the Hubble function [25]

H = H1 −H0 exp(−λ̃t), (16)

where H0, H1 and λ̃ are positive constants, H0 > H1, t > 0. In the early-time Universe,

when t → 0 we have H → H1 − H0, while in the late-time universe, when t → +∞ the

Hubble function tends to a cosmological constant, H → H1.

In this case, taking into account (8), we obtain the solution of Eq. (7) [27]

ρm(t) = ρ0 exp

[
(δ − 3)

(
H0t−

H −H0

λ̃

)]
, (17)

where ρ0 is an integration constant.
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Now, assume ω(ρ, t) = ω0 as before, and take the bulk viscosity to be proportional to the

Hubble function, ζ(H, t) = 3τH, where τ is a positive-dimensional constant.

The equation of state (10) takes the form

p = ω0ρ− 9τH2. (18)

We can calculate the scale factor

a(t) = a0 exp

[
H0t+

H1

λ̃
exp(−λ̃t)

]
. (19)

Let us put λ̃ = H0 and calculate the particle horizon Lp:

Lp =
1

H1

{
1− exp

[
−H1

H0

(1− exp(−H0t))

]}
exp(H0t). (20)

In this case, the law of conservation of energy in holographic form becomes

2

(
L̈p
Lp
−
L̇2
p

L2
p

+
L̇p
L2
p

)
+ 3(ω0 − 3τk2 + 1)

(
L̇p − 1

Lp

)2

= ω0k
2ρm. (21)

Thus, a holographic representation of the Pseudo Rip model for a viscous dark fluid

interacting with dark matter was obtained.

C. Bounce cosmology

In this section we consider an example of cyclic cosmology or cosmology with rebound

[30–32]. This name is due to the fact that at the initial instant of time, the Universe, filled

with matter, is in a compressed state. Then there is a rebound without the formation of

singularity, after which the accelerated expansion begins, corresponding to the inflationary

stage.

Let us suppose that the bounce is described by a viscous fluid having a holographic origin.

We again obtain the energy conservation law in terms of the particle horizon. Note that the

coupling of a viscous fluid with dark matter allows one to achieve a better agreement of the

theoretical models with astronomical observations [28].

Let us consider a bounce exponential model [33],

a(t) = a0 exp[β(t− t0)2n], (22)

where a0, β are positive dimensional constants, n ∈ N , and t0 a fixed bounce time.
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The evolution of the universe in this model is as follows. Before bounce time (t < t0), the

scale factor decreases and there occurs a contraction of the Universe. At the instant (t = t0),

when a0 = a(t0), the bounce takes place. Later, at (t > t0), the scale factor increases and

the Universe expands.

The Hubble function is given by the expression

H(t) = 2nβ(t− t0)2n−1. (23)

Let us suppose that the coupling function Q(t) has the same form (8) as above. Then

the matter energy density equals [27]

ρm(t) = ρ0 exp

[
δ − 3

2n
H(t)(t− t0)

]
, (24)

where ρ0 is an integration constant.

Let us consider the case with ζ(H, t) = ζ0 and a linear dependence of the thermodynamic

parameter with time,

ω(ρ, t) = a1t+ b1, (25)

where a1, b1 are arbitrary constants.

Then the equation of state (10), is obtained as follows

p = (a1t+ b1)ρ− 3ζ0H. (26)

Let us calculate the particle horizon

Lp =
1

2

√
π

β
exp[β(t− t0)2]erf(

√
β t), (27)

where erf(
√
β t) is the probability integral.

Finally, we write the energy conservation law as

2

(
L̈p
Lp
−
L̇2
p

L2
p

+
L̇p
L2
p

)
+9(a1t+b1+1)

(
L̇p − 1

Lp

)2

−9ζ0k
2

(
L̇p − 1

Lp

)
= 3(a1t+b1)k

2ρm. (28)

Thus, we have obtained a holographic representation of the bounce exponential model for a

viscous fluid coupled with matter.
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IV. CONCLUSION

This work is devoted to the holographic description of the cosmological models Little Rip,

Pseudo Rip, and the bounce exponential model, in a homogeneous and isotropic Friedmann-

Robertson-Walker metric. In order to apply the holographic principle to these models,

we have identified the infrared radius LIR with the particle horizon Lp. As a model of

the Universe, we have assumed a dark viscous fluid interacting with dark matter. We

have applied the holographic principle for cosmological models for various values of the

thermodynamic parameter ω(ρ, t) and for different forms of the bulk viscosity ζ(H, t) in the

equation of state. In these models, the infrared radius in the form of a particle horizon

have been calculated, in order to obtain the appropriate energy conservation law in each

case. In that way, we have established the equivalence between the viscous models and the

holographic models.

The natural question arises: is the holographic theory in agreement with astronomical

observations? A comparative analysis, involving a theoretical holographic model of dark

energy on a brane, was given in [34]. It showed that, for a wide range of parameters including

redshifts for distant supernova Ia, good agreements were obtained between observed data

and theoretical predictions.
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