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Abstract

We describe the evolution of the early and late universe from thermodynamic considerations,

using the generalized non-extensive Tsallis entropy with a variable exponent. A new element in

our analysis is the inclusion of a bulk viscosity in the description of the cosmic fluid. Using the

generalized Friedmann equation, a description of the early and the late universe is obtained.
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I. INTRODUCTION

The data of astronomical observations conform that an accelerated expansion of the

universe is currently taking place [1–3]. There are two phases of the accelerated expansion:

one at the early stage of the evolution of the universe (inflation), and one at a later stage

(present). The explanation of the cosmic acceleration can be given in two different ways,

The first and most usual one is to introduce dark energy [4, 5] and an inflaton field [6]. The

second one is to introduce a modified gravity: various models of F (R) gravity [7, 8], F (G)

gravity [9], etc. An interesting way to solve the the problem of the origin and nature of

cosmic acceleration is to introduce the holographic hypothesis [10]. The generalized cutoff

holographic dark energy model, proposed by Nojiri and Odintsov [11, 12], was found to give

a good description of the inflationary universe [13, 14]. The recently proposed holographic

model of dark energy using Tsallis’ entropy [15], is called Tsallis’ holographic dark energy.

Another approach to the modified theory of gravity is based on the relationship between

gravity and thermodynamics [16–18]. This approach makes use of the extended entropy

instead of the usual one. It is known that in the case of gravitational systems, the Boltzmann-

Gibbs entropy ought to be generalized to the non-extensive Tsallis entropy [19–21], since

the Boltzmann-Gibbs entropy is applicable for additive systems, what gravitational systems

are not. A consequence of the application of non-extensive thermodynamics to cosmology

is the modified Friedmann equation, which transform into the usual Friedmann equation

when the generalized Tsallis entropy transforms into the Boltzmann-Gibbs entropy. The

generalization of the Tsallis entropy was recently proposed by Nojiri, Odintsov and Saridakis,

[22]; cf. also [23].

This paper examines the evolution of the early and the late universe from a thermody-

namic point of view, using the generalized Tsallis entropy instead of the Boltzmann-Gibbs

entropy. The description is given on the basis of the generalized Friedmann equation. We

consider various forms of the equation of state of the isotropic fluid, taking into account a

bulk viscosity. We describe both inflationary solutions and dark energy, in the early as well

as in the late stages.
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II. COSMOLOGICAL APPLICATIONS OF NON-EXTENSIVE THERMODY-

NAMICS

We consider the homogeneous and isotropic Friedmann-Robertson-Walker (FRW) flat

universe with metric

ds2 = −dt2 + a2(t)
∑
i=1,2,3

(dxi)2, (1)

where a(t) is the scale factor.

Let us assume that the expanding universe is filled with an isotropic fluid with energy

density ρ and pressure p. For a large-scale system such as our universe, the Boltzmann-

Gibbs theory is inapplicable, and it is more appropriate to use the non-extensive Tsallis

thermodynamics. The Tsallis entropy, when adopting units such that ~ = kB = c = 1, can

be written as [24]

S =
A0

4G

(
A

A0

)δ
, (2)

where A is the area of the system, A0 is a constant, and δ is the non-extensity parameter.

The generalized Friedmann equation following from the thermodynamics of the non-

extensive horizon has the form [25]

δ

2− δ
H2

1

(
H2

H2
1

)2−δ

=
8πG

3
ρ+

Λ

3
, (3)

where H1 is a constant corresponding to δ = 1. Λ is the cosmological constant. This

equation can describe either the late-time universe or the inflationary stage. The case δ = 1

corresponds to the first FRW equation and the Bekenstein-Hawking entropy. In general, δ

can be a running parameter.

Equation (3) can be used to describe the early as well as the late epochs of the universe.

III. THERMODYNAMIC REPRESENTATION OF MODIFIED COSMOLOGY

In this section we consider the modified cosmology in the early and the late universe from

a thermodynamic viewpoint.
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A. Late-time universe

Let us consider the expanding universe filled with an isotropic fluid with energy density

ρ and pressure p. The modified Friedmann equations when thermodynamical aspects are

accounted for, are [22]

H2 =
k2

3
(ρ+ ρDE), (4)

Ḣ = −k
2

2
(p+ ρ+ pDE + ρDE), (5)

where k2 = 8πG, and ρDE, pDE are the energy density and the pressure of the dark energy,

respectively. The additional terms in the Friedmann equations, which determine the so-

called effective sector of dark energy, are associated with the generalized Tsallis entropy.

We will focus on the regime H2 � H2
1 , which corresponds to the late universe. In this

approximation, the density and the pressure of dark energy take the form [22]

ρDE =
3

k2

[
Λ

3
− c

(
3− n
n− 1

)(
H2

1

H2

)2−n

H2 +H2

]
, (6)

pDE = − 1

k2

[
Λ + 2Ḣ + 3H2 − c

(
3− n
n− 1

)(
H2

1

H2

)2−n

[H2 + 2Ḣ(n− 1)]

]
. (7)

Here n is an integer, introduced to make the formalism analytically manageable. It comes

from the assumption that δ has the scale dependence δ = δ(x), with x = H2
1/H

2, and a

subsequent analytic choice for the function δ(x). (More details are given in Ref. [22].) c is

a model parameter.

In this case the first Friedmann equation takes the form [22]

c

(
3− n
n− 1

)(
H2

1

H2

)2−n

H2 =
k2

3
ρ+

Λ

3
. (8)

Note that for n = 2 and c = 1 we obtain instead of Eq. (8) the standard Friedmann equation.

We now put the cosmological constant equal to zero, and assume that the universe is

filled with a viscous dark energy fluid with density ρ satisfying an inhomogeneous equation

of state (EoS) in flat space-time [26, 27]

p = ω(ρ, t)ρ− 3Hζ(H, t), (9)

where ω(ρ, t) is the thermodynamic parameter and ζ is the bulk viscosity which depends on

the Hubble function H and the time t. According to thermodynamics, one should assume

ζ(H, t) > 0.
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We will take the following form for the EoS parameter ω [26, 27],

ω(ρ, t) = ω1(t)(A0ρ
β−1 − 1), (10)

where A0 6= 0 and β ≥ 1 are constants. We choose the bulk viscosity as [26, 27]

ζ(H, t) = ζ1(t)(3H)m, (11)

with m > 0.

We will investigate the evolution of the late-time universe using the modified Friedmann

equations (5) and (8). We will apply non-extensive thermodynamics with varying exponent

to cosmological models belonging to different time dependences of ω(ρ, t) and ζ(H, t), and so

get analytcal expressions for the Hubble function. Moreover, we will study how the viscosity

and the generalized entropy influence the formation of cosmological singularities. Taking

into account Eqs. (5) - (8) we obtain the gravitational equation of motion

c

(
3− n
n− 1

)(
H2

1

H2

)2−n {
[3ω(ρ, t) + 5]H2 + 2Ḣ(n− 1)

}
− 3k2Hζ(H, t) = 0. (12)

We will now investigate the solutions to this equation when n = 3/2.

a. Constant thermodynamic parameter ω and constant bulk viscosity ζ

We first assume that the EoS parameter is constant, ω(ρ, t) = ω0, and similarly for the

bulk viscosity, ζ(H, t) = ζ0. In this case Eq. (12) becomes

c
H1

H
Ḣ + [(3ω0 − 1)cH1 − ζ0k2]H = 0. (13)

Hubble’s function is

H(t) =
c[

(3ω0 − 1)c− ζ0k2

H1

]
t+ S

, (14)

where S is an integration constant. If we put S = 0, then at t → 0 the Hubble function

diverges, and a cosmological singularity appears (for a classification of singularities, see

Ref. [28]).

The time derivative of the Hubble function becomes

Ḣ(t) =

(
1− 3ω0 +

ζ0k
2

cH1

)
H2(t). (15)
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If ω0 <
1
3

(
1 + ζ0k2

cH1

)
, then the ratio ä(t)

a(t)
= H2 + Ḣ > 0, and the universe experiences an

accelerated expansion.

b. Constant thermodynamic parameter ω and bulk viscosity ζ proportional to H

Now assume ω(ρ, t) = ω0 as before, but take the bulk viscosity to be proportional to the

Hubble function, ζ(H, t) = 3τH, where τ is a positive dimensional constant. Then Eq. (12)

takes the form
H1

H
Ḣ − 3

c
τk2H2 + c(3ω0 − 1)H1H = 0, (16)

from which we derive a solution of the form

τ̃ − ω̃

H
= S1 exp

[
ω̃0

τ̃H1

(
H1

H
− ω̃0t

)]
, (17)

where τ̃ = 3τk2/c, ω̃0 = (3ω0 − 1)cH1, and S1 is an integration constant. In the far future

t→ +∞, the Hubble function tends to a ”cosmological constant”. It means, H(t)→ H∞ =

(3ω0−1)c2
3τk2

H1.

c. Linear time dependence of the thermodynamic parameter ω and constant bulk viscosity

ζ

Let us suppose in the following a linear dependence of the thermodynamic parameter,

ω(ρ, t) = at + b where a and b are arbitrary constants, and let us take ζ(H, t) = ζ0. The

equation of motion (12) will then read

H1

H
Ḣ + (3at+ 3b− 1)H1H −

1

2
ζ0k

2H = 0. (18)

The Hubble function will take the form

H(t) =
6a(

3at+ 3b− 1− ζ0k2

cH1

)2
+ S2

, (19)

where S2 is another integration constant. In this model the Hubble function diverges at

t0 = − 1
a

(
b− ζ0k2

3cH1
− 1

3

)
, and shows a cosmological singularity of the type Big Rip.
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The time derivative of H(t) is

Ḣ(t) = −
(

3at+ 3b− 1− ζ0k
2

cH1

)
H2(t). (20)

At t = t0 one has Ḣ = 0. If t < t0, Ḣ > 0, and the Friedmann universe expands in an

accelerated way. If t > t0, Ḣ < 0, and the universe is in a non-phantom phase.

d. Constant thermodynamic parameter ω and bulk viscosity linearly dependent on H and

time

We consider now the case when the thermodynamic parameter is ω(ρ, t) = ω0, and the

bulk viscosity is a linear function of the Hubble function and the time, ζ(H, t) = 3τ(dt+e)H,

where d and e are arbitrary constants and τ is a dimensional parameter.

In this model the equation of motion (12) takes the form

Ḣ − (d̃t+ ẽ)H3 + ω̃0H
2 = 0, (21)

where d̃ = 3
c
τk2

H1
d, ẽ = 3

c
τk2

H1
e, and ω̃0 = 3ω0 − 1.

From this equation we derive as solution(
u2 + u− d̃

ω̃2
0

)
exp

[
1

θ
arctan

(
u+ 1/2

θ

)]
= S3(d̃t+ ẽ)u2, (22)

where u = 1
ω̃0

(d̃t+ ẽ)H, θ =

√
4d̃−ω̃2

0

2ω̃0
, and S3 is an integration constant.

B. Early-time universe

In this section we will investigate the inflationary stage of the universe using the modified

Friedmann equations - a consequence of non-extensive thermodynamics. We consider then

approximation H2 � H2
1 (inflation).

The first Friedmann equation will be written as [22]

cb1

(
1− n
1 + n

)(
H2

1

H2

)−n
H2 =

k2

3
ρ+

Λ

3
, (23)

where c and b1 are model parameters. If n = 0 and c = b1 = 1, Eq. (23) reduces to the

standard Friedmann equation.
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Next, we will look for solutions of this equation and explore the features of the solutions

for various cosmological models, taking into account the viscosity property of the fluid. If

we neglect the matter sector, the equation allows the universe to go over to the de Sitter

inflationary solution. We will restrict our analysis to the case Λ = 0, and will put n = 1/2.

We repeat the steps of the previous subsection.

a. Constant thermodynamic parameter ω and constant viscosity ζ

Taking into account the assumptions from Sec. III.A, the equation of state (9) gets the

simple form

p = ω0ρ− 3ζ0H. (24)

The Friedmann equation (23) becomes

Ḣ + (ω0 + 1)
cb1
2H1

H3 − 3

2
ζ0k

2H = 0, (25)

and the Hubble function is given by the equation

H − 3ζ0k
2

cb1(ω0 + 1)

H1

H
= C1 exp

(
−3

2
ζ0k

2t

)
, (26)

where C1 is an integration constant.

In the asymptotic limit t→ +∞ the Hubble function tends to a ”cosmological constant”.

That means, H(t)→ H∞ =
√

3ζ0k2H1

cb1(ω0+1)
.

b. Constant thermodynamic parameter ω and bulk viscosity ζ proportional to H

We now assume that ω(ρ, t) = ω0, and that ζ(H, t) = 3τH with τ a positive dimensional

constant. The equation of motion takes the form

Ḣ +
1

2
H2

[
(ω0 + 1)

cb1
H1

H − 9τk2
]

= 0. (27)

From Eq. (27) we obtain
aH exp (− b

aH
)∣∣∣H − b

a

∣∣ = C2 exp (
1

2

b2

a
t), (28)

8



where a = (ω0 + 1) cb1
H1
, b = 9τk2, and C2 is an integration constant. If t→ +∞, the Hubble

function tends to a ”cosmological constant”, H(t)→ H∞ = b/a.

c. Linear time dependence of the thermodynamic parameter ω and constant bulk viscosity

ζ

We assume that ω(ρ, t) = at + b where a, b are arbitrary constants, and we assume that

ζ(H, t) = ζ0. The equation of motion then takes the form

Ḣ − 3

2
ζ0k

2H +
cb1
2H1

(at+ b+ 1)H3 = 0. (29)

The Hubble function becomes

H(t) =
1√

C3e−2c̃t − 1
c̃

(
ãt+ b̃− ã

2c̃

) , (30)

where the notations are ã = acb1
2H1

, b̃ = cb1(b+1)
2H1

, c̃ = 3
2
ζ0k

2, and C3 is an integration con-

stant. A cosmological singularity is seen to occur at t = t0, corrresponding to a zero of the

denominator of Eq. (30).

d. Constant thermodynamic parameter ω and linear dependence on H and time of the

bulk viscosity ζ

Let us now assume that ω(ρ, t) = ω0, and that ζ(H, t) = 3(dt + e)τH, where d, e are

arbitrary constants and τ is a dimensional parameter.

The equation of motion takes the form

Ḣ + ω̃H3 − (ẽt+ d̃)H2 = 0, (31)

with ω̃ = 1
2
(ω0 + 1) cb1

H1
, ẽ = 9

2
eτk2, and d̃ = 9

2
dτk2.

Let us suppose that ω0 = −1 (de Sitter universe). Then Eq. (31) simplifies, into

Ḣ − (ẽt+ d̃)H2 = 0, (32)
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and the solution is

H(t) = − 2ẽ

(ẽt+ d̃)2 + C4

, (33)

where C4 is an integration constant. In this cosmological model, the formation of a singu-

larity at the instant t0 = −d̃/ẽ is also possible.

The time derivative of H(t) becomes

Ḣ(t) =

[
2ẽ

(ẽt+ d̃)2 + C4

]2
(ẽt+ d̃). (34)

If t > t0, then Ḣ > 0 and the Friedmann universe is expanding with acceleration. If t < t0,

then Ḣ < 0 and the expansion is decelerating.

IV. CONCLUSION

In this work we investigated the evolution of the early universe, as well as the late-time

universe, employing non-extensive thermodynamics which again is based on the generalized

Tsallis entropy with a variable exponent. Various forms of the thermodynamic parameter

and the bulk viscosity in the equation of state for the cosmic fluid were considered. Solutions

of the modified Friedmann equation for the equations of state for an isotropic fluid were

obtained, when the viscosity was accounted for. The analysis of the solutions showed that

inclusion of the thermodynamic properties of the system can lead to a singular behavior.
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