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A B S T R A C T   

Directional well trajectory planning, which includes the optimization of the drilling site location and the tra
jectory between the drilling site to the completion interval, plays an important role in reducing subsea field 
development cost. The traditional well trajectory planning methods are based on the projected 2D profile of the 
wellbore trajectory with empirical knowledge or trial-and-error method to select a proper drilling site. In this 
study, we propose a new efficient optimization method based on the 3D Dubins curve, which has been widely 
used in autopilot for path planning but has never been mentioned in drilling industry. In short, we use gradient 
descent method to find the best drilling site location while adopting the 3D Dubins curve as the optimal wellbore 
trajectory to reach each completion interval so that the “1-site-n-wells” problem can be easily solved. Abundant 
case studies including both mathematically representative cases and the real practical field cases are conducted 
to demonstrate the feasibility and efficiency of our method. Wider application of our method for more complex 
situations are also discussed. This work is the first of a series of papers which systematically introduce an efficient 
method for subsea field layout optimization to minimize the development cost.   

1. Introduction 

Industry benchmarks show a significant increase in oil and gas field 
development cost over last decade. The cost challenge is much harsher 
in subsea field development. According to the report (Skaugset, 2015) 
released by Norway’s Oil and Gas Technology Strategy for 21st Century 
(OG21), the subsea cost tripled from the year 2005–2013. Taking the 
low oil price and its volatility into account, it’s crucial to cut the subsea 
development cost to maintain the industry profitability. 

Subsea development involves quite a complicated procedure where 
the layout design plays one of the most important roles to cut the overall 
cost. From the reservoir to the topside facility, the layout design mainly 
includes well trajectories, positions of drilling sites and manifolds, 
flowline and cable routing, etc. In order to achieve the overall minimum 
cost, we need not only a method to achieve the optimum in every single 
designing phase, but also to find the interrelationships of cost within all 
these phases. In this study, we propose a method for directional well 
trajectory planning so that we can find out the optimal position of one 
drilling site to reach a given set of completion intervals with optimal 
trajectories. 

Directional well trajectory planning is one of the most difficult tasks 

in field development because of too many different types of constraints 
and the unpredictable incurring cost. Statistically, the well drilling cost 
is almost linearly related with the trajectory length. The work of D. S. 
Amorim Jr (Amorim et al., 2019). reveals that the cost per meter always 
converges to a stable value as the well length increases, proving the 
statistically linear relationship between the drilling cost and the well
bore length. Based on the statistical result, the optimal trajectory can be 
considered as the shortest trajectory with curvature constraints. Even 
though, practically, the shortest trajectory may not be the optimal 
because of the complex downhole situations, it’s still the design basis for 
well planning. 

The curvature constrained method for well trajectory optimization 
dates back to the early 1970s (Taylor and Mason, 1972; Zaremba, 1973) 
when directional drilling technology started to be developed. Since then, 
it has evolved several types of curves (McMillian, 1981; Shengzong 
et al., 1999; Sawaryn and Thorogood, 2005; Samuel, 2010; Ilyasov et al., 
2014; Liu and Samuel, 2014; Yi and Samuel, 2015; Mittal and Samuel, 
2016; Wang et al., 2019) for the well trajectory, including the circular 
arc, the polynomial spline, the catenary and the clothoid or the Euler 
spiral. However, all these decades, the drilling industry seemed to 
overlook the Dubins curve (Dubins, 1957) which exactly gives the 
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shortest curvature-constrained path between two directional points in 
2D given that the moving direction is only forward. 

Dubins concluded that the shortest path is made by joining circular 
arcs of maximum curvature and a straight line, which was later proved 
by Johnson (Johnson, 1974) by using Pontryagin’s maximum principle. 
In details, the Dubins curve is comprised of two families which are the 
CCC and CSC, where “C” stands for circular arc, and “S” stands for 
straight line. The CCC family consists of RLR and LRL, where “R” stands 
for right turn, and “L” stands for left turn. The CSC family consist of RSR, 
RSL, LSR, LSL. The shortest path is one of the six patterns, as shown in 
Fig. 1. While extending the original 2D Dubins curve into 3D, Sussman 
(Sussmann, 1995) pointed out a situation when the two points are too 
close, the optimal path should be helicoidal which can be regarded as a 
special CCC pattern. Till now, the Dubins curve has already matured in 
the autopilot industry for path planning of cars, robots, UAVs, AUVs, etc 
(Chitsaz and Lavalle, 2008; Patsko and Turova, 2009; Hota and Ghose, 
2010; Owen et al., 2015; Pharpatara et al., 2015; Wang, 2018). 

The drilling process is almost the same as the piloting process, and 
the well trajectory planning is essentially a path planning. Obviously, 
CCC family is not suitable for drilling because of the large turning angle 
in the trajectory. Hence, here in this study, we will extend the CSC 
patterns of the original 2D Dubins curves into 3D as the optimal well 
trajectory for well planning. The property of Dubins curve not only 
guarantees the shortest path but also minimizes the length of curved 

section. Consequently, the straight section of Dubins curve avoids higher 
inclination angles than necessary. All these features are beneficial for 
drilling. 

By adopting the Dubins curve for the optimal wellbore trajectory, we 
can then use gradient descent method to determine the optimal drilling 
site for a cluster of wells or to design a multilateral well to reach several 
completion intervals. In the following content, we will show the feasi
bility and efficiency of our well trajectory planning method which 
combines the Dubins curve strategy and the gradient descent method in 
solving the “1-site-n-wells” problem. Wider application of our method 
will also be discussed after case studies. 

2. Problem description and basic assumptions 

2.1. Problem description 

Given k well completion intervals, k ∈ Integer+, each completion 
interval is defined by its start point P2,i = (Px2,i, Py2,i,Pz2,i) and the 
drilling direction vector V2,i = (Vx2,i,Vy2,i,Vz2,i) where Vz2,i ≤ 0 to 
ensure the direction is not upward; the highest allowed kickoff point 
P1,i = (Px1,Py1,Pz1,i) for every wellbore should be at the depth of Zi m, i. 
e. Pz1,i = Zi < 0, i ∈ {1, ​ 2, ​ ... ​ , ​ k}. The drilling direction vector at 
every kickoff point is vertical downwards V1,i = (0,0, − 1). The 

Fig. 1. Patterns of 2D Dubins Curve (modified based on (Wang, 2018)).  
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maximum allowed turning rate/dogleg severity is κ◦/30 m, i.e. mini
mum allowed turning rate radius is rmin = 5400

πκ m. The cost of a wellbore 
trajectory can be a user-defined function related with the trajectory 
structure following the form as COST = cstC(Lc)+ cstS(Ls,θ), where Lc is 
the length of non-straight section, Ls is the length of straight section, θ is 
the deviation angle of the straight section; cstC(Lc) is the cost function of 
non-straight section which is continuous and positively correlated with 
Lc, i.e. ∂ cstC(Lc)

∂ Lc > 0; cstS(Ls, θ) is the cost function of straight section 
which is continuous and positively correlated with Lc and θ, i.e. 
∂ cstS(Ls,θ)

∂ Ls > 0 and ∂ cstS(Ls,θ)
∂ θ > 0. 

The objective is to find the optimal drilling site D : (Px1, Py1, 0) to 
drill multiple wells from one drill site such that they can reach all 
completion intervals with the total cost of all trajectories minimized 
while fulfilling the dogleg severity constraint. We can simply call this 
“1-site-n-wells” problem. 

2.2. Basic assumption and simplification  

1. The formation underground is drillable in all directions.  
2. The surface for the drilling site is a horizontal plane z = 0.  
3. Every completion interval is reasonable, so that it is easily reachable. 

For example, if the maximum allowed turning rate/dogleg severity is 
1.5◦/30 m, i.e. the minimum curvature radius is r = 1145.9 m, while 
the start point of the completion interval is too shallow at Pz2 = −

1000 m, and the vector is required to be horizontal V2 = ( − 1, 0,0), 
then such a completion interval is considered as unreasonable, 
because we cannot reach such a completion interval with an easy 
trajectory as we have to drill below the interval depth and then drill 
upwards even if the wellbore starts to kick off at the surface, unless 
we reduce the turning rate radius, i.e. increase the dogleg severity. As 
shown in Fig. 2.  

4. For wells drilled from one drilling site, the difference within the 
exact locations of wellheads is quite small, hence we can consider all 
wellheads’ locations are the same as the drilling site location. 

3. Methodology 

3.1. Mathematical model and brief analysis 

This optimization problem can be divided into two levels. The first 
level is to find the optimal trajectory of minimum cost when the 
completion interval (P2, V2) and highest allowed kickoff point (P1, V1) 
are both given: 

Obj. min[COST(P1,V1,P2,V2, r)]
= min[cstC(Lc) + cstS(Ls, θ)]

s.t. r ≥ rmin

(1) 

Equation (1) cannot implicitly tell which parameters should be taken 
as the variables to be optimized to achieve the objective. Given 
∂ cstC(Lc)

∂ Lc > 0, ∂ cstS(Ls,θ)
∂ Ls > 0 and ∂ cstS(Ls,θ)

∂ θ > 0, the objective can be converted 
into Equation (2) if Lc, Ls and θ can reach minimum at the same time 
with the r constraint. It should be noted that Lc, Ls and θ are function of 
(P1,V1,P2,V2,r), for convenience, we just write as Lc, Ls and θ rather than 
Lc(P1,V1,P2,V2, r), Ls(P1,V1,P2,V2, r) and θ(P1,V1,P2,V2, r). 

Obj. min[cstC(Lc) + cstS(Ls, θ)]
= cstC(min(Lc)) + cstS(min(Ls),min(θ))

s.t. r ≥ rmin

(2) 

The Dubins curve which starts from the highest allowed kickoff point 
to the start point of completion interval just fulfills Equation (2). Prac
tically, the curved wellbore section is more costly than the straight 
section, i.e. ∂ cstC(Lc)

∂ Lc >
∂ cstS(Ls,θ)

∂ Ls , hence minimizing the curved length is 
prior compared to minimizing the straight length in cutting the overall 
cost. While ensuring the curved length Lc to be minimum, the Dubins 
curve also minimizes the total length of the curve Lc + Ls between two 
directional points, i.e. Lsis minimized as well. What’s more, Dubins 
curve makes the straight section to be less inclined in our drilling sce
nario where V0 = [0, 0, − 1], which means θ is also minimized. Hence 
the solution of the first level optimization problem is to find the Dubins 
curve, and Equation (1) becomes equivalent to Equation (3). Equation 
(3) is just to find out the Dubins curve given (P1,V1,P2,V2,r). In section 
3.2, we will see that finding the Dubins curve is solving a set of three 
transcendental equations. 

Obj. min[COST(P1,V1,P2,V2, r)]
= cstC(Lc) + cstS(Ls, θ)

s.t. r ≥ rmin
Lc,Ls, θ ∈ DubinsCurve
Pz1 = Z

(3) 

The second level is to find the optimal drilling site D : (Px1,Py1, 0) so 
that the total cost of all optimal lateral trajectories is minimum, given all 
the completion intervals (P2,i, V2,i), the highest allowed kickoff points’ 
depth Pz1,i = Zi and their directions V1,i. Compared with the first level 
problem, the x and y components of highest allowed kickoff point 
(Px1, Py1) becomes the unknown variables that need to be optimized. As 
shown in Equation (4), the second level optimization is the model for 
solving the whole problem. 

Obj. min
D:(Px1 ,Py1)

∑k

i=1
COST(P1,V1,P2,V2, r)i

= min
D:(Px1 ,Py1)

∑k

i=1
[cstC(Lc)i + cstS(Ls, θ)i]

s.t. ri ≥ rmin

Lci, Lsi, θi ∈ DubinsCurve
Pz1,i = Zi

(4) 

For each lateral trajectory ∀i ∈ {1, 2, ... , k}, once the drilling site D :

(Px1, Py1, 0) and the highest kickoff point’s depth Zi are given, we can 
obtain the minimum COST(P1,V1, P2,V2, r)i from the first level optimi
zation whose constraints also fulfill the second level optimization. Hence 
by gradient descent, we can optimize the unknown variables (Px1, Py1)

to achieve the objective, i.e. to find out the optimal drilling site to 
minimize the total cost. By using the Matlab built-in function “fmincon”, 
we can easily solve the model. 

3.2. 3D Dubins Curve for wellbore trajectory 

The original Dubins curve (Dubins, 1957) only solved the 2D sce
nario, for the 3D well planning scenario, we can derive it as follows. Fig. 2. Unreasonable well completion interval for a given dogleg severity.  
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Given the highest allowed kickoff position P1 : (Px1,Py1,Pz1) and di
rection vector V1 = (0, 0, − 1), the well completion interval P2 : (Px2,

Py2,Pz2) and direction vector V2,i = (Vx2,i, Vy2,i, Vz2,i), as shown in 
Fig. 3, C1 is the end point of the first circular section, i.e. build-up sec
tion. C2 is the start point of the second circular section which can be 
either the continued build-up section as shown in Fig. 3(a) or the 
drop-down section as shown in Fig. 3(b) and (c). In certain cases, C1 can 
coincide with P1, C2 can coincide with P2. Another property of Dubins 
curve is that the minimum allowed curvature radius value is the radius 
value of both circles: 

r = rmin (5) 

Denote the straight section vector, which is unknown, as 

T =C1C2
⇀

=(Tx,Ty, Tz) (6) 

The unit vector of T is 

t=
T
‖T‖

(7) 

The vector perpendicular to the first circular plane is 

U1 =T × V1 (8) 

The radius vector oriented from P1 towards O1 is 

Ω1 =V1 × U1 (9) 

The unit vector of Ω1 is 

ω1 =
Ω1

‖Ω1‖
(10) 

Hence the center of the first circle is 

O1 =P1 + r⋅ω1 (11) 

The radius vector oriented from C1 towards O1 is 

Φ1 =T × U1 (12) 

The unit vector of Φ1 is 

φ1 =
Φ1

‖Φ1‖
(13) 

Therefore, the point C1 can be expressed as 

C1 =O1 − r⋅φ1 (14) 

Similarly, we can get ω2, O2, φ2, and then the point C2 

C2 =O2 − r⋅φ2 (15) 

Use the definition of T to get the three unknown variables (Tx,Ty,Tz): 

T =C2 − C1 (16) 

Equation (16), where C1 and C2 are functions of T, is a set of 3 
transcendental equations with 3 unknown variables (Tx, Ty, Tz). It is 
almost impossible to get the explicit analytical expression for (Tx,Ty,Tz)
from these transcendental equations, but we can use gradient descent 
algorithm to obtain their values. This can be done by using the Matlab 
built-in function “fsolve”. After T = (Tx,Ty,Tz) is calculated from 
Equation (16), we can calculate the other geometric parameters of the 
3D Dubins curve. 

The turning angle on each circular plane 

γ1 =∠P1O1C1 = arccos
(

V1⋅T
‖V1‖⋅‖T‖

)

(17)  

γ2 =∠P2O2C2 = arccos
(

V2⋅T
‖V2‖⋅‖T‖

)

(18) 

The length of each circular section: 
Fig. 3. 3D Dubins curve for Wellbore Trajectory.  
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Lc1 = γ1⋅r; Lc2 = γ2⋅r (19) 

The total curved length is the sum of two circular section: 

Lc= Lc1 + Lc2 (20) 

The length of the straight section: 

Ls=‖T‖ (21) 

The calculation process not only gives us the optimal trajectory, but 
also tells if an assigned drilling site is suitable to drill to the completion 
interval. As shown in Fig. 3(c), when it requires the trajectory to turn 
around, i.e. γ2 is bigger than 90◦, we may consider that drilling site is not 
so suitable even it is feasible. 

4. Case study 

In this section, we first test on some special cases where the human 
intuition can tell the correct results to validate our method. Then we 
demonstrate the results for more complex general cases generated by 
our method. For the purpose of demonstration, assign the user-defined 
cost functions in a reasonable form as follows: 

cstC(Lc)= 2Lc (22)  

cstS(Ls, θ) = (1+ sin θ)Ls (23) 

Such cost functions indicate that the circular well trajectory is more 
expensive than straight trajectory because 2 ≥ 1+ sin θ; besides, the 
vertically straight well trajectory is cheaper than the inclined trajectory 

because 1+ sin θ ≥ 1, where θ ∈
[
0, π

2

]
. Of course, the users can assign 

their own cost functions as they like provided the functions are 
continuous and fulfill the requirements that ∂ cstC(Lc)

∂ Lc > 0, ∂ cstS(Ls,θ)
∂ Ls > 0 and 

∂ cstS(Ls,θ)
∂ θ > 0. 
As for the computational time, it will be trivial to report the exact 

time for each case, because it only takes several seconds for a case 
without plotting the optimal cost distribution figure, coded by Matlab, 
conducted on an Intel i5-4210U CPU. Such a short time on such an old 
CPU bespeaks the efficiency of the method, and we believe there is still 
space for improvement in our algorithms and codes. 

4.1. Case 1: validation cases 

In the validation cases, we assign representative values for the input 
parameters so that it’s more convenient for us to have the correct 
intuition results and then to compare with the numerical results 
generated by our method. The initialization of the drilling site location 
for the gradient descent algorithm is set as (1, ​ 1) for all the following 
validation cases. 

4.1.1. Case 1.1 
For a single well completion interval, the best drilling site should be 

vertically above the point where the tangent vector of the circle 
tangential to the completion interval is straight upwards. In such a case, 
the optimal trajectory is essentially a 2D curve, and there is only one 
curved section, i.e. P1 and C1 coincide. As shown in Table 1 and Fig. 4. 
The tiny numerical error is induced by the gradient descent computation 
and it depends on the settings for numerical/optimality tolerance. 

The optimal cost distribution of a drilling site where Px1,Py1 ∈

[ − 2,2] is shown in Fig. 5. The position resolution of the figure is 0.1. The 
blank area, as shown in Fig. 5(b), indicates that if the drilling site is 
located there, then the completion interval cannot be reached easily at 
the given turning rate constraint. In other words, a CCC family of Dubins 
curve is required. 

From the figures we can see how the well completion interval affects 
the cost distribution. 

4.1.2. Case 1.2 
For an even number of well completion intervals distributed sym

metrically to a vertical line, the best drilling site is the cross point of the 
vertical line and the surface plane. As shown in Table 2 and Fig. 6. 

The optimal cost distribution of a drilling site where 
Px1, Py1 ∈ [ − 2,2] with the position resolution of 0.1 is shown in Fig. 7. 
From the figure, we can see the symmetrical property of the cost dis
tribution corresponding to the symmetry of the well completion in
tervals. The case 1.2(a) is not just axis symmetric, but also symmetric to 
x-plane and y-plane, hence the cost distribution is not just an odd 
function, but also an even function. While the case 1.2(b) is only axis 
symmetric, hence the cost distribution for case 1.2(b) is just an odd 
function. 

Table 1 
Case 1.1  

Case Input Parameters Optimal Drilling Site (Px1, Py1) 

P2 V2 Pz1 rmin Intuition Numerical 

(a) (0, 0, 
− 4) 

(-1, 0, 0) − 1 1 (1,0) (1.0000, ​ −
9.3944 × 10− 10)

(b) (0, 0, 
− 3.5) 

(-1, − 1, 0) − 1 1 
(

1̅
̅̅
2

√ ,

1̅
̅̅
2

√

)

(0.7071, ​ 0.7071)

(c) (0, 0, 
− 4) 

(

− 1, ​ 0,

​ − 1̅
̅̅
3

√

)

− 1 1 (0.5,0) (0.5000, ​ −
6.9746 × 10− 9)

Fig. 4. Optimal drilling site and well trajectory for case 1.1.  

H. Liu et al.                                                                                                                                                                                                                                      



Journal of Petroleum Science and Engineering 208 (2022) 109450

6

4.2. Case 2: general cases 

In the general cases, we use a more realistic set of completion in
tervals, generated by manipulating data from a real field as shown in 
Table 3. Highest kickoff point for all laterals is Zi = − 300 m. 

4.2.1. Case 2.1 
If the maximum allowed turning rate/dogleg severity is only 2◦/30 

m, i.e. minimum allowed turning rate radius is rmin = 859.4 m. The 
optimal drilling site and well trajectories for the 4 well completion in
tervals in Table 3 is shown in Fig. 8. The optimal cost distribution of a 
drilling site where Px1 ∈ [400,3200], Py1 ∈ [200,2100] with the reso
lution of 50 is shown in Fig. 9. The blank area indicates that if the 

drilling site is located there, then there is at least one completion interval 
that can’t be reached. The data mark indicates the optimal drilling site of 
the lowest total cost based on the discretized values at the mesh nodes. 
The exact optimal drilling site location is (Px1, Py1) =

(1129.33, ​ 606.19), and the corresponding optimal cost is 22,878.0. 

4.2.2. Case 2.2 
From Case 2.1, we can easily tell that it is the 4th well completion 

interval which is relatively shallow that causes the unreachable situa
tion, i.e. the blank area in Fig. 9. If we don’t consider the 4th well 
completion interval, the solution is as follows. 

The optimal drilling site and well trajectories for the first 3 well 
completion intervals in Table 3 are shown in Fig. 10. The optimal cost 
distribution of a drilling site where Px1 ∈ [400,3200], Py1 ∈ [200,2100]
with the resolution of 50 is shown in Fig. 11. The data mark indicates the 
optimal drilling site of the lowest total cost based on the discretized 
values at the mesh nodes. The exact optimal drilling site location is (Px1,

Py1) = (1768.28, 750.31), and the corresponding optimal cost is 
19,367.4. As we are not considering the 4th well completion interval, 
there is no more blank area in Fig. 11. 

4.2.3. Case 2.3 
From Case 2.1, we can see that the 2nd well completion interval is 

not so suitable to be drilled from the same drilling site as the other 3 
intervals, because it requires a big turn in the trajectory. It may be better 
to leave the 2nd well completion interval as a satellite well or consider it 
with the possible well intervals in the future development. 

The optimal drilling site and well trajectories for the well completion 
intervals NO.1, NO.2 and NO.4 in Table 3 is shown in Fig. 12. The 
optimal cost distribution of a drilling site where Px1 ∈ [400,3200], Py1 ∈

Fig. 5. Optimal cost distribution for case 1.1.  

Table 2 
Case 1.2  

Case Input Parameters Optimal Drilling Site(Px1, Py1) 

P2,i V2,i Pz1,i rmin Intuition Numerical 

(a) (2, 0, − 4) (1, 0, 
0) 

− 1 1 (0, ​ 0) (0.0000, ​ 0.0000)

(-2, 0, 
− 4) 

(-1, 0, 
0) 

− 1 1 

(b) (2, 0, − 4) (1, 0, 
0) 

− 1 1 (0, ​ 0) ( − 1.8422 × 10− 17 ,

​ 3.0342 × 10− 16)
(-2, 0, 
− 4) 

(-1, 0, 
0) 

− 1 1 

(1.5, 1, 
− 7) 

(0, 1, 
0) 

− 1.5 1.5 

(-1.5, 
− 1, − 7) 

(0, 
− 1, 0) 

− 1.5 1.5  
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[200,2100] with the resolution of 50 is shown in Fig. 13. The blank area 
indicates that if the drilling site is located there, then there is at least one 
completion interval that can’t be reached. The data mark indicates the 
optimal drilling site of the lowest total cost based on the discretized 
values at the mesh nodes. The exact optimal drilling site location is (Px1,

Py1)= (1129.33, 606.19), and the corresponding optimal cost is 
12,518.4. Comparing to the result in Case 2.1, we can see that the 2nd 
well completion interval almost doesn’t affect the optimal drilling site 
location. The slight effect of the 2nd well completion interval on the cost 
distribution can be seen from the data marks in Figs. 9 and 13. 

4.2.4. Case 2.4 
If the maximum allowed turning rate/dogleg severity is increased to 

4◦/30 m, i.e. minimum allowed turning rate radius is rmin = 429.7m. 
The optimal drilling site and well trajectories for the 4 well completion 

intervals in Table 3 is shown in Fig. 14. The optimal cost distribution of a 
drilling site where Px1 ∈ [400,3200], Py1 ∈ [200,2100] with the reso
lution of 50 is shown in Fig. 15. Where we can see there is no more blank 
area in Fig. 15 compared to Fig. 5. The data mark indicates the optimal 
drilling site of the lowest total cost based on the discretized values at the 
mesh nodes. The exact optimal drilling site location is (Px1, Py1) =

(1302.38, ​ 697.97), and the corresponding optimal cost is 20,048.1. 

5. Further discussion  

1. When there is a turning around in the trajectory, such as the 2nd 
trajectory in Case 2.2 and we want to avoid such a risk, we can do the 
following:  
a. Firstly, we can add one more nonlinear constraint Equation (24) 

into our model Equation (4). Fig. 16 and Fig. 17 show the result of 

Fig. 6. Optimal drilling site and well trajectories for case 1.2.  
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Case 2.2 with Equation (24) added as a constraint. Equation (24) 
limits the turning angle between the straight section and the 
second curved section to be no larger than 90◦. The optimal 
drilling site location is (Px1,Py1) = (2570.53, ​ 1504.94), and the 
corresponding optimal cost is 21,011.91. 

Fig. 7. Optimal cost distribution for case 1.2.  

Table 3 
Completion intervals in case 2.  

Interval 
No. 

Start Point P2,i of 
Interval 

End Point of Interval Direction Vector 
V2,i 

1 (410.90, 209.89, 
− 3850.27) 

(413.54, 211.37, 
− 3879.12) 

(2.64, 1.48, 
− 28.85) 

2 (3011.47, 2098.01, 
− 4368.09) 

(2995.05, 2087.54, 
− 4376.20) 

(-16.42, − 10.47, 
− 8.11) 

3 (1784.37, 763.80, 
− 4179.39) 

(1789.20, 767.85, 
− 4207.38) 

(4.83, 4.05, 
− 27.99) 

4 (1475.43, 789.75, 
− 2066.32) 

(1482.84, 793.68, 
− 2071.76) 

(7.41, 3.93, 
− 5.44)  

Fig. 8. Optimal drilling site and well trajectories for case 2.1.  

Fig. 9. Optimal cost distribution for case 2.1.  

Fig. 10. Optimal drilling site and well trajectories for case 2.2.  
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γ2 = arccos
(

V2⋅T
‖V2‖⋅‖T‖

)

≤
π
2

⇔ T⋅V2 ≥ 0
(24)    

b. If the result from step a. is not favorable, then discuss with the 
geological engineers and reservoir engineers to check if it is 
possible to modify the completion interval so that the turning 
around doesn’t happen.  

c. If modification is also impossible, we should consider two drilling 
sites for the given intervals. Then the problem will include 
another challenge problem of finding the best combination of 
intervals for the drilling sites, which is beyond our study here. Of 
course, for a small-scale problem, a compromised solution can be 
that we separate the unwanted interval for a satellite well. And 
then compare the total cost with the result from step a. As for the 
challenging “k-sites-n-wells” problem, kindly refer to our 
following two papers in the series where we provide an unparal
leled efficient method. 

Fig. 11. Optimal cost distribution for case 2.2.  

Fig. 12. Optimal drilling site and well trajectories for case 2.3.  

Fig. 13. Optimal cost distribution for case 2.3.  

Fig. 14. Optimal drilling site and well trajectories for case 2.4.  

Fig. 15. Optimal cost distribution for case 2.4.  
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2. We can also easily include the constraint for the drilling site location. 
For example, if the well location has a limit Py1 ≤ 1300 along with 
the nonlinear constraint Equation (24), we will get the optimal 
drilling site location at (Px1,Py1) = (2704.44, ​ 1300.00) with the 
cost of 21,100.20.  

3. We can also include the formation information into the cost function. 
But the original Dubins curve trajectory no longer guarantees to be 
the optimal. In order to get the accurate optimized result, we will 
firstly need to discretize the formation according to the heteroge
neity, then optimize all the intermediate nodes between the kickoff 
point and the well completion interval point. This process is of course 
much more complicated, but the optimization idea of using the 
Dubins curve and gradient descent method remains the same. This is 
a good start point for our future work to make drilling cost estimation 
more accurate.  

4. If we want to find the exact locations of all wellheads Di : (Px1,i,Py1,i,

0) in one drilling site D0 : (Px1, Py1, 0), we can continue to do a 
similar optimization process with the all wellheads’ locations Di in 
the vicinity of the optimized drilling site D0. Of course, there can be 
various definition of vicinity, here gives a simple case where Di are in 
the radius of Q centered at D0: 

Obj. min
Di :(Px1 ,Py1)i

∑k

i=1
COST(P1,V1,P2,V2, r)i

= min
Di :(Px1 ,Py1)i

∑k

i=1
[cstC(Lc)i + cstS(Ls, θ)i]

s.t. ri ≥ rmin

Lci, Lsi, θi ∈ DubinsCurve
Pz1,i = Zi

‖Di − D0‖2 ≤ Q

(25)    

5. At last, we can also combine this optimization process with the 
seabed facility layout to obtain the overall optimized subsea field 
development plan. Of course, we should firstly solve the combina
torial problem just discussed in 1.c. 

6. Conclusion 

We introduced the concept of Dubins curve for well trajectory 
planning. Based on the CSC family of 2D Dubins curve, we have pro
posed an efficient generic 3D well trajectory optimization method which 
can be a good way to handle the “1-site-n-wells” problem. It provides a 
tool for drilling cost estimation at the early phase of the field develop
ment. What is more, our method has very good potential to be more 
accurate and to be embedded into a systematical method for the overall 
field layout optimization in more complex scenarios. 
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Appendix I. List of Symbols 

k: number of completion intervals; 
P1,i: kickoff point for the i − thwell, 3D coordination is (Px1,Py1,Pz1,i); 
V1,i: drilling direction vector of the i − thwell, in this study all V1,i is (0, 0, − 1); 
P2,i: start point of the i − thwell completion interval, 3D coordination is (Px2,i,Py2,i, Pz2,i) ; 
V2,i: drilling direction vector of the i − thwell completion interval, 3D coordination is (Vx2,i,Vy2,i,Vz2,i)

Zi: highest kickoff point for i − thwell. 
κ: max allowed turning rate/dogleg severity, ◦/100m. 
rmin: minimum allowed turning radius, m. 
D: optimal drilling site, 3D coordination is (Px1,Py1,0)
Lc: length of the non-straight/circular section; 
Ls: length of the straight section; 
θ: deviation angle of the straight section; 
cstC(Lc): cost function of the non-straight section; 
cstS(Ls,θ): cost function of the straight section; 
COST(P1,V1, P2,V2, r)i: cost function of the i − thwell. 
T: straight section vector in the Dubins curve 

Note:  

1. For the subscription i denoting the parameters of the i − th well, it maybe ommited such as (Px1,Py1,Pz1,i) when all wells share the same value or 
when we are just focusing on one specific well such as Equation (1). The subscription i may also be merged outside the parenthesis such as Equation 
(4).  

2. Some symbols related with Dubins curve are not listed here as they are not used other than Section 3.2. 
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