
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Sim
en Burud

Conversational Language M
odels for Low

-Resource Speech Recognition

Simen Burud

Conversational Language Models for
Low-Resource Speech Recognition

Master’s thesis in Computer Science
Supervisor: Massimiliano Ruocco
Co-supervisor: Pablo Ortiz

June 2021

M
as

te
r’s

 th
es

is





Simen Burud

Conversational Language Models for
Low-Resource Speech Recognition

Master’s thesis in Computer Science
Supervisor: Massimiliano Ruocco
Co-supervisor: Pablo Ortiz
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science





i

Abstract

Automatic Speech Recognition (ASR) systems transcribe speech to text. They
have a wide range of practical applications, from dictation tools making commu-
nication much easier for people with hearing and motor impairments to low-cost
indexing and search in audiovisual content. As a building block in larger machine
learning systems, ASR plays a crucial role in many commercial products, such as
digital voice assistants.

Many modern ASR systems are implemented as (almost) purely data-driven,
end-to-end Deep Learning models. These systems show impressive results in
many domains, comparable to or even surpassing human performance. Unfortu-
nately, these techniques often struggle when tasked with transcribing low-resource
languages, especially in real-life situations. Despite the term “end-to-end”, they
end up relying heavily on both an external language model and a large beam
search to achieve decent results.

Pre-trained attention models such as BERT (Bidirectional Encoder Represen-
tations from Transformers) have advanced state-of-the-art across many natural
language processing tasks in the past few years. Several ways of integrating
BERT-like models in speech recognition systems have been proposed. However,
research so far have been limited to high-resource domains.

Turning our attention to low-resource domains, we introduce a data-efficient
fine-tuning strategy for BERT. BERT learns to effectively use conversational
context to rescore beam search results by teaching it to disambiguate good and
bad transcripts. We show how this improves performance over a robust baseline
system in two distinct, specialized domains: formal parliamentary debates and
customer service calls. These domains are low-resource both in terms of language
(Norwegian) and speech/linguistic characteristics. We also test how to produce a
richer variety of candidate transcripts to cover more possibilities using a diversity
bonus.



ii

Sammendrag

Automatiske talegjenkjenningsystemer transkiberer tale til tekst. Slike syste-
mer har et bredt spekter av praktiske bruksomr̊ader, fra dikteringsverktøy som
forenkler kommunikasjon for personer med hørsels - eller motoriske funksjonsned-
settelser, til å muliggjøre søk i audiovisuelt innhold. Talegjenkjenning spiller ogs̊a
en viktig rolle som del av større maskinlæringsystemer i kommersielle produkter
som digitale personlige assistenter.

Mange moderne talegjenkjenningsystemer bygges som (tilnærmet) rent data-
drevne ende-til-ende-modeller basert p̊a dyp læring. Disse gir imponerende re-
sultater p̊a mange omr̊ader. Resultatene kan ofte sammenlignes med, og er i
noen tilfeller enda mer nøyaktige enn, manuelle transkripsjoner gjort av men-
nesker. Dessverre kommer disse teknikkene ofte til kort i møte med spr̊ak og
domener der det er lite data å trene p̊a. Til tross for tilnavnet “ende-til-ende,”
blir de avhengig av b̊ade en ekstern spr̊akmodell og et omfattende heuristisk søk
(vanligvis beam search) for å oppn̊a brukbare resultater.

I senere tid har forh̊andstrente spr̊akmodeller basert p̊a oppmerksomhet, f.eks.
BERT (toveis omformerbaserte enkoder-representasjoner), gitt store fremskritt
p̊a mange oppgaver innen spr̊akprosessering. Ogs̊a for norsk spr̊ak har Nasjonal-
biblioteket bygget en BERT-modell som gir svært lovende resultater. Det har
blitt foresl̊att en rekke teknikker for å kombinere BERT-lignende spr̊akmodeller
med talegjenkjenning, men forskningen s̊a langt har fokusert p̊a spr̊ak og domener
der store mengder treningseksempler er tilgjengelig.

Vi retter n̊a fokus mot “datafattige” domener, og introduserer en trenings-
strategi for BERT der vi finjusterer modellen p̊a en svært dataeffektiv m̊ate.
Dette skjer ved å trene BERT til å skille mellom gode og d̊arlige transkrip-
sjoner fra den eksisterende talemodellen. P̊a den m̊aten lærer BERT å sk̊are
forslagslisten fra talemodellen for å identifisere den beste transkripsjonen. I til-
legg tester vi teknikker for å tvinge talemodellen til å generere en mer mangfoldig
forslagsliste.

Bruken av BERT gir betydelig bedre resultater sammenlignet med et allerede
robust talegjenkjenningsystem i to spesialiserte og svært forskjellige domener:
plenumsmøter i Stortinget og kundeservicesamtaler hos Telenor. Utover at det i
utgangspunktet er noks̊a magert med norske treningsdata for talegjenkjenning, er
begge disse domenene datafattige i form av lite treningsdata, distinkt spr̊akbruk
og utstrakt bruk av dialekt.



iii

Preface

This master thesis is the final delivery of my Master of Science (MSc) degree
at the Department of Computer Science at the Norwegian University of Science
and Technology (NTNU). It was written as part of the long-running collabo-
ration between NTNU and Telenor Research through the Norwegian Open AI
Lab (formerly Telenor-NTNU AI Lab). I would like to thank my supervisors,
Pablo Ortiz at Telenor Research and Massimiliano Ruocco at NTNU, for excel-
lent guidance throughout the project. In addition, I would like to thank Telenor
Research for the opportunity to use their compute infrastructure and datasets in
my experiments.

Simen Burud
Trondheim, June 18, 2021



iv



Contents

1 Introduction 1
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Low-resource domains . . . . . . . . . . . . . . . . . . . . . 2
1.2 Goals and research questions . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background Theory 5
2.1 Natural Language Processing . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Tokens and Vocabularies . . . . . . . . . . . . . . . . . . . . 5
2.2 Language models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Bag-of-words . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 n-gram models . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Artificial Neural Networks (for sequences) . . . . . . . . . . . . . . 7
2.3.1 Word Embeddings . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . 9
2.3.3 Sequence to sequence . . . . . . . . . . . . . . . . . . . . . 10
2.3.4 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Automatic Speech Recognition . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Connectionist Temporal Classification (CTC) . . . . . . . . 13
2.4.2 The attention-based approach . . . . . . . . . . . . . . . . . 17

3 State of the art 19
3.1 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Pre-training . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Input/Output representation . . . . . . . . . . . . . . . . . 21
3.1.3 Model scaling . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Language Models in Speech Recognition . . . . . . . . . . . . . . . 23
3.2.1 Inference-time integration . . . . . . . . . . . . . . . . . . . 24
3.2.2 Integration by fusing neural models . . . . . . . . . . . . . 25

v



vi CONTENTS

3.2.3 Knowledge transfer . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Diverse Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Methodology 29
4.1 Acoustic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 N-best Rescoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 BERT for spoken language . . . . . . . . . . . . . . . . . . . . . . 32

4.4.1 MLM & NSP . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 Conversational NSP . . . . . . . . . . . . . . . . . . . . . . 33
4.4.3 Disambiguation task . . . . . . . . . . . . . . . . . . . . . . 34
4.4.4 Input representation in BERT . . . . . . . . . . . . . . . . . 34
4.4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Experiments 37
5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Telenor Norway’s Customer Service (TNCS) . . . . . . . . . 38
5.1.2 Norwegian Parliamentary Speech Corpus (NPSC) . . . . . . 39
5.1.3 Nordisk Spr̊akteknologi (NST) . . . . . . . . . . . . . . . . 40
5.1.4 Colossal Norwegian Corpus . . . . . . . . . . . . . . . . . . 40
5.1.5 OpenSubtitles . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Acoustic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4.1 n-gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.2 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Beam Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Results and Discussion 49
6.1 N-best rescoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Conversational context . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 Sequence length and bounds for improvements . . . . . . . 51

6.2 Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Shallow fusion vs. rescoring . . . . . . . . . . . . . . . . . . . . . . 53
6.4 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4.1 Model bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Analysis of BERT training strategies . . . . . . . . . . . . . . . . . 56

6.5.1 Conversational NSP and human performance . . . . . . . . 57



CONTENTS vii

7 Conclusion 59
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1.1 Tighter LM integration . . . . . . . . . . . . . . . . . . . . 60
7.1.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.1.3 Vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1.4 Acoustic Model . . . . . . . . . . . . . . . . . . . . . . . . . 61

Bibliography 63

Appendix A Conversations from OpenSubtitles 69
A.1 Pre-training on conversational text . . . . . . . . . . . . . . . . . . 69
A.2 Audio-free disambiguation . . . . . . . . . . . . . . . . . . . . . . . 70

Appendix B Scaling BERT-like models 73

Appendix C Hyperparameter search 75



viii CONTENTS



List of Figures

2.1 Left: A simple RNN. Right: The same network, unrolled for t time
steps. Illustration from Olah 2015. . . . . . . . . . . . . . . . . . . 9

2.2 A sequence-to-sequence network as proposed by Sutskever, Vinyals,
and Le 2014. Note how the entire input sequence must be com-
pressed into the hidden state of the fourth node. . . . . . . . . . . 10

2.3 The transformer architecture as illustrated by Vaswani et al. 2017. 12

2.4 Z matrix for the sentence “stortingets møte er lovlig satt”. Each
column represents the probability of each token (with represent-
ing [BLANK]) at the given time step. Darker color corresponds to
higher probabilities. Notice how periods of silence are filled with
[BLANK], and the blank token between the double t at the end.
Time steps have a duration of 20ms with a 10ms stride. . . . . . . 14

2.5 The set of paths π ∈ Paths(y) all collapsing to the string y =“satt”
when T = 6. Thicker lines indicate the number of paths each edge
or node is part of. As with figure 2.4, notice how every path must
pass through a blank token to produce the double t. . . . . . . . . 14

2.6 The Deep Speech architecture as illustrated by A. Hannun et al.
2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Devlin et al. 2019’s illustration of BERT’s pre-training scheme. A
classification token is prepended to the first input sentence, and a
separator is placed between them. A position embedding is then
concatenated to each token before feeding everything through the
model. The first output token corresponds with the NSP task,
while the remaining tokens are used for MLM. . . . . . . . . . . . 20

3.2 A compressed graph visualization of the N-best list from decoding
the example “stortingets møte er lovlig satt” from figure 2.4. While
there are hundreds of variations among the last 6-7 characters,
barely any variations closer to the root are retained. . . . . . . . . 27

ix



x LIST OF FIGURES

4.1 Diagram of the ASR pipeline. Audio is processed through an
Acoustic Model to produce the matrix Z. The Beam Search pro-
duces an N-best list of candidates from Z, guided by an n-gram
Language Model through shallow fusion. Finally, the N-best list
is then rescored by BERT, taking previous utterances from the
conversation into account in order to disambiguate the candidates
better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Word frequencies and number of words with each frequency. . . . . 39
5.2 The AM architecture. Figure adapted from Amodei et al. 2016. . . 42
5.3 Icicle diagram showing time spent in each component when decod-

ing 20 random samples. While it is clear that BERT (nsp score docs)
slows down the system significantly, converting the output of the
beam search to Python-compatible strings takes almost as long time. 46

6.1 WER on the NPSC evaluation set with 2 and 5 context utterances
available to BERT when rescoring. It is clear that longer context
improves results on this dataset. . . . . . . . . . . . . . . . . . . . 51

6.2 Total WER as function of utterance word count (grouped by ground
truth length at 5-word intervals). “Beam” is the 2-gram baseline
system. “Combined” adds a BERT model fine-tuned with 2 or 5
context utterances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.1 MLM loss on each dataset before and after additional pre-training
on OpenSubtitles. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1 WER on disambiguation task with more incorrect transcripts in-
cluded. Bidirectional context size was set to 4 utterances. . . . . . 74

B.2 WER plotted against the time required to disambiguate transcripts
for each conversation. Lines follow increases in context size. . . . . 74

C.1 WER as a function of γ on the TNCS evaluation set. (*) is a
smaller RoBERTa model pre-trained on just 5GB of text. . . . . . 76

C.2 WER as a function of γ on the TNCS test set. . . . . . . . . . . . 76
C.3 WER as a function of γ on the NPSC evaluation set. . . . . . . . . 77
C.4 WER as a function of γ on the NPSC test set. . . . . . . . . . . . 77
C.5 Parallel coordinate plot from TNCS hyperparameter search. . . . . 78
C.6 Parallel coordinate plot from TNCS hyperparameter search with

diverse beam search. . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.7 Contour plot from TNCS hyperparameter search with diverse beam

search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.8 Parallel coordinate plot from NPSC hyperparameter search. . . . . 80



LIST OF FIGURES xi

C.9 Contour plot from NPSC hyperparameter search. . . . . . . . . . . 80



xii LIST OF FIGURES



List of Tables

5.1 Two consecutive utterances of a conversation before standardizing
spelling variations and removing hesitations. . . . . . . . . . . . . . 38

6.1 Word Error Rates (WER) and WER recovery rates (WERR) ob-
tained with the different decoding strategies. We use the total
WER evaluated on the test split of each dataset, and report num-
bers as percentages. WERR is calculated for each block using the
plain BS + n-gram model as baseline and the corresponding oracle
rescorer as the gold standard. . . . . . . . . . . . . . . . . . . . . . 50

6.2 Results on TNCS test set with standard and diverse beam search . 53
6.4 Text-only disambiguation results on a balanced TNCS evaluation

set with 2-utterance context, comparable to setting N = 2 and
γ = 1. All models start from the same base model (see section
5.1.4), but are trained on different datasets until the early stopping
criterion is met. PPV/NPV is the positive/negative predictive
values, i.e. portion of samples predicted as positive/negative that
actually are true positives/negatives. . . . . . . . . . . . . . . . . . 56

6.5 Accuracy on 64 evaluation samples from a balanced TNCS con-
versational NSP set. The human was not fine-tuned on this task. . 57

A.1 Text-only disambiguation WER and accuracy on TNCS before and
after pre-training on OpenSubtitles conversations. Results were
run with 4 utterances of bidirectional context and 2 candidates to
disambiguate, one of which were the ground truth transcript. . . . 70

A.2 Results on OpenSubtitles disambiguation with 2 lines of context. . 71

xiii



xiv LIST OF TABLES



Acronyms

AM Acoustic Model.

ASR Automatic Speech Recognition.

BERT Bidirectional Encoder Representations from Transformers.

BS Beam Search.

CNSP Conversational Next Sentence Prediction.

HMM Hidden Markov Model.

LM Language Model.

MLM Masked Language Modeling.

NLM Neural Language Model.

NLP Natural Language Processing.

NN Artificial Neural Network.

NSP Next Sentence Prediction.

OOV out-of-vocabulary.

RNN Recurrent Neural Network.

WER Word Error Rate.

xv



xvi Acronyms



Chapter 1

Introduction

1.1 Background and motivation

The task of Automatic Speech Recognition (ASR) is to make a computer tran-
scribe speech to text: given a segment of audio, output the text being spoken.
ASR has numerous practical applications; examples include virtual voice assis-
tants, dictation, and search in audiovisual content, among others. As an ac-
cessibility technology, ASR enables people with hearing impairments to perceive
spoken announcements in public spaces and better participate in conversations
with people who do not speak sign language. Combined with machine trans-
lation, it can help facilitate conversations between people who do not speak a
common language.

Due to the number of practical, real-life applications, ASR has received sig-
nificant research interest for many years. Since the early attempts by Davis,
Biddulph, and Balashek 1952, many approaches have been proposed. For many
years, research was primarily focused on Hidden Markov Model (HMM)-based
pipelines. While these show impressive results and are the basis of many com-
mercially successful ASR systems, they typically require substantial feature en-
gineering and tuning by domain experts. In addition, the lack of capacity to
propagate the error during optimization across modules leads to suboptimal re-
sults, typically in the form of sensitivity to noise and speaker variations (Kamath,
J. Liu, and Whitaker 2019).

In recent years, end-to-end Deep Learning-based systems have proved to be
very successful. In contrast to the HMM-based pipelines, this approach requires
very little domain expertise to train: they are trained like any other neural net-
work, taking the raw audio as input and the target transcript as output. All
feature extraction and -engineering needed is learned implicitly during training.

1



2 CHAPTER 1. INTRODUCTION

This makes it very easy to adapt an ASR system to a new domain: “just” produce
a sufficiently large training set and feed it to the model.

Even though these systems are termed end-to-end, most can be decomposed
into three distinct components: the acoustic model, the decoder algorithm, and
the language model. The acoustic model is primarily concerned with encoding
the audio to a sequence of token probability vectors. This sequence is typically
decoded using a wide, compute-intensive beam search, often guided by a language
model. The top-scoring result from the beam search is often not the optimal one,
indicating there is room for improvements by making better use of the decoder
outputs.

ASR systems usually do not make use of context beyond the current ut-
terance. This lack of information makes it harder to disambiguate phonetically
similar transcripts, and the model often ends up outputting the statistically most
common interpretation. Xiong et al. 2017 have done some work in this regard
and report improvements from local conversational data.

1.1.1 Low-resource domains

As is common in Deep Learning, “sufficiently large” means thousands of hours.
Synnaeve et al. 2020, for example, report continued performance improvements
just by obtaining more training data, even beyond 10,000 hours of audio. For
many low-resource languages and domains, obtaining such amounts of training
data is prohibitively expensive or outright impossible to obtain.

Commercial Deep Learning-based ASR systems see widespread deployment,
even in languages like Norwegian, where little training data is available. Røyneland
et al. 2018 have raised concerns about their (currently lacking) ability to reliably
transcribe low-resource languages such as Norwegian in real-life situations and
the broader consequences of this in society.

While parallel audio training data is difficult to obtain in large quantities,
most languages and domains have massive text corpora available. Recent ad-
vances in the field of Natural Language Processing (NLP) are making use of these
corpora to pre-train general-purpose Language Models (LMs) to obtain state-of-
the-art results in a wide range of NLP tasks with relatively little task-specific
fine-tuning (Devlin et al. 2019). In theory, these models should be applicable to
ASR as well. However, written text uses language very differently from spon-
taneous conversations, leaving the question of how such large LMs can improve
performance in highly specialized domains when very little transcribed speech is
available.



1.2. GOALS AND RESEARCH QUESTIONS 3

1.2 Goals and research questions

This thesis is part of an ongoing project at Telenor Research to improve ASR for
real-life, spontaneous Norwegian conversations. Telenor’s ASR system is based
on Amodei et al. 2016 and trained on both the publicly available NST dataset
(≈ 400h), as well as a small internal dataset of customer service calls (≈ 15h). We
are primarily concerned with the latter dataset, which is detailed in section 5.1.1.

This thesis aims to explore how large-scale language models can improve con-
versational ASR performance in low-resource domains and real-life situations.

Research question 1 How do state-of-the-art LM and integration methods per-
form in low-resource situations?

As we will discuss further in section 3.2, integration of neural LMs is an ongoing
research area, and there is no method consistently outperforming the others. Our
primary focus will not be to benchmark the various methods. Instead, we would
like to evaluate how such methods perform on spontaneous conversations in a
low-resource situation, compared to results reported in the literature.

Research question 2 How can LMs exploit conversational context to improve
performance?

Modern language models such as Devlin et al. 2019 are capable of attending
over a much larger context than previous LMs. Continuing the work from the
specialization project preceding this thesis, we run experiments to determine to
what extent LMs capturing conversational context can improve ASR results.

Research question 3 How does the LM training scheme and - data affect re-
sults?

One aspect of LM integration rarely discussed in the literature is how to train
the LM. As our transcribed speech contains very different language from written
text, we hypothesize that the datasets and training scheme used to train the LM
will impact the results.

1.3 Contributions

We bring state-of-the-art neural LM integration techniques to two challenging
low-resource domains. Using a BERT model, we perform N-best rescoring of
beam search outputs to obtain significant performance improvements over the
already strong baseline system.

Making conversational context available to BERT in the form of previous
utterances is key to our approach. We find that the amount of context required



4 CHAPTER 1. INTRODUCTION

depends on the target domain. In particular, we find that formal parliamentary
discussions benefit greatly from increased conversational context. At the same
time, too much context can also mislead BERT on Telenor’s more unpredictable
internal dataset of spontaneous, informal conversations.

Further, we find that fine-tuning procedures play a significant role in BERT’s
ability to rescore the N-best lists. We propose a data-efficient fine-tuning strategy
that uses the baseline ASR system to generate sufficient training examples for
BERT, even from a tiny dataset. Fine-tuning BERT this way on a small number
of relevant samples performs far better than fine-tuning on a much larger, out-
of-domain conversational dataset.

Finally, we analyze the N-best lists and find that beams become relatively
homogeneous as the utterance length grows. To remedy this, we propose a di-
versity term inspired by work in image captioning. However, experiments show
that more work is needed for this to become a feasible option.

1.4 Thesis Structure

The next chapter gives a brief theoretic overview of ASR, NLP, and Deep Learning
applied to sequential data. Chapter 3 provides a focused review on state-of-
the-art methods in NLP. We also discuss how related works integrate LMs into
ASR pipelines. In chapter 4, we define our ASR pipeline and explain our LM
training strategy. Chapter 5 details the datasets used and explains how the
experiments were carried out, while chapter 6 explores the outcome. Finally,
chapter 7 summarizes the results in terms of the research questions.



Chapter 2

Background Theory

This chapter gives an overview of the background theory on which this thesis is
based.

2.1 Natural Language Processing

Natural Language Processing (NLP) is the study of how human languages can be
parsed, processed, and understood by computers. In NLP, the word “document”
refers to one unit of text being studied. A document’s size depends on the
application and can be anything from a single sentence to a whole book. A
corpus is a (usually rather large) collection of documents, i.e. social media posts
about a particular topic, newspaper articles, or encyclopedia entries.

2.1.1 Tokens and Vocabularies

Each document consists of a string of tokens. Splitting a document into tokens
is called tokenization. Very early systems tokenized by splitting on whitespace
and punctuation. For this reason, “token” and “word” are sometimes used in-
terchangeably. Smarter, rule-based tokenizer algorithms are available for most
active human languages. In addition to splitting at word boundaries, they also
separate the word stem from any prefixes and affixes where relevant.

The vocabulary V is the set of allowed tokens and is often defined as the top k
words in the training corpus. Ideally, V should contain all possible tokens in the
language. Even for large training corpora, unseen data will often contain a small
proportion of unseen tokens. Thus, the NLP system must be able to handle tokens
it has never seen before. This is called the out-of-vocabulary (OOV) problem. It

5



6 CHAPTER 2. BACKGROUND THEORY

is common to solve this issue at the language modeling level, as discussed in the
next section.

A different solution is bottom-up statistical tokenizers such as WordPiece
(Schuster and Nakajima 2012). In Latin-based languages, these are usually in-
stantiated with a vocabulary equal to the language’s alphabet and iteratively
add the most common token combinations to the vocabulary. This approach
can technically guarantee that all documents using the same alphabet only con-
tain tokens from the vocabulary. What would otherwise be an OOV token is
now represented as a previously unseen combination of known tokens (i.e. pieces
of words). Deep models (see section 2.3.3) can then infer the overall meaning
based on the semantic representations of each token. We will get back to this in
chapter 3.

2.2 Language models

A Language Model (LM) assigns a probability to a document, indicating how
likely it is to see that document. Formally, an LM operates on documents X
of tokens xi over a (finite) vocabulary V. The LM represents the probability of
observing a document, denoted P (X) = P (x1, x2, ..., xt), xi ∈ V. P (X) is usually
understood to mean P (X|C), where C is a text corpus relevant to the domain or
task in question.

Except for toy problems, the set of possible documents over a vocabulary is
massive, even for modest vocabulary sizes. In addition, many applications require
fairly large vocabularies. Using the popular fastText library (Bojanowski et al.
2017) to estimate order of magnitude, |V| = 106. With this vocabulary size,
there are (106)10! = (106)3,628,800 = 1021,772,800 possible documents if we limit
ourselves to documents with less than 10 words. Assigning a probability to each
of these documents is impossible. Therefore, all practical LMs are forced to make
some simplifying assumptions.

2.2.1 Bag-of-words

The simplest models assume that all tokens in the document are independent,
leaving a bag of words:

P (x1, ..., xt) = Πt
i=1P (xi) .

Assuming that P (xi) is given by the frequency of xi in the corpus reduces the
problem significantly. While this is a very crude approximation, it works very well
for certain applications such as information retrieval. Obviously, these models
are not suited to generate text since they only suggest the most common words
in the training corpus.



2.3. ARTIFICIAL NEURAL NETWORKS (FOR SEQUENCES) 7

2.2.2 n-gram models

Tokens are not independent of each other in most languages, so a natural next
step is to include some context from neighboring words. Modifying the assump-
tion from earlier, n-gram models assume that tokens are independent given n
neighboring or previous tokens, i.e. a context ci:

P (x1, ..., xt) = Πt
i=1P (xi|ci), where ci = [xi−n, xi−n+1, ..., xi−1].

n-gram models are said to be autoregressive, in the sense that they predict the
current word xi using only previous context x1..(i−1), not making any assumption
about future words.

Similar to bag-of-word models, n-gram models are trained by counting. The
assumption is now

P (xi|ci) ≈
occurrences of sequence [ci xi]

occurrences of sequence ci
.

This scales well to large corpora, is reasonably efficient for small values of n, and
is therefore used in many ASR systems (including the one used for this project,
based on Amodei et al. 2016).

Unseen sequences cause a problem very similar to the out-of-vocabulary prob-
lem mentioned above. When encountering an unseen sequence, we set P (xi|ci) to
a small value. Doing so is called smoothing, as it prevents hard rejection of docu-
ments containing unseen token sequences. We refer to Chen and Goodman 1999
for a comprehensive review of smoothing techniques. Nevertheless, the proba-
bility of encountering an unseen sequence increases dramatically with n. In the
extreme case, it is equivalent to the original problem of assigning a probability
to every possible sequence.

2.3 Artificial Neural Networks (for sequences)

The LMs described in the previous section are all approximations of the original
probability distribution. One can also train a general-purpose statistical function
approximator. Given y = f(x)+ε, we approximate the unknown function f based
on a set of observations (xi, yi), i = 1, ...,m. ε is assumed to be random noise
or other unobservable data sampled from a normal distribution N (0, σ). The

quality of the approximation is measured by a loss function 1
m

∑m
i=1 L(yi, f̂(xi))

representing the distance between the observed yi values and the estimated values
f̂(xi). This is typically referred to as (statistic) supervised learning.

An Artificial Neural Network (NN) is a supervised learning model. NNs are
a relatively large field of research, and an in-depth explanation is far beyond the



8 CHAPTER 2. BACKGROUND THEORY

scope of this thesis. For a detailed treatment of neural networks, see Goodfellow,
Yoshua Bengio, and Courville 2016. The NN consists of layers of nodes, called
neurons. Neuron values in the first layer are set equal to the input example
x. Values are then propagated forward through the network by calculating lin-
ear combinations and simple non-linear functions of the previous layer’s values.
Once the forward pass is complete, the last (“output”) layer is returned as the

prediction f̂(x), and compared to a ground truth y to calculate the error. Then,
the network efficiently calculates the error gradient with respect to each param-
eter and uses gradient descent to minimize the error. This procedure is called
backpropagation.

Deep networks and parallel optimization

Most aspects of NNs have been subject to extensive research. While most of it
is far beyond this text’s scope, two findings are worth highlighting.

First, experiments have shown that many layers with fewer neurons each
(“deep” networks) usually give better results than few layers with more neurons
each (“wide” networks). From a mathematical perspective, a set of parameters
should exist where a wide network will approximate f with the same perfor-
mance as a deep network of the same size. In practice, optimization algorithms
struggle to find this set of parameters. Instead, the early layers of the network
learn representations of the inputs, which are then used to build increasingly
complex abstractions. Intuitively, it is a form of automated feature extraction
and - engineering, used by the last layer to predict y.

Second, large NNs tend to perform better as long as the training dataset is
large enough to avoid overfitting. In the field of NLP, this is very often the case.
With millions or billions of parameters to optimize, we need the backpropagation
algorithm to run efficiently. The solution is to represent the problem as matrix
calculations and exploit the linear algebra SIMD hardware originally intended
for computer graphics (GPUs). GPUs allow for a high degree of parallelization
and make it feasible to train large networks, as long as the calculations can be
expressed as SIMD operations.

2.3.1 Word Embeddings

Neural networks operate with numeric inputs. Therefore, it is necessary to em-
bed each token or word into a vector. The most straightforward approach is to
one-hot encode the tokens, but this forces the model’s input size to be equal to
the vocabulary size, leaving a very sparse representation. To reduce the dimen-
sion size, it is common to use a word embedding model like Bojanowski et al.
2017. Word embeddings use each word’s context to (implicitly) capture a word’s
semantic meaning as a point in vector space.



2.3. ARTIFICIAL NEURAL NETWORKS (FOR SEQUENCES) 9

Figure 2.1: Left: A simple RNN. Right: The same network, unrolled for t time
steps. Illustration from Olah 2015.

Several ways of building word embeddings have been proposed. One common
approach is to use a function approximator with the optimization goal of reduc-
ing the distance between co-occurring tokens in a training corpus (Pennington,
Socher, and Manning 2014), building on the assumption that words with similar
usage also have a similar meaning, as initially hypothesized by Harris 1954. Such
approaches produce explicit, reusable word embedding models. Alternatively,
embeddings can be trained implicitly as the first layer(s) of a NN.

2.3.2 Recurrent Neural Networks

Sometimes we can exploit information about the problem’s structure when de-
signing the NN architecture. This introduction of bias will help the NN better
capture the patterns in the data while reducing the number of parameters to opti-
mize. NLP problems are a good example of this. A document can be represented
as a matrix using the embedding approach from the previous section. Flattening
the matrix into a vector before feeding it to the NN is suboptimal because the
sequence structure is lost.

A Recurrent Neural Network (RNN) is a class of NNs exploiting the sequence
structure by introducing a time dimension. The sequence is loaded into the
network with one vector (“token”) at each time step. Each hidden neuron h has
a self-connection as shown in figure 2.1, allowing it to use its own value at the
previous time step in the calculation of its next value: ht = g(xt, ht−1). Since
each vector passes through the same network sequentially, a smaller number of
weights are reused at each time step. Bidirectional dependencies can be captured
by adding an RNN module receiving the sequence in the opposite order.

One significant weakness of these basic RNNs is vanishing or exploding gradi-
ents in the long backpropagation path from the final outputs back to the first in-
puts (Y. Bengio, Simard, and Frasconi 1994). Long short-term memory (LSTM)
units add a hidden cell state, explicitly written and cleared based on the current



10 CHAPTER 2. BACKGROUND THEORY

Figure 2.2: A sequence-to-sequence network as proposed by Sutskever, Vinyals,
and Le 2014. Note how the entire input sequence must be compressed into the
hidden state of the fourth node.

input and previous hidden state. The update equations for this cell state are
designed to allow a constant flow of gradients backward through time, thereby
solving the vanishing/exploding gradient problem (Hochreiter and Schmidhuber
1997).

2.3.3 Sequence to sequence

A common class of problems is to map one sequence to another, for example
machine translation (sequence of strings to sequence of strings) or ASR (sequence
of sounds to sequence of strings). A framework for this class of problems is the
RNN Encoder-Decoder. An encoder RNN maps the input sequence to a context
vector c (usually the last hidden state of the encoder RNN, hencoderT ), which is
passed as additional input to the decoder RNN as shown in figure 2.2. The
decoder then uses c to generate the target sequence.

Attention

Since c is the only shared element between the encoder and decoder, it must
contain all data needed to produce the target sequence. Thus it becomes a
bottleneck as the input sequence length grows, limiting the model’s ability to
“remember” details of long sequences.

Bahdanau, K. Cho, and Yoshua Bengio 2016 propose to have a separate con-
text vector at each time step

ct =

T∑
i=1

Align(hdecodert−1 , hencoderi )hencoderi , (2.1)

where Align is a probability distribution indicating how relevant the i-th input
vector is when decoding the t-th output position. This makes the context vector



2.3. ARTIFICIAL NEURAL NETWORKS (FOR SEQUENCES) 11

a weighted sum where the most relevant encoder hidden states at each time step
are most prominent.

Later works generalize the concept, borrowing the concepts of queries Q, keys
K, and values V from information retrieval. Intuitively, the decoder sends a
query to the encoder, which finds the corresponding key (alignment) and re-
turns the associated value. With this notation, equation 2.1 becomes ct =∑T
i=1 Align(Qt−1,Ki) Vi.

Align was initially implemented as a NN with a single hidden layer. This
approach is called additive attention. A simpler option is dot-product attention,
which computes the attention as a simple dot product:

C = Softmax(Q ∗KT ) ∗ V .

The latter approach is far faster but performs worse when the vector sizes grow
very large, though this can be at least partially mitigated by scaling the dot
product.

2.3.4 Transformer

Vaswani et al. 2017 show that attention mechanisms can completely replace the
recurrent modules. In addition to “traditional” encoder-decoder attention as
shown in the previous section, the Transformer uses so-called self-attention layers
in the encoder and decoder, replacing the temporal connections in RNN models.

Self-attention is a special case of attention where ct is computed from a single
sequence (this is, Q = K = V ), for example a specific encoder layer. The
layer’s output for each position in the sequence is calculated based on all sequence
positions. Compared to the fully connected NN in section 2.3, two key differences
are that many of the weights are shared, and the sequence structure is preserved.

Rather than using the full vectors when computing attention, the Trans-
former computes learned projections of the vectors into several distinct lower-
dimensional spaces. After applying scaled dot-product attention on these embed-
dings, the results are concatenated together and projected back to the original
dimension. By computing multiple distinct representations, each attention head
embeds different aspects of the sequences. This is shown in figure 2.3b. All pa-
rameters of this multi-head attention mechanism are learned through standard
backpropagation.

An encoder block in the Transformer consists of two sub-layers: a multi-
head self-attention and a feedforward NN. There are residual connections around
each sub-layer and a normalization layer to ensure stable training. Each decoder
block is mostly identical to an encoder block. The only significant addition is a
multi-head attention layer attending to the corresponding encoder’s output. The



12 CHAPTER 2. BACKGROUND THEORY

(a) Transformer (b) Multi-Head Attention

Figure 2.3: The transformer architecture as illustrated by Vaswani et al. 2017.

decoder’s self-attention layers mask out future positions to preserve the autore-
gressive property mentioned in section 2.2.2.

Putting it all together, we get the transformer architecture shown in fig-
ure 2.3a. The original transformer model (as presented in Vaswani et al. 2017)
consists of N = 6 encoder blocks followed by the same number of decoder blocks.
The input tokens are first passed through an embedding layer learning context-
independent word embeddings for each token. Then, a periodic positional encod-
ing is concatenated to the embeddings to maintain positional information.

In this architecture, the recurrent connections are therefore redundant and
can be removed. Doing so removes the computational bottleneck caused by the
RNN’s long backpropagation path. In turn, this allows for a much higher degree of
parallelization and faster training. These performance improvements have made
many of the Neural Language Models (NLMs) discussed in chapter 3 feasible to
train.

While the positional embedding is periodic and the multi-head attention can
be computed on any sequence length, Transformer models generally struggle when
encountering documents longer than those seen during training. The reason
is that since it has never seen such long-term dependencies before, it cannot
represent them correctly and therefore underperform (Dai et al. 2019). We refer
to this maximum supported document size as the input window size.



2.4. AUTOMATIC SPEECH RECOGNITION 13

2.4 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the task of recognizing the sequence of
words being said in a given audio sequence. Historically, separate models were
trained for acoustics, pronunciation, and language and then combined to form an
ASR pipeline. Typically, Hidden Markov Models were often used. Getting this to
work requires a large amount of domain knowledge and language-specific feature
engineering. Deep Learning was first used to replace individual components of
the ASR pipeline, such as the phonetic model. As hardware and optimization
software improved, deep learning proved capable of replacing practically the entire
pipeline with so-called end-to-end models.

In a typical end-to-end ASR system, the input is an audio segment and the tar-
get is the transcription of the audio. The audio segment is typically pre-processed
into log-mel spectrograms, which provide a numerical representation of the audio
signal in the frequency domain, well-known to capture speech features. Details
on this pre-processing are beyond the scope of this thesis; we refer to Kamath,
J. Liu, and Whitaker 2019 for an introduction. The output representation is
typically characters or a small vocabulary built from a bottom-up tokenizer as
discussed in section 2.1.1. Using words or large subword vocabularies tends to
perform poorly, as the network would need to see many examples of rare words
in order to learn their pronunciations (Huang et al. 2019).

The spectrogram representation of the audio is much longer than its transcript
since the former is calculated from overlapping windows of ∼ 20ms of audio.
How much longer cannot be estimated in general because it depends on how
fast the speaker was talking, among other factors. End-to-end ASR systems can
be categorized by their solution to this alignment issue, as it heavily influences
modeling assumptions and many other decisions made when building the system.
There are two approaches to solving this: either make the network collect the
transcript at the beginning of the output layer or teach the system how to align
the tokens.

As this thesis is written in collaboration with Telenor Research, we will use
their CTC-based system as our baseline. For this reason, we will also focus more
on the “CTC paradigm” in this thesis.

2.4.1 Connectionist Temporal Classification (CTC)

Graves et al. 2006 propose the CTC framework to solve the alignment issue.
The approach is to relax the loss function such that the network can choose
any sequence alignment as long as the tokens are outputted in the correct order.
This way, the network learns to transcribe sequences with reasonably correct
alignment.



14 CHAPTER 2. BACKGROUND THEORY

0 20 40 60 80
_abcdefghijklmnopqrstuvwxyzæøåéü 

Figure 2.4: Z matrix for the sentence “stortingets møte er lovlig satt”. Each
column represents the probability of each token (with representing [BLANK])
at the given time step. Darker color corresponds to higher probabilities. Notice
how periods of silence are filled with [BLANK], and the blank token between the
double t at the end. Time steps have a duration of 20ms with a 10ms stride.

_

s

_

s

a a

t t

_

a

s

t

_

t

s

a

_

t

s

a

_

t

s

a

Figure 2.5: The set of paths π ∈ Paths(y) all collapsing to the string y =“satt”
when T = 6. Thicker lines indicate the number of paths each edge or node is part
of. As with figure 2.4, notice how every path must pass through a blank token
to produce the double t.



2.4. AUTOMATIC SPEECH RECOGNITION 15

The CTC framework works by allowing the network to output repeated tokens
and blanks to fill an output layer Z ∈ R|V′|×T , where T is the number of time
steps in the input sequence x and V ′ = V ∪ [BLANK] is the vocabulary extended
with a special blank token. Each element ztk = P (k|x, t) of Z represents the
probability of observing a token k at time step t. This output format allows the
network to consider any transcript without having a pre-determined alignment
between y and x (up to the length of the input audio). An example Z matrix is
shown in figure 2.4.

A transcript y is obtained by collapsing one or more alignments, or paths, π
through Z. First, repeated tokens are removed, and then blanks are removed to
obtain y. A graph visualization of this is shown in figure 2.5. Assuming all time
steps are independent given x, we obtain

P (y|x) =
∑

π∈Paths(y)

P (π|x) =
∑

π∈Paths(y)

T∏
t=1

ztπt , (2.2)

where Paths(y) is the set of paths that can be collapsed to y and ztπt is the
probability of observing the t-th token of a path π at time t according to Z. The
classification can then be expressed as argmaxy P (y|x), and the loss function max-
imizing the probability of all valid paths1 is simply LCTC(x, y) = − logP (y|x).
We refer to Graves et al. 2006 for the proof deriving this optimization objective
from maximum likelihood.

Beam search decoder

Evaluating argmaxy P (y|x) during inference is usually infeasible due to the depth
and high branching factor. We could assume that the highest-ranked path will
correspond with the highest-ranking transcript and find this path using a greedy
search in linear time. In some cases, such as the example in figure 2.4 where the
AM is very confident, this would give the correct transcript.

In general though, this results in suboptimal transcripts. Equation 2.2 shows
that the most likely transcript is the one whose path probabilities sum to the
highest value. Therefore, we would need to consider multiple paths when looking
for the best transcript. CTC-based ASR systems do this using the Prefix Beam
Search (BS) algorithm.

Several variations exist; the one we present here closely matches A. Y. Hannun
et al. 2014. As with classical beam search, CTC beam search maintains a set Y of
the N best prefixes (partial transcripts). Rather than maintaining a single score
for each candidate, it maintains the probability of observing each prefix both with

1Since ztk is a probability distribution over V ′, the probability of other paths is implicitly
minimized.



16 CHAPTER 2. BACKGROUND THEORY

and without a [BLANK] token at the end, denoted as Pb = P (y≤t∪[BLANK]|x) and
Pnb = P (y≤t|x) respectively. At each time step t ≤ T , the algorithm attempts to
expand each prefix y<t by appending a token k. It needs to consider three cases:

1. k is different from the last token in y<t. In this case, add the new prefix
y<t ∪ k to Y with probability Pnb = ztk(Pb + Pnb) and Pb = 0.

2. k is the [BLANK] token. In this case, only update the probability of y<t

ending in a blank token: Pb = ztk(Pb + Pnb).

3. k is the same token as the last non-blank token in y<t, i.e. a repetition.
Similar to above, update the probability of observing this prefix given the
new evidence: Pnb = ztkPnb.

Once each time step is calculated, the algorithm prunes all except the N most
likely prefixes. Since each transcript’s path probabilities are represented implic-
itly by its two associated probabilities, equation 2.2 allows us to approximate the
probability of each partial transcript as

P (y<t|x) ≈ Pb + Pnb. (2.3)

At the end of the beam search, we have argmaxy P (y|x) ≈ argmaxy∈Y P (y|x).

Deep Speech

Amodei et al. 2016; A. Hannun et al. 2014 propose Deep Speech, a family of ASR
systems based on deep neural networks and the CTC framework. Due to per-
formance concerns when stacking many RNN layers, Deep Speech processes each
audio feature only in the context of neighboring features using convolutional lay-
ers (see LeCun et al. 1989). Then, it combines them in a single bidirectional RNN
layer as shown in figure 2.6. Doing so mitigates the performance loss incurred by
the RNN.

Deep Speech 2 builds on the original architecture and, through further op-
timization, makes it feasible to train deeper models with more data. The NN
architecture itself adds more layers of each type2, but contains practically no
other changes. Due to the large model size, curriculum learning is applied, us-
ing transcript length as a proxy for difficulty. The remaining optimizations are
mostly related to efficient data locality management on the GPUs and parallel
execution of the CTC loss function. As these optimizations are particular to their
hardware and codebase, we refer to Amodei et al. 2016 for details.

2Strictly speaking, Amodei et al. 2016 experiment with many variations of layer counts and
types, describing all of them as “Deep Speech”. We view such choices as tunable hyperparam-
eters and place little emphasis on exact layer counts and types in this thesis.



2.4. AUTOMATIC SPEECH RECOGNITION 17

Figure 2.6: The Deep Speech architecture as illustrated by A. Hannun et al. 2014.

Both Deep Speech variants operate at character level. Due to the indepen-
dence assumption made in equation 2.2, its implicit language model is often found
to be lacking compared to sequence-based end-to-end systems. Instead, Deep
Speech models rely on an external n-gram LM during decoding (see section 3.2).

2.4.2 The attention-based approach

The encoder-decoder models from section 2.3.3 can also be used for ASR. These
solve the alignment issue by encoding the entire audio clip x into an internal
representation h and then decoding that representation into y using a generative
RNN. These use the attention mechanism to gather information from the correct
part(s) of h. Their reliance on this mechanism gives them the name attention-
based.

Chan et al. 2016 pioneered this approach, using pyramidal recurrent layers
to produce a shorter, more abstract audio representation h. This makes the
size of h dependent on the length of x. However, the system still makes all
of h available through the attention mechanism at every decoding step, such
that no pre-determined alignment is required. Several other variations have been
proposed, such as Gulati et al. 2020 proposing to use the Transformer architecture
instead of the RNN encoder-decoder.



18 CHAPTER 2. BACKGROUND THEORY

Compared to CTC, these models do not make the dubious assumption that
each character is independent. Therefore, the network more easily learns an
internal language representation. Indeed, even the early work of Chan et al. 2016
observed that dictionary constraints were not needed because the model learned
to spell correctly. Nevertheless, both sequence-to-sequence and CTC models
benefit significantly from an external language model.

For decoding, sequence to sequence models also use beam search. Unlike
CTC, classical beam search can be used, but token probabilities are calculated
using the RNN decoder. The RNN decoder must be invoked with many different
contexts at each time step, making each step more computationally expensive.
However, since there is only one path leading to each transcript, the beam size
can be made much smaller.



Chapter 3

State of the art

The Transformer architecture introduced in section 2.3.4 was a major turning
point in the field of NLP. At first, this was largely due to the strong empirical
results from the architecture. Later, Yun et al. 2020 showed that the architec-
ture is a general sequence-to-sequence approximator. A trend lately followed by
the NLP community is to build large networks of Transformer blocks and pre-
train them for days or weeks on massive text corpora to achieve state-of-the-art
performance on different NLP tasks.

3.1 BERT

In order to achieve such impressive performance, Transformer models were be-
lieved to build good internal language representations. Devlin et al. 2019 in-
troduced Bidirectional Encoder Representations from Transformers (BERT), a
language representation model built directly on top of the Transformer encoder
stack. The only significant architectural change was to replace the entire decoder
stack with a task-specific output layer. Through self-supervised training, this
model learns good language representations, enabling it to perform a range of
NLP tasks with minimal task-specific fine-tuning.

A significant advantage of BERT over previous work is that BERT is fully
bidirectional. Due to the nature of self-attention described in section 2.3.4, BERT
uses the entire input sequence to generate the attention vectors. As a result, the
token-level embeddings are updated dynamically based on both previous and
future context. This comes at the cost of losing the autoregressive property
found in most previous work, though extensions such as Dai et al. 2019 propose
workarounds for this limitation.

19



20 CHAPTER 3. STATE OF THE ART

Figure 3.1: Devlin et al. 2019’s illustration of BERT’s pre-training scheme. A
classification token is prepended to the first input sentence, and a separator is
placed between them. A position embedding is then concatenated to each token
before feeding everything through the model. The first output token corresponds
with the NSP task, while the remaining tokens are used for MLM.

3.1.1 Pre-training

BERT is intended to be pre-trained once on a large text corpus and then fine-
tuned for each “real-life” task. Pre-training can be done on any unlabelled text
corpus but can be considered supervised because the pre-training procedure gen-
erates all necessary labels. BERT is pre-trained on two tasks. These are illus-
trated in figure 3.1 and described below.

Masked Language Modeling (MLM)

Since BERT requires the entire input in its predictions, tasks like guessing the
next token from seq2seq models cannot be used. In Masked Language Modeling,
also known as Cloze, 15% of the tokens in each input are replaced with a special
[mask] token or occasionally a random token chosen from the vocabulary. BERT
guesses the original tokens, and a loss is computed and backpropagated. Note
that loss is only computed for the masked positions to keep the computational
complexity manageable.

Next Sentence Prediction (NSP)

Many NLP tasks require understanding more than the contents of a single sen-
tence, but also the relationship between sentences. Devlin et al. 2019 argues



3.1. BERT 21

this is not captured sufficiently in the MLM task. Instead, they propose Next
Sentence Prediction to learn coherence.

NSP is very simple: given two sentences A and B, the model should predict
whether B came directly after A in the original text. The training procedure
generates samples by setting B to either the sentence following A in the original
document (positive sample) or any randomly sampled sentence from a different
document (negative sample). The sentences are fed into the model with a special
[sep] token between them to help the model tell them apart, enabling efficient
handling of variable-length sentences.

Note that a “sentence” in this context does not necessarily mean a linguistic
sentence. BERT, as implemented by Devlin et al. 2019, does not take natural
sentences into account and instead places the split at any whitespace in the text.

Sentence Order Prediction (SOP)

Devlin et al. 2019 claim that both of the previous tasks were necessary, but
especially the NSP task has been contested in later work. Y. Liu et al. 2019
found that removing NSP made no difference, raising questions of exactly what
BERT learns from the NSP task. Lan et al. 2020 claims that since negative
samples come from different documents, the easiest way to solve NSP is by topic
prediction since it is already needed for MLM.

Lan et al. 2020 proposed Sentence Order Prediction to force BERT to build
some sort of coherence representation. As the name implies, SOP samples two
consecutive sentences and asks the model to determine their original order. This
way, the model is forced to learn whether the text is coherent. The authors
observe that SOP successfully solved the NSP task but not the other way around,
strengthening their hypothesis that BERT chooses to solve NSP primarily by
topic prediction.

Again, note that SOP as proposed by Lan et al. 2020 operates on text seg-
ments rather than linguistic sentences. Thus, while making training more effi-
cient, it also gives the model several obvious coherence cues to work with.

3.1.2 Input/Output representation

Since BERT is a fine-tuning-based approach, inputs and outputs must be reusable
for many downstream tasks. The larger the change of IO representation, the more
task-specific fine-tuning is needed.

The input text is split on whitespace, and then each word is tokenized with
WordPiece (see section 2.1.1). This results in a relatively large vocabulary, as
many pre-training corpora contain a very long tail of rarely-used Unicode symbols
that must be included to avoid OOV issues. Y. Liu et al. 2019 argue that bytes
are just as good symbols as Unicode characters and tokenize the raw text using



22 CHAPTER 3. STATE OF THE ART

a byte-level version of WordPiece1, thereby making better use of the vocabulary
space.

The choice of vocabulary is “locked” once pre-training starts, as any change to
the vocabulary would require re-training BERT. One could theoretically remove
tokens and re-train the embedding layer, but this is compute-intensive and rarely
done in practice. Therefore it is important to ensure the vocabulary is not too
biased towards any particular domain.

The first input token is always a special [cls], and each sentence ends with
the [sep] token, which is used actively by BERT during NSP and downstream
tasks to tell the sentences apart. The tokenized inputs are then encoded in-
dividually into a context-free embedding. BERT appends to this embedding a
sinusoidal positional encoding and a segment encoding indicating whether each
token is part of sentence A or B.

As mentioned above, the output layer is adjustable depending on the task
at hand. The first output position (corresponding to [cls]) performs binary
classification. During pre-training, it performs NSP, and thus it is suited for
document- or segment-level classifications. The remaining output positions are
for use with MLM, outputting a probability distribution over the vocabulary. Due
to the vocabulary size and sequence length, this can become computationally
expensive to compute. If the fine-tuning training set is sufficiently large, the
output layer can be adjusted as needed. For example, Devlin et al. 2019 adds two
output nodes indicating start and end positions when fine-tuning on the SQuAD
dataset. We refer to Rogers, Kovaleva, and Rumshisky 2020 for a review.

3.1.3 Model scaling

A general trend in NLP is towards bigger models and more training data. Brown
et al. 2020 showed that Transformer-based LMs are incredibly scalable, to the
point where they become too big to evaluate on current hardware. Naturally, this
leads to the practical question of how to overcome hardware constraints when
scaling Transformer models. Lan et al. 2020 attempts to reduce the number of
parameters in BERT to overcome memory limitations, enabling the training of
bigger models.

All encoder blocks in the original BERT architecture operate on the same
embedding size as calculated at the first input layer. However, increasing the
embedding size beyond a certain point gets challenging because the weights
needed to calculate the embeddings is a matrix W ∈ R|V|×H , where H is the
size of the embeddings. By adding a smaller intermediate layer E, we can de-
compose this calculation such that we obtain two weight matrices W1 ∈ R|V|×E

1Equivalent to and often referred to as Byte-Pair Encoding. See Shibata et al. 1999 for a
discussion in the context of text compression.



3.2. LANGUAGE MODELS IN SPEECH RECOGNITION 23

and W2 ∈ RE×H instead.

Most of the parameters in BERT are in the stack of identical Transformer
encoder blocks. Inspired by Dehghani et al. 2019, Lan et al. 2020 re-use the same
weight matrices for each block. The effect is a substantial decrease in the model
size and is argued to function as a form of regularization. BERT can be scaled
up much more easily with these two tricks while maintaining high throughput
due to better GPU memory locality.

Conditioning

Beyond scaling the model itself, building larger models with longer input windows
also mean the model learns to use the entire input window. Since the models
are exposed to a range of domains, it will also need a sufficiently long context
to determine the type of text in each sample. The most straightforward solution
is to fill the input window with similar samples, as mentioned in section 3.9.4 of
Brown et al. 2020 when the document itself is too short. However, this solution
is not known to generalize to other circumstances.

3.2 Language Models in Speech Recognition

Many state-of-the-art ASR systems use an external LM to improve results. The
LM is typically trained separately on a large corpus of unpaired text, separate
from the audio transcriptions used to train the AM.

Most systems combine the models at inference time. However, recent ad-
vances in neural LMs have enabled deeper integration between the AM and LM
when both models are implemented as neural networks. Unfortunately, due to
the alignment of outputs in CTC networks, few of these techniques can be incor-
porated directly into ASR systems built using the CTC framework.

We note that there are few papers comparing the integration techniques. A
review by Toshniwal et al. 2018 found that shallow fusion performs better than
all other methods tested, but J. Cho et al. 2019 propose refinements and report
better results than shallow fusion. Similarly, concurrent research by A. H. Liu,
H.-y. Lee, and L.-s. Lee 2019 propose a novel technique and report improvements,
but neither experiments have (to our knowledge) been reproduced. Synnaeve et
al. 2020 tested many combinations of shallow fusion and rescoring and reported
best results when combining both. While we do not intend to benchmark or
otherwise compare these methods directly, LM integration is a central research
topic of this thesis. Below, we review several integration techniques in more
detail.



24 CHAPTER 3. STATE OF THE ART

3.2.1 Inference-time integration

Inference-time integration has been widely adopted in the field for a very long
time. Since the models are not combined until they are fully trained, inference-
time integration is more general and usually compatible with most model types.

Flexibility in terms of AM and LM types, unfortunately, brings with it some
limitations. The main issue is that the integration is typically relatively crude:
usually, it boils down to a simple weighted sum of scores from the different models
in use. Nevertheless, it is found to work remarkably well in many scenarios.

N-best rescoring

For maximum flexibility in terms of acoustic and language models, it is possible
to use the LM to rescore the list of candidate transcripts returned from the beam
search. The new score is typically a weighted sum of the AM and LM scores.
Unlike the other methods, N-best rescoring cannot bias the AM or BS towards
the correct transcript. Therefore, it relies heavily on a good acoustic model and
a sufficiently wide beam search.

N-best rescoring works with practically all model types. The external LM only
needs to score the final candidate list, making it a good choice when integrating
a large LM. As the system needs to wait for the full beam search to complete
before rescoring, it is generally not considered streamable.

Shallow fusion

Shallow fusion works by letting a lightweight LM influence which beams are kept
and pruned during the beam search. Using heuristics to guide a beam search is a
widely adopted trick far beyond ASR and NLP, and shallow fusion is one of the
most widely adopted integration techniques. The term shallow fusion was coined
by Gulcehre et al. 2015 to contrast it with the neural fusion methods outlined in
the next subsection.

Mathematically, it adds a weighted LM term to equation 2.3:

P (y≤t|x) ≈ Pb + Pnb + αPLM(y≤t).

This formulation implies that the LM must evaluate every partial transcript
considered by the beam search. This subtle detail matters because the LM must
handle not only incomplete sentences gracefully but, in many cases, also deal
with partial words caused by a character- or subword-level AM. Increasing the
beam width can compensate for this, at least to some extent, because it would
allow the LM to complete the word before the correct beam is pruned.

Since the LM is invoked thousands of times during decoding, it must be
reasonably lightweight. While NLMs can be parallelized efficiently, doing so



3.2. LANGUAGE MODELS IN SPEECH RECOGNITION 25

requires that all strings are scored simultaneously. Beam search implementations,
on the other hand, decode distinct utterances in parallel. Since utterances are of
different length and the threads tend to get out of sync, it becomes challenging
to perform efficient SIMD processing (section 2.3) without incurring significant
synchronization overhead.

Some variations exist to reduce the number of times the LM needs to be
invoked. One example is to combine shallow fusion with a vocabulary constraint.
Another trick is to update PLM(y<t) only on word delimiters, caching the previous
value in the meantime.

Vocabulary constraints

In many ways, vocabulary constraints are a type of shallow fusion. Like shal-
low fusion, a simple LM is invoked whenever any token is added to any beam.
However, vocabulary constraints are much simpler: they only return a boolean
value indicating whether the partial transcript can lead to a string belonging to
the language. If the value is false, the beam is pruned from the search immedi-
ately. This boolean model can be represented efficiently as a finite state machine,
allowing constant-time vocabulary lookups2.

Effectively, this reduces the search space substantially by simply removing all
nonexistent words. The downside is obviously that the ASR system will never be
able to output OOV words. We show an extreme example of this failure mode
in section 6.4.

3.2.2 Integration by fusing neural models

If both the AM and LM are neural networks, they can share hidden states and
representations. Model fusion techniques exploit this property to enable deeper
integration between the two models. Several variations of this scheme have been
proposed. In this section, we briefly introduce two common approaches.

Deep fusion

Deep fusion is a late integration approach in which the two models are trained
separately until convergence before fusing them. Fusion is done by feeding the AM
decoder’s hidden state and previously predicted tokens as input to the LM. Then,
the LM and AM outputs are combined in a final hidden layer. The integration
introduces several new parameters to the model, which are optimized through
standard backpropagation. AM and LM parameters are usually frozen at this
stage, keeping the cost of computing the fusion layer at a minimum.

2Because each lookup operation simply attempts to advance the FSM one step.



26 CHAPTER 3. STATE OF THE ART

Cold fusion

Unlike deep fusion, cold fusion is an early integration approach, where a pre-
trained LM is fused onto an untrained AM. Then, the AM is trained while keeping
the LM parameters fixed. Modeling-wise, cold fusion is very similar to deep
fusion. We refer to J. Cho et al. 2019 for a treatment of modeling variations.

3.2.3 Knowledge transfer

Finally, the LM’s knowledge can be integrated into the ASR system during train-
ing. This removes the need to run an LM at inference time, at the cost of making
training more complicated. A wide variety of methods have been proposed; a few
examples include:

• Multitask learning. The training objective alternates between the standard
ASR objective (for example, CTC) and an LM objective (Toshniwal et al.
2018).

• Adversarial training. The AM is trained as a generator to “fool” a criticizing
LM (A. H. Liu, H.-y. Lee, and L.-s. Lee 2019).

• Distillation. Rather than using the ground truth transcript as the optimiza-
tion goal, train the ASR system to output the same probability distribution
as an LM (Futami et al. 2020).

3.3 Diverse Beam Search

The size of the search space grows exponentially with the number of time steps
(|V|T ), but the part of the search space explored by the beam search grows
linearly (T · N), and the part being returned is constant (N). In terms of the
LM integration methods in the previous section, this means that neural fusion
methods expose practically the entire search space to the LM, shallow fusion
exposes T ·N

|V|T of the search space, while N-best rescoring only exposes N
|V|T . This

highlights a problem with N-best rescoring: for it to work effectively, the N
transcripts it is exposed to must be an interesting subset of the search space.

Therefore, it is relevant to understand what gets returned from the beam
search. At each time step t, the lowest-scoring beams are pruned from the search.
Since the non-pruned beams, by definition, has the highest probabilities, any
extension of those beams is also highly likely to have a high probability. If
this were not the case, the search would quickly stagnate and return incomplete



3.3. DIVERSE BEAM SEARCH 27

s t o r
t

i

i n g e t
s

_

_

m

b

s

å

ø t e _

e

h

a

d

r

r

_

n
_

l

u

o v l

i

e
g

_

e
s

i

a

å

l

t

k

d

b

f

n

r

h

g

e

m

o

j

a

e

i

k

y

_

o

l

t

å

n t

k

g

n

l

_

m

h

t

s

_

e

o

n

a

i

r

f

_

e

t

i

a

s

v

f

l

o

t

å

p

n

m

d

r

v

g

a

h

e

b

j

l

f

s

i

k

æ

ø

u

w

x

y

q

z

c

d

r

n

m

p

g

v

l

b

e

f

t

k

h

s

u

o

å

a

j

i

ø

æ

w

y

_

_

n

ø

g

o

å

p

m

r

d

h

b

j

k

d

i

p

k

a

s

e

å

g

_

s

l o v l i g

e

l

r _

l o

i

v l
i

e r _

o v

g
_

s

a
_ m ø t

m

s

ø t e _
e

_
_ m ø t

n g e t s

Figure 3.2: A compressed graph visualization of the N-best list from decoding
the example “stortingets møte er lovlig satt” from figure 2.4. While there are
hundreds of variations among the last 6-7 characters, barely any variations closer
to the root are retained.



28 CHAPTER 3. STATE OF THE ART

transcripts3. Over time, this accumulates such that early variations are more
likely to be pruned.

Eventually, the search terminates, returning the N highest-ranking beams.
Since low-scoring beams have been pruned throughout the search, the resulting
candidate list frequently only differs in the last few words. An example of this
failure mode is shown in figure 3.2. For applications where only the top transcript
is used, this is not a problem. However, it severely limits N-best rescoring, as it
would be less able to fix mistakes in the early part of the transcript.

This has received relatively little attention in the literature, but some tech-
niques exist to increase diversity. Vijayakumar et al. 2018 propose partitioning
the search into groups g ∈ [1..G] of size M = N/G. Each group only consid-
ers extensions from within the same group Ygt = {yt−1 ∈ Y gt−1 ∧ yt ∈ V}. The
search adds a diversity bonus to beams that are dissimilar to previous groups
Y <gt according to a distance measure ∆,

Y gt = argmax
[yg1 ,...,y

g
M ]⊂Ygt

M∑
m=1

Θt (ygm) + λ

g−1∑
h=1

∆
(
ygm,t, Y

h
t

)
,

where Θt(·) is the scoring function used in standard beam search.
Intuitively, each group explores one mode of the output distribution. There

is no intra-group bonus, as multiple beams are often needed to find the best
instance of each mode. The trade-off between thoroughness and regions covered
can be controlled by tuning λ and the group count G.

The most common class of distance measures simply average the distances
between the beam and each group member:

∆(a,B) =
1

|B|
∑
b∈B

δ(a, b) .

Vijayakumar et al. 2018 propose several implementations of δ, including normal-
ized Hamming distance, n-gram diversity and neural sentence embeddings such
as Pennington, Socher, and Manning 2014. The Hamming distance encourages
the search to select a different token from the other group at each time step,
but can be circumvented by even a single-token alignment change. On the other
hand, n-gram diversity penalizes reusing the same n-grams regardless of position.
As a completely different notion of similarity, neural sentence embeddings en-
courage semantically distinct beams. Vijayakumar et al. 2018 report comparable
performance with all three diversity measures.

3And when it does, it is common to introduce an artificial word count bonus to boost the
probability of longer beams.



Chapter 4

Methodology

We base our Speech Recognition system on Telenor’s preexisting pipeline, as its
components are already tuned to perform optimally on spontaneous conversa-
tions. This pipeline is adapted from the Deep Speech 2 architecture, which we
extend to perform N-best rescoring with BERT.

Despite the “end-to-end” claims made about Deep Speech and many similar
systems, we nevertheless find it beneficial to decompose the architecture into three
distinct components: Acoustic Model (AM), Beam Search (BS), and Language
Models (LMs). A diagram of the complete system is shown in figure 4.1.

The AM takes an audio segment x as input and outputs a matrix Z such that
each element ztk represents the probability of token k at time t. The BS decodes Z
into a set Y of the N best candidate transcripts, aided by an n-gram LM through
shallow fusion. We extend this architecture to perform N-best rescoring of y ∈ Y
with BERT to obtain the final ranking. In addition, we extend the BS decoder
by adapting the diversity term introduced in section 3.3. The following sections
describe each component in more detail, as well as how we train BERT.

4.1 Acoustic Model

The Deep Speech system is built on the CTC paradigm. This makes for a rela-
tively straightforward neural network architecture with log-mel spectrograms as
input and character-level outputs. Telenor Research has made some changes re-
lated to signal preprocessing and data augmentation to improve results with the
phone call data described in section 5.1.1. For the effects of this thesis, however,
it is equivalent to the original Deep Speech 2 model described in section 2.4.1.

29



30 CHAPTER 4. METHODOLOGY

Figure 4.1: Diagram of the ASR pipeline. Audio is processed through an Acoustic
Model to produce the matrix Z. The Beam Search produces an N-best list of
candidates from Z, guided by an n-gram Language Model through shallow fusion.
Finally, the N-best list is then rescored by BERT, taking previous utterances from
the conversation into account in order to disambiguate the candidates better.

4.2 Beam Search

As in most CTC-based systems, our AM struggles to learn an internal LM and re-
lies on a good decoding strategy. We use the CTC beam search decoder described
in section 2.4.1 to search for the transcript y maximizing

PBS(y|x) = PAM(y|x) + αPLM1(y) + βWC(y) , (4.1)

where PAM is the AM score sum for the transcript as estimated by equation 2.3,
PLM1 is the transcript’s probability according to an n-gram LM, and WC is a
word count bonus to encourage the system to output more tokens even though
this would reduce PAM.

We implement LM1 as a Kneser-Ney n-gram model. Rather than training it
on external data, we observe near identical performance when training it only
on the transcripts used to train the acoustic model. We thus hypothesize that
for domain-specific datasets, relevance compensates for abundance. Similar to
A. Hannun et al. 2014, we need to increase the beam width to work around the
issues with incomplete words as discussed in section 3.2.1.

We denote the highest-ranked transcript from the beam search as

y1 = argmax
y∈Y

PBS(y|x). (4.2)

For the baseline system, y1 is returned as the final transcript, and its WER



4.3. N-BEST RESCORING 31

compared to the ground truth ygt is used to evaluate the system’s transcription
quality.

4.2.1 Diversity

As discussed in section 3.3, beam searches often struggle with a lack of diversity
when processing long sequences. To remedy this, we adapt the Diverse Beam
Search to work within the CTC framework. Since our beam search implemen-
tation opereates on transcript level (representing paths only implicitly), it is
straightforward to add the diversity term to each partial transcript. The set of
beams to keep from each group g at each time step will be

Y gt = argmax
[yg1 ,...,y

g
M ]⊂Ygt

M∑
m=1

[
PBS(ygm|x) + λ

g−1∑
h=1

∆
(
ygm, Y

h
t

)]
, (4.3)

where PBS is the probability assigned by standard beam search given in equa-
tion 4.1.

Due to the width of a typical CTC beam search, the choice of distance measure
∆ has a substantially higher performance impact compared to the experiments
of Vijayakumar et al. 2018. For this reason, we stick with the simplest distance
measure: character-level Hamming distance. Since many beams follow the exact
same path, a Hamming distance should give a sufficient bonus to any beam
deviating from this.

4.3 N-best Rescoring

Section 3.2 describes various ways to integrate language models. Several of them
require significant engineering effort to implement, despite yielding minimal or
no performance gains compared to the other options. Deep and cold fusion, for
example, require replacing the entire ASR pipeline with a seq2seq model. Shallow
fusion with a large-scale LM like BERT would work but is very computationally
expensive. As it is uncertain whether any of the methods can improve results
over the baseline, and given the time constraints, we instead choose the more
straightforward solution: N-best rescoring.

Although many variations of N-best rescoring exist, we use a straightforward
form where we interpolate the scores from the beam search and the secondary
language model (BERT):

Prescored(y|x) = (1− γ)PBS(y|x) + γPLM2(y). (4.4)



32 CHAPTER 4. METHODOLOGY

The top candidate after rescoring is simply

y′ = argmax
y∈Y

Prescored(y|x).

Despite its simplicity, N-best rescoring is a good fit with our existing Deep
Speech-based system: it requires few changes to the existing pipeline, and it
makes use of the many candidate transcripts returned from our wide beam search.
Being decoupled from the AM training also makes it far easier to measure the
impact of introducing the external LM by reusing the same AM across all exper-
iments.

N-best rescoring relies on the assumption that y1 in equation 4.2 is often a
suboptimal choice of transcript from Y . However, it is also bounded by the best
and worst candidates in Y . To identify the upper performance bound, we can
define an oracle rescoring algorithm that always selects the best transcript from
those present in Y :

yo = argmin
y∈Y

WED(ygt, y), (4.5)

where WED is the word-level edit distance between two transcripts.
As will be clear in the results chapter, the edit distance between the best

and worst candidates is disproportionately small for long utterances. The reason
is that the ratio between potential transcripts to consider and N grows quickly
with utterance length. For shorter utterances, the opposite effect occurs, and
the search ends up returning a larger portion of the search space. If parts of the
search space are disallowed due to vocabulary constraints, the BS may return the
entire (legal) search space as Y for the shortest utterances. In this case ygt ∈ Y
unless the ground truth contains OOV tokens1.

In practice, since we are transcribing spontaneous conversations, it would be
tough for a language model, or even a human, to correctly identify yo without
access to the audio. After all, the candidate transcripts and contexts alone often
do not contain sufficient information to determine what was said, and even with
the audio available, there are often multiple correct interpretations.

4.4 BERT for spoken language

We use BERT as described by Devlin et al. 2019 for our neural language model.
A challenge in using BERT is that transcripts of spontaneous conversations read
very differently from, for example, a novel. People tend to use a very different
sentence structure when speaking (such as incomplete sentences and repetitions)

1This is also to a large extent why the oracle WER for short utterances in figure 6.2 is
nonzero.



4.4. BERT FOR SPOKEN LANGUAGE 33

and a different choice of words, including fillers/hesitations. When two people are
communicating, there are also many cases of overlapping speech and interruptions
(of both themselves and the other person). In Appendix A we show how the
language representations built when training on written text could be suboptimal
for inference on conversations and vice-versa. To deal with this, BERT needs to
be fine-tuned to the task at hand. It also needs to learn spoken language.

We propose three different strategies for training BERT, as explained in the
following sections.

4.4.1 MLM & NSP

The simplest solution is to keep training BERT with the same objective used
during pre-training. These are known to teach BERT a good language represen-
tation, and previous work such as Shin, Y. Lee, and Jung 2019 report performance
improvements over the baseline. Using the NSP head for scoring is straightfor-
ward, as it already outputs the probability directly. MLM, on the other hand,
is more complicated. With the MLM output nodes, we can score sentences as
follows:

1. Pass the sequence y1..T through the model, masking the first position.

2. Among the output probabilities, note the probability of the token at the
first position being the original token, denoted P (y1|y2..T ).

3. Repeat for each remaining position in the sequence.

4. Calculate the product P (y) =
∏T
t=1 P (yt|yi∀i 6= t)

This approach requires T forward passes through the network (Shin, Y. Lee, and
Jung 2019). Using GPUs and similar SIMD hardware, scoring a single utterance
can be done in a single batch. However, the memory requirement to store the
result will be Θ(T 2|V|). As shown in Appendix B, MLM scoring is overly com-
putationally expensive for rescoring thousands of beams, let alone integrate in a
CTC beam search.

4.4.2 Conversational NSP

In NSP as proposed by Devlin et al. 2019, BERT’s input is fully packed with text,
with the separator being placed anywhere inside the input text. This reduces
BERT’s ability to make use of the conversational aspect of our domain. To
remedy this, we adapt the concept of NSP to conversations: positive samples are
simply triplets of consecutive utterances, while negative samples are generated
by replacing the third utterance with a different one.



34 CHAPTER 4. METHODOLOGY

Replacements are sampled from other conversations in the same way as Devlin
et al. 2019. Unlike Y. Liu et al. 2019 and Lan et al. 2020, preliminary experiments
indicate that sampling from the same conversation does not improve performance.
We attribute this to differences between written and spoken language: written
text is always linear, while overlapping speech is common, making the sentence
order ambiguous.

4.4.3 Disambiguation task

With the training tasks proposed so far, there is an apparent train-test mismatch:
the N-best lists primarily contain variations of the same text, often with only a
few words differing. Spelling - and grammatical errors are also far more common,
neither of which are captured by the preceding tasks.

To remedy this, we propose a straightforward disambiguation task for training
NLMs. For BERT-like models, this task retrains the NSP classification head,
denoted [CLS] in figure 3.1. Assuming a dataset D of candidate transcripts Y
and ground-truth conversational context c, the disambiguation task optimizes

min
θ

∑
(c,Y )∈D

L (1, PLMθ
(y∗|c)) +

∑
y 6=y∗

L (0, PLMθ
(y|c))


where L is the cross-entropy loss function and y∗ is either the ground truth ygt
or yo (equation 4.5). As we will also show empirically in table 6.4, using yo as
the target is more reliable than ygt. For “easy” samples, yo = ygt, making the
distinction irrelevant. For more difficult samples however, ygt is very distinct from
the predicted transcripts in Y . This makes the task rather easy, not preparing
BERT for reality at inference time.

The sum in the second term is over the remaining transcripts in Y . Because
summing over all other samples can give a highly imbalanced dataset, we arti-
ficially restrict the number of samples processed. We found this to yield better
model performance in preliminary tests and, except where stated otherwise, ran-
domly sample only one or two transcripts with strictly higher WER than yo.

Though we did not find this necessary in our experiments, the training data
can be augmented by adjusting the parameters of the beam search or running
a training epoch on the AM. Such simple augmentation will slightly random-
ize the results and should generate a sufficient number of distinct examples to
compensate for the lack of training data.

4.4.4 Input representation in BERT

Rogers, Kovaleva, and Rumshisky 2020 review several studies showing how BERT
learns to rely on the input representation being used during pre-training. Due to



4.4. BERT FOR SPOKEN LANGUAGE 35

the small size of our conversational datasets, we choose to retain the same input
structure as described in section 3.1.2:

[CLS] c−2 c−1 [SEP] y [SEP]

Devlin et al. 2019 also append segment embeddings in addition to the positional
embeddings. We reuse these to indicate whether each token belongs to the context
or the current utterance. The context of samples exceeding BERT’s input window
size is truncated. Due to batch processing, shorter candidates are padded with
[PAD] tokens.

4.4.5 Limitations

There are several limitations to our use of BERT. In particular, we are forcing
BERT to read all conversations linearly. As a result, all information about over-
lapping speech is being stripped. Xiong et al. 2017, for example, train an LM
capable of understanding overlapping speech. While we do have speaker tags
available and could obtain approximate segment alignments, we consider it un-
likely that BERT will be able to relearn new meanings of the segment embeddings
in our low-resource domain.

Further, we leave much of BERT’s input window empty. While BERT gen-
erally tends to work better with more context, it could also prevent BERT from
picking up topic changes in our spontaneous conversations. In addition, by train-
ing BERT to rely on very long conversational context, we could prevent it from
performing well at the beginning of a conversation. Furthermore, the entire sys-
tem becomes more computationally expensive to run.



36 CHAPTER 4. METHODOLOGY



Chapter 5

Experiments

We test several variations of shallow fusion with n-gram language models, rescor-
ing with BERT, and the effect of introducing a diversity term in the beam search.
First, we train a baseline acoustic model with a very simple greedy inference strat-
egy. Next, we replace the greedy inference with beam search. The beam search is
repeated with and without n-gram fusion. Then, we rescore the N-best lists from
each beam search output using several BERT models. All experiments are then
repeated with the diversity term in place. For each combination, we record the
WER as well as other metrics and qualitative samples as presented in chapter 6.

This chapter explores the practical aspects of our experiments. First, we de-
scribe the datasets and the preprocessing we applied to them. The following
sections then explain details of the various components of the system. Finally,
we note some technical details regarding hardware and implementation concerns.
Due to the complexity of the ASR pipeline, documenting every single implemen-
tation decision in prose is unrealistic. Consequently, we publish our source code1

both to make our results reproducible and to encourage further research.

5.1 Datasets

This experiment involves five data sources: text from the Norwegian National Li-
brary and OpenSubtitles, and speech with transcriptions from Nordisk Spr̊akteknologi,
Telenor Norway’s Customer Service, and the Norwegian Parliamentary Speech
Corpus.

1https://gitlab.com/sburud/master

37

https://gitlab.com/sburud/master


38 CHAPTER 5. EXPERIMENTS

5.1.1 Telenor Norway’s Customer Service (TNCS)

Telenor Research transcribed 150 phone calls recorded by Telenor Norway’s cus-
tomer service2, totaling approximately 15 hours of audio. These conversations
were spontaneous and transcribed verbatim. Transcriptions are separated into
customer and agent channels and split on silence into “utterances”.

Two utterances of a typical conversation are shown in table 5.1. The customer
speaks a dialect that maps closely to Nynorsk, so the resulting transcript is a mix
of Bokm̊al and Nynorsk. It illustrates several distinct features of this dataset
compared to many publicly available ASR datasets:

• Ungrammatical and incomplete sentences and interruptions.

• Topic changes without clear discourse markers.

• Hesitations and other filler words.

• A wide range of dialects, both in terms of pronunciation and vocabulary.

The word frequency distribution is shown in figure 5.1a. A large portion
of the distinct words are customer names, addresses, and telecommunication
jargon. For the experiments, we remove all hesitations (“uhh” and so on) and
standardize the spelling of common words with many spelling variations (for
example “okey/okei/ok” and some typical cases of Nynorsk words being very
similar to their Bokm̊al equivalents) to reduce the number of word variations the
LMs need to learn.

After preprocessing, the dataset consists of 143 conversations, totaling 10k
utterances and 115k words after preprocessing. We use approximately 80% of
the utterances for training and split the rest equally into validation and testing
sets. The splits are by conversation such that no conversation is spread across
different splits.

Agent eee men det det sim kortet der skal hvert fall brukes i den ruteren
der da s̊a f̊ar du det andre sim kortet n̊a snart s̊a

Customer ja eg veit ikkje eg har ikkje f̊att montert det enda eg fikk den
første i dag og det st̊ar fri montering kven som monterer det vet
du det

Table 5.1: Two consecutive utterances of a conversation before standardizing
spelling variations and removing hesitations.

2This data and its sharing are regulated by customer consent and confidentiality agreements.



5.1. DATASETS 39

(a) TNCS (b) NPSC

Figure 5.1: Word frequencies and number of words with each frequency.

5.1.2 Norwegian Parliamentary Speech Corpus (NPSC)

Official political meetings at the Norwegian Parliament (Stortinget) are recorded
and published online along with professionally proofread proceedings. The meet-
ings typically consist of pre-written speeches and statements, along with moder-
ated debates afterward. This is also reflected in the language, which tends to be
very formal. Since MPs come from all areas of the country, a wide range of di-
alects are used. Proceedings consist of a mix of Bokm̊al and Nynorsk, depending
on the dialect of each speaker.

While official proceedings are available, these are intended for reading and
tend to deviate from the exact words being said. Using ASR, significant pre-
processing, and manual review, the National Library adapts the proceedings to
match the actual audio. This work is published as the Norwegian Parliamentary
Speech Corpus (NPSC)3 and contains 58 hours of audio. As shown in figure 5.1b,
the word frequency distribution is comparable to the TNCS dataset. Below, we
show an example utterance after preprocessing:

i denne perioden kan det og søkes om investeringstilskudd til renover-
ing og utskifting av eksisterende bygningsmasse

Similar to TNCS data, we split the dataset by conversation, treating each day of
meetings as one long conversation. We reserve one session for evaluation and one
for testing, leaving the rest as training data.

3https://www.nb.no/sbfil/talegjenkjenning/npsc/v0_1/NPSC_01_doc.pdf

https://www.nb.no/sbfil/talegjenkjenning/npsc/v0_1/NPSC_01_doc.pdf


40 CHAPTER 5. EXPERIMENTS

5.1.3 Nordisk Spr̊akteknologi (NST)

Nordisk Spr̊akteknologi (NST) collected large speech datasets in the early 2000s
before their bankruptcy in 2003. This data was then purchased by a group of
universities and eventually made public4. All speech is pre-planned and recorded
in a noise-free environment with carefully documented equipment and procedures.
The corpus being read is designed to be phonetically balanced, and speakers were
sampled to ensure a reasonably balanced set of dialects, genders, and ages are
represented. On average, each audio sample is approximately 5 seconds long, and
for all practical purposes, each sample is independent of the others. In total, the
Norwegian part of the dataset consists of 395 hours of audio.

5.1.4 Colossal Norwegian Corpus

The National Library of Norway has collected an internal “Colossal Norwegian
Corpus”5. It consists of high-quality Optical Character Recognition (OCR) scans
from approximately half the books published in Bokm̊al and Nynorsk in the past
200 years, as well as several newspapers, government documents, and crawled
websites. After deduplication, the corpus consists of around 18B words. As
described in section 5.4.2, this dataset is used to pre-train BERT.

5.1.5 OpenSubtitles

The OpenSubtitles Norwegian v2018 dataset consists of the subtitle files for
14,225 movies and TV episodes, along with metadata such as title, year, and
genre. A subtitle file is a set of strings with associated timestamps indicating
when they are presented on the screen. Lison and Tiedemann 2016 describes
them in more detail.

As is expected from a crowd-sourced repository, the quality of some subtitle
files is subpar. The most prevalent issues are malformed timestamps and incorrect
OCR scans of old movie subtitles. We have ensured almost all strings appear in
their original order and removed conversation turn marks, but otherwise left the
data as-is.

A movie typically consists of many conversations. We treat each conversation
as a document and treat each line within the document as an utterance. Without
the actual movies available, we need to make assumptions about where conver-
sation splits are solely based on the subtitle files. While this could theoretically
be solvable with NSP, we settled with a much simpler solution: consider a con-
versation to be ended after t seconds of silence, with t = 4 being the best value
found empirically.

4https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-13
5https://github.com/NBAiLab/notram/blob/debd6a/guides/corpus_description.md

https://www.nb.no/sprakbanken/ressurskatalog/oai-nb-no-sbr-13
https://github.com/NBAiLab/notram/blob/debd6a/guides/corpus_description.md


5.2. EVALUATION 41

5.2 Evaluation

The overall goal is to improve transcription quality on the NPSC and TNCS
datasets. As a proxy for transcription quality, we use the Word Error Rate
(WER). WER is a normalized word-level edit distance (WED) between two
strings, i.e. the number of substitutions, insertions, and deletions needed to trans-
form the predicted transcript into the target transcript, divided by the number
of words in the target transcript.

A subtle but important detail is that we report the total WER. The total
WER is the total edit distance for all samples being evaluated, divided by the
total number of words. Unlike the averaged utterance-level WER, total WER
penalizes every mistake equally, while average WER places higher penalties on
errors in short transcripts. Many researchers do not specify this explicitly, in
part because the difference does not matter in practice. However, on the TNCS
dataset, a large portion of the transcripts are very short, making this distinction
important.

For N-best rescoring, there is an upper bound on the possible performance
improvements, as discussed in equation 4.3. While the oracle rescorer is, to a
large extent, an impossible goal given its reliance on the target transcript, it often
makes sense to report rescoring improvements with respect to this gold standard.
Following Ma and Schwartz 2008, we use the WER recovery rate (WERR) to
measure this. In terms of N-best rescoring as described in section 4.3, it is

defined as WERR = WER(y1)−WER(y′)
WER(y1)−WER(yo)

, where y′ is the rescored transcript.

5.3 Acoustic Model

Our acoustic model (shown in figure 5.2) is relatively straightforward: three
strided convolution layers with large kernels and clipped tanh activations, fol-
lowed by nine 1200-dimensional, bidirectional GRU layers and a single fully-
connected layer with the softmaxed character outputs (Z) at the end. Batch
normalization is applied between each layer.

The model is trained using the CTC loss function, optimized using stochastic
gradient descent with Nesterov momentum and L2 regularization. We first train
the model until convergence on the NST dataset, then “fine-tune” on TNCS or
NPSC until the early stopping criterion is met on an evaluation set. Telenor
Research has already put significant work into tuning the acoustic model, and we
do not perform any further hyperparameter tuning of the acoustic model.



42 CHAPTER 5. EXPERIMENTS

Figure 5.2: The AM architecture. Figure adapted from Amodei et al. 2016.

5.4 Language Models

As outlined in chapter 4, the ASR pipeline will use two LMs: an n-gram model for
shallow fusion and a BERT model for rescoring. This section details the training
and implementation of these LMs.

5.4.1 n-gram

We train n-gram models of order 2 and 6 using the implementation of Kneser-
Ney smoothed n-gram estimation from Heafield et al. 20136. We train separate
models for each speech corpus and prune unique n-grams of order 2 and above.
All models are trained on the same conversations as the acoustic model. Each
utterance is treated as a separate document, meaning no context information
from previous utterances is available in the n-gram models.

5.4.2 BERT

Even though Google’s original BERT implementation is publicly available, we
use a reimplementation by Wolf et al. 2019. Unlike the original, this reimple-
mentation is fully open and is independently verified to reproduce the results of
Devlin et al. 2019 from scratch. More importantly, it is more modular and thus
easier to adapt to our needs.

Our BERT model follows the structure of “BERT cased multilingual”. It is

6Specifically, version 35835f1 from https://github.com/kpu/kenlm

https://github.com/kpu/kenlm


5.5. BEAM SEARCH 43

pre-trained by the National Library AI Lab7 from an unspecified checkpoint of
Google’s multilingual model. As this model comes with an extensive vocabulary
covering many glyphs never encountered in Norwegian speech recognition, the
model is more computationally expensive than necessary. For this reason, we do
not report model runtimes. Instead, we leave for future work the task of pruning
the vocabulary for improved efficiency and performance.

For our fine-tuning, we use a batch size of 768 and otherwise apply the hyper-
parameters listed under BERTbase in Devlin et al. 2019. When we list a BERT
model trained on multiple datasets, this is to be understood as sequential train-
ing: the model is first trained until convergence on the first dataset, then trained
until convergence on the next dataset. Due to the large differences in size, train-
ing on multiple datasets simultaneously would prevent contributions from the
smaller datasets. Mixing data from different domains during training could also
make the learning task harder and negatively impact performance.

When training for disambiguation, we obtain yo by using the inference results
from the AM on training data, which hypothetically could lead to a train-test
mismatch. In practice, it means BERT will consistently give slightly higher scores
than if we trained on ygt, but those scores get scaled back down by reducing γ in
the hyperparameter search.

For simplicity, we always assume that previous utterances were decoded per-
fectly. This assumption makes the rescoring experimental setup far simpler since
all samples can be processed independently and in parallel, similar to standard
machine learning pipelines. Theoretically, this introduces another slight train-
test mismatch. As discussed previously, BERT works better when the language
use is consistent throughout the document, which might not be the case if we feed
the ground truth context and the current utterance failed to decode. Further,
BERT attends more to the overall content of the context rather than the exact
words (see section 6.4), meaning that a few incorrect words in the context are
unlikely to affect results. Based on this, we consider it unlikely that this could
artificially improve results: if anything, the language mismatch between context
and current utterance could make the task slightly harder.

5.5 Beam Search

We use a highly optimized, data-parallel beam search implementation8. For
memory efficiency, the search is represented as a prefix tree. The N highest-
ranking nodes are kept in the beam search (“beam nodes”), and all other nodes

7The exact model is available at https://huggingface.co/NbAiLab/nb-bert-base/tree/

6aad23f6c2ed0df8498397175ec07d497f6319a1
8https://github.com/parlance/ctcdecode

https://huggingface.co/NbAiLab/nb-bert-base/tree/6aad23f6c2ed0df8498397175ec07d497f6319a1
https://huggingface.co/NbAiLab/nb-bert-base/tree/6aad23f6c2ed0df8498397175ec07d497f6319a1
https://github.com/parlance/ctcdecode


44 CHAPTER 5. EXPERIMENTS

without beam node descendants are pruned. Technically, this allows a non-beam-
node may be promoted to a beam node again after falling out of the search.

At every time step, we consider adding every possible character to every beam
node, except for characters only leading to OOV words. If the new character is
non-blank, we add the n-gram, word count, and diversity bonuses.

The vocabulary constraint means that our system cannot output OOV words
under any circumstances. Instead, it will attempt to assemble the relevant se-
quence of characters to the closest in-vocabulary interpretation. Never consider-
ing OOV words may seem overly strict, but on the other hand, it will primarily
filter out garbage words and uncommon proper names. This behavior is also
true to the original Deep Speech implementations. We will show examples of
cases where the vocabulary constraint both degrades and improves results in
section 6.4.

In the diverse beam search, we maintain G completely separate prefix trees.
Diversity bonus is only given to beams selecting different tokens at approximately
the same position. We use a maximum length difference of 10 characters.

5.6 Hyperparameter tuning

Like many machine learning systems, our system has many hyperparameters to
tune. Theoretically, it would be best to tune all hyperparameters simultaneously,
but the resulting search space turned out to be far more extensive than our com-
pute budget, even when applying aggressive intermediate result caching. Instead,
we perform hyperparameter tuning in two stages: first the beam search parame-
ters, then the rescoring interpolation parameter. The two-step search converges
with much fewer trials, and each trial runs faster.

For the beam search parameters, we perform a random search using Optuna
(Akiba et al. 2019). We perform a total of three variations of the Optuna search:

• Tune α and β, minimizing
∑

WED(y1, ygt). The parameters found are used
to report baseline WER for shallow fusion.

• Tune α and β, minimizing
∑

WED(yo, ygt). These parameters are used in
non-diverse rescoring experiments.

• Tune α, β, λ and |G|, minimizing
∑

WED(yo, ygt). We use these parame-
ters in the diverse beam search rescoring experiments.

The total WED is measured for each batch, and combinations performing worse
than the median are pruned. Including pruned attempts, we perform 40 trials
for each combination, noting few or no improvements beyond the first 20 trials.
All searches are run on an evaluation set.



5.7. IMPLEMENTATION DETAILS 45

Using the optimal beam search parameters, we score all candidates in Y using
BERT. We then perform a grid search for γ ∈ [0, 0.5] with step size 0.001 to find
the interpolation parameter minimizing the total WED on the evaluation set.

5.7 Implementation details

As already described, parts of our system had viable components already avail-
able. Most of these were written in Python or had Python bindings available,
so Python was a natural choice as the implementation language. Unfortunately,
multithreading in Python is severely limited due to the global interpreter lock.
The GIL forces us to either use data-parallel processing or C++/Rust modules
to achieve performant parallelization.

In the critical path of the system’s inference functionality, we took care to
use C++ and Pytorch whenever possible. Figure 5.3 shows an icicle diagram
showing time spent in various parts of the pipeline. As we did not maintain a
Python implementation for comparison, we can only measure the performance
improvements anecdotally in terms of the places we did not have time to optimize.

The only remaining step where significant inference processing happens in
Python code is the transition between the C++ beam search module and BERT’s
tokenizer. In this step, the beam search paths (encoded as vocabulary indices)
are decoded into Python strings for use with the tokenizer. In the final version
of the codebase, this step takes longer than the actual beam search. This code
is still serial, as the overhead of distributing the work across different Python
processes outweighs the runtime of the actual computation.

In the training modules, we primarily relied on data-parallel multiprocessing
in Python. As we ran on Telenor Research’s HPC infrastructure, we achieved
significant speedups by distributing the work in large chunks across many pro-
cessor cores. By caching intermediate results to disk in full, we could easily and
quickly run experiments with downstream components without running the entire
pipeline.

5.8 Infrastructure

All computations were run on a shared HPC system hosted by Telenor Research.
As this was a shared system without strict time-sharing policies, the runtimes of
our different model variations are not comparable. Nevertheless, we did observe
that increasing the number of groups G or n-grams consistently slowed down the
beam search slightly, even though we cannot quantify this accurately.

We allocated three Nvidia RTX 2080 Ti cards for training BERT. The per-
formance benefits of allocating more GPUs were limited. With more GPUs, the



46 CHAPTER 5. EXPERIMENTS

Figure 5.3: Icicle diagram showing time spent in each component when decoding
20 random samples. While it is clear that BERT (nsp score docs) slows down
the system significantly, converting the output of the beam search to Python-
compatible strings takes almost as long time.



5.8. INFRASTRUCTURE 47

model needs to process more data to converge due to increased batch size or in-
cur additional parameter synchronization overhead with smaller batches. During
inference, we ran BERT on 1-3 of the cards, depending on availability. Similar to
what we observed when training, data copying overhead limited the performance
benefits of allocating more than 3 GPUs.



48 CHAPTER 5. EXPERIMENTS



Chapter 6

Results and Discussion

After training on the NST and TNCS datasets, the baseline system with a 2-gram
LM integrated using shallow fusion obtains 33.27% WER on the TNCS test set.
Rescoring the 1024 beams of that model with our best BERT model obtains
32.79% WER. This is a relative improvement of 1.4%, or 5.7% WER recovery.
Repeating the experiment on NPSC data, the best BERT model obtains 20.8%
WER, corresponding to a WER recovery of 37.1%. Increasing the context size
for NPSC data reduces the WER further to 20.6%.

6.1 N-best rescoring

Table 6.1 shows rescoring performance with the various BERT rescoring - and
training strategies. The conversational NSP training task does not help perfor-
mance at all (see why in section 6.5), despite being the only training scheme
where we could fine-tune on the large OpenSubtitles dataset.

On the other hand, the disambiguation task improves performance signifi-
cantly. This shows that more realistic training of attention LMs does matter. In
line with Devlin et al. 2019, we found that BERT does learn a sufficient language
representation to quickly adapt to new writing styles and language use with only
minimal fine-tuning. The disambiguation models in table 6.1 are all pre-trained
on the Colossal Norwegian Corpus, and then fine-tuned on just the two conversa-
tional speech corpora1. We found that fine-tuning on OpenSubtitles CNSP does
not improve performance and, in some cases, even hurts performance.

1When testing on NPSC, we fine-tune BERT on TNCS first, and the other way around for
TNCS, see section 5.4.2 for details.

49



50 CHAPTER 6. RESULTS AND DISCUSSION

TNCS NPSC
Decoding strategy WER WERR WER WERR
Greedy decode 48.9 - 37.7 -
BS w/ vocabulary 38.4 - 30.7 -
BS w/ 2-gram 33.3 - 23.4 -
+ Conversational NSP 33.3 0.0 - -
+ Disambiguation no ctx 33.1 2.3 22.5 12.0
+ Disambiguation short ctx 32.8 5.7 22.5 12.0
+ Disambiguation long ctx 33.1 1.5 20.8 37.1
+ Oracle rescorer 24.9 100.0 16.3 100.0
BS w/ 6-gram 33.0 - 23.1 -
+ Disambiguation short ctx 32.7 3.1 22.3 11.4
+ Disambiguation long ctx - - 20.6 34.7
+ Oracle rescorer 25.8 100.0 16.1 100.0

Table 6.1: Word Error Rates (WER) and WER recovery rates (WERR) obtained
with the different decoding strategies. We use the total WER evaluated on the
test split of each dataset, and report numbers as percentages. WERR is cal-
culated for each block using the plain BS + n-gram model as baseline and the
corresponding oracle rescorer as the gold standard.

6.1.1 Conversational context

Much of the rescoring improvements relies on the presence of conversational con-
text. As shown in table 6.1, introducing just two utterances of conversational
context improved results significantly.

For the TNCS data, extending the context to 5 utterances reduced perfor-
mance both in terms of latency and error rates, as hypothesized in section 4.4.5.
As we will see in section 6.5, text-only disambiguation performance also degraded
on TNCS data, indicating that too long context will mislead BERT to pick an
incorrect transcript.

In contrast, NPSC benefited greatly from the longer context, obtaining 37.1%
and 34.7% WERR for 2- and 6-gram shallow fusion, respectively. With the
longer context, the optimizer was able to choose significantly higher values for
the interpolation weight γ, as shown in figure 6.1. The improvements plateaued
around γ ≈ 0.2, but unlike the other experiments, a much higher γ value was
needed before we observed performance degradation. We attribute this to the
long-form speeches being much more similar to the pre-training data. Further,
the debates focus on a specific topic, making it more likely that previous context
is relevant when decoding the current utterance.



6.1. N-BEST RESCORING 51

Figure 6.1: WER on the NPSC evaluation set with 2 and 5 context utterances
available to BERT when rescoring. It is clear that longer context improves results
on this dataset.

6.1.2 Sequence length and bounds for improvements

Section 4.3 discussed the upper and lower performance bounds for N-best rescor-
ing, noting that CTC beam search will perform a near exhaustive search for short
utterances. By measuring the best and worst among the candidates, we obtain
an empirical estimate of these bounds.

Figure 6.2 shows this as a function of utterance length, along with the WER of
y1 and the rescored y′. The dotted lines show the total WER of the best and worst
transcripts. The range between the best and worst is huge for short sequences
because the beam width is large relative to the length of the sequence. This
translates to a low signal-to-noise ratio because the search fills Y with garbage
transcripts, hence the large values for worst WER. Still, both the n-gram and
BERT are capable of picking transcripts with low WER.

Intuitively, BERT would perform better than a 2-gram model on longer se-
quences because it can attend over the entire utterance, while the 2-gram is
limited to two words. Figure 6.2a clearly shows there is no such relationship.
If anything, BERT performs better on short utterances in figure 6.2c. When
increasing the context size available to BERT from 2 to 5 utterances, figure 6.2b
and 6.2d clearly show that BERT improves the results more for shorter than
longer utterances. This has a simple explanation: longer context is available,



52 CHAPTER 6. RESULTS AND DISCUSSION

0 20 40 60 80
Length

0.1

0.2

0.3

0.4

0.5

0.6
W

ER

beam
combined
best beam (oracle)
worst beam

(a) TNCS short context

0 20 40 60 80
Length

0.1

0.2

0.3

0.4

0.5

0.6

W
ER

beam
combined
best beam (oracle)
worst beam

(b) TNCS long context

0 20 40 60 80
Length

0.1

0.2

0.3

0.4

0.5

0.6

W
ER

beam
combined
best beam (oracle)
worst beam

(c) NPSC short context

0 20 40 60 80
Length

0.1

0.2

0.3

0.4

0.5

0.6

W
ER

beam
combined
best beam (oracle)
worst beam

(d) NPSC long context

Figure 6.2: Total WER as function of utterance word count (grouped by ground
truth length at 5-word intervals). “Beam” is the 2-gram baseline system. “Com-
bined” adds a BERT model fine-tuned with 2 or 5 context utterances.

and the topic changes mentioned in the previous subsection rarely occur in short
utterances.

For long sequences, however, the gap between the best and worst transcripts
is tiny. This severely limits BERT’s ability to improve the results and motivates
our adaptation of Diverse Beam Search.

6.2 Diversity

We re-run experiments on TNCS, this time with the diverse beam search exten-
sion presented in section 4.2.1. The Optuna search found G = 2 and λ = 10−6

to perform well (Appendix C), so the diversity bonus has a relatively small influ-
ence on the results. As described in section 3.3, diverse beam search forces the
inclusion of lower-probability transcripts. Therefore, we expected the top-1 per-



6.3. SHALLOW FUSION VS. RESCORING 53

LM Baseline Diverse
2-gram 33.27 33.29
+ BERT 32.79 33.19
+ Oracle 24.87 25.50

Table 6.2: Results on TNCS test set with standard and diverse beam search

formance to degrade when not rescoring the candidate list, as seen in table 6.2.
However, the diverse variant consistently under-performed compared to standard
beam search across all experiments.

A diverse beam search never performs worse than a standard beam search of
width N

G because the first group is equivalent to a beam search of that size. We
find that the later groups with added diversity do not improve results. In other
words, it is strictly better to spend the compute budget performing a deeper
exploration of one part of the search space than forcing the search to cover larger
regions.

Inspecting the beams in the second group reveals that they were often filled
with seemingly random characters. The most likely explanation is that the dis-
tance metric is too simple, and the model exploits this to return garbage tran-
scripts obtaining high diversity scores. We found the search to be extremely
sensitive to the exact value of λ, with tiny changes tipping the later groups from
containing homogeneous beams as in standard beam search to mainly containing
garbage.

6.3 Shallow fusion vs. rescoring

To see the effect of rescoring versus shallow fusion, we ran additional experiments
on the TNCS evaluation set. First, we used the 2-gram for rescoring rather
than integrating it with shallow fusion. Unsurprisingly, we found that shallow
fusion gives much better WER than rescoring (at the cost of being much more
computationally expensive).

Then we rescored with BERT, still without shallow fusion. This yielded a
WERR of 7.0%, only slightly higher than when rescoring the results from n-gram
shallow fusion. While this translates to a much worse WER overall, it shows that
BERT’s knowledge is to a large extent distinct from the n-gram’s.

Analyzing the results, BERT seems more prone to include partial words.
These often occur at the end of the string, which is not surprising given that
BERT’s pre-training samples can contain incomplete words to fill the input win-
dow. BERT is also more tolerant when it comes to misspellings, likely because
it is not constrained by a dictionary like n-gram models are. Unfortunately, this



54 CHAPTER 6. RESULTS AND DISCUSSION

also indicates that BERT alone will not outperform an n-gram model in shallow
fusion.

6.4 Qualitative results

This section examines some illustrative examples of how BERT, vocabularies, and
n-gram models affect the results. Because sharing of the TNCS data is highly
restricted, we mostly show examples from NPSC with similar characteristics as
TNCS results.

As mentioned in section 5.5, the full-word vocabulary constraint rejects OOV
words from consideration. While filtering out significant amounts of garbage,
failure is impossible to recover from downstream when the correct word is OOV.
With TNCS data, this frequently occurs with names and addresses. On NPSC,
it happens during discussions of technical topics:

y1 ...aksept sitte gratis sa læres og p̊a tanken i forstyrre de vassdrage
ygt ...lakseparasitten gyrodactylus salaris og p̊a kalking i forsurede vassdrag

With TNCS, some speakers tend to mumble, speak fast, use a distinct dialect,
or a combination of all three. Naturally, the AM’s confidence is low on those
transcripts, causing the LMs to have more influence over the final transcript. To
some extent, this is necessary because even a 2-gram model can effectively filter
out most of the garbage words. On the other hand, the LMs prefer to fill the
transcript with common words rather than what was actually said. Notice how
even the oracle transcript yo below has lost practically all semantic meaning:

c−1 men det det sim kortet der skal hvert fall brukes i den ruteren der da s̊a
f̊ar du det andre sim kortet n̊a snart s̊a

yam ja j ikke m notert er jeg jeg liker e ja og de skal i o et e kan fer m̊a øre
vet du jeg

y1 ja ja ikke det er jeg jeg er da og det skal vi det er ganske mere vet du jeg
y′ ja ja ikke det er jeg jeg sier ja og det skal vi det er ganske mer vet du det
yo ja jeg ikke det er jeg jeg er da og det skal vi det er ganske mere vet du det
ygt ja jeg vet ikke jeg har ikke f̊att montert det enda jeg fikk den første i dag

og det st̊ar fri montering hvem som monterer det vet du det

The above example also illustrates how conversational context is sometimes ren-
dered useless due to topic changes (section 6.1.1). In contrast, the following
example shows how BERT occasionally uses context to infer that the correct
transcript would be the one using “studieplass” in plural form:



6.4. QUALITATIVE RESULTS 55

c−2 og i likhet med en del andre omr̊ader hvor det er større behov for
kompetanse i arbeidsmarkedet fagskoler flere som har tatt fagskoler

c−1 der har det ikke kommet flere studieplasser
y1 det har s̊a det som vidt det er kommet noen studieplass p̊a ikt
y′ det har s̊a det s̊a vidt det er kommet noen studieplasser p̊a ikt
ygt det har s̊a det er s̊a vidt det er kommet noen studieplasser p̊a i ikt

In practice, clear-cut examples of context use are surprisingly rare. If the im-
provements rarely come from using the context directly, why does performance
improve on NPSC when we extend the conversational context? We hypothe-
size that context improves performance due to conditioning as discussed in sec-
tion 3.1.3. Similarly, it appears that filling BERT’s input window with text of
similar style to the target transcript helps trigger the relevant parts of the net-
work. If this is the case, it could be beneficial to condition on each speaker
separately rather than including utterances by both speakers as context in the
input window.

The grammatical changes BERT makes are often improvements over the n-
gram and beam search, as shown in the next example. While they most often
bring the transcript closer to the ground truth, they also introduce further devi-
ations and sometimes distort the original meaning:

y1 og ikke minst er det et viktig poeng dette at det klarte mange som som
her ikke alltid veit at det er nok ulovlig som er viktig har med segre

y′ og ikke minst er det et viktig poeng dette at det klart er mange som som
her ikke alltid veit at det er nok ulovlig som er viktig å ha med seg

ygt og ikkje minst s̊a er det eit viktig poeng dette at det er klart det er
mange som som her ikkje alltid veit at dei gjer noko ulovleg som er
viktig å ha med seg

6.4.1 Model bias

The last example of the previous section highlights the problem of model bias.
From a modeling perspective, the entire purpose of introducing LM constraints
into an ASR system is to bias the results in favor of coherent, meaningful, and
orthographically correct language. This reduces the model’s variance in the sense
that it is prevented from outputting certain words or phrases.

Usually, those phrases or words are meaningless garbage. Sometimes, how-
ever, the biasing changes the utterance’s meaning. Notice in the previous section
how the meaning changed from “dei gjer noko ulovleg” (“they are doing some-
thing illegal”) to the statistically far more common “det er nok ulovlig” (“it



56 CHAPTER 6. RESULTS AND DISCUSSION

probably is illegal”). In extreme cases, the system completely ignores the ac-
tual audio and replaces e.g. “nydelig” with “nei” or “ok” even though they are
entirely implausible from a phonetic perspective.

Rephrased, LMs hide the AM’s weaknesses. While this is good in many
cases because it guesses correctly, the resulting failure mode of plausible-looking
sentences is much harder for humans to detect. Whether this is a problem in
practice depends on the application. However, it is crucial to be aware of these
limitations when considering whether to apply strong LM constraints to an ASR
system.

6.5 Analysis of BERT training strategies

We have explored several different training schemes for BERT. Our findings are
summarized in table 6.4.

The NSP objective is unsuited to use for rescoring. The base model predicts
that virtually no candidates are likely next sentences. In a sense, this is correct
in terms of the NSP task because deviations in language use would be a telltale
sign of a negative sample. Conversational NSP does not improve the situation,
and is not even reliably able to avoid the same failure mode. While it shows
decent performance on the training set, it is clear from table 6.4 that this is due
to overfitting.

Training data/scheme Accuracy (%) PPV (%) NPV (%)
Base model NSP 47.95 92.27 3.63
TNCS CNSP 52.33 52.98 51.68
OpenSubtitles (cased) CNSP 50.56 3.35 97.77
OpenSubtitles CNSP 48.98 15.46 82.50
+ NPSC Disambiguation yo 73.93 80.54 67.32

+ TNCS Disambiguation yo 81.94 88.83 75.05
TNCS Disambiguation yo 80.96 91.71 70.20
NPSC Disambiguation yo 74.86 87.24 62.48
+ TNCS Disambiguation yo 82.17 89.94 74.39
+ TNCS Disambiguation ygt 79.05 81.25 75.00

Table 6.4: Text-only disambiguation results on a balanced TNCS evaluation
set with 2-utterance context, comparable to setting N = 2 and γ = 1. All
models start from the same base model (see section 5.1.4), but are trained on
different datasets until the early stopping criterion is met. PPV/NPV is the
positive/negative predictive values, i.e. portion of samples predicted as posi-
tive/negative that actually are true positives/negatives.



6.5. ANALYSIS OF BERT TRAINING STRATEGIES 57

LM Acc. (%)
Base 53.13
OpenSubtitles 51.56
NPSC 59.38
TNCS 68.75
Human 70.31

Table 6.5: Accuracy on 64 evaluation samples from a balanced TNCS conversa-
tional NSP set. The human was not fine-tuned on this task.

Training on the disambiguation task, even though little data is available, leads
to much better performance. While performance is better when the training data
is from the same dataset as the evaluation set, we observe a significant uplift
in performance from training only on NPSC. As expected, training on more
conversational data consistently improves results.

6.5.1 Conversational NSP and human performance

Our conversational NSP models performed rather poorly both on the disambigua-
tion task and for rescoring. As shown in table 6.5, the base model did not perform
much better than a random guess, despite being trained on a relatively similar
task. The accuracy did not improve until BERT was exposed to a transcription
dataset.

When we attempted the conversational NSP task ourselves, we found it to
be surprisingly tricky. While some samples were easy to classify, most required
heavy use of domain knowledge, both in the form of common patterns in phone
conversations and facts specific to telecommunications (i.e. “no internet” likely
precedes a question about the router).

We assume this is the reason behind the considerable performance improve-
ment when training on TNCS data. Therefore, we conclude that conversational
NSP is unlikely to improve further, especially for TNCS where we found little
potential for improvement by extending the context (section 6.1.1).



58 CHAPTER 6. RESULTS AND DISCUSSION



Chapter 7

Conclusion

As part of an ongoing project to improve ASR for real-life Norwegian conversa-
tions, we have explored how state-of-the-art language models can improve per-
formance. Working towards that goal, we have successfully trained BERT to
directly disambiguate the outputs of a CTC beam search. In terms of the re-
search questions we posed in section 1.2:

RQ1: How do state-of-the-art LM integration met-
hods perform in low-resource situations?

We implemented N-best rescoring with BERT into Telenor’s ASR pipeline. Even
though this method is conceptually very simple, it yielded significant perfor-
mance improvements. While the results were comparable to those reported by
the broader research community, the analysis revealed significant potential for
further performance gains by improving the decoding process. This indicates
that deeper integration of large LMs is a promising direction for future research.

RQ2: How can LMs exploit conversational context
to improve performance?

Despite having relatively few conversational speech transcripts available for train-
ing, ASR performance improved significantly when introducing conversational
context. Our results suggest that BERT makes heavy use of previous utterances
to achieve performance gains over the 2-gram LM for the formal NPSC dataset.

59



60 CHAPTER 7. CONCLUSION

RQ3: How does the LM training scheme and -data
affect results?

The experiments confirmed that the choice of LM training task had a significant
effect on the results. BERT learned to perform all proposed training tasks in
isolation, and to some extent, even successfully generalize across datasets. How-
ever, both traditional NSP and conversational NSP performed poorly when the
model was integrated as part of an ASR pipeline. Training BERT to directly
disambiguate between candidate transcripts gave the best performance.

When it comes to datasets, the deciding factor was the modality of the dataset.
BERT performed much better when trained on speech transcripts than when
trained on movie subtitles and text data. Additional CNSP pre-training on movie
subtitles even degraded performance in several cases.

7.1 Future work

Given the modest performance improvements observed on TNCS data with N-
best rescoring, there is room for future improvements. We recommend three lines
of research as natural next steps beyond the obvious solution of improving the
AM itself.

7.1.1 Tighter LM integration

The most obvious area to improve would be to find a way to use BERT with
shallow fusion without requiring large amounts of fine-tuning data. We have
already seen that n-grams perform much better when given a chance to guide the
beam search, and there is no apparent reason why this should not be the case
with BERT too. By (for example) introducing a token indicating incomplete
sentences, BERT should be able to learn to operate correctly even though the
utterance is not fully decoded. An autoregressive, generative transformer model
could also be an option, though recent work in this area have to a large extent
focused on high-resource situations.

7.1.2 Context

In regards to conversational context, we have shown that language models can
make use of the conversational context when rescoring. It would be interesting
to explore how context can be used more efficiently, especially in the setting of
informal conversations. We forced BERT to treat the conversations as linear, even
when the speech was in practice overlapping. As CTC often outputs each token
approximately at the time step it was uttered, it is possible to align each word



7.1. FUTURE WORK 61

in a conversation and use BERT’s segment embedding to indicate the speaker.
This gives BERT a higher-fidelity context to work with.

The experiments did not show exactly which aspects of the conversational
context BERT exploits. Future research could explore this theme further to see
if speaker context can substitute conversational context. If BERT is shown to use
the context for conditioning as briefly hypothesized in section 6.4, other in-domain
context could be used, leading to improved performance beyond conversational
ASR.

7.1.3 Vocabulary

A limiting factor we encountered was the mismatch between the character-level
acoustic model and beam search, word-level n-gram model, and subword-level
neural LM. Ensuring all components have a shared vocabulary would likely im-
prove runtime performance and make tighter LM integration far more straightfor-
ward. This vocabulary would need to be of limited size, as a too large vocabulary
makes it difficult for the AM to tie all words with their pronunciations correctly.
At the same time, BERT benefits from larger vocabularies, so a good trade-off
needs to be found.

A shared vocabulary is also a prerequisite to implementing both deep and cold
fusion. On the one hand, this could improve performance because the AM does
not encounter enough training data to learn a good internal LM. On the other
hand, it is an open question whether the low amount of training data available
makes it too difficult for the AM to learn how to use the integrated LM efficiently
while simultaneously adapting the LM to spoken language.

7.1.4 Acoustic Model

Finally, we emphasize that relying heavily on language models is merely a work-
around to the underlying problem of poor acoustic model performance. This
workaround has some adverse side effects, particularly model bias and less ex-
plainable/detectable failure modes.

While AMs are competitive with human performance in high-resource do-
mains and on “easy” datasets such as NST, the combination of little training
data and spontaneous speech gives inferior results. Therefore, an obvious direc-
tion for future research is to improve the AM itself in this situation. Rescoring is
shown to improve results even with the combination of small NLMs and robust
AMs, though the room for improvement becomes smaller for better-performing
baselines.



62 CHAPTER 7. CONCLUSION



Bibliography

Akiba, Takuya et al. (July 25, 2019). “Optuna: A Next-generation Hyperparam-
eter Optimization Framework”. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. KDD ’19.
New York, NY, USA: Association for Computing Machinery, pp. 2623–2631.
isbn: 978-1-4503-6201-6. doi: 10.1145/3292500.3330701. url: https://
doi.org/10.1145/3292500.3330701 (visited on 05/22/2021).

Amodei, Dario et al. (June 11, 2016). “Deep Speech 2 : End-to-End Speech Recog-
nition in English and Mandarin”. In: International Conference on Machine
Learning. International Conference on Machine Learning. ISSN: 1938-7228.
PMLR, pp. 173–182. url: http://proceedings.mlr.press/v48/amodei16.
html (visited on 06/14/2021).

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (May 19, 2016). “Neu-
ral Machine Translation by Jointly Learning to Align and Translate”. In:
arXiv:1409.0473 [cs, stat]. arXiv: 1409.0473. url: http://arxiv.org/abs/
1409.0473 (visited on 10/13/2020).

Bengio, Y., P. Simard, and P. Frasconi (Mar. 1994). “Learning long-term depen-
dencies with gradient descent is difficult”. In: IEEE Transactions on Neu-
ral Networks 5.2. Conference Name: IEEE Transactions on Neural Networks,
pp. 157–166. issn: 1941-0093. doi: 10.1109/72.279181.

Bojanowski, Piotr et al. (June 1, 2017). “Enriching Word Vectors with Subword
Information”. In: Transactions of the Association for Computational Linguis-
tics 5, pp. 135–146. issn: 2307-387X. doi: 10.1162/tacl_a_00051. url:
https://doi.org/10.1162/tacl_a_00051 (visited on 06/14/2021).

Brown, Tom B. et al. (July 22, 2020). “Language Models are Few-Shot Learners”.
In: arXiv:2005.14165 [cs]. arXiv: 2005.14165. url: http://arxiv.org/abs/
2005.14165 (visited on 11/03/2020).

Chan, William et al. (Mar. 2016). “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition”. In: 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP). 2016
IEEE International Conference on Acoustics, Speech and Signal Processing

63

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
https://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.1109/72.279181
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165


64 BIBLIOGRAPHY

(ICASSP). ISSN: 2379-190X, pp. 4960–4964. doi: 10.1109/ICASSP.2016.
7472621.

Chen, Stanley F. and Joshua Goodman (Oct. 1, 1999). “An empirical study
of smoothing techniques for language modeling”. In: Computer Speech &
Language 13.4, pp. 359–394. issn: 0885-2308. doi: 10.1006/csla.1999.

0128. url: http : / / www . sciencedirect . com / science / article / pii /

S0885230899901286 (visited on 12/04/2020).
Cho, Jaejin et al. (May 2019). “Language Model Integration Based on Memory

Control for Sequence to Sequence Speech Recognition”. In: ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP). ICASSP 2019 - 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). ISSN: 2379-190X, pp. 6191–
6195. doi: 10.1109/ICASSP.2019.8683380.

Clark, Kevin et al. (Mar. 23, 2020). “ELECTRA: Pre-training Text Encoders as
Discriminators Rather Than Generators”. In: arXiv:2003.10555 [cs]. arXiv:
2003.10555. url: http://arxiv.org/abs/2003.10555 (visited on 09/21/2020).

Dai, Zihang et al. (July 2019). “Transformer-XL: Attentive Language Models
beyond a Fixed-Length Context”. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. ACL 2019. Florence, Italy:
Association for Computational Linguistics, pp. 2978–2988. doi: 10.18653/
v1 / P19 - 1285. url: https : / / www . aclweb . org / anthology / P19 - 1285

(visited on 06/14/2021).
Davis, K. H., R. Biddulph, and S. Balashek (Nov. 1, 1952). “Automatic Recogni-

tion of Spoken Digits”. In: The Journal of the Acoustical Society of America
24.6. Publisher: Acoustical Society of America, pp. 637–642. issn: 0001-4966.
doi: 10.1121/1.1906946. url: https://asa.scitation.org/doi/abs/10.
1121/1.1906946 (visited on 11/09/2020).

Dehghani, Mostafa et al. (2019). “Universal Transformers”. In: url: https://
openreview.net/pdf?id=HyzdRiR9Y7 (visited on 06/14/2021).

Devlin, Jacob et al. (May 24, 2019). “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. In: arXiv:1810.04805 [cs]. arXiv:
1810.04805. url: http://arxiv.org/abs/1810.04805 (visited on 10/13/2020).

Futami, Hayato et al. (Aug. 9, 2020). “Distilling the Knowledge of BERT for
Sequence-to-Sequence ASR”. In: arXiv:2008.03822 [cs, eess]. arXiv: 2008.

03822. url: http://arxiv.org/abs/2008.03822 (visited on 10/01/2020).
Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning.

http://www.deeplearningbook.org. MIT Press.
Graves, Alex et al. (Jan. 1, 2006). “Connectionist Temporal Classification: La-

belling Unsegmented Sequence Data with Recurrent Neural Networks”. In:
url: http://www.cs.toronto.edu/~graves/icml_2006.pdf.

https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1006/csla.1999.0128
https://doi.org/10.1006/csla.1999.0128
http://www.sciencedirect.com/science/article/pii/S0885230899901286
http://www.sciencedirect.com/science/article/pii/S0885230899901286
https://doi.org/10.1109/ICASSP.2019.8683380
https://arxiv.org/abs/2003.10555
http://arxiv.org/abs/2003.10555
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://www.aclweb.org/anthology/P19-1285
https://doi.org/10.1121/1.1906946
https://asa.scitation.org/doi/abs/10.1121/1.1906946
https://asa.scitation.org/doi/abs/10.1121/1.1906946
https://openreview.net/pdf?id=HyzdRiR9Y7
https://openreview.net/pdf?id=HyzdRiR9Y7
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2008.03822
https://arxiv.org/abs/2008.03822
http://arxiv.org/abs/2008.03822
http://www.deeplearningbook.org
http://www.cs.toronto.edu/~graves/icml_2006.pdf


BIBLIOGRAPHY 65

Gulati, Anmol et al., eds. (2020). Conformer: Convolution-augmented Trans-
former for Speech Recognition.

Gulcehre, Caglar et al. (June 12, 2015). “On Using Monolingual Corpora in Neu-
ral Machine Translation”. In: arXiv:1503.03535 [cs]. arXiv: 1503.03535. url:
http://arxiv.org/abs/1503.03535 (visited on 04/14/2021).

Hannun, Awni et al. (Dec. 19, 2014). “Deep Speech: Scaling up end-to-end speech
recognition”. In: arXiv:1412.5567 [cs]. arXiv: 1412 . 5567. url: http : / /

arxiv.org/abs/1412.5567 (visited on 11/03/2020).
Hannun, Awni Y. et al. (Dec. 8, 2014). “First-Pass Large Vocabulary Continuous

Speech Recognition using Bi-Directional Recurrent DNNs”. In: arXiv:1408.2873
[cs]. arXiv: 1408.2873. url: http://arxiv.org/abs/1408.2873 (visited on
10/13/2020).

Harris, Zellig (1954). “Distributional Structure”. In: Word 10:2.3, pp. 146–162.
url: https://zelligharris.org/Distributional.Structure.pdf.

Heafield, Kenneth et al. (Aug. 2013). “Scalable Modified Kneser-Ney Language
Model Estimation”. In: Proceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2: Short Papers). Sofia, Bul-
garia: Association for Computational Linguistics, pp. 690–696. url: https:
//www.aclweb.org/anthology/P13-2121.

Hochreiter, S. and J. Schmidhuber (Nov. 15, 1997). “Long short-term memory”.
In: Neural Comput 9.8, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.
1997.9.8.1735.

Huang, M. et al. (Dec. 2019). “Exploring Model Units and Training Strategies
for End-to-End Speech Recognition”. In: 2019 IEEE Automatic Speech Recog-
nition and Understanding Workshop (ASRU). 2019 IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pp. 524–531. doi: 10.
1109/ASRU46091.2019.9003834.

Kamath, Uday, John Liu, and James Whitaker (2019). Deep Learning for NLP
and Speech Recognition. Cham: Springer International Publishing. isbn: 978-
3-030-14596-5. doi: 10.1007/978-3-030-14596-5_12. url: https://doi.
org/10.1007/978-3-030-14596-5_12.

Lan, Zhenzhong et al. (Feb. 8, 2020). “ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations”. In: arXiv:1909.11942 [cs]. arXiv:
1909.11942. url: http://arxiv.org/abs/1909.11942 (visited on 11/10/2020).

LeCun, Y. et al. (Dec. 1, 1989). “Backpropagation Applied to Handwritten Zip
Code Recognition”. In: Neural Computation 1.4, pp. 541–551. issn: 0899-7667.
doi: 10.1162/neco.1989.1.4.541. url: https://doi.org/10.1162/neco.
1989.1.4.541 (visited on 04/28/2021).

Lison, Pierre and Jörg Tiedemann (May 2016). “OpenSubtitles2016: Extracting
Large Parallel Corpora from Movie and TV Subtitles”. In: Proceedings of
the Tenth International Conference on Language Resources and Evaluation

https://arxiv.org/abs/1503.03535
http://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
http://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1408.2873
http://arxiv.org/abs/1408.2873
https://zelligharris.org/Distributional.Structure.pdf
https://www.aclweb.org/anthology/P13-2121
https://www.aclweb.org/anthology/P13-2121
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/ASRU46091.2019.9003834
https://doi.org/10.1109/ASRU46091.2019.9003834
https://doi.org/10.1007/978-3-030-14596-5_12
https://doi.org/10.1007/978-3-030-14596-5_12
https://doi.org/10.1007/978-3-030-14596-5_12
https://arxiv.org/abs/1909.11942
http://arxiv.org/abs/1909.11942
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541


66 BIBLIOGRAPHY

(LREC 2016). Ed. by Nicoletta Calzolari (Conference Chair) et al. Portorož,
Slovenia: European Language Resources Association (ELRA). isbn: 978-2-
9517408-9-1.

Liu, Alexander H., Hung-yi Lee, and Lin-shan Lee (May 2019). “Adversarial
Training of End-to-end Speech Recognition Using a Criticizing Language
Model”. In: ICASSP 2019 - 2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). ICASSP 2019 - 2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
ISSN: 2379-190X, pp. 6176–6180. doi: 10.1109/ICASSP.2019.8683602.

Liu, Yinhan et al. (July 26, 2019). “RoBERTa: A Robustly Optimized BERT
Pretraining Approach”. In: arXiv:1907.11692 [cs]. arXiv: 1907.11692. url:
http://arxiv.org/abs/1907.11692 (visited on 09/21/2020).

Ma, Jeff and Richard Schwartz (Jan. 1, 2008). “Unsupervised versus supervised
training of acoustic models.” In: pp. 2374–2377.

Olah, Christopher (Aug. 27, 2015). Understanding LSTM Networks. colah’s blog.
url: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
(visited on 11/17/2020).

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “GloVe:
Global Vectors for Word Representation”. In: Empirical Methods in Natural
Language Processing (EMNLP), pp. 1532–1543. url: http://www.aclweb.
org/anthology/D14-1162.

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (Feb. 27, 2020). “A Primer
in BERTology: What we know about how BERT works”. In: arXiv:2002.12327
[cs]. arXiv: 2002.12327. url: http://arxiv.org/abs/2002.12327 (visited
on 09/21/2020).

Røyneland, Unn et al. (Nov. 21, 2018). Spr̊ak i Norge – kultur og infrastruktur.
url: https://sprakinorge.no/ (visited on 10/13/2020).

Schuster, M. and K. Nakajima (Mar. 2012). “Japanese and Korean voice search”.
In: 2012 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 2012 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). ISSN: 2379-190X, pp. 5149–5152. doi: 10.
1109/ICASSP.2012.6289079.

Shibata, Yusuke et al. (Sept. 10, 1999). “Byte Pair Encoding: A Text Compression
Scheme That Accelerates Pattern Matching”. In:

Shin, Joonbo, Yoonhyung Lee, and Kyomin Jung (Oct. 15, 2019). “Effective Sen-
tence Scoring Method Using BERT for Speech Recognition”. In: Asian Con-
ference on Machine Learning. Asian Conference on Machine Learning. ISSN:
2640-3498. PMLR, pp. 1081–1093. url: http://proceedings.mlr.press/
v101/shin19a.html (visited on 06/14/2021).

https://doi.org/10.1109/ICASSP.2019.8683602
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://arxiv.org/abs/2002.12327
http://arxiv.org/abs/2002.12327
https://sprakinorge.no/
https://doi.org/10.1109/ICASSP.2012.6289079
https://doi.org/10.1109/ICASSP.2012.6289079
http://proceedings.mlr.press/v101/shin19a.html
http://proceedings.mlr.press/v101/shin19a.html


BIBLIOGRAPHY 67

Solli, Arne (1998). Nordic() - funksjon for soudex-tilpassing av norske namn.
url: https://folk.uib.no/hhiso/avhandling/progdok/vb/nordic.htm
(visited on 11/25/2020).

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (Dec. 14, 2014). “Sequence to
Sequence Learning with Neural Networks”. In: arXiv:1409.3215 [cs]. version:
3. arXiv: 1409.3215. url: http://arxiv.org/abs/1409.3215 (visited on
11/26/2020).

Synnaeve, Gabriel et al. (July 14, 2020). “End-to-end ASR: from Supervised to
Semi-Supervised Learning with Modern Architectures”. In: arXiv:1911.08460
[cs, eess]. arXiv: 1911.08460. url: http://arxiv.org/abs/1911.08460
(visited on 10/13/2020).

Toshniwal, Shubham et al. (Dec. 2018). “A Comparison of Techniques for Lan-
guage Model Integration in Encoder-Decoder Speech Recognition”. In: 2018
IEEE Spoken Language Technology Workshop (SLT). 2018 IEEE Spoken Lan-
guage Technology Workshop (SLT), pp. 369–375. doi: 10.1109/SLT.2018.
8639038.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neu-
ral Information Processing Systems. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc. url: https://proceedings.neurips.cc/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
Vijayakumar, Ashwin et al. (2018). “Diverse beam search for improved descrip-

tion of complex scenes”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 32. url: https : / / aaai . org / ocs / index . php / AAAI /

AAAI18/paper/view/17329.
Wolf, Thomas et al. (2019). “HuggingFace’s Transformers: State-of-the-art Nat-

ural Language Processing”. In: ArXiv abs/1910.03771.
Xiong, W. et al. (Aug. 24, 2017). “The Microsoft 2017 Conversational Speech

Recognition System”. In: arXiv:1708.06073 [cs]. arXiv: 1708.06073. url:
http://arxiv.org/abs/1708.06073 (visited on 12/02/2020).

Yun, Chulhee et al. (Feb. 24, 2020). “Are Transformers universal approximators
of sequence-to-sequence functions?” In: arXiv:1912.10077 [cs, stat]. arXiv:
1912.10077. url: http://arxiv.org/abs/1912.10077 (visited on 10/13/2020).

https://folk.uib.no/hhiso/avhandling/progdok/vb/nordic.htm
https://arxiv.org/abs/1409.3215
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1911.08460
http://arxiv.org/abs/1911.08460
https://doi.org/10.1109/SLT.2018.8639038
https://doi.org/10.1109/SLT.2018.8639038
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17329
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17329
https://arxiv.org/abs/1708.06073
http://arxiv.org/abs/1708.06073
https://arxiv.org/abs/1912.10077
http://arxiv.org/abs/1912.10077


68 BIBLIOGRAPHY



Appendix A

Conversations from
OpenSubtitles

In this thesis, we discuss distinctions between written and spoken language. The
OpenSubtitles dataset described in section 5.1.5 exists in a middle ground: it uses
spoken language in the sense that it is intended to be read out loud, but since it
is intended to be shown onscreen and read quickly, the speech is compressed and
details are omitted for readability. Such edits typically lead to text that reads
more like written language.

Though the OpenSubtitles dataset was barely mentioned in chapter 6, it was
still used in several experiments. For completeness, this appendix outlines some
of our findings with the OpenSubtitles data.

A.1 Pre-training on conversational text

Using a RoBERTa (Y. Liu et al. 2019) model, we pre-train on the Masked Lan-
guage Modeling (MLM) task with both OSCAR1 and OpenSubtitles data, and
measure the loss on both datasets as well as the TNCS transcripts. Results are
shown in figure A.1.

After pre-training on OSCAR, we observe that the loss is much higher on
OpenSubtitles than on OSCAR. As we pre-train further on OpenSubtitles, the
loss on OSCAR increases while the loss on OpenSubtitles decreases. This shows
that the language use in the two datasets are quite distinct, and that RoBERTa
struggles to find a single set of language representations appropriate for both
datasets.

1https://web.archive.org/web/20200928211119/https://oscar-corpus.com/

69

https://web.archive.org/web/20200928211119/https://oscar-corpus.com/


70 APPENDIX A. CONVERSATIONS FROM OPENSUBTITLES

Figure A.1: MLM loss on each dataset before and after additional pre-training
on OpenSubtitles.

Pre-trained on WER (%) Accuracy (%)
OSCAR 1.35 89.46
+OpenSubtitles 1.37 89.32

Table A.1: Text-only disambiguation WER and accuracy on TNCS before and
after pre-training on OpenSubtitles conversations. Results were run with 4 ut-
terances of bidirectional context and 2 candidates to disambiguate, one of which
were the ground truth transcript.

Observing the loss on TNCS transcripts, we see that the loss decreased when
training on OpenSubtitles. Intuitively, this would indicate that the language rep-
resentations learned from OpenSubtitles is more suitable for phone transcripts
than those learned from OSCAR. On the other hand, we observed that the disam-
biguation performance on TNCS degrades as shown in table A.1, contradicting
the previous observation.

A.2 Audio-free disambiguation

Since OpenSubtitles contains conversations, it should be relevant for pre-training
on the disambiguation task. During development of the disambiguation pipeline,
we also used OpenSubtitles for testing as it is easier to debug locally.

The disambiguation task can be adapted to work with text-only datasets. We
define a function Randomize(y, p, k) which outputs k variations of y with a frac-
tion p ∈ (0, 1) of the graphemes replaced with phonetically similar alternatives.



A.2. AUDIO-FREE DISAMBIGUATION 71

2 candidates 51 candidates
WER (%) Accuracy (%) WER (%) Accuracy (%)

RoBERTa 0.03 98.68 0.34 83.03
6-gram 0.04 97.24 0.58 71.02

Table A.2: Results on OpenSubtitles disambiguation with 2 lines of context.

Adjusting the optimization target, the text-only disambiguation task would be
to minimize

min
θ

∑
(c,ygt)∈D

L (1, PLMθ
(ygt|c)) +

∑
y∗∈Randomize(ygt,p,k)

L (0, PLMθ
(y∗|c))

 .
As before, L refers to the cross-entropy loss function.

A straightforward algorithm to identify phonetically similar words is Soundex.
We adapt an implementation by Solli 1998, which also works well on general text.
Since s is a many-to-one function, replacements for Randomize can be obtained
easily by computing s−1(s(x)). Setting p = 10% and k = 1 and k = 50, we train
and evaluate RoBERTa’s performance on OpenSubtitles disambiguation.

Results are shown in table A.2. It is clear from the table that the task is far
too easy for the model, with near-perfect performance on the balanced dataset.
Qualitatively, we observe that the mistakes made by this candidate generator are
easy to spot for a human evaluator. Since this task appears to be too easy, we
do not pursue this research direction further at this time.



72 APPENDIX A. CONVERSATIONS FROM OPENSUBTITLES



Appendix B

Scaling BERT-like models

The work in this thesis is a continuation from the specialization project TDT4501.
Since the report from TDT4501 is not publicly available, we briefly summarize
some relevant findings regarding scalability in this appendix. The main goal of
the specialization project was to determine whether it would be worth integrating
large-scale Neural Language Models (NLMs) in low-resource domains. This was
done by pre-training several LM types on a range of standard pre-training tasks.
All evaluations are based on a text-only version of the disambiguation task (i.e.
γ = 1), unlike the results in the main text. We consider two aspects of scaling:
increased difficulty and computational complexity.

Since the AM is trained to give a higher ranking to correct transcripts, in-
troducing more transcripts to the disambiguation task causes potentially higher
WER when picking the wrong one. In addition, more choices increase the number
of incorrect alternatives, further increasing the potential performance loss. De-
spite the worst-case scenario being much worse than before, figure B.1 shows that
all models retain most of their performance and that the performance degradation
is more or less the same across all models.

The second aspect of scaling up disambiguation is the amount of compute
required. As noted in section 4.4, RoBERTa’s MLM head is expected to be much
more expensive to run, and figure B.2 shows that this is indeed the case. n-gram
models are both fast and yield a very competitive WER. The ELECTRA model1

shows remarkably consistent runtime, even as the context size increases. This is
enabled by GPU parallelization and the Replaced Token Detection2. This clearly
shows the practical advantage of avoiding large output layers.

1Which in terms of computational complexity is similar to a NSP classification head.
2Binary classification of whether each token has been replaced, avoids doing T passes through

the network. See details in Clark et al. 2020.

73



74 APPENDIX B. SCALING BERT-LIKE MODELS

2 4 6 8 10
Number of candidates

5

10

15

20

Tr
an

sc
rip

tio
n 

W
E

R
 / 

%

2-gram
6-gram
RoBERTa
ELECTRA
Random guess

Figure B.1: WER on disambiguation task with more incorrect transcripts in-
cluded. Bidirectional context size was set to 4 utterances.

0 10 20 30
Time / seconds

1.5

2.0

2.5

3.0

3.5

4.0

W
E

R
 / 

%

ELECTRA
2-gram
6-gram
RoBERTa

Figure B.2: WER plotted against the time required to disambiguate transcripts
for each conversation. Lines follow increases in context size.



Appendix C

Hyperparameter search

In this section we show additional graphs and figures from the hyperparameter
tuning.

• γ and ext weight is the weight of LM2 in equation 4.4.

• ngram weight is α in equation 4.1.

• length weight is the word count bonus β in equation 4.1.

• diversity factor exp is log2(λ) in equation 4.3.

• num groups exp is log2(G) in equation 4.3.

• Objective value is WER(ygt, yo).

In C.1, there are no values of γ that would give obvious improvements in WER.
This made it hard for the hyperparameter search to set γ correctly. Comparing
with C.2, it is much more obvious what value to set for γ.

Also notice how the Conversational NSP model behaved very differently be-
tween the two TNCS splits. C.1 show several failed models, including a smaller
RoBERTa (Y. Liu et al. 2019) model trained on far less data, and how the garbage
transcripts from the disambiguation causes BERT to output wildly incorrect re-
sults.

On the NPSC splits in figure C.3 and C.4, we see far more consistent results.
It is clear that longer context consistently outperforms the other models. At the
same time, the zero-context results are identical to the 2-context results. This is
partially because both use the same BERT model (always trained on 2 context
utterances), but it is nevertheless interesting to see the model perform equally
even without the context available.

75



76 APPENDIX C. HYPERPARAMETER SEARCH

Figure C.1: WER as a function of γ on the TNCS evaluation set. (*) is a smaller
RoBERTa model pre-trained on just 5GB of text.

Figure C.2: WER as a function of γ on the TNCS test set.



77

Figure C.3: WER as a function of γ on the NPSC evaluation set.

Figure C.4: WER as a function of γ on the NPSC test set.



78 APPENDIX C. HYPERPARAMETER SEARCH

Figure C.5: Parallel coordinate plot from TNCS hyperparameter search.

The parallel coordinate plots in figure C.5, C.6 and C.8 show how hyperpa-
rameters affect the oracle WER (4.5). It is clear that the exact values are less
important, especially for α and β. For the diverse beam search in figure C.6, we
see clearly that the search prefers to only have two groups. This translates to
throughout search of fewer parts of the search space. Nevertheless, the best ob-
jective value achieved is worse than in for the standard beam search, as reported
in section 6.2. The contour plots in figure C.7 and figure C.9 tell a similar story.
Note that all these plots only show completed Optuna runs – many runs were
pruned and are not included in the plots.



79

Figure C.6: Parallel coordinate plot from TNCS hyperparameter search with
diverse beam search.

Figure C.7: Contour plot from TNCS hyperparameter search with diverse beam
search.



80 APPENDIX C. HYPERPARAMETER SEARCH

Figure C.8: Parallel coordinate plot from NPSC hyperparameter search.

Figure C.9: Contour plot from NPSC hyperparameter search.



N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Sim
en Burud

Conversational Language M
odels for Low

-Resource Speech Recognition

Simen Burud

Conversational Language Models for
Low-Resource Speech Recognition

Master’s thesis in Computer Science
Supervisor: Massimiliano Ruocco
Co-supervisor: Pablo Ortiz

June 2021

M
as

te
r’s

 th
es

is


	Introduction
	Background and motivation
	Low-resource domains

	Goals and research questions
	Contributions
	Thesis Structure

	Background Theory
	Natural Language Processing
	Tokens and Vocabularies

	Language models
	Bag-of-words
	n-gram models

	Artificial Neural Networks (for sequences)
	Word Embeddings
	Recurrent Neural Networks
	Sequence to sequence
	Transformer

	Automatic Speech Recognition
	Connectionist Temporal Classification (CTC)
	The attention-based approach


	State of the art
	BERT
	Pre-training
	Input/Output representation
	Model scaling

	Language Models in Speech Recognition
	Inference-time integration
	Integration by fusing neural models
	Knowledge transfer

	Diverse Beam Search

	Methodology
	Acoustic Model
	Beam Search
	Diversity

	N-best Rescoring
	BERT for spoken language
	MLM & NSP
	Conversational NSP
	Disambiguation task
	Input representation in BERT
	Limitations


	Experiments
	Datasets
	Telenor Norway's Customer Service (TNCS)
	Norwegian Parliamentary Speech Corpus (NPSC)
	Nordisk Språkteknologi (NST)
	Colossal Norwegian Corpus
	OpenSubtitles

	Evaluation
	Acoustic Model
	Language Models
	n-gram
	BERT

	Beam Search
	Hyperparameter tuning
	Implementation details
	Infrastructure

	Results and Discussion
	N-best rescoring
	Conversational context
	Sequence length and bounds for improvements

	Diversity
	Shallow fusion vs. rescoring
	Qualitative results
	Model bias

	Analysis of BERT training strategies
	Conversational NSP and human performance


	Conclusion
	Future work
	Tighter LM integration
	Context
	Vocabulary
	Acoustic Model


	Bibliography
	Appendix Conversations from OpenSubtitles
	Pre-training on conversational text
	Audio-free disambiguation

	Appendix Scaling BERT-like models
	Appendix Hyperparameter search

