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Abstract—When aiming for optimal control of interior permanent
magnet synchronous motors, a challenge is to develop accurate
magnetic models describing the relation between the applied
currents and the resulting flux linkages in the machine. A
linear relation between the currents and the flux linkages is
often assumed. However, because of magnetic saturation and
cross-coupling phenomena, the motor magnetics are non-linear.
In this thesis, to model the non-linear magnetic phenomena,
several formulas differing in complexity and form are proposed
and compared. The formulas are developed by coefficients curve
fitted to calculated data from a FE model of a commercial
motor developed in this thesis. At full load and when operating
with maximum torque per ampere, the deviations from the FE
computed q-axis flux linkage to the modeled one was 17.85%,
when assuming linear magnetics. However, the deviation between
the FE calculated and model estimated q-axis flux linkage was
only 0.88% for the same operating point, when curve fitting one
of the polynomial formulas to a wide range of FE measured
operating points. When curve fitting the same polynomial
formula to only 9 FE measurement points, the deviation only
increased to 3.00% for the same operating point, proving the
possibility of rapid development of accurate magnetic models
for new undescribed motors during start-up.

Using one of the developed polynomial magnetic models when
calculating the current references to achieve maximum torque
per ampere, the torque obtained at full load only increased
by 0.04% compared to when using the linear magnetic model.
However, for higher stator currents, the relative increase in
torque got larger compared to the linear model. In addition,
the deviation from the analytically calculated torque to the FE
calculated torque was assessed. At full load, the deviation was
6.35% when assuming linear magnetics, but it was reduced to
2.89% when using a polynomial magnetic model. Finally, it was
argued that the accuracy of the analytical torque equation could
be improved by being extended to take into account the spatial
harmonics of the magnetic flux density in the air gap.

The magnetic models presented and the related torque
evaluations were to be verified at the lab during this thesis.
However, the commissioning of the interior permanent magnet
synchronous motor is still ongoing by the research group, such
that the conclusions made from this thesis would have to be
verified experimentally at a later stage.

Fig. 1: Magnetic flux density in the FE model of the IPMSM
at full load and pure q-axis current.

I. INTRODUCTION

Interior Permanent Magnet Synchronous Motors (IPMSM)
are growing in the market due to their high torque density
and efficiency [1]. Compared to surface-mounted Permanent
Magnet Synchronous Machines (PMSM), the IPMSM can
achieve higher rotational speeds, as the permanent magnets
are protected and contained within the rotor iron [2]. However,
the high reluctance of the permanent magnet material, located
in the direct axis, will result in unequally distributed magnetic
flux density in the rotor. This also results in a different
non-linear magnetic behavior in both axes and a more
complex magnetic cross-coupling between the direct (d) and
quadrature (q) axes [3].

In order to achieve robust control ensuring accurate Maximum
Torque Per Ampere (MTPA) and high performance in the
field weakening region, the non-linear magnetic phenomena
need to be taken into account [4]. In sensorless synchronous

1



motor drives, the control system also has to integrate the
non-linearities in order to get the back-EMF observers to
calculate the induce voltage accurately enough [5] [6]. Thus,
a magnetic model of the motor, meaning the estimated
relation between the flux linkages and the stator currents in
the machine, has to be developed.

The flux linkages in the motor in relation to the applied
currents can be analyzed using Finite Element (FE) modeling
or by lab investigation. When mapping the relation by FE
analysis [7] [8] [9], knowledge about the motor geometry
and material properties is required. Experimentally, the flux
linkages can be calculated when measuring the resistance,
currents and induced back EMFs while either 1) accelerating
and decelerating the motor spinning freely and calculate the
flux linkages by the dynamic voltage equation [10], 2) rotating
the motor at constant speed by another speed-controlled drive
and calculate the flux linkages by the steady-state induced
voltage equation [11] [12], 3) injecting voltages to the motor
at standstill and calculating the flux linkages by integrating
the applied voltage subtracted by the resistive voltage drop
[13] [14].

When having mapped the flux linkages to the applied currents,
a magnetic model representing the interconnection can be
developed in the control scheme by either look-up tables [9]
[15] or by defining explicit formulas based on the measured
data [4] [8] [16] [17].

This thesis aims to study the motor magnetics by FE analysis
using COMSOL Multiphysics, based on the geometry of
a commercial IPMSM. The resulting flux linkages due to
the applied stator currents in the FE model are mapped
under operation conditions providing magnetic saturation and
cross-coupling. In order to represent these phenomena in the
control system of the electric drive, magnetic models with
explicit formulas will be developed. The linear magnetic
model is to be compared to formulas consisting of coefficients
that are to be curve fitted by the linear least square method
to the FE calculated data points. The formulas presented are
combinations of pre-described formulas from the literature and
empirically developed polynomial formulas. The performance
of the explicit formulas is evaluated based on their simplicity,
their fulfillment of the reciprocity condition, and their ability
to model the magnetic saturation and cross-coupling in the
motor accurately. The formulas’ ability to predict the flux
linkages outside of the original curve fitting area, will also
be studied, as well as their curve fitting performance for few
measurement points.

Based on the linear magnetic model and the best polynomial
model, the MTPA trajectories in the regions of high saturation
and cross-coupling will be developed. The proposed stator
currents providing MTPA for both magnetic models will be

simulated in COMSOL. The potential benefit of more torque
per ampere when deriving the MTPA trajectories using the
best polynomial formulas compared to the linear magnetic
model is to be demonstrated. Finally, the torque calculated
using the analytical torque equation will be compared to the
FE calculated torque using Arkkio’s method.

The thesis will thus give an extended understanding of
how afflicted the IPMSM is to magnetic saturation and
cross-coupling and how these phenomena can be modeled
in the control system of the drive. In addition, the thesis
is expected to demonstrate how the inclusion of detailed
magnetic models is negligible when aiming to improve the
MTPA. Suggestions to further improve the motor control will
be given as well, based on the analysis of the torque equation.

II. THEORY

In this section, the rotor oriented two phase per unit model
of the IPMSM will be presented, to clarify how the magnetic
modeling can be included in the motor model and thus the
control system itself. Furthermore, a short introduction to
the most common motor control strategies will be presented,
to highlight how the magnetic modeling might improve the
control of the IPMSM.

A. Per unit motor model

1) Model description: The per unit model is used to convert
the measured SI-units from COMSOL into per unit values
which can be interpreted by the control system. An advantage
using per unit models, is that it is simple to detect if the
motor is in an overloaded operating condition or not. In
addition, experience from one motor drive can be easily
transferred to another, as the variables and parameters in per
unit values differ vaguely from motor to motor. The IPMSM
electrical equivalent per unit model is given in the rotor
reference frame, also called d- and q-axis reference frame,
and common assumptions for the model are: [18]

1) Magnetic saturation and cross-coupling in the machine
can be neglected.

2) The windings generate a sinusoidal distributed B-field
in the air gap, meaning spatial harmonics are neglected
[15].

3) The windings are symmetrical and the physically dis-
tributed windings can be represented as concentrated
windings, which in turn generates a sinusoidal dis-
tributed field in the air gap.

4) The resistances, inductances and magnet properties are
temperature and frequency independent.
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TABLE I: Base values of the per unit model of the IPMSM

Base parameter Expression
Ubase Ûn

Ibase În
Zbase Ûn/În
Ψbase Ûn/(2π · fn)

Tbase 3/2 · p · Ûn · În/(2π · fn)
Nbase Nn

Fig. 2: Coil layout and axis definitions of the modelled sector
of the motor.

The base values of the per unit model are given in Table I,
where the base voltage, Ûn, and base current, În, are the
per phase amplitude values. Furthermore, fn is the nominal
electrical frequency, p the number of pair of poles and Nn the
nominal rpm.

The d- and q-axis reference frame is defined based on the rotor
saliency. The d-axis is aligned in the direction of the maximum
reluctance, meaning the d-axis is fixed to the permanent
magnet flux vector. Meaning a positive d-axis current
enhances the magnetic flux along the permanent magnet,
while a negative d-axis current opposes the the magnetic
field of the permanent magnet. The q-axis is displaced by
90 electrical degrees relative to the d-axis, as seen in Figure 2.

Furthermore, the voltages and currents are Park transformed,
such that the stator current vector is can either be expressed
in either cartesian or polar coordinate systems, as given in
Equation 1.

is = id + jiq = is∠θ (1)

From complex number theory, Equation 2 and 3 are fulfilled.

is =
√
i2d + i2q (2)

id =
√
i2s − i2q (3a)

iq =
√
i2s − i2d (3b)

From the defined load angle θ and stator current magnitude, is,
Equation 4 is fulfilled as well. The stator current phasor is the
reference phasor, such that it is aligned with the the positive
d-axis when θ = 0. The phasor rotates counterclockwise,
such that when θ = π/2, the stator current phasor is aligned
with the positive q-axis.

id = iscosθ (4a)

iq = issinθ (4b)

The magnitude of the per unit stator voltage is defined as in
Equation 5.

us =
√
u2d + u2q (5)

The equation of the induced voltages, ud, uq , in the per unit
rotor reference frame as functions of the per unit currents, id,
iq , and per unit flux linkages, ψd, ψq , can be simplified to
Equation 6 [18].

ud = rsid +
1

ωn

dψd
dt
− nψq (6a)

uq = rsiq +
1

ωn

dψq
dt

+ nψd (6b)

Where rs is the stator resistance in per unit, ωn the nominal
angular frequency, and n the per unit value of the rpm of
the motor. By the same per unit system, the induced electric
torque can be simplified to Equation 7, when assuming
sinusoidally distributed magnetic flux density in the air gap
[18].

τe = ψdiq − ψqid (7)

The resistance, voltages, currents and angular speed can be
measured on the outside of the physical motor. However, the
flux linkages have to be modelled in order for the analytical
formulas for the torque and voltages to be accurate. The d-
and q-axis flux linkages are dependent on the applied d- and
q-axis stator currents.

2) The linear model: As mentioned, a common assumption
for the per unit model is that the magnetic saturation and
cross-coupling can be neglected, meaning there are assumed
linear relationships between the respective d- and q-axis flux
linkages to the d- and q-axis currents. This way of modeling
the motor magnetics will be referred to as the linear magnetic
model, and the model is given in Equation 8.

ψd = xdid + ψm (8a)

ψq = xqiq (8b)
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Where xd and xq are the constant per unit reactances due to
the d- and q-axis inductances respectively. In addition, ψm
is the per unit flux linkage due to the permanent magnet,
as it will produce a constant flux linkage along the d-axis
independent of the applied currents. As the linear magnetic
model does not take the non-linear magnetic saturation and
cross-coupling phenomena into account, other ways to model
the motor flux linkages in relation to the applied stator
currents will be presented.

B. Magnetic Modelling

For IPMSMs under heavy loading conditions, there will be
magnetic saturation in the ferromagnetic stator and rotor
material and cross-coupling between the d- and q-axis.
Cross-coupling is a phenomenon that for instance occurs
when q-axis currents produce flux in the q-axis, saturating
the iron along the d-axis as well, as visualised in Figure
3. When the reluctance along the d-axis path increases, the
d-axis flux linkage will be reduced even though there were
no d-axis currents applied. The same phenomenon occurs for
the q-axis flux linkage for applied d-axis currents. Meaning
the magnetic flux produced by one axis current might distort
the flux produced by the other axis current [3]. Thus, if the
motor control system has to operate accurately and efficiently,
the linear model might be too simple, and instead each flux
linkage has to be modelled to be dependent on both the d-
and q-axis current, as ψd(id, iq) and ψq(id, iq).

When modelling the flux linkages it is assumed that the q-axis
flux linkage will be more affected by magnetic saturation
compared to the d-axis flux linkage. This is due to the fact
that the permanent magnet ensures a high magnetic flux
density in the rotor iron above the permanent magnet and in
the stator teeth. When applying positive q-axis currents, the
magnetic flux density will increase in these areas saturating
the motor further. As will be explained in Section II-C,
optimal torque control is achieved by applying negative
d-axis currents. This means that when d-axis currents are
applied in the motor, they will be of negative value setting up
magnetic flux opposing the flux from the permanent magnet.
Thus, the total magnetic flux density in the motor is reduced,
and the saturation would be reduced as well. This led to the
assumption that the q-axis flux linkage is thought to be more
influenced by magnetic saturation than the d-axis flux linkage.

The non-linear relation between the flux linkages and the
applied currents due to saturation and cross-coupling, can be
included in the control system of the electrical drive by either
constructing look-up tables or defining explicit formulas.

1) Look-up Tables: The look-up tables in the control
structure can be modeled such that for given id, iq currents,
the table will export either ψd or ψq flux linkages. The

(a)

(b)

Fig. 3: The relative permeability in the motor, representing
the saturation, at (a) no-load and (b) full load of pure q-axis
current. From (b) it can be seen how q-axis current saturates
parts of the stator teeth and rotor iron. Due to the saturated
iron, the reluctance of the d-axis flux path will increase,
such that the flux linkage along the d-axis will be reduced,
even though no negative d-axis current has been applied. This
phenomenon is called cross-coupling.

look-up tables can also be defined with the flux linkages as
input variables, exporting the currents, in those parts of the
control structure where this is practical. In order to build
the look-up tables, the motor must either be modelled and
measured using FE software or be physically measured for a
wide range of operating points, to find the resulting d- and
q-axis flux linkages for the applied d- and q-axis currents. As
it is impossible to measure all possible operating points, the
control software will have interpolate between the measured
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data in the table during operation [4]. However, if the motor
in a transient state operates outside of the measured table
data, the control structure might become unstable.

2) Explicit Functions: By defining models having explicit
formulas for the relation between the d- and q-axis flux
linkages and currents, the control system may operate
unbounded by a predefined range as it may extrapolate
outside the measured data range. In addition, the related
controller may require less data storage compared to the look-
up tables [19] [20]. The models might include parameters and
exponents which have to be curve fitted to measured values,
often by the linear least square method [13]. If a look-up
table has been developed, the formulas of the models can
easily be curve fitted to the table data.

a) The polynomial models: Polynomial models can be defined
based on Equation 9, but with selecting some coefficients to
be curve fitted and some to be put to zero to simplify the
equation. Equation 9 is given with the parameter ψdm which
will be explained in Section III. Several polynomial models
have been presented and show good results [8] [16] [17].

ψdm =

n∑
i=0

m∑
j=0

di,ji
i
di
j
q (9a)

ψq =

n∑
i=0

m∑
j=0

qi,ji
i
di
j
q (9b)

The polynomial models often require several FE data points
to be curve fitted to and seldomly take the reciprocity
condition, given in Equation 10, into account. By fulfilling
the reciprocity condition, the flux linkages will be modelled
such that their corresponding inductances will not be able to
generate or dissipate energy [21].

∂id
∂ψq

=
∂iq
∂ψd

(10)

Depending on the control structure, the flux linkages can
be expressed as functions of the currents, or the currents as
functions of the flux linkages. For the formulas proposed in
this thesis, any id, iq currents can be solved numerically from
the functions of ψd, ψq , and opposite.

b) The exponential model: One of the proposed models
taking the reciprocity condition into account is given in
Equation 11 [4]. The exponential model is also defined to
solve the d- and q-axis currents based on known d- and q-axis
flux linkages.

id = (ad0 + add|ψd|α +
adq
δ + 2

|ψd|γ |ψq|δ+2)ψd − if (11a)

iq = (aq0 + aqq|ψq|β +
adq
γ + 2

|ψd|γ+2|ψq|δ)ψq (11b)

Where if models the MMF due to the permanent magnets,
and ad0, add, aq0, aqq and adq are positive coefficients
and α, β, γ and δ positive exponents. Equation 11 will be
referred to as the exponential model in this thesis, and its
performance to model the motor magnetics will be compared
to the performance of the polynomial models.

C. Control strategy

As mentioned, as the torque equation of the equivalent
electrical model of the IPMSM is dependent on the flux
linkages, the estimated electromagnetic torque produced by
the motor might be more accurate when the magnetic model
is improved by including saturation and cross-coupling. In
order to operate the motor as efficiently as possible, it should
be operated using Maximum Torque Per Ampere (MTPA)
control. To find the operating points to achieve MTPA,
combinations of the d- and q-axis currents are deduced from
the torque equation to ensure as high torque as possible for
any total stator current, is. In addition, the control system
estimates the produced torque in the motor based on the d-
and q-axis currents fed to the machine. Thus, in both cases,
if the magnetic model is inaccurate, the control system will
not provide the correct current references to achieve MTPA
and the produced torque might be estimated incorrectly by
the control system.

1) Torque production: MTPA will be achieved by applying
combinations of negative d-axis and positive q-axis currents.
This can be easily demonstrated by assuming linear magnetics
and combining Equation 7 and 8, into Equation 12.

τe = ψmiq − (xq − xd)idiq (12)

As the d-axis was defined along the axis with maximum
reluctance, the per unit q-axis reactance will be greater than
the d-axis per unit reactance, xq > xd. Thus, the torque
can be maximized with negative d-axis and positive q-axis
currents. This is also the case when the motor magnetics
are modelled to be non-linear. Figure 4 shows how the
maximum torque is achieved for the FE modeled motor when
applying negative d-axis and positive q-axis current at full
load, meaning for a total stator current of 1pu.

The maximum torque is achieved for negative id and positive
iq currents due to the permanent magnet field-alignment
torque and the reluctance torque. The first term in Equation
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Fig. 4: The maximum torque for a total stator current of 1pu
is achieved by a loading angle between π/2 and π, meaning
a positive iq and negative id current.

12 represents the field-alignment torque produced as a result
of the interaction of the d-axis permanent magnet flux to the
flux produced by the q-axis stator current, as for conventional
surface mounted PMSMs. The second term represents the
reluctance torque, produced due to the saliency in the rotor
[2]. This is visualized in Figure 5, where τe,reluctance is
the torque achieved in the COMSOL model of the IPMSM
when the remanence flux density of the permanent magnet is
set to zero, such that it is only the reluctance torque which
is present. Positive torque is achieved in the area where
θ ∈ [π/2, π], meaning positive iq current and negative id
current. From the same figure, the τe,PM shows how the field
alignment torque is at its maximum for pure q-axis current.
The field alignment torque curve was achieved by setting the
rotor iron relative permeability to 1 in the COMSOL model.
The total torque τe,tot for different load angle can thus be
interpreted as the combination of these two torque producing
phenomena, such that the maximum torque is achieved for
negative d-axis current and positive q-axis current.

2) MTPA: The operating point where the motor is inducing
a given torque for as little stator current as possible, is called
the MTPA operating point. The maximum achievable torque
for each total stator current, is, can explicitly be found by
finding the extremal point of the torque equation in Equation
7, with respect to either the d- or q-axis current. It is arbitrary
whether the extremal point is found by the d- or q-axis
current, as they can be written as functions of each other
and the defined total stator current, as given in Equation
3. Meaning if the derivative of the torque with respect to
the d-axis current is to be found, the q-axis current can be
expressed as a function of the chosen total stator current and
the d-axis stator current, such that the torque equation has

Fig. 5: Torque for different load angles for 1pu stator current,
showing how the torque curve of the IPMSM can be inter-
preted as the sum of the permanent magnet and reluctance
torque curves. The permanent magnet torque curve was devel-
oped by setting the relative permeability of the rotor iron to
1, while the reluctance torque curve was developed by setting
the remanence flux of the magnet to 0 in the FE model.

only the d-axis current as an unknown. Thus, the operating
point for the selected total stator current can be found by
Equation 13, when defining the torque by either id or iq .

∂τe
∂id

= 0 (13a)

∂τe
∂iq

= 0 (13b)

Having calculated either id ensuring MTPA for a given is, iq
can be found by Equation 3, and vice versa.

3) Field Weakening: When accelerating the motor up to
its base speed, the preferred control strategy is the MTPA
strategy. However, for the motor to accelerate beyond this
point, the flux in the machine has to be reduced, to ensure the
induced voltage in the stator windings is not greater than the
maximum inverter voltage [22]. Reducing the magnetic flux
in the motor can be achieved by applying additional negative
id current, producing magnetic flux opposing the flux set up
by the permanent magnet, such that the total flux linkage in
the motor is reduced. The different control strategies during
field weakening operation will not be covered in this thesis,
but it should be noted that the motor will always operate
with positive iq and negative id current in both MTPA and
field weakening operation, to generate a positive torque for
positive speed.
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Fig. 6: Operating regions of the motor during Maximum
Torque Per Ampere (MTPA) and Field Weakening (FW)
control strategy for I) maximum 1pu and II) maximum 2pu
stator current. The MTPA trajectory was developed assuming
linear magnetics, meaning constant xd, xq . The MTPA curve
represents the best combination of id and iq currents for any
stator current is, to obtain maximum torque.

In both MTPA and field weakening operation, the id, iq
currents are bound by the stator current limit, is,max. In
Figure 6 the curves of is = 1pu and is = 2pu are drawn
together with the trajectory of combinations of d- and q-axis
currents providing MTPA when using the linear magnetic
model. As mentioned, at base speed, the motor should be
operated using the MTPA strategy, but to further accelerate
the motor it has to go into field weakening by increasing
negative id currents. Thus, area I in Figure 6 represents all
operating areas for all total stator currents less than 1pu.
Area II represents all possible operating areas if the motor
is allowed to operate up to total stator currents of 2pu,
for instance in a transient state. The MTPA trajectory and
maximum stator current curves will be of interest when the
measured flux linkages in relation to the applied currents are
to be compared to the formula modelled flux linkages. The
goal of the magnetic modeling is that the difference between
the curve fitted models and the FE calculated flux linkages
should be small within these operating areas.

4) Control system implementation: During this thesis,
the magnetic modeling was not implemented in a control
system simulation. However, how the control system is built
is relevant knowledge when analyzing how the magnetic
modeling of the motor could improve the control of the
motor. Figure 7, shows the control system for a current
controlled drive in rotor coordinates with a position sensor.
Before operation, the motor magnetic model should be
identified, either by FE analysis or measurements at the lab.

Fig. 7: Simplified structure of the control system for an
IPMSM, showing how the magnetic model is integrated in
the current reference calculation, to achieve optimal control.
The figure has been taken from [4].

Then either look-up tables or explicit functions should be
defined and incorporated in the current reference calculation.
The current references are calculated based on the angular
speed of the motor and the torque reference. If the magnetic
model is accurate, the control system would benefit in two
ways. Firstly, the proper current references ensuring MTPA
would be correctly derived, providing efficient operation
of the motor. Secondly, the control system would be able
to correctly estimate if the motor is achieving the same
torque as given by the torque reference, only based on the
measured input currents and the magnetic models. Based on
the current references, the current controller then provides the
corresponding gate signals to the inverter to achieve MTPA.
The motor can be speed controlled, by connecting a speed
controller to the torque reference. By this measure, the speed
controller could ensure that the torque reference is adjusted
such that the load will be fed its required torque, even though
the torque estimation in the control system is inaccurate. This
has been proven in Section VI to be advantageous, as the
analytically calculated torques differed from the COMSOL
simulated ones, due to the simplified torque equation.

III. METHOD: MAGNETIC MODELING

During this section, the approach to calculate the d- and q-axis
flux linkages in relation to applied d- and q-axis currents in
the developed FE model is to be described. Furthermore, the
method to curve fit the proposed models to the FE calculated
data is shown, as well as how the corresponding surface plots
to the defined models can be plotted using MATLAB. The
results can be found in Section V.
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A. FE modeling and data collection

1) Building the model: The COMSOL model of the IPMSM
was based on a physical motor, a WEG W22, which
was opened and measured. The stator and rotor geometry
parameters can be found in Appendix A. The stator windings
in the motor were distributed, bifurcated, single layer, integer
windings with coil ends of 3 levels, as seen in Figure 8.
The material and winding properties were not given and had
to be estimated. The COMSOL model was built assuming
a star-connected motor, even though the WEG W22 was
delta-coupled, which had to be taken into account when
building the model. The turn number was assumed to be 102
such that the induced phase voltage at no-load conditions
in the star-coupled COMSOL model resulted in the given
line-to-line voltage at the nameplate of the physical motor.
The base value of the current was set to be 1/

√
3 of what

was given at the nameplate to compensate for the delta-to-star
change done in the COMSOL model. For delta-coupled
machines, circulating third harmonic currents might be
present and would thus not be included in the star-coupled
COMSOL model. However, as the turn number and total
currents in the stator windings were assumed to be close
to that of the physical motor, the trends of the observed
magnetic saturation and cross-coupling in the COMSOL
model should be valid for the physical motor as well.

The electrical steel in the model was chosen to be a typical,
commercially available material, Silicon Steel NGO 35PN300,
and the permanent magnet was assumed to be of the material
N50 (Sintered NdFeB). The coil material was set to Copper,
and the steel sheets between the permanent magnet and the
rotor were set to be of Steel AISI 4340. All other domains
were set to be Air. A sector of the motor, one sixth, was
modeled, meaning the measured motor length was multiplied
by 6 in the FE model to correctly calculate the induced
torque, voltages and flux linkages, despite having modeled
only a sector. The winding scheme can be found in Figure
2 and the remanence flux direction of the permanent magnet
was set radially towards the stator, along the d-axis.

The COMSOL model was current-controlled, meaning the
three-phase currents in the coils were defined as given in
Equation 14. The capital letters emphasize that the currents
are given in SI units, as required by COMSOL. Where Is is
the amplitude value of the three-phase currents.

Ia = Issin(ωt− θ) (14a)

Ib = Issin(ωt− 2π

3
− θ) (14b)

Ic = Issin(ωt+
2π

3
− θ) (14c)

Fig. 8: Stator of the physical motor which the FE model was
based on.

When solving the model, the rotor position was held constant
while the position of the current vectors in relation to the
rotor axis were swept using Stationary, Parametric Sweeps.
As the rotor position was constant in relation to the stator, the
torque and indcutance, ripples were excluded from the study.
As the study was stationary, t was equal to zero. However,
the ωt term was included in the model such that dynamic
analysis would be possible.

2) Park Transform: The park transform was used to convert
the three-phase sinusoidal currents into a two-phase rotor-
oriented reference frame with constant d- and q-axis currents
for a given Is and θ. For the defined currents formulas and
axis-definitions, the Id and Iq currents, corresponding to the
applied three-phase currents Ia, Ib and Ic, were calculated as
given in Equation 15, based on [3]. The −π/2 term was added
to correctly align the induced flux due to Id currents with the
defined d-axis through the permanent magnet.

Id =
2

3
(Iacos(ωt−

π

2
) + Ibcos(ωt−

2π

3
− π

2
)

+ Iccos(ωt+
2π

3
− π

2
))

(15a)

Iq =
2

3
(Iasin(ωt− π

2
) + Ibsin(ωt− 2π

3
− π

2
)

+ Icsin(ωt+
2π

3
− π

2
))

(15b)

As defined in Equation 4, a current stator angle, θ, of 0rad
corresponds to a pure Id current enhancing the magnetic flux
in the direction of the flux set up by the permanent magnet,
and π/2 rad corresponds to a pure Iq current bending the flux
lines from the permanent magnet and creating torque. The
three-phase currents were directly calculated by the physics
package Rotating Machinery, Magnetic, such that for instance
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the Ia current was found by the expression rmm.ICoil a.

COMSOL also calculated the flux linkage by integrating the
magnetic flux density through each of the three coils of phase
a, b and c. The expression for instance for the flux linkage in
coil a is given as rmm.PhiCoil a in COMSOL, and is called
the coil concatenated flux. The corresponding d- and q-axis
flux linkages were calculated using the Park transform in the
same manner as the currents, as given in Equation 16.

Ψd =
2

3
(Ψacos(ωt−

π

2
) + Ψbcos(ωt−

2π

3
− π

2
)

+ Ψccos(ωt+
2π

3
− π

2
))

(16a)

Ψq =
2

3
(Ψasin(ωt− π

2
) + Ψbsin(ωt− 2π

3
− π

2
)

+ Ψcsin(ωt+
2π

3
− π

2
))

(16b)

3) Inverse Park Transform: As the control strategy is based
on the per-unit motor model in the two-phase rotor-oriented
reference frame, it is of interest to find the a, b, c currents
that are needed to achieve preselected Id, Iq currents. An
inverse Park transform was developed to calculate the a, b, c
currents needed to obtain the desired Id, Iq currents, such that
the corresponding Ψd, Ψq flux linkages could be calculated.

In order to map Ψd and Ψq in relation to Id and Iq , the
amplitude Is and the load angle θ had to be calculated by
the preselected Id and Iq , as given in Equation 17 and 18.
By inserting the calculated Is, θ, into the equations for the
stator currents in Equation 14, the desired Id, Iq currents
were achieved.

Is =
√
I2d + I2q (17)

θ = atan2(
Iq
Id

) (18)

The implementation of the method is visualized in Figure
10 and Figure 11, showing the magnetic flux in the motor
without applied currents due to the permanent magnet, also
how a positive d-axis current enhances the flux along the
d-axis, as well as how a negative d-axis current opposes
the flux from the permanent magnet. Applying pure q-axis
currents bends the flux lines of the permanent magnet creating
torque on the rotor. Table II shows the calculated d- and
q-axis flux linkages for the applied predefined d- and q-axis
currents, confirming the assumptions made of the flux in the
machine based on Figure 10 and Figure 11.

Fig. 9: Measurements points from COMSOL of the flux
linkages for different combinations of id and iq currents.

TABLE II: Flux linkages in relation to applied currents calcu-
lated by the model. For negligible applied currents, there is a
constant flux linkage in the d-axis, Ψm, due to the permanent
magnet. When applying positive d-axis current, the d-axis flux
linkage increases while negative d-axis current decreases the
d-axis flux linkage. For positive q-axis currents, the q-axis flux
linkage increases, while the d-axis flux linkage gets slightly
reduced from Ψm, due to the cross-coupling as visualized in
Figure 3.

Id[A] Iq [A] Ψd[Wb] Ψq [Wb]
−1e− 9 1e− 9 1.6781 5.6295e− 5√

2 · 2.85 1e− 9 2.1755 −2.0840e− 4

−
√

2 · 2.85 1e− 9 1.1095 −4.4033e− 5

−1e− 9
√

2 · 2.85 1.6629 1.0938

4) Mapping the flux linkages: The flux linkages were
mapped for d-axis currents from −1e−6A to −2 ·

√
2 ·2.85A

with steps of −0.05, and q-axis currents from 1e − 6A to
2 ·
√

2 · 2.85A with steps of 0.05. Neither Id nor Iq could be
equal to zero, due to the calculation of the inductances where
the currents are in the denominator. As given in Table III,
the stator current base value was chosen to be

√
2 · 2.85A,

meaning the mapping was not just done up to full load at 1pu,
but also up to 2pu to model transient operation conditions as
well. Figure 9 visualizes some of the total 26244 individual
data points within the measured region. From Derived Values
in COMSOL, the Id, Iq , Ψd, Ψd vectors were exported as
.csv files, to be analysed in MATLAB.

B. MATLAB post processing

In MATLAB, the FE calculated motor data had to be
represented in the defined per-unit system.
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(a) Id = 1e− 9A, Iq = 1e− 9A

(b) Id =
√

2 · 2.85A, Iq = 1e− 9A

Fig. 10: Plot of normalized magnetic flux density and flux
lines for the sector of the motor model in COMSOL for (a)
no stator currents and (b) positive d-axis current. Showing
how positive d-axis current is enhancing the flux from the
permanent magnet.

1) Numerical values of the per-unit model: The chosen
numerical values for the per-unit model, presented in Section
II-A, are based on the nameplate of the modeled physical
WEG motor. The nominal amplitude phase current, În,
after the delta-to-star transformation was set to

√
2 · 2.85A,

while the nominal amplitude phase voltage, Ûn, was set to√
2 · 400V . The motor has 3 pair of poles, p, and nominal

speed, Nn, of 1000rpm which corresponds to an electrical
frequency, fn, of 50Hz, as summarized in Table III. Variables
given in per-unit values are written with small letters, and
vectors of values are given in a bold font.

(a) Id = −
√

2 · 2.85A, Iq = 1e− 9A

(b) Id = 1e− 9A, Iq =
√

2 · 2.85A

Fig. 11: Plot of normalized magnetic flux density and flux lines
for the sector of the motor model in COMSOL for (a) negative
d-axis current and (b) positive q-axis current. Showing how
a negative d-axis current opposes the flux of the permanent
magnet while a positive q-axis current bends the flux lines of
the permanent magnet counterclockwise, providing torque.

C. Magnetic modeling

In this section, the magnetic models of the motor will be
developed, meaning the formulas calculating the flux linkages
as functions of the currents, or vice versa. Five magnetic
models is to be compared, 1) the linear model, 2) the simple
polynomial model, 3) the best polynomial model, 4) the
reciprocal polynomial model and 5) the exponential model.
It should be noticed that for all the proposed models, it is

10



TABLE III: Chosen numerical values for the base value
calculations for the per-unit model

Expression Value
Ûn

√
2 · 400[V ]

În
√

2 · 2.85[A]
fn 50[Hz]
Nn 1000[rpm]
p 3

possible to define corresponding per-unit reactances by the
formula given in Equation 19.

xd(id, iq) =
ψd(id, iq)− ψm

id
(19a)

xq(id, iq) =
ψq(id, iq)

iq
(19b)

However, for simplicity, this thesis aims to model either the
d- and q-axis flux linkages directly from the d- and q-axis
currents, or opposite, without defining any reactances. The
only model defining per-unit reactances is the linear magnetic
model.

1) The linear model: As explained in Section II-A, the
magnetic model of the IPMSM is often simplified by assuming
linear magnetics, meaning that xd and xq are constant. Thus,
magnetic saturation and cross-coupling has been neglected.
The formulas are given in Equation 20.

xd =
ψd − ψm

id
(20a)

xq =
ψq
iq

(20b)

In order to calculate the unsaturated xd and xq per-unit
reactances, ψd and ψq were measured in the COMSOL model
when applying id and iq currents corresponding to 0.1pu
respectively [3]. In addition, to calculate xd, the constant
flux linkage due to the permanent magnet, ψm, had to be
calculated. In SI-units, Ψm was found to be 1.6781Wb as
given in Table II, when Id and Iq were close to zero. The
calculated per-unit reactances xd, xq can be found in Table IV.

2) Curve fitting: For the polynomial and exponential models,
the unknown coefficients and exponents of the functions had
to be estimated by applying the linear least square method to
the FE calculated data. A new parameter, ψdm, was defined
as given in Equation 21, such that produced flux linkages due
to the applied currents were independent of the flux linkage
of the permanent magnet.

ψdm = ψd − ψm (21)

In order to calculate the unknown coefficients, the formulas
had to be linearized on the form given in Equation 22. B is
the vector containing the unknown coefficients, which had to
be solved by the linearized least square method by the values
in the known vectors Y and matrix X. How these vectors
and matrices are built for each proposed formula is to be
presented for each curve fitting model.

Y = XB (22)

Having linearized the formulas on the form given in Equation
22, the linear least square method could be solved using
Equation 23 [23], incorporated in the MATLAB function
regress.

B = (XTX)−1XTY (23)

3) The polynomial models: As it had been observed a
polynomial behavior in the plots of the flux linkages in
relation to the currents, some of the magnetic models were
built using polynomial functions. The proposed formulas
were defined based on Equation 9, with the goal of having
an accurate curve fit, but with as few unknown coefficients
as possible.

For all linearized formulas, it should be noted that when the
current vectors are multiplied or squared, they are done so
element wise and not by matrix multiplication. Vector 0 has
the same length as the current- or flux linkage vectors but
contains only zeros.

a) The simple polynomial model: Based on the plots of the
measured flux linkages in relation to the applied currents
given in Section V, the d-axis flux linkage was observed to
be quite linear in relation to the d-axis current, while the
q-axis flux linkage had a second-order behavior in relation to
the q-axis current. Thus, the simple polynomial model was
defined, as given in Equation 24.

ψdm,s = d10sid (24a)

ψq,s = q01siq + q02si
2
q (24b)

It should be noted that d10s will not equal xd from Equation
20, as xd was calculated based on measured data from one
operating point. The per-unit reactance, d10s, was however
curve fitted to give the smallest error in the whole defined
operating range of the motor.

For this magnetic model, there are only three unknown
parameters, and the reciprocity condition is fulfilled.
However, saturation has been neglected for the d-axis flux
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linkage, while the cross-coupling has been neglected for both
the d- and q-axis flux linkage.

The simple polynomial formula can be linearized on the form
given in Equation 22 into Equation 25.

Ys =

[
ψdm,s

ψq,s

]
(25a)

Xs =

[
id 0 0
0 iq i2q

]
(25b)

Bs =
[
d10s q01s q02s

]T
(25c)

b) The best polynomial model: By trial and error, the
formulas fitting the measured data the best while having a
small number of unknown coefficients were the formulas
given in Equation 26. When modeling the cross-coupling, it
was found beneficial not to have common coefficients for
the d- and q-axis flux linkage as the sum of residuals would
increase. In addition, the reciprocity condition is not fulfilled.
Thus, the proposed formulas do not ensure a conservative
system. They must therefore be considered as an empirical
representation of the measured motor magnetics and not an
attempt to develop a universal formula true to nature.

ψdm,b = d10bid + d11bidiq + d02bi
2
q (26a)

ψq,b = q01biq + q02bi
2
q + q12bidi

2
q + q20bi

2
d (26b)

The unknown coefficients of the model were found by solving
the linearized system of equations, given in Equation 27,
using the linear least square method.

Yb =

[
ψdm,b

ψq,b

]
(27a)

Xb =

[
id idiq i2q 0 0 0 0
0 0 0 iq i2q idi

2
q i2d

]
(27b)

Bb =
[
d10b d11b d02b q01b q02b q12b q20b

]T
(27c)

c) The reciprocal polynomial model: Based on Equation 26,
a version fulfilling the reciprocity condition was developed
and is given in Equation 28.

ψdm,r = d10rid + d11ridiq + d02ri
2
q +

1

3
q12ri

3
q (28a)

ψq = q01riq + q02ri
2
q + q12ridi

2
q +

1

2
d11ri

2
d+2d02ridiq (28b)

The reciprocal formula can be linearized into Equation 29.

Yr =

[
ψdm,r

ψq,r

]
(29a)

Xr =

[
id idiq i2q 0 0 1

3i
3
q

0 1
2i

2
d 2idiq iq i2q idi

2
q

]
(29b)

Br =
[
d10r d11r d02r q01r q02r q12r

]T
(29c)

4) The exponential model: By the formulas proposed by
[4] in Equation 11, the unknown coefficients ad0 ad0, add,
aq0, aqq , adq and unknown exponents α, β, γ, δ, had to
be found by applying linear least square method to the
measured values. The equations were redefined with the
defined variable ψdm into Equation 30. By this measure, the
calculated currents are independent of the permanent magnet
flux linkage. Or in other words, the permanent magnet flux
linkage is defined as independent of the applied d- and q-axis
currents.

id,e = (ad0 + add|ψdm|α +
adq
δ + 2

|ψdm|γ |ψq|δ+2)ψdm (30a)

iq,e = (aq0 + aqq|ψq|β +
adq
γ + 2

|ψdm|γ+2|ψq|δ)ψq (30b)

The linearization of Equation 30 can be seen in Equation
31-35.

x = |ψdm|αψdm (31)

y =
1

δ + 2
|ψdm|γ |ψq|δ+2ψdm (32)

z = |ψq|βψq (33)

w =
1

γ + 2
|ψdm|γ+2|ψq|δψq (34)

Ye =

[
id,e
iq,e

]
(35a)

Xe =

[
ψdm 0 x 0 y
0 ψq 0 z w

]
(35b)

Be =
[
ad0 aq0 add aqq adq

]T
(35c)

The vectors x, y, z, w are not calculated as vector products
but by multiplying the variables element-wise, meaning these
vectors have the same size as the flux linkage vectors.
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Be was solved by Equation 23, incorporated in the MATLAB
function regress. Initially all exponents, α, β, γ, δ, were
assumed to equal zero. The same linear least square
system was then iteratively recalculated but with different
combinations of integer values for the exponents, from 0 to
9. Finally, the combination of values for the exponents giving
the smallest residuals to the curve fit was selected for the
exponential model.

D. Plotting the proposed formulas

1) Plotting the FE calculated data: Having vectors of
measured d- and q-axis flux linkages and currents, the vectors
had to be restructured such that the flux linkages could be
plotted in a 3D plot for a defined 2D grid formed by the d-
and q-axis currents. To achieve this, the MATLAB function
meshgrid was used to create a 2D grid with 40 equally
spaced coordinates ranging from 0 to −2pu for the d-axis
current and 0 to 2pu for the q-axis current. By griddata, the
scattered data of either ψd or ψq in relation to the scattered
id and iq data points were structured by linear interpolation
to a grid corresponding to the defined 2D current grids.
In short, the one-dimensional d- and q-axis currents and
flux linkages vectors were redefined to 3D grids, such that
values of either ψd or ψq could be plotted along the z-axis
while having id along the x-axis and iq along the y-axis.
The complete MATLAB script to achieve this can be found
in Appendix C-A. It should be noted that these grids can
directly be used as look-up tables in the control system, as
selected combinations from the id- and iq-grids would result
in unique values of either ψd or ψq , or opposite if id and iq
are plotted for grids of ψd and ψq . The calculated grids of
values were plotted in a surface plot using the function surf,
as seen in the Appendix C-B.

Having developed a method to plot the FE calculated flux
linkages in relation to the applied currents, the solved flux
linkages by the different curve fitting magnetic models could
be evaluated by plotting them together with the FE calculated
flux linkages.

2) Plotting curve fitted models: For the linear magnetic
model formulas and the polynomial formulas, the flux linkage
grids were calculated by using the model formulas, the
coefficients found by curve fitting and the defined 2D current
grids. The flux linkages were then plotted as surface plots
together with the surface plot of the FE calculated ones, as
seen in Appendix C-E to C-H.

The exponential model was defined such that the d- and
q-axis currents were calculated for given d- and q-axis flux
linkages. Thus, in order to plot the flux linkage surfaces, a
new set of id and iq vectors were calculated using the curve
fitted coefficients and exponents and the FE calculated ψdm

and ψq vectors from COMSOL. Having calculated the new
current vectors as a function of the FE calculated flux linkage
vectors, the currents and flux linkages were plotted in the
same manner as for the initial measured data, as explained in
Section III-D1. The complete curve fitting and plotting of the
exponential model can be found in Appendix C-I.

Before plotting the d-axis flux linkage for the polynomial and
exponential models, the ψm term was added to the calculated
ψdm, such that the surface plots were plotted for ψd.

E. Model performance evaluation

When comparing the performance of the different proposed
magnetic models, three main evaluations were done: 1) The
numerical difference between the model estimated and FE
calculated flux linkage surfaces within the operating regions,
2) the models’ ability to extrapolate flux linkage data outside
of the area they were curve fitted to and 3) the models’ ability
to be curve fitted with very few input data points.

1) Difference between the FE calculations and the model
estimations: In order to compare the performance of
the different magnetic models, the model developed flux
linkage surfaces were subtracted from the FE calculated
flux linkages. The different models were then compared
in terms of how small the difference between the model
estimated and FE calculated flux linkages were within the
typical operating region of the motor, as explained in Figure 6.

2) Data extrapolation outside of the curve fitting area: For
this analysis, firstly, the FE calculated current and flux linkage
values outside of the region id ∈ [−1, 0] and iq ∈ [0, 1] were
deleted, such that the coefficients of the formulas were fitted
to this limited region. Secondly, the flux linkages were plotted
in the range of id ∈ [−2, 0] and iq ∈ [0, 2], to see how well
the curve fitted flux linkages fitted the COMSOL solved flux
linkages outside of the region they had been curve fitted to.

3) Curve fitting by few input data points: It is beneficial if the
relation between the d- and q-axis flux linkages and currents
can be accurately modeled by curve fitting to few data points,
especially if the FE model of the machine is not available. As
it is time-consuming to measure the flux linkages and currents
for a physical machine, it would be a great advantage if the
model could be curve fitted for a few operating points. This
would be especially valuable for the plug-and-play methods,
where magnetic models are developed during start up of an
unknown motor. To evaluate the models’ ability to curve fit
for few operating points accurately, only 9 FE calculated
data points were used to calculate the model coefficients
and exponents by the linear least square method. The 9
operating points were combinations of id from 0pu to −2pu
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with steps of −1pu and iq from 0pu to 2pu with steps of 1pu.

IV. METHOD: CONTROL IMPROVEMENT

In order to demonstrate the use of the improved magnetic
models when controlling the motor, the current references
providing MTPA control, meaning the MTPA trajectory,
were derived using both the linear model and the best
polynomial model. These current references were compared
to the combination of d- and q-axis currents the FE model
calculated to give maximum torque per ampere for each total
stator current. This COMSOL calculated MTPA trajectory
was considered to be the ideal MTPA trajectory, such that
the MTPA trajectories derived from the linear model and the
best polynomial model were evaluated in terms of how close
they were to the FE calculated MTPA trajectory.

In addition, based on the analysis of the MTPA trajectories,
deviations in the analytically calculated torques were observed
when calculating the torque based on the magnetic models.
Thus, the increased accuracy of the analytically calculated
torque was evaluated when using the best polynomial model
compared to the linear model. Finally, as there still was
a difference between the analytically calculated torque by
the best polynomial model and the FE calculated torque
by Arkkio’s method, the analytical torque equation itself
was evaluated based on the FE calculated flux linkages and
currents in COMSOL.

A. FE calculated MTPA trajectory

Using the same IPMSM model as in Section III, the torque
and d- and q-axis flux linkages could be calculated for
different d- and q-axis currents. Instead of predefining
combinations of Id and Iq currents, the currents were defined
by the load angle θ and the total stator current amplitude Is.
The COMSOL model was solved for different loading angles
and total stator currents, such that the MTPA trajectory could
be derived by finding the θ providing maximum torque for
each total stator current. The torque was calculated using
Arkkio’s method, and the measurements were done with
sweeps of Is from 1e − 6A to 2 ·

√
2 · 2.85A with steps of

0.015A. The load angle, θ, was only swept from π/2rad to
2π/3rad with steps of π/1000, as the optimal load angle to
achieve maximum torque was known to be in this region by
experience. A MATLAB script was built to extract the load
angle, which gave the highest torque for each selected total
stator current. The MATLAB script is given in Appendix
C-J and a plot of the MATLAB selected d- and q-axis
current references corresponding to the calculated load angles
providing maximum torque for each simulated total stator
current is given in Figure 12.

(a)

(b)

Fig. 12: (a) The MTPA trajectory found numerically by
calculating the torque in COMSOL for different stator currents
and load angles, such that all the id, iq combinations ensuring
maximum torque for any total stator current, is, can be found.
(b) Zoom of (a).

B. Analytical MTPA trajectories

1) Linear model: The analytical torque equation when assum-
ing linear magnetics is given in Equation 12. As explained in
II-C, the torque equation can be rewritten as a function of iq
and is by using the relation from Equation 3b, as given in
Equation 36.

τe = ψmiq + (xq − xd)
√
i2s − i2qiq (36)

In order to find the extremal point of the function, meaning
for which iq the maximum torque is obtained, the derivative
of Equation 36 with respect to iq was solved, as shown in
Equation 37.

∂τe
∂iq

= ψm + (xq − xd)
i2s − 2i2q√
i2s − i2q

(37)
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Setting Equation 37 equal to zero and reinserting the expres-
sion for id from Equation 2 results to Equation 38.

iq = ±

√
i2d −

ψmid
xq − xd

(38)

Reinserting Equation 38 into Equation 3a, an explicit function
for the id providing the maximum torque for any total stator
current, is, could be expressed as in Equation 39.

id =
ψm

4(xq − xd)
−

√
(

ψm
4(xq − xd)

)2 +
i2s
2

(39)

Having calculated the d-axis current, the corresponding q-axis
current could be calculated by Equation 3b for the chosen
total stator current. The optimal id and iq combinations
giving maximum torque for any selected total stator current
could then be plotted.

2) Best polynomial model: The analytical torque equation
given in Equation 7, was expanded into Equation 40 by the
formulas of the best polynomial model, as given in Equation
26.

τe = (d10bid + d11bidiq + d02bi
2
q + ψm)iq

− (q01biq + q02bi
2
q + q12bidi

2
q + q20bi

2
d)id

(40)

By using the relation from Equation 3b, the torque equation
could be written as a function with only id as unknown
parameter, as given in Equation 41.

τe = (d10bid + d11bid

√
i2s − i2d + d02b(i

2
s − i2d)

+ ψm)
√
i2s − i2d − (q01b

√
i2s − i2d + q02b(i

2
s − i2d)

+ q12bid(i
2
s − i2d) + q20bi

2
d)id

(41)

Furthermore, the derivative of the torque with respect to id
was solved into Equation 42.

∂τe
∂id

= − 2d10bi
2
d√

i2s − i2d
− ψmid√

i2s − i2d
− 3d02bid

√
i2s − i2d

+
d10bi

2
s√

i2s − i2d
− 3d11bi

2
d + d11bi

2
s + 4q12bi

3
d

+
2q01bi

2
d√

i2s − i2d
− q01bi

2
s√

i2s − i2d
+ 3q02bi

2
d − 3q20bi

2
d

− 2q12bidi
2
s − q02bi2s

(42)

In order to find the extremal point of the torque equation as
a function of id, the nonlinear equation ∂τe/∂id = 0, had
to be solved numerically. The Trust Region Dogleg Method,

which is an extension of the Gauss-Newton Method, was
used by the MATLAB function fsolve, to solve the equation.
Having solved for the id giving the maximum torque for any
is, the corresponding iq was found by Equation 3b. It should
be noted that the derivative of the torque with respect to the
d-axis current can be written in different ways, and not all of
them converged by the fsolve function.

C. Analytical MTPA trajectory comparison using COMSOL

Even though the analytical MTPA trajectories were evaluated
in terms of how well they corresponded to the numerically
calculated one by COMSOL, it was also of interest to assess
the difference in torque per ampere the two analytical MTPA
trajectories actually would give. Thus, both of the proposed
MTPA trajectories, meaning the id and iq current references
for different total stator currents, were exported and run
through the COMSOL model. The FE calculated torques per
ampere using the current references developed from the linear
model and the best polynomial model were exported back to
MATLAB and plotted, as given by the MATLAB script in
Appendix C-K.

D. Analytical torque calculation

If there is no torque meter connected to the motor, the
motor control system would estimate the torque of the motor
based on the measured currents and calculated flux linkages
from the magnetic model. The estimated torque would then
influence whether the control system would judge if the
torque reference had been reached or not. Thus, for selected
current references and corresponding FE calculated torque, it
is of interest to evaluate if the best polynomial model would
be able to estimate better the FE calculated torque than the
linear model.

E. Torque equation evaluation

As will be shown, the MTPA trajectory proposed when
using the best polynomial model did not entirely correspond
to the MTPA trajectory by COMSOL. In addition, when
calculating the torque analytically using the best polynomial
model by Equation 40, the calculated torque did not equal
the FE calculated torque. Thus, both the d- and q-axis flux
linkages and currents were measured in COMSOL using the
current references derived for the best polynomial model.
The torque was then calculated using the analytical torque
equation from Equation 7 as well as the FE calculated torque
by Arkkio’s method. The accuracy of the torque equation was
then evaluated based on the plot of the two derived torques,
as given by the MATLAB script in Appendix C-K.
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(a)

(b)

Fig. 13: 3D plot of the measured ψd and ψq by COMSOL for
combinations of id and iq currents.
.
.

(a)

(b)

Fig. 14: 2D plot of the measured ψd and ψq by COMSOL for
combinations of id and iq currents. The MTPA trajectory and
plots of the stator currents of 1pu and 2pu from Figure 6 are
marked in the plot to emphasize the operating region of the
motor.
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V. RESULTS: MAGNETIC MODELING

A. Flux linkage curves from COMSOL

A surface plot interpolating between the FE calculated data
points of the d- and q-axis flux linkages in relation to the
applied currents using COMSOL can be found in Figure
13 and Figure 14. The figures show that the d-axis flux
linkage is not zero when id, iq are zero, due to the permanent
magnet. However, when negative d-axis current is applied,
the d-axis flux linkage gets reduced. In addition, there can
be observed increased d-axis flux linkage for positive iq
currents, meaning there are cross-coupling phenomena present.

Figure 13 and Figure 14 also show how the q-axis flux
linkage is zero for no stator currents, as the permanent
magnets produce no flux in the q-axis direction. It can be
observed that the surface bends for high negative id currents,
meaning there is cross-coupling.

B. Comparing magnetic models to the FE calculated values

All the coefficients and exponents calculated for all the
proposed formulas by the linear least square curve fitting
method can be found in Table IV. In the following 3D plots,
the color of the COMSOL calculated surface plots of the flux
linkages will be set to red when plotting them together with
the surface plots of the curve fitted magnetic models to better
be able to differentiate the plots.

The percentage deviation between the measured and curve
fitted surfaces at the operating points along the MTPA locus
for stator currents of 1pu and 2pu have been calculated and
can be found in Table V. Stator current of 1pu corresponds to
full loading of the motor, while 2pu corresponds to a transient
loading state with considerably saturation and cross-coupling.

1) Linear model: As xd was calculated when applying 10%
positive id current, the flux linkages for small id values are
quite correctly estimated. However, the deviation increases
when applying id currents lower than −1pu. For the FE
calculated curve of the q-axis flux linkage, the slope is
decreasing for higher iq currents due to saturation. Thus, the
deviation between the FE computed and model estimated
flux linkages by the linear model are increasing for higher iq
currents.

It should be noted that for higher negative id currents, ψd
modeled by constant xd is underestimating the the actual
measured ψd. For ψq the opposite effect is present, meaning
for higher positive iq currents the modeled ψq by constant
xq is overestimating the actual q-axis flux linkage in the
machine, as seen in Figure 15 and Figure 16.

2) Simple polynomial model: Compared to the d-axis flux
linkage when using the linear model, the difference between
the FE computed and curve fitted surfaces by the simple
polynomial model is smaller within the whole operating
region of the machine, and especially along the MTPA
trajectory, as seen in Figure 17 and Figure 18. However,
within the operating regions, when having stator currents less
than 1pu, the linear model is more accurate than the simple
polynomial formulas for the d-axis flux linkage.

For the q-axis flux linkage, by introducing a second-order
term to the simple polynomial model, it can be observed in
Figure 17 and Figure 18 that the difference between the FE
calculated and curve fitted q-axis flux linkage is drastically
reduced, compared to the linear model.

3) Best polynomial model: After having found the unknown
coefficients of the best polynomial model using curve fitting,
the corresponding plotted surfaces prove small differences
to the FE calculated ψd and ψq surfaces, as seen in Figure
19 and Figure 20. In Table V, it can be seen how the best
polynomial model provides a relative difference of less than
1% to the FE computed flux linkages for critical operating
points at MTPA control and 1pu and 2pu applied stator
currents. However, the coefficients to be found using the
linear least square method have increased from 3 to 7,
compared to the simple polynomial model.

4) Reciprocal polynomial model: By forcing the best polyno-
mial model to fulfill the reciprocity condition, the number of
unknown coefficients to be estimated was reduced from 7 to 6.
As seen in Figure 21 and Figure 22, the curve fitted reciprocal
model performed better than the best polynomial model for the
operating regions within 1pu stator current. When summing
up the residuals of the curve fit for the reciprocal and best
polynomial models, the residuals of the best polynomial model
were smaller than the ones of the reciprocal polynomial model.
In addition, the numerical values of the coefficients of the
reciprocal formulas were more dependent on which region the
formulas were curve fitted to than the best polynomial model
due to the modeled interdependence of the flux linkages for the
reciprocal polynomial model. Thus, for the MTPA analysis, the
best polynomial model was chosen instead of the reciprocal
polynomial model.

5) Exponential model: When curve fitting the exponential
model to the FE computed flux linkages, the curve fit was
done for all combinations of the exponents from 0 to 9 to find
the combination of exponents giving the smallest residuals.
The optimal curve fit was found for an add parameter with
a negative value, but as one of the requirements for the
exponential formulas was only to have positive exponents
and parameters, add was forced to be zero.

The 3D surface plots can be found in Figure 23, while the
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TABLE IV: Coefficients and exponents for the proposed
models after being curve fitted to the FE calculated data.
The curve fitting was done for 26244 measurement points in
id ∈ [−2, 0] and iq ∈ [0, 2].

Parameter Value [pu]
Linear

xd 0.3200
xq 0.7324

Simple polynomial
d10s 0.2923
q01s 0.6917
q02s −0.0949

Best polynomial
d10b 0.3168
d11b −0.0321
d02b −0.0076
q01b 0.7196
q02b −0.1130
q12b −0.0065
q20b −0.0105

Reciprocal polynomial
d10r 0.3141
d11r −0.0254
d02r 0.0024
q01r 0.7196
q02r −0.1130
q12r −0.0065

Exponential
α 2
β 2
γ 0
δ 1
ad0 3.2603
add 0
aq0 1.4666
aqq 0.4845
adq 1.9733

.

.

.

.

.

.

.

.

.

.

.

.

TABLE V: Deviations from the model estimated flux linkages
to the FE calculated ones, relative to the FE calculated ones,
for operating points of 1pu and 2pu stator current while
operating with MTPA control. The magnetic modeling was
done for 26244 measurement points in id ∈ [−2, 0] and
iq ∈ [0, 2].

MTPA, is = 1pu MTPA, is = 2pu
|∆ψd| [%] |∆ψq | [%] |∆ψd| [%] |∆ψq | [%]

Constant xd, xq
0.8771 17.8547 5.6053 38.3557

Simple polynomial
0.3942 3.6999 1.2757 1.4094

Best polynomial
0.2302 0.8826 0.3349 0.2662

Reciprocal polynomial
0.2731 0.3451 0.2326 0.2071

Exponential
0.1584 0.9185 0.5956 0.1729
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(a)

(b)

Fig. 15: The FE calculated (a) ψd and (b) ψq by COMSOL,
plotted with the calculated ψd and ψq when using the linear
model, meaning assuming constant xd, xq .
.

(a)

(b)

Fig. 16: The difference between the FE calculated and the
model estimated flux linkages by the linear model, for (a) ψd
and (b) ψq . The MTPA trajectory and plots of the stator cur-
rents of 1pu and 2pu from Figure 6 are marked to emphasize
the operating region of the motor.
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(a)

(b)

Fig. 17: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the simple
polynomial model with coefficients curve fitted for 26244
measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 18: The difference between the FE calculated and the
model estimated flux linkages by the simple polynomial
model, for (a) ψd and (b) ψq . The MTPA trajectory and plots
of the stator currents of 1pu and 2pu from Figure 6 are marked
to emphasize the operating region of the motor.
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(a)

(b)

Fig. 19: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the best
polynomial model with coefficients curve fitted for 26244
measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 20: The difference between the FE calculated and the
model estimated flux linkages by the best polynomial model,
for (a) ψd and (b) ψq . The MTPA trajectory and plots of the
stator currents of 1pu and 2pu from Figure 6 are marked to
emphasize the operating region of the motor.
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(a)

(b)

Fig. 21: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the recipro-
cal polynomial model with coefficients curve fitted for 26244
measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 22: The difference between the FE calculated and the
model estimated flux linkages by the reciprocal polynomial
model, for (a) ψd and (b) ψq . The MTPA trajectory and plots
of the stator currents of 1pu and 2pu from Figure 6 are marked
to emphasize the operating region of the motor.
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(a)

(b)

Fig. 23: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the expo-
nential model with coefficients and exponents curve fitted for
26244 measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 24: The difference between the FE calculated and the
model estimated flux linkages by the exponential model, for
(a) ψd and (b) ψq . The MTPA trajectory and plots of the
stator currents of 1pu and 2pu from Figure 6 are marked to
emphasize the operating region of the motor.
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2D surface plot can be found in Figure 24. As mentioned
in Section II-B2, the exponential model calculates the
d- and q-axis currents based on ψd and ψq . Thus when
plotting the calculated currents to the defined id, iq grids,
the calculated currents of the exponential formulas did not
fit within the defined grid, leading to areas without data for
the 3D and 2D surface plots. However, the plotted areas
without measurement data were outside of the operating
region, meaning these data would have been neglected for
the analysis either way. The exponential model also achieved
a relative difference to the FE calculated flux linkages to
less than 1% within the critical operating points of 1pu and
2pu total stator current and MTPA control, as given in Table V.

C. Data extrapolation outside of the curve fitting area

In this subsection, the calculated flux linkages were plotted
up to id ∈ [−2, 0] and iq ∈ [0, 2], while being curve fitted to
the area of id ∈ [−1, 0] and iq ∈ [0, 1]. The relative deviation
between the curve fitted models of the flux linkages and the FE
calculated ones along the MTPA trajectory for stator currents
of 1pu and 2pu can be found in Table VI. The surface plots
of the best polynomial model can be found in Figure 25 and
Figure 26, and the exponential model in Figure 27 and Figure
28. It can be seen that both models are more accurate within
id ∈ [−1, 0] and iq ∈ [0, 1] compared to when being curve
fitted up to id ∈ [−2, 0] and iq ∈ [0, 2]. In addition, the best
polynomial model is more accurate outside of the curve fitted
area than the exponential model. The flux linkage plots of
the simple and reciprocal models can be found in Appendix B.

D. Performance of curve fitting with only 9 measurement
points

The previous curve fittings were done for 26244 measurement
points. However, having so many measurement points is not
feasible if the FE model is not available, and the flux linkages
would have to be measured at the lab. Thus, in order to
evaluate the usability of the magnetic models with input data
from measurements at the lab, the curve fitting was done for
only 9 measurement points. The surface plots for the best
polynomial model can be found in Figure 29 and Figure 30
and for the exponential model in Figure 31 and Figure 32. The
surface plots of the simple and reciprocal models can be found
in the Appendix B. The deviations from the FE computed flux
linkages for typical operating points can be found in Table VII.

VI. RESULTS: CONTROL IMPROVEMENT

A. MTPA trajectories

The empirically calculated MTPA trajectory from the COM-
SOL model was plotted together with the analytically calcu-
lated MTPA trajectories for the linear and best polynomial
magnetic model, as seen in Figure 33. It can be observed that

TABLE VI: Deviations from the model estimated flux linkages
to the FE calculated ones, relative to the FE calculated ones,
for operating points of 1pu and 2pu stator current while
operating with MTPA control. The magnetic modeling was
done for 6561 measurement points in id ∈ [−1, 0] and
iq ∈ [0, 1].

MTPA, is = 1pu MTPA, is = 2pu
|∆ψd| [%] |∆ψq | [%] |∆ψd| [%] |∆ψq | [%]

Simple polynomial
0.2658 0.2483 3.5233 1.8320

Best polynomial
0.0211 0.0070 1.4515 3.9194

Reciprocal polynomial
0.1167 0.0460 0.9553 2.9997

Exponential
0.1704 0.2011 3.5808 2.3595

TABLE VII: Deviations from the model estimated flux link-
ages to the FE calculated ones, relative to the FE calculated
ones, for operating points of 1pu and 2pu stator current while
operating with MTPA control. The magnetic modeling was
done for 9 measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].

MTPA, is = 1pu MTPA, is = 2pu
|∆ψd| [%] |∆ψq | [%] |∆ψd| [%] |∆ψq | [%]

Simple polynomial
0.3942 3.6999 1.2757 1.4094

Best polynomial
0.2928 2.9967 1.1176 1.0250

Reciprocal polynomial
0.4095 1.8703 0.4310 0.5981

Exponential
0.1213 2.3208 1.1360 1.0489
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(a)

(b)

Fig. 25: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the best
polynomial model with coefficients curve fitted for 6561
measurement points in id ∈ [−1, 0] and iq ∈ [0, 1].
.

(a)

(b)

Fig. 26: The difference between the FE calculated and the
model estimated flux linkages by the best polynomial model
for 6561 measurement points between id ∈ [−1, 0] and iq ∈
[0, 1], for (a) ψd and (b) ψq . The MTPA trajectory and plots of
the stator currents of 1pu and 2pu from Figure 6 are marked
to emphasize the operating region of the motor.
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(a)

(b)

Fig. 27: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the expo-
nential model with coefficients and exponents curve fitted for
6561 measurement points in id ∈ [−1, 0] and iq ∈ [0, 1].
.

(a)

(b)

Fig. 28: The difference between the FE calculated and the
model estimated flux linkages by the exponential model for
6561 measurement points between id ∈ [−1, 0] and iq ∈ [0, 1],
for (a) ψd and (b) ψq . The MTPA trajectory and plots of the
stator currents of 1pu and 2pu from Figure 6 are marked to
emphasize the operating region of the motor.
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(a)

(b)

Fig. 29: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the best
polynomial model with coefficients curve fitted for 9 mea-
surement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 30: The difference between the FE calculated and the
model estimated flux linkages by the best polynomial model
for 9 measurement points between id ∈ [−2, 0] and iq ∈ [0, 2],
for (a) ψd and (b) ψq . The MTPA trajectory and plots of the
stator currents of 1pu and 2pu from Figure 6 are marked to
emphasize the operating region of the motor.
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(a)

(b)

Fig. 31: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the curve
fitted exponential model with coefficients and exponents curve
fitted for 9 measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 32: The difference between the FE calculated and the
model estimated flux linkages by the exponential model for
9 measurement points between id ∈ [−2, 0] and iq ∈ [0, 2],
for (a) ψd and (b) ψq . The MTPA trajectory and plots of the
stator currents of 1pu and 2pu from Figure 6 are marked to
emphasize the operating region of the motor.
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(a)

(b)

Fig. 33: (a) The proposed MTPA trajectories either found nu-
merically by COMSOL or analytically by calculating the flux
linkages by either the linear model or by the best polynomial
model. (b) The proposed operating points to obtain MTPA at
a stator current of 2pu, by either calculating the flux linkages
by the linear model or by the best polynomial model.

the best polynomial model trajectory is closest to the trajec-
tory calculated by COMSOL, meaning the curve references
calculated by the best polynomial model should provide more
torque.

At a stator current of 2pu, the proposed current references,
meaning combinations of id and iq , corresponded to a load
angle of 2.0703rad for the linear model, and 2.0246rad for
the best polynomial model.

B. Analytical MTPA trajectories run through COMSOL

Both the proposed analytically derived current references
from Figure 33, were used as input currents to the COMSOL
model, such that the torque could be calculated using Arkkio’s
method. The resulting torques per ampere are given in 34.
The proposed MTPA trajectory for the best polynomial model
provided more torque per ampere for any given stator current
compared to the one of the linear model. At full load, 1pu
stator current, the increase in torque when using the best
polynomial model was only 0.04% compared to the linear
model. For higher currents, an increasing amount of torque
per ampere was achieved for the best polynomial model
compared to the linear one, and at 2pu stator current the best
polynomial model provided 0.33% more torque.

The same results were found when plotting the torque for
different load angles at 2pu stator current, as seen in Figure
35. In Figure 35(b) the load angles corresponding to the ones
proposed by the MTPA trajectories at 2pu, of 2.0703rad
and 2.0246rad for the linear and best polynomial model
respectively, were marked. The relative torque increase when
using the best polynomial model was only 0.36% higher, than
the torque obtained for the proposed load angle of the linear
model.

C. Analytical torque calculation versus FE torque calculation

At full load, 1pu stator current, the analytically calculated
torque using Equation 12, for the derived current references
when using the linear model was 6.35% higher compared
to what was calculated by COMSOL for the same current
references. At stator currents of 2pu, the torque was
analytically calculated to be 12.77% higher than calculated
by COMSOL. With higher stator currents, the deviation
between the analytically calculated torque by the linear model
and the FE calculated torque was increasing, as seen in Figure
36(a).

For the best polynomial model, there were no clear correlation
between higher stator currents and higher deviations between
the analytically torque equation by Equation 40 and
the FE calculated torques, as given in Figure 36(b). At
1pu and 2pu stator currents, the deviations between the
analytically calculated torque by the best polynomial model
to the COMSOL calculated torque were 2.89% and 1.31%
respectively.

D. Torque by FE calculated flux linkages and by Arkkio’s
method

To asses whether the torque deviation between the analytically
calculated torque using the best polynomial model and the
COMSOL calculated torque was due to the magnetic
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(a)

(b)

Fig. 34: (a) Obtained torque in the COMSOL model when
applying the proposed combinations of id, iq currents ensuring
MTPA, when using either the MTPA trajectory calculated by
the linear model or the best polynomial model, as given in
Figure 33(a). (b) Obtained torque in the COMSOL model
when applying the proposed combinations of id, iq currents
ensuring MTPA for a stator current of 2pu, as given in Figure
33(b).

modeling, the flux linkages were directly calculated in the
COMSOL model and not estimated by the best polynomial
model. Using Equation 7, the analytically calculated torque
using the COMSOL calculated flux linkages is given in 37.
The analytically calculated torque curve in Figure 37 is close
to indistinguishable from the analytically calculated torque
in Figure 36(b), where the best polynomial model estimated
the flux linkages. This implies that it is not the magnetic
modeling of the best polynomial model which creates a

(a)

(b)

Fig. 35: (a) Torque for different load angles for 2pu stator
current. (b) Zoom of (a) showing the numerically found
optimal load angle in red, the analytically calculated optimal
load angle using the best polynomial model in green, and
the analytically calculated optimal load angle using the linear
model in blue.

deviation between the FE and analytically calculated torque,
but rather the analytical torque equation itself.

VII. DISCUSSION: MAGNETIC MODELING

A. Assumptions when building the COMSOL model

When modeling the motor, the turn number, geometry and
material properties had to be estimated. In addition, the delta
coupled motor was modeled as its star coupled electrical
equivalent. Thus, the measured currents and flux linkages in
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(a)

(b)

Fig. 36: Torque achieved by Arkkio’s method in COMSOL
compared to the torque calculated by the analytical torque
equation, when using (a) the linear model and (b) the best
polynomial model. The same current references were used in
COMSOL and the analytical torque equations.

the COMSOL model can not be directly compared to the
ones of the physical IPMSM. For instance, at the motor’s
nameplate, the inductances were reported to be Ld = 95.3mH
and Lq = 206.1mH , corresponding to per unit constant d-
and q-axis reactances of 0.2130pu and 0.4607pu respectively,
which did not equal the reactances derived using the linear
model. In addition, no documentation was found stating at
which loading conditions the inductances were calculated,
making the direct comparison useless. However, although
the physical and modeled IPMSMs were not identical, the
trends of saturation and cross-coupling are assumed to be
comparable, making the analysis in this thesis valid for the

Fig. 37: Torque achieved by Arkkio’s method in COMSOL
when applying the currents corresponding to the MTPA
trajectory of the best polynomial model, compared to the
analytically calculated torque by using the calculated d- and
q-axis flux linkages and currents directly from COMSOL.

physical motors as well. Nevertheless, this would have to be
verified with measurements of the motor at the lab.

B. Flux linkage curves from COMSOL

As was shown in Figure 13, there are both magnetic saturation
and cross-coupling phenomena present in the motor as the
surface plot of the d-axis flux linkage was changing for
different q-axis currents and vice versa. Nevertheless, it
might be sufficient for practical purposes to model the flux
linkages and applied currents with a linear relation, meaning
constant xd and xq , neglecting the magnetic saturation
and cross-coupling. As was shown when developing the
MTPA trajectories where the linear model only provided
0.04% less torque at full load than the best polynomial model.

C. The linear model

In order to calculate ψm, xd and xq , measurements at only
three operation conditions were required. The unsaturated
reactances were found using 10% positive currents, as
given in [3]. The calculated d-axis flux linkage by xd
would underestimate the actual flux linkages in the machine
measured by COMSOL. However, the q-axis flux linkage
was overestimated when using the linear model, compared
to what was measured by COMSOL. Especially the q-axis
flux linkage had a non-linear behavior due to the saturation
of the motor iron, leading to a deviation of 17.85% at full
load between the estimated and measured flux linkage. As
the deviation increased for higher stator currents, it would be
advised to calculate xq for a higher loading than 0.1pu q-axis
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current. When calculating xd by 100% negative Id current,
the resulting xd was only 1.31% lower than 10% positive
Id current. The xq for 100% positive Iq would have been
17.06% lower.

D. The simple polynomial model

The simple polynomial model was introduced to find a more
accurate constant reactance for the d-axis flux linkage, and
model the second order polynomial behaviour of the q-axis
flux linkage when the motor went into saturation. By using
all 26244 measurement points to curve fit the constant d-axis
reactance giving the smallest error to the whole measurement
region, the d-axis flux linkage estimation could be greatly
improved in the whole operating region compared to the
linear magnetic model. At full load of 1pu stator current,
the difference from the estimated d-axis flux linkages to the
COMSOL ones was reduced from 0.88% for the linear model
to 0.39% for the simple polynomial model. For the q-axis
flux linkages, the difference was reduced from 17.85% to
3.70%. The difference between the measured and estimated
d-axis flux linkage by the simple polynomial model was
especially small along the MTPA trajectory, which will ensure
a more accurate torque estimation by the control system.
The simple polynomial model was estimating the COMSOL
computed flux linkages better than the linear magnetic model
also when being plotted outside of its curve fitted area.
This was also the case when being curve fitted to only 9
measurement points, as seen in Table V, VI and VII. Thus,
it is advised to use the simple polynomial model instead of
the linear magnetic model, as an accurate simple polynomial
model can be developed with very few measurement points.
These measurements can be done for a motor at the lab
during start-up. The fact that the modeling does not include
cross-coupling is more visible for the d-axis than the q-axis.
However, the cross-coupling phenomenon is primarily present
outside of the typical MTPA operating regions. As cross-
coupling was neglected, the reciprocity condition was fulfilled.

E. The best polynomial model

By introducing four more coefficients to the polynomial
magnetic modeling, the FE calculated flux linkage curves
could be curve fitted accurately by the best polynomial model.
At full load and MTPA, the difference between the model
estimated d-axis flux linkage to the COMSOL computed one
was only 0.23% and only 0.88% for the q-axis, with similar
accuracy up to stator currents of 2pu. By the best polynomial
model, cross-coupling and saturation were taken into account
for both axis flux linkages. However, the reciprocity condition
was not fulfilled. Not fulfilling the reciprocity condition
means the magnetic model is assumed to not be conservative,
such that the inductances, corresponding to the calculated
reactances, would be modeled to be able to produce or

dissipate energy. By neglecting the reciprocity condition, the
curve fitted best polynomial model is only meant to represent
the measured reality and not to describe a law of nature
correctly. How the best polynomial model would respond to
other rotor geometries has not been evaluated, meaning this
polynomial version might primarily be optimal for rotors
with radial magnetized permanent magnets.

F. The reciprocal polynomial model

For the reciprocal polynomial model, the reciprocity condition
was forced to be fulfilled by manipulating the formulas based
on the best polynomial model. Although the sum of residuals
of the curve fitting was greater for the reciprocal model
than the best polynomial model, the reciprocal model had
a smaller difference to the measured flux linkages than
the best polynomial model within the operating region of
1pu total stator current. Even though the reciprocal model
performed better in typical operating regions than the best
polynomial model, it was judged that deriving the coefficients
by curve fitting each axis flux linkage individually would
be more robust when using the models for different motors.
If the flux linkages had an even more non-linear behavior
for another motor geometry, the reciprocal polynomial
model might incorrectly model the flux linkages. Thus,
the best polynomial model was used for the further MTPA
performance evaluations. The relative performance between
the best and reciprocal polynomial model should be studied
for different IMPSM designs and experimentally at the lab.

G. The exponential model

The exponential model was also able to accurately curve fit
its nine coefficients and exponents to recreate the surface of
the FE calculated flux linkages. Having to find the optimal
combination of exponents giving the smallest difference to
the measured currents and flux linkages, the curve fit had
to be recomputed for every exponent combination, meaning
the magnetic modeling identification was more computational
demanding than of the polynomial functions. However, the
exponential model fulfilled the reciprocity condition. Within
the typical operating regions, it was performing almost
as well as the best polynomial model, with differences to
the measured flux linkages of less than 1% for the typical
operating regions along the MTPA trajectory.

H. Data extrapolation outside of the curve fitting area

For both the best polynomial model and the exponential
model, the models were able to extrapolate accurately outside
of their curve fitted areas, compared to the linear model. By
[20], it was stated that the performance of the polynomial
models would deteriorate if they were to extrapolate values
outside of their curve fitted area. However, when using the
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best polynomial model, it had a smaller difference to the FE
calculated flux linkage in the d-axis flux linkage compared
to the exponential model. For the q-axis flux linkage, the
exponential and best polynomial model performed relatively
equally. In conclusion, both models were able to extrapolate
outside of their curve fitted areas. However, if the operating
regions of the motor would be known, the models should be
curve fitted to the whole known operating region.

It should be noted that for both the best polynomial model
and the exponential model, the difference had decreased
between the model estimated and FE measured flux linkages
within the curve fitting area, compared to when the curve
fitting was done to the whole operating area up to 2pu.
This means the accuracy of the curve fittings can possibly
be improved by calculating different model coefficients for
different operating areas. However, by developing different
coefficients for different regions, it is important that between
these regions, the derivative is continuous.

I. Performance of curve fitting with only 9 measurement points

For 9 measurement points, all the models were able to curve
fit such that the models performed better than the linear
magnetic model. The simple polynomial model had the
largest relative deviations to the FE calculated flux linkages,
but only 0.39% for the d-axis and 3.70% for the q-axis at
full load and MTPA operation. As the models had smaller
deviations to the measured flux linkages when curve fitting
using 26244 measurement points compared to 9, it is advised
to include as many measurement points as possible in order
to achieve an as detailed model as possible. However, with
only 9 measurement points, the models performed a lot better
than the linear model which requires 3 measurement points
to develop xd and xq , thus developing magnetic models by
curve fitting is advised compared to using the linear model.
As only 9 measurement points are required, this enables
plug-and-play methods, meaning an undescribed IPMSM
could be efficiently magnetically modeled based on few
measurement points during start-up based on experiments at
the lab.

VIII. DISCUSSION: CONTROL IMPROVEMENT

A. Obtained torque for analytical MTPA trajectories

As the current references to achieve MTPA operation were
calculated using the torque equation, it was assumed that
using a more accurate magnetic model than the linear one
would increase the torque per ampere in the IPMSM. Using
the best polynomial formula as the magnetic model, the
developed MTPA trajectory was close to what was simulated
to be the best one in COMSOL. As the linear model developed
a MTPA trajectory with more negative d-axis current than

COMSOL calculated to ensure maximum torque, the best
polynomial model was assumed to give a higher torque for
the same ampere compared to the linear model.

However, when the proposed d- and q-axis current
combinations providing maximum torque per ampere
were simulated in the COMSOL model, the resulting torque
for the current references of the best polynomial model was
negligible higher than the the torque obtained by the current
references of the linear model. At full load, the current
references of the best polynomial model only provided 0.04%
higher torque relative to the torque using the linear model.
When increasing the stator current beyond full load up to
2pu, the current references derived from the best polynomial
model would provide 0.33% higher torque than if the linear
model was used. Thus, despite the motor being deep into
saturation, which the linear model neglected, the derived
MTPA trajectory of the linear model provided efficient torque
control. As the linear model underestimated the d-axis flux
linkage and overestimated the q-axis flux linkage along the
MTPA trajectory, as shown in Figure 16, it might be that the
combination of these effects provided a satisfactory MTPA
trajectory. It is still advised to use the best polynomial model
to calculate the MTPA trajectory. The linear model might not
give an accurate trajectory for motors of different geometries
and material properties. However, it is computationally more
demanding to derive the MTPA trajectory from the best
polynomial model. In addition, the MTPA trajectory could be
explicitly calculated analytically using the linear model, but
the MTPA trajectory of the best polynomial model had to be
solved numerically, which might introduce convergence issues.

B. Improved torque estimation

A benefit of modeling the flux linkages using the best
polynomial model was that the analytically calculated torque
was much closer to what was measured in COMSOL than
the linear model. For the same current references at full load,
the best polynomial model estimated a torque that was 2.89%
higher than the actual torque measured by Arkkio’s method,
while the linear model calculated a torque that was 6.35%
higher. This was due to the fact that as the linear model
neglected the magnetic saturation, the q-axis flux linkage was
highly overestimated in the machine, meaning the torque also
became overestimated. Thus, the more the motor iron became
saturated, the more the linear model overestimated the torque
compared to the FE calculated one. The best polynomial
model, which took the magnetic saturation and cross-coupling
into account, did not overestimate the torque as the motor
went into saturation. If the motor was to be torque controlled
without a speed controller, the linear model would, based on
the applied currents, estimate a higher torque in the motor
than what would actually be the case. So if there is no speed
controller in the motor control system, the control system
might overestimate the torque in the machine and think it
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has reached its reference, while the actual torque in the
machine is lower. Due to this, the motor might decelerate,
depending on the load. Using the best polynomial model,
a more accurate torque estimation closer to what would
be actually experienced by the motor would be achieved.
However, as there were still deviations between the model
estimated and FE calculated torque using the best polynomial
model, a speed controller should be integrated in the motor
control, such that the torque reference could be chosen based
on the torque demand at the load.

C. Torque equation evaluation

It was assumed that the analytical torque equation was not
accurately calculating the torque in the machine due to two
observations. Firstly, even though the best polynomial model
would accurately model the flux linkages, a deviation was
observed between the calculated MTPA trajectory using
COMSOL and the analytically derived MTPA trajectory
using the best polynomial model. Secondly, when comparing
the analytically calculated torque and the torque calculated
by Arkkio’s method in COMSOL, the analytical equation
provided a higher torque. Thus, to evaluate the accuracy of
the analytical torque equation, the flux linkages and applied
currents were both measured in COMSOL. When calculating
the torque based on the measured flux linkages and currents,
the torque did not equal the calculated torque by Arkkio’s
method. The analytically calculated torque calculated by the
measured flux linkages was identical to the torque calculated
when using the best polynomial model, as seen from Figure
36(b) and Figure 37. This implies that it was not the magnetic
modeling that was the reason for the difference in torque by
the analytical torque equation and Arkkio’s method, but the
torque equation itself.

As mentioned in Section II-A, the per-unit model of the
motor assumes that the magnetic flux density in the air gap
is sinusoidally distributed. However, in Figure 38, the air
gap flux density for a sector of the IPMSM was plotted,
showing that the air gap flux density was closer to being
square-shaped, containing third and sixth order harmonics.
When the torque was calculated by Arkkio’s method, the
spatial harmonics were included as the torque calculation was
done by Maxwell’s stress tensor method. It is thus assumed
that the analytical torque equation should be expanded to
include the other higher-order spatial harmonics than just
the fundamental to calculate the same torque as Arkkio’s
method. For applications where the IPMSM needs to provide
high accuracy, this is advised. However, for less demanding
applications, the motor control should include a speed
controller, such that the motor is always provided with the
necessary torque. Alternatively, the design of the motor
should be made such that the magnetic flux density in the air
gap would be sinusoidal. For instance by making the rotor

Fig. 38: The air gap flux density of the IPMSM due to the
permanent magnet, at no-load.

geometry more ellipse shaped than circular for each sector.

Thus, the control system of the IPMSM could be improved
by three measures, 1) using a detailed magnetic model, 2)
extending the torque equation to take into account the spatial
harmonics of the magnetic flux density in the air gap and 3)
redesigning the motor geometry or winding scheme to provide
a sinusoidal shaped magnetic flux density in the air gap.

IX. CONCLUSION

In this thesis, several explicit formulas with different degrees
of complexity have been presented to model the flux linkages
in an IPMSM, focusing on the stator current influence. Using
a FE model approximated to a commercial motor, d- and
q-axis flux linkages have been calculated for applied d-
and q-axis currents. Magnetic saturation and cross-coupling
phenomena have been shown to exist in the motor. It has also
been shown that the non-linear magnetic behaviors are not
efficiently modeled using a linear magnetic model, assuming
constant xd, xq , especially when calculating the q-axis flux
linkage. At full load, operating with MTPA control, the
relative difference between the FE calculated and the linearly
calculated q-axis flux linkage was 17.85%. The magnetic
models could be improved by introducing non-linear models
using curve fitting of the FE calculated data.

All of these models were based on curve fitting of the flux
linkages with variable d-axis currents ranging from −2pu to
0pu, and q-axis currents ranging from 0pu to 2pu. For the
proposed simple polynomial model, the q-axis flux linkage
was modeled to have a second-order relation with the applied
q-axis current. By this measure, the difference between the
FE calculated and model estimated q-axis flux linkage was
reduced to 3.70% at MTPA operation and a total stator
current of 1pu, meaning full load. Increasing the number
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of coefficients, as for the reciprocal and best polynomial
model with 6 and 7 coefficients respectively, only gave minor
deviations to the FE calculated flux linkages with under 1% at
full load and MTPA control. Both the reciprocal and the best
polynomial models take into account the magnetic saturation
and cross-coupling, but only the reciprocal model takes the
reciprocity condition into account. Finally, a pre-described
model from the literature taking the reciprocity condition into
account was studied and called the exponential model. The
model consisted of 5 coefficients and 4 exponents to be curve
fitted and was thus computationally more demanding to solve
when using the linear least square method than the polynomial
models. The exponential model was less accurate than the
best polynomial model and the reciprocal polynomial model
within the typical operating regions. However, the exponential
model was still accurate enough to result in relative deviations
from the FE calculated flux linkages of less than 1%. At
full load and MTPA operation, the relative difference
between the FE measured and model estimated d-axis flux
linkage was only 0.16% and 0.92% for the q-axis flux linkage.

All curve fitted models could extrapolate outside of the area
they were curve fitted to, but the polynomial models were
more accurate than the exponential one. Curve fitting the
coefficients to only 9 measurement points proved satisfactory
for all models, enabling rapid magnetic model identification
during the commissioning of new undescribed motors.

Based on the magnetic modeling, the thesis has shown how
the IPMSM might achieve more torque per ampere as well
as improved analytical torque calculation when using the best
polynomial model instead of the linear model. Nevertheless,
when calculating the current references at full load to ensure
MTPA operation using the best polynomial model, the
resulting torque was only 0.04% higher compared to when
the current references were calculated using the linear model.
The benefit of calculating the current references based on the
best polynomial model increased with higher stator currents,
as the magnetic saturation in the motor would increase as
well. However, if the purpose of the magnetic modeling is
to ensure MTPA operation, the linear model is judged to be
accurate enough. For the same current references at full load,
the analytically calculated torque using the best polynomial
model was 2.89% higher than what was calculated in the
COMSOL model by Arkkio’s method. As the magnetic
modeling of the best polynomial model was very accurate,
the analytical torque deviation from the torque calculated by
Arkkio’s method was argued to be due to the neglect of the
spatial harmonics of the magnetic flux density in the air gap,
which should be included in the analytical torque equation
for applications demanding precise torque control.

X. FUTURE WORK

The following tasks were not covered, but are judged to be
natural continuations of the thesis.

1) Verify the conclusions done for the proposed models by
lab investigation.

2) Investigate if the magnetic models are as accurate for
other motor geometries.

3) Improve the COMSOL model by collecting the data of
the motor materials and windings.

4) Develop a delta connected COMSOL model and map
the flux linkages based on the measured voltages during
a dynamic analysis, as done at the lab.

5) Connect the COMSOL model to the control system
in Simulink using the COMSOL extension Livelink
for Simulink, to simulate the potential motor control
improvement by including the magnetic modeling in the
control structure.

6) Design a motor in COMSOL providing a more sinu-
soidal air gap flux density and investigate if the torque
estimation would be improved.
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APPENDIX A
COMSOL MODELLING

A. COMSOL modeling

These modeling details were originally written for the
Specialization Project prior to the thesis [24], and is regiven
here with a few alterations as the master thesis is not a
continuation of the specialization project.

1) Geometry: Having opened and measured a comercially
available IPMSM, a 2D model of the motor was built based
on its measured geometry. The model of the motor was then
cut into a sector of 1/6 of the whole motor geometry, as
this sector would be antiperiodisticly symmetrical for 1/6
of the whole geometry. In order to be able to use Arkkio’s
method when calculating the torque, two equally wide air gap
bands were defined between the rotor and the stator. The 2D
geometry of the modelled sector can be found in Figure 2.
The length of the motor was set to be 6 times longer than the
measured length, to accurately calculate the induced voltage,
flux linkage and torque, despite only having modelled one
sector, meaning one sixth of the motor. Key geometry data is
given in Table VIII.

2) Materials: The magnets being assumed to be of the
type N50, were assigned the default COMSOL material N50
(Sintered NdFeB). The rotor and stator materials were set to
have the built-in material Silicon Steel NGO 35PN300, the
coils Copper, the plate between the magnet and rotor was
set to Steel AISI 4340 and the rest of the domains Air. The
materials were chosen to best replicate the unknown materials
of the actual motor. As the silicon steel sheets of the stator
and rotor were laminated, eddy currents in these areas were
neglected. This was achieved by setting the conductivity of
the silicon steel to 1e-6S.

3) Physics: The motor physics were modeled using the
physics module Rotating Machinery, Magnetic. Antiperiodistic
boundary conditions were defined at each sector border, using
Periodic Condition. The Sector Symmetry was defined at the
boundary between the two air gap bands, meaning the border
between the rotating and stationary parts, and the symmetry
was set to antiperiodistic with 6 sectors.

In the stator domain, the function Ampère’s Law was defined
to use the B-H Curve magnetization model. Meaning the
relative permeability and saturation of the stator and rotor
steel would be included in the model.

The magnets were also defined using Ampères Law, and by
selecting the magnetization model Remanence flux density.
The magnet was defined to have its remanence flux direction
as 1 along the r-axis.
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For each pair of slots, assumed to be 102 number of turns
for each slot, with a round wire diameter of 0.75[mm] and
a conductivity of 5e7[S/m]. The input currents were given
on amplitude value with ω as the angular frequency. The
three phases, a, b, c were defined in COMSOL as given in
Equation 14, and the winding scheme is given in Figure 2.

4) Mesh: The rotor, the magnet, the air domain between the
magnet and rotor and one of the air gap bands were in Moving
Mesh defined as Rotating Domains, with the chosen rpm
selected as Constant revolutions per time. For the stationary
analysis these definitions were not necessary, but the model
was prepared to be able to run in a dynamic analysis.

The mesh at each side of the sector, and at each air domain
boundary, were defined using Edge and Copy Edge to define
an equal number of nodes at each side of the sector. All
the domains of the sector were chosen to have an Extremely
Fine mesh. Having such a dense mesh would normally be a
great exaggeration, but the model did not converge otherwise
when being pushed deep into saturation. As the Parametric
sweeps were not too time consuming to solve, the mesh
was left dense. Using the function Distribution and Mapped
and selecting the three boundaries in the air gap bands, the
number of square mesh elements could be set to 200.

5) Study: For the analysis, the load angle between the rotor
magnet and stator currents were changed by keeping the rotor
in a constant position in relation to the stator while changing
the angles of the stator currents. By this method, there would
be no rotating parts in the machine such that the study could
be performed by a Parametric Sweep of Stationary study
methods. The sweeps were done by either defining specific
Id and Iq currents, or defining a stator current amplitude, Is,
and changing the angle offsets of the currents, θ, as explained
in Section III.

6) Results: After solving the model, the data had to be
post-processed. The results of interest for this model were
the air gap flux density, the flux linkages, the magnetic
saturation of the stator and rotor and the torque. The air
gap flux density in the air gap was found by selecting the
boundary between the two air gap bands using Line graph
in a 1D Plot Group function, and by inserting the expression
(rmm.Bx*X+rmm.By*Y)/sqrt(X∧2+Y∧2). The magnetic
saturation in the motor was visualized by plotting the relative
permeability in a Surface plot for a 2D Plot Group, using
the expression rmm.normB/(mu0 const*rmm.normH). The
torque was calculated using Arkkio’s method, a variation of
Maxwell’s stress tensor method, given in Equation 43 [25]
[26]. Meaning the torque was calculated by integrating over
the radius, r, and the magnetic flux density in radial direction,
Br, and tangential direction, Bθ.

TABLE VIII: Key data of the modelled motor in COMSOL.

Name Expression Value Description
Ls 80.8[mm] 0.0808 m Axial length stator

Dso 220[mm] 0.22 m Outer stator diameter
Dsi 150[mm] 0.15 m Inner stator diameter
Dri 47.5 [mm] 0.0475 m Inner rotor diameter
hsu 20[mm] 0.02 m Slot height stator

hPM 5[mm] 0.005 m Height PM
wPM 60[mm] 0.06 m Width PM
Dro 147.5[mm] 0.1475 m Outer rotor diameter
Thh 1.5[mm] 0.0015 m Tooth head height
Tws 6.2[mm] 0.0062 m Tooth width stem
Twh 10[mm] 0.01 m Tooth width head
slots 36 36 Slots/teeth

mag slot lower Dri/2+32[mm] 0.05575 m Lower part of mag slot
mag slot height 6[mm] 0.006 m Magnet slot height

D slot circ 4.5[mm] 0.0045 m Circle in magnet slot
air gap (Dsi-Dro)/2 0.00125 m Air gap

rpm 1000 [1/min] 16.667 1/s RPM
p 6 6 Poles
f rpm*p/2 50 1/s Frequency
w 2*pi*f 314.16 1/s Angular frequency

Te =
l

µ0(rout − rin)

∫
S

BrBθrdS (43)

Where l was the length of the machine, while rin was
the inner radius of the air gap band closest to the center,
and rout was the outer radius of the outer air gap band.
In COMSOL, an Integration function was defined for the
two air gap bands under Definitions. Then by defining Te
in Variables with the expression (p*L/(mu0 const (r out-
r in)))*intop torque((X*rmm.BX+Y*rmm.BY)*(Y*rmm.BX-
X*rmm.BY)/sqrt(X∧2+Y∧2)), the torque could be calculated.
Te was finally plotted in a 1D Plot Group as a Global
variable, and the average torque was calculated in a Global
Evaluation in Derived Values. The flux linkages, or Coil
concatenated flux as called in COMSOL, were given for each
phase, in this case phase a, as rmm.PhiCoil a. The d- and
q-axis currents and flux linkages were derived using Equation
15 and 16 respectively.
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APPENDIX B
SURFACE PLOTS

.

.

(a)

(b)

Fig. 39: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the simple
polynomial model with coefficients curve fitted for 6561
measurement points in id ∈ [−1, 0] and iq ∈ [0, 1].
.

(a)

(b)

Fig. 40: The difference between the FE calculated and the
model estimated flux linkages by the simple polynomial model
for 6561 measurement points between id ∈ [−1, 0] and iq ∈
[0, 1], for (a) ψd and (b) ψq . The MTPA trajectory and plots of
the stator currents of 1pu and 2pu from Figure 6 are marked
to emphasize the operating region of the motor.
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(a)

(b)

Fig. 41: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the recipro-
cal polynomial model with coefficients curve fitted for 6561
measurement points in id ∈ [−1, 0] and iq ∈ [0, 1].
.

(a)

(b)

Fig. 42: The difference between the FE calculated and the
model estimated flux linkages by the reciprocal polynomial
model for 6561 measurement points between id ∈ [−1, 0] and
iq ∈ [0, 1], for (a) ψd and (b) ψq . The MTPA trajectory and
plots of the stator currents of 1pu and 2pu from Figure 6 are
marked to emphasize the operating region of the motor.
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(a)

(b)

Fig. 43: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the simple
polynomial model with coefficients curve fitted for 9 measure-
ment points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 44: The difference between the FE calculated and the
model estimated flux linkages by the simple polynomial model
for 9 measurement points between id ∈ [−2, 0] and iq ∈ [0, 2],
for (a) ψd and (b) ψq . The MTPA trajectory and plots of the
stator currents of 1pu and 2pu from Figure 6 are marked to
emphasize the operating region of the motor.
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(a)

(b)

Fig. 45: The FE calculated (a) ψd and (b) ψq in COMSOL,
plotted with the calculated ψd and ψq when using the recip-
rocal polynomial model with coefficients curve fitted for 9
measurement points in id ∈ [−2, 0] and iq ∈ [0, 2].
.

(a)

(b)

Fig. 46: The difference between the FE calculated and the
model estimated flux linkages by the reciprocal polynomial
model for 9 measurement points between id ∈ [−2, 0] and
iq ∈ [0, 2], for (a) ψd and (b) ψq . The MTPA trajectory and
plots of the stator currents of 1pu and 2pu from Figure 6 are
marked to emphasize the operating region of the motor.
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APPENDIX C
THE MATLAB CODES

A. Initializing curve fitting

1 %CURVE FITTING ...
MAIN%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2

3 load_data=csvread('New_Ld_Lq_2_Idq.csv',5,0); ...
%Main measurement

4 load_datat=csvread('New_Ld_Lq_9points_230521.csv'
5 ,5,0); %Few meas
6 %Real values
7 I_d=load_data(:,5);
8 I_q=load_data(:,6);
9 Psi_d=load_data(:,7);

10 Psi_q=load_data(:,8);
11

12 Psi_m=1.6781; %NEW
13

14 %Calculated Ld Lq
15 Ld=143.14e-3; %NEW, 10% of In
16 Lq=327.64e-3; %NEW, 10% of In
17 %Ld=123.58e-3; %NEW 100% of pos In, %141.27 ...

if 100% neg In
18 %Ld=141.27e-3;
19 %Lq=271.73e-3; %NEW 100% of pos In, %value ...

for new xq in plots
20

21 %% Motorparameters
22 p=3; %pair of poles
23 U_line= 400; %V
24 I_line=4.93; %A
25 fn=50; %Hz
26 wn=2*pi*fn;
27 Xd=Ld*wn;
28 Xq=Lq*wn;
29 Rs=4.4;
30

31 %Base values
32 U_base=U_line*sqrt(2); %Peak Voltage per ...

phase!!!!!!!!!!
33 I_base=I_line*sqrt(2)/sqrt(3); %Peak current
34 Psi_base= U_base/(wn);
35 S_base=3/2*U_base*I_base;
36 T_base=S_base*p/wn;
37 Z_base=U_base/I_base;
38

39

40 %pu values
41 i_d=I_d/I_base;
42 i_q=I_q/I_base;
43 psi_d=Psi_d/Psi_base;
44 psi_q=Psi_q/Psi_base;
45 psi_m=Psi_m/Psi_base;
46 xd=Xd/Z_base;
47 xq=Xq/Z_base;
48 rs=Rs/Z_base;
49

50 %Erasing measured values out of interest
51 i_cut=2;
52 i_d_cut=[-i_cut 1e-6]; %Fit curve to chosen ...

values of Id [id_min id_max]
53 i_q_cut=[-1e-6 i_cut]; %Fit curve to chosen ...

values of Id [iq_min iq_max]
54

55 % find the values of id, iq that the curve ...
should not be optimized for

56 i_d_delete1=find((i_d>i_d_cut(2)));
57 i_d_delete2=find((i_d<i_d_cut(1)));
58 i_d([i_d_delete1; i_d_delete2])=[];
59 i_q([i_d_delete1; i_d_delete2])=[];

60 psi_d([i_d_delete1; i_d_delete2])=[];
61 psi_q([i_d_delete1; i_d_delete2])=[];
62 i_q_delete1=find((i_q>i_q_cut(2)));
63 i_q_delete2=find((i_q<i_q_cut(1)));
64 i_d([i_q_delete1;i_q_delete2])=[];
65 i_q([i_q_delete1;i_q_delete2])=[];
66 psi_d([i_q_delete1;i_q_delete2])=[];
67 psi_q([i_q_delete1;i_q_delete2])=[];
68

69 psi_dm=psi_d-psi_m;
70

71 %MTPA const xd, xq
72 %Residual plots
73 i_sa=0.00001:0.01:i_cut+0.00001;
74 %Const xd xq, formula from compendium of Roy ...

Nilsen
75 i_da=psi_m/(4*(xq-xd))-sqrt((psi_m/(4*(xq-xd)))ˆ2
76 +i_sa.ˆ2/2);
77 i_qa=sqrt(i_sa.ˆ2-i_da.ˆ2);
78

79 %CUT THE PLOTS
80 i_d_fit=[-2 0];
81 i_q_fit=[0 2];
82

83 %Plotting with values up to psi_values for ...
the flux linkages in the plots

84 psi_values=0.025;
85

86 %Gridding the measured flux linkages to ...
measured currents

87 [i_dGrid,i_qGrid] = ...
meshgrid(linspace(i_d_fit(1),i_d_fit(2),40),

88 linspace(i_q_fit(1),i_q_fit(2),40));
89

90 % Interpolation Psi_d
91 psi_dGrid = ...

griddata(i_d(:),i_q(:),psi_d(:),i_dGrid(:),
92 i_qGrid(:),'cubic');
93 psi_dGrid = reshape(psi_dGrid,size(i_dGrid));
94

95 % Interpolation Psi_q
96 psi_qGrid = ...

griddata(i_d(:),i_q(:),psi_q(:),i_dGrid(:),
97 i_qGrid(:),'cubic');
98 psi_qGrid = reshape(psi_qGrid,size(i_dGrid));

B. Plotting FE measured surfaces

1 main_master
2 %Plot measured values in dot 3D plot
3 figure
4 plot3(i_d,i_q,psi_d,'.')
5 xlabel('i_d [pu]');
6 ylabel('i_q [pu]');
7 zlabel('\psi_d [pu]');
8 grid on
9 xlim([i_d_fit(1),i_d_fit(2)]);

10 ylim([i_q_fit(1),i_q_fit(2)]);
11

12

13 % Fig.1 Surf plot Psi_d
14 figure
15 surf(i_dGrid,i_qGrid,psi_dGrid)
16 xlabel('i_d [pu]');
17 ylabel('i_q [pu]');
18 zlabel('\psi_d [pu]');
19 xlim([i_d_fit(1),i_d_fit(2)]);
20 ylim([i_q_fit(1),i_q_fit(2)])
21 colormap(jet)
22 colorbar
23
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24 % Fig.1 Surf plot Psi_q
25 figure
26 surf(i_dGrid,i_qGrid,psi_qGrid)
27 xlabel('i_d [pu]');
28 ylabel('i_q [pu]');
29 zlabel('\psi_q [pu]');
30 xlim([i_d_fit(1),i_d_fit(2)]);
31 ylim([i_q_fit(1),i_q_fit(2)]);
32 colormap(jet)
33 colorbar

C. Torque theory plots

1 main_master
2 load_data=csvread(
3 'max_torque_theta_one_sweep_220521.csv',5,0);
4 %1pu
5 load_data3=csvread(
6 'max_torque_theta_one_sweep_2pu_250521.csv',5,0);
7 %2pu
8 load_data1=csvread(
9 'max_torque_theta_one_sweep_reluctance_220521.csv'

10 ,5,0);
11 load_data2=csvread(
12 'max_torque_theta_one_sweep_PM_220521.csv',5,0);
13

14 %Real values
15 theta=load_data(:,2);
16 t=load_data(:,10)/T_base;
17 i_d_max=load_data(:,5)/I_base;
18 i_q_max=load_data(:,6)/I_base;
19 %psi_d_max=load_data(:,7)/Psi_base;
20 %psi_q_max=load_data(:,8)/Psi_base;
21

22 %Additional curves
23 %Magnet disabled, reluctance torque
24 theta1=load_data1(:,2);
25 t1=load_data1(:,10)/T_base;
26

27 %Rotor iron disabled, PM torque
28 theta2=load_data2(:,2);
29 t2=load_data2(:,10)/T_base;
30

31 theta3=load_data3(:,2);
32 t3=load_data3(:,10)/T_base;
33 i_d_max3=load_data3(:,5)/I_base;
34 i_q_max3=load_data3(:,6)/I_base;
35

36 figure
37 plot(theta, t,'r','LineWidth',2.0)
38 hold on
39 plot(theta1, t1,'r:','LineWidth',2.0)
40 hold on
41 plot(theta2, t2,'r--','LineWidth',2.0)
42 xlim([0, pi])
43 grid on
44 xlabel('\theta [rad]')
45 ylabel('\tau_e [pu]')
46 legend('\tau_{e, tot}','\tau_{e, ...

reluctance}','\tau_{e, PM}')
47 %title('Torque of IPMSM, by reluctance and ...

PM torque')
48

49 %plot(theta,T)
50 [t_max1, index] = max(t);
51 theta_max = theta(index);
52 figure
53 plot(theta, t,'r', theta_max, t_max1, ...

'bo','LineWidth',2.0)
54 hold on
55 plot(theta,i_d_max,'k:','LineWidth',2.0)

56 hold on
57 plot(theta,i_q_max,'k--','LineWidth',2.0)
58 xlim([0, pi])
59 grid on
60 xlabel('\theta [rad]')
61 ylabel('\tau_e [pu], i [pu]')
62 legend('\tau_e','\tau_{e, max}','i_d','i_q')
63 %title('Torque for constant current i_s of ...

1pu and different load angles')
64

65 %plot(theta,T)
66 [t_max3, index3] = max(t3);
67 theta_max3 = theta(index3);
68 figure
69 plot(theta3, t3,'r', theta_max3, t_max3, ...

'bo','LineWidth',2.0)
70 hold on
71 plot(theta3,i_d_max3,'k:','LineWidth',2.0)
72 hold on
73 plot(theta3,i_q_max3,'k--','LineWidth',2.0)
74 xlim([0, pi])
75 grid on
76 xlabel('\theta [rad]')
77 ylabel('\tau_e [pu], i [pu]')
78 legend('\tau_e','\tau_{e, max}','i_d','i_q')
79 %title('Torque for constant current i_s of ...

2pu and different load angles')

D. Cutting values from data set

1 %Erasing measured values out of interest
2 i_cut=1;
3 i_d_cut=[-i_cut 0]; %Fit curve to chosen ...

values of Id [Id_min Id_max]
4 i_q_cut=[0 i_cut]; %Fit curve to chosen ...

values of Id [Iq_min Iq_max]
5 % find the values of Id, Iq that the curve ...

should not be optimized for
6 i_d_delete1=find((i_d>i_d_cut(2)));
7 i_d_delete2=find((i_d<i_d_cut(1)));
8 i_d([i_d_delete1; i_d_delete2])=[];
9 i_q([i_d_delete1; i_d_delete2])=[];

10 psi_d([i_d_delete1; i_d_delete2])=[];
11 psi_q([i_d_delete1; i_d_delete2])=[];
12 i_q_delete1=find((i_q>i_q_cut(2)));
13 i_q_delete2=find((i_q<i_q_cut(1)));
14 i_d([i_q_delete1;i_q_delete2])=[];
15 i_q([i_q_delete1;i_q_delete2])=[];
16 psi_d([i_q_delete1;i_q_delete2])=[];
17 psi_q([i_q_delete1;i_q_delete2])=[];
18 psi_dm=psi_d-psi_m;

E. Plotting curves of the linear model

1 main_master
2

3 psi_d_xGrid=i_dGrid*xd+psi_m; %psi_d ...
assuming const x_d

4 psi_q_xGrid=i_qGrid*xq; %psi_q assuming ...
const x_q

5

6 R_dGrid=-psi_dGrid+psi_d_xGrid; %Diff. in ...
measured and calculated by x_d

7 R_qGrid=-psi_qGrid+psi_q_xGrid; %Diff. in ...
measured and calculated by x_q

8

9 %%%%%%%%%%%%%%%%%%%%%%
10 %Plotting for psi_d
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11

12 figure
13 surf(i_dGrid,i_qGrid,psi_dGrid,'FaceColor','r')
14 hold on
15 surf(i_dGrid, i_qGrid, ...

psi_d_xGrid,'FaceColor','b')
16 hold on
17 legend({'Measured','Const. x_d'})
18 hold off
19 xlabel('i_d [pu]');
20 ylabel('i_q [pu]');
21 zlabel('\psi_d [pu]');
22

23

24 figure
25 pcolor(i_dGrid,i_qGrid,R_dGrid)
26 hold on
27 plot(i_da,i_qa,'k','LineWidth',2.0)
28 hold on
29 plot(1*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
30 ,2.0)
31 hold on
32 plot(2*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
33 ,2.0)
34 hold off
35 xlabel('i_d [pu]');
36 ylabel('i_q [pu]');
37 caxis([-psi_values,psi_values])
38 zlim([-psi_values,psi_values])
39 colormap(jet)
40 colorbar
41

42 figure
43 pcolor(i_dGrid,i_qGrid,psi_dGrid)
44 hold on
45 plot(i_da,i_qa,'k','LineWidth',2.0)
46 hold on
47 plot(1*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
48 ,2.0)
49 hold on
50 plot(2*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
51 ,2.0)
52 hold off
53 xlabel('i_d [pu]');
54 ylabel('i_q [pu]');
55 colormap(jet)
56 colorbar
57

58 %%%%%%%%%%%%%%%
59 %Psi_q
60

61 % Fig. Surf plot Psi_q for const xq functions
62 figure
63 surf(i_dGrid,i_qGrid,psi_qGrid,'FaceColor','r')
64 hold on
65 surf(i_dGrid, i_qGrid, ...

psi_q_xGrid,'FaceColor','b')
66 hold on
67 legend({'Measured','Const. x_q'})
68 hold off
69 xlabel('i_d [pu]');
70 ylabel('i_q [pu]');
71 zlabel('\psi_q [pu]');
72

73

74 figure
75 pcolor(i_dGrid,i_qGrid,R_qGrid)
76 hold on
77 plot(i_da,i_qa,'k','LineWidth',2.0)
78 hold on
79 plot(1*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
80 ,2.0) %plotting circles 1pu
81 hold on
82 plot(2*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'

83 ,2.0) %plotting circles 2pu
84 hold off
85 xlabel('i_d [pu]');
86 ylabel('i_q [pu]');
87 caxis([-psi_values,psi_values])
88 zlim([-psi_values,psi_values])
89 colormap(jet)
90 colorbar
91

92 figure
93 pcolor(i_dGrid,i_qGrid,psi_qGrid)
94 hold on
95 plot(i_da,i_qa,'k','LineWidth',2.0)
96 hold on
97 plot(1*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
98 ,2.0)
99 hold on

100 plot(2*exp(1j*(0:pi/200:2*pi)),'k:','LineWidth'
101 ,2.0)
102 hold off
103 xlabel('i_d [pu]');
104 ylabel('i_q [pu]');
105 colormap(jet)
106 colorbar

F. Curve fitting of the simple polynomial model

1 %1. Standard
2 main_master %Never comment out
3

4 %2 The curve fitting is only done within an ...
area defined in ICutting_plot

5 %ICutting_plot %If not commented out, the ...
curve fit will be done within

6 %the measured area defined in ICutting_plot
7 %2 end
8

9 % % % %3 Curve fitting is only done for a ...
few mwasurement points in load_datat

10 % i_d=load_datat(:,5)/I_base;
11 % i_q=load_datat(:,6)/I_base;
12 % psi_d=load_datat(:,7)/Psi_base;
13 % psi_q=load_datat(:,8)/Psi_base;
14 % psi_dm=psi_d-psi_m;
15 % % % %3 end
16

17 % Building matrix for all I_d I_q values
18 x1=i_d;
19

20 y1=i_q;
21 y2=i_q.ˆ2;
22

23 one= zeros(length(i_d),1)+1;
24 null=zeros(length(i_d),1);
25

26 % %simple fit, reciprocity condition not ...
taken into account, USED IN PROJECT

27 Y1=[psi_dm; psi_q];
28 X1=[x1 null null; null y1 y2];
29

30 [B1, BINT, R]=regress(Y1,X1);
31

32 d10=B1(1);
33 q01=B1(2);
34 q02=B1(3);
35

36

37 R_dm=R(1:length(R)/2, 1);
38 R_q=R(1+(length(R))/2:length(R), 1);
39 sumR_dm=sum(abs(R_dm));
40 sumR_q=sum(abs(R_q));
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41

42 %Plotting the curves
43 psi_d_regGrid=d10*i_dGrid+psi_m;
44 psi_q_regGrid=q01*i_qGrid+q02*i_qGrid.ˆ2;
45

46 %Same plotting as for linear magnetics

G. Curve fitting of the best polynomial model

1 %1. Standard
2 main_master %Never comment out
3

4 %2 The curve fitting is only done within an ...
area defined in ICutting_plot

5 %ICutting_plot %If not commented out, the ...
curve fit will be done within

6 %the measured area defined in ICutting_plot
7 %2 end
8

9 % % % %3 Curve fitting is only done for a ...
few mwasurement points in load_datat

10 % i_d=load_datat(:,5)/I_base;
11 % i_q=load_datat(:,6)/I_base;
12 % psi_d=load_datat(:,7)/Psi_base;
13 % psi_q=load_datat(:,8)/Psi_base;
14 % psi_dm=psi_d-psi_m;
15 % % % %3 end
16

17 % Building matrix for all I_d I_q values
18 x1=i_d;
19 x3=i_d.*i_q;
20 x4=i_q.ˆ2;
21

22 y2=i_q;
23 y4=i_q.ˆ2;
24 y5=i_d.*i_q.ˆ2;
25 y6=i_d.ˆ2;
26

27 one= zeros(length(i_d),1)+1;
28 null=zeros(length(i_d),1);
29

30 % %Best fit, reciprocity condition not taken ...
into account, USED IN PROJECT

31 Y1=[psi_dm; psi_q];
32 X1=[x1 x3 x4 null null null null;null null ...

null y2 y4 y5 y6];
33

34 [B1, BINT, R]=regress(Y1,X1);
35

36 d10=B1(1);
37 d11=B1(2);
38 d02=B1(3);
39 q01=B1(4);
40 q02=B1(5);
41 q12=B1(6);
42 q20=B1(7);
43

44 R_dm=R(1:length(R)/2, 1);
45 R_q=R(1+(length(R))/2:length(R), 1);
46 sumR_dm=sum(abs(R_dm));
47 sumR_q=sum(abs(R_q));
48

49 %Plotting the curves
50 psi_d_regGrid=d10*i_dGrid+
51 d11*i_dGrid.*i_qGrid+d02*i_qGrid.ˆ2+psi_m;
52 psi_q_regGrid=q01*i_qGrid+q02*i_qGrid.ˆ2+
53 q12*i_qGrid.ˆ2.*i_dGrid+ ...
54 q20*i_dGrid.ˆ2;

H. Curve fitting of the reciprocal polynomial model

1 %1. Standard
2 main_master %Never comment out
3

4 %2 The curve fitting is only done within an ...
area defined in ICutting_plot

5 %ICutting_plot %If not commented out, the ...
curve fit will be done within

6 %the measured area defined in ICutting_plot
7 %2 end
8

9 % % %3 Curve fitting is only done for a few ...
mwasurement points in load_datat

10 % i_d=load_datat(:,5)/I_base;
11 % i_q=load_datat(:,6)/I_base;
12 % psi_d=load_datat(:,7)/Psi_base;
13 % psi_q=load_datat(:,8)/Psi_base;
14 % psi_dm=psi_d-psi_m;
15 % % % %3 end
16

17 % Building matrix for all I_d I_q values
18 x1=i_d;
19 x3=i_d.*i_q;
20 x4=i_q.ˆ2;
21 x5=i_q.ˆ3;
22

23 y2=i_q;
24 y3=i_d.*i_q;
25 y4=i_q.ˆ2;
26 y5=i_d.*i_q.ˆ2;
27 y6=i_d.ˆ2;
28

29 one= zeros(length(i_d),1)+1;
30 null=zeros(length(i_d),1);
31

32 %RECIPROCITY CONDITION, ALSO INCLUDED IN PROJECT
33 %Version 3
34 Y1=[psi_dm; psi_q];
35 X1=[x1 x3 x4 null null x5*1/3; null 0.5*y6 ...

2*y3 y2 y4 y5];
36

37 [B1, BINT, R]=regress(Y1,X1);
38

39 d10=B1(1);
40 d11=B1(2);
41 d02=B1(3);
42 q01=B1(4);
43 q02=B1(5);
44 q12=B1(6);
45

46 R_dm=R(1:length(R)/2, 1);
47 R_q=R(1+(length(R))/2:length(R), 1);
48 sumR_dm=sum(abs(R_dm));
49 sumR_q=sum(abs(R_q));
50

51 %Plotting the curves
52 psi_d_regGrid=d10*i_dGrid+d11*i_dGrid.*i_qGrid
53 +d02*i_qGrid.ˆ2+1/3*q12*i_qGrid.ˆ3+psi_m;
54 psi_q_regGrid=q01*i_qGrid+q02*i_qGrid.ˆ2
55 +q12*i_qGrid.ˆ2.*i_dGrid+1/2*d11*i_dGrid.ˆ2
56 +2*d02*i_dGrid.*i_qGrid;

I. Curve fitting and plotting curves of the exponential model

1 %1. Standard
2 main_master %Never comment out
3

4 % %2 The curve fitting is only done within ...
an area defined in ICutting_plot
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5 %ICutting_plot %If not commented out, the ...
curve fit will be done within

6 % %the measured area defined in ...
ICutting_plot, if not used, comment line 42

7 % %2 end
8

9 % % %3 Curve fitting is only done for a few ...
mwasurement points in load_datat

10 % i_d=load_datat(:,5)/I_base;
11 % i_q=load_datat(:,6)/I_base;
12 % psi_d=load_datat(:,7)/Psi_base;
13 % psi_q=load_datat(:,8)/Psi_base;
14 % psi_dm=psi_d-psi_m;
15 % %if not used, comment out line 42, main_master
16 % % %3 end
17

18 %Exponents, chosen values
19 alpha=2; %7;
20 beta=2; %4;
21 Delta=0; %0;
22 gamma=1; %2;
23

24 % Building matrix
25 x1=(abs(psi_dm).ˆalpha).*psi_dm;
26 y1=1/(Delta+2).*abs(psi_dm).ˆgamma
27 .*abs(psi_q).ˆ(Delta+2).*psi_dm;
28 z1=abs(psi_q).ˆbeta.*psi_q;
29 w1=1/(gamma+2).*abs(psi_dm).ˆ(gamma+2)
30 .*abs(psi_q).ˆDelta.*psi_q;
31 null=zeros(length(i_d),1);
32

33 Y1=[i_d; i_q];
34 X1=[psi_dm null null null y1;
35 null psi_q null z1 w1]; %a_dd forced to be 0
36

37

38 [B1, BINT, R]=regress(Y1,X1);
39

40 a_d0=B1(1);
41 a_q0=B1(2);
42 a_dd=B1(3);
43 a_qq=B1(4);
44 a_dq=B1(5);
45

46 main_master
47

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 %Plotting the new curves using formula, by ...

id, iq, x, y-axis
50 i_d_reg=a_d0*psi_dm
51 +a_dd.*psi_dm.*abs(psi_dm).ˆalpha+ ...
52 a_dq/(Delta+2)*abs(psi_dm).ˆgamma
53 .*abs(psi_q).ˆ(Delta+2).*psi_dm;
54 i_q_reg=a_q0*psi_q+a_qq.*psi_q.*abs(psi_q).ˆbeta+
55 a_dq/(gamma+2)*abs(psi_dm).ˆ(gamma+2)
56 .*abs(psi_q).ˆ(Delta).*psi_q;
57 % Interpolation psi_d
58 psi_d_regGrid = griddata(i_d_reg(:),i_q_reg(:)
59 ,psi_d(:),i_dGrid(:),...
60 i_qGrid(:),'cubic');
61 psi_d_regGrid = ...

reshape(psi_d_regGrid,size(i_dGrid));
62 % % Interpolation psi_q
63 psi_q_regGrid = griddata(i_d_reg(:),i_q_reg(:)
64 ,psi_q(:),i_dGrid(:),...
65 i_qGrid(:),'cubic');
66 psi_q_regGrid = ...

reshape(psi_q_regGrid,size(i_qGrid));
67

68

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70 % Fig. Psi_d Plots
71 figure
72 surf(i_dGrid,i_qGrid,psi_dGrid,'FaceColor','r')%,

73 hold on
74 surf(i_dGrid, i_qGrid, ...

psi_d_regGrid,'FaceColor','m')%,
75 legend({'Measured',['Curve fit,' newline ...

'exponential']})
76 hold off
77 xlabel('i_d [pu]');
78 ylabel('i_q [pu]');
79 zlabel('\psi_d [pu]');
80 xlim([-1.95,-0.05])
81 ylim([0.05,1.95])
82

83

84 figure
85 pcolor(i_dGrid,i_qGrid,psi_dGrid)
86 hold on
87 plot(i_da,i_qa,'k','LineWidth',2.0)
88 hold on
89 plot(1*exp(1j*(0:pi/200:2*pi)),'k:'
90 ,'LineWidth',2.0)
91 hold on
92 plot(2*exp(1j*(0:pi/200:2*pi)),'k:'
93 ,'LineWidth',2.0)
94 hold off
95 xlabel('i_d [pu]');
96 ylabel('i_q [pu]');
97 colormap(jet)
98 colorbar
99

100 R_dGrid=-psi_dGrid+psi_d_regGrid;
101 figure
102 pcolor(i_dGrid,i_qGrid,R_dGrid)
103 hold on
104 plot(i_da,i_qa,'k','LineWidth',2.0)
105 hold on
106 plot(1*exp(1j*(0:pi/200:2*pi)),'k:'
107 ,'LineWidth',2.0)
108 hold on
109 plot(2*exp(1j*(0:pi/200:2*pi)),'k:'
110 ,'LineWidth',2.0)
111 hold off
112 xlabel('i_d [pu]');
113 ylabel('i_q [pu]');
114 caxis([-psi_values,psi_values])
115 zlim([-psi_values,psi_values])
116 colormap(jet)
117 colorbar
118

119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
120 % Psi_q
121

122 figure
123 surf(i_dGrid,i_qGrid,psi_qGrid,'FaceColor','r')%,
124 hold on
125 surf(i_dGrid, i_qGrid, ...

psi_q_regGrid,'FaceColor','m')%,
126 legend({'Measured',['Curve fit,' newline ...

'exponential']})
127 hold off
128 xlabel('i_d [pu]');
129 ylabel('i_q [pu]');
130 zlabel('\psi_q [pu]');
131 xlim([-1.95,-0.05])
132 ylim([0.05,1.95])
133 zlim([0,1.2])
134

135 figure
136 pcolor(i_dGrid,i_qGrid,psi_qGrid)
137 hold on
138 plot(i_da,i_qa,'k','LineWidth',2.0)
139 hold on
140 plot(1*exp(1j*(0:pi/200:2*pi)),'k:'
141 ,'LineWidth',2.0)
142 hold on

46



143 plot(2*exp(1j*(0:pi/200:2*pi)),'k:'
144 ,'LineWidth',2.0)
145 hold off
146 xlabel('i_d [pu]');
147 ylabel('i_q [pu]');
148 colormap(jet)
149 colorbar
150

151 R_qGrid=-psi_qGrid+psi_q_regGrid;
152 figure
153 pcolor(i_dGrid,i_qGrid,R_qGrid)
154 hold on
155 plot(i_da,i_qa,'k','LineWidth',2.0)
156 hold on
157 plot(1*exp(1j*(0:pi/200:2*pi)),'k:'
158 ,'LineWidth',2.0)
159 hold on
160 plot(2*exp(1j*(0:pi/200:2*pi)),'k:'
161 ,'LineWidth',2.0)
162 hold off
163 xlabel('i_d [pu]');
164 ylabel('i_q [pu]');
165 caxis([-psi_values,psi_values])
166 zlim([-psi_values,psi_values])
167 colormap(jet)
168 colorbar
169

170 % %START, find exponents
171 % %Find which exponents who give the ...

smallest error
172 % %Calculate the error
173 % it=1;
174 % for i = 0:1:8
175 % alpha1=i;
176 % for j=0:1:8
177 % beta1=j;
178 % for k=0:1:8
179 % Delta1 =k;
180 % for m=0:1:8
181 % gamma1=m;
182 %
183 % x1=(abs(psi_dm).ˆalpha1).*psi_dm;
184 % y1=1/(Delta1+2).*abs(psi_dm).ˆgamma1
185 .*abs(psi_q).ˆ(Delta1+2).*psi_dm;
186 % z1=abs(psi_q).ˆbeta1.*psi_q;
187 % w1=1/(gamma1+2).*abs(psi_dm).ˆ(gamma1+2)
188 .*abs(psi_q).ˆDelta1.*psi_q;
189 % null=zeros(length(i_d),1);
190 %
191 % Y1=[i_d; i_q];
192 % X1=[psi_dm null x1 null y1; null psi_q ...

null z1 w1];
193 %
194 % [B1, BINT, R]=regress(Y1,X1);
195 %
196 % E(it)=sum(abs(R));
197 % para(it,1)=i; para(it,2)=j; ...

para(it,3)=k; para(it,4)=m;
198 % it=it+1;
199 % end
200 % end
201 % end
202 % end
203 %
204 % %Writes which alpha, beta, gamma, Delta ...

which gives the smallest error
205 % para(find(E==min(E)),:)
206 % %END FIND EXPONENTS

J. Developing MTPA curves

1 main_master
2 %FINDING THE COEFFICIENTS by BEST POLYNOMIAL ...

FUNCTION
3 % Building matrix for all I_d I_q values
4 x1=i_d;
5 x3=i_d.*i_q;
6 x4=i_q.ˆ2;
7 y2=i_q;
8 y4=i_q.ˆ2;
9 y5=i_d.*i_q.ˆ2;

10 y6=i_d.ˆ2;
11 one= zeros(length(i_d),1)+1;
12 null=zeros(length(i_d),1);
13 % %Best fit, reciprocity condition not taken ...

into account, USED IN PROJECT
14 Y1=[psi_dm; psi_q];
15 X1=[x1 x3 x4 null null null null;null null ...

null y2 y4 y5 y6];
16 [B1, BINT, R]=regress(Y1,X1);
17 d10=B1(1);d11=B1(2);d02=B1(3);
18 q01=B1(4);q02=B1(5);q12=B1(6);q20=B1(7);
19

20 %FINDING MTPA BY COMSOL MEASUREMENTS
21 load_data=csvread(
22 'New_Ld_Lq_max_torque_220521.csv',5,0);
23 %Real values
24 theta=load_data(:,2);
25 t=load_data(:,10)/T_base;
26 i_d_max=load_data(:,5)/I_base;
27 i_q_max=load_data(:,6)/I_base;
28 psi_d_max=load_data(:,7)/Psi_base;
29 psi_q_max=load_data(:,8)/Psi_base;
30

31 theta_sweep=find(theta==pi/2); %Assuming all ...
sweeps for is have been done

32 %from pi/2, if not, this value has to be changed
33

34 angle_it=-theta_sweep(1)+theta_sweep(2);
35 it2=length(i_d_max)/angle_it;
36

37 for it=1:it2
38 t_givenAmp=t(1+angle_it*(it-1):angle_it*it);
39 t_max(it,:)=max(t_givenAmp); %Calculated ...

torque by COMSOL and Arkkios
40 t_max_coordi(it,:)= ...

[i_d_max(angle_it*(it-1)+...
41 find(t_givenAmp==max(t_givenAmp))) ...

i_q_max(angle_it*(it-1)+...
42 find(t_givenAmp==max(t_givenAmp)))];
43 t_max_coordpsi(it,:)= ...

[psi_d_max(angle_it*(it-1)+...
44 find(t_givenAmp==max(t_givenAmp))) ...

psi_q_max(angle_it*(it-1)+...
45 find(t_givenAmp==max(t_givenAmp)))];
46 end
47

48 i_dit=-1e-6; %initializing the first guess ...
for the numerical problem

49 for it=1:length(i_sa) %Implisitt problem
50 F=@(i_dit) [-(2 *d10* ...

i_ditˆ2)/sqrt(i_sa(it)ˆ2 - i_ditˆ2) ...
+ ...

51 -(psi_m* i_dit)/sqrt(i_sa(it)ˆ2 - ...
i_ditˆ2) + ...

52 -3* d02* i_dit* sqrt(i_sa(it)ˆ2 - ...
i_ditˆ2) + ...

53 (d10 *i_sa(it)ˆ2)/sqrt(i_sa(it)ˆ2 - ...
i_ditˆ2) + ...

54 -3 *d11* i_ditˆ2 + d11 *i_sa(it)ˆ2 + ...
4 *q12 *i_ditˆ3 + ...

55 (2 *q01* i_ditˆ2)/sqrt(i_sa(it)ˆ2 - ...
i_ditˆ2) +...

56 - (q01* i_sa(it)ˆ2)/sqrt(i_sa(it)ˆ2 ...
- i_ditˆ2) +...
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57 3* q02 *i_ditˆ2 - 3 *q20 *i_ditˆ2 - ...
2 *q12 *i_dit *i_sa(it)ˆ2+...

58 - q02 *i_sa(it)ˆ2];
59

60 i_dit=fsolve(F,i_dit);
61 i_dit_vec(it)=i_dit;
62 end
63 i_dit=i_dit_vec;
64 i_qit=sqrt(i_sa.ˆ2-i_dit.ˆ2);
65

66 %Plotting the torque for i_s
67 i_sVec=sqrt(t_max_coordi(:,1).ˆ2
68 +t_max_coordi(:,2).ˆ2);
69 %Calculated torque by COMSOL and torque equation
70 te_c=(t_max_coordpsi(:,1)).*(t_max_coordi(:,2))+
71 -(t_max_coordpsi(:,2)).*(t_max_coordi(:,1));
72 %Calculated torque by analytical formula
73 te_a=((psi_m-(xq-xd).*i_da).*i_qa); %const ...

xd xq
74

75 te_it=(psi_m.*i_qit+(d10-q01)*i_dit.*i_qit+ ...
%Best polynomial

76 +(d11-q02)*i_dit.*i_qit.ˆ2+d02*i_qit.ˆ3+...
77 -q12*i_dit.ˆ2.*i_qit.ˆ2-q20*i_dit.ˆ3);
78

79 %Export best id, iq combinations to be run ...
in COMSOL

80 csvwrite('myFiled.txt',[i_da*I_base])
81 csvwrite('myFileq.txt',[i_qa*I_base])

K. Plotting MTPA curves

1 IMTPA
2 %FINDING MTPA BY COMSOL MEASUREMENTS
3 %Best polynomial function
4 load_data1=csvread(
5 'New_Ld_Lq_max_torque_BestComb_010621.csv',5,0);
6 te_it_com=load_data1(:,10)/T_base;
7 i_sit_com=sqrt((load_data1(:,5)/I_base).ˆ2
8 +(load_data1(:,6)/I_base).ˆ2);
9 %i_qit_com=load_data1(:,6)/I_base;

10

11 %Const xd, xq
12 load_data2=csvread(
13 'New_Ld_Lq_max_torque_ConstComb_010621.csv',5,0);
14 te_a_com=load_data2(:,10)/T_base;
15 i_sa_com=sqrt((load_data2(:,5)/I_base).ˆ2
16 +(load_data2(:,6)/I_base).ˆ2);
17 %i_da_com=load_data2(:,5)/I_base;
18 %i_qa_com=load_data2(:,6)/I_base;
19

20 figure
21 plot(i_sa_com,te_a_com,'b','LineWidth',2.0)
22 hold on
23 plot(i_sit_com,te_it_com,'g','LineWidth',2.0)
24 %hold on
25 %plot(i_sa,te_a,'b:','LineWidth',2.0)
26 %hold on
27 %plot(i_sa,te_it,'g:','LineWidth',2.0)
28 legend('Arkkios method, const. x_d, x_q',...
29 'Arkkios method, best polynomial formula')
30 xlabel('i_s [pu]');
31 ylabel('\tau_e [pu]');
32 grid on
33 xlim([0,2])
34

35

36 figure
37 plot(i_sa_com,te_a_com,'b','LineWidth',1.0)
38 hold on
39 plot(i_sa,te_a,'b--','LineWidth',1.0)

40 legend('Arkkios method',...
41 'Torque equation')
42 xlabel('i_s [pu]');
43 ylabel('\tau_e [pu]');
44 grid on
45 xlim([0,2])
46

47

48 figure
49 plot(i_sit_com,te_it_com,'g','LineWidth',1.0)
50 hold on
51 plot(i_sa,te_it,'g--','LineWidth',1.0)
52 legend('Arkkios method',...
53 'Torque equation')
54 xlabel('i_s [pu]');
55 ylabel('\tau_e [pu]');
56 grid on
57 xlim([0,2])
58

59

60 figure
61 plot(i_sVec,t_max,'r','LineWidth',1.0)
62 hold on
63 plot(i_sVec,te_c,'r--','LineWidth',1.0)
64 hold on
65 legend('Arkkios method', ...
66 'Torque equation, measured \psi_{dq}, ...

i_{dq}')
67 xlabel('i_s [pu]');
68 ylabel('\tau_e [pu]');
69 grid on
70

71

72 figure
73 hold on
74 scatter(i_d_max,i_q_max,'.')
75 hold on
76 scatter(t_max_coordi(:,1),t_max_coordi(:,2),'ro')
77 grid on
78 xlabel('i_d [pu]')
79 ylabel('i_q [pu]')
80 xlim([-0.05,0]);
81 ylim([0.05,0.1])
82

83

84

85

86 figure
87 plot(t_max_coordi(:,1),t_max_coordi(:,2),
88 'r','LineWidth',2.0)
89 hold on
90 plot(i_da,i_qa,'b','LineWidth',2.0)
91 hold on
92 plot(i_dit,i_qit,'g','LineWidth',2.0)
93 hold on
94 plot(1*exp(1j*(0:pi/200:2*pi)),'k--',
95 'LineWidth',2.0)
96 hold on
97 plot(2*exp(1j*(0:pi/200:2*pi)),'k:',
98 'LineWidth',2.0)
99 legend('COMSOL','Const. x_d, x_q', 'Best ...

polynomial', 'i_s=1pu','i_s=2pu')
100 %title('MTPA trajectories')
101 xlabel('i_d [pu]');
102 ylabel('i_q [pu]');
103 xlim([-2,0]);
104 ylim([0,2]);
105 grid on
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