
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Emil Alvar Myhre

Bayesian optimal experimental
design for studying synaptic
plasticity

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn
Co-supervisor: Claudia Battistin
June 2021M

as
te

r’s
 th

es
is





Emil Alvar Myhre

Bayesian optimal experimental design
for studying synaptic plasticity

Master’s thesis in Applied Physics and Mathematics
Supervisor: Benjamin Adric Dunn
Co-supervisor: Claudia Battistin
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Abstract

The brain is the command center for the nervous system for humans, as well as for other
species. Neurons are the fundamental cells of the brain, giving rise to the complex and pow-
erful functioning brain that we possess by communicating through electrical and chemical
signals. Learning and memory are often understood to be induced by changes in neural con-
nections. This evolution of neural connectivity is referred to as synaptic plasticity. Insight
and understanding of how these mechanisms are driven could be crucial within medical re-
search for recognising and understanding neurological disorders. In this work, we approach
synaptic plasticity from a mathematical perspective, aiming to devise a statistical inference
framework to understand these dynamics.

This work extends on the framework presented by Linderman and coauthors [1] for
studying synaptic plasticity, where the dynamics are believed to follow some underlying pat-
terns, called learning rules. Specifically, employing spike-timing-dependent plasticity STDP
learning rules, as suggested in [2]. This work presents a recently developed statistical infer-
ence method to infer the learning rule parameters. When applied to real data, the methods
performance seems sensitive to external stimulation of the neurons and requires a lot of data
to yield confident estimates, which might limit its applicability. Therefore, this work aims to
develop a Bayesian optimal experimental design algorithm, which optimises the stimulation
in order to minimise the amount of data required for obtaining adequate results. This is a
novel approach for studying synaptic plasticity, which to our knowledge has not yet been
explored.

Experiments on synthetic data show that our algorithm improves significantly on tradi-
tional stimulation protocols. The findings were formalised in an article, which could be of
great interest to the plasticity community.



Sammendrag

Hjernen er senteret av nervesystemet til både oss mennesker og andre arter. Nevroner er de
fundamentale cellene i hjernen, som gir opphav til den komplekse og kraftige hjernen som vi
innehar ved å kommunisere med hverandre gjennom elektriske og kjemiske signaler. Læring
og hukommelse er forstått å bli utløst av endringer i nevrale forbindelser. Slike forandringer
er kjent som synaptisk plastisitet. Innsikt i hvordan disse mekanismene fungerer kan være
essensielt innen medisinsk forskning for identisfisering og forståelse av nevrologiske lidelser.
I dette arbeidet tar vi for oss synaptisk plastisitet fra et matematisk perspektiv, med mål om
å utvikle et rammeverk for statistisk inferens av plastisitet i hjernen.

Dette arbeidet tar utgangspunkt i og videreutvikler et rammeverk presentert av Linder-
man og medforfattere [1] for å studere synaptisk plastisitet. Nevrale endringer antas å følge
noen underliggende mønstre, kalt læringsregler. Nærmere bestemt, benytter vi såkalte STDP
læringsregler, som ble foreslått i [2]. Dette arbeidet presenterer en nylig utviklet metode for
statistisk inferens for å estimere parametere i læringsregelen. Imidlertig viser vi at metoden
både er sensitiv til ekstern stimulering av nevronene og krever store datasett for å gi tro-
verdige resultater, noe som setter spørsmålstegn ved anvendbarheten til metoden. Derfor
sikter vi i dette arbeidet på å utvikle en Bayesisk optimal eksperiment design metode, som
optimerer stimulering for å minimere datamengden som kreves for å oppnå advekate infer-
ensresultater. Såvidt vi vet, er dette en ny tilnærming som ikke før har blitt utforsket med
formål om å studere synaptisk plastisitet.

Eksperimenter gjort på syntetisk data viser at algoritmen presterer betydelig bedre enn
andre normale stimuleringsprotokoller. Funnene ble også presentert som en forskningsar-
tikkel, som kan være av stor interesse for forskningsfeltet rundt synaptisk plastisitet.
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Chapter 1
Introduction

The study of dynamical and evolving networks is of great interest within various research
fields. In general, one could imagine a network where internal components (or nodes) might
interact and influence each other. At the same time, the network as a whole could be char-
acterised by some state, which somehow describes the current network dynamics. These
dynamics, however, might change over time due to either internal or external factors. These
are flexible and complex systems that are applicable for many purposes and could describe
many different dynamics that we face in real life.

Let’s showcase this with a rather big and complex social example. Most countries in the
world have a democracy of some sort [3]. Let us now consider this political system as a
network, and briefly break down the dynamics. Well, we have a lot of different components
in such a system: 1) politicians, 2) voters, 3) the press, 4) institutes/businesses, to mention a
few. These are all allowed to interact, which leads to possible influence from each other, or
voters could even be influenced by some external event in another country. If the dynamics
within the population change enough, the political system could also change. That is, some
other party could come to power, and the "state" of the network could change.

Similar networks might be constructed for other time-dependent systems, for instance,
the stock market, the spread of a pandemic, social networks or infrastructural networks.
However, in this work, we will focus on a super interesting biological application of such
networks: the brain!

The brain consists of interconnected neural cells that communicate with each other,
causing our body to function as it does. How these neural cells are connected can be con-
sidered a network. Furthermore, research has shown that such neural networks are non-
stationary and that connectivity dynamics are induced by perceptual experiences[4]. In sev-
eral areas of the brain, these dynamics have also been shown to follow some underlying pat-
terns, i.e. functions on a given form[5]. Dependent on the state of the brain, these functions
could look different and serve as a signature for neurological conditions. Hence, being able
to characterise these patterns could potentially enable us to detect and understand neuro-
logical disorders or specific substances affecting the brain.

The first part of this work will present a statistical inference method for capturing these
neural dynamics, motivated by Linderman and coauthors [1]. The method will be probed
extensively on both real and synthetic data, from which we observe challenges this method
faces in experimental settings. Prompting to optimise this method, our main contribution
consists of a Bayesian experimental design approach, where we attempt to optimise the ex-
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perimental setting in order to maximise the level of performance of the proposed inference
method.

In chapter 2, we will introduce basic concepts in Neuroscience and relevant terminology
in order to motivate the work and provide the reader a sufficient biological understanding. In
chapter 3, the most relevant mathematical tools for this work will be defined and explained.
In chapter 4, we will present the specific model and all the methods we employ with neces-
sary implementation details. Chapter 5 will be dedicated to all of our results, and in chapter 6
our findings will be further discussed, limitations will be addressed and future prospects will
be debated. We will concisely conclude our work and our findings in chapter 7. Additionally,
this thesis consists of two appendices. The source code from which all of our simulations
were conducted is found in appendix A. This includes both the inference method and the
Bayesian experimental design. Lastly, the work has resulted in a preprint, which is available
in appendix B.



Chapter 2
Concepts in Neuroscience

In this section, we will present some basic concepts within the field of neuroscience, giving
insight into how the brain works on microscopic and macroscopic levels, which will be help-
ful for the reader in order to understand the work of this paper. Section 2.1 will consist of a
biological presentation of the brain and the neural dynamics. In section 2.2, we will briefly
present how the activity of neurons can be expressed, and touch on mathematical ways to
model this activity. In seciton 2.3, we will discuss the underlying patterns that make new
connections in the brain emerge, which is known as synaptic plasticity. Common experi-
mental methods for studying these dynamics will also be presented. Lastly, in section 2.4,
we will focus on one of many possible medical and societal applications, for which research
on synaptic plasticity might be crucial, namely Alzheimer ’s disease.

2.1 Neurons

A neural cell, from now on only referred to as a neuron, is the fundamental component of the
brain. The human brain is believed to consist of ∼ 100 billion neurons [6]. A single neuron
consists of three main parts [7]:

• a cell body, also called soma

• dendrites

• an axon

As depicted in figure 2.1, the neurons are interconnected and can communicate with each
other by sending electrical signals to other neurons. These signals are generated at the soma,
and are referred to as action potentials, spikes or the neuron firing. Exactly when an action
potential occurs in a neuron, depends on the membrane potential of the neuron. The mem-
brane potential is defined as the difference in electrical potential between the inside and the
outside of the cell, and is measured in voltage. If this voltage increases enough and hits a
certain threshold, an action potential is triggered and the neuron spikes. Then this signal
travels through the axon of the neuron, and connected neurons receive this signal through
their dendrites. This connection between an axon of one neuron and a dendrite of another
is called a synapse, and is illustrated in figure 2.1.

The neuron sending the signal is referred to as a presynaptic neuron, while the neuron
receiving the signal is called a postsynaptic neuron. These synapses are one of the reasons for



4 2.1. Neurons

Figure 2.1: A picture showcasing two neurons and how they are connected through a synapse [8].

the constant evolution of the membrane potential in a neuron. An electrical signal following
a spike from a presynaptic neuron affects the current voltage in the postsynaptic neuron. The
membrane potential could either increase, in which case the synapse is called an excitatory
synapse. However, the membrane potential could also decrease as a result of the spike, in
which case the synapse is called an inhibitory synapse. Hence, if a neuron is exposed to
a lot of excitatory inputs, the membrane potential will rise, which might result in an action
potential if the voltage threshold is reached. Simultaneously, the neuron might be stimulated
from other random sources, for instance other parts of the brain, which also could affect the
membrane potential of the neuron. This is often referred to as noise. Another source of noise
is the stochastic opening of ion channels on the neural membrane. Figure 2.2 shows how
the membrane potential of a neuron could change because of some stimulus, either from
connected neurons or from noise, and when the threshold is reached, a spike is triggered.

Figure 2.2: Dynamics of the membrane potential with a spike occuring [9].
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2.2 Spike trains

The spiking events of a neuron, are essential when modelling and analysing the neural activ-
ity, as the time course of the membrane potential during an action potential is pretty much
stereotyped. A functioning neuron will repeatedly fire, leading to a sequence of spikes. If we
consider a certain time interval, all the spike times recorded from a neuron form what we
refer to as a spike train. Assuming a neuron spikes n times within the time interval [0,T ], the
spike train for this neuron can be expressed compactly as

{t (i )}n
i=1 = {t (1), t (2), ..., t (n)}, t (i ) < t (i+1) ∀i , t (i ) ≤ T ∀i

where t (i ) is the spiking time of spike number i of the neuron. A visualisation of four spike
trains is provided in figure 2.3. These spike trains are a selection of neurons from a data set of
real neural recordings[10]. Here we observe neural activity of different nature, where neuron
3 has the significantly highest firing rate. Neuron 2 shows tendency of burstiness, meaning
that in shorter time intervals it has a high firing rate, before being totally inactive for longer
periods. These spiking times will be essential for this work. Having access to spike trains

Figure 2.3: Four example spike trains where the blue lines illustrates the spike times.

from several connected neurons could be helpful to understand how they interact with each
other. There exists many mathematical frameworks for modelling this activity. One common
type of models are the flexible integrate-and-fire (IF) models[11]. Also, models can be of very
different complexity, ranging from advanced methods modelling specific ionic channels to
more simple binary models[12], which we will apply in this work.
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2.3 Synaptic plasticity

Now that we know the basic dynamics of a single neuron, let us advance to the more inter-
esting part: a network of neurons.

Initially in this chapter, the brain was presented as a complex and dynamic network, con-
sisting of interconnected neurons that communicate with each other. A deeper understand-
ing of these dynamics is what we strive for. As we know, neurons might be connected through
either excitatory or inhibitory synapses. Furthermore, the strength of these synapses might
be of different magnitude, and they might change over time. These changes are referred to
as synaptic plasticity.

One century of research on synaptic plasticity indicates that these changes are activity-
dependent and that they follow some patterns[13], which will be referred to as learning rules.
These rules are dictating how the brain develops. If we would be able to identify or char-
acterise these learning rules, we could have a much deeper understanding of the synaptic
plasticity. In order to gain such knowledge, spike train information from several neurons is
crucial. Imagine that the spike trains of two neurons are almost identical, that is, the neurons
spike at almost the same times. Then it would be reasonable to assume some correlation be-
tween their activities, indicating a strong synaptic connection. In this work we will consider
spike-timing-dependent plasticity (STDP) learning rules [14]. These rules use exactly such
information about the spike times of connected neurons to determine the evolution of the
network dynamics. Furthermore, STDP in particular has been shown to serve for storing se-
quences [15] in artificial neural networks, so it is becoming a popular topic in the machine
learning community as well [16].

2.3.1 Experimental methods for studying plasticity

To study synaptic plasticity, electrophysiological stimulation has played an important part
in being able to induce both long term potentiation (LTP) and long term depression (LTD)
of synapses. Several different protocols have been developed and applied for this purpose.
Already in 1973, Bliss and Lømo employed high-frequency stimulation of 100Hz of duration
1− 5 seconds to induce LTP[17]. In the work of Albensi and coauthors (2007)[18], a wide
selection of common practices in experimental neurology is discussed. Whether one wants
to study LTP or LTD, usually different protocols should be used. In general, the most com-
mon frequencies for in vivo stimulation range all the way up to 400Hz[18]. Even though one
usually applies such stimulus in short bursts of a couple of seconds, experiments have been
conducted where higher frequencies up to 200Hz have been used for longer recordings up
to 1 minute[19]. In this thesis, we will develop frameworks that comply with these common
practices, such that they could potentially be implemented in real life experiments.

2.4 Alzheimer’s disease

A better understanding of synaptic plasticity could further be essential for the understand-
ing of diseases like Alzheimer’s. Synaptic plasticity is thought to be an essential mecha-
nism for learning and for memory encoding [20] [21], functions which are dramatically im-
paired in Alzheimer’s disease. The memory-related disorder progresses by causing brain cells
to degenerate and die [22], which causes a decline in the ability to think and remember.
Alzheimer’s disease poses major challenges to both the diseased and society as a whole. As
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the disease is closely related to age, we can expect it to become increasingly common, as the
life expectancy increases and is not even approaching a plateau yet [23].

There is currently no treatment that can stop the development of Alzheimer’s completely.
However, there are methods for slowing the worsening of the symptoms, thereby improving
the quality of life for both patients and their relatives. It would therefore be a great advantage
if one could identify the disease as early as possible. The challenges Alzheimer’s disease
poses have inspired a ton of research, aiming to both prevent and discover the disease early
on.

An Alzheimer’s patient will experience significant brain shrinkage, caused by the loss of
synapses and neurons. The exact cause of this loss is still being researched extensively, but
are suggested to be caused by an accumulation of amyloid plaques [24], which in turn im-
pairs the neural activity, interactions and then plasticity. By studying the synaptic plasticity
properties of brains, it might be possible to distinguish between a healthy brain and the brain
of an Alzheimer’s patient.

In research, these studies are often conducted on rats or mice, as their brains have suf-
ficient similarities to human brains. More specifically, the most heavily damaged cortex
(the entorhinal cortex) [25] in a brain with Alzheimer’s is phylogenetically conserved across
species [26], so studying this cortex in rat brains can be beneficial to humans as well.



Chapter 3
Theory

In this chapter, we will provide some relevant mathematical concepts, all of them being im-
portant for the upcoming applications in this work. Along the way we will also conceptually
connect these mathematical ideas to the situation of interest, namely synaptic plasticity in
the brain.

In section 3.1, the idea of Markov chains is presented, this part is based on the book Intro-
duction to probability models [27]. More specifically, we introduce a Hidden Markov Model
(HMM) which describes the dynamics of connectivity in our network of neurons. In section
3.2, we define the concept of Generalised linear models (GLM) and how this looks like for the
Bernoulli processes, which is used for modelling neural activity. In section 3.3 we discuss dif-
ferent approaches to estimate parameters, which is essential for uncovering the underlying
learning rules. Furthermore, we describe a method for identifying putative connections be-
tween pairs of neurons in section 3.4, which is useful when working on real data. In section
3.5, we explain a sampling technique to estimate probability distributions, which is the basis
of several approximations in our developed framework. Moreover, our main contribution of
Bayesian optimal design is built on concepts within information theory, that are presented in
section 3.6. Lastly, underlying theory and relevant literature of the Bayesian optimal design
itself is covered in section 3.7.

3.1 Markov Chains

Let Xn be a stochastic process in discrete time. In principle, the process Xn can take either
finite, countable or continuous values. For now, let’s assume a countable state space for
simplicity. We therefore denote these possible values with indices {0,1,2, ...}, and call them
states. If Xn = i , the process is in state i at time n. Then, given that the process is in state
i at time n, there is a certain probability that the process is in state j at time n + 1. This
probability of transitioning from state i to j is called the transition probability, denoted by
Pi j ∈ [0,1]. Transition probabilities exists for all set of state pairs i and j . The probability of
remaining in the current state would be Pi i .

What characterises a Markov chain is the Markov property, which says that the next tran-
sition of the process only depends on the current state, regardless of the whole history of the
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process. That is

P
(

Xn+1 = j |Xn = i , Xn−1 = in−1, ..., X1 = i1, X0 = i0

)
= P

(
Xn+1 = j |Xn = i

)
= Pi j .

Since all transition probabilities are defined to be non-negative and the process evolves in
time by necessarily making a transition, the sum of all transition probabilities from a given
state i must be 1, ∞∑

j=0
Pi j = 1, i = 0,1, ...

All of these probabilities can be structured in a matrix P , where the entry P [i , j ] indicates the
transition probability Pi j . An example of a 3-state Markov chain with transition probabilities
is showcased in figure 3.1.

Figure 3.1: An example of a Markov chain with 3 possible states (left) and the corresponding transition proba-
bility matrix (right) [28].

3.1.1 Hidden Markov Model

Now we will introduce a more sophisticated model, which will be useful for modelling the dy-
namics of the connectivity in our network of neurons. Now let Xn = {X1, X2, ...} be a Markov
process as explained in section 3.1. In addition, let’s now include another stochastic pro-
cess, which is statistically dependent on the state of the Markov process Xn . Let’s further
assume, that we do not have any information about the states of the Markov process, hence
the Markov Chain is called hidden. What we do have, however, is a set of observations
Y = {Y1,Y2, ...}, from the second stochastic process. We also know, that they are dependent on
Xn , so at time t , we consider the conditional probability for the observation, which follows
the density

Yt |X t ∼ P (Yt |X t ). (3.1)

We also know that Xn follows the Markov property, and is hence dependent on the previous
state, that is, X evolves according to some density

X t+1|X t , X t−1, ..., X1 ∼ P (X t+1|X t ). (3.2)
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Such a model, where the sequence of underlying Markov chain states are unknown, while
we have a set of correlated observations, is called a Hidden Markov Model (HMM). How
would this correspond to the brain?

Brain interpretation

Well, in the biological system of neurons with non-stationary connectivity we are studying,
imagine the following interpretation, using the notation of this section

• X t would be the state of the neural network at time t . That is, how the neurons are
connected: in terms of which ones are connected and how strong the synapses are.

• Y would be the observed spiking times of the neurons, see section 2.2. We say ob-
served, because this is actually the data we have at our disposal.

The state of the network, X t , is unknown in a real setting, but we assume that it changes over
time according to the Markov property, corresponding to Eq. (3.2). Furthermore, when the
neurons spike also depends on the connections between them, corresponding to Eq. (3.1).

Building on this concept of a general HMM, in the brain we assume that the density
P (X t+1|X t ) is determined by our specific learning rule, which will be mathematically defined
in section 4.1.2. As previously mentioned, this learning rule depends on the whole spike his-
tory of the neurons, being Y . In addition, it features further parameters, θ, that have to be
inferred and determined. The state transition depends on the previous state, the spike times
and the parameters, so the density can be expressed as

X t+1|X t ∼ P (X t+1|X t ,Y ,θ). (3.3)

We will explain the model in more detail in section 4.1.1 and 4.1.2.

3.2 Generalised linear models

Now we will explore a generalisation of linear regression models, namely Generalised linear
models, which we will refer to as GLMs. This section is based on the book Regression [29].
The standard linear regression for a response y and a vector of covariates x can be expressed
through the normal distribution,

y ∼N (xTβ,σ2), (3.4)

withβ being the vector of regression coefficients andσ2 being the variance of some Gaussian
white noise.

However, if the response variable has some restrictions, the normality assumption for the
response might be violated. The GLM framework is therefore useful, as it allows response
variables to originate from different distributions than the normal one, and it allows for dif-
ferent functional dependencies of the mean of the response variable on the linear predictor,
η= xTβ.
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3.2.1 General GLM

The response variable y in the GLM framework can be drawn from a univariate exponential
family with density function on the form

f (y |θ) = exp
( yθ−b(θ)

φ
·w + c(y,φ, w)

)
(3.5)

with b(θ) and c(y,φ, w) being known functions. θ is called the canonical parameter, φ is a
so-called nuisance parameter and w is a weight function. The normal distribution on stan-

dard form can be retrieved from Eq. (3.5) by inserting θ = µ, b(θ) = θ2

2 , φ = σ2, w = 1 and

c(y,φ, w) =− y2

2φ − 1
2 ln

(
2πφ

)
.

Additionally, distributions like the Poisson, gamma and Bernoulli can also be written on
the form of Eq. (3.5).

From Eq. (3.5), one can find the expected value and variance of the response variable y
in the following way

E[y] =µ= b′(θ)

Var[y] =σ2 = b′′(θ)
φ

w
.

(3.6)

For a normally distributed response, we see from Eq. (3.4), that the mean is equal to the
linear predictor. However, in general we do not want to model the mean directly, but instead
through a link function, g (µ), which maps the mean to the linear predictor

g (µ) = η. (3.7)

Since for the normal distribution µ= η, the link function is the identity function, g (µ) =µ. If
the link function also equals the canonical parameter θ, that is

g (µ) = θ,

then g (µ) is called a canonical link function. Other examples of canonical link functions are
the logarithm function for Poisson distributions and the logit function for Bernoulli distri-
butions, which we extend on in section 3.2.2.

3.2.2 GLM for a Bernoulli process

When we model the spikes of neurons, the event of spiking at each time step is a Bernoulli
distributed response variable, receiving input stimulus from other neurons and background
noise. This can be modelled as a GLM, with the input being modelled through a linear pre-
dictor.

A Bernoulli variable takes the values {0,1} with probabilities {1−µ,µ} respectively. The
probability density function for a Bernoulli variable is

f (y |µ) =µy (1−µ)1−y , (3.8)

which can be rewritten in the GLM framework given in Eq. (3.5) as follows

f (y |µ) = exp

(
y · ln

(
µ

1−µ
)
+ ln

(
1−µ))

. (3.9)
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Without proof, comparison with Eq. (3.5) gives that

θ = ln

(
µ

1−µ
)

b(θ) = ln
(
1+exp(θ)

)
,

(3.10)

and c(y,φ, w) = 0, w = φ= 1. Recall the canonical link function, g (µ) = θ, which we can see
from Eq. (3.10) has to be

g (µ) = ln

(
µ

1−µ
)

, (3.11)

which is called the logit link funciton. This also maps the expected value to the linear pre-
dictor, η,

ln

(
µ

1−µ
)
= η= xTβ. (3.12)

Solving for µ in Eq. (3.12), we obtain the expected value expressed through the linear predic-
tor, with the inverse logit function

µ= exp(η)

1+exp(η)
. (3.13)

3.3 Parameter estimation

An essential part of statistical analysis is the estimation of unknown model parameters given
experimental data. Recall from section 3.1.1 that we are considering two simultaneously
evolving processes, being 1) the evolution of the network connectivity and 2) the spike history
of the neurons, respectively. Both of these processes are modelled with different parameters,
that have to be inferred from only empirical neural data. In this work we will use two different
approaches for estimating parameters.

3.3.1 Maximum likelihood estimation

Recall from section 3.2.2 that we model the neuronal spiking through a Bernoulli GLM. To
estimate some of the parameters of this model, contained in the linear predictor, we use
maximum likelihood estimation (MLE) [29].

The likelihood function for independent Bernoulli random variables yi is the product of
the likelihoods for the independent observations

L(µ) =
n∏

i=1
Li (µi ) =

n∏
i=1

f (yi |µi ) =
n∏

i=1
µ

yi
i (1−µi )1−yi (3.14)

where µi is the expected value of the Bernoulli variable yi . Now however, we would like to
express this in the GLM framework. That is, our mean µi actually depends on the param-
eters, β through a linear predictor and a link function, seen from Eq. (3.13). We therefore
write

L(β) =
n∏

i=1
µi (β)yi (1−µi (β))1−yi . (3.15)

The idea is now to estimate the parameters in β, by choosing those that maximise the prob-
ability of our observations, given by Eq. (3.15). Often it is more tractable to work with the
logarithm of L(β), and since the logarithm is a monotonically increasing function, ln(L(β))
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will have the same maximum likelihood estimates as L(β). Applying the logarithm to Eq.
(3.15) yields

l (β) = ln(L(β)) =
n∑

i=1
li (β) =

n∑
i=1

yi ln
( µi (β)

1−µi (β

)
+ ln

(
1−µi (β)

)
. (3.16)

As we derived in Eq. (3.13), the expected value, µ, can be expressed withβ through the linear
predictor. By replacing this expression into Eq. (3.16), we obtain

l (β) =
n∑

i=1
li (β) =

n∑
i=1

yi xT
i β− ln

(
1+exp(xT

i β)
)
. (3.17)

As mentioned, the goal is to find the β’s maximising the log-likelihood. Since l (β) is a
strictly concave function [29], this can be done numerically with some gradient method.
One of the most common methods, which we will use later, is the Fisher scoring algorithm.
This makes use of the so-called Score function and Fisher information matrix, where the two
provide information about the first and the second derivative of the log-likelihood, respec-
tively.

For convenience, we now again write µi (β) instead of
exp(xT

i β)

1+exp(xT
i β)

. The score function is

defined as

s(β) = ∂l (β)

∂β
=

n∑
i=1

si (β) =
n∑

i=1
xi

(
yi −µi (β)

)
. (3.18)

The Fisher information matrix is defined as

F (β) = E
(
− ∂2l (β)

∂β∂βT

)
or equivalently

F (β) = Cov(s(β)) =
n∑

i=1
Cov(si (β)),

where the sum is obtained by assuming independent observations. Note that E[si (β)] = 0 as
E[yi ] =µi (β). Using this and the definition of covariance we obtain

n∑
i=1

Cov(si (β)) =
n∑

i=1
E
[(

si (β)−E[si (β)]
)(

si (β)−E[si (β)]
)T ]

=
n∑

i=1
E
[
si (β)si (β)T ]

,

which, by employing Eq. (3.18), leads to the following expression for the Fisher Information
matrix:

F (β) =
n∑

i=1
E
[
si (β)si (β)T ]= n∑

i=1
xi xT

i E
[(

yi −µi (β)
)2].

And finally, by exploiting that E
[(

yi −µi (β)
)2

]
is the variance of yi , we arrive at

F (β) =
n∑

i=1
xi xT

i µi (β)
(
1−µi (β)

)
, (3.19)

which explicits the dependence of the Fisher Information matrix on the model parameter
and data. The Fisher scoring algorithm is defined by the parameter updates:
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β(i+1) =β(i ) + (
F (β(i ))

)−1s(β(i )). (3.20)

The algorithm will converge towards the solution s(β) = ∂l (β)
∂β = 0, because F (β) is positive

semi-definite, which is always the case for covariance matrices. Furthermore, because l (β)
is strictly concave, this will indeed converge towards the maximum likelihood estimate β̂MLE.

The Fisher scoring algorithm is closely related to Newton’s method, where we iteratively
search forβmaximising the log-likelihood. Note that for a Bernoulli GLM the algorithms are
indeed identical since the Fisher Information Matrix (3.19) does not depend on the response
variable.

3.3.2 Bayesian estimation

Bayesian estimation consists of a number of methods aiming at providing a point estimate
of the model parameters, by minimising the average expected value of a chosen loss func-
tion over the posterior distribution [30]. Using Bayes’ rule, the posterior distribution of the
parameter β given the data y can be written as

f (β|y) = f (y |β) f (β)

f (y)
(3.21)

where the denominator f (y) = ´ f (y,β)dβ is a normalisation factor. The estimator for our
parameter becomes

β̂= argmin
β̂
E
[
C (β̂−β)

]
(3.22)

where C is a non-negative cost function. Using that E(x) = ´ x f (x)d x, we can calculate

β̂= argmin
β̂

ˆ ∞

−∞
C (β̂−β) f (β|y)dβ, (3.23)

and insert a desired choice of cost function to obtain an estimate. For this work we will
mainly be focusing on one particular estimate, namely the mean square error.

Mean square error

For the mean square error, the cost function is defined as

C (β̂−β) =
∣∣∣β̂−β

∣∣∣2
. (3.24)

To derive the corresponding estimator, we insert this cost function into Eq. (3.23),

β̂= argmin
β̂

ˆ ∞

−∞

∣∣∣β̂−β
∣∣∣2

f (β|y)dβ

=⇒ d

dβ̂

ˆ ∞

−∞

(
β̂−β

)2
f (β|y)dβ= 0

=⇒ 2β̂

ˆ ∞

−∞
f (β|y)dβ= 2

ˆ ∞

−∞
β f (β|y)dβ

=⇒ β̂=
ˆ ∞

−∞
β f (β|y)dβ= E(β),
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which leads to our estimator being the mean of the posterior distribution.

Other common cost functions are the absolute error[30] and the 0-1 loss function[31],
which yield the median and the mode of the posterior as estimators, respectively.

3.4 Cross-correlation estimation

A time series can be defined as a sequence of random variables indexed according to the or-
der they are obtained in time [32]. Hence, the spike train of a neuron can ultimately be con-
sidered as a time series. When working with real data, our first task would be to identify neu-
ron pairs that actually seem to be connected, before applying the method that we propose
for studying the synaptic plasticity rule. It could be wasteful to analyse each pair of neurons
comprehensively, without even having an indication whether they might be connected or
not. For rather quickly detecting possible connections, we will make use of cross-correlation
estimation of spike trains of pairs of neurons, where we apply the framework presented by
Haugh [33].

The idea is to consider small time lags, denoted by k, for one of the series i.e. spike trains.
If the neurons are connected, we would experience correlation between the spike trains of
the given neurons for certain time lags, indicating the required time for one response to
influence the other. This would in our case be the time a signal needs to travel from the
presynaptic neuron to the postsynaptic one.

Denote two time series s1 and s2 for some time units t = 0,1, ..., N and let r̂s1,s2(k) be the
estimated correlation function for some time lag k, being a discrete amount of time steps.
The estimated correlation is defined as

r̂s1,s2(k) =


1
N

∑N−k
t=0 (s1(t+k)−s̄1)·(s2(t )−s̄2)

σs1σs2
, for k > 0

1
N

∑N
t=0−k (s1(t+k)−s̄1)·(s2(t )−s̄2)

σs1σs2
, for k < 0

(3.25)

where N is the number of time steps, s̄1 and s̄2 are the means of the two time series, and σs1

and σs2 are the standard deviations of the s1 and s2.

From this we can obtain estimates for the correlation at different time lags. Furthermore,
we would like to say something about the significance of the observed correlation, which we
do in the following fashion.

Let’s assume no autocorrelation for both time series, which basically means that the in-
ternal events of the individual series are independent of each other. Then we create a hy-
potheses test for the estimation for some time lag k, namely

H0 : r̂s1,s2(k) = 0 vs H1 : r̂s1,s2(k) 6= 0. (3.26)

Under the assumption of H0, it is shown in the article [33] that the estimator asymptotically
follows an approximate normal distribution

r̂s1,s2(k) ∼N
(
0,

1

N −|k|
)
, (3.27)

where |k| is the absolute value of the considered time lag. Using this we can easily calculate
a confidence interval for the estimator under the assumption of H0, based on the normal
distribution, for some desired significance value α. If the observed correlation lies outside
this interval, we might reject the null hypothesis, and conclude that the correlation seems
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significant, that is, r̂s1,s2(k) 6= 0. The significant correlation will constitute for us an indication
of a putative directed synaptic connection between the neural pair.

From this, one could also construct more sophisticated and accurate test-statistics, be-
ing for instance chi-squared distributed or F-distributed. We will however apply this more
simple framework, as we consider this to be accurate enough for our purpose. For more
developed methods, we can recommend the interested reader to the paper "Tests for non-
correlation of two multivariate time series: a nonparametric approach" [34].

3.5 Importance sampling

Importance sampling is a Monte Carlo method for approximating a desired probability dis-
tribution, say f (x) (that is difficult to sample from), by sampling from another distribution
g (x) that we can sample from. If we want an estimate of the mean of some other function
h(x), that is, E f (h(x)) = ´ h(x) f (x)d x, we can rewrite this to be

E f (h(x)) =
ˆ

h(x)
f (x)

g (x)
g (x)d x, (3.28)

meaning that we may try to estimate the mean with

E f (h(x)) = Eg

(
h(x) f (x)

g (x)

)
(3.29)

instead. A Monte Carlo estimate of the expectation of h(x) with respect to the probability
distribution f (x), denoted µ̂MC, as described in [35], can be obtained by drawing N samples
from our distribution f (x), thereby producing the sample average

µ̂MC = 1

N

N∑
i=1

h(xi ).

In the case described above, where f (x) is difficult to sample from directly, we use the rewrit-
ten version that has been multiplied and divided by g (x), recall Eq. (3.28) and (3.29), so that
our estimator becomes

µ̂MC = 1

N

N∑
i=1

h(xi )v(xi ),

where these v(xi ) = f (xi )/g (xi ) are referred to as the (unnormalised) importance weights of
the samples. The normalised importance weights, ṽ , are obtained by dividing all the weights
by their sum,

ṽ(xi ) = v(xi )∑N
i=1 v(xi )

. (3.30)

In other words, importance sampling approximates f (x) by using a discrete distribution with
mass v(xi ) for each of the observed points. In [36] it was shown that approximating using this
sampling method will converge to the target distribution f (x) as N →∞.

3.6 Information theory

A concept that has been fundamental for modern science, is the idea of defining and mea-
suring information. This field of science is often referred to as Information theory, which is
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largely based on the fundamental work by Claude Shannon, which was formalised and pub-
lished in 1948 [37]. These concepts have also proved to be valuable in numerous fields such
as neuroscience [38], biology [39], economics [40], machine learning [41] and cognitive sci-
ence[42]. It will also be essential for the contributions presented in this work. The theory in
this section is based on the book Elements of Information Theory[43].

3.6.1 Shannon entropy

For a random variable X , entropy is a measure of the uncertainty associated with X . In the
discrete case, let X ∈ X be a random variable on some probability space with probability
function pX (x) = P (X = x). Then the entropy Hb(X ) is defined as

Hb(X ) =− ∑
x∈X

pX (x)logb pX (x) (3.31)

where b denotes the choice of logarithm base. The most common choices for b are 2 or e.
These choices would yield the units bits and nats for the entropy, respectively[43]. Note that
in Eq. (3.31) we assume 0 · logb(0) = 0. Using Jensen inequality, one can easily see that the
Shannon entropy of discrete random variables (3.31) is semi-positive defined and bounded
from above by the logb |X |, where |X | is the cardinality of X .

An intuitive understanding of entropy can be obtained from the following constructed
example. Assume a random variable X ∈ X , where pX (x̂) = 1 for some event x̂ ∈ X , then
pX (x) = 0 for all x ∈X \{x̂}. In this case, there will be no uncertainty associated with the out-
come of X , since the outcome will always be x̂. Hence, us observing the outcome doesn’t
convey any new information which we didn’t already know. Calculating Hb(X ) from Eq.
(3.31) would clearly yield Hb(X ) = 0. In contrast, the entropy is maximised for a random
variable X ∈ X where pX (x) = 1

|X | for all x ∈ X , where |X | is the cardinality of X . That is,
all the events are equally likely, yielding maximum uncertainty of the outcome of X . So the
lower the entropy is, the less uncertainty and less information gain is associated with the
outcome of the random variable.

This concept can further be extended to the more complex and less intuitive case where
our random variable X is continuous. We refer to it as differential entropy.

Differential entropy

Suppose X is a continuous random variable. If
´∞
−∞ f (x)dx = 1, f (x) is a probability density

function for X . Let S be the support set of X , defined as S = {x ∈ X : f (x) > 0}. Then the
differential entropy Hb(X ) is defined as

Hb(X ) =−
ˆ
S

f (x)logb f (x)dx. (3.32)

In contrast to the discrete case, the differential entropy can also take negative values. The
definition of entropy in both the discrete and continuous case can also be extended to sev-
eral random variables and multivariate distributions. Important for this work will be the
multivariate normal distribution, so let us derive the corresponding differential entropy.
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Multivariate normal distribution

Let x ∈ Rn have a multivariate normal distribution with mean µ ∈ Rn and covariance matrix
Σ ∈Rn×n . The probability density function is defined as

f (x) = e− 1
2 (x−µ)TΣ−1(x−µ)

(2π)
n
2 |Σ| 1

2

, (3.33)

where |Σ| denotes the determinant of Σ. By inserting f (x) into Eq. (3.32) and applying the
natural logarithm, we obtain

He (x) =−
ˆ

f (x)
[
− 1

2
(x −µ)TΣ−1(x −µ)− 1

2
ln

(
(2π)n |Σ|)]dx. (3.34)

By canceling the minus signs, splitting the terms and considering them seperately, we have

He (x) =
ˆ

f (x)
(1

2
(x −µ)TΣ−1(x −µ)

)
dx+
ˆ

f (x)
(1

2
ln

(
(2π)n |Σ|))dx︸ ︷︷ ︸

1
2 ln

(
(2π)n |Σ|

) , (3.35)

where the second term can easily be simplified since the constant term can be put outside
of the integral and the remaining integral yields 1 by definition of the density. The first term
can be simplified by using the expected value of functions of random variables

1

2

ˆ
f (x)

(
(x −µ)TΣ−1(x −µ)

)
︸ ︷︷ ︸

g (x)

dx = 1

2
E
[
g (x)

]
(3.36)

and further simplified by applying properties of the trace operator

E
[

(x −µ)TΣ−1(x −µ)
]

= E
[

tr
(
(x −µ)TΣ−1(x −µ)

)]
(3.37)

= E
[

tr
(
Σ−1(x −µ)T (x −µ)

)]
(3.38)

= tr
(
Σ−1E

[
(x −µ)T (x −µ)

])
(3.39)

= tr
(
Σ−1Σ

)
(3.40)

= tr
(

I n
)

(3.41)

= n. (3.42)

Merging the two terms yields us the final expression for the differential entropy of the multi-
variate normal distribution

He (x) = n

2
+ 1

2
ln

(
(2π)n |Σ|) (3.43)

= 1

2
ln

(
(2πe)n |Σ|) nats (3.44)

3.6.2 Mutual information

Whereas entropy quantifies the information associated with a random variable, mutual in-
formation expands on this concept to quantify how much information one random variable
contains about another one. In other words, how much does the uncertainty of a random
variable decrease, given the knowledge of another one.
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Discrete case

Let X ∈ X and Y ∈ Y be random variables with joint probability mass function pX Y (x, y),
while pX (x) and pY (y) are the respective marginal probability mass functions. The mutual
information I (X ;Y ) is defined as

Ib(X ;Y ) = ∑
X∈X

∑
Y ∈Y

pX Y (x, y)logb
pX Y (x, y)

pX (x)pY (y)
. (3.45)

Exploiting basic formulas for conditional probability and logarithmic properties allows us to
write

Ib(X ;Y ) = ∑
x,y

pX Y (x, y)logb
p(x|y)

pX (x)
(3.46)

= −∑
x,y

pX Y (x, y)logb pX (x)+∑
x,y

pX Y (x, y)logb p(x|y) (3.47)

= −∑
x

pX (x)l ogb pX (x)︸ ︷︷ ︸
=Hb (X )

−
(
−∑

x,y
pX Y (x, y)logb p(x|y)

)
︸ ︷︷ ︸

=Hb (X |Y )

, (3.48)

where the second term is the definition of conditional entropy, defined more in detail
in[43]. So the mutual information can be expressed as a difference of two entropies,
Hb(X )−Hb(X |Y ), which is indeed the reduction in uncertainty of X , given knowledge about
the outcome of Y . This allows for an intuitive understanding, in that if X and Y are inde-
pendent, Hb(X |Y ) = Hb(X ), which in turn would yield no mutual information, Ib(X ;Y ) = 0.
Oppositely, the mutual information is maximised if Hb(X |Y ) = 0, that is, if given the outcome
of Y , there is no uncertainty associated with the outcome of X . In this case, all information
about X is contained in Y .

Also note that by a minor reformulation in Eq. (3.46), we can prove symmetry, in that the
mutual information also can be expressed as Ib(X ;Y ) = Hb(Y )−Hb(Y |X ).

Continuous case

The extension to continuous random variables is pretty straight forward, where we again will
have to exchange the sum with an integral. Assume X ∈X and Y ∈Y are continuous random
variables with probability density functions f (x) and f (y). Also let their joint density be
denoted by f (x, y). The mutual information between X and Y is then defined as

Ib(X ;Y ) =
ˆ
Y

ˆ
X

f (x, y)logb
f (x, y)

f (x) f (y)
dxdy. (3.49)

In general, Ib(X ;Y ) possesses the same properties as in the discrete case. Note that in the
continuous case, Ib(X ;Y ) can also take negative values.

3.7 Bayesian experimental design

The work of lots of people in both science and industry consists of planning, executing and
analysing experiments with the intention to gain information and understanding of some
desired phenomena. However, an important challenge is how to optimally conduct these
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experiments with limited experimental resources. Design of Experiments is a field withing
applied statistics which has emerged to address this problem. Methods can be traced back
to the work by Ronald Fisher in the 1930’s[44][45]. Since then, numerous ideas, methods and
frameworks have been developed[46]. However, among the classical methods, there might
be limitations[47], and they might not be best suited for all sorts of problems.

Recently, a more sophisticated approach has increased in popularity, which exploits
Bayesian theory, therefore called Bayesian experimental design. This sort of approach seems
to have been applied in practice first by Flournoy in 1993[48]. A Bayesian framework might
be clever because the sample is not yet observed, hence incorporation of uncertainty and av-
erages for experimental parameters in the design can be beneficial[49][50]. Also, a Bayesian
approach is suited for an adaptive design where the design itself is optimised in parallel with
data collection, which we will explore more in detail later. Chaloner and Verdinelli present
a detailed overview of the literature within the field, as well as tasks where the Bayesian ap-
proach might outperform more classical methods[50]. Such frameworks have also been de-
veloped and applied to different experiments within neuroscience[51][52]. This will also be
our approach when doing experimental design in this thesis.

3.7.1 Utility function

The main idea is to formulate an optimisation problem where the design should maximise
the expectancy of some utility function, which is appropriate for the considered experiment.
Denote the data to be collected Y ∈Y , define some model parameters θ ∈Ω and let X ∈X be
some experimental design. Then a Bayesian optimal design aims to find a design X ∗ which
maximises some utility function, u :Y ×Ω×X −→R

X ∗ = argmax
X∈X

E[u(Y ,θ, X )]. (3.50)

The choice of utility function should depend on the purpose of the experiment. Chaloner
and Verdinelli discuss different choices of u(Y ,θ, X )[50]. In this work and in statistics in
general, solving statistical inference problems is often either part of - or indeed the main
task. When doing this in a Bayesian manner, the natural choice for the utility function is the
expected mutual information between the parameters and the data, discussed in detail by
Kenneth Ryan[49]. This utility function might be written on the form

u(Y ,θ, X ) =
ˆ
Ω

ˆ
Y

p(Y ,θ|X )logb p(θ|Y , X )dydθ +const (3.51)

= −
ˆ
Y

p(Y |X )Hb(θ|Y , X )dy +const, (3.52)

where Hb(θ|Y , X ) is the Shannon entropy of θ as defined in Eq. (3.32). The constant term
is independent of the design X , and is therefore irrelevant for solving Eq. (3.50). This is a
general problem formulation, which will be rewritten to suit our specific problem. In section
4.4.2, it becomes clear that we essentially employ the same utility function as Eq. (3.52).
Therefore, this literature by Ryan, from which we were inspired, serves well as a theoretical
background for our work.

The utility function in Eq. (3.51) often proves to be challenging to calculate and to max-
imise with respect to X . Firstly, because the posterior p(θ|Y , X ) usually has to be approxi-
mated, as the analytical form might be infeasible to obtain. Secondly, the parameter spaceΩ
and the data domain Y might be of high dimensionality or in general intractable to integrate
over.
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3.7.2 Approximating the utility

Ryan suggests that u(Y ,θ, X ) can be approximated by combining MCMC techniques and
importance sampling, being methods commonly used in Bayesian statistics. Although esti-
mators proposed by Ryan are not identical to how we will solve our specific problem, they
apply the same techniques, and consequently we don’t doubt the relevancy of the theory
presented by Ryan.

If p(θ|Y , X ) can not be expressed in closed form, it can be expressed as

p(θ|Y , X ) = p(Y |θ, X )p(θ)

p(Y |X )
, (3.53)

which when combined with Eq. (3.51) yields an MCMC estimate of u(Y ,θ, X ) on the form

û(Y ,θ, X ) = 1

L

L∑
i=1

log
[
p(Yi |θi , X )p(θi )

]− logp̂(Yi |X ), (3.54)

where (Yi ,θi ) for i = 1, ...,L is an MCMC sample from p(θ,Y |X ). Furthermore, the second
term in Eq. (3.54) requires an estimate p̂(Yi |X ) for the data distribution, which can be ob-
tained by importance sampling

p̂(Yi |X ) = 1

M

M∑
j=1

p(Yi |θ( j )
i , X ), (3.55)

by drawing j = 1, ..., M samples at fixed parameter values θ( j )
i drawn from p(θ).

Properties of the estimator

Estimators obtained from sampling techniques generally show nice asymptotic proper-
ties[53][54]. The estimator û(Y ,θ, X ) in Eq. (3.54) can also be shown to have satisfactory
asymptotic properties[49].

Suppose that {(θi ,Yi )}L
i=1 is an independently and identically distributed (iid) sequence

from the density p(θ|Y , X ) and that {θ( j )
i }L

i=1 are iid sequences from p(θ). It can then be
shown that the variance of û(Y ,θ, X ) is of the order of L−1

Var
(
û(Y ,θ, X )

)
∝ 1

L
. (3.56)

Also, the expected bias can be shown to be positive and can be approximated by

E
[

û(Y ,θ, X )−u(Y ,θ, X )
]
≈ C (X )

M
, (3.57)

where C (X ) is a function of the design X . Detailed derivations of these properties can be
found in the work by Ryan[49].

The computational complexity of approximating û(Y ,θ, X ) is of the order O(LM). There-
fore, if we want to fix the computational cost at some feasible level, it becomes a trade-off
between L, which affects the variance, and M , which affects the bias. Under the assumption
that C (X ) will be approximately constant over X ∈X

C (X ) ≈ const, (3.58)



22 3.7. Bayesian experimental design

the bias will be equal across different designs, regardless of the choice of M . In this case
one could argue that for comparing designs, determining X ∗ and solving the optimisation
problem Eq. (3.50), lowering the variance should be prioritised. Hence an argument for
increasing L and decreasing M is reasonable.



Chapter 4
Methodology

This chapter will be dedicated to explaining our experimental setup, the detailed model we
consider, and all of the developed methods for inference and Bayesian experimental design.

In section 4.1 we introduce the modelling framework for neural activity as a generalised
HMM, including both stochastic processes we are using for the model.

In section 4.2, we present the types of data we are working with. This includes synthetic
data and choices for all relevant hyperparameters to obtain the data, as well as a presentation
of a real data set we are using.

In section 4.3, we provide more details on a composite MCMC inference algorithm for
uncovering the learning rule parameters in Bayesian fashion. Implementation details for
the corresponding algorithm are also presented.

With these things sorted, we proceed to the main goal of this work, which is to develop
a framework for optimal stimulation to infer the learning rule parameters. In section 4.4 we
explain how we approach the problem, we will define our optimisation problem and how we
use approximations to solve it, and lastly the implementation details and relevant algorithms
are presented.

4.1 Model description

We are modelling the dynamics in the brain by two stochastic processes, which also depend
on each other, recall section 3.1.1. The first one describes the neural activity, more specifi-
cally the spiking times of considered neurons. The second one models the evolution of the
synaptic connectivity in an interconnected network. A hierarchical diagram showcasing the
dependencies is presented in figure 4.1C).

4.1.1 Spiking model

The spike trains of the neurons are defined according to section 2.2. The time domain is
binned into T bins of some size δ, where the bins are indexed by t ∈ {1, ...,T }. Furthermore,
we define the spike trains s1:T

i for neuron i . The synaptic connectivity strength between a
pair of neurons i and j at time t is denoted by w t

i j . Spiking events are modelled with a

Bernoulli GLM as defined in section 3.2.2, hence s t
i ∈ {0,1}, where s t

i = 1 denotes at least one
spike of neuron i in time bin t . The conditional spiking probability for neuron n in time bin



24 4.1. Model description

t +1, λt+1
n is then defined as

λt+1
n = g

(
bt+1

n +
N∑

n′=1,n′ 6=n

w t
n′n s t

n′
)
, (4.1)

for a network of N neurons, where g (·) is the inverse logit function in Eq. (3.13) defined in
section 3.2.1. This is a general model definition, however, in this work we will consider a
simplified model where N = 2, and where the neuron pair is connected through a mono-
directional synapse, as is illustrated in figure 4.1A).

The parameter bt
n denotes an external time-dependent field, which the neurons are ex-

posed to. This can be decomposed into two parts. One being a stationary input, bn , which
accounts for noise and sources of input which is not explicitly modelled. In addition, we have
a second non-stationary component, bt

n,ext, which represents the external stimulation deliv-
ered by the experimentalist to the neuron. In the absence of external stimulation, bt

n,ext = 0,
the resulting firing rate (the expected number of spikes per second) is referred to as the base-
line firing rate. In this work, we will consider regimes where only the presynaptic neuron is
externally stimulated. That is, bt

2,ext = 0, throughout this thesis.

4.1.2 Synaptic plasticity model

Now, we will define the STDP learning rule, that we discussed in 2.3. This was first proposed
by Abott and coauthors [2]. The learning rule considers the time between spikes, interspike
intervals, of the neurons to determine the update of the synaptic weight. The weight is as-
sumed to follow a Markov process and evolves according to the density

w t ∼N
(
w t−1 + l (s1:t−1

1 , s1:t−1
2 ,θ),σ

)
. (4.2)

where ε(σ) is a Gaussian white noise, while l (s1:t−1
1 , s1:t−1

2 ,θ) is the STDP learning rule for
parameters θ = {A+, A−,τ+,τ−}, which is defined as

l (s1:t
1 , s1:t

2 ,θ) = l+(s1:t
1 , s1:t

2 , A+,τ+)− l−(s1:t
1 , s1:t

2 , A−,τ−),

l+(s1:t
1 , s1:t

2 , A+,τ+) = s t
2

t∑
t ′=γt

s t ′
1 A+ exp

( t ′− t

τ+

)
,

l−(s1:t
1 , s1:t

2 , A−,τ−) = s t
1

t∑
t ′=γt

s t ′
2 A− exp

( t ′− t

τ−

)
.

(4.3)

Here we have made a modification to the learning rule defined in the literature by introduc-
ing γt , defined γt = t −10τ+, which denotes the first time bin of previous history to be con-
sidered. Compared to doing the sum over all of the history, this reduces the computational
complexity, is more biologically plausible and has a negligible impact on the weight trajec-
tory. This was shown in a preliminary project which we concluded prior to this work[55].

The learning rule for two sets of parameters θ are shown in figure 4.1B). The parameters
A+ and A− can be interpreted as the scale of the weight update. For really small interspike
intervals, the value of the learning rule approaches maximum values A+ and A− for either a
positive or negative update. τ+ and τ− are describing the domain of relevant interspike in-
tervals. The bigger these parameters are, the slower the contributions from larger interspike
intervals decay to zero.
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Figure 4.1: Spiking and STDP model. A): Monodirectionally connected neuron pair with non-stationary
synaptic weight w t . B): STDP learning rules with paramaters θ1 = {0.0075,0.0079,0.02,0.02} and θ2 =
{0.0050,0.0053,0.04,0.04}. C): Probabilistic graphical representation of the full Bayesian hierarchical model.

4.2 Data sets

In this work we will probe our methods on both synthetic and real data. In this section we will
briefly explain the implementation details for the synthetic data and argue for the choices of
hyperparameters we made, and we will introduce the real data set which we are using.

4.2.1 Synthetic data

All of the synthetic data is simulated according to the models in section 4.1.1 and 4.1.2.
Though there are many hyperparameters that need to be chosen. We denote the bin size
by δ and the generative noise by σgen. They are chosen to be 2ms and 0.0001, respectively.
These values are both based on extensive analysis in our previous project[55]. Furthermore,
we are studying an excitatory synapse, which is the most common synapse type[56], hence
the initial value for the connectivity, w t=1, is set to a small positive value. The values for the
generative learning rule parameters θ, are inspired by Abott and coauthors [2]. Moreover,
Linderman and coauthors use a baseline firing rate of 20Hz[1], which we used as motivation
to find suitable values of the stationary external fields. The parameter setting is displayed in
Table 4.1.

Since the goal of our main contribution is to study stimulation of different strengths, an
important parameter is the external stimulation bt

n,ext, which together with the stationary
contribution bn makes up the external field, bt

n in Eq. (4.1). To adjust bt
n , the external stim-

ulation contribution can be constructed in two different ways. Either it can be a positive
contribution, similar to bt

n , such that bt
n > bn , which in turn leads to a stochastic firing rate

which is greater than the baseline firing rate. The other option, is to implement a tetanic
stimulation, being some short sporadic stimulation pulses, that are assumed to determinis-
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parameter value
A+ 0.005
A− 0.00525
τ+ 0.02
τ− 0.02
σgen 0.0001
δ 2ms
b1 −3.1
b2 −3.1
w t=1 1

Table 4.1: Parameter setting for synthetic data.

tically induce a spike, meaning that the contribution of bt
n leads to a deterministic firing rate

of some desired frequency, in addition to the stochastic baseline firing rate.

We also assume that the excitatory synapse can not change to an inhibitory synapse, i.e.
w t can not change sign. This is known as Dale’s Law[57], and is implemented in the data
generating process.

4.2.2 Real data

Real data used in this work is collected by McKenzie and coauthours[10]. The data is col-
lected via electrophysiological techniques from the CA1 region of the brain from mice and
rats, where spiking activity was recorded from a population of neurons. For each session, one
of these neurons was artificially stimulated with juxtacellular stimulation, this neuron will be
used as the presynaptic neuron for our applications. A suitable mono-synaptic synapse will
be detected according to the theory of cross-correlation presented in 3.4. The data consists
of spike trains for all recorded neurons and exact time intervals for the juxtacellular stimula-
tion.

4.3 Inference

Since we consider a HMM with two stochastic processes, parameters of both processes will
need to be inferred. This section will concisely present the methods used for this purpose,
and some theoretical details and derivations are omitted, as this is not the main contribution
of this work. These methods were developed and explained in a more detailed and compre-
hensive manner in our previous project[55]. More details are also always available in the
cited literature.

4.3.1 Learning rule parameters

Inference in this work aims first and foremost to recover the underlying learning rule pa-
rameters, for which we employ a Bayesian approach, as explained in section 3.3.2, using the
mean estimates obtained from the mean squared error cost function. By using the values
proposed in table 4.1, we have fixed relations between the parameters

A− = 1.05A+, τ+ = τ−. (4.4)



CHAPTER 4. Methodology 27

This enables us to reduce the parameter space to two dimensions and only infer A+ and τ+,
from which we find the other parameters from Eq. (4.4) afterwards. Going forward, τ+ will
be denoted by τ.

Particle Metropolis Hastings

The posterior of the parameters can be expressed in terms of the prior, P (θ), and the likeli-
hood, P (s1:T

2 ), as

P (θ|s1:T
2 ) = P (θ)P (s1:T

2 |θ)´
Θp(θ′)P (s1:T

2 |θ′)dθ′
, (4.5)

where s1:T
2 represents the whole spike train history of neuron 2. Notice that the dependence

of the posterior and of the likelihood P (s1:T
2 |θ) on s1:T

1 is here omitted for the sake of a lighter
notation. One of the main difficulties with Bayesian estimation is that the denominator
in Eq. (4.5) might be challenging or impossible to calculate. Markov Chain Monte Carlo
(MCMC) methods are strong tools circumventing the calculation of the denominator. A com-
mon MCMC algorithm is the Metropolis-Hastings (M-H) algorithm[58], from which we have
developed a more sophisticated algorithm suitable for our problem, inspired by [1][59].

The Metropolis-Hastings algorithm, which we employ to provide an empirical posterior
for the learning rule parameters P (θ|s1:T

2 ), requires an estimate of the likelihood P (s1:T
2 |θ), in

the numerator of Eq. (4.5). Notice that we can factorise the likelihood in time in the following
way

P (s1:T
2 |θ) = P (s1

2|θ)
T∏

t=2
P (s t

2|s1:t−1
2 ,θ), (4.6)

where every factor can be written as an integral over the synaptic weight trajectory up to time
t

P (s t
2|s1:t−1

2 ,θ) =
ˆ

P (s t
2|w t−1,θ)P (w t |w t−1, s1:t

2 ,θ)P (w 1:t−1|s1:t−1
2 ,θ)d w 1:t . (4.7)

Under the integral sign one recognises two distributions which are defined in our model:
the spiking probability P (s t

2|w t−1,θ) and the weight update P (w t |w t−1, s1:t
2 ,θ) from Eq. (4.2)

given by the learning rule in Eq. (4.3). The third factor, P (w 1:t−1|s1:t−1
2 ,θ), is the posterior of

the weights up to time t −1, which by applying Bayes rule and the Markov property, can be
expressed as

P (w 1:t−1|s1:t−1
2 ,θ) = P (w t−1|w t−2, s1:t−1

2 ,θ)
P (s t−1

2 |w t−2,θ)

P (s t−1
2 |s1:t−2

2 ,θ)
P (w 1:t−2|s1:t−2

2 ,θ), (4.8)

This recursive relation for the synaptic weights posterior makes it suited for sampling via par-
ticle filtering methods. Particle filtering methods extend standard Monte Carlo approaches
(in our case Importance sampling, see section 3.5) to processes/sequences[59][60]. The idea
is that P realisations of our target weight trajectory up to time t are drawn given the observed
data, which are referred to as particles, {w 1:t

(p)}
P
p=1. Each particle p = 1, ..,P gets associated a

particle weight v t
(p), and together they constitute an importance sampling estimate for the

target weight posterior P (w 1:t−1|s1:t−1
2 ,θ), as explained in section 3.5. The empirical poste-

rior P̂ (w 1:t |s1:t
2 ,θ) can then be used to approximate the marginals P (s t

2|s1:t−1
2 ,θ) in Eq. (4.8)

and ultimately estimating the target likelihood P (s1:T
2 |θ), as in Eq. (4.6).

It can be shown that our estimate for the likelihood, P̂ (s1:T
2 |θ), obtained by particle filter-

ing, is unbiased and that Var(P̂ (s1:T
2 |θ)/P (s1:T

2 |θ)) ∝ T /P [61], where T is the number of time
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points. So the variance is expected to increase linearly with the number of time points, as
well as decrease linearly with the number of particles, P .

So, estimating P (s1:T
2 |θ) by embedding a particle filtering procedure in the MCMC algo-

rithm, yields a Particle Metropolis-Hastings algorithm which provides an empirical distri-
bution for the desired P (θ|s1:T

2 ). The embedded particle filtering procedure is presented in
Algorithm 1, while the full Particle MCMC (PMCMC) algorithm is presented in Algorithm 2.

We also implement a number of burn-in iterations, B , which the algorithm uses to con-
verge towards the higher density area of the parameter space. B is chosen for all of the exper-
iments to be 300. We have two other hyperparameters to be chosen, namely P and a noise
levelσ used for sampling P (w 1:t−1|s1:t−1

2 ,θ) in the particle filtering. These were chosen based
on numerical experiments and are discussed in section 5.1.

Resampling

The particle filtering is further improved by implementing a resampling procedure. This is
done sporadically, based on the distribution of generated particles. By resampling, we aim
to concentrate the particle distribution around the “promising” regions of the state space. It
is effective at counteracting the tendency of particle filtering to reach a state with a few dom-
inating particles, while the rest being negligible in terms of importance weights, referred to
as particle degeneracy [62]. A natural measure of degeneracy is the perplexity of the sam-
ple, defined as per(v) = exp(H(v))/P [63], where H(v) denotes the Shannon Entropy of the
sample, as defined in section 3.6. We resample whenever the perplexity falls below a certain
threshold. The threshold was set following Martino and coauthors [64], who suggest adopt-
ing the mean of the perplexity under a uniform distribution over the P-dimensional simplex
(∼ 0.66), as a threshold.

Proposal distribution

The Metropolis Hastings algorithm makes use of a proposal distribution which proposes new
values in the parameter space[58]. The choice of this distribution is important for the con-
vergence of the algorithm. In our model, the parameter space for θ is restricted to positive
values. Hence we opted for a gamma distribution, for the proposal of both A+ and τ. In each
step, the two parameters are independently drawn from gamma distributions, such that the
proposal distribution becomes a product of two gammas. The gamma distribution has a
density function given by

f (x) = 1

Γ(α)βα
xα−1e− x

β , for x ∈ (0,∞) (4.9)

where α is the shape parameter, and β is the scale parameter. When the shape parameter
gets sufficiently large, the gamma distribution approaches the standard distribution, which
we consider being a reasonable assumption when nothing is known about the target distri-
bution, being the learning rule posteriors. The mean and variance of the gamma distribution
are given by

Mean =αβ Variance =αβ2. (4.10)

In the M-H sampler, after initialisation at the gamma prior hyperparameter values, see up-
coming subsection ’Prior distribution’, β for the proposal distribution is updated at each
iteration based on the sample history, in order for the mean of the gamma in Eq. (4.10) to
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equal the parameter values sampled at the previous Metropolis-Hastings iteration, while the
variance is set as explained in the following paragraph. The Particle Metropolis-Hastings al-
gorithm thus performs a random walk in the parameter space with non-stationary variance.

Adaptive variance

We also improve the algorithm by occasionally adjusting the variance of the proposal distri-
bution, which is inspired by Haario and coauthors[65]. This serves the purpose of finding
an adequate trade-off between exploration and exploitation of the algorithm. We choose an
update frequency, U = 100. Both the shape parameter α and the scale parameter β are up-
dated every U iteration to match the mean and the variance of the algorithm for the previous
U iterations. Variance(θ)U and Mean(θ)U are computed, being the variance and mean of the
last U samples, and α and β are found subsequently by solving the set of equations

Mean(θ)U =αβ Variance(θ)U · c2
d =αβ2 (4.11)

and α is kept fixed for the next U iterations. This procedure is performed separately for A+
and τ. cd is a constant which scales with the dimensionality of our parameter space: for the
one-dimensional case [65] recommends cd = 2.4.

Prior distribution

We used a gamma for the prior distribution of A+ and τ. In our work we set the scale and
shape parameters to be α = [4,5], β = [0.02,0.01] respectively, see Eq. (4.9). Notice that our
choice does not match the mean of the priors to the generative values of θ for the synthetic
data, see Table 4.1; our gamma priors have also larger variance than those used by [1], allow-
ing broader exploration of the parameter space, which we consider important for smaller
data sizes which we are interested in. That is, for fewer data, the likelihood P (s1:T

2 |θ) will
be less distinguishable between different values for θ. Then if the prior is too peaked, the
algorithm will more easily be driven by the prior rather than the likelihood.

Algorithm 1: Particle filtering

Sample w t=1
(p) ∼ δ(ŵ t=1);

Set particle weights v1
(p) = 1;

for t = 2,3,4, ... do
Sample w t

(p) ∼ p(w t
(p)|w t−1

(p) ,θ);

Compute particle weights v t
(p) = p(s t

2|w t
(p),θ)ṽ t−1

(p) ) ;

Compute perplexity, per(v) = exp(H(v))/P ;
if perplexity ≤ 0.66 then

Normalise the particle weights;
Resample;
Set weights v t

(p) = 1/P

end
end
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Algorithm 2: Metropolis Hastings sampler with embedded Particle filtering, PMCMC

Initialise θ0;
Run particle filter, targeting P (s1:T

2 |θ0);
for i = 1,2, ... do

if i mod U = 0 then
Adjust variance;

end
Sample θ∗ ∼Q(·|θi−1);
Run particle filter, targeting P (s1:T

2 |θ∗);

Compute α(θ∗) = P (θ∗)·P (s1:T
2 |θ∗)·Q(θi−1|θ∗)

P (θi−1)·P (s1:T
2 |θi−1)Q(θ∗|θi−1)

;

Accept θ∗ with probability min{1,α(θ∗)};
if θ∗accepted then

θi = θ∗;
else

θi = θi−1;
end

end

4.3.2 GLM parameters

For the PMCMC to yield accurate estimates, we also need estimates of the parameters con-
tained in the GLM spiking model. Notice from Algorithm 1, that we need to initialise the
particle weights, as well as calculating the spiking probability of the postsynaptic neuron.
Therefore, we also need estimates of the initial weight w t=1 and the external field of the post-
synaptic neuron, bt

2, which determines the spike rate in the absence of a presynaptic spike.
For this, we are implementing the Fisher Scoring Algorithm to find MLE estimators for these
parameters, according to the theory in section 3.3.1. However, this means that we are as-
suming that the coefficients in the linear predictor, recall Eq. (3.12), are stationary, which
is not true for w t in our modelling framework. Therefore, we only apply the Fisher Scoring
Algorithm on a smaller subset of the data from the start of the experiment, and assume that
w t ≈ const within this subset. Recall from Eq. (3.20), that the algorithm is converging to-
wards s(β) = 0. A stopping criterion of s(β) < 10−10 for the algorithm is implemented, such
that convergence is assumed when all elements of the score function are smaller than this
threshold.

4.4 Bayesian optimal experimental design

Regarding the main research question of this work, we wish to study how we can optimally
stimulate the presynaptic neuron, such that we can obtain adequate inference with as few
data as possible. Our approach is based on the theory on Bayesian experiment design in sec-
tion 3.7. An experimental design in our case, corresponds to a tetanic external stimulation
of the presynaptic neuron with a certain frequency, as explained in 4.1.1. In order to find an
optimum, we first construct a space of frequencies, based on commonly used stimulation
protocols in experiments, see section 2.3. In this space, we only consider frequencies be-
tween 10Hz and 250Hz. We employ a heuristic approach by pre-defining a grid of selected
frequencies in this space and searching for the optimal stimulation within the grid. Now, let
us present the mathematical details to find this optimum.
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4.4.1 Active learning approach

Inspired by the work of Shababo, Paige and coauthors (2013)[51], we implement an active
learning procedure. This means, that we are adaptively adjusting and tuning the stimulation
during the experiment. The idea is to split the experiment into N smaller intervals, referred
to as trials. Data is then collected trial after trial in a sequential manner, and between every
trial, the design, in our case the stimulus, for the next trial will be optimised given the already
gathered data. Together, these trials then constitute a continuous data set, and the aim is to
minimise the number of trials N , in order to achieve sufficiently good inference. After every
trial, our inference method from section 4.3.1 will be applied to all of the currently gathered
data to measure the inference accuracy as a function of the number of trials collected, N .

4.4.2 Utility function

In order for this active learning approach to be useful, we need to find an appropriate utility
function for our specific problem to solve an optimisation problem on the form of Eq. (3.50),
as explained in section 3.7.

Let X n be an experimental design, i.e. stimulation frequency for trial n. For a lighter
notation, let Dn = {sn

1 , sn
2 } be the data i.e. the spike trains collected in trial n. Here, we have

defined sn
i = san :bn

i , where an and bn are the first and the last time points, respectively, in

trial n. Furthermore, let Dn+ =⋃n
k=1Dk be the data from all trials up until and including trial

n. Since our goal is to accurately estimate the learning rule parameters θ, we want the data
to contain information about θ, and vice versa. Motivated by the theoretical foundation in
section 3.7, we choose our utility function, u, to be the mutual information between the data,
Dn , and the parameters, θ, conditioned on the design X n and the previously collected data
Dn−1+

u(D,θ, X ) = Ie (θ,Dn |X n ,Dn−1
+ ). (4.12)

Note that D denotes the data, while in section 3.7 the data was denoted by Y . Also notice the
dependency on Dn−1+ , being the already collected data, since we are optimising in a sequen-
tial manner. The mutual information is defined as in section 3.6, which in our notation and
framework results in:

Ie (θ,Dn |X n ,Dn−1
+ ) =∑

Dn

ˆ
P (θ,Dn |X n ,Dn−1

+ )ln
( P (θ,Dn |X n ,Dn−1+ )

P (θ|X n ,Dn−1+ )P (Dn |X n ,Dn−1+ )

)
dθ, (4.13)

where we have used the natural logarithm. The expression in Eq. (4.13) can be simplified to

Ie (θ,Dn |X n ,Dn−1
+ ) =−∑

Dn
P (Dn |X n ,Dn−1

+ ) ·He (θ|Dn , X n ,Dn−1
+ ) + const, (4.14)

where He (θ|Dn , X n ,Dn−1+ ) is the posterior entropy of θ, defined as in Eq. (3.32). Now no-
tice that Eq. (4.14) is the same as Eq. (3.52), with the exception that we have substituted
the integral with the sum since the spike trains are discrete random variables, and we are
conditioning here on the history Dn−1+ due to our active learning approach.

Approximation

As discussed in section 3.7, we also exploit a combination of MCMC techniques and im-
portance sampling to get an estimation of the utility function, in our case Eq. (4.14). Our ap-
proach is just slightly different, as we approximate He (θ|Dn , X n ,Dn−1+ ) directly, by construct-
ing an MCMC sample with our inference procedure, which yields an empirical distribution
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for P (θ|Dn , X n ,Dn−1+ ). We make an assumption that P (θ|Dn , X n ,Dn−1+ ) is approximately nor-
mally distributed and fit a multivariate normal distribution to the sample

P (θ|Dn , X n ,Dn−1
+ ) ≈N (µ,Σ), (4.15)

where µ and Σ are the mean and the covariance matrix of the MCMC sample of size L.

Moreover, our final step is to apply importance sampling to obtain an eventual estimator
of Eq. (4.14). By drawing M realisations of the data Dn according to P (Dn |X n ,Dn−1+ ), our
utility function can be estimated by importance sampling as in section 3.5

Ie (θ,Dn |X n ,Dn−1
+ ) ≈− 1

M

M∑
j=1

He (θ|Dn
( j ), X n ,Dn−1

+ ), (4.16)

where j labels the realisation from the spike train space and He (θ|Dn
( j ), X n ,Dn−1+ ) is the dif-

ferential entropy of the multivariate normal distribution as derived in section 3.6. More pre-
cisely, this is done by drawing realisations from P (Dn |θ̂, X n ,Dn−1+ ), where θ̂ is the mean esti-
mates of the learning rule parameters obtained from inference on the already collected data,
Dn−1+ . So before generating the actual data for trial n, we simulate M realisations from the
spike train space and construct an MCMC sample of size L for each realisation using the par-
ticle Metropolis-Hastings algorithm described in section 4.3.1. These realisations together
yield an estimate of our utility function by Eq. (4.16).

Choice of hyperparameters for the MCMC approximation and the importance sampling
are inspired by the discussion in section 3.7. Using similar sampling techniques as in the
theory, we make the assumption of similar asymptotic properties of our estimator, recall
Eq. (3.56) and (3.57). Because we don’t know the form of C (X ) from Eq. (3.57), we make an
assumption of C (X ) ≈ const, for simplification. This supports parameters where L >> M . For
our experiments L is chosen to be 1200, while M is 15. This way, we assume lower variance
of our estimator, which we believe will make the comparison between designs more robust.

4.4.3 Algorithm

The algorithm is constructed by defining a grid in the space of frequencies, X = {X1, X2, ...},
over which we search for the optimal stimulation. This grid is fixed for the all the trials.
Which design i.e. frequency is used to collect data for trial n, is decided by estimating the
utility function by Eq. (4.16) for all of the considered frequencies in our grid, and choosing
the one maximising Eq. (4.16).

As explained in section 4.4.2, estimating the utility function involves performing infer-
ence of the learning rule parameters via the particle Metropolis-Hastings sampler. For this
purpose, a couple of modifications are being made to the Metropolis-Hastings procedure
from section 4.3.1. We want to approximate Eq. (4.16) conditioned on all the collected data,
Dn−1+ . However, the MCMC sample constituting (4.15) is obtained from only realisations of
Dn . The way we condition on Dn−1+ is by adjusting the prior distribution. We set the prior
in trial n to be a multivariate Gaussian with mean and variance based on our inference on
Dn−1+ ,

P n
prior(θ) =N (θ̂, Σ̂), (4.17)

where θ̂ is the mean estimator from the MCMC sample on Dn−1+ and Σ̂ is the corresponding
covariance matrix. This way, the information from the already gathered data Dn−1+ is incor-
porated in the inference to obtain Eq. (4.15), although only applying the PMCMC to data
realisations from trial n.
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To boost the efficiency of the algorithm, we adjust the initial proposal distribution in the
Metropolis Hastings to a gamma with the same mean and variance,

P n
prop(θ) ∼ Gamma(θ̂, Σ̂). (4.18)

This way, the PMCMC algorithm is initialised in what we believe is the interesting area of the
parameter space, based on inference on Dn−1+ . Note that this is done similarly to how the
proposal distribution was constructed in section 4.3.1, namely separately for A+ and τ such
that the proposal is a product of two gammas.
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Figure 4.2: Experimental setting and inference for the considered stimulation protocols. The Bayesian active
learning procedure optimises the stimulus for the next trial based on the inference of the STDP parameters
from the history of spike trains.

We compare the performance of our inference when using Bayesian active learning with
other stimulation protocols. These being no stimulation, 20Hz stimulation and random
stimulation. For the random stimulation, we use the same frequency grid as we optimise
over, but then at every trial, the stimulation is drawn randomly from the grid from a uniform
distribution. For comparison purposes, we do a couple of adjustments. Firstly, we let all of
the protocols start with the exact same data for only the first trial. Secondly, the stationary
parameters of interest, w t=1 and b2, are not being learned for any of the protocols, to avoid
potential variance and bias (which we showed in [55]) affecting the inference. An illustrative
cartoon of the compared protocols is presented in figure 4.2.

The design optimisation algorithm is presented in Algorithm 3. The full algorithm for col-
lecting all the data and doing inference, with the embedded design optimiser, is summarised
in Algorithm 4.
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Algorithm 3: StimuliOptimiser. Function for optimising the upcoming stimulation.
PMCMC∗: PMCMC algorithm with updated prior and proposal distributions according to
Eq. (4.17) and (4.18).

Define frequency grid X = [X1, X2, ...];
for X in X do

for j = 1,2, ..., M do
Generate Dn

( j ) ∼ P (Dn |θ̂n , X ,Dn−1+ );

Run PMCMC∗ to estimate P (θ|Dn
( j ), X n ,Dn−1+ );

Calculate entropy of the approximation Eq. (4.15);

end
Estimate mutual information Eq. (4.16)

end
Return X in X maximising Eq. (4.16)

Algorithm 4: Full Bayesian optimal design

Generate initial data D1;
Run PMCMC to estimate P (θ|D1);

Calculate θ̂1, Σ̂1;
for n = 2,3, ... do

Update P n
prior(θ) Eq. (4.17) and P n

prop(θ) Eq. (4.18);

X n = StimuliOptimiser (Algorithm 3);
Generate Dn ∼ P (Dn |θtrue, X n ,Dn−1+ );
Run PMCMC to estimate P (θ|Dn , X n ,Dn−1+ );

Calculate θ̂n , Σ̂n

end



Chapter 5
Results

In this chapter, our methods will be probed in several different settings to analyse their per-
formance and investigate their behaviour.

In section 5.1 we discuss the remaining hyperparameters for the inference procedure,
and justify our choices with experimental analysis. In section 5.2, we study our inference
method in a real neural setting when applied to the data presented in 4.2.2. These explo-
rations will serve as motivation for developing a Bayesian optimal design method. Further-
more, we will elaborate on and support these insights on real data by studying synthetic data
in section 5.3.

Then, proceeding to our proposed Bayesian experimental design, we first extensively
tested the PMCMC on single trial experiments, to explore the prospects of optimising the
frequency based on single trial data. Also, this enabled us to make an educated decision for
choosing the size of the trials used in the Bayesian optimal design. All of this is presented
in section 5.4. Lastly, we present our results from the Bayesian design algorithm, where we
compare our optimal design to other stimulation protocols and investigate the behaviour,
the choices it makes and how it affects the exploration of the plasticity dynamics.

All of the results were acquired systematically to strengthen the robustness and validity
of our analysis. To avoid specifying this several times, all of the results involving error bars or
shaded error areas are obtained by conducting 20 unique experiments. The only exception
is figure 5.10, which will be described separately.

Shaded areas corresponding to confidence intervals (see figure 5.9, 5.12 and 5.13) are
calculated with built in functions of the Seaborn library in Python [66], which utilises boot-
strapping techniques.

On synthetic data, the performance will often be measured according to the Root Mean
Squared Error (RMSE)[67] measure between estimated learning rule parameters or learning
rule functions, and the true parameters and corresponding function.

The computations are performed on resources provided by the IDUN/EPIC computing
cluster [68].
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5.1 Hyperparameters for inference

From the inference method described in 4.3.1, there are still some hyperparameters yet to
have been discussed and chosen, being the level of noise used in the inference, σ, and the
number of particles, P , employed by the particle filtering algorithm in section 4.3.1 to esti-
mate the posterior of the weight trajectories. To determine these, the method was extensively
probed, and a trade-off between adequate performance and computational complexity was
made.

5.1.1 Choice of noise

The noise parameterσ enters in Eq. (4.2), where the weight connectivity is updated, which is
used for sampling the particles in the particle filtering from section 4.3.1. In an experimental
setting, one would not know the size of the underlying generative noise in the data, σgen.
Therefore, we wish to either be able to infer or set this value independently of the genera-
tive value. Note that we previously tried to use our PMCMC method to infer the generative
noise level[55]. However, as we concluded in that work, it was unsuccessful with the cur-
rent method. Therefore, to instead determine a good choice for σ, the performance of the
method was tested in different scenarios. Firstly, when the underlying noise in the gener-
ative process was low, and secondly, when the data was generated with a high noise level.
Under both of these generative noise regimes, the inference method was tested at different
levels of noise in the inference, and the most informative results were obtained by analysing
the inference of A+. The results are illustrated in figure 5.1, where the mean of the posterior
mean estimates of A+ across the experiments is plotted for different values of σ, along with
the standard deviation across means.

Figure 5.1: Estimation of A+ as a function of noise level, σ, used in the inference. Dots show the average
posterior mean across 20 data sets and error bars are one standard deviation of the average. Data sizes for
inference were 120 seconds. Left: low generative noise, σgen = 10−4. Right: high generative noise, σgen = A+ =
5×10−3. The red dashed line marks the A+ generative value.



CHAPTER 5. Results 37

The results suggest, that the estimates are being shifted in the same direction for both
generative noise regimes, when increasing the inference noise. On the left plot, the genera-
tive noise, σgen equals the smallest one of those used for inference, σ: here we see that the
accuracy slowly worsens when increasing the inference noise parameter. On the right plot,
the generative noise is equal to the biggest one for inference. Here we see that the variance
seems to decrease when the inference noise gets closer to the generative value. We believe,
that this is due to the high generative noise leading to a lot more variation across the data
sets, which again is being better captured when using a small noise in the inference. More-
over, for both regimes, we observe that the mean of the estimated A+ increases with the
inference noise, σ. We believe this could be due to a trade-off between A+ and σ. When
σ increases, the algorithm experiences bigger updates in weight trajectories from Eq. (4.2),
which it will compensate for by overestimating A+.

We interpret the data such that for low inference noise, the nature of the data is better
captured. In the case of big inference noise, we get biased estimators regardless of the gen-
erative noise. Based on these plots, we conclude that the best option is to use a small noise
for inference, when not knowing the underlying generative noise. This choice will be used
for the rest of the results.

5.1.2 Choice of particles

As discussed in section 4.3.1, increasing the number of particles, P , is expected to decrease
the variance of the particle filtering approximation. At the same time, increasing the particles
leads to a linear increase in computational complexity. Therefore, we wish to find a particle
number which serves good inference, but still keeps the computational cost as low as pos-
sible. For this purpose, we probed the inference method for a range of particle values, to
get an empirical estimate of the variance associated with different values of P . For all of the
particle numbers, the method was employed for the data sets, for better comparison. Mean
of posterior means across experiments are showcased for A+, with error bars indicating the
standard deviation. From figure 5.2, it seems like we achieve satisfactory results already for
P = 50, with a RMSE of 1−2% and variance of the same order of magnitude as for P = 5000.
This value was chosen for all the remaining experiments. Note that the minimal bias might
be due to some variance in the estimation of w t=1, which we discussed in more detail in our
previous work[55].

5.2 Inference on real data

One of the most exciting explorations when developing a method, is to experience how it
performs on real data. In this section, results from our inference method will be presented,
when applied to real data. The method was tested for different data sizes, and both in stim-
ulation and non-stimulation regimes. The results suggest that the method performs signifi-
cantly worse with smaller data sets, and that the presence of stimulation might be important
for uncovering learning rule parameters. This will serve as a motivation for why we want to
develop a more sophisticated framework for optimising the stimulation protocol. The re-
sults which will be presented, are all from the same neuron pair from the real data explained
in 4.2.2.
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Figure 5.2: Estimation of A+ as a function of number of particles, P , used in the inference. Dots show average
posterior mean of A+ across 20 experiments with error bars showing corresponding to the standard deviation.
Data sizes were 120s. Red dotted line is generative A+ value.

5.2.1 Detecting a monodirectional synapse

Before applying the inference method to real data, it is essential to find a good neuron pair
which fulfills our model assumptions. That is, a neuron pair with a monosynaptically di-
rected connection. Moreover, we want to investigate the effect of stimulation on the presy-
naptic neuron. Since the stimulated neuron is pre-defined in the data, we need to find a
second neuron among the population which seems to be connected in the above mentioned
manner. To do this, we analyse the cross-correlation between the spiking activity of neuron
pairs, as explained in section 3.4. Experiments were run on smaller data sets (20 seconds)
and bigger data sets (100 seconds). The data consists of around 2000 seconds of recordings
in total, and we expect significant variability within the data. Therefore, we want to pick sub-
samples close to each other, such that the system is as stationary as possible within the con-
sidered time frame. Two 100 second subsamples were picked, such that they were disjoint
but contiguous in time. The first sample consists of the last 100 seconds before delivering the
stimulation, and the other sample of the first 100 seconds of stimulation. Smaller data sets
(20 seconds) were picked to be again subsampled from these 100 second samples. In figure
5.3, cross-correlograms from the picked intervals of the selected neuron pair are shown.

The cross-correlations are constructed by shifting the spike train of the stimulated neu-
ron for certain time lags. As it becomes clear from the plot, in general we seem to have
the most significant correlation for negative time lags of 2-4ms of the stimulated neuron,
suggesting that this would serve as the presynaptic neuron in the coupling. The signifi-
cant cross-correlation at biologically plausible time lags for a monosynaptic connection[13],
makes this a good candidate neurons pair. Significance is measured by the red line in the
figures, which is calculated according to the hypothesis test defined in 3.4, and corresponds
to the 99% confidence interval under H0, which assumes no correlation. Based on this, we
considered this a reasonable neuron pair for the method to be applied to.
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Stimulation No stimulation

100s

20s

Figure 5.3: Estimated cross-correlation as a function of time lags of the presynaptic neuron. Top row: Cross-
correlograms for 100 second data sets. Bottom row: Cross-correlograms for 20 second data sets. Left column:
Stimulation of presynaptic neuron. Right column: No stimulation of presynaptic neuron.

5.2.2 Real data posteriors

Applying the method on data from this pair of neurons, yields us posterior distributions for
both of our parameters, A+ and τ. To measure the performance on the real data, where we do
not know the underlying values, we mainly consider two things. Firstly, we want the entropy
of the posteriors to be as small as possible, which indicates that the uncertainty connected
to the estimates is small. Secondly, we also want the method to reproduce the same results,
when applied to a different data set, assuming that the underlying parameters still are the
same.

In figure 5.4, posterior distributions of A+ are shown. We can clearly observe that the
inference accuracy is superior when using 100 second recordings (A,B,C,D), compared to 20
second recordings (E,F,G,H), based on the dispersion of the distributions. Moreover, we see
the improvement for the 100 second recordings, when an external stimulus is applied. The
posteriors are in this case even more peaked, and they seem to be better reproduced for a
second data set. For shorter recordings of 20 seconds, most of the posteriors seem to be
strongly dependent on the prior distribution, and the presence of stimulation does not seem
to improve the performance.

Figure 5.5 shows posteriors of τ obtained from the same data. We see that the results
are not particularly good for either of the data sizes. The posteriors mostly seem to be de-
pendent on the prior, and the presence of stimulation does not seem to make a difference.
We have previously discovered, that the inference of τ seems to demand a smaller bin size
δ to be adequate[55], compared to A+. Although we showed that on synthetic data δ= 2ms
yields good results, we hypothesise that a bin size of δ = 2ms might be too big to be able to
characterise the features of τ for some certain underlying values, which might be a reason
for these results.
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Figure 5.4: Posterior distributions for A+. Dotted lines are 95% credible intervals. The yellow line is the prior
distribution. (A,B,C,D): 100 second data sets. (E,F,G,H): 20 second data sets. (A,C,E,G): With stimulation.
(B,D,F,H): Without stimulation. Solid green lines were obtained by Gaussian kernel density estimation on the
sample posteriors, using Seaborn[66].
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Figure 5.5: Posterior distributions for τ. Dotted lines are 95% credible intervals. The yellow line is the prior dis-
tribution. (A,B,C,D): 100 second data sets. (E,F,G,H): 20 second data sets. (A,C,E,G): With stimulation. (B,D,F,H):
Without stimulation. Solid green lines were obtained by Gaussian kernel density estimation on the sample pos-
teriors, using Seaborn[66].



CHAPTER 5. Results 41

5.2.3 Reproducibility

In addition to studying the distributions of the parameters separately, we can study the re-
sulting learning rule. After all, this is the most interesting feature, and the one we want to be
able to characterise. In figure 5.6 we show the estimated learning rules for all the considered
paradigms. For all of the settings, i.e. same data size and stimulation, we show two learning
rules obtained from disjoint data sets.

Stimulation No stimulation

100s

20s

Figure 5.6: Learning rules based on mean estimates of A and τ. The two lines in the same plot are from different
data sets with identical data sizes and stimulation regimes to measure reproducibility. Top row: 100 second
data sizes. Bottom row: 20s. First column: With stimulation. Second column: Without stimulation.

We see that the learning rule is best retrieved when we have long recordings and external
stimulation.

Based on these results, the method seems to require relatively long recordings when ap-
plied real data, which might question its applicability. Also, it seems evident that external
stimulation might be important for reconstructing the learning rule from real data. This
motivates the idea of developing an optimal design framework to make the method more
applicable on real neural recordings. To study the effect of the data length and stimulation
more extensively, we turn to similar experiments on synthetic data.

5.3 Data size analysis on synthetic data

For the synthetic data, we first study how accurately the method recovers A+ and τ, as a func-
tion of the data length. For these experiments, only one parameter is being inferred at a time,
and the other parameter is being fixed in the inference. Figure 5.7 shows the average poste-
rior means across experiments with standard deviation, for both A+ (left) and τ (right), in the
absence of stimulation. We observe that the accuracy clearly improves for both parameters
when the data length increases. However, this also increases the computational complexity.
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Therefore, we wish to study other stimulation regimes, where the estimates could hopefully
converge faster towards the true value. Stimulation is always applied to the presynaptic neu-
ron.

Figure 5.7: Estimation of A+ (left) and τ (right) as a function of data size, without external stimulation on the
presynaptic neuron, bt

1,ext = 0. The resulting total external field is bt
1 = −3.1. Red dotted lines are generative

parameter values.

In figure 5.8, a similar analysis is presented, but where we add an external stimulation on
the presynaptic neuron, such that the external field the parameter bt

1 =−1.5. This increases
the stochastic firing rate to ≈ 100Hz, which is a common stimulation protocol used for plas-
ticity studies, recall section 2.3. From the plots, it becomes clear that for this stimulus, the
accuracy improves, in particular for the shortest data sizes. This further suggests, that if we
want to minimise the data length, choosing a good stimulus seems to be essential. But then
the question arises, what is a good stimulus? Is it such that the stronger the stimulation is,
the better the method performs? To try to answer this question, we study how well the learn-
ing rule is recovered, for three different stimulation protocols. Now, both parameters A+ and
τ are being inferred, and the performance is measured by calculating the RMSE between the
resulting estimated learning rule and the true learning rule. The protocols which are com-
pared, are no stimulation, 100Hz stimulation and 250Hz stimulation. In these experiments,
the stimulation is tetanic, recall section 4.1.1. Results are plotted as the mean RMSE estimate
across the experiments, with a corresponding 95% confidence interval to the estimate.

From the results in figure 5.9, we observe, that the highest stimulation is not the best
choice. As expected from figure 5.7, without external stimulation, the accuracy is bad for
low data sizes, but converges pretty consistently when accumulating more data. As expected
from figure 5.8, the method is performing significantly better when delivering a 100Hz stim-
ulation to the presynaptic neuron. However, we see that if we stimulate at an even higher
frequency (250Hz), the performance is degraded compared to 100Hz. This suggests that the
stimulation could be tuned and that there could exist some optimal stimulation between the
extremes of no stimulation and 250Hz stimulation.
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Figure 5.8: Estimation of A+ (left) and τ (right) as a function of data size, with external stimulation on the
presynaptic neuron, bt

n,ext = 1.6. The resulting total external field is bt
1 =−1.5. Red dotted lines are generative

parameter values.

Figure 5.9: RMSE of learning rule versus the data size, for three different stimulation regimes. Lines are average
RMSE across experiments, while shaded regions are 95% confidence intervals.

5.4 Single trial experimenting

Before probing the full Bayesian design method, we did extensive preparation in terms of
probing the method on single trial experiments. Firstly, to see to what extent stimulation is
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important on such short recordings. If the performance accuracy is easily distinguishable
for different stimulation protocols also on really short data, we believe that our optimisation
framework in section 3.7 could also identify the optimal protocols, only based on single trial
data. Secondly, an important hyperparameter is the length of the trials, which needs to be
determined, and the behaviour of the algorithm for different trial sizes would be important
to make this choice. We considered trial sizes of 1s, 5s and 10s.

5.4.1 General performance and stimulation

To study the behaviour of our method on single trial level, we simulated 120s of data, which
was divided into disjoint trials of different sizes. The method was then probed on these
disjoint trials, for different strengths of stimulation. In figure 5.10, the performance of the
method in terms of estimating A+ is illustrated for trials sizes of 1s and 5s, and for no stimu-
lation and 100Hz stimulation. Note that the underlying data is identical for the same stimu-
lation, before being subsampled into different trial sizes. The top row shows the mean esti-
mator of A+ on each of the chronologically ordered disjoint trials. Note that in this plot, every
estimation is only from one trial. The error bars correspond to the standard deviation of the
respective posterior distribution, while the bottom row shows the corresponding weight tra-
jectory and postsynaptic spike rate for the data in the course of the entire experiment.

1s trial 5s trial

Figure 5.10: Estimation of A+ as a function of time for disjoint trials. Top row: Estimates of A+ on single trial
experiments as a function of time. Bottom row: postsynaptic spike rates (blue) and weight trajectories (red).
Column 1,3: No stimulation. Column 2,4: 100Hz stimulation. Column 1,2: 1 second trial size. Column 3,4: 5
second trial size.

We observe that even for such small data lengths, the performance seems to be signifi-
cantly improved by applying stimulation. This is promising for the prospect of applying the
Bayesian optimal experimental design. However, notice the variability of performance also
within the same data size and stimulation regime, in particular for the 100Hz experiments.
The performance generally seems to improve from trial to trial as the experiment progresses,
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Figure 5.11: Entropy of the posterior distribution for A+ (left), τ (middle) and [A+,τ] in 2D space (right) as a
function of the RMSE of the estimates for A+ (left), τ (middle) and learning rule (right). Color codes indicate
trial sizes used for the samples.

but at some point, the performance heavily degrades for the last set of trials. From the bot-
tom row we observe that there is low variation of spike rates across the trials, but we see that
the weight strength is increasing, and at some point escalating. Therefore, the accuracy is
assumed to also be heavily dependent on the connectivity strength, which makes us believe
that the optimal stimulation may differ for different connectivity settings. This hypothesis is
explored in section 5.4.2.

From the first column in figure 5.10, it also seems evident that the standard deviation,
and in turn also the posterior entropy, looks smaller when the estimates are closer to the
true value. To study this interesting correlation, inference results from all of the experiments
for the three different trial sizes and two more stimulation regimes which are not showcased
(20Hz and 50Hz), were gathered in figure 5.11. On the x-axis, we have the RMSE of the es-
timated A+ (left), τ (middle) and resulting learning rule (right). The y-axis is the calculated
posterior entropy of A+ (left), τ (middle) and [A+,τ] in the 2D parameter space.

The plots suggest some clear correlation between the entropy of the MCMC samples and
the corresponding error of our estimates. For A+, the correlation looks logarithmic, while for
τ it looks more linear. Together they yield a logarithmic looking correlation on the desired
learning rule. Recall from section 3.7 that our utility function can be written as the negative
expected posterior entropy with respect to the data. Hence, our optimisation aims to min-
imise the posterior entropy. Therefore, these plots also suggest that the optimisation would
in turn minimise the RMSE of our estimates, which is encouraging. Also, we observe that
the lowest entropies and RMSE are obtained from trial sizes of 5 and 10 second trials. To
develop a flexible design algorithm, we would like to have a small trial size, such that the
algorithm can adapt the stimulation more often given the nature of the data. However, this
also increases the computational complexity, since it leads to more trials and we are doing
inference on all the gathered data after every trial.

5.4.2 Optimal stimulation sensitivity to weight strength and generative learning rule

As discussed in the previous section, based on figure 5.10, we think that the optimal stimu-
lation may depend on the underlying weight. In this section, we study to what extent this is
true, and we investigate whether the generative learning rule also affects the optimal stim-
ulation. In figure 5.9, the inference method was applied to single trial data with different
initial values of w t=1, experiments were done for the three different trial sizes and for two
different learning rules. The figures show the mean RMSE of the estimated learning across
experiments with associated 95% confidence intervals.
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A) B)

D)

F)

H)G)

E)

C)

T=1s

T=5s

T=10s

T=5s

Figure 5.12: RMSE of the learning rule on single trial experiments as a function of the initial weight. (A,C,E,G):
A+ = 0.005, τ= 0.02. (B,D,F,H): A+ = 0.005, τ= 0.06. (A,B): 1s trials. (C,D,G,H): 5s trials. (E,F): 10s trials. Color
codes for different stimulation protocols are consistent in all plots. Labels are found in H). Shaded areas are
95% confidence intervals of the mean estimate across 20 experiments.
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We observe that for trial sizes of 1s, the stronger stimulation seems to perform best re-
gardless of the initial weight, for the weight strengths we considered. In plots (C,D) we see
that for 5s trials the stronger stimulation seems to perform best for low weight strengths, but
is then outperformed by both 50Hz and 20Hz for w t=1 > 3. We also see from C) that 20Hz
seems to be the best choice for A+ = 0.005, τ= 0.02, while from D) it seems that 50Hz is the
best choice for A+ = 0.005, τ= 0.06. (G,H) is equal to (C,D), except here the RMSE from data
with stimulation of 250Hz is also added for comparison. From (G,H) we see that the per-
formance of the 250Hz stimulation also shows variability between different learning rules.
(E,F) also support our theory of a dynamic optimum across different underlying parameters.
Interestingly, from the column 2, we also observe that there seems to be a sweet spot around
w t=1 = 3, for which the RMSE is lowest for all the protocols. This also seems to be dependent
on the learning rule, as the same conclusion can not be drawn from column 1, in particular
we observe an opposite behaviour for 250Hz in G).

Based on the performance for different trial sizes and on the discussion in the previous
section, we settled with a trial size of 5 seconds for the Bayesian optimal experimental design.

5.5 Bayesian optimal design

In this section, the developed Bayesian optimal experimental design algorithm from section
3.7 will be explored, analysed and compared to other stimulation protocols. The results are
all obtained from synthetic data.

5.5.1 Main result

Finally, the performance of our full experimental design method will be explored. The op-
timisation was done for two different ranges of stimulation frequencies. The results from
the four different stimulation protocols, which all are simulated according to figure 4.2, are
shown in figure 5.13. The first considered frequency grid was {20,50,100,250}Hz (left plot),
while the second was {10,20,50,100}Hz (right plot). The plots show the average RMSE of the
estimated learning rule across experiments as a function of the number of trials of collected
data. Shaded areas correspond to 95% confidence intervals of the mean RMSE estimator.

Figure 5.13: Average RMSE as a function of trials for different stimulation protocols, across experiments.
Shaded regions correspond to 95% confidence intervals of the mean RMSE. Left: Optimisation on the frequency
grid {20,50,100,250}Hz. Right: Optimisation on the frequency grid {10,20,50,100}Hz.
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In both frequency domains, we observe that the optimised design method outper-
forms the other protocols in the beginning of the experiment. On the frequency space
{10,20,50,100}Hz, the optimal design is superior for the whole experiment. However, on the
{20,50,100,250}Hz frequency space, we see that the performance saturates, and is outper-
formed by the random design for the second half of the experiment. This behaviour will be
further discussed in section 5.5.3. All things considered, we think these results are promis-
ing for this novel framework for studying plasticity. The optimal design algorithm seems to
indeed manage to choose a stimulation at each trial, which leads to better data and better
inference compared to standard protocols.

5.5.2 Mutual information

In addition to testing its performance, we wish to understand how exactly the optimal design
behaves. What frequencies does it choose, and how does it affect the neuron coupling?

Firstly, we study the utility function which is used for optimisation. In figure 5.14, we
have calculated the mutual information for a much finer grid of frequencies, at different tri-
als of the experiment. In the left plot, the results are shown for realisations in trial number
2,3,4 and 5, i.e. in the beginning of the experiment. In the right plot instead, we showcase
trials from the later parts of the experiments, from trial number 7,9,11 and 13. The x-axis
shows increasingly ordered frequencies, while the normalised mutual information is plot-
ted as bars, where different color shadings represent different trials. From the left plot we
observe a clear trend, that the mutual information seems to increase with increased stimu-
lation. However, on the right plot, we see that the mutual information seems to be a lot more
equally distributed. Most of the peeks actually occur for the lowest frequencies. But notice
the values on the y-axis, which indicates that the mutual information only deviates less than
1% across the different frequencies. So it seems that the algorithm does not clearly favour
any of the frequencies for the later parts of the experiment.

Figure 5.14: Normalised mutual information for a fine range of frequencies. X-axis indicates different stimula-
tion frequencies. Colors indicate different trial numbers. Left: Early trials. Right: Late trials.

The same story is being told in figure 5.15. Here we present a heat map of which frequen-
cies were chosen by the Bayesian framework, for the results shown in figure 5.13. We observe
that for both frequency domains, the highest frequency is mostly chosen in the beginning,
although not always. As the experiment progresses, the distribution of chosen frequencies
becomes more uniform. However, we observe that in the last trial, the smallest stimulation
is chosen most often in both grids.
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Figure 5.15: Heat map of chosen frequencies based on the Bayesian optimal design algorithm as a function of
trials. Left: Optimisation on the frequency grid {20,50,100,250}Hz. Right: Optimisation on the frequency grid
{10,20,50,100}Hz.

5.5.3 Weight trajectories

To gain a broader understanding of the performance of the different protocols, we analyse
the weight trajectories of the experiments which yielded our main results in figure 5.13. In
figure 5.16, the average weight trajectories for the four protocols from the 20 experiments are
plotted, with corresponding error shadings being the standard deviation. In figure 5.17 we
have plotted all of the weight trajectories for the two protocols with non-stationary stim-
ulation, the optimal design and the randomised design. The trajectories are of different
transparency, which indicates the inference performance of the individual experiments. Low
transparency is used for experiments with lower RMSE of the estimated learning rule after
all trials of data were collected.

Recall from our parameter setting from section 4.2, that A− = 1.05A+, i.e. our model actu-
ally emphasises synaptic depression over potentiation. In the left columns of figure 5.16 and
5.17, resulting from the frequency space including 250Hz, we observe that the weight trajec-
tories for the optimal design converge to zero. This is due to a combination of our model
being biased towards depression and our optimisation mainly choosing 250Hz for the first
part of the experiment. Our bin size of δ = 2ms means that for a 250Hz firing rate, the in-
terspike intervals will be nearly deterministic and equal for both positive and negative time
delays, which in turn leads to depression of the synaptic weight due to our generative model
choice. Notice from figure 5.13, that the optimal design for this frequency grid actually sat-
urates around halfway through the experiment, which indeed turns out to be approximately
where the synaptic weights become 0 or close to 0. So in practice, when the neurons are
not connected (w = 0), the plasticity parameters θ becomes difficult to infer, as under this
condition, the activity of the postsynaptic neuron is independent of the presynaptic one.

From the right columns of figure 5.16 and 5.17, we have the same plots, but for the grid
with maximum 100Hz frequency. All of these frequencies seem to generally increase the
weight strength. We observe that the trajectories for all of the protocols are pretty similar
and stationary in the beginning of the experiment, although the frequencies might differ a
lot. This is also an assumption we make, recall section 4.3.2, that there is approximately
no learning in the beginning of the experiment. In general, the average weight trajectories
don’t look too dissimilar, and since the optimal distribution of frequencies becomes more
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uniform, the generated weight trajectories seem to be pretty similar to the random ones on
average. Yet, we observed a superior performance by the optimal design in figure 5.13 on the
{10,20,50,100}Hz grid. This again emphasises the importance of choosing the correct stimu-
lation given the exact data and synaptic strength, although the weight trajectories on average
might share similarities. Our algorithm seems to accomplish sophisticated optimisation for
short data recordings.

Figure 5.16: Average weight trajectories for the four different protocols across experiments as a func-
tion of trials. Shadings correspond to one standard deviation. Left: Optimisation on the frequency grid
{20,50,100,250}Hz. Right: Optimisation on the frequency grid {10,20,50,100}Hz.

Figure 5.17: Weight trajectories for optimal (red) and random (yellow) protocols, as a function of trials. Trans-
parency represents inference accuracy, stronger lines yielded better inference. Left: Optimisation on the fre-
quency grid {20,50,100,250}Hz. Right: Optimisation on the frequency grid {10,20,50,100}Hz.
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Discussion

Our developed experimental design framework shows promising preliminary results. In this
section, we will firstly elaborate on some interesting observations of our framework and
discuss its advantages. Secondly, we consider the framework to have a lot of interesting
prospects for the future, with several interesting mathematical possibilities, as well as other
biological applications. Initial thoughts on these future directions will be discussed.

6.1 Observations and advantages

First of all, the Bayesian optimal experimental design seems to lead to significantly better
inference accuracy for small data recordings. The optimised stimulation protocol was com-
pared to three other protocols, being no stimulation, 20Hz constant stimulation and a ran-
domised stimulation. For small data sets, i.e. just a few trials, the optimal design seems
to achieve similar accuracy as the other protocols in approximately half the amount of tri-
als, based on figure 5.13. Another interesting observation is the performance of the random
stimulation. Based on the literature presented in section 2.3, applying a random stimulation
whose frequency changes during the experiment is not a common practice in neuroscience.
However, a randomised frequency and thus a randomly varying spike rate, probably leads
to a bigger variety of sampled spiking delays, which might allow the algorithm to better ex-
plore different features of the parameter space, which is supported by the good performance
displayed in figure 5.13.

This framework is useful, because even though one could argue based on the chosen
frequencies in figure 5.15, that a constant stimulation of 100Hz would be equally good, this
is not something one would know before the experiment in a practical setting. We have
indeed shown in figure 5.9 that for different parameter settings the optimal frequency might
be totally different. This algorithm would be able to detect which stimulation is indeed the
best one for any parameter setting.

Furthermore, being able to significantly decrease the amount of required data, could
open doors to other research questions and ways to study synaptic plasticity. The brain is
a very complicated system, where plasticity can be induced and affected by several different
factors. Examples could be neuromodulators such as dopamine[69], hormons[70], the effect
of drugs[71] or sleep[72]. Such parameters are difficult to account for in a modelling frame-
work, meaning they would instead add noise to the data, making it harder to correctly infer
the plasticity dynamics. Therefore, data sizes on a time scale where the effect of these fac-
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tors can be neglected, could allow for data giving rise to a better understanding of plasticity.
Additionally, it could enable us to measure the impact of different short-term drugs in the
context of plasticity and learning, or study plasticity during sleep.

Furthermore, the method could have an influential impact on addressing ethical and sus-
tainability issues within computational neuroscience research. Research on synaptic plastic-
ity often relies on experiments conducted on living species, where less required experimen-
tal time addresses ethical dilemmas associated with such methods. Also, computationally
expensive data analysis has negative environmental impacts, wherefore our contribution is
also beneficial for sustainability considerations.

6.2 Limitations and prospects

Even though the results are encouraging, we still see possible improvements in the de-
veloped framework. Firstly, the developed algorithm only chooses the optimal stimula-
tion based on solving an optimisation problem for the next trial. In this sense, the algo-
rithm can be considered greedy. This is most evidently reflected for the optimisation on the
{20,50,100,250}Hz frequency grid. The algorithm is choosing a high concentration of 250Hz
stimulation in the beginning, without being able take the long term depression into consid-
eration, which ultimately leads to a weight connectivity of zero and in turn a saturation of the
inference performance. So the 250Hz, which was deemed optimal based on single trials in
the beginning, was probably not the best choice in the long run. However, greedy Bayesian
optimal design methods have still been shown to be superior to classical design methods
under certain consistency conditions[73].

In terms of future applications of this method, we still consider improvements neces-
sary for this to be used in an actual experimental setting. First and foremost, regarding the
computational complexity. Although our discussed optimisation algorithm is well suited for
parallelisation, which would save a lot of computational time, it would still be too slow. This
issue is also discussed in [51], where a variational inference approximation was applied in-
stead of an MCMC method to calculate desired posteriors. This reduces the computations
significantly, which actually could make it feasible for application in a live data collection
setting.

Furthermore, extending the application from just a neuron pair to a bigger network of
neurons could be an exciting prospect. This would cause more computations, which in turn
would demand previously mentioned method improvements. However, this could allow for
explorations of other interesting experimental questions, such as deciding how many and
which neurons should be stimulated to study plasticity on a bigger scale.

We believe, that our study has potential for future applications of big societal impact. In
section 2.4 we introduced Alzheimer’s disease, being a disorder that more and more peo-
ple will suffer from. In an aging society, the number of people affected by dementia world-
wide is estimated to rise from 46 million in 2015 to 131.5 million in 2050[74]. In the long
term, our study may contribute to addressing this imperative health challenge and inform
treatments targeting these memory related diseases, by uncovering dysfunctionalities at the
phenomenological level pointing out dysfunctionalities at the molecular level.



Chapter 7
Conclusion

In this work, synaptic plasticity has been studied by employing a recently developed statis-
tical inference method for uncovering underlying model parameters. Spiking activity was
modelled by a binary Bernoulli GLM, while plasticity was modelled as a Markovian process
dependent on the activity and driven by the desired learning rule function. A particle Markov
Chain Monte Carlo algorithm was implemented to learn plasticity parameters. When ap-
plied to real data, the method proved to have limitations. Long recordings were required
to infer the learning rule parameters with adequate confidence and stimulation regimes
seemed to heavily affect the performance. Motivated by these challenges, we proposed a
Bayesian online experimental design algorithm, which aims to answer the question: what
stimulation protocol should be used to ensure optimal inference results? The algorithm em-
ploys an online approach, where the stimulation is optimised and chosen in parallel to data
collection in order to maximise the expected mutual information between the learning rule
parameters and the data. This approach is, to our knowledge, unprecedented for studying
synaptic plasticity, and on synthetic data, we show that our developed method significantly
improves on other standard stimulation protocols. The algorithm is effective at minimising
the amount of required data for satisfactory parameter reconstruction. This allows for better
circumstances to study synaptic plasticity and might open doors to new research questions
within the field.
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Appendix A
Source code in Python

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import math
4 from tqdm import tqdm
5 from scipy.stats import gamma
6 from scipy.stats import multivariate_normal
7 from scipy.stats import norm
8 from numba import njit
9 @njit

10

11 def learning_rule(s1 ,s2 ,Ap,Am,taup ,taum ,t,i,binsize):
12 ’’’
13 s1 ,s2 : binary values for the different time bins for neuron 1 and 2

respectively , 1:spike , 0:no spike
14 i : current iteration/timebin for the numerical approximation
15 ’’’
16 l = i - np.int(np.ceil (10* taup / binsize))
17 return s2[i-1]*np.sum(s1[max([l,0]):i]*Ap*np.exp((t[max([l,0]):i]-max(t))/

taup)) - s1[i-1]*np.sum(s2[max([l,0]):i]*Am*np.exp((t[max([l,0]):i]-max(t))/
taum))

18

19 def logit(x):
20 return np.log(x/(1-x))
21

22 def inverse_logit(x):
23 return np.exp(x)/(1+np.exp(x))
24

25

26 class SimulatedData ():
27 ’’’
28 Ap , Am , tau : learning rule parameters
29 b1 ,b2 : background noise constants for neuron 1 and neuron 2, determnining

their baseline firing rate
30 w0 : start value for synapse strength between neuron 1 and 2.
31 ’’’
32 def __init__(self ,Ap=0.005 , tau=0.02 , std =0.001 ,b1=-2.0, b2=-2.0, w0=1.0,sec

= 120, binsize = 1/200.0 , freq = 50):
33 self.Ap = Ap
34 self.tau = tau
35 self.std = std
36 self.Am = 1.05* self.Ap
37 self.b1 = b1
38 self.b2 = b2



60

39 self.w0 = w0
40 self.sec = sec
41 self.binsize = binsize
42 self.freq = freq
43

44 def set_Ap(self ,Ap):
45 self.Ap = Ap
46 def set_tau(self ,tau):
47 self.tau = tau
48 def set_std(self ,std):
49 self.std = std
50 def set_b1(self ,b1):
51 self.b1 = b1
52 def set_b2(self ,b2):
53 self.b2 = b2
54 def set_w0(self ,w0):
55 self.w0 = w0
56 def set_sec(self ,sec):
57 self.sec = sec
58 def set_binsize(self ,binsize):
59 self.binsize = binsize
60

61 def get_Ap(self):
62 return self.Ap
63 def get_tau(self):
64 return self.tau
65 def get_std(self):
66 return self.std
67 def get_b1(self):
68 return self.b1
69 def get_b2(self):
70 return self.b2
71 def get_w0(self):
72 return self.w0
73 def get_sec(self):
74 return self.sec
75 def get_binsize(self):
76 return self.binsize
77

78 def create_data(self):
79 iterations = np.int(self.sec/self.binsize)
80 t,W,s1,s2 = np.zeros(iterations),np.zeros(iterations),np.zeros(

iterations),np.zeros(iterations)
81 W[0] = self.w0
82 s1[0] = np.random.binomial(1, inverse_logit(self.b1))
83 for i in range(1, iterations):
84 lr = learning_rule(s1,s2,self.Ap ,self.Am,self.tau ,self.tau ,t,i,self.

binsize)
85 step = W[i-1] + lr + np.random.normal(0,self.std)
86 if step > 0:
87 W[i] = step
88 else:
89 W[i] = 0
90 s2[i] = np.random.binomial(1, inverse_logit(W[i]*s1[i-1]+ self.b2))
91 s1[i] = np.random.binomial(1, inverse_logit(self.b1))
92 t[i] = self.binsize*i
93 self.s1 = s1
94 self.s2 = s2
95 self.t = t
96 self.W = W
97

98 def create_freq_data(self):
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99 iterations = np.int(self.sec/self.binsize)
100 t,W,s1,s2 = np.zeros(iterations),np.zeros(iterations),np.zeros(

iterations),np.zeros(iterations)
101 W[0] = self.w0
102 s1[0] = 1
103 for i in range(1, iterations):
104 lr = learning_rule(s1,s2,self.Ap ,self.Am,self.tau ,self.tau ,t,i,self.

binsize)
105 step = W[i-1] + lr + np.random.normal(0,self.std)
106 if step > 0:
107 W[i] = step
108 else:
109 W[i] = 0
110 s2[i] = np.random.binomial(1, inverse_logit(W[i]*s1[i-1]+ self.b2))
111 s1[i] = [np.random.binomial(1, inverse_logit(self.b1)) ,1][i % int ((1/

self.binsize)/self.freq) == 0]
112 t[i] = self.binsize*i
113 self.s1 = s1
114 self.s2 = s2
115 self.t = t
116 self.W = W
117

118 def get_data(self):
119 return self.s1 ,self.s2,self.t,self.W
120

121

122 class ParameterInference ():
123 ’’’
124 Class for estimating b1 ,b2,w0,Ap,Am,tau from SimulatedData , given data s1 ,s2

.
125 ’’’
126 def __init__(self ,s1 ,s2 ,P = 100, Usim = 100, Ualt = 200,it = 1500, infstd

=0.0001 , N = 2\
127 , shapes_prior = np.array ([4 ,5]), rates_prior = np.array

([50 ,100]),sec =120\
128 ,binsize = 1/200.0 , taufix = 0.02, Afix = 0.005, b1est = -3.1,

b2est = -3.1,w0est = 1):
129 self.s1 = s1
130 self.s2 = s2
131 self.infstd = infstd
132 self.P = P
133 self.Usim = Usim
134 self.Ualt = Ualt
135 self.it = it
136 self.N = N
137 self.shapes_prior = shapes_prior
138 self.rates_prior = rates_prior
139 self.sec = sec
140 self.binsize = binsize
141 self.Afix = Afix
142 self.taufix = taufix
143 self.b1est = b1est
144 self.b2est = b2est
145 self.w0est = w0est
146

147 def get_sec(self):
148 return self.sec
149

150 def set_std(self ,std):
151 self.std = std
152 def set_P(self ,P):
153 self.P = P
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154 def set_s1(self ,s1):
155 self.s1 = s1
156 def set_s2(self ,s2):
157 self.s2 = s2
158 def set_sec(self ,sec):
159 self.sec = sec
160 def set_shapes_prior(self ,shapes_prior):
161 self.shapes_prior = shapes_prior
162 def set_rates_prior(self ,rates_prior):
163 self.rates_prior = rates_prior
164 def set_w0est(self ,w0est):
165 self.w0est=w0est
166 def set_N(self ,N):
167 self.N = N
168

169

170 def b1_estimation(self):
171 self.b1est = logit(np.sum(self.s1)/len(self.s1))
172 return self.b1est
173

174 def normalize(self ,vp):
175 return vp/np.sum(vp)
176

177 def perplexity_func(self ,vp_normalized):
178 h = -np.sum(vp_normalized*np.log(vp_normalized))
179 return np.exp(h)/self.P
180

181 def resampling(self ,vp_normalized ,wp):
182 wp_new = np.copy(wp)
183 indexes = np.linspace(0,self.P-1,self.P)
184 resampling_indexes = np.random.choice(indexes ,self.P,p=vp_normalized)
185 for i in range(self.P):
186 wp_new[i] = np.copy(wp[resampling_indexes.astype(int)[i]])
187 return wp_new
188

189 def likelihood_step(self ,s1prev ,s2next ,wcurr):
190 return inverse_logit(wcurr*s1prev + self.b2est)**( s2next) * (1-

inverse_logit(wcurr*s1prev + self.b2est))**(1- s2next)
191

192 def parameter_priors(self):
193 return np.array ([(np.random.gamma(self.shapes_prior[i],1/self.

rates_prior[i])) for i in range(self.N)])
194

195 def parameter_priors_ns(self ,mean ,cov):
196 return multivariate_normal.rvs(mean ,cov ,1)
197

198 def proposal_step(self ,shapes ,theta):
199 return np.array ([(np.random.gamma(shapes[i],theta[i]/ shapes[i])) for i

in range(self.N)])
200

201 def adjust_variance(self ,theta ,shapes):
202 means = theta[-self.Usim :]. mean (0)
203 var_new = np.array ([0 ,0])
204 u_temp = self.Usim
205 while (any(i == 0 for i in var_new)):
206 var_new = theta[-u_temp :].var(0) *(2.4**2)
207 u_temp += 50
208 if u_temp > self.it:
209 return shapes , np.array ([(np.random.gamma(shapes[i],theta [-1][i

]/ shapes[i])) for i in range(self.N)])
210 new_shapes = np.array ([(( means[i]**2) / var_new[i]) for i in range(self.

N)])
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211 proposal = np.array ([(np.random.gamma(new_shapes[i],theta [-1][i]/
new_shapes[i])) for i in range(self.N)])

212 return new_shapes ,proposal
213

214 def ratio(self ,prob_old ,prob_next ,shapes ,theta_next ,theta_prior):
215 spike_prob_ratio = prob_next / prob_old
216 prior_ratio , proposal_ratio = 1,1
217 for i in range(self.N):
218 prior_ratio *= gamma.pdf(theta_next[i],a=self.shapes_prior[i],scale

=1/ self.rates_prior[i])/\
219 gamma.pdf(theta_prior[i],a=self.shapes_prior[i],scale =1/ self.

rates_prior[i])
220 proposal_ratio *= gamma.pdf(theta_prior[i],a=shapes[i],scale=

theta_next[i]/ shapes[i])/\
221 gamma.pdf(theta_next[i],a=shapes[i],scale=theta_prior[i]/ shapes[i])
222 return spike_prob_ratio * prior_ratio * proposal_ratio
223

224 def ratio_g(self ,prob_old ,prob_next ,shapes ,theta_next ,theta_prior ,mean ,cov):
225 spike_prob_ratio = prob_next / prob_old
226 proposal_ratio = 1
227 prior_ratio = multivariate_normal.pdf(theta_next ,mean ,cov) /

multivariate_normal.pdf(theta_prior ,mean ,cov)
228 for i in range(self.N):
229 proposal_ratio *= gamma.pdf(theta_prior[i],a=shapes[i],scale=

theta_next[i]/ shapes[i])/\
230 gamma.pdf(theta_next[i],a=shapes[i],scale=theta_prior[i]/ shapes[i])
231 return spike_prob_ratio * prior_ratio * proposal_ratio
232

233

234

235 def scaled2_spike_prob(self ,old ,new):
236 return np.exp(old - min(old ,new)),np.exp(new - min(old ,new))
237

238 def b2_w0_estimation(self):
239 ’’’
240 Fisher scoring algorithm
241 Two in parallell , since w0 is estimated with a subset of the data
242 ’’’
243 s1short ,s2short = self.s1[:int((self.sec /10)/(self.binsize))],self.s2[:

int((self.sec /10)/(self.binsize))]
244 beta ,beta2 = np.array ([0 ,0]),np.array ([0 ,0])
245 x,x2 = np.array([np.ones(len(self.s1) -1),self.s1[: -1]]),np.array ([np.

ones(len(s1short) -1),s1short [: -1]])
246 i = 0
247 score ,score2 = np.array ([np.inf ,np.inf]), np.array([np.inf ,np.inf])
248 while(i < 1000 and any(abs(i) > 1e-10 for i in score) and any(abs(j) > 1

e-10 for j in score2)):
249 eta ,eta2 = np.matmul(beta ,x),np.matmul(beta2 ,x2) #linear predictor
250 mu ,mu2 = inverse_logit(eta),inverse_logit(eta2)
251 score ,score2 = np.matmul(x,self.s2[1:] - mu),np.matmul(x2,s2short

[1:] - mu2)
252 hessian_u ,hessian_u2 = mu * (1-mu), mu2 *(1-mu2)
253 hessian ,hessian2 = np.matmul(x*hessian_u ,np.transpose(x)),np.matmul(

x2*hessian_u2 ,np.transpose(x2))
254 delta ,delta2 = np.matmul(np.linalg.inv(hessian),score),np.matmul(np.

linalg.inv(hessian2),score2)
255 beta ,beta2 = beta + delta , beta2 + delta2
256 i += 1
257 self.b2est = beta [0]
258 self.w0est = beta2 [1]
259 return self.b2est ,self.w0est
260
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261

262 def particle_filter(self ,A,tau):
263 ’’’
264 Particle filtering
265 ’’’
266 timesteps = np.int(self.sec/self.binsize)
267 t = np.zeros(timesteps)
268 wp = np.full((self.P,timesteps),np.float(self.w0est))
269 vp = np.ones(self.P)
270 log_posterior = 0
271 for i in range(1, timesteps):
272 v_normalized = self.normalize(vp)
273 perplexity = self.perplexity_func(v_normalized)
274 if perplexity < 0.66:
275 wp = self.resampling(v_normalized ,wp)
276 vp = np.full(self.P,1/ self.P)
277 v_normalized = self.normalize(vp)
278 lr = learning_rule(self.s1,self.s2 ,A,A*1.05 ,tau ,tau ,t,i,self.binsize

)
279 ls = self.likelihood_step(self.s1[i-1],self.s2[i],wp[:,i-1])
280 vp = ls*v_normalized
281 step = wp[:,i-1] + lr + np.random.normal(0,self.infstd ,size = self.P

)
282 step[step <0] = 0
283 wp[:,i] = step
284 t[i] = i*self.binsize
285 log_posterior += np.log(np.sum(vp)/self.P)
286 return wp,t,log_posterior
287

288

289

290 def standardMH(self):#,w0est ,b1,b2):
291 ’’’
292 Monte Carlo sampling with particle filtering , Metropolis Hastings

algorithm
293 ’’’
294 theta_prior = self.parameter_priors ()
295 theta = np.array ([ theta_prior ])
296 shapes = np.copy(self.shapes_prior)
297 _,_,old_log_post = self.particle_filter(theta_prior [0], theta_prior [1])
298 for i in range(1,self.it):
299 if (i % self.Usim == 0):
300 shapes , theta_next = self.adjust_variance(theta ,shapes)
301 else:
302 theta_next = self.proposal_step(shapes ,theta_prior)
303 _,_,new_log_post = self.particle_filter(theta_next [0], theta_next [1])
304 prob_old ,prob_next = self.scaled2_spike_prob(old_log_post ,

new_log_post)
305 r = self.ratio(prob_old ,prob_next ,shapes ,theta_next ,theta_prior)
306 choice = np.int(np.random.choice ([1,0], 1, p=[min(1,r),1-min(1,r)]))
307 theta_choice = [np.copy(theta_prior),np.copy(theta_next)][ choice ==

1]
308 theta = np.vstack ((theta , theta_choice))
309 theta_prior = np.copy(theta_choice)
310 old_log_post = [np.copy(old_log_post),np.copy(new_log_post)][ choice

== 1]
311 return theta
312

313

314 def standardMH_mv(self ,mean ,cov):#,ir):
315 ’’’
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316 Monte Carlo sampling with particle filtering , Metropolis Hastings
algorithm

317 ’’’
318 theta_prior = self.parameter_priors ()
319 #print(’prior:’,theta_prior)
320 theta = np.array ([ theta_prior ])
321 shapes = np.copy(self.shapes_prior)
322 _,_,old_log_post = self.particle_filter(theta_prior [0], theta_prior [1])
323 for i in range(1,self.it):
324 if (i % self.Usim == 0):
325 shapes , theta_next = self.adjust_variance(theta ,shapes)
326 else:
327 theta_next = self.proposal_step(shapes ,theta_prior)
328 _,_,new_log_post = self.particle_filter(theta_next [0], theta_next [1])
329 prob_old ,prob_next = self.scaled2_spike_prob(old_log_post ,

new_log_post)
330 r = self.ratio_g(prob_old ,prob_next ,shapes ,theta_next ,theta_prior ,

mean ,cov)
331 choice = np.int(np.random.choice ([1,0], 1, p=[min(1,r),1-min(1,r)]))
332 theta_choice = [np.copy(theta_prior),np.copy(theta_next)][ choice ==

1]
333 theta = np.vstack ((theta , theta_choice))
334 theta_prior = np.copy(theta_choice)
335 old_log_post = [np.copy(old_log_post),np.copy(new_log_post)][ choice

== 1]
336 return theta
337

338 ### functions for optimal experimental design
339

340

341 class ExperimentDesign ():
342 def __init__(self ,freqs_init=np.array ([20 ,50 ,100 ,200]),maxtime =120, trialsize

=5\
343 ,Ap=0.005 , tau=0.02, genstd =0.0001 ,b1=-3.1, b2=-3.1, w0=1.0,

binsize = 1/500.0 , reals = 20, longinit = 60,s1init = 1,s2init =1,Winit =1,W
=0):

344 self.maxtime = maxtime
345 self.freqs_init = freqs_init
346 self.Ap = Ap
347 self.tau = tau
348 self.genstd = genstd
349 self.trialsize = trialsize
350 self.Am = 1.05* self.Ap
351 self.binsize = binsize
352 self.b1 = b1
353 self.b2 = b2
354 self.w0 = w0
355 self.b2est = b2
356 self.b1est = b1
357 self.w0est = w0
358 self.W = W
359 self.reals = reals
360 self.longinit = longinit
361 self.s1init = s1init
362 self.s2init = s2init
363 self.Winit = Winit
364

365

366 def NormEntropy(self ,sigma):
367 return 0.5 * np.log(np.linalg.det (2*np.pi*np.exp(1)*sigma))
368

369
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370 def datasim(self ,freq ,a,tau ,init ,optim ,l):
371 iterations = [np.int(self.trialsize/self.binsize),np.int(self.longinit/

self.binsize)][l==True]
372 t = np.zeros(iterations)
373 s1 ,s2 ,W = np.zeros(iterations),np.zeros(iterations),np.zeros(iterations)
374 s1[0] = 1
375 if init == True:
376 W[0] = self.w0
377 else:
378 W[0] = self.W[-1]
379 for i in range(1, iterations):
380 lr = learning_rule(s1,s2,a ,1.05*a,tau ,tau ,t,i,self.binsize)
381 step = W[i-1] + lr + np.random.normal(0,self.genstd)
382 if step > 0:
383 W[i] = step
384 else:
385 W[i] = 0
386 s2[i] = np.random.binomial(1, inverse_logit(W[i]*s1[i-1]+ self.b2))
387 s1[i] = [np.random.binomial(1, inverse_logit(self.b1)) ,1][i % int ((1/

self.binsize)/freq) == 0]
388 t[i] = self.binsize*i
389 if optim == False:
390 if init == True:
391 self.s1,self.s2 ,self.W = s1,s2 ,W
392 else:
393 self.s1 = np.hstack ((self.s1,s1))
394 self.s2 = np.hstack ((self.s2,s2))
395 self.W = np.hstack ((self.W,W))
396 else:
397 return s1,s2 ,W
398

399 def datasim_const(self ,a,tau ,init=False ,optim = False ,l = False):
400 iterations = [np.int(self.trialsize/self.binsize),np.int(self.longinit/

self.binsize)][l==True]
401 s1 ,s2 ,W = np.zeros(iterations),np.zeros(iterations),np.zeros(iterations)
402 if init == True:
403 W[0] = self.w0
404 else:
405 W[0] = self.W[-1]
406 t = np.zeros(iterations)
407 for i in range(1, iterations):
408 lr = learning_rule(s1,s2,a ,1.05*a,tau ,tau ,t,i,self.binsize)
409 step = W[i-1] + lr + np.random.normal(0,self.genstd)
410 if step > 0:
411 W[i] = step
412 else:
413 W[i] = 0
414 s2[i] = np.random.binomial(1, inverse_logit(W[i]*s1[i-1]+ self.b2))
415 s1[i] = np.random.binomial(1, inverse_logit(self.b1))
416 t[i] = self.binsize*i
417 if optim == False:
418 if init == True:
419 self.s1,self.s2 ,self.W = s1,s2 ,W
420 else:
421 self.s1 = np.hstack ((self.s1,s1))
422 self.s2 = np.hstack ((self.s2,s2))
423 self.W = np.hstack ((self.W,W))
424 else:
425 return s1,s2 ,W
426

427

428 def adjust_proposal(self ,means ,sample):
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429 new_shapes = np.array ([(( means[i]**2) / np.var(sample [300: ,i])) for i in
range (2)])

430 new_rates = np.array ([(( new_shapes[i]) / means[i]) for i in range (2)])
431 return new_shapes ,new_rates
432

433 def freq_optimiser(self ,means ,cov ,init ,optim ,l,inference):
434 entropies = []
435 for j in range(len(self.freqs_init)):
436 entropies_temp = []
437 for k in range(self.reals):
438 s1temp ,s2temp ,_ = self.datasim(self.freqs_init[j],means[0], means

[1],init = init , optim = optim ,l = l)
439 inference.set_s1(s1temp)
440 inference.set_s2(s2temp)
441 sample_temp = inference.standardMH_mv(means ,cov)
442 cov_temp = np.cov(np.transpose(sample_temp [300: ,:]))
443 entropies_temp.append(self.NormEntropy(cov_temp))
444 entropies_temp_clean = [x for x in entropies_temp if math.isnan(x)

== False]
445 entropies.append(np.mean(entropies_temp_clean))
446 return self.freqs_init[np.where(entropies == np.amin(entropies))[0][0]] ,

entropies
447

448 def onlineDesign_wh(self ,nofreq = False , constant = False , random = False ,
optimised = True):

449 freq_const = self.freqs_init [0]
450 optimal_freqs = []
451 trials = np.int(self.maxtime / self.trialsize)
452 init = False
453 self.s1 = self.s1init
454 self.s2 = self.s2init
455 self.W = self.Winit
456 #self.datasim(freq_const ,self.Ap,self.tau ,init = init , optim = False ,l=

False)
457 inference_whole = ParameterInference(self.s1 ,self.s2,P = 50, Usim = 100,

Ualt = 200,it = 1500, infstd =0.0001 , N = 2\
458 , shapes_prior = np.array ([4 ,5]),

rates_prior = np.array ([50 ,100]),sec=self.trialsize\
459 ,binsize = 1/500.0 , taufix = 0.02,

Afix = 0.005)
460

461 sample = inference_whole.standardMH ()
462 posts = [sample]
463 means , cov = [np.mean(sample [300: ,0]),np.mean(sample [300: ,1])], np.cov(

np.transpose(sample [300: ,:]))
464 ests , entrs = np.array ([means]), np.array ([self.NormEntropy(cov)])
465 new_shapes , new_rates = self.adjust_proposal(means ,sample)
466 if optimised == True:
467 inference_optim = ParameterInference (1,1,P = 50, Usim = 100, Ualt =

200,it = 1500, infstd =0.0001 , N = 2\
468 , shapes_prior = new_shapes ,

rates_prior = new_rates ,sec=self.trialsize\
469 ,binsize = 1/500.0 , taufix =

0.02, Afix = 0.005)
470 mutinfs = []
471 for i in range(trials):
472 if optimised == True:
473 inference_optim.set_w0est(self.W[-1])
474 opts_temp ,mutinfs_temp = self.freq_optimiser(means ,cov ,init =

init , optim = True ,l=False ,inference = inference_optim)
475 optimal_freqs.append(opts_temp)
476 mutinfs.append(mutinfs_temp)
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477 self.datasim(optimal_freqs [-1],self.Ap ,self.tau ,init=init ,optim
= False ,l=False)

478 elif random == True:
479 freq_temp = np.random.choice(self.freqs_init)
480 self.datasim(freq_temp ,self.Ap,self.tau ,init=init ,optim = False ,

l=False)
481 elif constant == True:
482 self.datasim(freq_const ,self.Ap,self.tau ,init=init ,optim = False

,l=False)
483 elif nofreq == True:
484 self.datasim_const(self.Ap,self.tau ,init=init ,optim = False ,l=

False)
485 inference_whole.set_s1(self.s1)
486 inference_whole.set_s2(self.s2)
487 inference_whole.set_sec(np.int(len(self.s1)*self.binsize))
488 sample = inference_whole.standardMH ()
489 posts.append(sample)
490 means = [np.mean(sample [300: ,0]),np.mean(sample [300: ,1])]
491 cov = np.cov(np.transpose(sample [300: ,:]))
492 ests = np.vstack ((ests , means))
493 entrs = np.vstack ((entrs ,self.NormEntropy(cov)))
494 new_shapes , new_rates = self.adjust_proposal(means ,sample)
495 if optimised == True:
496 inference_optim.set_shapes_prior(new_shapes)
497 inference_optim.set_rates_prior(new_rates)
498 if optimised == True:
499 return ests ,entrs ,optimal_freqs ,mutinfs ,self.W,posts
500 else:
501 return ests ,entrs ,self.W,posts

Listing A.1: Python implementation with all the functions being applied for both inference and Bayesian
optimal design
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Abstract

Recently a statistical inference method has been introduced to learn the spike timing
dependent plasticity (STDP) rule from spike train data. In this paper we observe
that when applied to real data, this method requires long recordings to estimate
the learning rule with adequate confidence. This challenges its applicability in
experiments. Efficiency improves in the presence of stimulation, providing a stable
reconstruction of STDP parameters with fewer data. Although several stimulation
protocols exist for inducing plasticity, it is not clear whether any of them are
optimal for inferring the learning rule. We, therefore, propose a Bayesian active
learning procedure, which adaptively tunes the stimulus during the experiment to
maximise the expected mutual information between the data to be collected and the
STDP rule parameters. On synthetic data we show that Bayesian active learning
can recover the underlying learning rule with roughly half of the data compared
to standard stimulation protocols. Our method is useful whenever it is crucial to
optimise resources, either for computational reasons or for probing the system
within a time frame where it can be considered stationary, e.g. at shorter time
scales than those at which neuromodulators or homeostatic plasticity operate.

1 Introduction

Synaptic plasticity is arguably one of the most fascinating properties of the brain, which is thought to
underlie our ability to change as a result of experience [1, 2]. The Canadian psychologist Donald Hebb
[3] postulated that perceptual experiences drive plasticity by impinging on single synapses through
the correlated activity of pre- and postsynaptic neurons. Several decades of research have revealed
that activity-dependent changes in synaptic strength are a widespread phenomenon in the brain, and
that they are expressed at both excitatory and inhibitory synapses [4]. Dual pairing experiments
in the 90s uncovered a tight contingency time window and a role of the temporal ordering of the
activity of the two neurons in order for a synaptic modification to occur [5, 6], now termed spike
timing-dependent plasticity (STDP). STDP has been reported in a variety of brain regions [7], both
in-vivo in animal models [8] and in human brain slices [9], although the temporal dependence of the
synaptic modification on the pre-post synaptic delay varies greatly between different preparations
[10]. Statistical tools capable of inferring the STDP rule from spike train recordings from limited
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data would allow neuroscientists to systematically probe plasticity in the brain, study metaplasticity
(effect of neuromodulators and homeostatic plasticity), investigate the effects of disease on synaptic
plasticity, and potentially inform brain-machine interface based paradigms for neural rehabilitation
[11].

Recently, a Bayesian statistical inference framework [12] has been proposed to infer the STDP
learning rule from spike train data. In this framework the generative model consists of a dynamical
system obeying the STDP learning rule for the synaptic weights embedded in a generalised linear
model (GLM) [13] for the postsynaptic neuron activity. Full Bayesian learning is approximated using
particle filtering methods to integrate out the latent synaptic weight trajectory. The authors [12]
show anecdotal good performances of the algorithm on synthetic data generated from the biophysical
simulator NEURON.

The first contribution of this paper consists of illustrating that the aforementioned method [12] requires
long recordings to achieve sufficient confidence on the estimated STDP parameters, when applied to
extracellular-juxtacellular recordings from the hippocampus in the absence of external stimulation.
Notably, on synthetic data we show that efficiency can be substantially improved by stimulating
the presynaptic neuron, providing stable reconstruction of the learning rule. Electrophysiological
stimulation has played a long-standing role in studying synaptic plasticity, starting from the seminal
work of Bliss and Lømo [14], in which high-frequency stimulation (frequency: 100Hz, duration:
1-5s) of afferent fibers was employed to induce long-term potentiation of the synapses. Over the years,
many diverse stimulation protocols have been developed that appear efficient at eliciting plasticity and
that are more similar to the physiological features of neural activity than the classical approach [15].
Yet, whether the existing protocols are relevant for inferring the learning rule is an open question
[16].

The second and main contribution of this paper consists of a Bayesian active learning procedure,
providing a formal solution to the optimisation problem: what is the stimulus that ensures optimal
reconstruction of the learning rule? Building on the inference framework proposed in [12], we propose
a stimulation protocol which maximises the mutual information between the data to be collected in
the next experimental trial and the learning rule parameters, given the accumulated knowledge about
the system. In section 4.3, we demonstrate that such an adaptive procedure significantly improves the
reconstruction of the STDP parameters over standard stimulation protocols on synthetic data.

1.1 Related work

Although closed-loop electrophysiological stimulation is an emerging field in neuroscience [17],
to our knowledge, no Bayesian active learning protocol to estimate the STDP rule exists so far.
Bayesian adaptive learning algorithms have been designed for addressing the neural coding problem
by actively selecting the stimulus to best characterise tuning curves [18]. Within the synaptic plasticity
community few efforts have been made to devise stimulation paradigms that induce plasticity, rather
than trying to infer the learning rule [19].

2 The model

Inspired by the work of Linderman, et al. [12] we choose a GLM as a neural spiking model,
with non-stationary synaptic weights obeying the classical STDP learning rule. The corresponding
recurrent probabilistic graphical model for two neurons and one synapse is drawn in Figure 1C. Such
a generative model is then used to infer the learning rule as explained in section 3.

2.1 GLM spiking framework

We bin our time domain into T bins denoted by indices t ∈ {1, ..., T}. Furthermore, we define the
spike trains s1:Ti for neuron i. The trajectory for the non-stationary directed synaptic connection
between neurons i and j is defined as w1:T

ij . Spiking events are modelled with a Bernoulli GLM,
hence sti ∈ {0, 1}, where sti = 1 denotes a spike of neuron i in time bin t. This leads to the full
spiking model, where the conditional spiking probability for neuron n in time bin t + 1, λt+1

n is

2
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Figure 1: Spiking and STDP model. A): Monodirectionally connected neuron pair with non-stationary
synaptic weight wt. B): STDP learning rules with paramaters θ1 = {0.0075, 0.0079, 0.02, 0.02} and
θ2 = {0.0050, 0.0053, 0.04, 0.04}. C): Probabilistic graphical representation of the full Bayesian
hierarchical model.

defined as

λt+1
n = g

(
bt+1
n +

M∑

m=1,m6=n
wtmns

t
m

)
(1)

for a network ofM neurons. The time-dependent external field btn is the sum of a stationary parameter
bn setting the baseline firing rate of the neuron and a non-stationary one, which represents the external
stimulation. In this work, we will study a simplified network only consisting of two neurons and a
monodirectional synapse as in Figure 1A).

2.2 STDP model

The non-stationary synaptic connectivity w is assumed to follow a Markov process, dependent
on the observed interspike intervals and a set of parameters, θ = {A+, A−, τ+, τ−}. The weight
connectivity evolves according to the density

wt ∼ N
(
wt−1 + l(s1:t−11 , s1:t−12 , θ), σ

)
. (2)

where l is the classical additive STDP learning rule, depicted in Figure 1B

l(s1:t1 , s1:t2 , θ) = l+(s1:t1 , s1:t2 , A+, τ+)− l−(s1:t1 , s1:t2 , A−, τ−),

l+(s1:t1 , s1:t2 , A+, τ+) = st2

t∑

t′=γt

st
′
1A+ exp

( t′ − t
τ+

)
,

l−(s1:t1 , s1:t2 , A−, τ−) = st1

t∑

t′=γt

st
′
2A− exp

( t′ − t
τ−

)
.

(3)

Here γt denotes the first time bin of previous history to be considered. For computational reasons, we
chose to set γt = t− 10τ+, which is more biologically plausible than having the synapse tracking a
longer spike history and has a negligible impact on the weight trajectory.

3
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3 Inference

For studying synaptic plasticity using the model introduced in section 2, our goal is to recover the
underlying STDP parameters θ from the observed spike train data through the latent process for the
synaptic weight. The inference framework heavily inspired by [12] and described in section 3.1, gets
tested on real and synthetic data, as explained in section 3.2.

3.1 Method

In order to infer the plasticity parameters θ, we combine a Metropolis Hastings algorithm with
particle filtering [20] to obtain posterior distributions and estimators in Bayesian fashion. Particle
filtering targets the posterior of the weight trajectories P (w1:T |s1:T1 , s1:T2 , θ) at fixed learning rule
parameters. Particle filtering is suitable here due to the time-recursive properties of the posterior.
Averaging over the sampled weight trajectories then provides an estimate of the likelihood function
P (s1:T1 , s1:T2 |θ), which is employed by the Metropolis Hastings algorithm to approximate the desired
posterior P (θ|s1:T1 , s1:T2 ).

The choice of proposal distribution is important for the performance of Metropolis Hastings, for
which we are using Gamma distributions centered at the current θ sample, ensuring that the parameter
space for θ consists of only non-negative values. For the proposal distribution, we also employ an
adaptive variance approach, as discussed in [21]. Details regarding the inference algorithm, data
simulation as well as specific choices we make in our experiments are presented in the Supplementary
Material.

Stationary parameters

In a fully Bayesian approach, one would average over the stationary GLM parameters b2 and wt=1

to estimate the likelihood function P (s1:T1 , s1:T2 |θ). We experience that a hybrid approach, where
the stationary parameters are estimated first and then kept fixed during the inference of the posterior
P (θ|s1:T1 , s1:T2 ), as described in the previous section, does not significantly affect the results (not
shown here). In our inferences b2 and wt=1 are thus learned by maximum likelihood employing the
Fisher Scoring Algorithm on a subset of the data from the start of the experiment/simulations. Only
for this purpose we assume w to be stationary, so no learning.

3.2 Results on real and simulated data

We tested the proposed inference framework on electrophysiological data from CA1 [22] during
stimulation and no stimulation periods. Some examples of posteriors for the learning rule parameter
A+ are displayed in Figure 2. From Figure 2A)-D) it can be appreciated that parameter estimation
in the presence of stimulation is both more stable across different datasets and posteriors are more
peaked, which speaks of our confidence in the estimates. Performances are degraded in the 20s
datasets when compared to the 100s datasets, and yet the variability between experiments with
stimulation is lower, see Figure 2E)-H).

These results suggested that inference of the learning rule parameters might benefit from the presence
of an external stimulus driving the activity of the presynaptic neuron. We therefore turned to synthetic
data to validate this hypothesis and compare inferences in the absence of stimulus, with stimulation
protocols in which the presynaptic neuron is triggered at a fixed constant frequency. Figure 3A)
shows that stimulation can significantly improve data quality, with the 100Hz protocol systematically
outperforming the “no stimulation” and the 250Hz ones. On the contrary, the 250Hz protocol is not
always superior to the ”no stimulation“ one, indicating that the stimulation frequency might require
fine tuning. The optimal stimulation frequency indeed depends on a number of factors like synaptic
strength and ground-truth learning rule parameters (see Supplementary Material). We therefore
moved on to designing a procedure that selects the optimal stimulation frequency in the course of the
experiment, as explained in section 4.

4 Bayesian active learning

The main goal of this work is to develop optimal stimuli paradigms in order to achieve satisfactory
inference with minimal data required. Such a paradigm will have to exploit the increase in data

4
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Figure 2: Sample posteriors of STDP parameter A+ from real data. A)-D): Inference on datasets of
100 seconds. E)-H): Inference on datasets of 20 seconds. A),C),E),G): datasets with repeated 50ms
juxtacellular stimulation intervals. B),D),F),H): datasets with no stimulation. Dashed lines delimit
95% credible intervals. Solid green lines were obtained by Gaussian kernel density estimation on the
sample posteriors.

quality given by stimulation, by adaptively choosing the stimulus frequency in the course of the
experiment. The Bayesian optimal design of experiments framework [23] lends itself for such an
active learning approach since it optimises the design, as data gets accumulated by updating our
beliefs on the system of interest. This section introduces the theory and methods for the Bayesian
active learning procedure and then presents validation on synthetic data.

4.1 Utility function for optimisation

In the Bayesian optimal design framework, given some sample to be yet collected, Y ∈ Y and
model parameters θ ∈ S , one seeks for the design X ∈ X which maximises the expectancy of some
appropriate utility function, u(Y, θ,X)

X∗ = argmax
X∈X

EY |X [u(Y, θ,X)]. (4)

To infer the learning rule parameters θ, our choice for the utility function is the mutual information
between the parameters and the data. Furthermore, we adopt an online approach for the experimental
design, which under some conditions is guaranteed to improve over random iid selection of the
stimulus [24]. That is, as depicted in Figure 3C), we are alternatingly simulating a subset of data
and optimising the experiment for the next subset. These subsets are referred to as trials. The time
domain is being split into smaller equal sized trials, and between every trial we aim to optimise the
design X for the next trial subject to our chosen utility function. By design, for our experiment we
specifically mean applying a fixed frequency stimulation on the presynaptic neuron during a whole
trial.

Let Dn = {sn1 , sn2} be the data to be collected in trial n, being the observed spike trains. Suppose
Xn is an experimental design for trial n, then we can express our utility function as

I(θ,Dn|Xn,Dn−1) =
∑

Dn

∫
P (θ,Dn|Xn,Dn−1)ln

( P (θ,Dn|Xn,Dn−1)

P (θ|Xn,Dn−1)P (Dn|Xn,Dn−1)

)
dθ.

(5)
Notice that the mutual information in Eq. (5) can be rewritten as

I(θ,Dn|Xn,Dn−1) = −
∑

Dn

P (Dn|Xn, Dn−1) ·H(θ|Dn, Xn,Dn−1) + const, (6)
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where the last term is independent of the experimental design Xn.

The expected utility function is therefore maximised when the posterior entropy of θ is minimised
with respect to the data Dn. The entropy of the posterior does indeed well correlate with the accuracy
of the estimation even for small data sizes, as illustrated in Figure 3B.

4.2 Estimating the objective function

As explained in section 3, our inference procedure provides us with an empirical posterior for θ which
can be approximated by a multivariate Gaussian

P (θ|Dn, Xn,Dn−1) ≈ N (µ,Σ), (7)

where µ and Σ are the mean and the covariance matrix of the MCMC sample. This approximation in
turn yields an estimate for the desired entropy H(θ|Dn, Xn,Dn−1) in Eq. (6).

Furthermore, by drawing N samples in the spike train space according to P (Dn|Xn, Dn−1), our
utility function can be approximated by importance sampling

I(θ,Dn|Xn,Dn−1) ≈ − 1

N

N∑

j=1

H(θ|Dn(j), Xn,Dn−1), (8)

where j labels the realisation from the spike train space.

To be able to search for an optimal design in the frequency space X , but still keep the computational
cost at a reasonable level, we employ a grid search in the frequency domain. We assume, that the
provided stimulation is strong enough to deterministically trigger the presynaptic neuron. After every
trial, the stimulation frequency which maximises the utility function (8), will be the chosen stimulus
for generating the next chunk of data.

4.3 Evaluation on simulated data

We tested the performances of the Bayesian active learning procedure in comparison to other standard
stimulation protocols on simulated data generated using the spiking and learning rule models,
described in section 2. We devised the experiment illustrated in Figure 3C), as composed of 5s
trials after which the spike data accumulated up to that time point is used to infer the posterior over
the learning rule parameters for each of the stimulation protocols. The mean of such posterior is
then used as an estimator for the underlying STDP parameters, while performance is evaluated as
the euclidean distance between the generative and estimated learning rule curves, see Figure 1B).
After each trial, the posterior of the learning rule parameters is also employed by the Bayesian active
learning procedure to optimise the stimulation frequency in the upcoming trial. Notice that Dale’s
law is enforced to the weight trajectories preventing them from changing sign.

Results of experiments with optimisation and random frequency selection in the frequency range
{20, 50, 100, 250}Hz are displayed in Figure 4A)-C), while Figure 4D)-F) shows results for the
frequency range {10, 20, 50, 100}Hz. Interestingly the Bayesian active learning procedure leads to
depression of the synaptic weight in the frequency range {20, 50, 100, 250}Hz, Figure 4A). Such a
strategy reflects our specific choice for the generative learning rule parameters (see Supplementary
Material), where depression is favoured over potentiation. Specifically, we hypothesise that the
optimal design chooses to probe pre-post synaptic delays for which the learning rule is the steepest.

Performances of the different protocols are visualised in Figure 4C) and 4F). As expected from the
inference results on real and simulated data, Figures 2-3 all stimulation protocols outperform the "no
stimulation" one, with the Bayesian active learning improving over the latter of one order of magnitude
in the course of the experiment. The random frequency achieves good performances, comparable
with the Bayesian active learning of the protocol only in the late phases of the experiment. This can
be explained by looking at the frequencies chosen by the Bayesian active learning stimulation, Figure
4B),E). If at the start of the experiment, the optimal design privileges the highest frequency, towards
the end of the experiment the distribution of chosen frequencies is more uniform. Remarkably this
trend seems to be independent of the generative synaptic weight trajectory, compare Figure 4A),D).
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Figure 3: Stimulation on synthetic data. A): RMSE of the STDP learning rule on synthetic data as a
function of the datasize for different stimulation protocols. Solid lines correspond to RMSE means
across 20 datasets, while shaded regions to 95% confidence intervals. B): Entropy of the posterior in
the STDP parameters space vs RMSE of the estimated learning rule for different trial durations. C):
Experimental setting and inference for the considered stimulation protocols. The Bayesian active
learning procedure optimises the stimulus for the next trial based on the inference of the STDP
parameters from the history of spike trains.

5 Limitations

Our framework adopts phenomenological models for the learning rule and spiking process. The
latter assumes a fixed time kernel for the integration of the presynaptic input. The model does not
account for burstiness or fatigue, while the refractory period is enforced through the time bin size
choice. Extending our model in these directions is straightforward, however, accurate inference of
these additional parameters in practice might require longer recordings or parameter sharing across
neurons.

A more principled approach to model misspecification within our framework would be to place a
prior distribution over hyperparameters so that the objective function incorporates model uncertainty
[25].

A potential limitation of the protocol that we have introduced is that it is “greedy”: it chooses the
stimulus that maximises the objective function at each trial. The greedy approach may be sub-optimal
compared to strategies that select stimuli based on the objective function over some finite number
of trials in the future. For example, in our experiments, we observe that when the Bayesian active
learning procedure selects the 250Hz stimulation, best performances are achieved in the short run,
while accuracy saturates in the long run due to depression of the synaptic weight, see Figure 4.
Unfortunately computational complexity of the optimisation over multiple trials into the future makes
this a challenging problem to undertake. On the bright side, a technical result [24] shows that
greedy Bayesian active learning methods are still provably better than standard methods under certain
consistency conditions.
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D) E) F)

Figure 4: Bayesian active learning performances. A)-C): Stimulus optimisation in the frequency inter-
val [20Hz, 250Hz]. D)-F): Stimulus optimisation in the frequency interval [10Hz, 100Hz]. A),D):
Synaptic weight trajectories induced by the Bayesian active learning protocol. Higher transparency
reflects lower RMSE of the learning rule after trial 13. B),E): Frequency heat maps showing the
fraction of experiments in which the different frequencies were chosen at each trial. C),F): RMSE of
the learning rule versus the number of trials into the experiment for different stimulation protocols.
Solid lines indicate RMSE averages over 20 independent experiments, while the shaded regions
correspond to 95% confidence intervals.

Another limitation of the method is the computational complexity of the MCMC inference procedure.
At every optimisation step (after each trial in our experiment) for every frequency considered, one
has run the inference algorithm explained in section 3 N times (see eq.(6)). Our simulations were
performed on a CPU, and there we estimate the time consumption for one optimisation step of around
1,5 hours per frequency when N = 15. Note that the algorithm is parallelisable over the N samples
per frequency, parallelisation which would shorten the required running time significantly.

6 Discussion

Motivated by the technological advancements paving the way for closed-loop neuroscience, we have
devised a Bayesian active learning algorithm to optimally infer the STDP learning rule, building
on the inference framework introduced in [12]. Our initial results suggest that our paradigm boosts
the efficiency of the inference and outperforms standard stimulation protocols. This work also
indicates that the randomised stimulation protocol, despite being sub-optimal, improves over constant
frequency stimulation on synthetic data, a result which may inform experimental settings. Beyond
the proposed and considered protocols in this paper, the Bayesian inference approach we developed
from [12] is suitable for enforcing a stopping criterion to the experiment based on the entropy of the
posterior. The latter, as we have shown in Figure 3B), indeed correlates well with the RMSE of the
learning rule parameters.

In the future, in addition to the model augmentation mentioned in section 5, we plan to improve
the proposed optimisation protocol by increasing its computational efficiency to make it suited for
inference on populations of neurons. For this purpose, resource optimisation can be achieved by
Bayesian active learning procedures which select the neuron pair to be stimulated [26], while keeping
the computational complexity under control via, for example, variational Bayes approximations.

Another avenue for research would be to try to make the algorithm less “greedy”. A straightforward
attempt in this direction, inspired by the results plotted in Figure 4, would imply a small addition to
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the proposed objective function (mutual information), namely a regulariser penalising stimulation
frequencies which in the long run lead to small synaptic weights.

Adoption of our stimulation paradigm by experimental labs will help towards being able to system-
atically probe the learning rule across brain regions and neuron types. It is known that there are a
number of factors that influence STDP induction, such as neuromodulation [25] and homeostasis
[26], however, including these factors into a model would make inference difficult or impossible.
This framework should allow to identify the learning rule at shorter time scales than those at which
metaplasticity operates and further enable the study of the influence of these factors. Indirectly this
framework could also inform bio-inspired neural networks [27] through discoveries on the functional
organisation of STDP in the brain and its role in computation, prompting architecture and learning in
this relatively novel paradigm in neural computation.

The paradigm for resource optimisation that we propose in this paper conforms well to the ethical
guidelines of NeuroIPS. It contributes to reducing the environmental impact of basic research on
synaptic plasticity by limiting computational resources and leveraging high density recordings, as
opposed to single cell intracellular ones.
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