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English abstract

Phase perturbative calculations of diffuse light scattering on randomly
rough surfaces in and out of plane
At some length scale or another, all surfaces show a degree of roughness, and it is imper-
ative to understand the physical implications of it. This work tackles reflection of electro-
magnetic waves in the optical wavelength regime on randomly rough surfaces, described
by statistical autocorrelation functions of Gaussian form. The incoherent mean differen-
tial reflection coefficient is calculated for such surfaces using the approximate method of
phase perturbation theory, whose numerical computation is further simplified by perform-
ing some analytical integrals. The simplified governing equation is solved numerically,
and the calculated reflection amplitudes are compared to previous experimental measure-
ments and direct numerical solutions. In this way, the accuracy of the theory is assessed,
and some of the general features of rough surface scattering is observed and discussed.

Overall, the present implementation of phase perturbation theory largely reproduce
the general shape and features that is expected in rough surface scattering, and seems to
be a better approximation than the closely related small-amplitude perturbation theory.
However, there is still a difference between its result and those obtained previously. The
main reason is believed to be that the involved roughness topography is too severe for the
chosen approximation to be valid.
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Norsk sammendrag

Fase-perturbative utregninger av diffus lysspredning på rue overflater,
i og utenfor spredningsplanet
Ved en eller annen lendgdeskala viser alle overflater en grad av ruhet, og det er viktig
å forstå de fysiske konsekvensene av det. Denne oppgaven handler om refleksjon av
elekromagnetiske bølger i det optiske bølgelengderegimet på tilfeldige rue overflater, som
beskrives av statistiske autokorrelasjonsfunksjoner på Gaussisk form. Den inkoherente
midlere differensielle refleksjonskoeffesienten for slike overflater beregnes ved hjelp av
faseperturbasjonsteori, som er en approkismasjonsmetode. Den numeriske utregningen
forenkles videre ved å utføre noen integraler analytisk, og den gjenstående styrende lignin-
gen løses numerisk. De beregnede refleksjonsamplitudene sammenlignes med tidligere
anskaffede eksperimentelle målinger og direkte numeriske løsninger. På denne måten vur-
deres teoriens nøyaktighet, og noen generelle trekk ved spredning på rue overflater blir
observert og diskutert.

Totalt sett reproduserer den nåværende implementasjonen de generelle fasongene og
trekkene som forventes innen spredning på rue overflater, og teorien later til å være en
bedre approksimasjon enn den nært relaterte liten-amplitude-perturbasjonsteorien. Men,
det er likevel en viss forskjell mellom de nåværende og tidligere anskaffede resultatene.
Hovedårsaken til dette antas å være at den aktuelle ruhetstopografien er for stor til at ap-
proksimasjonen er gyldig.
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Chapter 1
Introduction

1.1 Motivation
This work concerns itself with electromagnetic wave scattering from rough surfaces.

Rough surfaces accounts for every surface, at some length scale. This is sufficient
motivation to study its fundamental properties, such as scattering properties. Electromag-
netic wave scattering is a common tool for sample analysis, as it is often precise and
non-destructive. Therefore, the random surface interaction with electromagnetic wave
scattering is particularly interesting.

Surface roughness has traditionally been seen as a nuisance, whose imperfectness chal-
lenges exact theory. However, many recent applications have accounted for surface rough-
ness, and some applications desire specific surface roughness to make use of its physical
properties. Random surface scattering is also known to exhibit weak localisation effects,
and gives rise to physical features that are interesting in their own right, such as the en-
hanced backscattering phenomenon (see for instance Ref. 1).

There is a wide range of applications where rough surface scattering is important, and
here we will mention some examples. Electromagnetic scattering from rough surfaces has
been utilised in research of remote sensing of layered media [2] or land surfaces such as
soil or snow [3]. The scattering on rough-surfaced atmospheric dust particles [4, 5] or the
randomly rough assembly of ice crystals on the surface of cirrus clouds [6] are relevant
to atmospheric and climate science. Radar echoes of randomly rough interfaces is of use
in geological surveying, and has been used to search for water on the surface of Mars [7,
8]. Rough scattering surfaces on the substrate of solar cells is one of the ways to increase
their efficiency, by incoherent scattering angles possibly being conducive to total internal
reflection within the optically active layer [9, 10]. Considerations of surface roughness has
been used to study tyre grip on road surfaces [11].

Surface-specific parameters determine the structure of the surface, and in turn the scat-
tering properties involved. Recently, the inverse problem has been considered [12–14],
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which implies that surface parameters are found from measurements of scattered waves.
Inversion techniques would be of service to all the aforementioned applications. Rigorous
solution of the governing equations of electromagnetism is computationally costly, which
necessitates approximate solutions. Quick calculation of inversion methods might enable
in situ microscopy of the parameters that define a rough surface.

1.2 Aim of work
This work uses phase perturbation theory (see Sec. 5.2), an approximate method of ob-
taining the incoherent mean differential reflection coefficient (see Chapter 4) - which is an
experimentally accessible quantity that essentially gives the amplitude of scattered light in
a certain direction. The aim is to formulate the theory in a similar way to Navarrete Alcalá
et al. [15], but attempt to reduce the computational load by using an analytical mathe-
matical expansion inspired by Simonsen, Kryvi and Maradudin [12]. The viability of the
technique is discussed, after scrutinising the accuracy of a numerical implementation in
comparison to previous implementations and experimental results [12, 15, 16]. Scattering
both in and out of plane is considered, and both metal and dielectric surfaces are targets of
the numerical analysis. No detailed discussion of computational complexity is provided,
but some of the numerical challenges of such a problem has been addressed and discussed.

1.3 Thesis structure
Chapters 2–4 provide theoretical background in three distinct branches of physics. Firstly,
the theory of random surfaces in Chapter 2 introduces some concepts of statistics and
stochastic processes, which is used to describe the random surface parametrically. Chap-
ter 3 gives a basic introduction to electromagnetic theory starting at Maxwell’s equations,
and points at all the underlying assumptions that often pass unmentioned. Chapter 4 gives
some introduction to the theory of scattering, and gives an approximate coupling of the
electromagnetic boundary conditions at a rough surface.

Chapter 5 describes the main approximation, the phase perturbation theories, and dis-
cusses the specific formulation and the order of errors that may be introduced. Chapter 6
discusses the specific numerical implementation, and some of the potential challenges.

Chapter 7 both present the result of the numerical analysis, compare it with previous
results, and discusses some general features of random surface scattering and phase pertur-
bation theory as they show up. A summary of the error-inducing approximations is given,
and is discussed in light of the comparisons. Finally, the concluding statement of the thesis
is given in Chapter 8.

2



Chapter 2
Theory of random, rough surfaces

This chapter aims to introduce the concept of surface roughness, and how to describe them
statistically.

2.1 A description of roughness

At some length scale or another, any surface exhibits non-flat texture or roughness. Rough-
ness describes the topographic relief on a surface, and is comprised of two parts; the
heights of the topographic features (above and below) the mean level, and the in-plane
distance between these features, sometimes called the surface spatial wavelength [17].

The ensuing discussion regards surface roughness that causes optical light scattering,
and the surface spatial wavelength on such a surface is in the range from∼0.1 µm to∼1 mm

[17, 18]. Such roughness may for instance appear due to the presence of scratches or
polishing marks, machining marks or grooves, or the presence or particles on top of the
surface. Determination of surface roughness may be measured experimentally, by for
example atomic force microscopy or scanning near-field optical microscopy [19].

However, roughness also manifests itself on the nanometer scale as surface height dif-
ferences, being in the range between∼0.01 nm to more than 1 µm. This range of roughness
contains features of less distance than the inter-atomic spacing. Due to this wide range of
roughness with relatively comparable relations between features, many surfaces can be
well described by fractal theory, wherein, the fractal dimension is a measure of the rough-
ness independent of the length scale [20]. The fractal dimension has been reported to be
well defined and approximately constant over a significant range of length scales for a
selection of materials [21]. The description of a surface in terms of fractal parameters is
an alternative approach to the description in terms of statistical parameters that will be
presented here.

The typical ratio between surface spatial wavelength and surface heights is in the range

3



between ∼10 000 and ∼10 [18]. The roughest of these come from synthetically crafted
surfaces, while the smoother end of the spectrum is a very close approximation to a flat
surface. Therefore, typical surfaces of interest lend themselves to perturbations around the
flat surface case, which is important for all the approximations to be introduced.

2.2 The surface profile and autocorrelation functions
Consider two materials connected by a perfectly flat interface at the x3 = 0 -plane. Let
the material in the region x3 > 0 be labelled ’+’, and the material in the region x3 < 0 is
labelled ’−’. A modestly rough interface is well described as a perturbation to this system.
The plane of the interface is no longer perfectly flat, but described by the surface profile
function ζ(x‖). The notation x‖ refers to the in-plane triplet of coordinates, (x1, x2, 0).

For simplicity, we assume that the function ζ(x‖) is single-valued, i.e. we limit the
roughness to a modest level. The Rayleigh hypothesis, to be discussed later, demands
further restrictions on the roughness, so this simplification is inconsequential with respect
to the final result. The single-valued property makes averaging the surface profile function
into a well defined operation - it is the continuous sum of the displacement from the mean.
We are free to choose the appropriate coordinate system for the x3-coordinate, such that
the spatial mean of the surface profile function vanishes;〈

ζ(x‖)
〉

= 0. (2.1)

The notion of random roughness implies an absence of repeating topographical pat-
terns, such as one would find in a grating. Therefore, we will assert that ζ(x‖) is a stochas-
tic process. A one-dimensional schematic illustration of such a surface is depicted in
Fig. 2.1, which also illustrates how intricately the scattering directions may depend on the
specific surface topography. In Eq. (2.1), a stationary property has been assumed, which
means that the mean of ζ(x‖) does not depend on x‖. The mean value may therefore be
calculated at any point by averaging over a sufficiently large neighbourhood around x‖,
instead of taking into account the entire (possibly infinite) surface. This manifests itself
as translational symmetry of statistical properties [22]. From now on we will also assume
that the surface is ergodic, meaning that the spatial average described above is the same
as an average over any ensemble of realisations of ζ [22–24]. The ergodic property relates
the height average over any particular realisation of the surface, to the true statistical en-
semble average that depends on the statistical parameters that generated the surface in the
first place.

In practice, it simplifies the process of calculating or measuring quantities relating to
the surface. The process of spatially averaging over the surface may require very precise
knowledge of ζ. Ensemble averaging, instead requires a new realisation of the surface for
each data point. The statistical significance stems from the number of realisations, which
is infinitely expandable. Experimentally, this can be achieved by measuring different parts
of a single surface sample (abusing the stationarity which always follows from ergodicity).

However, not all manufactured surfaces are equally ergodic [25]. This represents a
limit of the validity of the theory. Assuming the surface is stationary and ergodic anyway,
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x1
x2

{+}
{−}

Figure 2.1: A schematic illustration of a one-dimensional randomly rough surface and some
light reflected upon it. The scattering direction depends intricately on the specific surface to-
pography. With respect to the described coordinate system, the x3-axis is vertical, and the
x1-x2 plane is the horizontal plane. The x2-unit vector is pointing into the plane.
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one may define the surface autocorrelation function by [1, 22]〈
ζ(x‖)ζ(x

′
‖)
〉

= δ2W (
∣∣x‖ − x ′‖

∣∣). (2.2)

In the above equation, δ =
√〈

ζ2(x‖)
〉

is the root mean square height of ζ, and W is
the height autocorrelation function between the height of the points x ′‖ and x‖. The au-
tocorrelation is the surfaces statistical correlation between different realisations of itself.
The average 〈·〉 must therefore be the ensemble average, though as mentioned previously
it makes no difference for ergodic surfaces. The dependence on the absolute difference
stems from the stationary property. The case W (|x‖|) = 1 is known as perfect correlation.
Obviously, any point is perfectly correlated with itself, meaning W (0) = 1.

Inserting this final expression into Eq. (2.2), leaves the equation for δ, which is also
known as the variance of ζ (also known as the second statistical moment, or the closely
related cumulant). If the height distribution of ζ follows a Gaussian form, then Eqs. (2.1)
and (2.2) uniquely determine the statistical properties of the surface, as all higher order
cumulants vanish [22, 24].

2.3 Power spectrum and Fourier representations
Quantities that appear in random surface scattering theory is often given in terms of the
surface power spectrum defined by

g(
∣∣k‖∣∣) :=

∫
d2x‖W (

∣∣x‖∣∣) exp
[
−ik‖ · x‖

]
, (2.3)

recognised as the Fourier transform1 of the correlation function. Similarly, it is often
convenient to define a spatial Fourier integral representation of the surface profile function
ζ, i.e.

ζ(x‖) =

∫
d2k‖
(2π)2

ζ̂(k‖) exp
[
ik‖ · x‖

]
. (2.4)

Here, ζ̂(k‖) is a Fourier coefficient of ζ(x‖) given by

ζ̂(k‖) =

∫
d2x‖ζ(x‖) exp

[
−ik‖ · x‖

]
. (2.5)

Therefore, the Fourier space equivalents of Eqs. (2.1) and (2.2) may be written down as
[26] 〈

ζ̂(k‖)
〉

= 0, (2.6)〈
ζ̂(k‖)ζ̂(k

′
‖)
〉

= (2π)2δ(k‖ − k ′‖)δ
2g(
∣∣k‖∣∣), (2.7)

1We define the forward Fourier transform in space to have a minus sign in the exponential in its defini-
tion, which is not a unique or ubiquitous definition across all disciplines. The present definition is f̂(k) :=∫∞
−∞ d3xf(x) exp [−ik · x].
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where δ(k‖) is the two-dimensional Dirac-delta function, not to be confused with the mean
square height δ2. Equations (2.6) and (2.7) also determine the complete statistical proper-
ties of the surface if applied to a Gaussian distribution.

For the numerical work, we assume the correlation function is Gaussian [22];

W (
∣∣x‖∣∣) = exp

[
−x2‖/a2

]
, (2.8)

where a is the surface correlation length. By assuming a to be a direction-independent
scalar, we have further assumed an isotropic surface. This simply means that the statistics
are independent of the orientation of the surface, and it represents a significant simplifica-
tion of the theory. The power spectrum associated with Eq. (2.8) is

g(
∣∣k‖∣∣) = πa2 exp

[
−a2k2‖/4

]
. (2.9)
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Chapter 3
Electromagnetic theory

This chapter aims to introduce general concepts from electromagnetism. Then by selec-
tively ignoring some concepts, the scope and validity of the work of the thesis is limited.

3.1 Maxwell’s equations and related quantities
The fundamental equations that define the subject of electromagnetism are Maxwell’s
equations (MEs). In SI-units, on differential form, they read [1, 27, 28]

∇ ·D(x; t) = ρ(x; t) (3.1a)

∇×H(x; t)− ∂D(x; t)

∂t
= J(x; t) (3.1b)

∇×E(x; t) +
∂B(x; t)

∂t
= 0 (3.1c)

∇ ·B(x; t) = 0, (3.1d)

where E and H are electric and magnetic fields, D and B are electric displacement and
magnetic flux density, and ρ and J are (free) charge and current densities. Taking the
divergence of Eq. (3.1b), inserting Eq. (3.1a) and using that divergence of curl is zero, one
arrives at the continuity equation

∂ρ

∂t
(x; t) +∇ · J(x; t) = 0. (3.2)

The charge and current densities exist due to charge-bearing particles that are present
in the medium underlying the field in question. Conducting media is characterised by a
subset of the charge-bearing particles being (nearly) unrestrained from the material internal
electrical potential, and as such is free to align in a manner that counteracts external fields
in the interior. Therefore, in conducting media, ρ and J can only manifest themselves on
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the medium surface. In vacuum they vanish completely, and for many materials they can
be safely neglected.

The relations between D and E, and between H and B depend on the medium the
fields exists in. Generally, we have constitutive relations given by [27–29]

D = ε0E + P (3.3a)
B = µ0H + µ0M, (3.3b)

where ε0 is the vacuum permittivity and µ0 is the vacuum permeability. These are known
to have the numerical values of ε0 ≈ 8.854× 10−12 F/m and µ0 := 4π × 10−7 H/m. We
have also introduced P, being the electric polarisation, and M, the magnetic polarisation
(magnetisation). They correspond to the response of bound (electric or magnetic) moments
contained in the medium upon application of an external field, either E or H respectively.

The notation in Eqs. (3.3) is purposefully sloppy, as it does not denote dependence on x

or t. We will now investigate the correct dependency of these quantities. The quantities P

and M are the result of material response, which we will presently assume to be linear. The
value of, say, P could in principle depend on the value of the applied field (in this case E)
at all points of the space of the parametrising variables. Those parameters are three spatial
coordinates and one temporal, which we may now denote by primed symbols. Then, the
i-th component of the electric polarisation could be written in terms of the general linear
response function χE like

Pi(x; t) = ε0

∫ ∞
−∞

dt′
∫
d3x′χE,ij(x,x

′; t, t′)Ej(x
′; t′), (3.4)

where the ij-indices denote the tensorial components of χE and summation over j is im-
plied. The response function χE in the case of electric polarisation is specifically known
as electric susceptibility. The factor ε0 has been included for later convenience. The re-
sponse from x ′ 6= x is spatial non-locality, and we will ignore such contributions to all
relevant response functions. In fact, we will assume that the medium response is isotrop-
ically constant through space, and no longer denote spatial dependence. We do not in
principle assume that t′ = t, but we will assume that all response functions have time
translation symmetry. In which case, we may write χE(t, t′) → χE(t − t′) by a variable
transformation [30], and write the general susceptibility response as

Di(x; t) = ε0

∫ ∞
−∞

dt′χE,ij(t− t′)Ej(x; t′) = ε0(χE,ij ∗ Ej)(x; t), (3.5)

where ∗ denotes convolution in t.1 By making use of the Fourier convolution theorem [31],
one arrives at the conclusion that the linear response

P(x;ω) = ε0χE(ω)E(x;ω) (3.6)

1Considerations of causality demands that χ(t− t′) = 0 for t′ > t. Therefore, one could replace the upper
integral boundary by t.

10



generally only holds in frequency domain. The same reasoning applies to all linear re-
sponse functions we will encounter, and therefore it seems pertinent to develop the re-
maining theory in temporal frequency space. This is achieved by applying an appropriate
Fourier transformation over time to Eqs. (3.1), where ∂/∂t→ −iω.2

We quickly make a note of the fact that if the electric polarisation response is not linear,
then it should be expressed as an expansion in powers of the external E-field, namely

P(x;ω) = ε0

∞∑
n=1

χ
(n)
E (ω)En(x;ω). (3.7)

In Eq. (3.7), χ(n)
E is known as the n-th order electric susceptibility, a tensor of rank n + 1

which is typically highly dependent on symmetries in the material structure [32]. The pres-
ence of any non-zero term of order n is referred to as n-th order non-linear response, but
for many applications the high order terms may be neglected [27, 33]. An exact analogy
to the discussions of electric response and non-linearity exists for the magnetic response
with magnetic susceptibility denoted χH . From here, we will always assume linear elec-
tromagnetic theory, which means that Eqs. (3.3) take on the linear form

D(x;ω) = ε0ε(ω)E(x;ω) (3.8a)
B(x;ω) = µ0µ(ω)H(x;ω), (3.8b)

where the relative permittivity tensor, ε(ω) = 1 + χ
(1)
E (ω), and the relative permeability

tensor, µ(ω) = 1 + χ
(1)
H (ω) have been defined. We note that ε(ω) is another linear response

function, being the frequency and material dependent amount of induced electric D-field
that is produced after the external electric field E is applied.

3.2 The Helmholtz equation and its solution

3.2.1 The Helmholtz equation
We now limit our attention to the case where there is no free charge or current, i.e.
ρ(x;ω) = J(x;ω) = 0. By Fourier transforming the Maxwell equations in Eqs. (3.1)
and using the result of Eqs. (3.8) we find that

ε0ε(ω)∇ ·E(x;ω) = 0 (3.9a)
∇×H(x;ω) + iωε0ε(ω)E(x;ω) = 0 (3.9b)
∇×E(x;ω)− iωµ0µ(ω)H(x;ω) = 0 (3.9c)

µ0µ(ω)∇ ·H(x;ω) = 0. (3.9d)

2This transformation holds when the forward temporal Fourier transformation is defined by f̂(ω) :=∫∞
−∞ dtf(t) exp [iωt]. This is the opposite convention to the spatial Fourier transformation that defined

Eqs. (2.3)–(2.5). The chosen conventions are standard in physics, but their mutual inconsistency is sometimes
confusing.
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By operating on Eq. (3.9c) with the curl operator we obtain

∇×∇×E(x;ω)− iωµ0µ(ω)∇×H(x;ω) = 0. (3.10)

Now, we insert ∇×H from Eq. (3.9b) and make use of the vector identity ∇× [∇× a] =

∇ [∇ · a]−∇2a to find that

∇ [∇ ·E(x;ω)]−∇2E(x;ω)− ω2ε0ε(ω)µ0µ(ω)E(x;ω) = 0. (3.11)

Finally, we insert Eq. (3.9a) to eliminate the first term, end up with[
∇2 + ω2ε0ε(ω)µ0µ(ω)

]
E(x;ω) = 0, (3.12)

which is recognised as the general vectorial Helmholtz (wave) equation [27, 34] with
corresponding propagation velocity

v(ω) =
1√

ε0ε(ω)µ0µ(ω)
. (3.13)

In vacuum, where ε(ω) = µ(ω) = 1, one can relate electrostatic quantities to the
velocity of light in vacuum3;

c =
1

√
ε0µ0

:= 299 792 458 m/s. (3.14)

A similar process, starting with the curl of Eq. (3.9b) yields that the magnetic field H(x;ω)

also solves Eq. (3.12) in exact analogy with E(x;ω).

3.2.2 Dispersion
We make the ansatz that the solution to Eq. (3.12) is on the form4

E(x;ω) = Ẽ0 exp [−iωt] exp [ik · x] := E0(ω) exp [ik · x], (3.15)

where the harmonic time dependence has been included in the quantity E0(ω). The spatial
dependence is also assumed to be harmonically oscillating with the spatial frequency ki in
the Cartesian xi-direction. The form of the solution is known as a plane wave5 with the
wave vector k pointing in the direction of propagation. Equation (3.12) is linear, meaning
any solution is a linear combination of solutions for specific k, which also happen to
constitute a complete set of solutions [36]. Therefore, it presently suffices to consider a
single wave vector. There are two conditions on Eq. (3.15) to be a valid solution. The

3This value defines the meter in the SI system [35].
4The implied form is made in conjunction with our previous definition of spatial and temporal Fourier trans-

forms. The spatial and temporal components have different sign conventions.
5Strictly speaking, this is a plane wave only if we also have∇ ·E = 0. This was already implicitly assumed

during the derivation of Eq. (3.12).
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first is found by inserting Eq. (3.15) into Eq. (3.12) and using combinations of Eqs. (3.13)
and (3.14), which yields

exp [ik · x]

[
−k2 + ε(ω)µ(ω)

(ω
c

)2]
E0(ω) = 0, (3.16)

where k2 := |k|2. The quantity exp [ik · x] is never zero, so the condition in Eq. (3.16)
must be fulfilled by the expression

k(ω)2 = ε(ω)µ(ω)
(ω
c

)2
. (3.17)

This is the light dispersion relation of electromagnetic waves. It relates the temporal (ω)
and spatial (k) frequencies of the light wave. By considering Eqs. (3.13) and (3.17), we
note that propagation velocity depend on k (unless the varying quantities turn out to be
constants, but in general they are not), which turn depend on the wavelength λ according
to k = 2π/λ. This gives the physical interpretation of dispersion. A monochromatic wave
will have its propagation velocity depend on the medium through which it traverses, which
explains the phenomenon of refraction. A medium where ε(ω) and/or µ(ω) are not constant
is known as a dispersive medium. A wave composed of a linear combination of multiple
plane waves will have its shape distorted when propagating through a dispersive medium,
as each of the plane wave components will propagate with a different velocity.

Typically, we disregard the magnetic dispersion in optical application as few materi-
als have significant classical magnetisation. Then, the dispersion relation gains its more
familiar form

k(ω) = n(ω)
ω

c
, (3.18)

where n(ω) :=
√
ε(ω) is the refractive index.

3.2.3 Polarisation
The second condition on Eq. (3.15) is that is is a valid solution of Maxwell’s equations.
Demanding Eq. (3.9a) to be satisfied by insertion of Eq. (3.15) gives the constraint

ε0ε(ω) exp [ik · x]ik ·E0(ω) = 0, (3.19)

which in fact is already assumed in the derivation of Eq. (3.12). The only non-trivial
case satisfying Eq. (3.19) is when k ⊥ E0(ω). The exactly analogous derivation for the
field H(x;ω) gives the condition k ⊥ H0(ω). We see that the waves of both electric and
magnetic fields are transversal.

If we instead demand Eq. (3.9c) to be satsified by insertion of Eq. (3.15), we find the
constraint

ix̂1 [k2E03(ω)− k3E02(ω)] exp [ik · x] = ix̂1ωµ0µ(ω)H01(ω) exp [ik · x]

ix̂2 [k3E01(ω)− k1E03(ω)] exp [ik · x] = ix̂2ωµ0µ(ω)H02(ω) exp [ik · x]

ix̂3 [k1E02(ω)− k2E03(ω)] exp [ik · x] = ix̂3ωµ0µ(ω)H03(ω) exp [ik · x].

(3.20)
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After cancellation of the common i exp [ik · x]-terms, the remains may be recognised as
the components of the equation k × E0(ω) = ωµ0µ(ω)H0(ω). Therefore, E ⊥ H ⊥ k.
Their relative directions respect a right-hand rule of {k,E,H}, or equivalently {E,H,k}.

Knowledge of k does not uniquely specify the direction of E (or H). Therefore, we
define polarisation as the direction of E in the plane perpendicular to k. Invoking a coordi-
nate system where k = [0, 0, k]t, the direction of E may be described by the coordinates x1
and x2, and the direction of H is then uniquely determined by k and E. There may indeed
still be a spatial phase difference between the x1- and x2-components of E, previously
given in the relation between k1 and k2. Upon the appropriate coordinate transformation
to have k = [0, 0, k]t, we must encounter the relative phase difference in one of the com-
ponents. We henceforth define the relative phase difference ξ to be an amendment to the
x2-component with respect to the x1-component. Then, the general polarisation state is

E(x3;ω) = exp [ikx3]

[
E01(ω)

E02(ω) exp [iξ]

]
. (3.21)

The in-plane vector E traces out an ellipse when propagated in either space or time.
This is most easily seen when ξ = (2m + 1)π/2 for m ∈ Z, as the phase factor becomes
exp [iπ/2 + imπ] = ±i; a quarter-circle rotation in the complex plane. The extrema of the
two components must be a quarter rotation apart, so the principal axes of the ellipse must
coincide with x1 and x2 - having the principal values E01 and E02. The quarter ellipse
rotation in the polarisation description corresponds to the maxima in the directions x1 and
x2 being physically separated by a quarter wavelength in the x3-direction, and by a quarter
period in time. Other choices for ξ means the angle between the extrema is different, which
in general leads to a polarisation ellipse rotated by some angle.

If ξ = (2m + 1)π/2 for m ∈ Z and also E01 = E02, the ellipse degenerates to a circle.
This polarisation state is called circular polarisation. If instead ξ = mπ for m ∈ Z, then
E1 and E2 reach their zeros and extrema at the same time, which is to say the ellipse
degenerates to a line. This is called linear polarisation.

From Eq. (3.21) we may write any polarisation state with relative phase ξ as a linear
combination of orthogonal linear polarisation states, by noting that

E(x3;ω) = exp [ikx3]

[
E01(ω)

0

]
+ exp [ikx3] exp [iξ]

[
0

±E02(ω)

]
. (3.22)

In a wave scattering problem, the incoming and scattered waves may each be described
by such a linear combination. The normal choice of decomposition vectors are parallel to,
and perpendicular to the plane of incidence, which is illustrated in Fig. 3.1. This is referred
to as p-polarisation and s-polarisation respectively, and any polarisation state is a linear
combination of its p- and s-components. The incoming and scattered wave may have its
p- and s-components of polarisation be defined in different coordinate systems, unless the
scattering azimuthal angle equals the incident azimuthal angle.

In linear electromagnetic theory, any relation between the incoming and scattered
waves may be regarded as a linear operator on the incoming wave, as a consequence of the
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Figure 3.1: The p- and s polarisation states in the scattering system. In the incoming wave vec-
tor, k‖, the in-plane component, marked in red, is p-polarised. The out-of-plane component,
marked in black is s-polarised. Similarly, in the scattered wave vector, q‖; the in-plane scat-
tered component, marked in blue, is p-polarised, while the out-of-plane scattered component,
also marked in black, is s-polarised. The scattering depends on the four possible interactions
between any two components.
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material response being linear too. Therefore, any scattering centre has four components,
each describing the interaction between the incoming and scattered p- and s- components
of polarisation. In order to completely describe the impact on the scattering centre on any
polarisation state, it suffices to describe the four pp-, ps-, sp- and ss-components. They are
arranged into a matrix called the scattering matrix, or the reflection matrix in the specific
case of reflection. The reflection and scattering matrices will be discussed in Chapter 4.

3.3 Boundary conditions
One might write Maxwell’s equations on integral form, rather than the form presented in
Eqs. (3.1) or Eqs. (3.9). This is achieved by integrating the equations over either closed
volumes or closed surfaces, and using the divergence theorem and Stokes’ theorem where
applicable. The integral forms of Maxwell’s equations are particularly useful for calculat-
ing boundary conditions between materials with differing electromagnetic properties. The
integration volumes are chosen to conveniently give correspondences between the two me-
dia without loss of generality. Denoting the media with ’+’ and ’−’ and subscripting their
corresponding fields as such, one eventually finds that [1, 27, 28]

[D−(x;ω)−D+(x;ω)] · n̂ = ρs(x;ω) (3.23a)
[B−(x;ω)−B+(x;ω)] · n̂ = 0 (3.23b)
n̂× [E−(x;ω)−E+(x;ω)] = 0 (3.23c)
n̂× [H−(x;ω)−H+(x;ω)] = Js(x;ω). (3.23d)

Here, we have defined n̂ as the normal vector of the surface, with positive direction from
{−} to {+}. The quantities Js and ρs denote the surface current density and surface charge
density. In many optically relevant cases, these quantities are zero or may otherwise safely
be neglected.

The scope of electromagnetic phenomena has now been limited to the linear case,
with other restrictions on the (dielectric) response function of the materials involved in
the scattering interface. None of the assumptions seem outrageously restrictive, but they
nevertheless exist and should be remembered at appropriate moments.
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Chapter 4
Scattering theory

This chapter aims to introduce some familiar quantities of scattering theory, and present
the scattering system that will be subject to numerical calculations.

4.1 Scattering geometry
The scattering geometry of interest is depicted in Fig. 4.1. Two media are separated by an
interface following a surface profile function x3 = ζ(x‖), with a coordinate system chosen
such that

〈
ζ(x‖)

〉
= 0. The surface topography is not shown explicitly in Fig. 4.1, but the

actual surface should look akin to the one presented in Fig. 2.1. The media whose bulk
satisfy x3 > 0 may be labelled ’+’, and the other media ’−’. An incoming plane wave may
be represented by the wave vector k, and scatter into some wave vector q upon interaction
with the surface. Furthermore, we denote by k‖ and q‖ the wave vector components along
the plane x3 = 0. The polar and azimuthal angles of the wave vectors have also been
denoted, with appropriate subscripts. For the waves propagating in the region ’+’, the
value of the x3-components of the wave vector is denoted by α0. Therefore, we infer that
q+ = [q1, q2, α0(q‖)]

t and k+ = [k1, k2, α0(k‖)]
t. If instead the waves propagated in the

region ’−’, we would write q− = [q1, q2, α(q‖)]
t and k− = [k1, k2, α(k‖)]

t. By Eq. (3.17)
with µ = 1 and geometric considerations of Fig. 4.1, we must have the relations

α0(q‖) = α0(q‖;ω) :=


√(

ω
c

)2 − q2‖ if q‖ ≤ ω
c

i
√
q2‖ −

(
ω
c

)2 if q‖ > ω
c

(4.1a)

and

α(q‖) := α(q‖;ω) =

√
ε(ω)

(ω
c

)2
− q2‖ <

(
α0(q‖)

)
≥ 0,=

(
α0(q‖)

)
≥ 0.

(4.1b)
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Figure 4.1: The scattering geometry of interest. The incoming wave vector k is scattered into
the wave vector q. The surface topography is not drawn, but is responsible for the presence of
non-specular scattering. The p-component of incoming light is contained in the shaded plane
beneath k, while the incoming s-component is perpendicular to it. Similarly for the scattered
wave vector q, it is noted that the two polarisations are not with respect to the same plane.
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The symbol < means real part, and the symbol = means imaginary part. In Eqs. (4.1) and
previously, we have used the quantities q‖ =

∣∣q‖∣∣ and k‖ =
∣∣k‖∣∣. For future reference, any

quantity of the form f‖ is a vector in the x3 = 0 plane, and f‖ is its in-plane magnitude.
On a rough surface, the scattered wave vector depends intricately on the surface to-

pography. The wave represented by k has a non-zero spatial extent, and does not typically
scatter in only a single direction. Conversely, this means that the total amount of scattering
in the direction q takes contributions from many parts of the surface. When considering
the scattering into direction q from an incoming wave k, one must indeed consider the
interaction with a statistically representative region of the surface.

4.2 Description of the scattered field
Assuming the incoming field is a plane wave, by combining Eq. (3.15) and Eq. (4.1a) we
may write for the incident electric field

Einc(x;ω) = Ei(ω) exp
[
ik‖ · x‖ − iα0(k‖)x3

]
, (4.2)

where ω-dependence has been suppressed. The minus sign in front of the third components
is added because of the direction of k from Fig. 4.1. We may write for the reflected field

Erefl(x;ω) =

∫
d2q‖
(2π)2

Er(q‖|k‖;ω) exp
[
iq‖ · x‖ + iα0(q‖)x3

]
, (4.3)

for a directionally dependent reflected amplitude Er. Equation (4.3) takes into account all
the possible scattering processes from the point x‖. The asymptotic form of the field in the
region ’+’ may be written

E+(x;ω) = Einc(x;ω) + Erefl(x;ω), (4.4)

with the terms described by Eqs. (4.2) and (4.3). A similar story takes place for the asymp-
totic field in the region ’−’ which has been transmitted through the surface, namely

E−(x;ω) =

∫
d2q‖
(2π)2

Et(q‖|k‖;ω) exp
[
iq‖ · x‖ − iα0(q‖)x3

]
, (4.5)

where we note the absence of a incident wave term.

4.3 The Rayleigh criterion
Wave scattering is often described in terms of the waves asymptotic forms [37], as they
are often experimentally obtainable and permits us to neglect the detailed structure of
the scattering centre. However, the boundary conditions described in Sec. 3.3 relates the
fields immediately adjacent to the surface. The specific surface topography influences the
detailed nature of the fields, and makes the scattering problem hard to approach.
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The Rayleigh hypothesis is the assumption that the asymptotic wave forms are valid in
close proximity to the surface, to the extent that they are assumed to satisfy the boundary
conditions [1, 38]. A flat surface is completely described by the asymptotic form, while a
small perturbation to it is only approximately described.

It is theoretically known that for a one-dimensional periodic surface of the form ζ(x) =

ζ0 sin(κx), the Rayleigh hypothesis is valid if κζ0 < 0.448, regardless of the relative mate-
rial parameters involved [39, 40]. Numerical study has suggested that it may be valid for
grating depths up to 15 times greater than this for a dielectric and a lossless metal [41]. A
two-dimensional equivalent of the condition κζ0 < 0.448 has numerically been shown to
hold for two-dimensional surfaces too [42]. Randomly rough surfaces are not periodic, but
these examples place an upper bound on the permissible roughness. If the random surfaces
roughness features are not weaker than the described periodic displacements, we should
definitely not expect the Rayleigh hypothesis to be a valid approximation.

Few studies on the validity of the Rayleigh hypothesis for specifically rough surfaces
have been carried out. But, for a two-dimensional surface profile of Gaussian height dis-
tribution with correlation length a and its rms-value δ bounded by 0.13λ it has been found
that the Rayleigh hypothesis is valid if; δ/a . 0.2 for a perfect conductor, and δ/a . 0.08

for silver substrates [43]. These values were calculated using a wavelength of 457.9 nm.
Most of (but not all!) the samples, presented in Secs. 7.1.1 and 7.2.1, used for numerical
calculation in this thesis fulfils the given criteria, albeit with substantially larger wave-
length. The calculations in this thesis is carried out on the faith that the Rayleigh criterion
holds, but we will acknowledge that it may be a source of error.

4.4 The reduced Rayleigh equation

By applying the Rayleigh hypothesis, we may demand that Eqs. (4.2) and (4.3) satisfy the
boundary conditions in Eqs. (3.23). Then for the E-field we have that [15]

Einc(x;ω) =
{
− c
ω

[
k̂‖α0(k‖) + x̂3k‖

]
Ei;p(k‖) +

[
x̂3 × k̂‖

]
Ei;s(k‖)

}
× exp

[
ik‖ · x‖ − iα0(k‖)x3

]
exp [−iωt]

(4.6)

and

Erefl(x;ω) =

∫
d2q‖
(2π)2

{ c
ω

[
q̂‖α0(q‖)− x̂3q‖

]
Er;p(q‖) +

[
x̂3 × q̂‖

]
Er;s(q‖)

}
× exp

[
iq‖ · x‖ + iα0(q‖)x3

]
exp [−iωt].

(4.7)

It is noted that the expressions inside square brackets in these two equations are, respec-
tively, unit vectors parallel to and perpendicular to the plane of incidence, and both are
perpendicular to the total wave vector. This fact may be seen upon careful consideration
of Fig. 4.1 and its accompanying equations. The subscripts p and s refer to the respective
components along each polarisation component. The amplitudes of the incoming (Ei) and

20



reflected (Er) fields must be related through the reflection coefficient by definition;

Er;α(q‖) =
∑
β

Rαβ(q‖|k‖)Ei;β(k‖) (4.8)

for α, β ∈ {p, s}. Following Eq. (3.22), the four components of the matrix R is suffi-
cient to deduce the reflection between any polarisation states. The component Rαβ is the
component relating incoming β-polarised light to scattered α-polarised light.

A similar relation holds between the incident and transmitted amplitudes. These are
the Rayleigh equations, a set of coupled integral equations. Through a lengthy algebraic
computation, it is possible to decouple them by eliminating the transmission coefficient T
[15, 44, 45], which is the counterpart to R for the region −. The decoupled equation for
the reflection coefficient is∫

d2q‖
(2π)2

I(α(p‖)− α0(q‖)|p‖ − q‖)

α(p‖)− α0(q‖)
M(p‖|q‖)R(q‖|k‖)

= −
I(α(p‖) + α0(k‖)|p‖ − k‖)

α(p‖) + α0(k‖)
N(p‖|k‖),

(4.9)

where p‖ is a wave vector inserted to aid the computation. Equation (4.9) is the governing
equation in theories of random surface wave scattering. The function I(γ|Q‖) is defined
by

I(γ|Q‖) :=

∫
d2x‖ exp

[
−iQ‖ · x‖

]
exp

[
−iγζ(x‖)

]
, (4.10)

and the matrices M(p‖|q‖) and N(q‖|k‖) are defined by [15, 44, 45]

M(p‖|q‖) :=

[
p‖q‖ + α(p‖)[p̂‖ · q̂‖]α0(q‖) −

(
ω
c

)
α(p‖)[p̂‖ × q̂‖]3(

ω
c

)
[p̂‖ × q̂‖]3α0(q‖)

(
ω
c

)2
[p̂‖ · q̂‖]

]
, (4.11a)

N(p‖|k‖) :=

[
p‖k‖ − α(p‖)[p̂‖ · k̂‖]α0(k‖) −

(
ω
c

)
α(p‖)[p̂‖ × k̂‖]3

−
(
ω
c

)
[p̂‖ × k̂‖]3α0(k‖)

(
ω
c

)2
[p̂‖ · k̂‖]

]
. (4.11b)

4.5 Mean differential reflection coefficient

The αβ-component of the mean differential reflection coefficient (MDRC) is the fraction
of the incident energy flux from β-polarised light that is reflected into α-polarised light
in the solid angle element dΩs. MDRC is of interest as it is an experimentally accessible
quantity. It may for instance be measured by scanning different scattering angles with a
polarimeter.

Appendix A reveals that the MDRC is given by〈
∂Rαβ
∂Ωs

〉
=

1

A

( ω

2πc

)2 cos2(θs)

cos(θ0)

〈∣∣Rαβ(q‖|k‖)
∣∣2〉 , (4.12)
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where A is the area in the x1x2-plane covered by the scattering surface. The MDRC is
denoted by the entire expression on the left hand side of Eq. (4.12), and the choice of
notation is telling of its definition. After noting that〈∣∣Rαβ(q‖|k‖)

∣∣2〉 =
〈∣∣Rαβ(q‖|k‖)

∣∣2〉− ∣∣〈Rαβ(q‖|k‖)
〉∣∣2 +

∣∣〈Rαβ(q‖|k‖)
〉∣∣2

=
∣∣〈Rαβ(q‖|k‖)

〉∣∣2 + Var
[
Rαβ(q‖|k‖)

] , (4.13)

with Var[·] denoting the statistical variance, it is pertinent to describe the MDRC as a sum
of what is known as its coherent and incoherent contributions.

For I1 and I2 referring to the intensities measured at some fixed point by light which
scattered at two different locations on the surface, the stationary part of the total measured
intensity from both points has an interference term 2

√
I1
√
I2 cos(δ) where δ = 2π

λ
∆OPL

is the accrued phase difference and ∆OPL is the difference in optical path length [34].
A flat surface only reflects specularly — in the direction where the incident and reflected
angles are the same — meaning scattering from the two points will only be observed at a
single point when the scattering points turn out to be the same point. Therefore ∆OPL is
zero by default, and cos(δ) = cos(0) = 1. A rough surface has a stochastic distribution of
∆OPL, which means that when every pair of points that may interact is summed over, the
collective interference term is ∼ 〈cos(δ)〉 = 0; which is defined as complete incoherence
[34].

The coherent contribution is captured by
∣∣〈Rαβ(q‖|k‖)

〉∣∣2, which is the same as
〈∣∣Rαβ(q‖|k‖)

∣∣2〉
in the case where the surface is perfectly flat. Recall the ergodic property, which leaves
〈·〉 of a flat surface to be the same as the spatial average of a constant. Therefore it cannot
matter if the averaging takes place inside or outside of |·|2.

The average non-specular scattering of a flat surface is zero. Therefore the variance
of R, being the measure of the statistical deviation from the average, must equal the total
scattering amplitude for that set of wave vectors. This scattering contribution is solely due
to the surface topography, which is stochastic, and therefore we may state that it is the
incoherent contribution. The incoherent contribution scatters into diffuse (non-specular)
as well as specular directions.

In total, we may then write separately〈
∂Rαβ
∂Ωs

〉
coh

=
1

A

( ω

2πc

)2 cos2(θs)

cos(θ0)

∣∣〈Rαβ(q‖|k‖)
〉∣∣2 (4.14a)

and〈
∂Rαβ
∂Ωs

〉
incoh

=
1

A

( ω

2πc

)2 cos2(θs)

cos(θ0)

[〈∣∣Rαβ(q‖|k‖)
∣∣2〉− ∣∣〈Rαβ(q‖|k‖)

〉∣∣2] . (4.14b)

Proceeding from here, we will focus our attention on the unique contribution of a rough
surface, being the incoherent Eq. (4.14b). Any mention of the MDRC should be assumed
to be the incoherent contribution, unless otherwise specified.
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4.6 Reciprocity and the scattering matrix
Scattering of electromagnetic waves is subject to Lorentz’s reciprocity theorem, which
implies that for some scattering centre represented by the matrix S, we must have fulfilled
the reciprocal relation [37]

S(q‖|k‖) = S
t

(−k‖| − q‖). (4.15)

Reciprocity means that the light source and the observation point can be freely in-
terchanged without altering the result. This is always upheld if the scattering matrix is
defined by [1, 15, 44, 45]

S(q‖|k‖) :=

√
α0(q‖)

α0(k‖)
R(q‖|k‖). (4.16)

This definition implies that

∣∣Rαβ(q‖|k‖)
∣∣2 =

∣∣∣∣α0(k‖)

α0(q‖)

∣∣∣∣ ∣∣Sαβ(q‖|k‖)
∣∣2 . (4.17)

From Eq. (3.18), we find that in the region ’+’ of Fig. 4.1, the length of both wave
vectors k and q is

(
ω
c

)
. Then, we find geometrically that

α0(k‖) =
(ω
c

)
cos (θ0) (4.18a)

α0(q‖) =
(ω
c

)
cos (θs), (4.18b)

such that ∣∣∣∣α0(k‖)

α0(q‖)

∣∣∣∣ =
cos (θ0)

cos (θs)
. (4.19)

Obviously, the quantities in Eq. (4.19) are invariant with respect to applying the statisti-
cal mean. Therefore, it is straightforward to insert Eq. (4.17) and Eq. (4.19) into Eq. (4.14)
to obtain the MDRC in terms of Sαβ to be〈

∂Rαβ
∂Ωs

〉
coh

=
1

A

( ω

2πc

)2
cos(θs)

∣∣〈Sαβ(q‖|k‖)
〉∣∣2 (4.20a)

and 〈
∂Rαβ
∂Ωs

〉
incoh

=
1

A

( ω

2πc

)2
cos(θs)

[〈∣∣Sαβ(q‖|k‖)
∣∣2〉− ∣∣〈Sαβ(q‖|k‖)

〉∣∣2] . (4.20b)

In this thesis, Eq. (4.20b) is solved by perturbatively approximating S. The approxi-
mation is discussed in Chapter 5.
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Chapter 5
Perturbation theory

This chapter aims to introduce the perturbation theory that the thesis is based upon, and
introduce some simplifications that reduce the amount of numerical calculation.

5.1 Small amplitude perturbation theory

The result of the thesis is contained to phase perturbation theory described in Sec. 5.2,
which builds upon the results of small amplitude perturbation theory. The main idea
is to expand the functions contained in Eq. (4.9) into increasing integer powers of the
surface profile function ζ(x‖), and to ignore terms above a certain order. The underlying
assumption of the Rayleigh hypothesis being valid, substantially constrains the maximum
achieved displacement of ζ(x‖). Therefore, max{

∣∣ζ(x‖)∣∣} can be assumed to be ”small” in
some sense, such that

[
max{

∣∣ζ(x‖)∣∣}]n vanishes for increasing n ∈ N. Obviously, the non-
extreme values of ζ will subside even quicker. In this thesis, perturbation results containing
terms including ζ2 will be considered.

The expansion of Eq. (4.10) in terms of powers of the surface profile function is [1, 15,
45, 46]

I(γ|Q‖) :=

∫
d2x‖ exp

[
−iQ‖ · x‖

]
exp

[
−iγζ(x‖)

]
=

∞∑
n=0

(−iγ)n

n!
ζ̂(n)

= (2π)2δ(Q‖) +
(−i)1

1!
γ1ζ̂(1)(Q‖) +

(−i)2

2!
γ2ζ̂(2)(Q‖) +O(ζ(3)),

(5.1)

with ζ̂(n)(Q‖) being given by

ζ̂(n)(Q‖) :=

∫
d2x‖ζ

n(x‖) exp
[
−iQ‖ · x‖

]
, (5.2)
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being the generalisation of Eq. (2.5) to the possibilities that n 6= 1. The expansion for R

is performed in terms of expansion matrices R
(n)

of the n-th order, and the first few terms
are defined by

R(q‖|k‖) := (2π)2δ(q‖ − k‖)R
(0)

(k‖) + R
(1)

(q‖|k‖)ζ̂(1)(q‖ − k‖)

+

∫
d2p‖
(2π)2

R
(2)

(q‖|p‖|k‖)ζ̂(1)(q‖ − p‖)ζ̂
(1)(p‖ − k‖) +O(

[
ζ̂(1)
]3

).
(5.3)

Inserting Eq. (5.1) and Eq. (5.3) into Eq. (4.9) gives the reduced Rayleigh equation
expanded in powers of ζ, and it is

∫
d2q‖
(2π)2

1

α(p‖)− α0(q‖)

{
(2π)2δ(p‖ − q‖) +

(−i[α(p‖)− α0(q‖)])
1

1!
γ1ζ̂(1)(p‖ − q‖)

+
(−i[α(p‖)− α0(q‖)])

2

2!
γ2ζ̂(2)(p‖ − q‖) + ...

}
M(p‖|q‖)

×

{
(2π)2δ(q‖ − k‖)R

(0)

(k‖) + R
(1)

(q‖|k‖)ζ̂(1)(q‖ − k‖)

+

∫
d2r‖
(2π)2

R
(2)

(q‖|r‖|k‖)ζ̂(1)(q‖ − r‖)ζ̂
(1)(r‖ − k‖) + ...

}

=
−1

α(p‖) + α0(k‖)

{
(2π)2δ(p‖ − k‖) +

(−i[α(p‖) + α0(k‖)])
1

1!
γ1ζ̂(1)(p‖ − k‖)

+
(−i[α(p‖) + α0(k‖)])

2

2!
γ2ζ̂(2)(p‖ − k‖) + ...

}
N(p‖|k‖), (5.4)

with M and N defined by Eqs. (4.11). Expressions for each of the R
(n)

-matrices that
appear in Eq. (5.3) may now be found by equating terms of equal order in ζ. The ζ0-terms

give the equation satisfied by R
(0)

, the ζ1-terms define R
(1)

and ζ2-terms define R
(2)

. The

resulting equation for R
(0)

is [15, 46]

R
(0)

(k‖) =


εα0(k‖)−α(k‖)
εα0(k‖)+α(k‖)

0

0
α0(k‖)−α(k‖)
α0(k‖)+α(k‖)

 , (5.5)

which is the Fresnel amplitudes describing the scattering on a flat surface. Unsurprisingly,
the lowest order perturbation to a flat surface turns out to be the flat surface itself. We note
that Eq. (5.5) only depends on the amplitude of the argument k‖, so we might have chosen

to write R
(0)

(k‖) instead. We don’t, as to keep consistent to the notation that reflection
matrices have vector arguments, which is the case for higher order expansion terms. The
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corresponding equation for R
(1)

is

R
(1)
αβ(q‖|k‖) =

2iα0(k‖)

dα(q‖)dβ(k‖)
ναβ(q‖|k‖), (5.6)

with the definitions

νpp(q‖|k‖) :=
ε− 1

ε2

[
εq‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

]
(5.7a)

νps(q‖|k‖) := − ε− 1

ε

(ω
c

)
α(q‖)[q̂‖ × k̂‖]3 (5.7b)

νsp(q‖|k‖) := − ε− 1

ε

(ω
c

)
[q̂‖ × k̂‖]3α(k‖) (5.7c)

νss(q‖|k‖) := (ε− 1)
(ω
c

)2
[q̂‖ · k̂‖], (5.7d)

and

dp(q‖) := α0(q‖) +
α(q‖)

ε
(5.8a)

ds(q‖) := α0(q‖) + α(q‖). (5.8b)

Finally, the equation for R
(2)

is

R
(2)
αβ(q‖|p‖|k‖) =

α0(k‖)

dα(q‖)dβ(k‖)

[
wαβ(q‖|p‖|k‖)−2

∑
γ∈{p,s}

ναγ(q‖|p‖)νγβ(p‖|k‖)
dγ(p‖)

]
(5.9)

whose compactness is facilitated by the definitions of

wpp(q‖|p‖|k‖) :=
ε− 1

ε2

[
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

] [
α(q‖) + α(k‖)

]
+

2

ε

(
ε− 1

ε

)2

α(q‖)[q̂‖ · p̂‖]α(p‖)[p̂‖ · k̂‖]α(k‖)

(5.10a)

wps(q‖|p‖|k‖) := νps(q‖|k‖)
[
α(q‖) + α(k‖)

]
+ 2

(
ε− 1

ε

)2 (ω
c

)
α(q‖)[q̂‖ · p̂‖]α(p‖)[p̂‖ × k̂‖]3

(5.10b)

wsp(q‖|p‖|k‖) := νsp(q‖|k‖)
[
α(q‖) + α(k‖)

]
+ 2

(
ε− 1

ε

)2 (ω
c

)
[q̂‖ × p̂‖]3α(p‖)[p̂‖ · k̂‖]α(k‖)

(5.10c)

wss(q‖|p‖|k‖) := νss(q‖|k‖)
[
α(q‖) + α(k‖)

]
+ 2

(
ε− 1

ε

)2

ε
(ω
c

)2
[q̂‖ × p̂‖]3α(p‖)[p̂‖ × k̂‖]3.

(5.10d)

For Eqs. (5.10), expressions adapted from Ref. 46 have been used, which differ slightly
from those in Ref. 15 from which the notation has been taken. The choice is motivated
by Eq. 39 in Ref. 15 having inconsistent dimensions, and the choice is also well justified
by later comparisons between calculated and experimentally gathered MDRC, which are
given in Sec. 7.2. Calculations corresponding to the alternative expressions resulted in
MDRC which differed greatly from the experimental values.
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5.2 Phase perturbation theory
Phase perturbation theory [47] aims to formulate the expansion of the reflection amplitude
in such a way that its terms correspond to a Taylor expansion of the exponential function
with a complex argument. By (in approximation) equating the exponential function with
a few terms of its expansion, the formulation is of the form exp [r] exp [iθ]. This formula-
tion aims to be similar to the complex formulation for E, introduced in Sec. 3.2. There,
the imaginary part of the argument is interpreted as a phase shift, which in turn explains
the name of the method. Phase perturbation theory is preferred as it has been found to
have a wider range of validity than small-amplitude perturbation theory [48], and be in
better agreement with experimental results [15]. Especially, when compared to the small-
amplitude method, it is useful when the correlation length of the surface isn’t much smaller
than the incident wavelength. The following presentation closely resembles the one given
in Ref. 15.

As discussed in Sec. 4.6 any scattering theory should be reciprocal. This will now
be explicitly enforced by formulating the theory in terms of the scattering matrix S. By
inserting its definition, Eq. (4.16), into Eq. (5.3) we find a similar expansion of S into

expansion matrices S
(n)

of order n as was found for R. The first terms are

S(q‖|k‖) = (2π)2δ(q‖ − k‖)S
(0)

(q‖|k‖) + S
(1)

(q‖|k‖)ζ̂(1)(q‖ − k‖)

+

∫
d2p‖
(2π)2

S
(2)

(q‖|p‖|k‖)ζ̂(1)(q‖ − p‖)ζ̂
(1)(p‖ − k‖) +O

([
ζ̂(1)
]3)

,
(5.11)

with each expansion term S
(n)

individually fulfilling Eq. (4.16). We are careful to point

out that S
(0)

(q‖|k‖) does not have a direct equivalent in R
(0)

(k‖) as the latter only depends
on a single argument. As long as it is paired with a δ-function, it remains inconsequential.
However, we may then rewrite

Sαβ(q‖|k‖) = S
(0)
αβ (q‖|k‖)

{
(2π)2δ(q‖ − k‖) +

S
(1)
αβ (q‖|k‖)

S
(0)
αβ (q‖|k‖)

ζ̂(1)(q‖ − k‖)

+

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

ζ̂(1)(q‖ − p‖)ζ̂
(1)(p‖ − k‖) +O

([
ζ̂(1)
]3)}

,

(5.12)

where S(0)
αβ (q‖|k‖) is defined as an amplitude of the perturbation. Following the relative

relations between the coefficients given in Ref. 49 we find that the relative first order term
must be

S
(1)
αβ (q‖|k‖)

S
(0)
αβ (q‖|k‖)

= −2i
√
α0(q‖)α0(k‖). (5.13)

Then, by Eq. (4.16) we may utilise the result of Eq. (5.6) to solve for S(0)
αβ (q‖|k‖) in

Eq. (5.13) to obtain

S
(0)
αβ (q‖|k‖) = −

ναβ(q‖|k‖)
dα(q‖)dβ(k‖)

, (5.14)
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with the definitions of ναβ and dγ given by Eqs. (5.7) and Eqs. (5.8). It is noted that
through Eq. (5.14), the property S(0)

αβ (k‖|k‖) = R
(0)
αβ(k‖) is true.

By using the fact that

(2π)2δ(q‖ − k‖) =

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

]
, (5.15)

and keeping in mind the form of Eq. (5.2), we will try to collect the integration over x‖
outside the sum of the different order terms. In the context of the integral, the zeroth
order term remains a constant; the same as the first term in the Taylor expansion of the
exponential function, which we recall is the goal of our procedure. The corresponding in-
tegrals in the term containing S(2)

αβ are coupled to an intermediate integral over the variable
p‖, but the coupling may be removed by a linear variable transformation. There are two
possible such transformations, eliminating either of the integration variables in one of the
ζ̂(1)-expressions. We will follow the formulation of Ref. 15 being a symmetric sum of both
transformations, each with weight 1/2. The details is given in Appendix B leading to the
second order term being given by Eq. (B.6). Then, we can rewrite Eq. (5.12) as

Sαβ(q‖|k‖) = S
(0)
αβ (q‖|k‖)

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

]
×

{
1 +−2i

√
α0(q‖)α0(k‖)ζ(x‖) +

1

2

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

×
∫
d2u‖

(
exp

[
i(q‖ − p‖) · u‖

]
+ exp

[
i(p‖ − k‖) · u‖

])
× ζ(x‖)ζ(x‖ − u‖) + ...

}
,

(5.16)

which are the leading terms of an exponential function

Sαβ(q‖|k‖) = S
(0)
αβ (q‖|k‖)

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

]{
1 +Gαβ +

1

2
G2
αβ

}
(5.17a)

≈ S(0)
αβ (q‖|k‖)

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

]
exp

[
Gαβ(q‖|x‖|k‖)

]
. (5.17b)

We need to take some precautions with how Gαβ(q‖|x‖|k‖) is defined. The term
−2i

√
α0(q‖)α0(k‖)ζ(x‖) of Eq. (5.16) must be supplied by the first order term of Eq. (5.17a)

as it is linear in ζ. However, then G2
αβ contains a part that is ∼ ζ2. This is precisely the

square of the aforementioned linear term, and it should be counted in our second order
theory. Unfortunately, the ζ2-terms inside Eq. (5.16) do not have comparable prefactors to
the ζ1-terms, which makes it hard to distil which part of the ζ2-terms that belong to Gαβ
and which belong to G2

αβ . This apparent problem is circumvented by defining the function
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Gαβ to be

Gαβ(q‖|x‖|k‖) := − 2i
√
α0(q‖)α0(k‖)ζ(x‖) +

1

2

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

×
∫
d2u‖

(
exp

[
i(q‖ − p‖) · u‖

]
+ exp

[
i(p‖ − k‖) · u‖

])
× ζ(x‖)ζ(x‖ − u‖) + 2α0(q‖)α0(k‖)ζ

2(x‖).

(5.18)

Note the inclusion of the term 2α0(q‖)α0(k‖)ζ
2(x‖), which was not present in Eq. (5.16).

This term in Gαβ exactly cancel out the ζ2-term of G2
αβ by noting that

1

2

[
−2i

√
α0(q‖)α0(k‖)ζ(x‖)

]2
= 2α0(q‖)α0(k‖)ζ

2(x‖). (5.19)

All other contributions of equal or higher orders of Gαβ is also of order ζ3 or higher, so we
may ignore them in second order phase perturbation theory. The given approach to define
Gαβ(q‖|x‖|k‖) is a matter of keeping things simple. There is no straightforward physical
interpretation of the function, so its definition is a matter of convenience.

Conveniently, all dependence on ζ in Eq. (5.17b) lies inside of Gαβ(q‖|x‖|k‖), so the
averaging taking place in Eq. (4.20) only interacts with the final part. The average up to
second order in ζ is therefore given by〈

Sαβ(q‖|k‖)
〉

= S
(0)
αβ (q‖|k‖)

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

]
×
〈
exp

[
Gαβ(q‖|x‖|k‖)

]〉
.

(5.20)

By inserting Eq. (5.20) into Eq. (4.20b) and expanding |S|2 = SS∗ we may write down〈∣∣Sαβ(q‖|k‖)
∣∣2〉− ∣∣〈Sαβ(q‖|k‖)

〉∣∣2
=
∣∣∣S(0)
αβ (q‖|k‖)

∣∣∣2 ∫ d2x‖

∫
d2x ′‖ exp

[
−i(q‖ − k‖) · (x‖ − x ′‖)

]
×

{〈
exp

[
Gαβ(q‖|x‖|k‖) +G∗αβ(q‖|x ′‖|k‖)

]〉
−
〈
exp

[
Gαβ(q‖|x‖|k‖)

]〉 〈
exp

[
G∗αβ(q‖|x ′‖|k‖)

]〉}
,

(5.21)

where x‖ is the integration variable over the first term and x ′‖ is the integration variable
over the second term. Further evaluating Eq. (5.21) is non-trivial but by using cumulant
methods [50] one may find that [15]〈

exp
[
Gαβ(q‖|x‖|k‖) +G∗αβ(q‖|x ′‖|k‖)

]〉
−
〈
exp

[
Gαβ(q‖|x‖|k‖)

]〉 〈
exp

[
G∗αβ(q‖|x ′‖|k‖)

]〉
= exp

[
δ2<

∫
d2p‖
(2π)2

[
g(
∣∣q‖ − p‖

∣∣) + g(
∣∣p‖ − k‖

∣∣)] S(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

]
×
{

exp
[
4δ2α0(q‖)α0(k‖)W (

∣∣x‖ − x ′‖
∣∣)]− 1

}
.

(5.22)
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The appearance of the surface autocorrelation functionW (
∣∣x‖ − x ′‖

∣∣) is due to Eq. (2.2),
and the same goes for the appearance of the surface power spectrum defined by Eq. (2.3)
which just happens to be contained in a Fourier integral. Some terms from Eq. (5.18)
are absent due to Eq. (2.1). By substituting Eq. (5.22) into Eq. (5.21) and further into
Eq. (4.20b) and using the substitution u‖ = x‖ − x ′‖ one obtains

〈
∂Rαβ
∂Ωs

〉
incoh

=
( ω

2πc

)2
cos(θs)

∣∣∣S(0)
αβ (q‖|k‖)

∣∣∣2
× exp

[
δ2<

∫
d2p‖
(2π)2

[
g(
∣∣q‖ − p‖

∣∣) + g(
∣∣p‖ − k‖

∣∣)] S(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

]

×
∫
d2u‖ exp

[
−i(q‖ − k‖) · u‖

] {
exp

[
4δ2α0(q‖)α0(k‖)W (

∣∣u‖∣∣)]− 1
}
.

(5.23)

In obtaining the result of Eq. (5.23), we have used that the integrand becomes independent
of x‖ after performing the variable substitution, and that the integral over x‖ itself produces
the scattering area in the x1x2-plane. Following the discussion after Eq. (A.22) this is the
same as the quantity A in Eq. (4.20b), and those contributions cancel. Equation (5.23)
gives the value of the incoherent MDRC through phase perturbation theory up to second
order in the surface profile function, in a formulation that is symmetric in the couplings of
q‖ and k‖ to the variable p‖.

5.3 Included and non-included terms in the scattering ma-
trix expansion

Let us briefly return to considering how Eq. (5.11) interacts with Eqs. (4.20), which de-
pends on

∣∣Sαβ(q‖|k‖)
∣∣2. If we follow the idea of Ref. 51 and define

A
(0)
αβ = S

(0)
αβ (k‖)(2π)2δ(q‖ − k‖) (5.24a)

A
(1)
αβ = S

(1)
αβ (q‖|k‖)ζ̂(1)(q‖ − k‖) (5.24b)

A
(2)
αβ =

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)ζ̂(1)(q‖ − p‖)ζ̂

(1)(p‖ − k‖), (5.24c)

and so on, we may write down the expansion for Sαβ to be

Sαβ = A
(0)
αβ +A

(1)
αβ +A

(2)
αβ +A

(3)
αβ +A

(4)
αβ + . . . . (5.25)

Each A(n)
αβ is of order ζn. Equation (5.11) includes terms up to n = 2 in the scattering
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amplitude. Let us calculate |Sαβ |2 with the expansion of Eq. (5.25), resulting in

|Sαβ |2 =
∣∣∣A(0)

αβ

∣∣∣2
+
∣∣∣A(1)

αβ

∣∣∣2 + 2<
(
A

(0)
αβA

(1)
αβ

)
+
∣∣∣A(2)

αβ

∣∣∣2 + 2<
(
A

(0)
αβA

(2)
αβ

)
+ 2<

(
A

(1)
αβA

(2)
αβ

)
+
∣∣∣A(3)

αβ

∣∣∣2 + 2<
(
A

(0)
αβA

(3)
αβ

)
+ 2<

(
A

(1)
αβA

(3)
αβ

)
+ 2<

(
A

(2)
αβA

(3)
αβ

)
+
∣∣∣A(4)

αβ

∣∣∣2 + 2<
(
A

(0)
αβA

(4)
αβ

)
+ . . . .

(5.26)

The terms accounted for in Eq. (5.11) inhabits the three top rows of Eq. (5.26), and contains
terms up to ζ4. The

∣∣∣A(2)
αβ

∣∣∣2-term is responsible for this, and is called the 2-2 term. We make

note of the distinction between S which has been expanded to order ζ2 through second
order phase perturbation theory, and

∣∣∣S∣∣∣2 which is of order ζ4 by consequence. There
are three other terms in Eq. (5.26) which is also of order ζ4 or less, which has not been
accounted for in the phase perturbation theory: The terms <

(
A

(0)
αβA

(3)
αβ

)
and <

(
A

(0)
αβA

(4)
αβ

)
are only non-zero if q‖ = k‖, which only accounts for a single point in the parameter
space. However, the term <

(
A

(1)
αβA

(3)
αβ

)
may in principle be different from zero for all q‖

and k‖, and is of order ζ4. It is referred to as the 1-3 term.
The preceding discussion shows that it is impossible to capture all second order scat-

tering phenomena through second order phase perturbation theory. Indeed the same argu-
ment holds for small-amplitude perturbation theory, and for all perturbation theories on a
quantity S that produces a result depending on S2. A third-order perturbation theory is
required to determine the 1-3 term. By a similar argument, one could determine that fifth
order perturbation theory is required to capture all third order scattering phenomena which
requires a 1-5 type term to be of the same order as the presumed 3-3 term accounted for in
the perturbation.

Indeed, the present second order phase perturbation theory does not depend simply on
|Sαβ |2, but on the difference

〈
|Sαβ |2

〉
− |〈Sαβ〉|2. However, this does not change the fact

that the dependence on the 1-3 term is not accounted for in our theory. Introducing the
averages leaves the 1-3 term to have the form

2<
(〈
A

(1)
αβA

(3)
αβ

〉
−
〈
A

(1)
αβ

〉〈
A

(3)
αβ

〉)
(5.27)

which is recognised as being proportional to the statistical covariance [23, 24] between
the 1 and 3 terms. In general, the covariance is different from zero.

The various formulations of phase perturbation theory have varying reliance on the 1-3
and 2-2 terms. A second order phase perturbation theory should ideally have little depen-
dence on the 1-3 term, or have its contribution be counteracted by higher order effects.
It is unclear which formulation most accurately reproduces experimental MDRC values,
and it may very well depend on the media involved as well as the wavelength regime.
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It may also be variable for different polarisation components, and/or out-of-plane angles.
The comparisons made inside this thesis should therefore not be regarded to hold in all
circumstances.

5.4 Analytic computation of angular integrals
We aim to reduce the numerical calculation by performing the angular integrals present in
Eq. (5.23) analytically, starting with the integral over u‖ in Eq. (5.23). Writing it out in
polar coordinates gives∫

d2u‖ · · · =
∫ ∞
0

du‖u‖f(u‖)

∫ π

−π
dφ exp

[
−i
∣∣q‖ − k‖

∣∣u‖ cos(φ)
]
, (5.28)

where f(u‖) := exp
[
4δ2α0(q‖)α0(k‖)W (

∣∣u‖∣∣)] − 1. There is no angular dependence in f ,
so by using the fact that cos(·) is symmetric around 0 we may instead integrate φ twice
over the interval [0, π]. Coincidentally, this permits usage of a Bessel function identity [52,
53]

J0(z) =
1

π

∫ π

0

dφ exp [iz cos(φ)], (5.29)

where J0(z) denotes the Bessel function of the first kind and order zero (and in general
Jn(z) of order n). Equation (5.28) therefore reduces to∫

d2u‖ · · · =
∫ ∞
0

du‖u‖f(u‖)2πJ0(−
∣∣q‖ − k‖

∣∣u‖). (5.30)

Finally, we may also use the fact that J0(z) is symmetric around 0, to purge the first minus
sign away from the argument of J0 in Eq. (5.30).

Onto the ”exponential” part of Eq. (5.23), being given by exp [ταβ ] for

ταβ(q‖|k‖) := δ2<
∫

d2p‖
(2π)2

[
g(
∣∣q‖ − p‖

∣∣) + g(
∣∣p‖ − k‖

∣∣)] S(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

, (5.31)

a definition motivated by convenience of notation. We will perform some simplifications
to τ and exponentiate it at the end. The first approach is to split the integral over p‖ into
its radial angular components, and perform the angular integral analytically. To extract the
angular dependence of the power spectrum, we will make use of the identity

g(|p‖ − k‖|) = 2π

∞∑
n=−∞

exp [in(φp − φk)]Ln(p‖|k‖), (5.32)

with the notation-compacting definitions of

Ln(s‖|t‖) :=

∫ ∞
0

du‖u‖W (u‖)Jn(s‖u‖)Jn(t‖u‖). (5.33)

A proof of Eq. (5.32) is given in Appendix C. The usage of this expansion is inspired by
Ref. 12, but we will subject the idea to the symmetric formulation of Ref. 15. This also
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happens to remove the only explicit reference to the power spectrum, so in practice there
is no reason to calculate it in the first place. That may turn out to be useful for compli-
cated surface profile functions which cannot be written down on closed form, making the
calculation of g(Q‖) non-trivial.

We point out that there is no angular dependence inside Eq. (5.33). Meanwhile, all
the angular dependence of the remaining integrand is inside S(2)

αβ , but as may be seen from
Eqs. (4.16), (5.7), (5.9) and (5.10), the angular dependence is only given by combinations
of [q̂‖ · p̂‖], [p̂‖ · k̂‖], [q̂‖ × p̂‖]3 and [p̂‖ × k̂‖]3. These angular dependents only contribute
combinations of sine and cosine functions in the in-plane angle differences between q‖ and
k‖. The result of the analytic integrals is that only terms with |n| ≤ 2 contributes to the
sum in Eq. (5.32). The result of the analytic integrals as a function of n serves as weights
for the different Ln. The specific dependence on either {q‖,p‖} or {p‖,k‖} pertains to
the two contributions of g in Eq. (5.31). The detailed calculation of the exponent terms
is given in Appendix D, and shows that ταβ(q‖|k‖) is given by the somewhat involved
expressions in Eqs. (D.8)–(D.11).

Collecting these expressions, the final expression that calculates the incoherent MDRC,
which is implemented numerically, is given by

〈
∂Rαβ
∂Ωs

〉
incoh

=
1

2π

(ω
c

)2
cos(θs)

∣∣∣S(0)
αβ (q‖|k‖)

∣∣∣2 exp
[
ταβ(q‖|k‖)

]
×
∫ ∞
0

du‖u‖J0(
∣∣q‖ − k‖

∣∣u‖){exp
[
4δ2α0(q‖)α0(k‖)W (u‖)

]
− 1
}
.

(5.34)
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Chapter 6
Numerical Implementation and
Considerations

This chapter aims to discuss the numerical implementation, and some numerical pit-falls.

6.1 Programming language and packages

Equation (5.34) is solved numerically. The implementation is performed in python ver-
sion 3.8.5, due to its versatility and the authors prior experience with it. A common ob-
jection against using python is its numerical inefficiency, due to the lack of compilation.
However, the numerical heavy lifting — specifically the numerical integration — was per-
formed by a pre-compiled function from the SciPy [54] library. The function emulates a
low-level technique from the Fortran library QUADPACK. The semi-infinite integral of
Eq. (5.30) is computed as a Fourier integral, while the semi-infinite integrals of Eq. (5.33)
and Eqs. (D.8)–(D.11) are approximated with a finite upper boundary. An estimation of
appropriate boundaries is given in Sec. 6.3. Once the integrals have been set to have a fi-
nite range, the integration function uses a Clenshaw-Curtis method which uses Chebyshev
moments [55].

To further facilitate numerical efficiency, the calculation is performed on NumPy [56]
arrays, which are memory-contiguous. As far as possible, native python-functions have
been replaced by their NumPy-equivalents which are all pre-compiled in C. By making
use of these packages, we suspect that the python implementation is only slightly slower
than fully compiled code.

35



6.2 Numerical considerations
The expressions given by Eqs. (D.8)–(D.11) are complex quantities, but the integral solver
requires real-valued functions. To facilitate this, the implementation interchanges the order
of the integral and taking the real part. This operation is performed pointwise on all the
evaluation points, which is unproblematic. However, if one were to initiate the operation
on its functional form with the formula <(ψ) = 1/2 (ψ + ψ∗), some imaginary part might
remain due to limited numerical precision.

The order of the operations might slightly alter the result, again due to limited nu-
merical precision. If the equivalent of S(0)

αβ in Eq. (5.31) approaches zero for some input
(q‖,k‖), then ταβ may quickly diverge. To combat this, the numerator in all numerical
expressions is always multiplied in first. That way, if the argument of the integral turns
out to be some 0/0 type of expression, it is multiplied by zero first. From experience, this
usually prevents divergent behaviour. Even if the value of the expression is not completely
accurate, it only accounts for a single point in parameter space, meaning the error upon
integration is small.

6.3 Numerical justification of upper integral limits
Equation (5.31) contains a double integral, which in principle is evaluated over a semi-
infinite plane in two dimensions of parameter space. As mentioned in Sec. 6.1, we seek to
limit the integral domain to be finite by placing upper bounds on each of them. For clarity,
let us define the integrands ln and Iαβ by the equations

Ln(s‖|t‖) :=

∫ ∞
0

du‖ln(u‖; s‖, t‖) (6.1a)

ταβ(s‖|t‖) := Cαβ(s‖|t‖) + δ2
∫ ∞
0

dp‖Iαβ(p‖; s‖, t‖), (6.1b)

where Ln is the quantity from Eq. (5.33) and it is contained inside Iαβ . Also, the constant
C in Eq. (6.1b) just represents all the terms that are constant with respect to p‖, and it is
not considered further in this section. The detailed form of both Iαβ and Cαβ is provided
by Eqs. (D.8)–(D.11).

In our case, the surface has a Gaussian height distribution, meaning ln is contained
inside an envelope function with the form of Eq. (2.8). An appropriate upper boundary
may be deduced from considerations of the envelope function alone. Demanding that
W (xmax

‖ ) . 10−7 for instance, corresponds to xmax
‖ . 4a. As shown by Fig. 6.1 for two

example wave vectors and two sets of surface parameters from Ref. 15, the integrand
has all but vanished for x‖ = 4a. The specific surface parameters and description of
the samples is given in Sec. 7.2.1 and Table 7.2. The remaining integrand decreases in
amplitude like a squared exponential function, and the integrand even oscillates, meaning
any introduced error partially cancels out.

As long as the surface profile is Gaussian, this prescribed cut-off is seemingly in-
nocuous. But for a general surface autocorrelation function, greater care might have to be
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(a) The integrand ln(u‖; s‖t‖) as a function of
u‖ with statistical parameters from sample 0061 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 1.
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(b) The integrand ln(u‖; s‖t‖) as a function of
u‖ with statistical parameters from sample 0061 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 2.
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(c) The integrand ln(u‖; s‖t‖) as a function of
u‖ with statistical parameters from sample 7047 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 1.
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(d) The integrand ln(u‖; s‖t‖) as a function of
u‖ with statistical parameters from sample 7047 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 1.

Figure 6.1: Representative behaviour for the integrands ln(u‖; s‖, t‖) of Eq. (5.33) as functions of
u‖. All integrands are contained in an envelope which is dominated by a Gaussian surface auto-
correlation function with mean correlation length a. All integrands are extremely close to zero for
all u‖ > 4a. Wave vector 1 is defined by the parameters {θ0 = 15°, φ0 = 0°, θs = 37°, φs = 0°}.
Wave vector 2 is defined by the parameters {θ0 = 78°, φ0 = 0°, θs = −15°, φs = 24°}.
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taken. The integrand ln is oscillatory with respect to u‖. If the oscillation frequency is large
compared to the size of the envelope function, the evaluation of Ln becomes increasingly
challenging. One approach to solving it is discussed in Sec. 6.4.

After applying the cut-off for Ln, the behaviour of the integrands Iαβ(p‖) remains im-
mediately non-obvious. To produce an accurate approximation with a finite upper bound,
the integrand ought to decrease quickly. We check numerically if this is the case for
Iαβ(p‖), and plot the results for two example wave vectors and two sets of surface param-
eters from Ref. 15 in Fig. 6.2. The result shows that |Iαβ | decreases up to a certain p‖, and
thereafter it fluctuates erratically around a constant value.

The sudden shift in character of Iαβ is suspicious, and the form of its tail is telling
of numerical limitations dominating the form of the integrand. This form of graphic is
common for expressions that are defined only through numeric computation. It does not
justify a conclusion that the integral does not converge. In the end, we are calculating
the MDRC, a measurable quantity that clearly is finite. Therefore, we look to the smooth
parts of Fig. 6.2 to evaluate convergence on a part of Iαβ that seems less tarnished by
numerical limitations. Their analytical form were extracted from a curve fitting through
the calculated points, with the fitting function of the form

ffit(p‖; f1, f2, f3, f4) = f1 exp
[
−(f2p‖)

f3
]

+ f4. (6.2)

The curve fitting was performed with a least-square method using the Levenberg-Marquardt
algorithm [57]. The most relevant fitting parameter from Eq. (6.2) is f3, and it was
recorded for all the sets of scattering parameters studied in this thesis, and for both the
example wave vectors used to create Figs. 6.1 and 6.2. In all cases, f3 ≈ 6, meaning the
smooth form of the integrand decreases like exp

[
−p6‖

]
. This supports the claim that ταβ is

reasonably well approximated by any upper bound that exceeds the ”critical point” of the
integrand, which we take to be the point where the nature of the integrand changes from
analytical to numerical.

In the implementation, the upper boundaries often exceed the ”critical point” signif-
icantly. This is done to make sure the upper boundary is always large enough, even for
all the wave vector combinations unaccounted for in the examples. There is no reason to
believe the form of the integrands should vary massively within the constraints placed on
q‖ and k‖. But there is also no reason to believe that the possible error of including the
erratic part of I is significant. We note that the plots in Fig. 6.2 show the absolute value
of Iαβ instead of Iαβ itself. Sans for a possible numerical bias, it seems unlikely that the
integral of the tail end amounts to anything that matters.

6.4 An approach to calculating highly oscillating integrals
The integrand of Eq. (5.33) oscillates with frequencies equal to the functions arguments, as
may be observed in Fig. 6.1. Equations (D.8)–(D.11) shows that these arguments are either
{q‖, p‖} or {p‖, k‖}. Any q‖ or k‖ is bounded by the interval [−ω/c, ω/c] since these two
wave vectors are related to the polar angles of scattering and incidence respectively, but
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(a) The integrand Iαβ(p‖; s‖t‖) as a function of
p‖ with statistical parameters from sample 0061 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 1.
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(b) The integrand Iαβ(p‖; s‖t‖) as a function of
p‖ with statistical parameters from sample 0061 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 2.
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(c) The integrand Iαβ(p‖; s‖t‖) as a function of
p‖ with statistical parameters from sample 7047 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 1.
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(d) The integrand Iαβ(p‖; s‖t‖) as a function of
p‖ with statistical parameters from sample 7047 of
Ref. 15. The wave numbers s‖ and t‖ are taken from
example wave vector 2.

Figure 6.2: Representative behaviour for the absolute value of the integrands Iαβ(p‖; s‖, t‖) of
Eqs. (D.8)–(D.11) as functions of p‖. All integrands have been calculated for a Gaussian surface
autocorrelation function, with the upper boundaries of Eq. (5.33) set to 4a. The smooth part of Iαβ
have been curve fitted to a function that decreases like exp

[
−p6‖

]
. Wave vector 1 is defined by the

parameters {θ0 = 15°, φ0 = 0°, θs = 37°, φs = 0°}. Wave vector 2 is defined by the parameters
{θ0 = 78°, φ0 = 0°, θs = −15°, φs = 24°}.
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the integral variable p‖ ∈ [0,∞) may provide extremely rapid oscillation. This is the main
motivation of providing an upper limit of the integral over p‖, and as discussed in Sec. 6.3
the integrand does in fact seem to vanish quickly as p‖ increases. However, the argument
is quite specific to the relatively narrow range of surface parameters presented, and not
generally valid. It remains challenging to define a generally robust criterion for where
to place the upper limit. In some parameter regimes, it may be required that the upper
boundary is large compared to the other quantities in the integrand. There is in general no
reason to suspect that the fluctuating effects have to remain as small as in Fig. 6.2.

Some of the numerical uncertainties comes down to evaluation of Eq. (5.33). The
naı̈ve approach presented until now fails to evaluate oscillations that are more frequent
than the frequency of the interval subdivision points used for integral evaluation. One case
where this may occur is on a surface with long range correlations, such that ln oscillates
many times within the confines of the correlation function envelope. Another case is if
the amplitude of Iαβ does not decrease quickly. At many test stages for the present code
implementation, the evaluation of Ln for large frequencies (p‖) was a cause of concern.
This prompts the investigation of a more robust method for evaluating Eq. (5.33) for large
frequencies.

The suggested approach is to convert the oscillating integral into a sequence of inte-
grals between the alternating positive and negative contributions, and then evaluate the
convergence of the sequence with Wynn’s ε-method [58]. The method can determine the
convergence of a oscillating series with only a few given terms. A python-specific imple-
mentation [59] was used in practice. A pseudo-coded overview of the method is given in
Algorithm 1. The zeros of the integrand ln is easily found in the Gaussian case, as they
exactly coincide with frequency-scaled zeros of the n-th order Bessel function.

Algorithm 1 Alternative approach to the evaluation of Eq. (5.33).

lzeros← the first K zeros of the integrand, which are scaled Bessel function zeros.
for z in lzeros:

Sk ←
∫ z [k]

z [k−1]
du‖ln(u‖), evaluated with the regular method

if SK = SK−1 then
return SK (The partial sums converged within K terms)

else Ln ≈Wynn-ε
(
{Sk}Kk=1

)
Given the specifics of how Eq. (5.33) appears in Eqs. (D.8)–(D.11), only one of the

frequencies in the Bessel functions has the possibility of becoming large. To capture the
correct large-scale behaviour of the integrand, which is the oscillation of the low-frequency
Bessel function as well as the high-frequency, a significant part of the integrand should be
included. As shown by Fig. 6.1, the low frequency Bessel function also oscillates a few
times within the confines of the enveloping autocorrelation function. A large frequency
difference is a challenge, because a lot of terms needs to be evaluated in the Wynn-ε al-
gorithm. So; while in principle Algorithm 1 accurately evaluates each term and their col-
lective convergence, the large number of terms that is required for a single high frequency
makes the method computationally challenging in practice. This method would probably
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benefit greatly for a formulation where the ”inner” integral of the exponent in MDRC only
contains a single oscillating function.

41



42



Chapter 7
Results and Discussion

This chapter presents calculated MDRC for some example systems, compares the results to
previous implementations and experiments, and comments on similarities and differences
between them, as well as the physical origins of some of the observed phenomena. All
calculation is performed using the phase perturbation theory culminating in the expression
Eq. (5.34), with the implementation detailed in Chapter 6.

7.1 Comparison with previous numerical systems

In Ref. 12, a direct solution of the reduced Rayleigh equation, as well as a computation
using a different formulation of phase perturbation theory was performed. Its authors
introduced some systems for numerical testing, and we now compare the results of the
present implementation in these systems. For the comparisons in this section and the
next, we quickly mention that the cross-polarised components of MDRC are always zero
for in-plane scattering. This may be seen by the multiplicative factor

∣∣∣S(0)
αβ (q‖|k‖)

∣∣∣2 in
Eq. (5.23) through its definition in Eq. (5.14) depends on the function ναβ(q‖|k‖), which
itself depends linearly on [q̂‖× p̂‖]3 if α 6= β, as can be seen from Eqs. (5.7). So for α 6= β

and q̂‖ ‖ k̂‖, the MDRC must vanish as the cross product does. This is why the ps- and
sp-components are absent from the MDRC plots shown in Secs. 7.1 and 7.2.

Both the results of the present calculation as well as the direct calculation performed in
Ref. 12 are presented in Figs. 7.1–7.3 and Fig. 7.5. The calculations performed by Ref. 12
has been labelled ”external” (or ”Ext.”) to distinguish them from the results of the present
implementation.
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Table 7.1: Statistical parameters of the numerical test systems from Ref. 12.

System λ[nm] ε(ω) δ/λ a/λ δ/a

1 457.90 −7.50 + i0.24 0.05 1.0 0.05

2 457.90 −7.50 + i0.24 0.05 0.5 0.10

3 632.80 −18.28 + i0.48 0.025 0.25 0.10
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Figure 7.1: Calculated in-plane incoherent MDRC as a function of the polar scattering angle on
a randomly rough silver surface, with an incidence angle of 0°. The surface height distribution
is Gaussian, with statistical parameters δ = 0.05λ and a = 1.0λ taken from ”system 1” of
Ref. 12, which is also the origin of the ”external” data sets included for comparison.

7.1.1 Presentation of the systems

The scattering systems used for comparison is presented in Table 7.1. These all emulate
a randomly rough silver surface with a Gaussian height distribution. The given dielectric
functions are constants at the given wavelengths.

7.1.2 Presentation of the calculated MDRC

The calculated in-plane incoherent MDRC for system 1 in Table 7.1 is plotted in Figs. 7.1
and 7.2 for incidence angles of 0° and 40°. When compared to the results presented in
Ref. 12, both components compares favourably for both of the considered incidence an-
gles. It is noted that in Fig. 7.2, the peak MDRC is slightly skewed towards reduced scat-
tering angles with respect to the specular angle of 40°. The tendency is most pronounced
for the pp-component. The same effect is observed in Ref. 12.

The calculated in-plane MDRC for system 2 in Table 7.1 is plotted in Fig. 7.3 with
incidence angle 4.56°. There is good agreement between the results reported in Ref. 12
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Figure 7.2: Calculated in-plane incoherent MDRC as a function of the polar scattering angle on
a randomly rough silver surface, with an incidence angle of 40°. The surface height distribution
is Gaussian, with statistical parameters δ = 0.05λ and a = 1.0λ taken from ”system 1” of
Ref. 12, which is also the origin of the ”external” data sets included for comparison.

and the present calculation in terms of relative shape between the components, but the
peak value deviates. The choice of incidence angle is slightly peculiar, but the MDRC is
centered around the specular angle in any case. Such a small incidence angle leaves little
room for a skewing of the peak that was present in Fig. 7.2 but not in Fig. 7.1.

In Fig. 7.4 the calculation for the system 2 has been given for an incidence angle of
30°. There is no direct comparison of this case in Ref. 12, but it is included to point out the
same tendency as above. The MDRC peak is skewed to a smaller angle than the specular,
that being 30° in this case.

The calculated in-plane MDRC for system 3 in Table 7.1 is plotted in Fig. 7.5 with
incidence angle 0°. In both the pp- and ss-components the shape of the MDRC is in good
agreement between the present calculation and the results reported in Ref. 12. However,
again the peak amplitudes of the present implementation is less than the value reported
by Ref. 12, whose solution also included a sharper peak around the origin. This is be-
lieved to be the enhanced backscattering peak, a feature which is evidently not picked up
by the present perturbation theory. It was also not picked up by the perturbation theory
based reconstruction performed in Ref. 12. The enhanced backscattering phenomenon is
known to be the result of multiple scattering from surface waves known as surface plasmon
polaritons [1, 12].

In both the cases where the present formulation reported a different MDRC from the
external case, the present formulation reported a lower value. However, the differences are
limited to the value of the MDRC peak, and their difference does not have a common ratio.
Neither does there seem to be any pattern to where they appear. This does not point to a
systemic issue. The phase perturbation calculation presented by Ref. 12 give a slightly
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Figure 7.3: Calculated in-plane incoherent MDRC as a function of the polar scattering angle
on a randomly rough silver surface, with an incidence angle of 4.56°. The surface height dis-
tribution is Gaussian, with statistical parameters δ = 0.05λ and a = 0.5λ taken from ”system
2” of Ref. 12, which is also the origin of the ”external” data sets included for comparison.
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Figure 7.4: Calculated in-plane incoherent MDRC as a function of the polar scattering angle on
a randomly rough silver surface, with an incidence angle of 30°. The surface height distribution
is Gaussian, with statistical parameters δ = 0.05λ and a = 0.5λ taken from ”system 2” of
Ref. 12.
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Figure 7.5: Calculated in-plane incoherent MDRC as a function of the polar scattering angle on
a randomly rough silver surface, with an incidence angle of 0°. The surface height distribution
is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from ”system 3” of
Ref. 12, which is also the origin of the ”external” data sets included for comparison.

better agreement. However, the formulations of the phase perturbation theories are not
the same, so the difference may well be explained by varying reliance on the 2-2 and 1-3
terms in the two formulations, as discussed in Sec. 5.3. The indication is that the present
formulation and/or implementation is inadequate to calculate the incoherent MDRC as
accurately as the non-perturbative calculation.

The shift in the form of the incoherent MDRC from systems 1 and 2 to system 3,
exhibits some of the physical intuitions about rough surface scattering. The rms-roughness
δ in system 3 is halved compared to systems 1 and 2. This explains why the amplitude
of the MDRC in Fig. 7.5 is much smaller than in Figs. 7.1–7.4; the surface more closely
resembles a flat one, and a smaller fraction of the light is scattered incoherently as opposed
to coherently. Also, the angular range of the pp-component of the MDRC in Fig. 7.5 is
much larger than in the others. This might be due to the lower surface correlation length,
a, and therefore larger rms slope of system 3 making the surface spatial wavelength closer
to the light wavelength; which increase the possible interactions in different angles.

7.2 Comparison with experimental systems
A phase perturbation theory calculation was presented along experimentally gathered MDRC
in Ref. 15. In this section we compare the results with the present implementation. Some
(but not all) of the experimental data was available, and has been presented along corre-
sponding plots of the calculated incoherent MDRC in Sec. 7.2.2. The experimental data is
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Table 7.2: Statistical parameters of the experimental test systems from Ref. 15.

System λ[µm] ε(ω) δ/λ a/λ δ/a

0061 10.6 −2489.77 + i2817.36 0.047± 0.001 1.79± 0.160 0.026

5122 10.6 −2489.77 + i2817.36 0.040± 0.001 0.198± 0.019 0.20

7047 10.6 −2489.77 + i2817.36 0.151± 0.005 0.896± 0.123 0.17

8053 10.6 −2489.77 + i2817.36 0.071± 0.004 0.283± 0.160 0.25

9032 10.6 −2489.77 + i2817.36 0.071± 0.004 0.708± 0.066 0.10

the work of the authors of Ref. 15.

7.2.1 Presentation of the systems

The scattering parameters are given in Table 7.2. All the systems considered have the same
wavelength originating from a CO2 laser, and dielectric function originating from a gold
substrate at the given wavelength. The naming scheme for the samples is also taken from
Ref. 15, and the reasoning behind the names is not explained.

7.2.2 Presentation of the calculated MDRC

Sample 0061

Only plots for samples 0061, 7047 and 8053 have been included in Ref. 15. Here, we
present the calculated MDRC for all the samples in Table 7.2, to point out their interesting
features. Ordering them numerically, the first considered sample is 0061. Its calculated
in-plane MDRC and corresponding available experimental data is plotted in Figs. 7.6–7.9
for incidence angles of 5°, 15°, 30° and 50°, respectively. Note that in Fig. 7.9 only the
pp-component is shown, to match the experimental data provided in Fig. 11 in Ref. 15.
For the present calculations, the MDRC of the ss-component is indistinguishable from the
pp, so the distinction hardly matters for the sake of comparison.

For the cases of 5° and 15° incidence, shown in Figs. 7.6 and 7.7, there is strong
agreement between the presently calculated MDRC and both the phase-perturbative and
experimental MDRC of Ref. 15, if one disregards the missing experimental MDRC in the
region that is obscured by the light source.

For the case of 30° incidence in sample 0061, there is fair agreement between all
calculations and experiments for the ss-component. However, the peak value of the pp-
component of the MDRC in Fig. 7.8 is slightly lower than the phase perturbation theory
in Ref. 15 reports. It remains impossible to discern the exact experimental value of the
MDRC at the peak, given that the peak is close to the specular direction where the detec-
tor may become saturated. Neither the MDRC from the present calculation or the phase
perturbation theory of Ref. 15 is obviously correct or incorrect near the specular direction,
while both coincide well with the experimental values away from the specular direction.
The fact that the experimental values for the pp-component has its specular peak (where
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Figure 7.6: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 5°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ and the
corresponding experimental data all taken from ”sample 0061” of Ref. 15.
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Figure 7.7: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 15°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ and the
corresponding experimental data all taken from ”sample 0061” of Ref. 15.
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Figure 7.8: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 30°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ and the
corresponding experimental data all taken from ”sample 0061” of Ref. 15.

also coherently scattered light contribute to the measured MDRC) at a scattering angle
slightly lower than 30°, suggests a small misalignment in the experiment or the corre-
sponding dataset. Translating the experimental pp-component to have its peak at 30° gives
even better alignment with calculated values.

The pp-component of the calculated incoherent MDRC in the case of 50° incidence
is shown in Fig. 7.9, but the corresponding experimental data was not available for direct
comparison. There is however excellent agreement between the two phase perturbation
calculations, and good fit with experimental data from Fig. 11 in Ref. 15 away from the
specular direction. Near the specular direction the measured MDRC is large, while in
an intermediate region near the specular direction it fluctuates somewhat above the phase
perturbation. The manner of the fluctuation does not suggest the discrepancy to be caused
by detector saturation near the specular direction.

A feature obviously present in Fig. 7.9, and less obviously in Fig. 7.8, is the skewing
of the incoherent MDRC peak to smaller scattering angles than the specular angle. This
feature was also seen in the purely numeric examples shown in Figs. 7.2 and 7.4.

Sample 7047

The incoherent MDRC from sample 7047 is shown in Figs. 7.10–7.12, for incidence angles
of 5°, 30° and 60°, respectively. For the case of 5° incidence, there is good agreement in
the amplitude and position of the MDRC peak between the phase perturbation theories.
However, the phase perturbation theory in Ref. 15 slightly undershoots the experimental
MDRC for scattering angles below the specular angle for the ss-component, and above
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Figure 7.9: Calculated in-plane incoherent MDRC as a function of the polar scattering angle on
a randomly rough gold surface, with an incidence angle of 50°. The surface height distribution
is Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from ”sample 0061”
of Ref. 15.

the specular angle for the pp-component. In the present implementation, the MDRC of
which being shown in Fig. 7.10, the ss-component seems to compare well to the phase
perturbation theory of Ref. 15. The MDRC of the present pp-component is noticeably
wider than the corresponding phase perturbation calculation, and it seems to compare
slightly more favourably with the experimental data.

For instance, by noting the scattering angles where the incoherent MDRC takes on the
value 0.25, we report that the present implementations claim of θs = 47° is closer to the
experimental value of θs = 45° than the phase perturbation theory of Ref. 15 which claims
θs = 38°. On the other side of the specular direction, the present implementation takes on
the MDRC value of 0.25 at θs = −37°, which is slightly lower than the experimental value
of θs = −35° and the phase perturbation theory by Ref. 15 of θs = −32°. This is one of the
considered examples that most clearly favour the current implementation.

The calculated MDRC of sample 7047 with 30° incidence is given in Fig. 7.11. There
is good agreement between the ss-components. The pp-components have good agreement
in their peak values and placements, and their shapes for scattering angles smaller than the
specular. However, the shape of the pp-component near 90° scattering angle in Fig. 7.11
is distorted compared to the experimental and phase perturbative results given by Ref. 15.
The reason for this behaviour we are currently not able to explain, however we may suggest
that the larger values of q‖ at large scattering angles gives more frequent oscillation in
Eq. (5.33) as per the discussion in Sec. 6.4. It may be a contributing factor, but is unlikely
to entirely account for all the observed difference.

For the case of 60° there is excellent agreement between the ss-component of MDRC
between the phase perturbation theories shown in Fig. 7.12 and Ref. 15. Neither repli-
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Figure 7.10: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 5°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.151λ and a = 0.896λ and
the corresponding experimental data all taken from ”sample 7047” of Ref. 15.
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Figure 7.11: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 30°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.151λ and a = 0.896λ and
the corresponding experimental data all taken from ”sample 7047” of Ref. 15.
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Figure 7.12: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 60°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.151λ and a = 0.896λ and
the corresponding experimental data all taken from ”sample 7047” of Ref. 15.

cate the experimental data exactly in and around the region of 30° scattering angle. The
present calculation of the pp-component shows fairly good agreement for scattering an-
gles smaller than about 30°, but overestimates the MDRC for larger angles compared to
the phase perturbation theory and experimental data of Ref. 15. Although the values are
different, the overall shape is maintained. It is uncertain whether the experimental data set
for the ss-component in Fig. 7.12 is indeed taken at 60° incidence, as the specular peak of
the experimental data is displaced with respect to this value. Internally, this dataset was
labelled as being taken at 50° incidence, but at the same time presents itself as being the
experimental data belonging to Fig. 8 of Ref. 15. Therefore, the labelling of the experi-
mental ss-component results may be insincere. However, their inclusion still gives a good
indication of the presumed correct result, and is a good basis for comparison.

The tendency for the pp-component to approach a non-zero value as the scattering
angle approaches 90° is present in both implementations of the phase perturbation theory.
In Figs. 7.11 and 7.12 it is far more pronounced than in their counterparts in Ref. 15. The
present implementation seems to overestimate the MDRC for large scattering angles in
this sample. It might be interesting to note, then, that sample 7047 has the largest rms-
roughness parameter δ of all the studied samples, by a wide margin. While it does not
have the most severe roughness to correlation length ratio (which is proportional to the
rms slope), it may indeed be influenced by the present implementation depending on δ and
a individually, and not just as a ratio.
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Figure 7.13: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 5°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.071λ and a = 0.283λ and
the corresponding experimental data all taken from ”sample 8053” of Ref. 15.

Sample 8053

The incoherent MDRC calculated from sample 8053 is shown in Figs. 7.13–7.15, along
with corresponding experimental data. This is the sample with the highest roughness to
correlation length ratio, which presents the fiercest challenge to our underlying assump-
tions out of all the samples considered. This fact is also shown in that the incoherent
MDRC spread out across a wider range of scattering angles than in the previous samples.
Like with the other samples, there is very good agreement between the ss-components
of the two phase perturbation theories in all the considered angles of incidence, however
they underestimate the experimental value slightly near the specular direction. For the
pp-component of Fig. 7.13 the peaks value of the MDRC is lower than both the experi-
mental and phase-perturbative values reported in Ref. 15 by about 25%, and the form of
the MDRC looks more like what was calculated with the Kirchhoff approximation. The
shape and values of the MDRC close to the edges of the plot of Fig. 7.13 is a closer match
between the phase perturbation theories and the experimental data. The authors of Ref. 15
propose that the sharp drop-off of the pp-component near the edges is due to the existence
of surface plasmon polaritons. This feature seems to be somewhat captured by the phase
perturbation theory, but its value near the origin is inadequate.

In Figs. 7.14 and 7.15 the underestimation is less severe, and the experimental val-
ues seem to lie somewhere in-between the peaks of the MDRC of the present theory and
the phase perturbation theory of Ref. 15. Also in Figs. 7.14 and 7.15 the MDRC peak
of the pp-component is slightly more backwards skewed than the phase perturbation the-
ory in Ref. 15, approaching the backscattering angle; the angle where the reflected wave
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Figure 7.14: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 15°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.071λ and a = 0.283λ and
the corresponding experimental data all taken from ”sample 8053” of Ref. 15.

vector is antiparallel to the incoming wave vector. It is unclear whether or not this is a
departure from the experimental values, as the backscattering direction is obscured by the
light source and is not conducive to producing accurate scattering data. There calculated
pp-component in Fig. 7.15 dips below the experimental significantly around the specular
direction, but it remains difficult to know how much the experimental values are influenced
by the coherently scattered MDRC near the specular direction. However, at least the gen-
eral shape of the MDRC is a much better fit at this incidence angle for the remaining
scattering directions.

The pp-component does not approach zero close to±90° scattering angle in Figs. 7.13–
7.15, but instead it seems to approach the value of 0.07, which is replicated by the phase
perturbation theory of Ref. 15. The experimental data also show this tendency, but mea-
surements are practically difficult to measure at extreme angles so we are careful to not
conclude too much from it.

Samples 5122 and 9032

Sample 5122 was not considered in detail in Ref. 15, but its calculated in-plane MDRC
is plotted in Figs. 7.16–7.18. The system has a rms-roughness to correlation length ratio
that lies between samples 7047 and 8053, however the absolute size of its topographic fea-
tures is much smaller than either of those samples. This explains that the range of relevant
scattering angles is wide, especially for the pp-component, but also that the absolute mag-
nitude of the incoherent MDRC is far smaller. Otherwise, the general form of the MDRC
shows many similarities to sample 8053.
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Figure 7.15: Calculated and experimental in-plane incoherent MDRC as a function of the polar
scattering angle on a randomly rough gold surface, with an incidence angle of 30°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.071λ and a = 0.283λ and
the corresponding experimental data all taken from ”sample 8053” of Ref. 15.
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Figure 7.16: Calculated in-plane incoherent MDRC as a function of the polar scattering angle
on a randomly rough gold surface, with an incidence angle of 5°. The surface height distribution
is Gaussian, with statistical parameters δ = 0.040λ and a = 0.198λ taken from ”sample 5122”
of Ref. 15.
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Figure 7.17: Calculated in-plane incoherent MDRC as a function of the polar scattering angle
on a randomly rough gold surface, with an incidence angle of 15°. The surface height distribu-
tion is Gaussian, with statistical parameters δ = 0.040λ and a = 0.198λ taken from ”sample
5122” of Ref. 15.
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Figure 7.18: Calculated in-plane incoherent MDRC as a function of the polar scattering angle
on a randomly rough gold surface, with an incidence angle of 30°. The surface height distribu-
tion is Gaussian, with statistical parameters δ = 0.040λ and a = 0.198λ taken from ”sample
5122” of Ref. 15.
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Figure 7.19: Calculated in-plane incoherent MDRC as a function of the scattering angle on a
randomly rough gold surface, with an incidence angle of 5°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.071λ and a = 0.708λ taken from ”sample 9032”
of Ref. 15.

Finally, we consider sample 9032 from Table 7.2 which also was not considered in de-
tail in Ref. 15. Plots of the calculated in-plane incoherent MDRC is shown in Figs. 7.19–
7.21. System 9032 has the same rms-roughness as system 8053, but much greater corre-
lation length. As might be expected, the MDRC of system 9032 looks quite like system
7047 shape-wise, as it is the system with the most comparable rms-roughness to correla-
tion length ratio. However, it is slightly lower than system 7047 and the absolute roughness
is smaller too, which explains the comparatively reduced incoherent MDRC amplitude.

7.3 Off-diagonal calculation and comparison
We perform the out-of-plane calculation for the systems presented in Ref. 16, which solves
the Reduced Rayleigh equation in a non-perturbative way. This was also performed in
Ref. 60 on surfaces that were so rough that perturbation theory cannot be expected to
be correct. Similar systems was also considered by Ref. 61 for an ”inverse” case of a
medium-to-vacuum interface, or a layered dielectric system in Ref. 62. We also perform a
calculation for the sample 0061 from Ref. 15. The statistical parameters of the scattering
situations adapted from Ref. 16 are presented in Table 7.3.

System 1

The out-of-plane incoherent MDRC calculation with phase perturbation theory for sys-
tem 1 from Table 7.3 is shown in Figs. 7.22 and 7.23 for 0° and 67° incidence, respectively.
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Figure 7.20: Calculated in-plane incoherent MDRC as a function of the polar scattering angle
on a randomly rough gold surface, with an incidence angle of 15°. The surface height distribu-
tion is Gaussian, with statistical parameters δ = 0.071λ and a = 0.708λ taken from ”sample
9032” of Ref. 15.
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Figure 7.21: Calculated in-plane incoherent MDRC as a function of the polar scattering angle
on a randomly rough gold surface, with an incidence angle of 30°. The surface height distribu-
tion is Gaussian, with statistical parameters δ = 0.071λ and a = 0.708λ taken from ”sample
9032” of Ref. 15.
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Table 7.3: Statistical parameters of some of the off-diagonal test systems which are taken from
Ref. 16. Another scattering sample used for off-diagonal calculation was sample 0061 from Table 7.2
and Ref. 15.

System λ[1] ε(ω) δ/λ a/λ δ/a

1 1 2.64 0.025 0.25 0.10

2 1 2.64 0.050 0.25 0.20

The incidence direction is defined by a zero degree incident azimuthal angle φ0, meaning
the plane of incidence is parallel to the q1-axis. The result compares well to the result pre-
sented in Ref. 16 whose calculations solved the reduced Rayleigh equation directly, and
echoes the fact that the amplitude of the s-component outweighs the p-component in the
case of 67° incidence. The value of the MDRC at the point (0, 0) in Figs. 7.22 and 7.23
is not well-defined, and seem to approach different values from different directions. The
plots indicate that the in-plane MDRC has a local minimum there, which it does not. The
value is a compromise of the colour gradient being interpolated by adjacent evaluation
points. Here, as well as in the in-plane calculations, the MDRC at the origin is not eval-
uated explicitly. The scale of the interpolated MDRC value around the origin is slightly
exaggerated due to the resolution of interpolation points being lower than ideal around
this region. A refined distribution of calculation points should crowd the region around the
origin more than was done in the calculations that produced Figs. 7.22, 7.23, 7.26, 7.27,
7.30 and 7.31.

The result of the contour plot in Fig. 7.22 is visually striking from the onset. A dipole-
like pattern is produced, which is oriented along the plane of incidence for the co-polarised
components, and perpendicular to the plane of incidence for the cross-polarised compo-
nents. One explanation for this is that amplitude of the incoherent MDRC of modestly
rough surfaces is dominated by single scattering, which describes light that has interacted
exactly once with the surface. In the case of single scattering, the reflection of any one
incoming wave vector is well approximated by specular scattering from the tangent plane
at the specific interaction point of the surface profile function. But then, the reflected
amplitude is subject to the regular Fresnel coefficients for the tangent plane interface,
whose cross-polarised components are known to be zero. The Fresnel coefficients for
co-polarised scattering is different from zero, and these factors explain the shape of the
incoherent MDRC in Fig. 7.22 along the scattering plane. For the completely out-of-plane
scattering wave vectors along the q2-axis, the plane that defines the scattered polarisation
components has been rotated 90° which corresponds to the p- and s-components being
mutually relabelled. This fact may be understood by imagining the appearance of Fig. 3.1
with the depicted planes having an intermediate angle of 90°. The previous argument,
using the tangent plane Fresnel coefficients, explains the shape of the incoherent MDRC
along the q2-axis as well. The completely out-of-plane contribution to the sp-component
of Fig. 7.22 is being calculated using the tangent plane Fresnel coefficients for p-polarised
light, and vice versa. Any other point in Fig. 7.22 is a linear combination of tangent plane
Fresnel coefficients, with liner coefficients proportional to the distance from the respective

60



Figure 7.22: Calculated incoherent MDRC as a function of both parallel components of the
scattering wave vector, after light scattering from a randomly rough dielectric surface at inci-
dence angles θ0 = 0° and φ0 = 0°. The surface height distribution is Gaussian, with statistical
parameters δ = 0.025λ and a = 0.25λ taken from Ref. 16 and system 1 in Table 7.3.
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axes. This gives a good explanation for how the gradual slope of the incoherent MDRC.
The dipole-like pattern of the incoherent MDRC remains with non-normal incidence,

as seen in Fig. 7.23, but the shape is comparatively elongated along the plane of inci-
dence, and the amplitude is reduced. The pp-component is weaker than the ss-component
near the specular direction, and this may be explained by the dielectric constant which
is used to calculate Figs. 7.22 and 7.23. The dielectric constant ε = 2.64 is close to the
value for glass, which is 2.25. Glass is known to have a Brewster angle of 56°, at which no
p-polarised light is reflected. The larger dielectric constant gives a slightly increased Brew-
ster angle, which makes it close to the incident polar angle of θ0 = 67° used to calculate
the incoherent MDRC in Fig. 7.23. Because of the modest roughness, most tangent planes
give reflection near the specular direction, the pp-component of which is suppressed. This
explains why the amplitude of the ss-component is larger than the pp-component in the
right half-plane of Fig. 7.23, but not why the amplitude of the pp-component is the largest
in the left half-plane. The presence of incoherent MDRC completely out-of-plane in the
pp-component of Fig. 7.23, is due to the incident angle providing some p-polarised com-
ponent in the would-be p-direction out-of-plane. The remaining features of the incoherent
MDRC can largely be explained by the various combinations of p- and s-components de-
termining the Fresnel coefficients of various tangent planes. But this does not account
for everything, as we recall the phase perturbation theory is of second order and includes
some (presumed weak) second order contributions which are not explainable by such sim-
ple means.

The value of the incoherent MDRC at the origin is remedied by the results of Figs. 7.24
and 7.25. These figures show the calculated incoherent MDRC without polarisation sen-
sitivity in the scattered waves after incoming p-polarised (p → ∗) and s-polarised (s → ∗)
light onto system 1 from Table 7.3. They also show the calculated incoherent MDRC with
the incoming light being unpolarised, and the scattered light being p-polarised (◦ → p)

and s-polarised (◦ → s), for respective incidence angles of 0° and 67°. The notation ∗
means that the polarisation is not recorded, and is therefore obtained by a direct (unscaled)
sum of the p- and s-components. Note that this does not mean that the scattered wave is
unpolarised. In certain directions it is more p-polarised than s-polarised and the ratio of
these polarisations can vary strongly with the scattering direction. The notation ◦ on the
other hand, represents unpolarised light which is an equally weighted linear combination
of the p- and s-components. Therefore, the amplitude of the plots containing ◦ is only half
of the ones containing ∗. We will refer to the collective of these types of plots as being
polarisation-ignorant.

The plots in Figs. 7.24 and 7.25 are obtained by adding the pp- and sp-components of
Figs. 7.22 and 7.23 to get (p→ ∗) , the ps- and ss-components to get (s→ ∗), the pp- and
ps-components to get (◦ → p) and the sp- and ss-components to get (◦ → s). If we wish
to obtain the polarisation-ignorant incoherent MDRC-distribution for unpolarised incident
light, we calculate the arithmetic average of the (p → ∗) and (s → ∗) components. The
same general remarks for how Figs. 7.24 and 7.25 is constructed, also holds for Figs. 7.28,
7.29, 7.32 and 7.33.

If one considered the incoherent MDRC without polarisation sensitivity, the (p → ∗)
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Figure 7.23: Calculated incoherent MDRC as a function of both parallel components of the
scattering wave vector, after light scattering from a randomly rough dielectric surface at inci-
dence angles θ0 = 67° and φ0 = 0°. The surface height distribution is Gaussian, with statistical
parameters δ = 0.025λ and a = 0.25λ taken from Ref. 16 and system 1 in Table 7.3.
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Figure 7.24: The polarisation-ignorant components of the calculated incoherent MDRC as a
function of both parallel components of the scattering wave vector, after light scattering from
a randomly rough dielectric surface at incidence angles θ0 = 0° and φ0 = 0°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken
from Ref. 16 and system 1 in Table 7.3. The notation ∗ refers to the sum of p- and s-polarised
light, and ◦ refers to unpolarised light which is a normalised sum of the p- and s-components.
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and (s → ∗) components of Fig. 7.24 suggest that the MDRC nearly has circular sym-
metry. Similarly, if the wave source provides unpolarised incident light, the resulting p-
and s-components of the incoherent MDRC appear to be more or less equal. The intricate
dependence on the incoming polarisation is not picked up in these cases. The discrepancy
between Fig. 7.24 and Fig. 7.22 or between Fig. 7.25 and Fig. 7.23 explains the need for
polarisation sensitive detection systems in experimental measurements. Otherwise, the
intricate nature of the MDRC may not be found.

The shapes and overall features of Figs. 7.24 and 7.25 also compares well to the cor-
responding figures of the same system presented in Ref. 16. As with Figs. 7.22 and 7.23,
the overall correspondence contributes to verification of the present implementation.

System 2

For system 2 from Table 7.3, the rms-roughness is doubled compared to system 1. The
calculated out-of-plane MDRC for this system is shown in Figs. 7.26 and 7.27 for 0° and
67° incidence, respectively. Especially note that the colour bar is scaled differently from
Figs. 7.22 and 7.23, and the maximum recorded amplitude is approximately four times
greater in Fig. 7.26. The increase in amplitude of the incoherent MDRC is not surprising,
as the deviation from surface flatness is greater. Otherwise, the shape and features of
the incoherent MDRC is predictably similar to system 1, with the only notable difference
being that the magnitude of the ss-component of Fig. 7.26 slightly dominates the other
components, even for normal incidence.

As with system 1, the polarisation-ignorant incoherent MDRC for this system are given
in Figs. 7.28 and 7.29. They mainly differ from Figs. 7.24 and 7.25 in the fact that their
overall amplitude is larger; we again draw notice to the scaling of the colour bars. The
slight dominance of the ss-term of Fig. 7.26 at normal incidence remains. The increased
amplitude of the s-components at normal incidence is not predicted by Ref. 16 for the
rougher system. It may be that the roughness involved represents the boundary of validity
of the phase perturbation theory.

Sample 0061

Finally, the out-of-plane incoherent MDRC for system 0061 of Ref. 15 and Table 7.3
is shown in Figs. 7.30 and 7.31 for incidence angles of 0° and 67°, respectively. This
specific sample was considered, due to the in-plane incoherent MDRC (Figs. 7.6–7.9)
being deemed a good fit with experimental data. The most obvious feature is that the
incoherent MDRC of this system is more centred around a small region. Keeping in mind
that the colour bar is scaled differently, the amplitude itself is actually far greater than in
Figs. 7.22–7.29.

The reason for the relatively narrow range of scattering angles contribution to the in-
coherent MDRC is the far lower rms-roughness to correlation length relationship for this
sample than the previous, described in Table 7.3. The difference in amplitude is attributed
to the vastly different dielectric functions at play, as sample 0061 is not a dielectric but a
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Figure 7.25: The polarisation-ignorant components of the calculated incoherent MDRC as a
function of both parallel components of the scattering wave vector, after light scattering from
a randomly rough dielectric surface at incidence angles θ0 = 67° and φ0 = 0°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken
from Ref. 16 and system 1 in Table 7.3. The notation ∗ refers to the sum of p- and s-polarised
light, and ◦ refers to unpolarised light which is a normalised sum of the p- and s-components.
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Figure 7.26: Calculated incoherent MDRC as a function of both parallel components of the
scattering wave vector, after light scattering from a randomly rough dielectric surface at inci-
dence angles θ0 = 0° and φ0 = 0°. The surface height distribution is Gaussian, with statistical
parameters δ = 0.050λ and a = 0.25λ taken from Ref. 16 and system 2 in Table 7.3. Note
that the colour bar is scaled differently from Figs. 7.22–7.25.
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Figure 7.27: Calculated incoherent MDRC as a function of both parallel components of the
scattering wave vector, after light scattering from a randomly rough dielectric surface at inci-
dence angles θ0 = 67° and φ0 = 0°. The surface height distribution is Gaussian, with statistical
parameters δ = 0.050λ and a = 0.25λ taken from Ref. 16 and system 2 in Table 7.3. Note
that the colour bar is scaled differently from Figs. 7.22 and 7.23.
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Figure 7.28: The polarisation-ignorant components of the calculated incoherent MDRC as a
function of both parallel components of the scattering wave vector, after light scattering from
a randomly rough dielectric surface at incidence angles θ0 = 0° and φ0 = 0°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken
from Ref. 16 and system 2 in Table 7.3. The notation ∗ refers to the sum of p- and s-polarised
light, and ◦ refers to unpolarised light which is a normalised sum of the p- and s-components.
Note that the colour bar is scaled the same way as in Figs. 7.26 and 7.27.
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Figure 7.29: The polarisation-ignorant components of the calculated incoherent MDRC as a
function of both parallel components of the scattering wave vector, after light scattering from
a randomly rough dielectric surface at incidence angles θ0 = 67° and φ0 = 0°. The surface
height distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken
from Ref. 16 and system 2 in Table 7.3. The notation ∗ refers to the sum of p- and s-polarised
light, and ◦ refers to unpolarised light which is a normalised sum of the p- and s-components.
Note that the colour bar is scaled the same way as in Figs. 7.26 and 7.27.
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metal, which is known to have generally much higher reflectivity of light at optical wave-
lengths.

Another notable feature in Fig. 7.31 is the absence of the dipole-like shape of the in-
coherent MDRC which was present in Figs. 7.22, 7.23, 7.26, 7.27 and 7.30. The general
trend of the MDRC with 67° incidence, has been that the cross-polarisation components
have been weaker than the co-polarised. A possible explanation for the missing dipole
shape is therefore a lack of colour bar range, which makes it impossible to discern small
amplitudes. It is also possible that the co-polarised components have their shape compro-
mised by the limited density of numerical evaluation points, or its features too small to
reasonably be picked up by a plot of this scale. This slight curiosity was not investigated
further.

We have also included the polarisation-ignorant calculations for this system in Figs. 7.32
and 7.33. No surprising behaviour emerges from it, given the form of Figs. 7.30 and 7.31.

It is suspected that a different kind of surface autocorrelation function could drastically
alter the behaviour of the incoherent MDRC. A few tests calculating the MDRC corre-
sponding to a so-called Gaussian-cosine correlation function,W (x‖) = exp

[
−x2‖/a2

]
cos(bx‖),

was performed. The dipole-like shape was retained for modest cosine frequencies, while
the range of the MDRC seemed to be extended when the correlation function was permit-
ted to oscillate a few times within the Gaussian envelope. Further time and resources could
be spent on studying the detailed dependence of the incoherent MDRC on the choice of
different correlation functions, and it would be a natural next step after the contents of the
current work.

Planar cuts of the out-of-plane incoherent MDRC

To better compare the exact values of the incoherent MDRC, some higher resolution planar
cuts of the off-diagonal plots are provided. It is worth noting that due to the assumed
isotropy of the surface, the cuts in positive and negative azimuthal scattering angles should
be equal, and inspections of Figs. 7.22, 7.23, 7.26, 7.27, 7.30 and 7.31, as well as test
calculations not included in the thesis all reinforce this assumption.

Figure 7.34 shows the calculated in-plane incoherent MDRC from the system labelled
1 in Table 7.3 with normal incidence, and has an exact equivalent in Ref. 16. Compara-
tively, the values in Fig. 7.34 more closely resembles values found by a direct solution of
the reduced Rayleigh equation, than values found using simple small-amplitude perturba-
tion theory. Particularly, the pp-component of Fig. 7.34 is well approximated by the direct
solution. The shape of the MDRC found directly is usually quite jagged around the origin,
while the presently found data is smooth. Some of the jaggedness around the origin is due
to the enhanced backscattering phenomenon; the effect of which seems to generally not be
picked up by our phase perturbation theory, as commented on previously.

Similarly, Fig. 7.35 shows the same situation as Fig. 7.34 but with the statistical pa-
rameters of system 2 from Table 7.3. The discrepancy between the direct solution of the
reduced Rayleigh equation and the small-amplitude perturbation theory reported in Ref. 16
is notable, while the MDRC presented in Fig. 7.35 aligns itself much more with the direct
solution. As was the case for system 1, the pp-component aligns itself very well with the
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Figure 7.30: Calculated incoherent MDRC as a function of both parallel components of the
scattering wave vector, after light scattering from a randomly rough gold surface at incidence
angles θ0 = 0° and φ0 = 0°. The surface height distribution is Gaussian, with statistical
parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15 and sample 0061 in Table 7.2. Note
that the colour bar is scaled differently from both Figs. 7.22–7.25 and Figs. 7.26–7.29.
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Figure 7.31: Calculated incoherent MDRC as a function of both parallel components of the
scattering wave vector, after light scattering from a randomly rough gold surface at incidence
angles θ0 = 67° and φ0 = 0°. The surface height distribution is Gaussian, with statistical
parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15 and sample 0061 in Table 7.2. Note
that the colour bar is scaled differently from all the previous figures, including Fig. 7.30.
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Figure 7.32: The polarisation-ignorant components of the calculated incoherent MDRC as a
function of both parallel components of the scattering wave vector, after light scattering from
a randomly rough gold surface at incidence angles θ0 = 0° and φ0 = 0°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from
Ref. 15 and sample 0061 in Table 7.2. The notation ∗ refers to the sum of p- and s-polarised
light, and ◦ refers to unpolarised light which is a normalised sum of the p- and s-components.
Note that the colour bar is scaled the same way as in Fig. 7.30.

74



Figure 7.33: The polarisation-ignorant components of the calculated incoherent MDRC as a
function of both parallel components of the scattering wave vector, after light scattering from
a randomly rough gold surface at incidence angles θ0 = 67° and φ0 = 0°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from
Ref. 15 and sample 0061 in Table 7.2. The notation ∗ refers to the sum of p- and s-polarised
light, and ◦ refers to unpolarised light which is a normalised sum of the p- and s-components.
Note that the colour bar is scaled the same way as in Fig. 7.31.
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Figure 7.34: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 0°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.

direct solution, while the ss-component is slightly more rogue. The authors of Ref. 16
suggest that the small-amplitude perturbation theory is inadequate for this level of surface
roughness; if that is the case, the result of Fig. 7.35 shows that phase perturbation theory
is better equipped to produce correct results for this level of surface roughness (based on
the assumption that non-perturbative results are more accurate).

The fact that the pp- and ss-components are different from one another in Figs. 7.34
and 7.35 is unexpected. The almost equivalent in-plane incoherent MDRC of sample 0061
for a very low incidence angle given in Fig. 7.6 shows that the pp- and ss-components
coincide for that sample. Due to the isotropy of the surfaces, we do not expect polarisation
dependence at normal incidence. Evaluating Eq. (5.23) with q‖ = k‖ = 0, as an example,
the difference between the pp- and ss-components must stem from Eqs. (D.8) and (D.11),
but the form of the expressions does not make it clear whether the difference in inherently
built into the formulation or not. We dare not speculate too much as to the reason why the
components are unequal, but we may instead describe one of its consequences; it explains
the dipole-like patterns that remain in the (s → ∗)-components of Figs. 7.24 and 7.28,
the former of which is just barely noticeable. The relatively larger amplitude of the ss-
component gives more weight to the amplitude along the scattering plane, resulting in the
observed shapes.

Figures 7.36 and 7.37 show the complete out-of-plane cuts (i.e. with the scattering
azimuth angle φs of (±)90°) of the incoherent MDRC after normal incidence scattering
from systems 1 and 2 from Table 7.3. The resemblance between the shapes of Figs. 7.34
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Figure 7.35: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 0°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.

and 7.36 and between Figs. 7.35 and 7.37 is striking, especially in the pp-components of
the former. But this similarity is completely expected; by rotating the scattering plane by
90° the p-polarisation turns into s, and vice versa, as was discussed during the considera-
tion of Fig. 7.22.

The underlying reason why this symmetry may be expected in the first place, is the
assumption of the surfaces being isotropic. In fact, the discrepancy between the pp- and
ss-components in Fig. 7.35 might suggest an internal inconsistency in the implementation,
or it might be that the roughness sensitivity is not equal among all components.

The incoherent MDRC is also provided for cuts of intermediate azimuthal scattering
angles for the two situations discussed until now, and they turn out to be nothing more
than stages of intermediate amplitude between the end stages of each component; their
behaviour is as expected from inspection of Figs. 7.22 and 7.26. Therefore, these plots
have been relegated to Appendix E, and are given in Figs. E.1–E.4.

The calculated in-plane incoherent MDRC of system 1 of Table 7.3 and 67° incidence
is provided in Fig. 7.38. The overall shape and amplitude of the incoherent MDRC com-
pares well to the equivalent data reported in Ref. 16. The pp-component has its peak
skewed towards low scattering angles, as was observed in Secs. 7.1 and 7.2, while the ss-
components larger amplitude for non-normal incidence was a common amplitude for the
dielectric systems, as shown in Figs. 7.23 and 7.27.

Similarly, for the rougher dielectric system 2 from Table 7.3, its calculated in-plane
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Figure 7.36: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 90°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.
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Figure 7.37: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 90°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.
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Figure 7.38: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 0°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.

incoherent MDRC at 67° incidence is shown in Fig. 7.39. This results reinforces the pre-
viously observed fact that the currently implemented phase perturbation theory gives a
closer approximation to the direct solution of the reduced Rayleigh equation than the
small-amplitude perturbation theory, both presented in Ref. 16. Apart from the scale of the
involved amplitude, the general shapes and features of Figs. 7.38 and 7.39 are predictably
comparable.

The completely out-of-plane cut-through of the calculated incoherent MDRC with 67°
incidence is given in Figs. 7.40 and 7.41 for systems 1 and 2 from Table 7.3, respectively.
Yet again, the phase perturbation theory is superior to the small-amplitude perturbation
theory in terms of replicating the direct solution of the reduced Rayleigh equation, es-
pecially for the rougher system. Again, the shapes and features of the two systems are
quite comparable. The cross-polarised components of Figs. 7.40 and 7.41 exist mainly as
a consequence of the rotation of the observation plane making the p- and s-directions of
the rotated and non-rotated planes coincide, which in turn makes the tangent plane Fres-
nel coefficients different from zero, as was suggested during the discussion of Fig. 7.22.
The fact that the amplitudes of the cross-polarisation components of Figs. 7.40 and 7.41 is
respectively slightly smaller than the co-polarised components of Figs. 7.38 and 7.39 may
suggest that this effect is limited to the component of direct downwards (−x̂3) propagat-
ing incident light. The appearance of the pp-component away from the origin is predicted
from the pp-components of Figs. 7.23 and 7.27.
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Figure 7.39: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 0°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.
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Figure 7.40: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 90°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.
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Figure 7.41: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 90°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.

Like in the case of normal incidence, some intermediate stages between the 0° and 90°
azimuthal scattering angles have been provided by Figs. E.5–E.8 in Appendix E. Their
behaviour is predictable from Figs. 7.23 and 7.27. A notable aspect is that the cross-
polarised components are centred around larger polar scattering angles for cuts at lower
azimuthal scattering angles, which is due to the skewed dipole shape of the cross-polarised
components of said figures. The origin of this feature also seems non-trivial.

Finally, planar cuts of the incoherent MDRC of the experimental sample 0061 from
Ref. 15 has also been calculated. The in-plane cases closely resemble Figs. 7.6 and 7.9,
where the incident angles are close to the cases considered in Figs. 7.30 and 7.31. These
calculated incoherent MDRC plane cuts is given in Figs. E.9 and E.10 in Appendix E.

The cross-plane calculation of the incoherent MDRC of sample 0061 at normal inci-
dence is given by Fig. 7.42. The ps- and sp-components are more or less indistinguishable,
just like the pp- and ss-components in Fig. 7.6, and have the same general shape as their
in-plane co-polarised counterparts. This is a result of the p↔s-relabelling discussed during
the comments on Figs. 7.22, 7.36 and 7.37. The planar cuts along intermediate azimuthal
scattering angles, only provide intermediate stages for the calculated MDRC, which is
shown in Figs. E.11 and E.12 in Appendix E.

For 67° incidence, the evolution of the calculated incoherent MDRC of sample 0061
from increasingly rotated scattering planes is given in Figs. 7.43–7.45. They show a grad-
ual decline of the co-polarised components, which was not observed in Fig. 7.31. In addi-

81



−80 −60 −40 −20 0 20 40 60 80

0

1

2

θs [deg]

〈 ∂
R

α
β

∂
Ω

s

〉 in
c
o
h

θ0 = 0°
φ0 = 90°

pp
ps
sp
ss

Figure 7.42: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 0°
and φ0 = 0°, and the azimuthal scattering angle φS = 90°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.

tion, there seems to be a certain dominance of the sp-component which is interesting. The
most striking fact is that the amplitude of Figs. 7.43–7.45 is far smaller than the colour bar
of Fig. 7.31 indicates.

All these observations supports the previous hypothesis that Fig. 7.31 is an inaccurate
image of the incoherent MDRC, possibly due to excessive interpolation between points
that are spaced too far apart. Close inspection of Fig. 7.45 reveals some dependence on the
pp-component away from the origin, which is the same general shape that was observed in
Figs. 7.36 and 7.37. This may suggest that the out-of-plane incoherent MDRC distribution
at 67° incidence for sample 0061 really looks more like the slanted dipole shape of the
dielectric systems. The eminence of the sp-component challenges this view, but for such
low absolute amplitudes the discrepancy is more likely than not a result of numerical
instability or the approximation of perturbation.

7.4 Origin of discrepancies
The comparison between the present implementation, earlier experiments [15] and nu-
merical analysis [12, 15, 16] is mostly convincing, but not entirely. In this section, we
summarise and speculate on the origins of the difference.

Firstly, we recall that the calculations have been performed used second order phase
perturbation theory. In itself, that may introduce errors of order [ζ3]2 = ζ6. Addition-
ally, only the the 2-2 term is accounted for, while the 3-1 term may introduce errors of
order ζ4. In cases where the incoherent MDRC is small but the relative roughness of the
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Figure 7.43: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 67°
and φ0 = 0°, and the azimuthal scattering angle φS = 30°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.

−80 −60 −40 −20 0 20 40 60 80

0

0.5

1

·10−5

θs [deg]

〈 ∂
R

α
β

∂
Ω

s

〉 in
c
o
h

θ0 = 67°
φ0 = 60°

pp
ps
sp
ss

Figure 7.44: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 67°
and φ0 = 0°, and the azimuthal scattering angle φS = 60°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.
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Figure 7.45: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 67°
and φ0 = 0°, and the azimuthal scattering angle φS = 90°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.

surface is large, such errors may be significant. This is exemplified by sample 8053 (Ta-
ble 7.2 and Figs. 7.13–7.15) whose modest roughness compared to light wavelength left
the amplitude of the incoherent MDRC to remain small, while its large roughness com-
pared to the surface spatial wavelength means that the assumptions of modest roughness
(made in perturbation theory or due to the Rayleigh hypothesis) is not necessarily correct.
The quantity δ/a for sample 8053 is 0.25, which is not guaranteed to fulfil the Rayleigh
criterion, as per the discussion in Sec. 4.3. And while the parameters of the present im-
plementation and the ones used to study the Rayleigh criterion for rough surfaces [43] are
different, this fact presents the possibility that the samples currently considered does not
fulfil the Rayleigh criterion, causing the theory to fail.

Errors due to numerical precision may also be present. The numerical error in evalu-
ation of Eq. (5.33) should not exceed 10−7 following the discussion in Sec. 6.3. Each of
these may be applied to a range of evaluation of Eq. (6.1b) between 0 and 10 appropriate
units, meaning the error scales to a maximum of 10−6, plus the numerical error in the re-
maining evaluation of Eq. (6.1b) which according to Fig. 6.2 should be limited to around
10 × 10−5 = 10−4. Some of this is likely due to error in evaluating Eq. (5.33), so the real
numerical error is likely to be less, as we in this estimate is compounding two errors where
one might be the result of the other. This level of numerical error could still give some
impact on the incoherent MDRC in the dielectric systems considered in Sec. 7.3, as the
amplitude of the incoherent MDRC there is comparable to 10−4. Overall, we deem it to
be unlikely that the accuracy of the calculation is ultimately contingent on the numerics
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involved more than other factors.
Results in Ref. 12 indicate that small changes in the statistical parameters (which were

measured experimentally) may explain some of the differences in the maximum achieved
amplitude. It may be the case that the incoherent MDRC is sensitive to variation in the
measured surface parameters within their experimental uncertainty, meaning exact calcu-
lation beyond the MDRC variation within the uncertainty is unreasonable.

Overall, the present implementation of phase perturbation theory captures most of the
features present in the results with which they are compared. However, in a few places the
specific values involved differ slightly. Some of the systems considered possess statistical
parameters that makes them potentially challenge the Rayleigh criterion, or other criteria
for modest roughness approximation. This may result in the values of the calculated in-
coherent MDRC being more uncertain, and specific to the implementation. But it is also
acknowledged that the implementation itself may possibly be responsible for some of the
odd results.
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Chapter 8
Conclusion

The comparison between experimentally acquired data and data calculated using phase
perturbation theory, both in Sec. 7.2 and elsewhere, show that phase perturbation the-
ory is a method that quite well approximates the incoherent MDRC for light scattered on
randomly rough metal surfaces with modest amplitudes. The specific implementation per-
formed in this thesis was compared to a previous calculation using a different formulation
of the phase perturbation theory, and was largely able to reproduce its features. It is cur-
rently not possible to conclude that one formulation is better than another, and the ability
to reproduce experimental values likely depends on the regime of the wavelength, mate-
rial parameters and roughness parameters involved. The present implementation of the
phase perturbation theory was also compared to a previous calculation of the distribution
of the incoherent MDRC outside the incident plane after scattering on a randomly rough
dielectric surface, where the reduced Rayleigh equation was solved directly. Also in this
instance, the phase perturbation theory reproduces the main features.

The present formulation makes use of a mathematical identity based on the Jacobi-
Anger expansion to simplify the result of the phase perturbation theory further. The ex-
pansion introduces some integrals that oscillate rapidly under some circumstances, and
challenges accuracy and performance. Practical compromises was made to accommodate
the calculation.

In the cases where the present implementation does not coincide with other results, the
surfaces in question may be inadequately rough for phase perturbation theory to be correct,
or the specific set of parameters involved may present numerical difficulty or shortcomings
inherent in the implementation itself.
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Appendix A
Derivation of the general form of
the mean differential reflection
coefficient

This derivation is based on Ref. 63 which is again based on Ref. 34. We begin by consid-
ering the scalar wave equation

∇2ψ(x; t)− 1

c2
∂2

∂t2
ψ(x; t) = 0. (A.1)

Note that
∂ψ

∂t
∇2ψ = ∇ ·

(
∂ψ

∂t
∇ψ
)
− 1

2

∂

∂t
[∇ψ]2, (A.2)

which may be verified by using the chain rule of differentiation on the first term on the
right hand side, allowing for the order of ∇ and ∂

∂t
to be interchanged. Note also that

∂ψ

∂t

∂2ψ

∂t2
=

1

2

∂

∂t

[
∂ψ

∂t

]2
, (A.3)

which may again be verified by using the chain rule. Upon multiplying both sides of
Eq. (A.1) by ∂ψ

∂t
and inserting Eqs. (A.2) and (A.3) appropriately, we arrive at the relation

∇ ·
[
∂ψ

∂t
∇ψ
]
− 1

2

∂

∂t
[∇ψ]2 − 1

2c2
∂

∂t

[
∂ψ

∂t

]2
= 0. (A.4)

By introducing the functions

S(x; t) := −a
[
∂

∂t
ψ(x; t)

]
∇ψ(x; t) (A.5)
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and

W (x; t) :=
a

2

(
[∇ψ(x; t)]2 +

1

c2

[
∂

∂t
ψ(x, t)

]2)
, (A.6)

where a is an arbitrary positive constant, Eq. (A.4) may instead be written

∇ · S(x; t) +
∂

∂t
W (x; t) = 0. (A.7)

Equation (A.7) has the form of a continuity equation (compare for instance to Eq. (3.2))
with S representing the energy flux of the field ψ and W representing the energy den-
sity. As discussed in Sec. 3.2.2, any solution ψ of Eq. (A.1) is a linear combination of
monochromatic waves, so we may limit our focus to a single monochromatic component
and write

ψ = <{ψ(x;ω) exp [−iωt]} =
1

2
[ψ(x;ω) exp [−iωt] + ψ∗(x;ω) exp [iωt]] , (A.8)

where ψ∗ denotes the complex conjugate of ψ. Therefore, as ∂
∂t
→ −iω,

S→ −iω a
4

[ψ∗∇ψ − ψ∇ψ∗ + ψ∗∇ψ∗ exp [2iωt]− ψ∇ψ exp [−2iωt]] , (A.9)

and

W →a

8

[
2∇ψ · ∇ψ∗ + (∇ψ)2 exp [−2iωt] + (∇ψ∗)2 exp [2iωt]

−
(ω
c

)2 [
− 2ψ∗ψ + ψ2 exp [−2iωt] + (ψ∗)2 exp [2iωt]

]]
.

(A.10)

In scattering problems we are interested in the stationary situation, so only solutions
of ψ which have been averaged over a time T � 2π

ω
are of relevance. Then, by denoting

〈·〉t as time average, it follows that the oscillations cancel out and we have

〈exp [±2iωt]〉t → 0. (A.11)

Then,
〈S〉t =

iωa

4
[ψ∗∇ψ − ψ∇ψ∗] =

ωa

2
={ψ∗∇ψ} , (A.12)

where = denotes the imaginary part of its argument, and

〈W 〉t =
a

4

[
∇ψ∗ · ∇ψ +

(ω
c

)2
ψ∗ψ

]
. (A.13)

In consideration of a scattering process on a surface, the relevant flux component of
either incident or scattered waves is the component that is orthogonal to the average of
the surface. This constraint arises from the continuity equation. By selecting the same
coordinate system as in Sec. 4.1 we may limit our attention to the x3-component of S, and
let ∇ → ∂

∂x3
. Then

〈S〉t → 〈S3〉t =
ωa

2
=
{
ψ∗

∂

∂x3
ψ

}
. (A.14)
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The total incoming energy flux in the region x1 ∈
[
−L1

2
,
L1
2

]
, x2 ∈

[
−L2

2
,
L2
2

]
is then

given by

Pinc =

∫
dx1

∫
dx2 〈−S3〉t; inc

= − ωa

2
=
∫ L1/2

−L1/2

dx1

∫ L2/2

−L2/2

dx2ψ
∗
inc

∂

∂x3
ψinc.

(A.15)

The incident energy flux in the x3-direction is directed towards the surface from above, re-
sulting in 〈S3〉t; inc < 0. To recognise that the energy carried by the wave is in fact positive,
the minus sign is included above. If ψinc is β-polarised and the coordinate system is chosen
to have the x1-axis aligned with the parallel component of ψinc

1, then from Eq. (4.2) we
have that

ψinc = ψ(β) exp
[
ik‖x1 − iα0(k‖)x3

]
exp [−iωt], (A.16)

where [k‖, 0, α0(k‖)] is the wave propagation vector. Inserting this into Eq. (A.15) yields

Pinc = − ωa

2
=
∫ L1/2

−L1/2

dx1

∫ L2/2

−L2/2

dx2ψ
∗
(β) exp

[
−ik‖x1 + iα0(k‖)x3

]
exp [iωt]

(−iα0(k‖)) exp
[
ik‖x1

]
ψ(β) exp

[
−iα0(k‖)x3

]
exp [−iωt]

=
ωaα0(k‖)

2
=i
∫ L1/2

−L1/2

dx1

∫ L2/2

−L2/2

dx2 ψ
∗
(β)ψ(β)︸ ︷︷ ︸

=|ψ(β)|
2

=
1

2
aω
(ω
c

)
L1L2

∣∣ψ(β)

∣∣2 , (A.17)

where we note that ψ(β) denotes the wave amplitude which does not depend on x while ψinc

does. In the last step above, we have replaced α0(k‖) with ω/c in line with its definition
in Eq. (4.1a) with only the wave vector component in the x3-direction different from zero.
Similarly, the total reflected energy flux in the same region is

Prefl =

∫
dx1

∫
dx2 〈S3〉t; refl

=
ωa

2

∫ L1/2

−L1/2

dx1

∫ L2/2

−L2/2

dx2ψ
∗
refl

∂

∂x3
ψrefl,

(A.18)

while the solution of the reflected wave is given by a continuous linear combination over
the parallel component of the scattering wave vector q‖ = [q‖ cos(θs), q‖ sin(θs)] by

ψrefl =

∫
dq2‖

(2π)2
Rαβ(q‖|k‖)ψ(β) exp

[
iq‖ · x‖ + iα0(q‖)x3

]
exp [−iωt], (A.19)

if we assume the scattered wave to be α-polarised with respect to the reflected plane of

1There is no loss of generality in making this choice of coordinates.
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incidence. Inserted into Eq. (A.18), this reveals the reflected energy flux to be

Prefl =
ωa

2
=
∫ L1/2

−L1/2

dx1

∫ L2/2

−L2/2

dx2

[∫
d2q‖
(2π)2

R∗αβ(q‖|k‖)ψ∗(β) exp
[
−iq‖ · x‖ − iα0(q‖)x3

]
exp [iωt]

×
∫

d2q ′‖
(2π)2

(iα0(q ′‖))Rαβ(q ′‖|k‖)ψ(β) exp
[
iq ′‖ · x‖ + iα0(q ′‖)x3

]
exp [−iωt]

]

=
ωa

2
=
∫

d2q‖
(2π)2

R∗αβ(q‖|k‖)ψ∗(β)
∫

d2q ′‖
(2π)2

(iα0(q ′‖))Rαβ(q ′‖|k‖)ψ(β)

× iα0(q ′‖) exp
[
i[α0(q ′‖)− α0(q‖)]x3

] ∫
d2x‖ exp

[
ix‖ · [q‖ − q ′‖]

]
︸ ︷︷ ︸

=(2π)2δ(q‖−q ′‖)

,

(A.20)

which disposes of the integral over q ′‖ and finally leaves the expression

Prefl =
ωa

2
=
∫

d2q‖
(2π)2

R∗αβ(q‖|k‖)Rαβ(q‖|k‖)ψ∗(β)ψ(β) × iα0(q‖)

=
ωa

2
|ψ(β)|2

∫
d2q‖
(2π)2

α0(q‖)
∣∣Rαβ(q‖|k‖)

∣∣2 . (A.21)

It is of interest to note that the final integral term of Eq. (A.20) requires q‖ = q ′‖,
which if inserted leaves only an integral of a constant over a square region with area L1L2.
Therefore, we have

L1L2 = (2π)2δ(q‖ − q ′‖). (A.22)

If the area in question is not square, one could apply an appropriate integral measure, and
replace L1L2 with a more general area A.

It is in our interest to express this as the sum of all solid scattering angle contributions,
i.e. to write

Prefl =

∫
dΩsPrefl(Ωs). (A.23)

From the scattering geometry, we have that

q‖ =
(ω
c

)
sin(θs)[cos(φs), sin(φs)], (A.24)

implying that
(
ω
c

)
sin(θs) is the in-plane vector magnitude, let’s label it ρ, in the differential

element d2q‖ = ρ · dρdφs which means that

d2q‖ =
(ω
c

)2
cos(θs)dΩs, (A.25)

where dΩs = sin(θs)dθsdφs. Replacing the appropriate quantity in Eq. (A.21) with Eq. (A.25)
leaves

Prefl(Ωs) =
ωa

2
|ψ(β)|2

(ω
c

)( ω

2πc

)2
cos2(θs)

∣∣Rαβ(q‖|k‖)
∣∣2 , (A.26)
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to be the quantity defined by Eq. (A.23). In Eq. (A.26) we have replaced α0(q‖) with ω/c
for the same reason as before.

Finally, let us define the differential reflection coefficient to be the fraction of the in-
cident energy flux that is reflected into the solid angle element dΩs. In other words, by
cancelling common terms in Eq. (A.17) and Eq. (A.26), then by definition

∂Rαβ
∂Ωs

:=
Prefl(Ωs)

Pinc
=

1

L1L2

( ω

2πc

)2 cos2(θs)

cos(θ0)

∣∣Rαβ(q‖|k‖)
∣∣2 . (A.27)

Obviously, only the reflectivity R depends on the specifics of the surface. Therefore,
upon surface averaging the mean differential reflection coefficient, and performing the
substitution L1L2 → A as discussed above, (MDRC) becomes〈

∂Rαβ
∂Ωs

〉
=

1

A

( ω

2πc

)2 cos2(θs)

cos(θ0)

〈∣∣Rαβ(q‖|k‖)
∣∣2〉 . (A.28)
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Appendix B
Symmetric expansion of the second
order scattering matrix

The term from Eq. (5.12) that contains S(2)
αβ , let’s name it S2, looks like

S2 = S
(2)
αβ (q‖|k‖)

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

×
∫
d2x‖ζ(x‖) exp

[
−i(q‖ − p‖) · x‖

] ∫
d2y‖ζ(y‖) exp

[
−i(p‖ − k‖) · y‖

]
.

(B.1)

We want to extract one of the integrals, along with one exponential factor that does not
depend on p‖. The two linear variable transformations that facilitate this are

y‖ = x‖ − u‖ (B.2a)
x‖ = y‖ − v‖. (B.2b)

The idea, following Ref. 15, is to perform each transformation on two equal components
of S2

S2 =
1

2
S2︸︷︷︸

Use Eq. (B.2a)

+
1

2
S2︸︷︷︸

Use Eq. (B.2b)

:= S
[1]
2 + S

[2]
2 , (B.3)

where in the last step, the notation of square brackets have been introduced to notationally
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distinguish the terms. Then, we just insert

S
[1]
2 =

1

2
S

(0)
αβ (q‖|k‖)

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

∫
d2x‖

∫
d2u‖ζ(x‖)ζ(x‖ − u‖)

× exp
[
−i[(q‖ − p‖) + (p‖ − k‖)] · x‖

]
exp

[
i(p‖ − k‖) · u‖

]
=

1

2
S

(0)
αβ (q‖|k‖)

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

] ∫ d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

×
∫
d2u‖ exp

[
i(p‖ − k‖) · u‖

]
ζ(x‖)ζ(x‖ − u‖),

(B.4)

and

S
[2]
2 =

1

2
S

(0)
αβ (q‖|k‖)

∫
d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

∫
d2v‖

∫
d2y‖ζ(y‖ − v‖)ζ(y‖)

× exp
[
i(q‖ − p‖) · v‖

]
exp

[
−i[(q‖ − p‖) + (p‖ − k‖)] · y‖

]
=

1

2
S

(0)
αβ (q‖|k‖)

∫
d2y‖ exp

[
−i(q‖ − k‖) · y‖

] ∫ d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

×
∫
d2v‖ exp

[
i(q‖ − p‖) · v‖

]
ζ(y‖)ζ(y‖ − v‖).

(B.5)

By changing the name of the integration variables in Eq. (B.5) by y‖ → x‖ and v‖ →
u‖, we may sum up Eq. (B.4) and Eq. (B.5) to finally write

S2 =
1

2
S

(0)
αβ (q‖|k‖)

∫
d2x‖ exp

[
−i(q‖ − k‖) · x‖

] ∫ d2p‖
(2π)2

S
(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

×
∫
d2u‖

{
exp

[
i(q‖ − p‖) · u‖

]
+ exp

[
i(p‖ − k‖) · u‖

]}
ζ(x‖)ζ(x‖ − u‖).

(B.6)
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Appendix C
Proof of expansion of the power
spectrum

With the definition of the power spectrum of a isotropic correlation function W ,

g(|Q‖|) =

∫
d2u‖W (u‖) exp

[
−iQ‖ · u‖

]
=

∫
d2u‖W (u‖) exp

[
−iQ‖u‖ cos(φu − φQ)

]
,

(C.1)
and the Jacobian d2u‖ = u‖du‖dφu of polar coordinates, we may write down the power
spectrum as

g(|p‖ − k‖|) =

∫
d2u‖W (u‖) exp

[
−ip‖ · u‖

]
exp

[
−ik‖ · u‖

]
=

∫ ∞
0

du‖u‖W (u‖)

∫ π

−π
dφu exp

[
−ip‖u‖ cos(φp − φu)

]
exp

[
ik‖u‖ cos(φk − φu)

]
(C.2)

The exponential functions of cosine-arguments may be replaced by the Jacobi-Anger-
identity [52, 53]

exp [iz cos(θ)] =

∞∑
n=−∞

inJn(z) exp [inθ], (C.3)

where Jn(z) is the n-th Bessel function of the first kind with the argument z. The resulting
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expansion is

g(|p‖ − k‖|) =

∫ ∞
0

du‖u‖W (u‖)

∫ π

−π
dφu

[
∞∑

m=−∞

imJm(−p‖u‖) exp [im(φu − φp)]

]

×

[
∞∑

n=−∞

inJn(k‖u‖) exp [in(φu − φk)]

]

=

∞∑
m=−∞

∞∑
n=−∞

im+n exp [i(mφp + nφk)]

×
∫ ∞
0

du‖u‖W (u‖)Jm(−p‖u‖)Jn(k‖u‖)

∫ π

−π
dφu exp [−i(m+ n)φu].

(C.4)

From physical considerations, we know that limu‖→∞W (u‖) = 0, so the convergence
properties of the integral should be sufficient to justify the switching of the sum and inte-
gral signs.

We now make use of the Bessel function property that Jm(−z) = (−1)mJm(z) [52,
53], and the fact that∫ π

−π
dφu exp [−i(m+ n)φu] =

2

m+ n
sin ([m+ n]π). (C.5)

Then,

g(|p‖ − k‖|) = 2π

∞∑
m=−∞

∞∑
n=−∞

(−1)mim+n exp [i(mφp + nφk)] sinc(m+ n)

×
∫ ∞
0

du‖u‖W (u‖)Jm(p‖u‖)Jn(k‖u‖),

(C.6)

using the definition

sinc(x) :=
sin(πx)

πx
. (C.7)

Clearly, sinc(z) = 0 ∀z ∈ Z except z = 0 for which it happens that sinc(0) = 1. Therefore,
only the terms where n = −m contribute to the sum, and

g(|p‖ − k‖|) = 2π
∞∑

m=−∞

(−1)mim+(−m) exp [im(φp − φk)]

×
∫ ∞
0

du‖u‖W (u‖)Jm(p‖u‖)J−m(k‖u‖).

(C.8)

By inserting another Bessel function relation, that J−m(z) = (−1)mJm(z) [52, 53],
and changing the index name, we finally arrive at

g(|p‖ − k‖|) = 2π

∞∑
n=−∞

exp [in(φp − φk)]

∫ ∞
0

du‖u‖W (u‖)Jn(p‖u‖)Jn(k‖u‖), (C.9)
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which is the desired result. Expressed in terms Ln from Eq. (5.33) the power spectrum
expansion becomes

g(|p‖ − k‖|) = 2π

∞∑
n=−∞

exp [in(φp − φk)]Ln(p‖|k‖). (C.10)
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Appendix D
Detailed calculation of the
exponent factor of MDRC

There final expression for the incoherent MDRC consists of three parts that are multiplied.
One of them is of the form exp

[
ταβ(q‖|k‖)

]
where

ταβ(q‖|k‖) = δ2<
∫

d2p‖
(2π)2

[
g(q‖ − p‖) + g(p‖ − k‖)

] S(2)
αβ (q‖|p‖|k‖)

S
(0)
αβ (q‖|k‖)

, (D.1)

where αβ is the polarisation state, g() is the power spectrum of the correlation function, and
S

(n)
αβ is the n-th order scattering matrix predicted by small-amplitude perturbation theory.

In the following, it will be shown in detail how the angular part of the integral is extracted
and performed, and how one arrives at the final expression for the exponent factor.

D.1 List of analytical angular integrals
For later convenience, an exhaustive list of the analytical integrals over the angular com-
ponents that appear in the calculation of the exponent factor are provided. From the defini-
tions of the exponent integral partial kernel σαβ(q‖|p‖|k‖) and the expansions of the power
spectra g(|q‖−p‖|) and g(|p‖−k‖|) given in Appendix C, all possible dependencies of φp
is captured by the terms

[q̂‖ · p̂‖] = cos(φp − φq)

[p̂‖ · k̂‖] = cos(φk − φp)
[q̂‖ × p̂‖]3 = sin(φp − φq)

[p̂‖ × k̂‖]3 = sin(φp − φq)

101



[q̂‖ · p̂‖][p̂‖ · k̂‖] = cos(φp − φq) cos(φk − φp)

[q̂‖ · p̂‖][p̂‖ × k̂‖]3 = cos(φp − φq) sin(φp − φq)

[q̂‖ × p̂‖]3[p̂‖ · k̂‖] = sin(φp − φq) cos(φk − φp)

[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3 = sin(φp − φq) sin(φp − φq),

combined with the φp-dependent terms in the power spectrum expansions;

exp [in(φq − φp)] = cos(n(φq − φp)) + i sin(n(φq − φp))
exp [in(φp − φk)] = cos(n(φp − φk)) + i sin(n(φp − φk)),

where n is an integer.

All combinations of these two sets of expressions appear inside integrals over φp which
may be performed analytically. All the following integrals were calculated with the wol-
fram language integral engine through variable substitutions x = φp−φq or y = φp−φk. As
may be verified, all the integrals vanish for most integer values of n as they depend linearly
on factors such as sin(nπ). The cases where the integrals are non-zero are distinguished
by a vanishing fraction denominator for some n. Then, the expressions are evaluated by
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applying L’Hôpital’s rule with respect to n. After some algebra, we calculate

I1[n] =

∫ π

π

dφp cos(φp − φq) exp [in(φp − φq)]

= π {δ[n− 1] + δ[n+ 1]}

I2[n] =

∫ π

−π
dφp cos(φk − φp) exp [in(φp − φq)]

= π {δ[n− 1] exp [i(φk − φq)] + δ[n+ 1] exp [−i(φk − φq)]}

I3[n] =

∫ π

π

dφp sin(φp − φq) exp [in(φp − φq)]

= π {iδ[n− 1]− iδ[n+ 1]}

I4[n] =

∫ π

−π
dφp sin(φk − φp) exp [in(φp − φq)]

= π {−iδ[n− 1] exp [i(φk − φq)] + iδ[n+ 1] exp [−i(φk − φq)]}

I5[n] =

∫ π

−π
dφp cos(φp − φq) cos(φk − φp) exp [in(φp − φq)]

= π

{
δ[n] cos(φk − φq) +

1

2
δ[n− 2] exp [i(φk − φq)] +

1

2
δ[n+ 2] exp [−i(φk − φq)]

}
I6[n] =

∫ π

−π
dφp cos(φp − φq) sin(φk − φp) exp [in(φp − φq)]

= π

{
δ[n] sin(φk − φq)−

i

2
δ[n− 2] exp [i(φk − φq)] +

i

2
δ[n+ 2] exp [i(φk − φq)]

}
I7[n] =

∫ π

−π
dφp sin(φp − φq) cos(φk − φp) exp [in(φp − φq)]

= π

{
δ[n] sin(φk − φq) +

i

2
δ[n− 2] exp [i(φk − φq)]−

i

2
δ[n+ 2] exp [−i(φk − φq)]

}
I8[n] =

∫ π

−π
dφp sin(φp − φq) sin(φk − φp) exp [in(φp − φq)]

= π

{
− cos(φk − φq)δ[n] +

1

2
δ[n− 2] exp [i(φk − φq)] +

1

2
δ[n+ 2] exp [−i(φk − φq)]

}
,
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and

I9[n] =

∫ π

−π
dφp cos(φp − φq) exp [in(φk − φp)]

= π {δ[n− 1] exp [i(φk − φq)] + δ[n+ 1] exp [−i(φk − φq)]}

I10[n] =

∫ π

−π
dφp cos(φk − φp) exp [in(φk − φp)]

= π {δ[n− 1] + δ[n+ 1]}

I11[n] =

∫ π

−π
dφp sin(φp − φq) exp [in(φk − φp)]

= π {−iδ[n− 1] exp [i(φk − φq)] + iδ[n+ 1] exp [−i(φk − φq)]}

I12[n] =

∫ π

−π
dφp sin(φk − φp) exp [in(φk − φp)]

= π {iδ[n− 1]− iδ[n+ 1]}

I13[n] =

∫ π

−π
dφp cos(φp − φq) cos(φk − φp) exp [in(φk − φp)]

= π

{
δ[n] cos(φk − φq) +

1

2
δ[n− 2] exp [i(φk − φq)] +

1

2
δ[n+ 2] exp [−i(φk − φq)]

}
I14[n] =

∫ π

−π
dφp cos(φp − φq) sin(φk − φp) exp [in(φk − φp)]

= π

{
δ[n] sin(φk − φq) +

i

2
δ[n− 2] exp [i(φk − φq)]−

i

2
δ[n+ 2] exp [−i(φk − φq)]

}
I15[n] =

∫ π

−π
dφp sin(φp − φq) cos(φk − φp) exp [in(φk − φp)]

= π

{
δ[n] sin(φk − φq)−

i

2
δ[n− 2] exp [i(φk − φq)] +

i

2
δ[n+ 2] exp [−i(φk − φq)]

}
I16[n] =

∫ π

−π
dφp sin(φp − φq) sin(φk − φp) exp [in(φk − φp)]

= π

{
−δ[n] cos(φk − φq) +

1

2
δ[n− 2] exp [i(φk − φq)] +

1

2
δ[n+ 2] exp [−i(φk − φq)]

}
,

as well as

I17[n] =

∫ π

π

dφp exp [in(φp − φq)] = 2πδ[n]

I18[n] =

∫ π

π

dφp exp [in(φk − φp)] = 2πδ[n].

In the equations above, square bracket function arguments f [] has been used to indicate
that the functions domain is the set of integers. As such, δ[n] is the discrete Dirac δ function
defined by

δ[n] =

{
1 if n = 0,

0 if n ∈ Z 6= 0.
(D.2)
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D.2 Calculation of the pp-component

From Eqs. (4.16) and (5.9) we have that

S(2)
pp (q‖|p‖|k‖) =

√
α0(q‖)

α0(k‖)

{
2α0(k‖)

dp(q‖)dp(k‖)

1

2

(
ε− 1

ε2
[q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)][α(q‖) + α(k‖)]

+ 2

(
ε− 1

ε

)2
1

ε
α(q‖)[q̂‖ · p̂‖]α(p‖)[p̂‖ · k̂‖]α(k‖)

)
−

2α0(k‖)

dp(q‖)dp(k‖)

[
νpp(q‖|p‖)νpp(p‖|k‖)

dp(p‖)
+
νps(q‖|p‖)νsp(p‖|k‖)

ds(p‖)

]}
,

which gives rise to some simplifications of the desired quantity, namely

S
(2)
pp (q‖|p‖|k‖)
S

(0)
pp (q‖|k‖)

=
−2
√
α0(q‖)α0(k‖)

νpp(q‖|k‖)

{
1

2

ε− 1

ε2

([
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

][
α(q‖) + α(k‖)

]
+ 2

ε− 1

ε
α(q‖)[q̂‖ · p̂‖]α(p‖)[p̂‖ · k̂‖]α(k‖)

)
− 1

dp(p‖)

(
ε− 1

ε2

)2 [
εq‖p‖ − α(q‖)[q̂‖ · p̂‖]α(p‖)

][
εp‖k‖ − α(p‖)[p̂‖ · k̂‖]α(k‖)

]
− 1

ds(p‖)

(
−ε− 1

ε

)2

α(q‖)[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3α(k‖)

}

= −2
ε− 1

ε2

√
α0(q‖)α0(k‖)

νpp(q‖|k‖)

{
1

2

[
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

][
α(q‖) + α(k‖)

]
+
ε− 1

ε
α(q‖)α(p‖)α(k‖)[q̂‖ · p̂‖][p̂‖ · k̂‖]

− 1

dp(p‖)

ε− 1

ε2

[
ε2q‖p

2
‖k‖ − εq‖p‖α(p‖)[p̂‖ · k̂‖]α(k‖)

− εp‖k‖α(q‖)[q̂‖ · p̂‖]α(p‖) + α(q‖)α(p‖)
2α(k‖)[q̂‖ · p̂‖][p̂‖ · k̂‖]

]
− ε− 1

ds(p‖)

(ω
c

)2
α(q‖)α(k‖)[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3

}
.

Inserting the power spectrum expansions from Eq. (5.32) in the full exponent integral,
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we find that

τpp = δ2<− 2
ε− 1

ε2

√
α0(q‖)α0(k‖)

νpp(q‖|k‖)

{
1

2

[
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

][
α(q‖) + α(k‖)

]
×

[∫
d2p‖
(2π)2

g(|q‖ − p‖|)︸ ︷︷ ︸
=1

+

∫
d2p‖
(2π)2

g(|p‖ − k‖|)︸ ︷︷ ︸
=1

]

+

∫ ∞
0

dp‖
p‖
2π

∫ π

−π
dφp

[
ε− 1

ε
α(q‖)α(p‖)α(k‖)

(
1−

α(p‖)

εdp(p‖)

)
cos(φp − φq) cos(φk − φp)

− ε− 1

dp(p‖)
q‖p

2
‖k‖ +

ε− 1

ε

α(p‖)

dp(p‖)
α(k‖)q‖p‖ cos(φk − φp)

+
ε− 1

ε

α(p‖)

dp(p‖)
α(q‖)p‖k‖ cos(φp − φq)−

ε− 1

ds(p‖)

(ω
c

)2
α(q‖)α(k‖) sin(φp − φq) sin(φk − φp)

]

×

[
∞∑

n=−∞

exp [in(φp − φq)]Ln(q‖|p‖) +

∞∑
m=−∞

exp [im(φk − φp)]Lm(p‖|k‖)

]}
,

where Ln(q‖|k‖) is as defined by Eq. (5.33). We insert the fact that

1−
α(p‖)

εdp(p‖)
=

ε

[
α0(p‖) +

α(p‖)
ε

]
− α(p‖)

εdp(p‖)
=
α0(p‖)

dp(p‖)
, (D.3)

and note that the exponent may be expressed in terms of the helper integrals in Ap-
pendix D.1;

τpp = δ2<− 2
ε− 1

ε2

√
α0(q‖)α0(k‖)

νpp(q‖|k‖)

{[
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

][
α(q‖) + α(k‖)

]
+

∫ ∞
0

dp‖
p‖
2π

(
ε− 1

ε
α(q‖)α(p‖)α(k‖)

α0(p‖)

dp(p‖)

[∑
n

I5[n]Ln(q‖|p‖) +
∑
m

I13[m]Lm(p‖|k‖)
]

− ε− 1

dp(p‖)
q‖p

2
‖k‖

[∑
n

I17[n]Ln(q‖|p‖) +
∑
m

I18[m]Lm(p‖|k‖)
]

+
ε− 1

ε

α(p‖)

dp(p‖)
α(k‖)q‖p‖

[∑
n

I2[n]Ln(q‖|p‖) +
∑
m

I10[m]Lm(p‖|k‖)
]

+
ε− 1

ε

α(p‖)

dp(p‖)
α(q‖)p‖k‖

[∑
n

I1[n]Ln(q‖|p‖) +
∑
m

I9[m]Lm(p‖|k‖)
]

− ε− 1

ds(p‖)

(ω
c

)2
α(q‖)α(k‖)

[∑
n

I8[n]Ln(q‖|p‖) +
∑
m

I16[m]Lm(p‖|k‖)
])}

.

The integrals Ir[n] only contribute for the n = 0, n = ±1 and n = ±2-terms. Because
Ln(q‖|k‖) = L−n(q‖|k‖), we may write the exponent only in terms of the non-negative
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n-terms. Then, by insertion,

τpp = δ2<− ε− 1

ε2

√
α0(q‖)α0(k‖)

νpp(q‖|k‖)

{
2
[
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

][
α(q‖) + α(k‖)

]
+

∫ ∞
0

dp‖p‖
ε− 1

ε

(
α(q‖)α(p‖)α(k‖)

α0(p‖)

dp(p‖)

×
[

cos(φk − φq)L0(q‖|p‖) +
1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(q‖|p‖)

+ cos(φk − φq)L0(p‖|k‖) +
1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(p‖|k‖)

]
− ε− 1

dp(p‖)
q‖p

2
‖k‖

[
2L0(q‖|p‖) + 2L0(p‖|k‖)

]
+
ε− 1

ε

α(p‖)

dp(p‖)
α(k‖)q‖p‖

[{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L1(q‖|p‖) + 2L1(p‖|k‖)

]
+
ε− 1

ε

α(p‖)

dp(p‖)
α(q‖)p‖k‖

[
2L1(q‖|p‖) +

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L1(p‖|k‖)

]
+− ε− 1

ds(p‖)

(ω
c

)2
α(q‖)α(k‖)

×
[
− cos(φk − φq)L0(q‖|p‖) +

1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(q‖|p‖)

− cos(φk − φq)L0(p‖|k‖) +
1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(p‖|k‖)

])}
.

Making use of the familiar identities (the latter of which will only become useful for
the later components)

cos(x) =
exp [ix] + exp [−ix]

2
(D.4) sin(x) =

exp [ix]− exp [−ix]

2i
, (D.5)

and re-introducing the notation

cos(φk − φq) = [q̂‖ · k̂‖] (D.6) sin(φk − φq) = [q̂‖ × k̂‖]3 (D.7)

and simplifying the factor ε−1

ε2
from νpp(q‖|k‖) we can finally write down
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τpp = − δ2<
√
α0(q‖)α0(k‖)

εq‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

{
2
[
q‖k‖ − α(q‖)[q̂‖ · k̂‖]α(k‖)

][
α(q‖) + α(k‖)

]
+

∫ ∞
0

dp‖p‖
ε− 1

ε

([
α(q‖)[q̂‖ · k̂‖]α(k‖)

{
α0(p‖)α(p‖)

dp(p‖)
+

ε

ds(p‖)

(ω
c

)2}
− 2ε

dp(p‖)
q‖p

2
‖k‖

]
×
[
L0(q‖|p‖) + L0(p‖|k‖)

]
+

[
2p‖

α(p‖)

dp(p‖)

{
q‖α(k‖)[q̂‖ · k̂‖] + α(q‖)k‖

}]
L1(q‖|p‖)

+

[
2p‖

α(p‖)

dp(p‖)

{
q‖α(k‖) + α(q‖)k‖[q̂‖ · k̂‖]

}]
L1(p‖|k‖)

+

[
α(q‖)[q̂‖ · k̂‖]α(k‖)

{
α0(p‖)α(p‖)

dp(p‖)
− ε

ds(p‖)

(ω
c

)2}][
L2(q‖|p‖) + L2(p‖|k‖)

])}
.

(D.8)

The symbol < signifies the real component of its (complex) argument, and the notation
is assumed to operate on all of the terms and factors succeeding it, and not merely the first
set of parentheses.

D.3 Calculation of the ps-component
From Eqs. (4.16) and (5.9) we have that

S(2)
ps (q‖|p‖|k‖) =

√
α0(q‖)

α0(k‖)

{
2α0(k‖)

dp(q‖)ds(k‖)

1

2

(
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
+ 2

(
ε− 1

ε

)2 (ω
c

)
α(q‖)[q̂‖ · p̂‖]α(p‖)[p̂‖ × k̂‖]3

)
−

2α0(k‖)

dp(q‖)ds(k‖)

[
νpp(q‖|p‖)νps(p‖|k‖)

dp(p‖)
+
νps(q‖|p‖)νss(p‖|k‖)

ds(p‖)

]}
.

This gives rise to some simplifications in the desired quantity

S
(2)
ps (q‖|p‖|k‖)
S

(0)
ps (q‖|k‖)

=
−2
√
α0(q‖)α0(k‖)

νps(q‖|k‖)

{
1

2
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
+

(
ε− 1

ε

)2 (ω
c

)
α(q‖)[q̂‖ · p̂‖]α(p‖)[p̂‖ × k̂‖]3

− 1

dp(p‖)

(
ε− 1

ε2

)(
−ε− 1

ε

)(ω
c

) [
εq‖p‖ − α(q‖)[q̂‖ · p̂‖]α(p‖)

]
α(p‖)[p̂‖ × k̂‖]3

− 1

ds(p‖)

(
ε− 1

ε

)(ω
c

)
[q̂‖ × p̂‖]3α(q‖)(ε− 1)

(ω
c

)2
[p̂‖ · k̂‖]

}
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=
−2
√
α0(q‖)α0(k‖)

νps(q‖|k‖)

{
1

2
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
+

(
−ε− 1

ε

)(ω
c

)
α(q‖)

×
[(
−ε− 1

ε

)
α(p‖)[q̂‖ · p̂‖][p̂‖ × k̂‖]3

− 1

dp(p‖)

(
ε− 1

ε2

)
εq‖p‖

α(p‖)

α(q‖)
[p̂‖ × k̂‖]3

+
1

dp(p‖)

(
ε− 1

ε2

)
α(p‖)

2[q̂‖ · p̂‖][p̂‖ × k̂‖]3

− ε− 1

ds(p‖)

(ω
c

)2
[q̂‖ × p̂‖]3[p̂‖ · k̂‖]

]}
.

Inserting the power spectrum expansions from Eq. (5.32) in the full exponent integral,
we find that

τps = δ2<
−2
√
α0(q‖)α0(k‖)

νps(q‖|k‖)

{
1

2
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
×

[∫
d2p‖
(2π)2

g(|q‖ − p‖|)︸ ︷︷ ︸
=1

+

∫
d2p‖
(2π)2

g(|p‖ − k‖|)︸ ︷︷ ︸
=1

]

+

(
−ε− 1

ε

)(ω
c

)
α(q‖)

∫ ∞
0

dp‖
p‖
2π

∫ π

−π
dφp

[(
− ε− 1

ε
α(p‖) +

1

dp(p‖)

ε− 1

ε2
α(p‖)

2

)
× cos(φp − φq) sin(φk − φp)−

1

dp(p‖)

ε− 1

ε
q‖p‖

α(p‖)

α(q‖)
sin(φk − φp)

− ε− 1

ds(p‖)

(ω
c

)2
sin(φp − φq) cos(φk − φp)

]

×

[
∞∑

n=−∞

exp [in(φp − φq)]Ln(q‖|p‖) +

∞∑
m=−∞

exp [im(φk − φp)]Lm(p‖|k‖)

]}
,

and further inserting the helper integrals from Appendix D.1 where applicable, whence

τps = δ2<
−2
√
α0(q‖)α0(k‖)

νps(q‖|k‖)

{
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2π

(
−ε− 1

ε

)(ω
c

)
α(q‖)

×
∫ ∞
0

dp‖p‖

[
ε− 1

ε
α(p‖)

(
1−

α(p‖)

εdp(p‖)︸ ︷︷ ︸
=α0(p‖)/dp(p‖)

)[∑
n

I6[n]Ln(q‖|p‖) +
∑
m

I14[m]Lm(p‖|k‖)
]

+
1

dp(p‖)

ε− 1

ε
q‖p‖

α(p‖)

α(q‖)

[∑
n

I4[n]Ln(q‖|p‖) +
∑
m

I12[m]Lm(p‖|k‖)
]

+
ε− 1

ds(p‖)

(ω
c

)2 [∑
n

I7[n]Ln(q‖|p‖) +
∑
m

I15[m]Lm(p‖|k‖)
]]}
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= δ2<
−2
√
α0(q‖)α0(k‖)

νps(q‖|k‖)

{
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2

(
−ε− 1

ε

)(ω
c

)
α(q‖)

∫ ∞
0

dp‖p‖

×

[
ε− 1

ε

α(p‖)α0(p‖)

dp(p‖)

[
sin(φk − φq)L0(q‖|p‖)−

i

2

{
exp [i(φk − φq)]− exp [−i(φk − φq)]

}
L2(q‖|p‖)

+ sin(φk − φq)L0(p‖|k‖) +
i

2

{
exp [i(φk − φq)]− exp [−i(φk − φq)]

}
L2(p‖|k‖)

]
+

1

dp(p‖)

ε− 1

ε
q‖p‖

α(p‖)

α(q‖)

[
− i
{

exp [i(φk − φq)]− exp [−i(φk − φq)]
}
L1(q‖|p‖)

]
+

ε− 1

ds(p‖)

(ω
c

)2 [
sin(φk − φq)L0(q‖|p‖) +

i

2

{
exp [i(φk − φq)− exp [−i(φk − φq)]]

}
L2(q‖|p‖)

+ sin(φk − φq)L0(p‖|k‖)−
i

2

{
exp [i(φk − φq)]− exp [i(φk − φq)]

}
L2(p‖|k‖)

]]}
,

where the relation L−n() = Ln() has been applied. Using Eqs. (D.4)–(D.7) and Eq. (5.7b)
we may write

τps = δ2<
−2
√
α0(q‖)α0(k‖)

νps(q‖|k‖)

{
νps(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2
νps(q‖|k‖)

∫ ∞
0

dp‖p‖

×

[[
ε− 1

ε

α0(p‖)α(p‖)

dp(p‖)
+

ε− 1

ds(p‖)

(ω
c

)2 ][
L0(q‖|p‖) + L0(p‖|k‖)

]
+

[
ε− 1

ε

2q‖p‖
dp(p‖)

α(p‖)

α(q‖)

]
L1(q‖|p‖)

+

[
ε− 1

ε

α0(p‖)α(p‖)

dp(p‖)
− ε− 1

ds(p‖)

(ω
c

)2 ][
L2(q‖|p‖)− L2(p‖|k‖)

]]}
,

or; finally,

τps = δ2<
√
α0(q‖)α0(k‖)

{
− 2
[
α(q‖) + α(k‖)

]
+
ε− 1

ε

∫ ∞
0

dp‖p‖

×

[[
α0(p‖)α(p‖)

dp(p‖)
+

ε

ds(p‖)

(ω
c

)2 ][
L0(q‖|p‖) + L0(p‖|k‖)

]
+

[
2q‖p‖
dp(p‖)

α(p‖)

α(q‖)

]
L1(q‖|p‖)

+

[
α0(p‖)α(p‖)

dp(p‖)
− ε

ds(p‖)

(ω
c

)2 ][
L2(q‖|p‖)− L2(p‖|k‖)

]]}
.

(D.9)
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D.4 Calculation of the sp-component
From Eqs. (4.16) and (5.9) we have that

S(2)
sp (q‖|p‖|k‖) =

√
α0(q‖)

α0(k‖)

{
2α0(k‖)

ds(q‖)dp(k‖)

1

2

(
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
+ 2

(
ε− 1

ε

)2 (ω
c

)
[q̂‖ × p̂‖]3α(p‖)[p̂‖ · k̂‖]α(k‖)

)
−

2α0(k‖)

ds(q‖)dp(k‖)

[
νsp(q‖|p‖)νpp(p‖|k‖)

dp(p‖)
+
νss(q‖|p‖)νsp(p‖|k‖)

ds(p‖)

]}
.

This gives rise to some simplifications in the desired quantity

S
(2)
sp (q‖|p‖|k‖)
S

(0)
sp (q‖|k‖)

=
−2
√
α0(q‖)α0(k‖)

νsp(q‖|k‖)

{
1

2
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
+

(
ε− 1

ε

)2 (ω
c

)
[q̂‖ × p̂‖]3α(p‖)[p̂‖ · k̂‖]α(k‖)

− 1

dp(p‖)

(
−ε− 1

ε

)(ω
c

)
[q̂‖ × p̂‖]3α(p‖)

(
ε− 1

ε2

)[
εp‖k‖ − α(p‖)[p̂‖ · k̂‖]α(k‖)

]
− 1

ds(p‖)
(ε− 1)

(ω
c

)2
[q̂‖ · p̂‖]

(
−ε− 1

ε

)(ω
c

)
[p̂‖ × k̂‖]3α(k‖)

}

=
−2
√
α0(q‖)α0(k‖)

νsp(q‖|k‖)

{
1

2
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
+

(
−ε− 1

ε

)(ω
c

)
α(k‖)

×
[{(

−ε− 1

ε

)
α(p‖) +

1

dp(p‖)

(
ε− 1

ε2

)
α(p‖)

2

}
[q̂‖ × p̂‖]3[p̂‖ · k̂‖]

− 1

dp(p‖)

(
ε− 1

ε2

)
εp‖k‖

α(p‖)

α(k‖)
[q̂‖ × p̂‖]3

− ε− 1

ds(p‖)

(ω
c

)2
[q̂‖ · p̂‖][p̂‖ × k̂‖]3

]}
.

Inserting the power spectrum expansions from Eq. (5.32) in the full exponent integral,
we find that

τsp = δ2<
−2
√
α0(q‖)α0(k‖)

νsp(q‖|k‖)

{
1

2
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
×

[∫
d2p‖
(2π)2

g(|q‖ − p‖|)︸ ︷︷ ︸
=1

+

∫
d2p‖
(2π)2

g(|p‖ − k‖|)︸ ︷︷ ︸
=1

]

+

(
−ε− 1

ε

)(ω
c

)
α(k‖)

∫ ∞
0

dp‖
p‖
2π

∫ π

−π
dφp

[(
−ε− 1

ε

)
α(p‖)

{
1−

α(p‖)

εdp(p‖)︸ ︷︷ ︸
=α0(p‖)/dp(p‖)

}
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× sin(φp − φq) cos(φk − φp)−
1

dp(p‖)

ε− 1

ε
p‖k‖

α(p‖)

α(k‖)
sin(φp − φq)

− ε− 1

ds(p‖)

(ω
c

)2
cos(φp − φq) sin(φk − φp)

]

×

[
∞∑

n=−∞

exp [in(φp − φq)]Ln(q‖|p‖) +

∞∑
m=−∞

exp [im(φk − φp)]Lm(p‖|k‖)

]}
,

and further inserting the helper integrals from Appendix D.1 where applicable, whence

τsp = δ2<
−2
√
α0(q‖)α0(k‖)

νsp(q‖|k‖)

{
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2π

(
−ε− 1

ε

)(ω
c

)
α(k‖)

∫ ∞
0

dp‖p‖

×

[
ε− 1

ε
α(p‖)

α0(p‖)

dp(p‖)

[∑
n

I7[n]Ln(q‖|p‖) +
∑
m

I15[m]Lm(p‖|k‖)
]

+
1

dp(p‖)

ε− 1

ε
p‖k‖

α(p‖)

α(k‖)

[∑
n

I3[n]Ln(q‖|p‖) +
∑
m

I11[m]Lm(p‖|k‖)
]

+
ε− 1

ds(p‖)

(ω
c

)2 [∑
n

I7[n]Ln(q‖|p‖) +
∑
m

I15[m]Lm(p‖|k‖)
]]}

= δ2<
−2
√
α0(q‖)α0(k‖)

νsp(q‖|k‖)

{
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2

(
−ε− 1

ε

)(ω
c

)
α(k‖)

∫ ∞
0

dp‖p‖

[
1

dp(p‖)

ε− 1

ε
p‖k‖

α(p‖)

α(k‖)

×
[

sin(φk − φq)L0(q‖|p‖) +
i

2

{
exp [i(φk − φq)− exp [−i(φk − φq)]]

}
L2(q‖|p‖)

+ sin(φk − φq)L0(p‖|k‖)−
i

2

{
exp [i(φk − φq)]− exp [i(φk − φq)]

}
L2(p‖|k‖)

]
+

1

dp(p‖)

ε− 1

ε
p‖k‖

α(p‖)

α(k‖)

[
− i
{

exp [i(φk − φq)]− exp [−i(φk − φq)]
}
L1(p‖|k‖)

]
+

ε− 1

ds(p‖)

(ω
c

)2
×
[

sin(φk − φq)L0(q‖|p‖)−
i

2

{
exp [i(φk − φq)]− exp [−i(φk − φq)]

}
L2(q‖|p‖)

+ sin(φk − φq)L0(p‖|k‖) +
i

2

{
exp [i(φk − φq)]− exp [−i(φk − φq)]

}
L2(p‖|k‖)

]]}
,

where the relation L−n() = Ln() has been applied. Using Eqs. (D.4)–(D.7) and the
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Eq. (5.7c) we may write

τsp = δ2<
−2
√
α0(q‖)α0(k‖)

νsp(q‖|k‖)

{
νsp(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2
νsp(q‖|k‖)

∫ ∞
0

dp‖p‖

×

[[
ε− 1

ε
α(p‖)

α0(p‖)

dp(p‖)
+

ε− 1

ds(p‖)

(ω
c

)2 ][
L0(q‖|p‖) + L0(p‖|k‖)

]
+

[
2p‖k‖
dp(p‖)

ε− 1

ε

α(p‖)

α(k‖)

]
L1(p‖|k‖)

+

[
ε− 1

ε
α(p‖)

α0(p‖)

dp(p‖)
− ε− 1

ds(p‖)

(ω
c

)2 ][
L2(q‖|p‖)− L2(p‖|k‖)

]]}
,

or; finally,

τsp = δ2<
√
α0(q‖)α0(k‖)

{
− 2
[
α(q‖) + α(k‖)

]
+
ε− 1

ε

∫ ∞
0

dp‖p‖

×

[[
α(p‖)

α0(p‖)

dp(p‖)
+

ε

ds(p‖)

(ω
c

)2 ][
L0(q‖|p‖) + L0(p‖|k‖)

]
+

[
2p‖k‖
dp(p‖)

α(p‖)

α(k‖)

]
L1(p‖|k‖)

+

[
α(p‖)

α0(p‖)

dp(p‖)
− ε

ds(p‖)

(ω
c

)2 ][
L2(q‖|p‖)− L2(p‖|k‖)

]]}
.

(D.10)

D.5 Calculation of the ss-component

From Eqs. (4.16) and (5.9) we have that

S(2)
ss (q‖|p‖|k‖) =

√
α0(q‖)

α0(k‖)

{
2α0(k‖)

ds(q‖)ds(k‖)

1

2

(
νss(q‖|k‖)

[
α(q‖) + α(k‖)

]
+ 2ε

(ω
c

)2
[q̂‖ × p̂‖]3α(p‖)[p̂‖ × k̂‖]3

)
−

2α0(k‖)

ds(q‖)ds(k‖)

[
νsp(q‖|p‖)νps(p‖|k‖)

dp(p‖)
+
νss(q‖|p‖)νss(p‖|k‖)

ds(p‖)

]}
.
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This gives rise to some simplifications in the desired quantity

S
(2)
ss (q‖|p‖|k‖)
S

(0)
ss (q‖|k‖)

=
−2
√
α0(q‖)α0(k‖)

νss(q‖|k‖)

{
1

2
νss(q‖|k‖)

[
α(q‖) + α(k‖)

]
+ ε

(ω
c

)2
α(p‖)[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3

− 1

dp(p‖)

(
−ε− 1

ε

)2 (ω
c

)2
α(p‖)

2[q̂‖ × p̂‖]3[p̂‖ × k̂‖]3

− 1

ds(p‖)
(ε− 1)2

(ω
c

)4
[q̂‖ · p̂‖][p̂‖ · k̂‖]

}
.

Inserting the power spectrum expansions from Eq. (5.32) in the full exponent integral,
we find that

τss = δ2<
−2
√
α0(q‖)α0(k‖)

νss(q‖|k‖)

{
1

2
νss(q‖|k‖)

[
α(q‖) + α(k‖)

]
×

[∫
d2p‖
(2π)2

g(|q‖ − p‖|)︸ ︷︷ ︸
=1

+

∫
d2p‖
(2π)2

g(|p‖ − k‖|)︸ ︷︷ ︸
=1

]

+ (ε− 1)
(ω
c

)2 ∫ ∞
0

dp‖
p‖
2π

∫ π

−π
dφp

[(
ε

ε− 1
α(p‖)−

1

dp(p‖)

ε− 1

ε2
α(p‖)

2

)

× sin(φp − φq) sin(φk − φp)−
ε− 1

ds(p‖)

(ω
c

)2
cos(φp − φq) cos(φk − φp)

]

×

[
∞∑

n=−∞

exp [in(φp − φq)]Ln(q‖|p‖) +

∞∑
m=−∞

exp [im(φk − φp)]Lm(p‖|k‖)

]}
,
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and further inserting the helper integrals from Appendix D.1 where applicable, whence

τss = δ2<
−2
√
α0(q‖)α0(k‖)

νss(q‖|k‖)

{
νss(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2π
(ε− 1)

(ω
c

)2 ∫ ∞
0

dp‖p‖

[(
ε

ε− 1
α(p‖)−

1

dp(p‖)

ε− 1

ε2
α(p‖)

2

)
×
[∑

n

I8[n]Ln(q‖|p‖) +
∑
m

I16[m]Lm(p‖|k‖)
]

− ε− 1

ds(p‖)

(ω
c

)2 [∑
n

I5[n]Ln(q‖|p‖) +
∑
m

I13[m]Lm(p‖|k‖)
]]}

= δ2<
−2
√
α0(q‖)α0(k‖)

νss(q‖|k‖)

{
νss(q‖|k‖)

[
α(q‖) + α(k‖)

]
− 1

2
(ε− 1)

(ω
c

)2 ∫ ∞
0

dp‖p‖

[(
ε

ε− 1
α(p‖)−

1

dp(p‖)

ε− 1

ε2
α(p‖)

2

)
×
[
− cos(φk − φq)L0(q‖|p‖) +

1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(q‖|p‖)

− cos(φk − φq)L0(p‖|k‖) +
1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(p‖|k‖)

]
− ε− 1

ds(p‖)

(ω
c

)2 [
cos(φk − φq)L0(q‖|p‖) +

1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(q‖|p‖)

+ cos(φk − φq)L0(p‖|k‖) +
1

2

{
exp [i(φk − φq)] + exp [−i(φk − φq)]

}
L2(p‖|k‖)

]]}

where the relation L−n() = Ln() has been applied. Using Eqs. (D.4)–(D.7) and Eq. (5.7d)
we may write

τss = δ2<
−2
√
α0(q‖)α0(k‖)

νss(q‖|k‖)

{
νss(q‖|k‖)

[
α(q‖) + α(k‖)

]
+

1

2
νss(q‖|k‖)
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0

dp‖p‖

×

[[
1

dp(p‖)

ε− 1

ε2
α(p‖)

2 − ε
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α(p‖)−

ε− 1

ds(p‖)

(ω
c

)2 ][
L0(q‖|p‖) + L0(p‖|k‖)

]

+

[
− 1

dp(p‖)

ε− 1

ε2
α(p‖)

2 +
ε

ε− 1
α(p‖)−

ε− 1

ds(p‖)

(ω
c

)2 ][
L2(q‖|p‖) + L2(p‖|k‖)

]]}
,
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or; finally,

τss = δ2<
√
α0(q‖)α0(k‖)

{
− 2
[
α(q‖) + α(k‖)

]
+

∫ ∞
0

dp‖p‖

×

[[
− 1

dp(p‖)

ε− 1

ε2
α(p‖)

2 +
ε

ε− 1
α(p‖) +

ε− 1

ds(p‖)

(ω
c

)2 ][
L0(q‖|p‖) + L0(p‖|k‖)

]

+

[
1

dp(p‖)

ε− 1

ε2
α(p‖)

2 − ε

ε− 1
α(p‖) +

ε− 1

ds(p‖)

(ω
c

)2 ][
L2(q‖|p‖) + L2(p‖|k‖)

]]}
.

(D.11)
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Appendix E
Extra figures

When calculating the in-plane cuts of out-of-plane incoherent MDRC for the systems in
Sec. 7.3, a selection of azimuthal scattering angles was used. Only some of these inspired
interesting and in-depth discussion, as the remaining was simply predictable ”intermedi-
ate” stages between the extremes. In this appendix, plots of those intermediate scattering
plane incoherent MDRC are given, for the reader that wishes to examine the exact values
involved.
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Figure E.1: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 30°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.
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Figure E.2: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 60°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.
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Figure E.3: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 30°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.
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Figure E.4: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 0° and φ0 = 0°, and the azimuthal scattering angle φS = 60°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.
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Figure E.5: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 30°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16.
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Figure E.6: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 60°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.025λ and a = 0.25λ taken from
Ref. 16. The planar cut is defined by the azimuthal scattering angle of 60°.

120



−80 −60 −40 −20 0 20 40 60 80

0

1

2

·10−3

θs [deg]

〈 ∂
R

α
β

∂
Ω

s

〉 in
c
o
h

θ0 = 67°
φ0 = 30°

pp
ps
sp
ss

Figure E.7: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 30°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.
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Figure E.8: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough dielectric surface with incidence angles
θ0 = 67° and φ0 = 0°, and the azimuthal scattering angle φS = 60°. The surface height
distribution is Gaussian, with statistical parameters δ = 0.050λ and a = 0.25λ taken from
Ref. 16.
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Figure E.9: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 0°
and φ0 = 0°, and the azimuthal scattering angle φS = 0°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.
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Figure E.10: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 67°
and φ0 = 0°, and the azimuthal scattering angle φS = 0°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15. The
planar cut is defined by the azimuthal scattering angle of 0°.
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Figure E.11: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 0°
and φ0 = 0°, and the azimuthal scattering angle φS = 30°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.
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Figure E.12: Planar cut of the calculated incoherent MDRC as a function of the polar scattering
angle, after light scattering from a randomly rough gold surface with incidence angles θ0 = 0°
and φ0 = 0°, and the azimuthal scattering angle φS = 60°. The surface height distribution is
Gaussian, with statistical parameters δ = 0.047λ and a = 1.79λ taken from Ref. 15.
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15. Alcalá, A. G. N. et al. Specular and diffuse scattering of light from two-dimensional
randomly rough metal surfaces: experimental and theoretical results. Waves in
Random and Complex Media 19, 600–636 (2009).

16. Hetland, Ø. S. et al. Numerical studies of the scattering of light from a
two-dimensional randomly rough interface between two dielectric media. Phys.
Rev. A 93, 053819 (5 May 2016).

17. Bennett, J. M. & Mattsson, L. Introduction to Surface Roughness and Scattering
2nd ed. (Optical Society of America, Washington, D.C., USA, 1999).

18. Bennett, J. M. in Light Scattering and Nanoscale Surface Roughness (ed
Maradudin, A. A.) 1–33 (Springer, Boston, MA, USA, 2007).

19. Kaupp, G. Atomic Force Microscopy, Scanning Nearfield Optical Microscopy and
Nanoscrathcing: Application to Rough and Natural Surfaces (Springer Verlag,
Berlin, Germany, 2006).

20. Feder, J. Fractals (Plenum Press, New York, NY, USA, 1988).

21. Avnir, D., Farin, D. & Pfeifer, P. Molecular fractal surfaces. Nature 308, 261–263
(1984).

22. Oglivy, J. A. Theory of Wave Scattering from Random Rough Surfaces (IOP
Publishing, Bristol, UK, 1991).

126

https://arxiv.org/abs/2104.12650
https://arxiv.org/abs/2105.02745


23. Franceschetti, G. & Riccio, D. in Scattering, Natural Surfaces, and Fractals (eds
Franceschetti, G. & Riccio, D.) 21–59 (Academic Press, Burlington, MA, USA,
2007).

24. Jacobs, K. Stochastic Processes for Physicists (Cambridge University Press,
Cambridge, UK, 2010).

25. Agarwal, R., Patki, G. & Basu, S. An analysis of surface profiles for stationarity and
ergodicity. Precision Engineering 1, 159–165 (1979).

26. Maradudun, A. A. & Michel, T. The transverse correlation length for randomly
rough surfaces. Journal of Statistical Physics 58, 485–501 (Feb. 1990).

27. Jackson, J. D. Classical Electrodynamics 3rd ed. (John Wiley & Sons, New York,
NY, USA, 1999).

28. Griffiths, D. J. Introduction to Electrodynamics 4th ed. (Cambridge University
Press, Cambridge, UK, 2017).

29. Kittel, C. Introduction to Solid State Physics 8th ed. (John Wiley & Sons, Hoboken,
NJ, USA, 2005).
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