
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

N
ora Bodin and H

anna Kai Barstad G
olberg

Softw
are Security Culture in D

evelopm
ent Team

s: An Em
pirical Study

Nora Bodin
Hanna Kai Barstad Golberg

Software Security Culture in
Development Teams: An Empirical
Study

Master’s thesis in Communication Technology
Supervisor: Maria Bartnes
Co-supervisor: Robert Larsen

June 2021

M
as

te
r’s

 th
es

is

Nora Bodin
Hanna Kai Barstad Golberg

Software Security Culture in
Development Teams: An Empirical
Study

Master’s thesis in Communication Technology
Supervisor: Maria Bartnes
Co-supervisor: Robert Larsen
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Software Security Culture in Development Teams:
An Empirical Study

Students: Nora Bodin and Hanna Kai Barstad Golberg

Problem description:

The aim of this thesis is to gain insights in factors that make a development team
motivated and equipped to develop software that satisfies basic software security
requirements. Several guidelines and help tools attempt to contribute with knowledge
on how to create more secure code. However, developers still produce software
that contains well known security vulnerabilities, which again can be relatively easy
exploited.

In companies concerned with software development, a considerable aspect of the
security culture is the culture that regard developing, implementing and maintaining
software. A common understanding of security culture is that it is about organisa-
tional security such as password policies and overall awareness of security threats. A
more development-oriented view of security culture concerns how software security is
prioritised in development teams, which is what this thesis will explore.

In this project the students will investigate security culture in development teams
by performing an empirical study on current practices and challenges. The aim is to
contribute to improved software security culture in development teams, which again
will result in raised security quality in finished code.

Date approved: 12-02-2021
Supervisor: Maria Bartnes, IIK
Co-supervisor: Robert Larsen, Bekk

Abstract

This thesis explores what factors that influence security culture in agile
software development. We define software security culture as the sum of
the developers’ knowledge, motivation, attitudes, and behaviours that
affect how the development team develops adequately secure code. It
also covers the development teams’ use of tools and their routines and
practices that affect the quality of the finished software.

This thesis presents an empirical study based on interviews with a total
of 21 developers in 13 different consulting firms with offices in Norway.
Our findings are related to individual, organisational and material factors
influencing software security culture in development teams. These are
discussed in light of earlier research.

Findings include an individual’s interest, group dynamics, security
roles and security training. We have seen that the individual’s security
interest contributes to the team’s security efforts. Additionally, individuals
contribute to the organisation’s attitude and share security knowledge
through competence days and security discussions. Psychological safety is
important for performing within the team and at an organisational level.
The security work varies depending on what product the team develops.
A security role positively influences the security work on a team. Further,
both consultancies and educational institutions lack adequate security
training.

Based on our research, we derive some recommendations. Security
should be a compulsory part of study programs that educate developers.
Additionally, consultancies should provide introductory security courses
to all new employees. More projects should initiate a security role with
defined tasks, responsibilities and mandate.

Software security culture is an interconnected field. We have re-
searched individual, organisational and material aspects from an informa-
tion security perspective. The field of software security culture influence
other fields of expertise such as strategy and management, social anthro-
pology and organisational psychology.

Sammendrag

Denne oppgaven undersøker faktorer som påvirker sikkerhetskultur i
smidig utvikling. Vi definerer programvaresikkerhetskultur som summen
av utviklers kunnskap, motivasjon, holdninger og handlinger som påvirker
hvordan et utviklingsteam lager tilstrekkelig sikker kode. Det inkluderer
også bruk av verktøy, rutiner og praksis som påvirker sikkerheten i den
ferdige koden.

Dette er en empirisk studie basert på intervjuer med totalt 21 utviklere
ansatt i 13 ulike konsulentselskaper med kontorer i Norge. Funnene våre er
knyttet til individuelle, organisatoriske og materielle faktorer som påvirker
programvaresikkerhetskulturen i utviklerteam. Faktorene er diskutert i
kontekst av tidligere forskning.

Funnene våre inkluderer individets interesse, gruppedynamikk, sikker-
hetsroller og sikkerhetstrening. Vi har sett at individets sikkerhetsinteresse
bidrar til teamets sikkerhetsarbeid. I tillegg bidrar individer til organisa-
sjonens holdninger og til å spre kunnskap om sikkerhet via fagdager og
diskusjoner. Psykologisk trygghet er viktig for å prestere i team og på
et organisatorisk nivå. Sikkerhetsarbeidet varierer ut fra hvilket produkt
teamet utvikler. En sikkerhetsrolle har positiv innflytelse på sikkerhets-
arbeidet i et team. Både konsulentselskaper og utdanningsinstitusjoner
mangler tilstrekkelig sikkerhetsopplæring.

Basert på disse funnene har vi kommet opp med noen anbefalinger.
Sikkerhet bør inn som en større del i studieprogrammer der man utdanner
utviklere. Videre bør konsulentselskaper tilby et introduksjonskurs til
alle nyansatte for å øke bevissthet og kunnskap. Flere prosjekter bør
introdusere en sikkerhetsrolle med definerte oppgaver.

Programvaresikkerhetskultur er et komplekst tema. Vi har undersøkt
individuelle, organisatoriske og materielle faktorer fra et informasjonssik-
kerhetsståsted. Videre påvirkes programvaresikkerhet av andre fagfelt som
for eksempel strategi, ledelse, sosialantropologi og organisasjonspsykologi.

Preface

This master thesis is the final submission of the five-year Master of Science
in Communication Technology at Norwegian University of Science and
Technology (NTNU). The research is done from January to June 2021,
continuing the previous semester’s pre-project in autumn 2020. We have
rewritten and used some parts of this pre-project.

We would like to extend our thanks to our supervisors, Maria Bartnes
and Robert Larsen, for guidance and following up our questions. Your
knowledge, ideas and encouragements have been highly appreciated. In
addition, we are grateful for valuable guidance, feedback and discussions
provided by Ole Smørdal. We also thank Inger Anne Tøndel for discussions
and input on this field of research.

We want to thank all the interviewees for sharing thoughts, knowledge
and experiences from their everyday lives as developers in consulting firms.
Thank you for your interest, involvement and engagement. We hope that
our study contributes to improving practices on software security culture.

Thank you to our dear families for being available through ups and
downs. We appreciate the love, inspiration and support you provide.

Lastly, we feel incredibly grateful for all the experiences we have
encountered. Trondheim, you have given us everything. We have found
close friends and developed our potential. Thank you for the discussions,
support and adventures over the last five years.

Nora Bodin and Hanna Kai Barstad Golberg
Trondheim, June 2021

Contents

List of Figures xi

List of Tables xi

List of Acronyms xiii

1 Introduction 1
1.1 Research Questions . 3
1.2 Contributions . 4
1.3 Outline . 4

2 Background 7
2.1 Agile Software Development . 7
2.2 The DevOps Paradigm . 8
2.3 Team Culture in Software Development 9
2.4 The Individual’s Perspective on Software Security 11
2.5 Organisational and Environmental Influences 12

2.5.1 Security Training Initiated by Consulting firms 12
2.5.2 Security Training in Educational Institutions 12
2.5.3 Prioritisation of Requirements 12
2.5.4 Trusted Third-Parties . 13
2.5.5 Separated Divisions and Security Consultants 14
2.5.6 Automatic Tools and Scans 14
2.5.7 Security Guidelines and Checklists 14

3 Method 17
3.1 Overview of the Process . 17
3.2 Qualitative Semi-Structured Interviews 18
3.3 Literature Review . 19
3.4 Selection of Participants . 20
3.5 The Interviews . 21

3.5.1 The Implementation . 22
3.5.2 Follow-up Questions . 23

vii

3.6 Thematic Code Analysis . 23
3.7 Limitations . 24

3.7.1 Interview Method . 25
3.7.2 Interviews Over Video Link 25

4 Results 27
4.1 Findings Regarding the Individual Developer 27

4.1.1 Personal Interest . 27
4.1.2 Awareness and Responsibility 28
4.1.3 Knowledge and Experience 31
4.1.4 Educational Background . 31
4.1.5 Summary of Findings Regarding the Individual Developer . . 32

4.2 Findings Regarding Team Culture and Activities 32
4.2.1 Diversity and Team Membership 32
4.2.2 Psychological Safety . 33
4.2.3 Activities Within the Team 33
4.2.4 Summary of Findings Regarding Team Culture and Activities 35

4.3 Findings Regarding Organisational Factors 35
4.3.1 Security Training . 35
4.3.2 Competence Development . 37
4.3.3 Security Roles . 37
4.3.4 Delivery Models . 38
4.3.5 Traditional Boundaries . 39
4.3.6 Use of Security Guidelines and Checklists 39
4.3.7 Development Technologies and Environments 40
4.3.8 External Security Consultants 41
4.3.9 Security Activities Organised by the Consultancy 42
4.3.10 Summary of Findings Regarding Organisational Factors . . . 43

4.4 Findings Regarding Customers’ Effect on Security Work 44
4.4.1 Start-Ups Differ from Mature Customers 44
4.4.2 Reputation . 45
4.4.3 Trade-Off Between Security and Business 45
4.4.4 Summary of Findings Regarding Customers’ Effect on Security

Work . 46

5 Discussion 47
5.1 RQ1: What Factors Influence the Software Security Culture on an

Individual Level? . 47
5.1.1 Personal Interest . 47
5.1.2 Individuals’ Initiatives Within Development Teams 48
5.1.3 Increased Personal Responsibility 49
5.1.4 Summary: Individual Factors 50

5.2 RQ2: What Organisational Factors Influence the Software Security
Culture? . 50
5.2.1 Compulsory Security Courses in Education 50
5.2.2 Team Culture . 51
5.2.3 Security Activities . 54
5.2.4 Separated Divisions and Security Teams 56
5.2.5 Customers and Customer Relations 57
5.2.6 Summary: Organisational Factors 59

5.3 RQ3: What Material Factors Influence the Software Security Culture? 59
5.3.1 Dependencies . 59
5.3.2 Use of Security Guidelines . 60
5.3.3 Automatic Tools and Scans 61
5.3.4 Summary: Material Factors 61

5.4 Relationships Between Individual, Organisational and Material Factors
in a Software Security Culture . 61

5.5 Recommendations . 63
5.5.1 Security Knowledge and Training 63
5.5.2 Team Culture . 63
5.5.3 Structure . 64

5.6 Limitations . 64

6 Conclusion and Future Work 65

References 69

Appendices
A Information Sheet to Participants 77

B Interview Guide 81

C Follow-Up Questions 85

List of Figures

2.1 The DevOps Process . 9

3.1 Visualisation of the Process . 17
3.2 Distribution of the Selection . 21

4.1 Pie Chart of Personal Interest . 28

List of Tables

3.1 Our Selection in Numbers . 20
3.2 Overview of Tags in Code Analysis . 24
3.3 Main Themes in Code Analysis . 24

xi

List of Acronyms

BSIMM Building Security In Maturity Model.

CSV Comma-Separated Values.

CTF Capture the Flag.

DDOS Distributed Denial of Service.

EU European Union.

GDPR General Data Protection Regulation.

HTTP Hypertext Transfer Protocol.

ICT Information and Communications Technology.

IDE Integrated Development Environment.

Microsoft SDL Microsoft Security Development Lifecycle.

NDPA The Norwegian Data Protection Authority (Datatilsynet).

NIFU Nordisk Institutt for studier av innovasjon, Forskning og Utdanning.

NSD Norsk senter for forskningsdata.

NTNU Norwegian University of Science and Technology.

OWASP Open Web Application Security Project.

OWASP ASVS OWASP Application Security Verification Standard.

SAMM Software Assurance Maturity Model.

SAST Static Application Security Testing.

xiii

SDL Secure Development Lifecycle.

SDLC Software Development Lifecycle.

UiB University of Bergen.

UiO University of Oslo.

XP Extreme Programming.

Chapter1Introduction

In all companies concerned with software development, there is a security culture
regarding developing, implementing and maintaining the software. Cultural practices
vary from company to company. New technology and software evolve rapidly to
meet emergent challenges in all industries. Nowadays, it is close to inevitable to live
without leaving digital traces in numerous places, and software services are becoming
an increasingly important part of our lives.

Malicious actors would like to exploit vulnerabilities and valuable information
such as personal data and secrets regarding research and trading. They keep getting
better at finding ways to compromise software, and some actors have unlimited funds
to do so. Therefore, it is only becoming more critical to take security measures
seriously and avoid security breaches. This calls for a raised concern for vulnerabilities
in software and constructive security culture in development environments.

Time to market can be a make or break point for new products [1]. Subsequently,
time pressure to reach hard deadlines can lead to quick fixes and shortcuts in software
security work. This may be perceived as a risk worth taking until the product
possibly gets compromised [2]. With so many software services trying to reach and
obtain a critical mass to survive, the competition is tough.

Traditionally, Information and Communications Technology (ICT) security has
primarily been about implementing security mechanisms on the system or network
level. In recent years, it has become clear that it is equally important to ensure that
all software mechanisms are secure, including the code itself [3]. The term security
culture is commonly used to describe organisational information security culture
regarding password management and awareness of general security threats such as
phishing and malware [4].

This thesis will address software security culture. We define software security
culture as the sum of the developers’ knowledge, motivation, attitudes and behaviours

1

2 1. INTRODUCTION

that affect how the development team develops adequately secure code. It also covers
the development teams’ use of tools and their routines and practices that affect the
quality of the finished software. Adequately secure code is in this context assessing
vulnerabilities and mitigating risks to an acceptable level.

Today, the majority of development teams strive to work agile and efficiently.
The values and principles from the Agile Manifesto from 2001 convey an iterative
way of product development [5]. Frameworks built on the agile way of thinking are
widely used; some examples are Scrum and Kanban. A concern is that agile methods
tend to neglect security [6].

We see an increased focus on software security among developers [7]. One of the
reasons for this focus is General Data Protection Regulation (GDPR), which went
into effect by the European Union (EU) in 2018 [8]. However, we can read daily
about companies that are compromised and personal data that are falling into the
wrong hands [9, 10]. Publicly known security incidents may damage any company’s
reputation. OWASP Top Ten is a list with the ten most common web application
vulnerabilities [11]. Accordingly, these vulnerabilities often become the exploit vector
used by attackers. Cyber attacks can have significant consequences for both the
confidentiality, integrity and availability of data [12].

The measures needed to protect information could change during the information’s
life span. We can illustrate this with an exam sheet: Before the examination date,
there are strict requirements for confidentiality. No student should know the tasks in
advance. During the exam, the exam must be available for the students the whole
time exam period. This calls for requirements for availability. When the exam is
over, measures for integrity is necessary for the answer given by the students. After
the answer is delivered, no one should be able to alter it.

Cyber attacks targeting businesses are often financially motivated. However,
motives can also be, to prove own abilities, a political point or espionage to get an
unfair advantage [13]. The consequences of cyber attacks have a varying degree of
severity. Following are some examples where attackers exploited vulnerabilities in
software with varying consequences.

In the summer 2018, a twelve year old student hacked the municipality of Bergen.
He wrote a script to search for information linked to his own username, and found
an unencrypted Comma-Separated Values (CSV)-file containing 35,000 passwords
belonging to students and employees associated with the school system. He notified
the municipality about the vulnerability, but was then reported to the police [14].

Earlier in 2018, hackers compromised the app MyFitnessPal1 and got access to
1MyFitnessPal: App and website for tracking diet and exercise. https://www.myfitnesspal.com/

1.1. RESEARCH QUESTIONS 3

data belonging to 150 million users. The attackers got hold of usernames, passwords
and email addresses, which they later sold on the dark web2 Although there are no
precise details on how the app got compromised, experts speculate that it was a
vulnerability in the server running the app [15].

In 2017, the ransomware virus Wannacry infected more than 400,000 machines.
The attackers exploited vulnerabilities in Microsoft Windows, and users who had not
updated their software with Microsoft’s March software fix became an easy target.
Machines in at least 150 countries were compromised. In total, the attack cost
approximately 4 billion US dollars, equivalent to 33 billion NOK [16].

Although we see an increasing focus on security work in software development
environments, the quality of the security work depends largely on the individuals’
interest in the field and the culture of the companies they are involved with [17].

Throughout this thesis, we use the term “developers” for software developers who
are writing code. We do not include designers, testers, analysts and managers in
that term.

1.1 Research Questions

In this thesis, we will identify and explore factors that constitute a software security
culture. We decided on three research questions to investigate the topic from
different perspectives. RQ1 focuses on the individual developer’s perspectives on
software security. The aim of the research question is to better understand individual-
oriented factors contributing to creating secure code. RQ2 regards organisational
factors contributing to software security culture. In particular, we include team
culture, security training and activities, customer-relations and others. RQ3 regards
material factors that are part of the software security culture. Materials include
tools, guidelines, and other services. Via these three research questions we aim to
look at driving forces for software security and how they are influenced.

To sum up, the three research questions are:

RQ1: What factors influence the software security culture on an individual level?
RQ2: What organisational factors influence the software security culture?
RQ3: What material factors influence the software security culture?

2dark web: The part of the World Wide Web that is only accessible by means of special software,
allowing users and website operators to remain anonymous or untraceable, definition found in
Oxford English Dictionary.

4 1. INTRODUCTION

1.2 Contributions

This thesis explores software security culture among software developers in consulting
firms with offices in Norway. Through an empirical study we will explore security
cultures and gain insights in current software security practices in the consultancy
business. Research has been done on agile security work and security culture
[1, 18, 19, 7, 20, 2, 21, 17, 6]. During our research we have not seen research on
software security culture in Norwegian consultants. Our aim is to contribute to
improved security quality in the finished software by addressing factors influencing
the software security culture.

Earlier research done in the field has explored security in an agile development
environment [1, 22], how security tools are adopted [7] and the effect of security
consultants [23, 6]. We view this topic from an information security aspect, although
it can be viewed from other fields of expertise, including social anthropology, organi-
sational psychology and business management. We will not consider these aspects in
debt. Customer aspects are discussed, however we do not interview representatives
from the customer side.

1.3 Outline

Chapter 2 reviews earlier research and identifies relevant concepts for this study.
Topics include software security in agile software development, team culture, practices
and attitudes towards security work.

Chapter 3 discusses the qualitative approach of this study and presents the selection
of developers who participated.

Chapter 4 thematically describe findings from the interviews, including quotes for
illustration.

Chapter 5 discusses the research questions using findings and interpretations of this
study in light of earlier research. Recommendations for improved security practice
are given.

Chapter 6 concludes this study and presents possible areas of future research that
will evolve this field of knowledge.

Appendix A provides the information sheet and letter of consent the participants
got in advance of our data collection.

Appendix B contains the interview guide used in this study.

1.3. OUTLINE 5

Appendix C includes the follow-up questions sent to the participants after conduct-
ing all main interviews.

Chapter2Background

In this chapter we will review the concepts and related work used in this thesis.
We have identified the following concepts as key to understand when considering
security culture: agile software development, team culture, organisational culture and
guidelines. Earlier research has explored software security attitudes and tendencies
in organisations who develop, implement and maintain software. They have also
explored challenges and suggestions regarding how development teams, individuals
and organisations approach their security work.

2.1 Agile Software Development

Agile software development is rooted in the Agile principles described in the Agile
Manifesto from 2001 [5]. The values and principles convey an iterative approach
to product development with a close dialogue between customers and developers.
Agile frameworks, which are built on Agile principles, have become the common
practice of development projects. Examples include Scrum, Kanban and Extreme
Programming (XP) [24, 25]. Paying attention to technical excellence and good design
strengthen an agile process [5]. Such a process may conflict with security practices
and security requirements as it lacks procedures for security requirements [26, 24].
In addition, security work reduces efficiency by delaying pushing new features [22].
Earlier research suggest there is a suspicion that security work is being neglected in
the agile process [6, 24]. However, Bartsch suggests that the holistic view an agile
methodology provides can increase the developers feeling of responsibility of security
work [17].

About two decades ago, the norm was to use the waterfall model where project
activities are divided into rigid phases with little flexibility [2]. In this model, security
had its explicit phase for implementation. Nicolaysen et al. write that this did not
signify that the security necessarily was better, only that there was time set aside
for it. There still had to be knowledgeable people and dedication to develop secure

7

8 2. BACKGROUND

software [2].

In the study by Nicolaysen et al., only one of six companies had tried to combine
software security with agile software development. Security activities may need to be
granted specific permissions, and considerable documentation must be developed in
advance of each project. The flexibility that an agile process provide may be hindered
by security work that has to be structured and organised beforehand. Examples
on this include strict policies and regulations enforced by The Norwegian Data
Protection Authority (Datatilsynet) (NDPA) [2].

A consultancy or consulting firm is defined as “a company that advises on a
particular subject”1. Most development teams in consultancies in Norway would
say they work agile in some way [2]. To better understand how the developers
interviewed in this thesis work in practice, we use the team roles of ’product owner’
and ’development team members’ from the Scrum framework2 to give an impression
of the structure. The product owner often works for the customer company, but she
can also be an employee at the consultancy. The role is responsible for maximising the
value of the product by having an overview of the product [27]. The product owner
needs to understand both the customer’s business perspective, as well as the product
value of what the development team delivers. This way she can prioritise work tasks
accordingly [28]. The development team creates the product in iterative sprints and
is self-organised to get assigned tasks done. It may consist of programmers, designers
and testers [28].

This thesis will regard information technology consulting firms that lend teams
or individuals’ technological competence to other companies. Consultancies have
various delivery models describing what team structures and assignments they offer
to customers, as well as pricing and what time constraints they operate with [29].

2.2 The DevOps Paradigm

The DevOps, Development and Operations, paradigm has been increasingly popular to
development teams [30]. The practice promotes closer collaboration between software
development and software operations teams [31]. The developers monitor and manage
their software autonomously, which consequently adds more responsibility to the
team [30]. However, it is easier to keep an overview of the system and fixing issues
because of closer integration between development and operations [32]. Furthermore,
it can motivate to take care of the software, rather than just being a piece in
the puzzle. This provides a feeling of ownership [33]. An essential part of agile
development is the balance between autonomy and direction. In a self-organising

1Definition: https://dictionary.cambridge.org/dictionary
2Scrum: https://www.scrum.org/

2.3. TEAM CULTURE IN SOFTWARE DEVELOPMENT 9

team, developers intensely disliked interventions from managers higher up in the
organisation to encourage security activities within the team [6]. Interventions from
the managers would also reduce the autonomy of the team. The ideal balance will let
the teams reach organisational goals while avoiding micro-management and arbitrary
interference [6].

Figure 2.1: The DevOps process. Figure inspired by E-spin3.

One of the challenges with DevOps is ensuring security while keeping its agility
[31]. There are many challenges to the adoption of DevOps and simultaneously
assuring security. DevSecOps, Development, Security and Operations, integrate
security in the DevOps process [33]. The core principle of DevSecOps is to be an
extension to DevOps to incorporate security in all phases of development and system
operations. Security experts should be involved from the beginning [33].

2.3 Team Culture in Software Development

Agile development relies on people and their creativity rather than on descriptions
[34]. Xiao et al. define security culture as the relevant social norms and habits
that surround security in a team and an organisation [7]. The culture of a group
is affecting how the team perform their tasks [35]. Schein defines culture as “that
which is prominent and clear with a strong influence on the direction” [36].

The culture of the organisation is essential for efficiency and psychological safety
[37]. Psychological safety is defined by as being able to show and employ one’s self
without fear of negative consequences of self-image, status or career [38]. In later
years with more agile methods of working and autonomous teams, the team culture
and subculture plays a more significant part in an employee’s everyday life [39].
Psychological safety is also crucial for how the team communicates security concerns
[17]. Research done by Bartsch concludes that motivation for security knowledge
comes from a feeling of responsibility to the product. Further, they claim that this

3Figure inspiration: https://www.e-spincorp.com/common-mistakes-organizations-make-when-
adopting-devops/

10 2. BACKGROUND

motivation is increased if the communication within the team is good [17]. Research
done in 2019 concluded that teams who have a long-term plan have more focus on
quality [40]. Further, they concluded that well-functioning teams focus on reflection.

Stray et al. has identified patterns that successful, autonomous teams in large,
complex companies follow. Leadership can be a restrain of well-working teams
because of constant interruptions, and disturbance of workflow [41]. Cross-functional
teams encourage direct communication without proxies and decrease the probability
of miscommunication and response time [42, 40]. A consequence of disruptions and
complex communication chains will be less effective working hours. A developer
spends on average twenty minutes to find focus after an interruption [43].

The paper by Wen et al. identified six dimensions of security culture. They
addressed attitude, behaviour, competency, subjective norms, governance and commu-
nication to assess the security culture [18]. Most relevant for our thesis are attitude,
behaviour, competency and communication. According to them, attitude affects
how motivated the developers are to prioritise security work. Developers who do
not believe that security is essential are unlikely to work securely, regardless of how
much they know about security requirements [18]. Behaviour is what individuals
do and relate to activities [18]. Competency is the collection of knowledge and
skills which influences how well individuals or teams manage to meet demands [44].
Communication can be considered as an interactive process of sending and receiving
messages among individuals, groups and organisations [18].

As mentioned in the introduction, we have defined software security culture.
Inspired by Wen et al.’s dimensions of security culture, we defined software security
culture as the sum of the developers’ knowledge, motivation, attitudes and behaviours
that affect how the development team develops adequately secure code. It also covers
the development teams’ use of tools, routines, and practices that affect the quality of
the finished software.

In agile processes, there are different ways of sharing knowledge. Ways to share
knowledge in teams could be pair programming, daily scrum meetings, and project
retrospectives [42]. Bartsch observed that security knowledge spreads between
developers through informal discussions [17].

We assume that development teams work with security in an infinite number of
ways. According to Tøndel and Jaatun, the number of suggested security activities
can be experienced as quite overwhelming. They state that projects can spend many
resources on security, even overspending, if not correctly addressing the security
needs [25].

Code reviews are technical activities done to decrease vulnerabilities in code [6].

2.4. THE INDIVIDUAL’S PERSPECTIVE ON SOFTWARE SECURITY 11

The review practice may vary across the company, and be done by other developers
for a peer review or external auditors [19]. An example of a technical code review is
pull requests. When a developer wants to merge her code into the main code base,
she can create a pull request. Another developer will do a peer review of the code to
give input on concerns and discuss improvements before integrating the new code
[45]. Code reviews by external security consultants are discussed in section 2.5.5.

2.4 The Individual’s Perspective on Software Security

In this thesis, we will look at the individuals perspective on their interest, awareness
and responsibility, among other aspects. Jaatun et al. concluded that the individual
developer’s interest, competence and initiative are significant for many organisations.
They pointed out that it is crucial when it comes to keeping up to date on software
security and ensuring that security is not forgotten in the development life cycle [3].

According to Bartsch, security competence is strongly dependent on the individual
developer’s interest in security. Many developers’ security competence is built
informally, often self-taught from security blogs and news articles [17].

Research done by Nicolaysen et al. and Bartsch conclude that expertise and
knowledge influence software security in projects. An individual’s software security
competence, or lack thereof, impacts the software security [2, 17].

The individuals’ security expertise, either on the customer or developer side, make
up the overall security in a project [17]. Research from 2011 on security awareness
among developers express that many of their interviewees could not explain concrete
security practices, despite detailed knowledge of security issues [19].

In 2011, Xie et al. found an “it is not my responsibility”- attitude regarding
responsibility for security in code. Further, they found out that their developers
strongly trusted other people, processes and technology to take care of software
security [19]. The findings of Xiao et al. from 2014 suggest a different attitude.
They found that the majority of the developers believed that security is a shared
responsibility among the developers. Teams who are supported by security and
testing teams felt personally responsible for the security work in their software [7].
A third finding is from the paper of Poller et al. in 2017, where they found that
developers feel responsible for keeping their software secure. The developers expressed
that a part of delivering good quality included secure software features [6, 20].

12 2. BACKGROUND

2.5 Organisational and Environmental Influences

Reasonable approaches to promote and support security work in organisations are
hard to find [6]. Security work is hard to manage because its benefits have delayed
effect [7]. In addition, security is only one of many goals for an organisation [6].

2.5.1 Security Training Initiated by Consulting firms

Earlier research done by Xiao et al. has found little or no formal training from the
organisations to learn security tools. They found that companies in their recruitment
process asked questions on security before employment of new developers. Thus,
they viewed it as not necessary to arrange security training for the company [7]. The
attitude was that they already had checked that the developers had a basic level of
security knowledge. Software security seems to be a tiny part of efforts to increase
knowledge and awareness of information security in the various organisations [3].

2.5.2 Security Training in Educational Institutions

In 2017 a report about the future supply and demand of Information and Communi-
cations Technology (ICT) competence was released by Nordisk Institutt for studier av
innovasjon, Forskning og Utdanning (NIFU). It concludes that the need for security
courses in engineering educations is considerable. They present a need to raise the
number of candidates in universities with ICT competence. They express the need
for both generalists and specialists. By that, they mean candidates with general
ICT security competence and specialists with specialised education in ICT. They
emphasise the importance of including required security courses in all ICT study
programmes. Several also want compulsory courses on IT security to be a part of all
technical study programmes [8].

Today many study programmes that educate developers offer electable courses
on security, but does not include security courses as an obligatory part. Examples
are Computer Science 4 and Informatics 5

2.5.3 Prioritisation of Requirements

Earlier research has concluded that functional requirements get prioritised over
software security [22]. Another empirical study found that functional requirements
are viewed as more critical than non-functional requirements [2]. Security is observed
to be conceived only as a non-functional requirement, not a visual business goal of the
software [6]. However, neither a feature nor a non-functional and quality perspective

4Study plan Computer Science: https://www.ntnu.no/studier/mtdt/oppbygning
5Study plan Informatics: https://www.ntnu.no/studier/bit/oppbygning.

2.5. ORGANISATIONAL AND ENVIRONMENTAL INFLUENCES 13

adequately addresses security requirements. For this reason, incorporating security
in any development process is challenging [6].

Customers influence how the development team works [1, 6, 17, 26]. Security
requirements are often not included as part of the request from the requester, product
owner, or the customer [1]. A customer may fail to communicate its security needs due
to lack of knowledge or awareness [26, 1]. The non-technical customers often struggle
to comprehend technical security measures, and in many cases, the customer trusts
the developers to handle it [17]. In scenarios where the product owners or customers
do not explicitly address security, it is expected to be fixed by the development team
[6]. Thus, developers make assumptions about how security should be prioritised and
determine the definition of adequately secure code for the system [6]. Furthermore,
this can lead to security work being less prioritised or not included in the backlog [2].

Customers’ awareness of security, as for developers’, depends on the specific
individual you talk to [17]. However, customers and product owners contribute to
the security work with their knowledge from specific industries, even if their security
awareness is low [17, 1].

A factor that plays a role in paying attention to software security is whether or
not the team has to meet legal requirements. Legal requirements which need to be
met is a crucial driver for performing risk analysis. Risk analysis to uncover the
need for software security is rather driven by compliance than a general concern for
vulnerabilities [22].

2.5.4 Trusted Third-Parties

When developers write code today, 85 per cent of their code is based on reusing existing
code [46]. This way, the developers do not have to reinvent the wheel whenever they
want a new feature. Thomas et al. found that open-sourced frameworks and libraries
often have vulnerabilities. They derived that vulnerabilities are difficult to control as
fixing them is dependant on the library vendors. In addition, they can contribute to
false-positive errors in static code analyses because the source code is not available
[47]. Books get quickly outdated and do not provide customised code snippets for
all use-cases [20]. Developers use Internet resources, such as Stack Overflow6. This
often leads to functionally correct results, but the answers lacks focus on a secure
solution[48]. Xie et al. found that code security was never a criterion when choosing
what reused code to choose [19].

6Stack Overflow: https://stackoverflow.com/

14 2. BACKGROUND

2.5.5 Separated Divisions and Security Consultants

It is unclear who is accountable for security actions [1]. Some development teams
include independent security teams or hire external security consultants to review
their code [2, 6].

After an external security consultancy in development teams, the awareness and
motivation for security concerns increases, Poller et al. and Turpe et al. found.
Nevertheless, they both observed security work did not get incorporated into the daily
processes. Thus, in the long run it did not attract more engagement for security work
[6, 23]. Security and legal competence in organisations do not necessarily benefit
development [22]. It is difficult to make compromises as architects and security
experts have different priorities, and it feels like they are chasing different goals [1].

2.5.6 Automatic Tools and Scans

Earlier research done by Xie et al. from 2011 concluded that interactive tools would
effectively implement more secure software. They claim that developers need greater
awareness of specific errors in the context of their development. Tools that detect
and flag such code during program construction, not after code completion, may help
alert them to fix the problem areas [19].

Today various automatic tools exist, some are open-sourced, and others are
commercial. Some tools scan and identify known vulnerabilities for giving the
developer a heads up before continuing. Others both identify vulnerabilities and
automatically fix them. Some examples are Snyk7, Detectify8, OWASP Dependency
check9 and Retire.js10. Another type of automatic tools is static code analysis. These
tools flag programmatic errors, bugs and suspicious constructions. Examples are
ESLint11 and Static Application Security Testing (SAST)12.

2.5.7 Security Guidelines and Checklists

This master thesis addresses security guidelines and how they are used in practice.
This section is strongly influenced by the pre-project to this thesis, the delivery in
the course TTM450213 at Norwegian University of Science and Technology (NTNU)
[49].

7Snyk: https://snyk.io/
8Detectify: https://detectify.com/
9OWASP Dependency check: https://owasp.org/www-project-dependency-check/

10Retire.js: https://retirejs.github.io/retire.js/
11ESLint: https://eslint.org/
12SAST: https://owasp.org/www-community/SourceCodeAnalysisT ools
13Pre-project: https://www.ntnu.edu/studies/courses/TTM4502

2.5. ORGANISATIONAL AND ENVIRONMENTAL INFLUENCES 15

Several frameworks and guidelines are developed to ensure secure code develop-
ment and software [25]. Their goal is to raise awareness and create a process for
addressing software security. There are two types of guidelines, prescriptive and
descriptive. The prescriptive models explain what to do to obtain an adequate level
of security, whereas a descriptive model describes a system as it is now [3]. Both
descriptive and descriptive models can view many security-related aspects of the
development process.

Building Security In Maturity Model (BSIMM) is a descriptive tool, mostly used
to measure security practices in different companies. The model aims not to evaluate
whether a system is good or bad, but rather to observe its characteristics within four
domains, each with three categories or practices. According to Jaatun et al., the
BSIMM model is a reflection on security [50]. This model is based on research done
on large American companies such as Cisco and Aetna [51]. A strategy described
in BSIMM is the use of satellites of interested individuals. A collection of people
across the organisation who show interest or skill in security could be collected into
a satellite. This is a measure taken to scale security by creating social networks that
contributing to adoption of security into development. The individuals could be
picked out by finding individuals that stand out, or by asking for volunteers [52].

Seven Touchpoints for Software Security is a less comprehensive guideline, based
on the BSIMM model. The book contains both destructive and constructive activities
to adapt to the security work. Examples of destructive activities are exploits and
attacks, and examples of constructive activities are design, defence and functionality.
The seven parts presented are code review, architectural risk analysis, penetration
testing, risk-based security tests, abuse cases, security requirements and security
operations [53].

The global community OWASP created the model Software Assurance Maturity
Model (SAMM) in 2009 [54]. It is based on the four areas: Governance, Construction,
Verification and Deployment. The point is to assess the maturity level in each area
and explain what could be done to obtain more secure software. It is an open
framework to help teams and developers analyse and implement a security strategy
that fits organisations’ already existing work [3]. In addition, the OWASP community
has created a list of the ten most critical security risks to web applications. On their
website, they express that using the OWASP Top 10 may be the most effective first
step towards changing the software security culture [11].

OWASP Application Security Verification Standard (OWASP ASVS) is a standard
containing a list of application security requirements and tests that are designed to
be used by architects, developers, testers, security professionals, tool vendors and
consumers to define, build, test and verify secure applications [55]. It is built to fit

16 2. BACKGROUND

applications that require three different levels of security. Each level increases the
severity for a secure application [55].

The prescriptive Microsoft SDL model has focused on security and privacy
considerations throughout all the phases of the development. It focuses on software
developers and their work to gain secure software and how to reduce development
costs [56]. However, a study done by Baca et al. concludes that this model scales
poorly to a chosen agile security process because of too high costs and because the
model was not beneficial enough for the agile conditions. Their preliminary findings
from interviews showed that the design phase and the testing phase scaled especially
poorly [57]. Later a new variant of Microsoft SDL was developed that aimed to be a
better fit to agile processes [25].

The Norwegian Data Protection Authority (Datatilsynet) (NDPA) has made a
guideline named “Privacy by Design”. It is about how to incorporate data protection
principles, subject rights and the requirements of GDPR into every step of the
development process, and it is developed with inspiration from the Microsoft SDL
and Secure SDLC [58].

There exists a significant amount of various checklists regarding software security.
We find it on blogs, commercial sites such as Synopsis.com and official sites such as
The Norwegian Data Protection Authority (Datatilsynet) (NDPA) [59, 60, 61, 58, 62].
The checklists from NDPA focus on how to develop code with mechanisms for build-
in privacy [58, 62]. In addition, for building secure and robust infrastructure in
cloud-computing systems, Amazon’s AWS Well-Architected Framework can be used
[63].

Issues Regarding Use of Security Guidelines

As presented, there are various guidelines describing methods for doing software
security work in an agile environment [25]. Still, earlier research has noticed that many
projects today are not giving security requirements enough attention [25, 22, 26].

Guidelines such as Microsoft SDL and Seven Touchpoints for Software Security
fall short on how to get organisations and the actual development teams to start
using them, Poller et al. argue. Security initiatives need to take organisational
factors into account. By that, they mean that security initiatives should not only be
considered from a security engineering point of view, but also from a management
perspective with the organisational setting in mind [6]. This supports the findings of
security being perceived to be in conflict with the trending “continuous development”
methodology [64, 22, 24, 26].

Chapter3Method

In this thesis, we combine an empirical study based on qualitative interviews and a
literature review on topics related to software security culture in development teams.

Empirical studies collect knowledge through direct or indirect observations, and
experiences of a field [65]. We argue that an empirical study combined with a
literature review in the field is the best way of answering our research questions
regarding culture, further discussed in section 3.2.

3.1 Overview of the Process

Figure 3.1: The process presented visually.

Figure 3.1 is a visual representation of our process. In practice, we have been
in more than one state at a time and frequently switched between them. Still, it
roughly illustrates how we have worked in different phases of this study.

17

18 3. METHOD

After the initial state, represented by the circle filled with black, the first phase is
the Plan phase. This phase included setting the research questions, deciding on what
method to use, planning how to get in touch with relevant participants, and drafted
a progress plan. When initial planning was done, we could start the literature study,
the design phase, or write the report. From all these phases, we could go back to
planning when new reflections occurred.

The next phase, Literature Study, includes searching and finding relevant literature
using Google Scholar and Oria. We also received some articles from colleagues.

In the Design phase, we designed the interview guide we used when conducting
interviews. We used insights from earlier research and our decided research questions
to come up with relevant questions.

The Prepare phase includes preparations before interviews. We read up on the
interviewee’s careers to know more about them in advance. Based on this research,
we could customise or add a couple of questions to the interview guide before their
interview. From the prepare phase, we moved to Conducting Interviews phase.

In the Analyse phase, we used categories and tags to understand better what we
had found out. We could go back to the design phase to change the interview guide
to embody our research questions better. We could also go back to literature studies
to put our findings in the context of earlier research.

The last phase, Write report, could be reached from the analyse, planning, and
literature study phases. This phase includes writing the final report. We will reach
the final state represented by the black circle with a double outline when the thesis
is delivered.

3.2 Qualitative Semi-Structured Interviews

A qualitative analysis approach focuses on words and content used by participants
rather than numbers and statistics [66]. However, quantitative techniques are good
for statistical analyses, enabling to point out the average score on a variable, range
of scores and strength of relations between variables [66].

A disadvantage of quantitative approaches is that questions may be misrepresented
and oversimplified by the participants [65]. As the participants are self-reporting
their answers, their interpretations of each question may differ. Furthermore, it can
be difficult for the participants to communicate perspectives that the researcher did
not anticipate.

When deciding which data collecting method to use, we considered that we were

3.3. LITERATURE REVIEW 19

to research culture in different firms. We chose to use qualitative, semi-structured
interviews as the primary data collecting method because culture is a composite
topic. Individuals do not have standardised behaviour and reactions, and different
firms follow different practices. Semi-structured qualitative interviews embody the
aim of attempting to capture unique incidents and views of an individual. We
wanted to gather a broad spectre of insights without needing to follow a strict plan.
Semi-structured interviews gave us the flexibility and advantage to dive further into
a topic if the interviewee mentioned relevant information we did not cover directly
with our interview guide.

In the early stages of this thesis, we looked at the possibility to use a survey
for collecting quantifiable data. Surveys are usually conducted with samples from a
large population [66]. Due to surveys following a strict format with little flexibility,
we found it challenging to create standardised questions for a survey on the topic
of security culture [65]. In case they are not followed up with, for instance, a
conversation, interpreting the results is time-consuming and a slow process. We
thought of using open-ended questions to gather various insights. However, we
decided not to use surveys because of the extensiveness in analysing them, and
they would miss non-verbal communication. Such communication includes body
language, facial expressions and pitch in speech, which is crucial to get a complete
understanding of the expressions of the individuals. Moreover, the advantage of
surveys and quantitative analyses is gathering standardised data. Consequently, we
believe that surveys do not fit researching software security culture.

In addition to our qualitative semi-structured interviews, we also wanted to assess
the software security interest among the participants in a numeric value. Thus, in the
follow-up we included one question on a summated rating or Likert scale from 1 to
5. Score 1 indicate “Very uninterested” and 5 signify “Very interested”. We did not
explicitly state the scores in between, but approximated them to the following. Score
2 to “Somewhat uninterested”, score 3 signify “Neither interested nor uninterested”
and score 4 means “Somewhat interested”.

3.3 Literature Review

To find relevant literature and earlier research, we used Google Scholar and Oria.
Additionally, our supervisors recommended articles of various relevance. Topics
in the search query included “software security culture”, “agile software security”
combined with words such as “security role”, “developer”, “training”, “consultancies”,
“activities”, “factors”, “tools”, “team”, “silo” and “customer”.

When we successfully found relevant research, we used the references of these
articles and papers to further explore the topics.

20 3. METHOD

3.4 Selection of Participants

The participants in this study are full-time software developers with various back-
grounds. Many of them have their technical education from Norwegian University of
Science and Technology (NTNU), University of Oslo (UiO) and University of Bergen
(UiB). The participants were found via our networks. They all work as developers in
consulting firms with offices in Norway. Their firms provide developers as consul-
tants to customers in a wide range of projects and industries. We have conducted
interviews with consultants who are quite newly employed and with consultants who
have experience from various projects through more than ten years. We have chosen
to define a “junior developer” as a developer who has worked as a development
consultant in less than three years. A “senior developer” has three or more years of
experience. The communication with the participants has solely been in Norwegian.
This includes the initial contact, the interview itself and follow-up correspondence.

The participants’ consulting firms were of varying size. In total, we interviewed
developers from 13 different consultancies. Small firms have less than 50 employees,
and medium-sized firms are defined to have between 50 and 250 employees, while
large firms have more than 250 employees [67]. The distribution could be seen in
figure 3.2.

We used snowball sampling [65] by contacting people in our network. This means
that the people we contacted either agreed to participate as interviewees and/or
referred us to other relevant people from their network who may want to participate.

The participants we refer to as “having a security role” are also developers on a
team, but have an additional security focus on the team. Three of the participants
are responsible for the onboarding programs provided to new employees in their firm.
Many developers mentioned competence groups for security in this thesis. Our main
findings on competence groups are based on insights given by developers from the
same competence group.

Total number of developers 21
Total of junior developers (experience < 3 years) 10
Total of senior developers (experience >= 3 years) 11
The most experienced developer > 15 years
The least experienced developer 8 months
Total number of unique firms 13
The smallest firm < 30 employees
The largest firm > 2000 employees

Table 3.1: Our selection in numbers.

3.5. THE INTERVIEWS 21

Figure 3.2: Distribution of the selection in this study. Yellow participants represent
juniors and orange are seniors. The pink heads represent security roles. The
participants are sorted by size of consultancy from small to large.

3.5 The Interviews

All the interviews were conducted over five weeks, from 05.02.2021 to 12.03.2021.

Before all interviews, we looked up information about the interviewee’s career and
interest fields to better utilise their specialised knowledge and insights. We found
them on LinkedIn1 and read news articles or blog posts if available.

The interview guide was created in advance of the interviews, see appendix B.
We made the guide to plan the conversation and clarify what we would like to find
out. The guide is in Norwegian, as all our interviews were conducted in Norwegian.

Before the interviews, we sent the participants the interview guide by e-mail.
The guide allowed the participants to come up with relevant thoughts beforehand of
the interview. If they did not find it relevant for their role, they could also reject
the interview. Furthermore, we sent the participants an information sheet regarding
privacy. The sheet can be found in appendix A. The sheet contained information
about how we would store their data and how they could withdraw their contribution
consent at any time. The sheet was inspired by a template made by Norsk senter for
forskningsdata (NSD).

1LinkedIn: Social platform for professional networking, https://www.linkedin.com/

22 3. METHOD

3.5.1 The Implementation

We started the interviews by presenting ourselves and the topic of the thesis. The
purpose of this is to create a safe environment and make the interviewees feel
comfortable [65]. Both parts of the interviews can have a more pleasant experience
and possibly get a more comprehensive conversation if this is achieved. Then, we
referred to the information paper on privacy and asked if they agreed to be audiotaped
in the interview, which they all did. We continued by letting the interviewee know
why we sought their insights and thoughts and transitioned the conversation over to
them.

The interview was divided into five main parts. In the first part, we focused
on the individual’s consciousness of security in their everyday lives and their sense
of responsibility for their code. Secondly, we focused on how security training and
security activities are done in practice at their workplace and how they work to
include new developers in the existing software security culture. In the third part, we
examined team culture and activities practised to achieve the right level of security
in the finished software. We also talked about factors that affect a team’s software
security culture. In the fourth part, the focus was on how the customer’s culture
affects the interviewee’s security work. The customer is the actor who hires the
competence of the consultancy. In the last part of the interview, we focused on
security activities desired to be more accessible at their workplace and topics within
software security they would like to learn more about.

As we used semi-structured interviews, we could be flexible when interviewees
introduced new topics. When the interviewee had explained their view of an im-
promptu topic, the interview continued with questions from the interview guide.
When a participant remarked a particularly relevant point, we added this to the
interview guide before the following interview. Accordingly, the guide was updated
during the interview period to embody our research questions better. We did not
ask all the participants the same questions. If a question did not yield any new
information, we let it out in the guide for the following interviews. The interviews
felt more natural following up a conversation on exciting topics, rather than strictly
sticking to an interview guide.

The guide was adapted to our interviewees in terms of their role and experience.
Senior developers were asked additional questions on the topic of creating a software
security culture. Developers in security and tech lead roles were asked to elaborate
on these.

We conducted the interviews, with one of us being the primary questioner. The
other one took notes of interesting parts as well as contributing with follow-up
questions. Right after the interviews, we wrote a reflection note individually. We

3.6. THEMATIC CODE ANALYSIS 23

included immediate thoughts such as what surprised us and what impression we got.

3.5.2 Follow-up Questions

Approximately a month and a half after our last interview, we sent a follow-up
e-mail to the participants. In this e-mail, we requested their view and experience on
using guidelines, checklists and other resources. We also collected their self-reported
scores from 1 to 5 of interest in software security. Also, we asked where they got
their education from and whether it included security courses, obligatory or elective.
Because of choosing semi-structured interviews, some of our respondents had already
answered these questions, but we did not have this data standardised. The questions
are available in appendix C.

We discovered during an interview that one of the interviewees was not a developer,
but she still contributed to this topic. However, she was not further followed up with
questions regarding a developer’s view on guidelines and quantified interest.

We asked for a response either as a conversation or in a written response. Out
of 20 interviewees, we had a 15-minute video meeting with 4 participants and got a
written response from 13.

3.6 Thematic Code Analysis

We transcribed the highlights of the interviews by writing down the most valuable
points and quotes that illustrated and described the topic. The name of the firm
and details that could identify the interviewees were left out of the transcriptions.

First, we did the coding analysis physically. We decided on some main tags and
hung up post-its representing each tag. Then, we printed out all the transcriptions
and cut them into pieces based on topics. We matched the topics in the answers with
the tags on the wall behind us. By doing this, we gathered different interviewees’
views on each tag. After some time, we needed to be more systematic in our analysis.
Therefore, we continued the analysis digitally.

First, we used the visualisation tool, OmniGraffle2. There we made a mind map
consisting of the most important tags, quotes and findings. We did this to make our
findings more visual. Later, we started using a tool called Obsidian 3, where it was
possible to link notes. We imported the transcripts as text files. The tool lets the
user tag the notes as well as link them to each other. The linking made us further
understand the complexity in our findings and see contexts. We used 38 different
tags, which can be found in the table 3.2. After that, we used the tags to define the

2OmniGraffle: https://www.omnigroup.com/omnigraffle/
3Obsidian: https://obsidian.md/

24 3. METHOD

main themes, which can be found in table 3.3. In the later phases of the thesis, we
used Obsidian to navigate back and forth in our transcriptions quickly. We used
it, for instance, when checking up a quote or connecting the dots on specific topics.
The tags allowed us to search for specific topics. An example is to search for the tag
“#awareness” and get all sections where interviewees discussed security awareness.

responsibility activitiesFirm activitiesTeam awareness
background blackbox experience change

understanding frontvsback factor guides
interest individual junior customer

communication corona culture learning
operational leadership diversity maturity
environment trainingFirm traningCustomer product
resources securityConsultants silo securityRole
thirdParty techLead team developmentProcess
challenge wish

Table 3.2: Tags found in the code analysis, translated from Norwegian to English.

The Individual
Developer

Team Organisational
factors

Customer

Table 3.3: Main themes found in the code analysis.

Privacy In advance of starting this thesis, we sent an application to Norsk
senter for forskningsdata (NSD) regarding data collection from interviews and storing
personal data. The manner in which personal information is collected, stored and
questions regarding privacy concerns, was determined in consultation with NSD. The
audiotaped interviews and transcripts were stored in the cloud service Microsoft
OneDrive which we got access to via NTNU.

3.7 Limitations

Our selection consists of primary developers in our network or people our network
know. A consequence is that several of our interviewees have similar backgrounds.
We have chosen to interview developers in consultancies and did not speak to anyone
on the customer side. Nevertheless, we do present some findings regarding the
customer-side. Our understanding of consultancy culture is from the 21 individuals
of 13 different consultancies in Norway. As the period of this thesis is limited to
20 weeks, we delimited the scope by the number of interviews and what topics we

3.7. LIMITATIONS 25

consider in this study. Therefore, more research is needed on this topic before the
results can be generalised.

The Likert scale is measured on an ordinal scale, which is a level of measurement
that reports the ranking and ordering of the data without actually establishing
the degree of variation between them [68]. The participants are self-reporting and
therefore interpreting the possible choices. Due to individuals being reactive, their
responses may be biased as a result of wanting to give a “decent” answer to the
researchers [66].

3.7.1 Interview Method

Semi-structured interviews allow impromptu questions and conversation depending
on the interviewee’s answers. Consequently, the interviews did not contain the exact
same questions. We gathered insights from different topics depending on what the
interviewees responded. We did not collect standardised data from all the participants.
We think this is justified in the breadth of the answers collected. The interviews rely
on self-reporting, in which we rely on the participants’ answers to be realistic and
experience-based.

3.7.2 Interviews Over Video Link

This semester has been affected by the coronavirus pandemic in the world. That means
that all interviews is conducted over a video link and not in person. Disadvantages
of digital video interviews are related to the lack of physical presence. A physical
interview is strongly affected by other factors than the particular things that are said.
These factors include eye contact, body language, nuances in voice and the feeling of
psychological safety. They are challenging to observe and control when conducting
interviews over a video link. The natural small talk setting before and while getting
seated for an interview is difficult to sustain over the video, which can influence the
genuineness of the dialogue. Also, it is more challenging to understand each other’s
reactions and body language during the conversation. Due to latency in the video
connection, timing is tricky. We experienced consequences such as interruptions in
the flow of the interview and difficulty to ask good follow-up questions.

Chapter4Results
This chapter presents the results of the qualitative interviews, including the follow-up
questions. During analysis, we have observed common themes and challenges related
to different parts of security culture. The structure of this chapter follows, to a
large degree, the interview guide. The findings are sectioned into four parts: factors
regarding the individual developer, team culture and security activities, organisational
factors that affect the security work and the customer-related influences. Furthermore,
we will present specific findings with examples and quotes to illustrate our findings
and interpretation.

4.1 Findings Regarding the Individual Developer

Each individual’s background, interests, and security training seem to affect how
they contribute to team efforts regarding software security.

4.1.1 Personal Interest

The results of the interviewees’ self-evaluation of their software security interest on a
scale from 1 to 5 are presented in figure 4.1. We received 17 of 20 answers to the
follow-up questions. As can be seen in the chart, almost half of the material (47%)
assessed themselves as “Somewhat interested (4)” or “Very interested (5)” in software
security, and arguably care about the field. Another 47.1% placed themselves as
“Neither interested nor uninterested (3)”, while one interviewee responded “Somewhat
uninterested (2)”. No one answered “Very uninterested (1)”.

Some interviewees who answered “Neither interested nor uninterested (3)” elabo-
rated that saying security is interesting if discussed or presented to them. However,
they did not personally pursue security topics or resources. Whenever they attend
conferences, they may seek out one track to stay updated. One interviewee expressed
his lack of interest in software security openly. He had experience and knowledge
of security from several projects. Continuing, he explained that although he under-

27

28 4. RESULTS

Figure 4.1: Pie chart of self-evaluated personal interest in software security.

stands the value and importance of security work, he finds it tedious and cumbersome.
According to him, security is simply something that has to be done.

The majority of interviewees who answered “Very interested (5)” are individuals
who have engaged in security activities in their spare time. Examples include reading
security blogs, attending security conferences, being part of the Capture the Flag
(CTF) community1 and watching YouTube videos on security. We see that these
individuals often initiated discussions and unstructured security activities within or
across teams. Interviewees expressed that security-interested individuals contributed
to keeping the whole team updated.

4.1.2 Awareness and Responsibility

Some senior developers reflected on the increased awareness of software security
among developers. A senior developer observed that although not all developers
express security interest, most of them will devote time to security measures. Security
can be viewed as time-consuming, a junior developer remarked. He expressed that
working with someone who cares a lot about software security can be demanding. He
continued saying that focusing on functionality, software development is quicker, and
the product will work, independent of security. Security tends to block practicality
due to more strict data handling and data flows. Several point out that there is a

1Capture The Flag: A gamification of finding and exploiting vulnerabilities in software.

4.1. FINDINGS REGARDING THE INDIVIDUAL DEVELOPER 29

balance between practicality and security. Most developers in our material viewed
security as a non-functional requirement, as opposed to a functional one. One senior
developer reflected on the trade-off between the two types in quote 1. He conveyed
that security is a vital part of the product and should not be overlooked.

“The functional requirements must be present for us to launch, but if the
non-functional ones are not, it means that the solution might as well not
exist.” 2 (1)

- Senior developer

Security work is often a priority when choosing architecture and design, an interviewee
stated. Thus, developers may consider security work as finished in the programming
and testing phases, she continued. Accordingly, security work is already recognised,
and the developers think they do not need to consider it. She emphasised that
the challenge is to get everyone to understand the importance of security in all
development phases. The security pressure must be sustained in the later phases
where security is not an obvious priority.

The importance of awareness in a development team was weighted in quote 2.
The respondent with a security role expressed that a team needs awareness of security
to find motivation and be responsible for security work.

“Developers need to get the reflex of thinking ’Wait, did we think about
security?’. With that reflex, they become afraid of doing something
stupid and search for the resources themselves. I believe the most
important thing is security awareness on the development team” (2)

- Senior developer, with a security role

We asked the participants to which extent they thought of software security while
programming. One of the answers is quoted below (3). His experience was that the
majority of developers solely think of functionality when they code. He believed the
customer only wanted him to focus on coding to meet functional requirements and
not consider quality attributes and security. However, he admitted that he could
not tell the value of focusing on security because he did not know much about it.
Nevertheless, his view does not represent the majority of our selection. The majority
said security is always in the back of their minds and part of their programming
attitude. Most interviewees stated that although the team has security-interested
people, security work should be on everybody’s minds.

2Quotes in this chapter are obtained from the interviews and translated from Norwegian to
English.

30 4. RESULTS

“I think one hundred per cent on functionality when I code. I do not
think about security at all. I think this is true for the majority of
developers” (3)

- Junior developer

We observe that there is more assumed responsibility for the back-end developers
than the front-enders. An interviewee summarised the perception in the quote below
(4). Furthermore, we learnt that the purpose of the front-end often is to visualise the
back-end. Thus, interviewees stated that the front-end does not carry independent
data and does not need to care about security.

“The back-end developers carry a greater responsibility. Anyone can
send those HTTP-requests, and so this needs to be taken into account in
the back-end.” (4)

- Junior developer

A senior developer reflected on a technical course in OWASP Top Ten vulnerabil-
ities. Although he found the course interesting, he did not think it was relevant for
him as a front-end developer. He suggested addressing another course focusing more
on front-end security and figured that such a course would have been more relevant
to him.

Nearly all of our interviewees claim that they share responsibility for writing
secure code. An interviewee said that the responsibility is shared equally between
developers, team leader, product owners and other stakeholders. Another interviewee
said that every team member is responsible for striving towards a secure code. The
whole team should participate in reviews of the code and discuss security topics
whenever needed. A third interviewee emphasised that the team lead is responsible
for giving necessary information to the developers. Our material mainly agrees that
budget and prioritisation set by stakeholders along with code reviews and discussions
on the team distribute the security responsibility.

One interviewee pointed out that she did not think one single individual could be
held accountable for the product’s security. The accountability for security should
be split among the partakers of the product.

While most respondents had an idea of their duty in a shared security responsibility,
one interviewee remarked that he had never given this a thought. After some
contemplation, he concluded that the responsibility probably lies with the developers
or the project leader. Regardless, he did not think that unfamiliarity had affected
how he worked with security.

4.1. FINDINGS REGARDING THE INDIVIDUAL DEVELOPER 31

One respondent expressed that although the whole team shares responsibility
to deliver secure code, he felt a particular, personal responsibility. Because of his
security role, the team trusts his technical competence and knowledge to prevent
common vulnerabilities in the product.

Shared responsibility for ensuring software security is a common expectation.
Most interviewees feel that although the team has a security-interested individual,
everyone should be aware of security. They mainly agree that the responsibility
is shared through code reviews and discussions within the team and budgets and
prioritisation from leadership and other stakeholders.

4.1.3 Knowledge and Experience

According to a senior developer in our material, it is not enough to be interested or
aware of software security if the developer does not have a basic level of knowledge
to make precise decisions. She emphasised that such knowledge does not come to
a developer by chance. The developer needs to acquire security knowledge and
experience through education or projects.

A junior developer expressed that she would like to learn more about software
applications in general before diving into specific security measures. Another junior
said that her experience at projects had made her more aware of the importance
of software security. She elaborated that her education had not taught her the
importance of security work. Generally, our interviewees expressed that they have
learnt software security through project experience and other team members.

4.1.4 Educational Background

According to an interviewee, the study programme of Computer Science at NTNU
mentioned security in some courses. He described the security part as forced and
superficial. An interviewee with a background from NTNU stated that she wishes
she had learnt more about security during education. Since her study programme,
Computer Science, did not emphasise security courses during her studies, she did
not view software security as necessary until she started working. Now she supports
a change into mandatory security classes in her Master of Science degree.

Not all of the respondents have gained general development knowledge through
their studies. Some studied more theoretical engineering and adapted the logical,
analytical thinking aspect into software and web development. Despite this, they
do not feel that they are less enlightened. However, their focus and awareness of
security may be lower than developers who specialised in information security studies.
Commonly from our material, the developers who completed security courses in their
studies actively elected them.

32 4. RESULTS

4.1.5 Summary of Findings Regarding the Individual Developer

We see that almost half of our selection rate themselves as “Somewhat interested
(4)” or “Very interested (5)” in software security from our material. Further, we
see that the individuals’ interest influences the knowledge base the individual holds.
In addition, we see that most developers believe they are partly responsible for the
security in the code they are developing. Moreover, several developers said that their
education and the lack of required security courses affect their security work when
starting as consultants.

4.2 Findings Regarding Team Culture and Activities

Our material shows that the overall team culture and group dynamics influence the
security work. Novice consultants in a team need to understand the culture, including
written rules, norms and practices. According to an interviewee, it is easy to notice
the culture through daily stand-ups by looking at the code and other activities. He
continued saying that the developer then finds out if the culture feels comfortable to
them or if they would have to learn something new to fit in.

4.2.1 Diversity and Team Membership

Several interviewees emphasised the importance of diversity in a team. Everyone
cannot excel at security, and not everyone can be a champion of efficient back-end
development. A variety of backgrounds, experiences, genders and interests are
valuable.

From our material, it is clear that the team benefits from the experience and
engagement of an interested individual. An individual with a security role said that
he often brings up security-related topics and contributes as a discussion partner
regarding security concerns. He expressed that other team members benefit from his
knowledge. His view is illustrated with the quote below (5).

“In practice, I believe that most teams are praised if they have someone
who is greatly interested in security. In my last team, I interfered a lot,
and the security work was improved. I think having that one person who
cares matters.” (5)

- Senior developer, with a security role

A homogeneous environment will affect the team in a negative direction, a couple
of respondents remarked. According to an interviewee, seniors usually have more
experience and knowledge of how to avoid common vulnerabilities. An interviewee

4.2. FINDINGS REGARDING TEAM CULTURE AND ACTIVITIES 33

said that those who assemble teams should consider diversity. Otherwise, it is
arbitrary if the team composition works well or not.

4.2.2 Psychological Safety

Multiple interviewees have talked about the importance of collaboration skills in the
team. To promote this, an interviewee emphasised that psychological safety for all
team members is desired. He said that constructive communication and feedback is
vital for individuals to trust each other.

Several interviewees expressed that colleagues had become better at both giving
and receiving constructive feedback. Some emphasised the importance of not blaming
others for mistakes they have made, as shown in quote 6. An interviewee explained
that a mistake never only has one cause. He further said that the importance of
psychological safety within a team might be underestimated.

“No one should experience feedback on code as criticism, no blame
should be given, that will not help making us better.” (6)

- Junior developer, with a security role

4.2.3 Activities Within the Team

Teams arrange activities to improve the security work. It could be structured activities
such as risk assessments and penetration tests and unstructured activities such as
discussions during lunch and spontaneous initiatives from an individual. Activities
are arranged to improve the team’s psychological safety and improve the overall
security work through more technical activities.

Our interviewees seem to use their peers to learn. Several interviewees highlighted
the availability of their colleagues and their willingness to teach. An interviewee
explained a practice where an experienced developer shared work assignments with
the novice, such that the novice did not have explicit responsibility. He called the
practice shadowing. The novice was assigned one specific senior to ask questions and
gain knowledge from throughout the period. This activity was resource-intensive, he
expressed, but the experiences the novice gained could make it worth it.

Technical lunches are arranged to improve the relationship between team members,
an interviewee stated. Before each technical lunch, a team member prepared a
lightning talk, possibly on the topic of security, and presented it. After they started
this activity, they had experienced an improved working environment, both regarding
psychological safety and security competence. An activity to raise security awareness
and knowledge among developers was mentioned by a senior with long experience and

34 4. RESULTS

a junior with security interest. They suggested showing developers how easily their
code can be broken. In an informal meeting, they could live code a small application
or show recognisable code. The point would be to use code snippets where everyone
in the room could think, “I could have written that”. Further, they could show how
the code could be broken. Alternatively, one could use code examples from actual
security incidents, if there has been any, within the firm. The awareness would spread
by using examples developers can recognise as standard practice and then show how
they are exploited. The senior developer explained how effective this activity had
been in earlier teams.

Risk assessments are mentioned as an activity that advantageously could be used
more. An interviewee said that he sees great value in work with risk assessments,
expressed in quote 7.

“By thinking about what the team should do, evaluate the risks and
what risks the work will introduce, we can see the wholesome risk we
take in the organisation(...) It can often be a good thing to bring to the
leaders and show the risks involved in developing the product they are
asking for.” (7)

- Senior developer

From the material, we see that code reviews before merging new code contributions
play an essential role. This quality assurance could be in the form of a pull request.
An interviewee said that the first code fragment delivered by a new employee is
essential. He said that there is much culture in how the pull requests are handled.
Novice developers’ first pull request should be reviewed carefully with concrete
feedback such that the developer can learn from it. He emphasised the importance
of being consistent in what comments are let through and what should be altered
before acceptance. Another interviewee said that if he reviewed a pull request from
a developer with more experience than himself, he would assume that the code was
well written. He said that he probably would use less time reviewing it and put less
effort into the task. This mentality was also observed from another interviewee.

Automatic testing and tools used are part of the team culture. An interviewee said
that automatic tools are costly to use and should be customised to work optimally.
He expressed that he wishes for a tool that preferably works in the Integrated
Development Environment (IDE), which can help with automatic scans and fixes.
Another said that in an ideal world, all software security would be automatic.
Developers in our material wish to understand better what happens behind the
interface of the tools they are using. Interviewees demand training to utilise the tools

4.3. FINDINGS REGARDING ORGANISATIONAL FACTORS 35

as they are meant and understand more of what the tools are doing. Further, some
mentioned monitoring as a field they wish to understand better.

An interviewee with a security role reflected on the effect security activities had on
the awareness and knowledge of the team. He said that all professional reminders such
as lightning talks, CTF challenges or attendance at a security conference contribute
to a motivational boost in the following weeks. He believes that the developers bring
back ideas and new impulses to their respective projects, but did not think the effect
of raised awareness lasted.

4.2.4 Summary of Findings Regarding Team Culture and
Activities

We have seen that the overall team culture and group dynamics influence the security
work performed by the team. As a new consultant, there is a culture to get into,
both formal policies and informal norms and practices.

We see the positive effect of having an individual with a great interest in software
security on a team. The firms’ competence is the sum of every individual’s compe-
tence. Hence, individuals with security interest can influence the culture positively.
Competence sharing between team members is done in various forms, but mainly
through unstructured activities. These include observations and feedback, as well as
general discussions and priorities.

Several participants have talked about the importance of having a team where
everyone feels psychologically safe. This sets the basis for how respect and communi-
cation take place. A culture where individuals are comfortable asking and answering
questions benefits the security work.

4.3 Findings Regarding Organisational Factors

We define organisational factors as influences that the developers themselves do
not decide. This includes security training, structures for competence development,
technologies, tools, and guidelines that form the development environment. In
addition, factors include security activities arranged by the consultancy and the use
of external security consultants.

4.3.1 Security Training

Most of our interviewees replied “None” when asked about the software security
training they received from the consulting firm when they were new employees.
Most of them also described a lack of regular security activities provided to refresh
knowledge and build competence. An individual informed that the consulting firm

36 4. RESULTS

had never shown him any resources about software security. Several novices pointed
out that the training probably had been weakened due to the pandemic.

We have interviewed three developers responsible for the onboarding programmes
provided to new employees. One working for a large consulting firm reflected on the
courses provided in the programme. Of the total of 28 courses, he expressed that
“maybe one covers security”. The second developer, also working for a large firm,
said that they focus on getting the developers comfortable working in teams. To
do so, they introduced them to more experienced developers in knowledge-sharing
competence groups based on their fields of interest. He stressed that they base the
security training on standard technologies likely to be used in projects and do not
prioritise details on more specific topics because it probably will not be used directly
in work-related tasks soon. The third developer responsible for onboarding works for
a small firm where they develop their own product in addition to selling consulting
services. He stressed the importance of learning how to apply security in all parts of
the process. He pointed out threat modelling and risk analysis as examples.

“I experience that security training often lacks purpose. It does not
become concrete enough for the developers’ tasks.” (8)

- Senior developer

An interviewee, employed in a large firm, reflected on the effect of security training,
see quote 8. Further, he said that he believes the focus should be on raised awareness
on what values one tries to protect, rather than security training in general.

According to an interviewee, customers with a high maturity level provide ade-
quate, specific software security training aimed at the developer’s task. With ’high
maturity level’, we mean long experience with security work. These customers can
typically be governmental customers within traditional banking, insurance, health
and telecommunications. The interviewee said that mature customers often have
more available people knowledgeable of security than less mature customers who
have less security experience.

We have seen that developers believe that security is a confounding and complex
field. Many developers declare that they struggle to grasp the software security most
relevant for their tasks because they do not know where to begin. There is a need for
concrete courses and specific activities relevant to the developer’s task. A front-end
developer suggested recurring courses once in a while, for instance, on the OWASP
Top Ten list of vulnerabilities.

Both interviewees with involvement in the CTF community and other developers
mentioned that practising CTFs is valuable. Breaking down the complexity of software

4.3. FINDINGS REGARDING ORGANISATIONAL FACTORS 37

and viewing vulnerabilities as isolated components improve the understanding of how
the system can be exploited. A couple of respondents pointed out that developers
could understand how malicious actors break the code they develop. Then, if
they learn how they can mitigate these vulnerabilities, they would not be entirely
dependant on hiring security consultants in the final phase of the development.

4.3.2 Competence Development

We observe that consulting firms practise different kinds of knowledge acquisition
schemes. Some of the participants’ companies pay their employees for self-studying.
With this arrangement, the consultants can develop their competence in freely
chosen topics within working hours. Other initiatives include providing admissions to
conferences and arranging lessons internally. From our material, we see that individual
developers have freedom in prioritising the topics they want. The consultancy does
not require specific topics but rather facilitates the possibility of getting creative and
engaging in self-chosen projects.

A consequence of this freedom, expressed by several respondents, is that they
do not regularly prioritise software security. There is an endless number of topics
they wish to learn about. A junior interviewee said she would like to learn more
about software security, but elaborates in quote 9 that she cannot learn everything.
Another respondent explained that she does not learn anything before a task requires
her to.

“I would like to learn much more than I have capacity to. Software
security is interesting, but there are a lot of other interesting topics as
well. ” (9)

- Junior developer

4.3.3 Security Roles

Some customers with a high level of maturity assign a security role to one of the
developers on the team, which could be called “Security Champion”. Several of our
interviewees have such a role. They emphasised the value of having an appointed
person who aims to raise awareness and quality of the security work. However, they
mentioned factors that could enhance the security role.

All four interviewees with security roles were particularly interested in software
security. They explained that the role consisted of having an extra focus on security,
but had no defined tasks. A respondent reflected on his role in quote 10, and said
that there should be a note on what the mandate includes.

38 4. RESULTS

“With no mandate, it sounds boring. You get responsibility, but no
opportunity to change anything.” (10)

- Junior developer, with a security role

A developer that was responsible for security mentioned both formal and informal
tasks. He experienced the formal tasks as defined. Formal tasks include security
audits four times a year, which he would prepare and lead. Informal tasks could be
to pay attention to change in technology or security threats that could affect the
development team. An essential part of the role is to be a discussion partner for
security issues. According to him, the security role makes tough decisions regarding
security choices that may be unpopular by the team.

Having a security role on the team seemed to raise the team’s quality of security
work. The developers with experience with security roles also accentuated that
security roles are not a common practice. The priority of this role is dependant on
the maturity of the customer and the product.

An interviewee without a security role reflected on how the role works in practice.
He emphasised that it is crucial how the individual enacts the role. He points out
that a vaguely defined role could contribute to the others leaning on the dedicated
security role to fix all the security issues.

4.3.4 Delivery Models

Based on our interviews, consultancies’ delivery models seem to affect how developers
work with software security. One interviewee worked for a consultancy that lends out
consultants individually to a team responsible for the product. According to him,
the consultancy is therefore not responsible for the security of the finished product.
In quote 11, he elaborates this opinion.

“I would have been more stressed about security if we [the consultancy]
had responsibility for operating the system. I think there is a massive
difference between consultants with this responsibility and not. I have
noticed that developers from consultancies with such responsibilities
have a much greater focus on security” (11)

- Senior developer

An interviewee said that the culture for securing the product comes with the
feeling of ownership the developers have for the product. Further, she expressed that
her team had continuous responsibility for the products also after launching. She

4.3. FINDINGS REGARDING ORGANISATIONAL FACTORS 39

elaborated by explaining the consequence of making bad choices in quote 12. The
feeling of ownership made them raise the quality of their work.

“Products do not become better by themselves. If I make bad choices, it
will bite me in the ass.” (12)

- Junior developer

4.3.5 Traditional Boundaries

Some respondents expressed that security and development are separated into different
divisions and do not necessarily need to be integrated. Quote 13 illustrates that the
security competence may not be perceived as available.

An interviewee expressed that the customer focuses on letting programmers code
functionality and having an external team focusing on security. He also said that the
customer does not focus on the individual developer to develop securely.

Another interviewee had operated with a large security team that scanned and
fixed security issues in the developers’ code. He experienced that the developers
assumed that the security team fixed the security such that they did not have to
think about security concerns. He emphasised that this is a pitfall because the
developers stop thinking about vulnerabilities. He was also worried that the security
teams neither knows the logic nor has a feeling of ownership of the code, which could
weaken their security audit. In total, he believed this gave the project a false sense
of security.

It would be interesting and probably valuable for his work to know more about how
the security team work, a respondent figured. He continued saying that developers
generally do not know how the dedicated security team works, what they do, or how
they think.

“There is a security team on the project, which it should be possible to
talk to, but I have not been in a situation where it has been relevant to
include them. (...) We have interest groups on different fields, but I do
not know if we have one for security.” (13)

- Junior developer

4.3.6 Use of Security Guidelines and Checklists

From the follow-up questions on the use of guidelines, the majority of our interviewees
had heard of, and to some extent used, the OWASP Top Ten list of common

40 4. RESULTS

vulnerabilities. Based on these answers, most of our interviewees seem to have heard
of OWASP Top Ten, but are not familiar with other guidelines.

A senior developer with a security background had experience with several
guidelines. He expressed that he had used OWASP SAMM to measure teams’
security position and Microsoft sdl to make SDLCs customised to customers. Thirdly,
he mentioned owasp OWASP ASVS as his most used and preferred. He emphasised
that these guidelines are a good starting point, but they have to be customised to
fit the firm that should be using them. He said that he would like more focus on
OWASP OWASP ASVS in addition to OWASP Top Ten, which only covers a small
part of security measures. He also mentioned that the “Cheatsheet”-series of OWASP
deserves publicity. Lastly, he mentioned the guidelines made by NDPA on build-in
privacy.

A junior developer expressed that her development team use a checklist based on
the “AWS Well-Architected Framework”. It presented examples of what to do with
different security concerns. A tech lead could typically arrange meetings where they
assess the application against security measures. She also mentioned a checklist for
Hypertext Transfer Protocol (HTTP) security headers that she used when developing
web applications. The checklist consists of an overview of what headers to set and
why they are important, and examples of how to implementing them.

An interviewee said that he experienced the guidelines as very theoretical. For
instance, he wished for a more helpful guideline in practice, for instance, a checklist
to use in smaller projects or development that does not feel like bureaucracy. Another
interviewee with a security role reflected on how checklists work in practice in quote
14. GitHub can offer security checklists in conjunction with pull requests. These are
often very general, he elaborated, and do not cover individual issues.

“There is no checklist that works in practice, that is not how security
works. I do not believe that it is possible to make it so simple” (14)

- Senior developer, with a security role

4.3.7 Development Technologies and Environments

Some interviewees mentioned technical debt as a factor affecting the development
environment. We learnt that many companies have agreements with cloud and
infrastructure vendors. This way, multiple technological decisions are often already
made when the developers are engaged in the project. An interviewee expressed that
he had a limited impact on the environment where they develop their code.

4.3. FINDINGS REGARDING ORGANISATIONAL FACTORS 41

Developers seem to rely on the software created by others significantly. A
respondent presented his steps for evaluating the credibility of using third-party
libraries. Firstly, he would look at the name of the library. If he recognised it,
he would use it based on its reputation. Others explained that the popularity in
the number of downloads indicated integrity. Amazon, Google and Microsoft were
mentioned as companies trusted to provide secure services. Respondents elaborated
that these vendors have a significant team that works on making the software secure.
However, although some respondents mentioned that large companies are exposed to
security breaches, they still use their services quite uncritically. These parties are
considered to be trusted by the developers of our material.

Use of Automatic Tools and Scans

Almost all interviewees mentioned the use of automatic tools as one of the security
measures the team do. Several interviewees mentioned that the tools are expensive
and must be tuned and configured to work properly. Quote 15 illustrates this.

“Automatic tools are very expensive. They have to be adjusted.
Otherwise, it will be a lot of fuzz. I wish to be notified when I am about
to do something stupid, preferably directly in the ide” (15)

- Senior developer, with a security role

Multiple interviewees mentioned Snyk, Detectify, SASTs as tools they use. In-
creased use of the DevOps paradigm discloses the use of more automatic tools. Some
also expressed enthusiasm for the possibilities that come with GitHub Actions, where
other tools can be integrated as part of the everyday process.

4.3.8 External Security Consultants

An interviewee reflected on hiring external security consultants. He said that the
development team worked harder to make secure code if they knew that experts were
to review the code afterwards. Another interviewee, in quote 16, figured that the
current distribution of responsibilities works well. Others hire security consultancies
to review the security during the development phase to meet their required security
level.

“It makes sense how we do it today. The security experts are specialised
in security, and other developers do the mindless development. I do not
know so much about security, so I cannot say what good it would do to
focus more on it” (16)

- Junior developer

42 4. RESULTS

An interviewee explained that a colleague previously had worked in a security
consultancy. Currently, he switched projects every couple of weeks to fix the security
issues of many teams. She used the term “Use and discard” to describe how they
practice their security work. She elaborated that their task was to move from project
to project to “sprinkle” some security on the code. She did not see a constant need
for them on a team as their job is to control and verify the system, she explained.

4.3.9 Security Activities Organised by the Consultancy

Our interviewees expressed that security-interested individuals mostly initiate or-
ganised security activities. However, it seems like security-related activities get less
attendance than activities on other topics. Security-related activities occur less fre-
quently relative to other activities. That said, an interviewee said that he experienced
a shift. It seems that there has been an increased amount of security activities in
the later years. Senior developers elaborate that more developers understand the
importance and show up for security activities compared to earlier. They estimated
that the increased initiative has been noticeable over the last five years or so.

Competence Groups

Competence groups for different fields of interests such as software security, web
development and cloud computing were reoccurring in the consultancies. Interested
people would learn from each other in an engaged environment. From the developers
belonging to the same competence group for security, we have seen that security-
driven individuals initiate these groups within the firm. The group has resources
to arrange meetings within working hours where they share skills or recent security
incidents. Here and there, they arrange activities for other coworkers as well, not
only within the group. An activity could, for instance, be competence days. A
competence day is often a technical and social day or afternoon, including lightning
talks from colleagues and dining. The lightning talks could include security-related
topics that the colleague recently learnt or understood. The dining part with food
and drinks is an arena to better relationships with colleagues and increase affiliation.

Communicating and Discussions on Software Security

The most used communication platform among the interviewees is Slack3. The teams
and firms use this for informal communication in different groups or channels dedicated
to different purposes. Respondents describe a channel dedicated to discussing and
highlighting software security concerns and challenges. Security-interested consultants
are available for discussions and contributions. An interviewee also expressed that
most of the security discussions took place in other Slack channels. He elaborated

3Slack: https://slack.com/intl/en-no/

4.3. FINDINGS REGARDING ORGANISATIONAL FACTORS 43

that, for instance, the developers would probably discuss security concerns regarding
a specific framework in the channel for that specific framework rather than in the
security channel.

Some junior developers expressed that they were hesitant to participate in the
Slack discussions on security concerns because they experienced a high threshold
to participate. The developers who discussed the most are very often the more
experienced security gurus, one remarked.

Several respondents started as developers in the autumn of 2020. Consequently,
their onboarding process has deviated from other years due to the pandemic and
home offices. The situation has affected their relationships with their colleagues and
general knowledge sharing. An interviewee expressed her onboarding process in quote
17.

“We are the wrong class to ask about security activities. Physical
meetings and other activities are cancelled.” (17)

- Junior developer

Another interviewee said that he was convinced that other developers would
like to discuss security concerns, but these discussions had been lacking since the
coronavirus outbreak in March 2020.

4.3.10 Summary of Findings Regarding Organisational Factors

We see that most novice developers lack software security training provided by
consultancies. The developers describe security as intricate, and they experience a
lack of capacity to learn about all the topics they want. Some teams have a security
role that raises awareness and knowledge within the team. The practice seems to
increase the quality of the security work, but the role does not contain concrete
responsibilities. Consequently, the role’s success depends on how the individual
enacts it.

The consultancies’ delivery models seem to affect how their developers work with
security. In addition, we see that some consultancies have divided divisions working
on different aspects of development. Developers do not always know whom to ask or
where to get hold of the required knowledge.

Several interviewees explained that the development environment, including
technical debt and using guidelines and tools, dramatically affects security work. The
majority of the developers do not seem to use or know security guidelines such as

44 4. RESULTS

BSIMM or SDL. However, some mentioned a variety of checklists that they partially
use. Almost all interviewees explain that their team use automatic tools and scans.

Whether or not external security consultants are doing code reviews or penetration
tests, they seem to affect how developers work. Engagement from individuals is
the most important driving force for internal security activities organised by the
consultancy.

4.4 Findings Regarding Customers’ Effect on Security Work

Almost every interviewee mentioned that the focus on security work in teams varies
depending on the developed product. An interviewee explained that it is often easier
to suggest security activities and get prioritisation with customers of high maturity
level. As consequences of broken software for these industries can be severe, they
have experience with prioritising security.

Another interviewee thought that an involved leadership that asks questions is
meaningful for the security awareness within a team. He continued by explaining how
he notices the customers level of awareness in practice. Positively influencing this
are initiatives from the customers such as security training and introducing security
roles.

The most experienced seniors developers agreed that there had been a change in
software security awareness of the customers in the later years. As earlier mentioned,
this also applies to the developers. Customers nowadays ask for consultants with
competence in security work and include concrete security requirements in the
project descriptions. He pointed out a change in how security gets prioritised and
that security has become a topic of conversation. In quote 18, he explained that
security gets more attention from the customers. From his formulation, it seems that
this used to be a challenge earlier.

“It is no longer the case that you have to fight a great battle in order to
succeed. It is easier to get security tasks prioritised in the backlog
because security activities have more focus further up in the
organisation.” (18)

- Senior developer, with a security role

4.4.1 Start-Ups Differ from Mature Customers

In start-ups, the experience and maturity level is different. An interviewee hired
for a start-up explained that the products are often Proof-of-Concepts made on
low budgets. A Proof-of-Concept product aims to make something that works, so

4.4. FINDINGS REGARDING CUSTOMERS’ EFFECT ON SECURITY WORK 45

they have something to show investors to get money. They often create a product,
which later is destroyed. As illustrated in quote 19, the interviewee emphasised the
importance of not being naive even though security is not the main focus in these
projects.

“It is easy to think that the website does not have considerable traffic
yet, but that is a naive approach. Crawlers try for vulnerabilities either
way. It is important to take it seriously and not lean on existing
experiences. Security is a constantly evolving field.” (19)

- Junior developer

A difference he noticed between start-ups and more experienced customers was
that developers blend in with the existing culture with mature customers. However,
with less mature customers, the developers affect and contributes to evolving the
culture to a much greater extent. Another interviewee added that there more
established frameworks are available in projects for experienced customers. He also
pointed out more defined security requirements and colleagues qualified to discuss
concerns. Further, his impression was that start-ups do not have any existing software
to reuse and therefore may not prioritise using developer competence on security
work. Moreover, he explained that he adapts to the customers level of focus on
security. If the customers do not focus on security work, he lowers his shoulders and
tries not to make completely idiotic mistakes.

4.4.2 Reputation

Several interviewees mentioned the effect news coverage of broken systems has on
customers. Generally, they are afraid of being hacked and then receive bad publicity.
Their product would then get a weakened reputation. An interviewee discussed that
this is one of the most important reasons why customers have become more willing
to prioritise resources to security activities in recent years.

4.4.3 Trade-Off Between Security and Business

An interviewee highlighted that there is a trade-off between software security and
business considerations. He said that he had experienced that the customer did
not follow his recommendation, see quote 20. He also expressed that economics
and budgets play a large role in prioritising and doing security activities. Software
security is costly, and product owners need to weigh it up against other business
concerns.

46 4. RESULTS

“The customers know their industry best, and consultants are often
hired because the customers lack IT competence. This may create some
unnecessary friction because we do not have the same understanding.”
(20)

- Senior developer, with a security role

4.4.4 Summary of Findings Regarding Customers’ Effect on
Security Work

We see that the customers initiatives as well as the product developed influence
the software security culture. Our interviewees expressed a change in customers’
overall awareness. It is easier to get security tasks and activities prioritised now,
compared to earlier. Several interviewees expressed that this is due to news coverage,
fear of bad publicity, and consequently weakened reputation. In addition, the
developers emphasise the importance of understanding the trade-off between security
and business considerations.

Chapter5Discussion

This chapter discusses the findings from chapter 4 and relate the findings to earlier
research. The interview findings are based on both the direct responses and our
interpretations from the participants as well as insights we have developed across all
interviews.

The sections address the three research questions. Firstly, we view software
security culture from an individual perspective. Secondly, we view organisational
and predetermined factors that affect the software security culture. Then, we will
present material factors that influence the software security culture. Lastly, we
discuss factors affecting software security culture in general. The different topics
presented in different sections are linked.

5.1 RQ1: What Factors Influence the Software Security
Culture on an Individual Level?

Identified factors related to individuals regard individuals’ interest, their effect on
a development team and perceived responsibility for secure programming. We also
discuss responsibility versus accountability in this section.

5.1.1 Personal Interest

Our research shows that the most interested individuals seem to have the most
knowledge of software security. As described, they learn by reading blogs, watching
videos, solving CTFs and seeking out resources to learn more. They derive their
knowledge from self-initiated activities. This finding aligns with earlier research,
where they conclude that security expertise is self-taught and often come from news
and blogs [17].

We have seen that team members learn software security from each other through
discussions and other spontaneous, non-organised activities. Earlier research con-

47

48 5. DISCUSSION

cludes that security knowledge spreads between developers through informal discus-
sions [17]. Without an interest in the field, there may be less spontaneous competence
sharing, which blocks the advancement of security competence. Hence, a lack of
interest can affect how the team performs security-wise in the long run. We have
experienced that software security is a complex and dynamic field that transforms
all the time. New technology introduces new vulnerabilities, and hackers find new
ways of exploiting software.

More than half of our interviewees seemed indifferent or uninterested in software
security, self-reporting to “Neither interested nor uninterested (3)” or “Somewhat
uninterested (2)”. These interviewees did not have more engagement for security
than what they stumbled upon and found relevant for projects. Developers lack
intrinsic motivation, and software architects do not seem to have security as their
main interest [6, 22].

One of the participants surprised us with his self-report on interest in software
security. During the first interview, we observed that he did not seem interested in
security at all. In quote 2 he stated that he only regards the functionality of the
product, where he did not enclose security. Also, he added that he did not know
much about security and would not say that there is a focus on learning it.

In the follow-up conversation, he seemed somehow uncomfortable when self-
assessing to “Very interested (5)” on our scale. We wonder why our initial impression
and his answer does not align. In the follow-up conversation, he explained that he
was entering a security role in his next project. Thus, he currently read up on web
application security. He emphasised that he did not have experience or knowledge
of the topic yet, but was motivated to learn. The radical change in interest could
be a consequence of changed job assignments. Developers get motivated to learn
security due to a feeling of responsibility [17]. The new responsibilities due to the
new task may be the reason for the sudden experienced interest. Another theory
is that his participation in our thesis has contributed to his awareness and interest
in the field. The conversations we had may have affected him in thinking of why
software security is necessary. Further, he may have wished to fit our material and
not stand out negatively. Another possibility is that he had become very interested
in software security in the last couple of months.

5.1.2 Individuals’ Initiatives Within Development Teams

Our results show consistently that individuals’ initiatives are essential for the culture
in a development team. The respondents commonly emphasised that this is the most
important factor for the quality of security work. Individuals make up the culture
in a team. Thus the team culture varies within a firm. The overall security in a
project depends on the knowledge of the decision-makers, either on the customer or

5.1. RQ1: WHAT FACTORS INFLUENCE THE SOFTWARE SECURITY CULTURE
ON AN INDIVIDUAL LEVEL? 49

developer side [17]. Lack of software security competence impacts the final software
security in a solution [2]. As described in our findings, an interviewee expressed that
a basic level of knowledge is required to make good security choices.

5.1.3 Increased Personal Responsibility

There seems to be a change in the extent developers feel responsible for software
security. The “it is not my responsibility”-attitude on software security found by
Xie et al. in 2011 [19] may have evolved. Research from 2014 and 2017 conclude
that the developers believed that they had a shared responsibility for writing secure
code [7, 20]. Even though testers and security experts helped the quality of the
security work, the developers have the most significant responsibility. In research from
2017, developers expressed that it was part of their self-conception as professional
technicians to deliver good quality, sound, and secure software features [6]. These
findings align with our findings on experienced responsibility. Most interviewees
believed that they were partly responsible for security in the software they develop.
The change from 2011 until now, ten years later, may represent and reflect that a
shift is happening in the position security work has in development teams. However,
some individuals in the selection believed they were not responsible for the software
security. Further, many reflect on the consequence news coverage will have on their
consultancy’s reputation. They express that such bad publicity due to an exploitation
of a common vulnerability would feel embarrassing.

Our material described that they are hired to do a job. Many stated that this
includes fixing the most obvious vulnerabilities. Due to time constraints and customer
deliveries, they need to do as they are told and expected. Simultaneously, their
competence is valued, and if they take responsibility for adding security, this is
mostly supported. However, the accountability for security actions is not clear [1].
One respondent commented that one single person could not be held accountable
for the security. Although the security tasks can be delegated and the responsibility
can be shared, being accountable for the code security when someone is to blame is
tough. We wonder if someone could or should be held accountable.

The customers are buying competence to build a service or a product. They
are responsible for setting requirements, providing enough money for security work
in their budgets, and providing resources. On the other side, we argue that the
developers are responsible for raising their voice about concerns when issues arise and
making educated choices while developing. According to interviewees, the customers
are more aware of the importance of security work now compared to earlier. They
prioritise differently and asks more specifically about consultants they know are good
at security work, as well as security requirements. Security measures cost money
[2]. Consequently, only customers with sufficient financing may have the ability to

50 5. DISCUSSION

buy all the security measures required. This might be a challenge for less fortunate
customers.

We had a challenging time defining the fields of responsibilities for the consulting
firm. Since not all customers can buy all the security measures they would like,
we could ask if the consultants are responsible for guiding the customer to make
adequate decisions regarding security. In addition, we argue that the consultancies
are responsible for the quality of the security knowledge of the consultants they sell
out. Then we could ask, are the consultancies aware of this responsibility? We think
they might not, based on the lack of security training that several consultancies
provide. As described, the delivery model of the consultancy seems to affect what
responsibility they take. To conclude on who can be held accountable, further
research on the topic is required.

5.1.4 Summary: Individual Factors

An individual’s interest in software security is the most important factor for the
development of their knowledge. Individuals’ initiatives are important for the total
security work in the teams, and all stakeholders will benefit from an individual who
initiates security activities and maintains the security awareness. Developers seem to
feel more responsibility for code security now compared to earlier.

5.2 RQ2: What Organisational Factors Influence the
Software Security Culture?

Factors on an organisational level include security training in both onboarding
processes and education. This also includes team culture, which could be influenced
by psychological safety, diversity and security roles. In addition, security activities
influence the security culture. Examples can be security training, engaging external
security consultants, and unstructured activities such as informal discussions.

5.2.1 Compulsory Security Courses in Education

In the report on supply and demand for security competence from 2017 delivered
by NIFU, they conclude that there is a considerable need for security courses in
engineering educations is considerable. They express a need for generalists, meaning
candidates with general Information and Communications Technology (ICT) security
competence. They emphasise the importance of including required security courses
in all ICT study programmes. Several also point out that security courses should be
compulsory on all technical study programmes [8].

5.2. RQ2: WHAT ORGANISATIONAL FACTORS INFLUENCE THE SOFTWARE
SECURITY CULTURE? 51

Today the master’s degree programme, Computer Science, and the bachelor and
master’s degree programme in Informatics at NTNU could be completed without
taking a single course that mainly focuses on security work. The students may
prioritise taking some elective courses on security, but may not see the need for them.
Not requiring any security course is concerning, as a significant part of the students
become developers after a finished degree [8], without own reflections on why security
is necessary and know how to mitigate common vulnerabilities.

Our interviewees have a variety of backgrounds. Some respondents have elected
security courses during their education, and others have avoided them. Principally,
individuals lacking security interest did not elect courses on security. The freedom to
deselect security courses result in very different foundations. Even from the same
study programmes, developers have a very unlike base of security knowledge when
entering development projects as consultants.

A majority of our interviewees stated that learning by doing is their preferred way
of gaining knowledge. For example, as suggested by an interviewee, one could include
software security in existing software development courses. If security is included
as a natural part of teaching and project assessment, it may be communicated that
security is a valuable measure in the finished product. Thus, a possibility would be to
include security measures as part of the assessment criteria in software development
projects. A change in criteria could signal that software security is an integrated
part of the craft of developing satisfactory code.

5.2.2 Team Culture

As the research from Stray et al. and Shin stated, an agile team is more efficient
when there is psychological safety within the group [69, 35]. Shadowing a more
experienced developer, suggested by a respondent, indicates that shadowing could
ensure a quick adaptation of the norms and practices regarding software security
culture and the culture in general. However, this requires the experienced developer
to be aware of the culture she wants to pass on to the novice employee. Otherwise,
the bad habits of the experienced developer could be passed on along with the team’s
habits and culture. This is a resource-intensive scheme, but practical to learn the
culture quickly.

According to van der Heijden et al., all team members should share a common
understanding of the team culture and the firm’s culture on software security. To
convey practices and attitudes concerning software security, it is valuable to raise
awareness of the culture [1]. Experienced developers of our material have expressed
challenges with including new developers in their software security culture. Con-
sequently, if the culture is explicitly familiarised it can easily be passed on by the
experienced developers on the team.

52 5. DISCUSSION

Some participants mention a high degree of turnover in teams and that projects
are dynamic. Due to projects arising and disappearing frequently, hired consultants
and internal competence are relocated. External consultants switch teams on demand
of competence, and they will do as they are told when entering a new team [1]. The
team culture has to be related to the inherent values of the team, so it does not
disappear in turnover [70]. These values should be commonly known and used to
navigate actions. A software security culture needs to get built in the same way,
although it may be unclear unless specifically addressed. A possible software security
culture will be hard to recognise without structured guidelines and established values.

According to an interviewee, using DevOps increases the field of responsibilities
of a team. A consequence could be an implicit increased feeling of ownership in the
team. Writing code to the production environment becomes easier since no other
dedicated operating team should fix bugs. The team can, in other words, fix their
bugs and push the changes to the production environment. This increased feeling
of responsibility and ownership seems to affect the quality of the security work in a
positive manner.

Diversity

Our data suggest that a diversity of knowledge and experience is a valuable strength
in a team. Several interviewees said that there is no goal to have a team of equal
developers. Different perspectives positively challenge the team.

Interviewees mentioned the value of combining juniors and seniors. Both ex-
perienced developers and novices could learn skills from each other. The seniors’
experience and knowledge are built up through the years. This is valuable knowledge
to share with less experienced developers. However, less experienced developers enter
the team with fresh eyes and a different mindset. They may be more updated on
technology and contribute with alternative methods. In addition, they may raise
awareness by making unpredictable mistakes. These contributions could challenge
established truths and push the team’s progress and development further.

As commented in the results, senior developers are assumed to write more secure
and correct code than junior developers. Thus, their code is less thoroughly examined.
However, a senior can be unfamiliar with security practices or lack experience in the
field. This mentality could involve a greater risk of pushing vulnerabilities into a
production environment if this is the case.

Our data do not explicitly mention diversity in terms of educational background.
From what we see, the developers with other educational backgrounds than developer-
related studies did not feel disadvantaged when handling security issues. Possibly,

5.2. RQ2: WHAT ORGANISATIONAL FACTORS INFLUENCE THE SOFTWARE
SECURITY CULTURE? 53

they do not experience any disadvantage because developer-related studies may not
involve enough emphasis on security content.

Earlier research from Kocksch et al. discusses that women improve the security
work of a team [71]. Our research has not explicitly asked about gender diversity.
Cultural diversity has neither been mentioned by our respondents nor been considered
in earlier research.

Assigned Security Role

Security knowledge of individuals is essential for the security work done in teams
[17, 26]. We have seen the same in our results. Without this driving force for security,
teams may fall short in focusing on security. Van der Heijden et al. present that
close involvement with a security role is valuable for teams, mainly because the role
facilitates increased acceptance of security [1]. Introducing a security role is a way of
formalising responsibilities for security focus. Our results suggest that developers
with security interest often are delegated the security role on their team, in addition
to develop code. We have seen that mature customers initiate this role. By that, we
mean customers who take actions affecting efficiency and security actions because
their products handle critical and personal data. Our participants with experience
from security roles express that the role contributes to increased security focus. This
is also described in van der Heijden et al.’s work [1].

We see that the security roles are vaguely defined. As described in our results,
the role lacks specific tasks, responsibilities and mandate. When involving a security
role, we consider it essential to define and describe how the developer enacts the
security role. A more concrete definition of the role would make it easier to follow
up on assignments and responsibilities. Additionally, the security role would be
structured and established as a recognised practice. Today it seems arbitrary if the
security role works well or not. The role depends on the initiatives of the individual
developer. In advance of a project, the initiator could standardise the security role
to be quantifiable and manageable, regardless of the individual’s level of ambition,
awareness and knowledge.

As mentioned earlier, the accountability for security actions is unclear [1] and
one individual cannot solely be held accountable for the code security. Another
interviewee explained that one mistake done by an individual never is the cause alone
for broken code. He elaborated that a series of events and structural influences also
play a role. Thus, we argue that the individual who holds the security role cannot
be held accountable. If the security role is held accountable for the software security
as part of their responsibilities, we argue that the scope of the role should be defined.
The developer takes greater responsibility in organisational work and should be part
of strategic and operational decisions affecting the team.

54 5. DISCUSSION

5.2.3 Security Activities

The respondents said they find it hard to initiate activities to raise awareness and
knowledge on software security. We have observed several cases where developers
have experienced software security training as irrelevant, redundant or superficial. It
seems challenging to find activities that work well in practice.

There are both organised and unorganised activities in a consultancy. Organi-
sational activities include, for instance, competence groups, security training and
external security consultants. Our interviewees expressed that their security knowl-
edge mainly results from knowledge sharing within the team and on other developers’
experiences despite various structured activities. Security knowledge spread through
informal discussions among developers [17]. In our material, these include discus-
sions related to current security topics, solving project tasks and helping others.
Discussions are either physical or digital in communication channels on Slack.

Competence Groups

As described in the results, some consultancies have competence groups for a variety
of topics. This creates environments where interested people learn from each other
and create engagement for learning. Competence groups are a type of satellites
described in BSIMM [52]. Consulting firms that operated with such satellites are often
categorised as large. From what we have seen of the competence group, its driving
force is enthusiastic individuals within the firm. The group has available resources to
arrange meetings for knowledge sharing within working hours. Occasionally, they
arrange activities accessible to colleagues outside the group. Examples of activities are
competence days, framework courses, lightning talks and lectures given by external
experts.

An interviewee said that it can be challenging to spread knowledge to the rest of
the consulting firm. Within the competence group, the initiatives and knowledge grow,
according to him. However, the group has limited spots. This can be experienced as
a barrier for developers who may be interested in security knowledge, but do not feel
qualified or “passionate” enough to join. One interviewee expressed that she needs
basic knowledge of software development before joining the competence group on
security. A novice developer may experience a high threshold to join a competence
group in fear of not contributing. Furthermore, the spot could have been offered
to someone else. We believe there is value in spreading knowledge to the whole
organisation, making an input on security available to more people.

Our results suggest that attendance to security-related activities is lower than
for activities related to, for instance, web development, software architecture and
artificial intelligence. This may reflect the personal prioritisation of security. We

5.2. RQ2: WHAT ORGANISATIONAL FACTORS INFLUENCE THE SOFTWARE
SECURITY CULTURE? 55

have seen that developers do not manage to cover all topics because there is a lot to
learn.

Security Training

There are wide variations in security awareness, and for that reason, training is
crucial [1]. In our material, the security training provided by the consultancies
during the onboarding process varied. While some encountered a broad set of
coursing and certifications in their first period, others were sent straight to customer
projects without training. Organisations lack structured software security training
[22]. Several interviewees explained that they learnt how to protect their computer
and avoid publicly open networks in their onboarding process. Some mentioned
lessons on handling personal data according to GDPR and an ethics lesson. However,
few referred to training on software security. This aligns with earlier research done
by Jaatun et al. They conclude that software security does not seem prioritised in
the general effort to increase knowledge and awareness of information security [3].

Our overall impression is that minimal security training is offered to novices.
Some developers in our material seemed to have the attitude that security training
should not be mandatory. They said it is not necessarily desirable that all developers
have a baseline of software security knowledge. Team diversity, as mentioned earlier,
will not be urged if everyone is forced through security training.

We see that the developers experience the current security training as not fitted
or relevant for their tasks. The attitude is that security training is costly and hard
to make specialised for the developers’ tasks.

Novices may not be aware of the typical security pitfalls, according to an inter-
viewee. Their capacity to learn new skills is limited, and security is a complex and
comprehensive field. We grasp that it would demand excessive resources to customise
a security lesson to all developers, which take into account their prior knowledge and
the project they are becoming a part of. However, we believe that it is beneficial to
provide a baseline course. This will raise the general awareness of software security.
Additionally, it would present them with various resources to seek solutions and
further expand their knowledge. The developers would maybe feel better equipped to
implement security tasks. An interviewee said that he had never before been shown
resources on software security. Senior developers also wish for a general course on
security to stay updated and learn about new vulnerabilities.

External Security Consultants

Earlier research observed a short-term change in motivation regarding security when
engaging security consultants in development teams. However, in the long term, the

56 5. DISCUSSION

sustainable changes and adoption of new practices and tools did not continue after
the security consultants were out of the projects [6, 23]. We have not researched the
effect of security consultants, but we can see a similar effect after completing security
activities. We observed that some developers had noticed differences in motivation
and interest a few weeks after successful security activities. The developers more
often initiated discussions and expressed their security concerns. However, this
change only lasted a few weeks after the activity. We interpret that the effect is
not sustainable and long-lived. One respondent mentioned that security work could
be considered resources to “use-and-throw”, only initiated by security consultants.
This attitude does not seem common in our material, but should be addressed. This
attitude does not seem to conform with the goal of security in all parts of the process.

Consulting Firms’ Incentive for Structured Security Activities

We have seen that consultancies often provide inadequate software security training.
It is plausible that consulting firms’ incentive to have structured training for software
security is influenced by their delivery model. This includes what kind of assignments
and teams they mainly offer to customers and the time horizon they operate with.
From our material, consultancies provide software security training more often if
they operate their own products or have a great responsibility for their customers’
infrastructure than if they do not.

As several respondents expressed, their security knowledge is mostly obtained
through earlier customer projects. When a customer project requires specific knowl-
edge of a field, the developer can learn that skill set at the customer’s expense. This
may influence the consultancy’s incentive to provide software security training.

5.2.4 Separated Divisions and Security Teams

From our material, the size of the consultancy seems to affect security work. Employ-
ees in small and medium-sized firms seem to have an overview of all their colleagues.
They know what knowledge they possess and whom to contact for questions on dif-
ferent topics. On the other hand, teams in larger firms work more isolated. Different
competence is often divided into different departments of the firm. Security issues are
mostly discussed over Slack. Formulating written questions and asking them in front
of many observers in a chat may create a barrier to addressing security concerns.
Accordingly, the size of consultancies seems to affect the availability of security
knowledge. Van der Heijden et al. concluded that security-related information should
be easily available to the team [1]. The information should be available to those
who need it when they need it. Quote 13 from the previous chapter may indicate
that security knowledge does not reach all developers. The quote refers to a junior
developer who expressed that allegedly, there was a security team on the project,
but he had never contacted them.

5.2. RQ2: WHAT ORGANISATIONAL FACTORS INFLUENCE THE SOFTWARE
SECURITY CULTURE? 57

Xiao et al. conclude that having security teams in the presence of development
teams may negatively affect their adaptation for security. Their research concludes
that security teams may lead to developers feeling pressured to code securely. How-
ever, the developers may get the impression that the overall security is not their
responsibility [7]. We have observed similar behaviours where neither the developers
nor the security consultants fully understand or get ownership of the code. This may
weaken the software’s security.

Tøndel et al. express a tension between different groups, for instance, between
architects and security experts [22]. Additionally, van der Heijden et al. conclude that
there is a lack of understanding between information security consultants and the
development team. They elaborate that it often feels like they are chasing different
goals [1]. Developers express a wish to understand more of what the security team
does. In addition, it would be valuable if security consultants understood more of
how development teams practise and how they prioritise security. Consequently,
greater understanding could contribute to adequate involvement at earlier stages of
the process and security insights adjusted to their needs. Our findings do not cover
possible tension, but they support the lack of insight and understanding of work
across departments.

5.2.5 Customers and Customer Relations

Earlier research states that customers and product owners contribute to the security
work with their domain knowledge, even if their security awareness is low. Further,
they conclude that close involvement of the customer and product owner is endorsed
[25]. The benefits of customer involvement align with our findings. An interviewee
expressed the importance of being aware that the customer knows their industry.
Therefore, they may act on a different basis than a consultant and can contribute
with different knowledge. The nature of a consultant is to pivot through different
industries. A consequence may be that they do not have specific competence regarding
business concerns. Hence, the interdisciplinarity of teams seems to be valuable for
security work.

As mentioned in the results, several interviewees experience that customers
generally seem more knowledgeable of security now than earlier. Further, they find
it easier to get through security activities to the customers. The raised awareness
among customers may be caused by increased news coverage of great hacks and
compromised companies in recent years. Customers may feel responsible for securing
their products. Perceived threats, in particular related to reputation, increase
security awareness [2]. The fear of news coverage and receiving a bad reputation
may lead to more consciousness from the customers’ side. This may also be the
reason why the customers seemingly have a more compliant attitude towards security

58 5. DISCUSSION

work. Regulations taking effect, such as GDPR, can also influence the responsibility
towards security work [22].

Our interviewees express that customers’ security awareness impact the attention
security work gets and how security requirements get prioritised. Earlier research
support these findings and elaborate that customers’ awareness can both be a drive
and a hinder for security work [25]. Security is viewed as an implicit goal, and
many customers assume it gets done by the developers [17, 6]. If the customer is
knowledgeable of security, they may contribute to concretising security requirements
for the product. In the end, it seems like the customer’s software, resources and
ambitions decide how security is weighted in their project.

The vast majority of our interviewees said that the product they develop affects
how they work with security. For instance, a proof-of-concept prototype developed for
a start-up encounters an entirely different threat assessment than a product created
to handle user data for an established insurance company. Multiple interviewees
expressed that they do not think about software security because their system does
not handle sensitive data. We believe this attitude is unfortunate. When systems
without any sensitive data are broken, there are possible other consequences even
though no data is compromised. The reconnaissance phase of attackers, where they
gather information about the infrastructure, such as a stack trace of used database
version, server type or network services, becomes easier if the software is insecure
[72]. If the vulnerable software reveals system components and versions, an attacker
could find research on known vulnerabilities to these specific systems and exploit
them. This information could be a way into other applications and dependencies
with possible sensitive data. Other systems using the same components and versions
may be exposed [72].

An example of another possibility is to perform a Distributed Denial of Service
(DDOS) attack on the vulnerable software and take down the server. If other
applications also run on the same server, the consequences could be significant,
disconnecting multiple services and blocking their availability [8]. To sum up, the
consequences of breaking a system, whether it contains personal data or not, could
have extended effects outside its own service.

Security as a Functional Requirement

Developers view security as a non-functional requirement [6]. Additionally, functional
requirements get prioritised over non-functional. Further, security is viewed as costly
and not adding value [25]. The developers in our material have the same attitude.
Hence, if security can become a functional requirement, it can be easier to prioritise
security tasks daily. Use-cases play a primary role in defining a goal-oriented set
of interactions between the user and the system, while functional requirements

5.3. RQ3: WHAT MATERIAL FACTORS INFLUENCE THE SOFTWARE SECURITY
CULTURE? 59

capture the system’s intended behaviour [73]. Integrating security concerns with
existing use-cases or defining use-cases based on security issues create concrete goals
for how the system should work. For instance, a use-case could be: “As a user,
I want to feel comfortable that my data is protected from eavesdropping in the
transmission channel”. Further, a functional requirement could be: “Encrypt the
communication end-to-end” Then, concrete work tasks could be identified from this
functional requirement and prioritised accordingly. In other words, security becomes
part of the functionality of the software.

5.2.6 Summary: Organisational Factors

Today, IT students go through their education without compulsory security courses.
To some extent, the educational institutions communicate security and development as
two fields of expertise that does not have to be intertwined. Psychological safety and
trust in the team are important for security-related work. A team diversity benefits
from different experiences, views and knowledge. There exist various structured and
unstructured security activities. The software security training provided to novices
in a consulting firm is minimal. The consultancy delivery model seems to affect the
incentive to provide security training and other security activities. Assigning security
roles is a good initiative, but the role should be defined with tasks, responsibilities
and mandate. Some projects engage external security experts or a dedicated security
team to review their code. This can affect the security work of the team to be
better, but the developers may care less about security. Knowledge sharing between
developers mostly happens in unstructured, informal discussions [17]. The customer
affects how the team works depending on what product is developed, and their level
of maturity. Customers’ security awareness is increasing, and developers achieve
security activities more often than before. Security may be a part of the system’s
functionality instead of being viewed as a non-functional requirement.

5.3 RQ3: What Material Factors Influence the Software
Security Culture?

Material factors that influence the software security culture include the trust in third-
party dependencies, consequences of technological dept and the use of guidelines and
automatic tools.

5.3.1 Dependencies

According to industry estimates done on using code from third-parties in large
development projects, 85 per cent of a typical application is third-party code [46].
This percentage is an estimate for development in large projects. The convenience of

60 5. DISCUSSION

reusing code applies to both efficiency and complexity such that the developers do
not have to reinvent well-functioning features repeatedly.

Developers in our material also seem to trust third-party software. The number of
up-votes, monthly downloads and reputation guide whether the software is trustworthy
or not. Services provided by leading vendors such as Google, Amazon or Microsoft
seem to be trusted. As far as we have seen, there do not seem to be standardised
protocols for using third-party code. The developers must learn this through the
culture.

Technological choices made earlier by the organisation or on the team may affect
the software development through the years. This could be licence agreements with a
cloud service vendor, frameworks or tools that all solutions build upon. Organisations
may be locked-in when committing to one actor or technology [32].

Most of our interviewees use cloud service platform when developing. We argue
that all strategies for involvement in cloud-based development should include an
escape plan. If not, the cloud service platforms’ lock-in effect may be decisive. Bass
et al. state that all the tools a platform provide raise the possibility of vendor lock-in.
This problem has existed in the computer industry for 50 years and is not a new
problem, they continue. To mitigate the risk of vendor lock-in, standard languages
and interfaces can be used [32]. Developers in our material feel inflexible in using
other tools than those provided by their firm’s cloud service vendor. They rely on
their cloud service vendors’ security tools to be secure and fitted to their purpose.
Using these tools makes it hard to avoid non-standardised tools and to mitigate
vendor lock-in.

5.3.2 Use of Security Guidelines

The use of security guidelines and checklists in practice are lower than we initially
expected. We anticipated that consultancies would assess guidelines to some degree
and that the average developer would know the most common ones. However, our
findings align with findings from 2017 [74, 6]. In 2010, a study showed that the
adaption rate to Secure Development Lifecycle (SDL)s are low. “Too time-consuming”
was the most common response to reasons not to implement an SDL [74]. A study
from 2017 mentions that guidelines such as Microsoft SDL and Seven Touchpoints for
Software Security fall short on how to get organisations and the actual development
teams to start using them [6]. The respondents who knew guidelines such as SDL
had experience as security consultants or had a particular interest in the field.

5.4. RELATIONSHIPS BETWEEN INDIVIDUAL, ORGANISATIONAL AND
MATERIAL FACTORS IN A SOFTWARE SECURITY CULTURE 61

5.3.3 Automatic Tools and Scans

Multiple of our interviewees mentioned the need for better automatic tools. Research
by Xie et al. from 2011 point out that automatic tools could help bridge the gap
between general security knowledge and concrete secure programming practices [19].
Over the past decade, automatic tools have become a natural part of many teams
security practice. Nevertheless, developers in our material still wish for better and
more efficient automatic tools. Several interviewees said that in an ideal world,
all security work would be fully automatic. Thus, we can imagine that it may be
tempting to use many tools at once. Challenges related to this are to understand the
tools’ limitations and to comprehend the full scope of what follow-up is required [33].
Tools must be configured for their purpose and regularly updated. We interpret that
a consequence of misconfigurations could be that the tools do not monitor correct
parameters and do not reflect the state of the software. This situation can provide a
false safety of believing that the software is secure when it may not be. We argue
that the individual developer cannot stop thinking independently. In order for the
tools to help, their feedback must be interpreted and acted upon. For this, the basic
security knowledge of developers is required.

5.3.4 Summary: Material Factors

The adoption of security guidelines in development teams is not very widespread
in practice. Third-party code is used to a great extent in developed code today.
Developers often trust third-parties based on their reputation, usage rates and if the
actor is well-known, such as Amazon, Google or Microsoft. Development teams use
automatic tools to scan for vulnerabilities and to fix them. However, the developers
cannot stop thinking independently.

5.4 Relationships Between Individual, Organisational and
Material Factors in a Software Security Culture

Software security culture is an interconnected phenomenon covering individual,
organisational and material aspects. In this section, we discuss software security
culture across the three described research questions.

Agile development is common among our interviewees. Everyone in our material
express that they use a variant of this methodology. For an individual developer,
this may influence the time-pressure they have to meet deadlines. Short iterations
lead to pressure, which can further lead to problems integrating security activities
[17]. Methodologies that do not consider defined iterations, such as Kanban, do not
involve this pressure.

62 5. DISCUSSION

Agile development methodologies are dynamic, and the priorities are constantly
shifting [25]. Thus, it is easy for security tasks to have insufficient priority if not
explicitly addressed. It seems reasonable to assume that an agile development
methodology also affects how the customers determine security requirements and
allocate resources. We believe the methodology also affects how consultancies define
their delivery models. Because security is commonly regarded as a non-functional
requirement, it often gets lost in daily work due to other functional tasks that need
to be completed [6, 22].

The psychological safety within the team may be valuable for the performance
[35]. Our findings suggest that psychological safety also contributes to discussions
on security concerns. We argue that trust between team members also affects the
competence sharing between team members and across teams. If a developer feels
comfortable in their team, it may be easier to contribute to discussions on Slack
or competence days across teams in the organisation. Thus, competence is spread
dynamically across the organisation, and a knowledge-sharing community is obtained.
Another consequence of psychological safety within a team could be an increased
feeling of ownership, which again affects the incentives and motivation for performing
good security work.

Organisations impact the formal ownership development teams carry for security
work [25]. A holistic approach of the product motivates gaining security knowledge
due to a feeling of responsibility [17]. By introducing the DevOps paradigm to
development teams, developers are getting more responsibility for the software.
A possibly increased feeling of ownership of the product may motivate security
work. The DevOps paradigm increases the usage and needs for automatic tools
[33]. Through this practice, developers may impact what tools they use. However,
organisations influence what security tools the team have available [25].

Our material suggests that educational institutions and components in the study
programmes influence attitudes towards software development. Studies contribute
to shaping future developers and is often the first impression individuals have of
programming. Moreover, professors and courses emphasise different subject fields
within software development. We argue that their influences can affect what the
students find interesting, valuable and essential. If study programmes had emphasised
security work, the student’s motivation to further learning might have increased.
Further, the individuals can earlier contribute with their security experience in their
professional careers and find joy in further exploring it.

Based on our interviews, we see that software security culture is affected by
a variety of factors. Software security is not exclusively dependant on developers’
knowledge. Business and management aspects influence resource allocation, pri-

5.5. RECOMMENDATIONS 63

oritisation, employments, and strategy, affecting the software security culture. If
all parties influencing a project knew a little more about how their actions affect
software security culture, the sum could better the quality security-wise.

To sum up, software security culture is an intertwined field that must be seen
in the context of other fields of expertise. This thesis has touched upon other fields
such as business aspects in strategy and management, organisational psychology and
social anthropology. We argue that software security culture needs contributions from
other fields of expertise to raise the overall security work in all industries developing
software.

5.5 Recommendations

We turn the focus from knowledge building in this field and derive recommendations
to improve software security culture. We base these recommendations on insights
obtained through this study, including suggestions from interviewees and earlier
research.

5.5.1 Security Knowledge and Training

• Technical study programs should introduce compulsory security courses. Al-
ready existing project-based courses in programming should also include security.
By integrating software security as a natural part of the course and adding
specific assessment criteria on security measures, the educational institution
will communicate that security is a natural part of the code craft.

• Basic software security training should be a part of onboarding courses. Such
training can raise awareness and provide resources to expand developers’ security
knowledge further.

• The developers using automatic security tools should get training in interpreting
the outputs from the tools correctly. This training seems essential to be able
to make adequate decisions and measures.

• When using third-party code, developers should be aware of security risks
regarding unfamiliar code. They should get training in how to consider such
risks, as well as how to initiate adequate measures to mitigate them.

5.5.2 Team Culture

• Security-engaged individuals should be encouraged to contribute to the team’s
awareness and knowledge by initiating activities and raising discussions.

64 5. DISCUSSION

• The individuals should contribute to psychological safety through constructive
feedback to peer developers and participation in social activities that form the
development group.

5.5.3 Structure

• Security work should not mainly rely on personal initiative. Consultancies
would benefit from structured security work and organised activities in addition
to activities initiated by individuals.

• A security role should be initiated in more projects. The practice seems to
increase the value of the security work done by a team. Further, the security role
should be more precisely defined, including tasks, responsibilities and mandate.
Defined roles will set the practice in structure and make it less arbitrary if the
role works as intended. By giving a developer both responsibility and mandate,
the individual will have room for manoeuvre when needed.

• Organisations using guidelines should allocate resources for the guidelines to
be customised precisely according to the organisations’ needs.

• Automatic tools’ abilities and limitations should be explored before putting in
use. In addition, what resources required to configure and maintain the tool
should also be considered.

5.6 Limitations

In the consulting industry, we see that the developer’s responsibilities and environment
vary greatly depending on the customer and project. This is a challenge when
developers on different projects for different customers are being compared in a study.

To better discuss the factors that affect the consultancies’ security work, we could
need a broader understanding of their delivery models. We have not researched what
contracts the consultants work with or how teams are composed.

Many interviewees had experienced an abnormal work situation this year due to
the coronavirus. Thus, their experiences may not reflect how teams and firms operate
during a normal year without a global pandemic. Onboarding processes, informal
discussions, competence days, psychological safety are some of the areas affected.

Chapter6Conclusion and Future Work

We have researched factors that influence software security culture in development
teams. Factors studied are divided into three categories: individual, organisational
and material. This thesis has conducted semi-structured interviews along with a
literature review as main sources of information. Findings from the interviews are
discussed in light of earlier research on relevant topics.

Our main findings on individual factors regard interest and perceived responsibility
for the security in the finished product. Almost half of our material place themselves
as “Somewhat interested (4)” or “Very interested (5)” in software security. Most of
them are interested in learning more concrete security measures relevant to their
working tasks. In the context of earlier research, our findings indicate an ongoing shift
regarding how developers perceive their responsibility for securing code. Whereas
research from ten years ago described a disclaiming attitude towards security, most
of our respondents felt co-responsible. However, the developers experience security as
an intricate and extensive field, making it hard to initiate learning measures. Even
though they are aware, interested and feel responsible for the software security, several
do not take actions to raise their specific competence on the topic. Challenges may
lie in the capacity of the individual developer, prioritisation and attitudes mirrored
from the leadership.

Our main findings on organisational factors regard undefined incentives for security
activities and security roles in practice. The delivery model of the consultancies
seems to affect their incentive for structured security activities. The nature of
consultancies, with consultants in and out of projects, may affect their feeling of
ownership. Consequently, security activities seem to be less prioritised, and security
work lacks attention. Security training in the developer’s education also seems weak.
Accordingly, it is possible to go through a five-year study in Informatics or Computer
Science without taking one security course.

Today, customers and projects that require a high security level are often based

65

66 6. CONCLUSION AND FUTURE WORK

on practices where a developer has a security role on the team. These projects are
often associated with traditional industries, such as banking, insurance, health and
telecommunications, where their products handle a significant amount of critical
personal data. Still, the practice seems to have potential for improvement, as the
security role often lacks proper work tasks. With defined responsibilities and mandate,
the practice would be structured, and the role’s contributions would be less arbitrary.
We see that a successful security role is strongly dependent on the individual’s
initiative and how she or he enacts the role.

Our main finding on material factors is that automatic tools and scans are broadly
used to detect vulnerabilities. However, they may lead to a false sense of security if
not used correctly. The importance of knowledgeable, involved developers who know
how to interpret the tools’ outputs cannot be underestimated.

Based on our research, we derived some recommendations. The most important
regards education, security training and security roles. Firstly, security should be
a more significant part of study programs that educate developers. Secondly, basic
software security training should be provided as a part of the onboarding process
for new employees. Moreover, security roles should be initiated in more projects.
In addition, the role should come with a set of defined tasks, responsibilities and
mandate.

To sum up, software security culture is an intertwined field that must be seen
in the context of other fields of expertise. This thesis has touched upon other fields
such as organisational psychology, strategy and management and social anthropology.
Our research shows that factors across fields of expertise affect the software security
culture. Consequently, we believe a broader spectre of the population should know a
thing or two about security work.

Future Work

As we have researched factors that influence software security work in consulting
firms, the findings may not be valid for all sectors based on this limited selection of
participating consultancies. We have researched factors influencing software security
culture in consulting firms with offices in Norway. From earlier, there has been little
research on how security work is done in Norwegian companies. Thus, we believe it
would be valuable to continue researching what factors influencing software security
culture in public sector or in sectors of various product companies. A more extensive,
but similar study, with a broader spectre of consultancies participating, could also
reveal new factors that influence software security culture.

Further, we have not researched diversity in particular. We believe the results

67

could have been different if we had considered factors such as gender and cultural
background. Research on how such factors influence software security culture is not
yet explored.

We have seen that an individual with a security role affects the security work.
However, how a security role affects the psychological safety within a group is not
researched. The lack of defined tasks and responsibility could affect the relationships
within a team. What effect a security role has on a team is yet to be explored.

As the accountability of software security is unclear today, further research is
required to conclude on what divisions or roles that are most equipped to be held
accountable for the quality of security.

Security in the development process and how security requirements are prioritised
against other considerations is still not sufficiently explored [25]. Further research
on how to include security work in agile development processes could be valuable.
In addition, research on how security requirements could be presented as functional
requirements could also drive this field forward.

References

[1] A. Van Der Heijden, C. Broasca, and A. Serebrenik, “An empirical perspective
on security challenges in large-scale agile software development,” ESEM ’18: Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement, pp. 1–5, 2018, doi:10.1145/3239235.3267426.

[2] T. Nicolaysen, R. Sassoon, M. B. Line, and M. G. Jaatun, “Agile Software Develop-
ment: The Straight and Narrow Path to Secure Software?” International Journal
of Secure Software Engineering, vol. 1, no. 3, 2010, doi:10.4018/jsse.2010070105.

[3] M. G. Jaatun, D. S. Cruzes, K. Bernsmed, I. A. Tøndel, and L. Røstad, “Software
Security Maturity in Public Organisations,” Information Security: Lecture Notes
in Computer Science, vol. 9290, 2015, doi:10.1007/978-3-319-23318-5_7.

[4] H. A. Kruger and W. D. Kearney, “A prototype for assessing informa-
tion security awareness,” Computers and Security, vol. 25, no. 4, 2006,
doi:10.1016/j.cose.2006.02.008.

[5] K. Beck, M. Beedle, A. v. Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C.
Martin, S. Mellor, K. Schwaber, J. Sutherland, and D. Thomas, “Manifesto for
Agile Software Development,” 2001, accessed: 04-05-2021. [Online]. Available:
agilemanifesto.org

[6] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and K. Kinder-Kurlanda, “Can
security become a routine? A study of Organizational change in an agile software
development group,” Proceedings of the ACM Conference on Computer Supported
Cooperative Work, CSCW, 2017, doi:10.1145/2998181.2998191.

[7] S. Xiao, J. Witschey, and E. Murphy-Hill, “Social influences on secure de-
velopment tool adoption: Why security tools spread,” Proceedings of the
ACM Conference on Computer Supported Cooperative Work, CSCW, 2014,
doi:10.1145/2531602.2531722.

[8] M. S. Mark, C. Tømte, T. Naess, and T. Røsdal, “IKT-sikkerhetskompetanse i
arbeidslivet - behov og tilbud,” Tech. Rep., 2017.

69

agilemanifesto.org

70 REFERENCES

[9] S. Gausen, T. Knutsen, S. Ruud, and T. Strandberg, “Stortinget utsatt
for IT-angrep: «Et angrep på vårt demokrati».” 2021, accessed: 18-
05-2021. [Online]. Available: https://www.aftenposten.no/norge/i/PRnGRX/
stortinget-utsatt-for-it-angrep-et-angrep-paa-vaart-demokrati

[10] E. Knudsen, “Kritiske sårbarheter i Adobes programvare utnyttes allerede av
hackere,” accessed: 18-05-2021. [Online]. Available: https://www.digi.no/artikler/
kritiske-sarbarheter-i-adobes-programvare-utnyttes-allerede-av-hackere/510100

[11] A. v. d. Stock, B. Glas, N. Smithline, and T. Gigler, “OWASP
Top Ten,” 2021, accessed: 24-05-2021. [Online]. Available: https:
//owasp.org/www-project-top-ten/

[12] “Confidentiality, Integrity and Availability - The CIA Triad - CertMike,”
accessed: 29-05-2021. [Online]. Available: https://www.certmike.com/
confidentiality-integrity-and-availability-the-cia-triad/

[13] “Reasons behind cyber attacks | nibusinessinfo.co.uk,” accessed: 29-
05-2021. [Online]. Available: https://www.nibusinessinfo.co.uk/content/
reasons-behind-cyber-attacks

[14] “13-åringen til kode24: - Slik fant jeg de 35.000 passordene - Kode24,” 2019,
accessed: 07-06-2021. [Online]. Available: https://www.kode24.no/kodenytt/
13-aringen-til-kode24---slik-fant-jeg-de-35000-passordene/70983531

[15] “MyFitnessPal Breach: Learn About MyFitnessPal Hack - IDStrong,”
accessed: 29-05-2021. [Online]. Available: https://www.idstrong.com/sentinel/
myfitnesspal-data-breach/

[16] “At least 100,000 groups in 150 countries hit by ransomware | Inquirer
Technology,” accessed: 29-05-2021. [Online]. Available: https://technology.
inquirer.net/62619/least-100000-groups-150-countries-hit-ransomware

[17] S. Bartsch, “Practitioners’ perspectives on security in agile development,” 2011
Sixth International Conference on Availability, Reliability and Security, pp. 479–
484, 2011, doi:10.1109/ARES.2011.82.

[18] S. F. Wen, M. Kianpour, and S. Kowalski, “An empirical study of security culture
in open source software communities,” Proceedings of the 2019 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining,
ASONAM 2019, 2019, doi:10.1145/3341161.3343520.

[19] J. Xie, H. R. Lipford, and B. Chu, “Why do programmers make security errors?”
Proceedings - 2011 IEEE Symposium on Visual Languages and Human Centric
Computing, VL/HCC 2011, 2011, doi:10.1109/VLHCC.2011.6070393.

[20] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and S. Fahl, “Devel-
opers Need Support, Too: A Survey of Security Advice for Software Developers,”
Proceedings - 2017 IEEE Cybersecurity Development Conference, SecDev 2017,
2017, doi:10.1109/SecDev.2017.17.

https://www.aftenposten.no/norge/i/PRnGRX/stortinget-utsatt-for-it-angrep-et-angrep-paa-vaart-demokrati
https://www.aftenposten.no/norge/i/PRnGRX/stortinget-utsatt-for-it-angrep-et-angrep-paa-vaart-demokrati
https://www.digi.no/artikler/kritiske-sarbarheter-i-adobes-programvare-utnyttes-allerede-av-hackere/510100
https://www.digi.no/artikler/kritiske-sarbarheter-i-adobes-programvare-utnyttes-allerede-av-hackere/510100
https://owasp.org/www-project-top-ten/
https://owasp.org/www-project-top-ten/
https://www.certmike.com/confidentiality-integrity-and-availability-the-cia-triad/
https://www.certmike.com/confidentiality-integrity-and-availability-the-cia-triad/
https://www.nibusinessinfo.co.uk/content/reasons-behind-cyber-attacks
https://www.nibusinessinfo.co.uk/content/reasons-behind-cyber-attacks
https://www.kode24.no/kodenytt/13-aringen-til-kode24---slik-fant-jeg-de-35000-passordene/70983531
https://www.kode24.no/kodenytt/13-aringen-til-kode24---slik-fant-jeg-de-35000-passordene/70983531
https://www.idstrong.com/sentinel/myfitnesspal-data-breach/
https://www.idstrong.com/sentinel/myfitnesspal-data-breach/
https://technology.inquirer.net/62619/least-100000-groups-150-countries-hit-ransomware
https://technology.inquirer.net/62619/least-100000-groups-150-countries-hit-ransomware

REFERENCES 71

[21] H. Assal and S. Chiasson, ““Think secure from the beginning”: A survey with
software developers,” Conference on Human Factors in Computing Systems -
Proceedings, 2019, doi:10.1145/3290605.3300519.

[22] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes, and N. B. Moe, “Risk Centric Activities
in Secure Software Development in Public Organisations,” International Journal
of Secure Software Engineering, vol. 8, no. 4, 2017, doi:10.4018/ijsse.2017100101.

[23] S. Türpe, L. Kocksch, and A. Poller, “Penetration Tests a Turning Point in
Security Practices? Organizational Challenges and Implications in a Software
Development Team,” Tech. Rep., 2016.

[24] K. Rindell, J. Ruohonen, J. Holvitie, S. Hyrynsalmi, and V. Leppänen, “Security
in agile software development: A practitioner survey,” Information and Software
Technology, vol. 131, no. December 2018, 2021, doi:10.1016/j.infsof.2020.106488.

[25] I. A. Tøndel and M. G. Jaatun, “Towards a Conceptual Framework for Security
Requirements Work in Agile Software Development,” International Journal of
Systems and Software Security and Protection, vol. 11, no. 1, pp. 33–62, 2020,
doi:10.4018/ijsssp.2020010103.

[26] E. Terpstra, M. Daneva, and C. Wang, “Agile practitioners’ understanding of
security requirements: Insights from a grounded theory analysis,” Proceedings -
2017 IEEE 25th International Requirements Engineering Conference Workshops,
REW 2017, 2017, doi:10.1109/REW.2017.54.

[27] Scrum.org, “What is Scrum?” accessed: 27-05-2021. [Online]. Available:
https://www.scrum.org/resources/what-is-scrum

[28] “Agile Scrum Roles | Atlassian,” 2021, accessed: 27-05-2021. [Online]. Available:
https://www.atlassian.com/agile/scrum/roles

[29] I. M. S. Torgersen, “Kjære teknologistudent - Har du hørt ut-
trykket "leveransemodell"?” 2020, accessed: 27-05-2021. [Online]. Avail-
able: https://www.linkedin.com/pulse/kj\T1\aere-teknologistudent-har-du-h\
T1\ort-uttrykket-strand-torgersen/?articleId=6682603513693949952

[30] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of De-
vOps concepts and challenges,” ACM Computing Surveys, vol. 52, no. 6, 2019,
doi:10.1145/3359981.

[31] R. N. Rajapakse, M. Zahedi, M. A. Babar, and H. Shen, “Challenges and solutions
when adopting DevSecOps: A systematic review,” 2021.

[32] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective.
Pearson Education, Inc., 2015.

[33] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: A multivocal literature
review,” Communications in Computer and Information Science, vol. 770, no.
October, 2017, doi:10.1007/978-3-319-67383-7_2.

https://www.scrum.org/resources/what-is-scrum
https://www.atlassian.com/agile/scrum/roles
https://www.linkedin.com/pulse/kj\T1\ae re-teknologistudent-har-du-h\T1\o rt-uttrykket-strand-torgersen/?articleId=6682603513693949952
https://www.linkedin.com/pulse/kj\T1\ae re-teknologistudent-har-du-h\T1\o rt-uttrykket-strand-torgersen/?articleId=6682603513693949952

72 REFERENCES

[34] A. Cockburn and J. Highsmith, “Agile Software Development: The People Factor,”
Computer, 2001, doi:10.1109/2.963450.

[35] Y. Shin, M. Kim, J. N. Choi, and S.-H. Lee, “Does Team Culture Matter?
Roles of Team Culture and Collective Regulatory Focus in Team Task and
Creative Performance,” Group & Organization Management, vol. 41, no. 2, 4
2016, doi:10.1177/1059601115584998.

[36] E. H. Schein, “Organizational Culture,” American Psychologist, vol. 45, no. 2,
1990, doi:10.1037/0003-066X.45.2.109.

[37] E. H. Schein, Organizational culture and leadership, 2010,
doi:10.1016/j.sbspro.2011.12.156.

[38] W. A. Kahn, “Psychological conditions of personal engagement and disen-
gagement at work,” Academy of Management Journal, vol. 33, no. 4, 1990,
doi:10.5465/256287.

[39] B. Adkins and D. Caldwell, “Firm or subgroup culture: Where does fitting
in matter most?” Journal of Organizational Behavior, vol. 25, no. 8, 2004,
doi:10.1002/job.291.

[40] C. Benjaminsen and N. B. Moe, “Slik jobber de aller beste teamene,” 2019,
accessed: 05-05-2021. [Online]. Available: https://www.sintef.no/siste-nytt/2019/
slik-jobber-de-aller-beste-teamene/

[41] V. Stray, N. B. Moe, and R. Hoda, “Autonomous agile teams: Challenges and
future directions for research,” ACM International Conference Proceeding Series,
vol. Part F1477, 2016, doi:10.1145/3234152.3234182.

[42] T. Chau and F. Maurer, “Knowledge sharing in agile software teams,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), vol. 3075, 2004, doi:10.1007/978-3-
540-25967-1_12.

[43] C. Benjaminsen and N. B. Moe, “Hjemmekontor gjør oss ikke mindre produktive,”
2020, accessed: 05-05-2021. [Online]. Available: https://www.sintef.no/siste-nytt/
2020/hjemmekontor-gjor-oss-ikke-mindre-produktive/

[44] M. A. Campion, A. A. Fink, B. J. Ruggeberg, L. Carr, G. M. Phillips, and
R. B. Odman, “Doing competencies well: Best practices in competency modeling,”
Personnel Psychology, vol. 64, no. 1, 2011, doi:10.1111/j.1744-6570.2010.01207.x.

[45] GitHub Inc., “About pull requests,” 2018, accessed: 28-05-2021. [Online].
Available: https://help.github.com/articles/about-pull-requests/

[46] Sonatype, “State of the Software Supply Chain,” 2019, accessed: 16-05-2021.
[Online]. Available: https://www.sonatype.com/hubfs/SSC/2019SSC/SON_
SSSC-Report-2019_jun16-DRAFT.pdf

https://www.sintef.no/siste-nytt/2019/slik-jobber-de-aller-beste-teamene/
https://www.sintef.no/siste-nytt/2019/slik-jobber-de-aller-beste-teamene/
https://www.sintef.no/siste-nytt/2020/hjemmekontor-gjor-oss-ikke-mindre-produktive/
https://www.sintef.no/siste-nytt/2020/hjemmekontor-gjor-oss-ikke-mindre-produktive/
https://help.github.com/articles/about-pull-requests/
https://www.sonatype.com/hubfs/SSC/2019 SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf
https://www.sonatype.com/hubfs/SSC/2019 SSC/SON_SSSC-Report-2019_jun16-DRAFT.pdf

REFERENCES 73

[47] T. W. Thomas, M. Tabassum, B. Chu, and H. Lipford, “Security during appli-
cation development: An application security expert perspective,” Conference
on Human Factors in Computing Systems - Proceedings, vol. 2018-April, 2018,
doi:10.1145/3173574.3173836.

[48] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky, “You Get
Where You’re Looking for: The Impact of Information Sources on Code Security,”
Proceedings - 2016 IEEE Symposium on Security and Privacy, SP 2016, 2016,
doi:10.1109/SP.2016.25.

[49] N. Bodin and H. K. B. Golberg, “Security Guidelines in Practice for Software
Development Teams Facing Great External Time Pressure,” 2020.

[50] M. G. Jaatun, “Modenhetsmodell for innebygd sikkerhet (BSIMM). Måling av
programvaresikkerhetsaktiviteter i utviklingsorganisasjoner,” Tech. Rep. A27495,
2016.

[51] Synopsys, “What Is the BSIMM and How Does It Work? | Synopsis,”
accessed: 30-05-2021. [Online]. Available: https://www.synopsys.com/glossary/
what-is-bsimm.html

[52] “Software Security Metrics and Strategy | BSIMM,” accessed: 01-06-
2021. [Online]. Available: https://www.bsimm.com/framework/governance/
software-security-metrics-strategy.html

[53] G. McGraw, “Seven Touchpoints for Software Security,” 2006, accessed:
10-06-2021. [Online]. Available: http://www.swsec.com/resources/touchpoints/

[54] S. Deleersnyder and B. D. Win, “OWASP SAMM,” 2020, accessed: 30-05-2021.
[Online]. Available: https://owasp.org/www-project-samm/

[55] “Application Security Verification Standard 4.0 Final,” Tech. Rep., 2019, accessed:
22-04-2021.

[56] “Microsoft Security Development Lifecycle,” Microsoft, accessed: 10-06-2021.
[Online]. Available: https://www.microsoft.com/en-us/securityengineering/sdl

[57] D. Baca, M. Boldt, B. Carlsson, and A. Jacobsson, “A novel security-enhanced
agile software development process applied in an industrial setting,” Proceedings
- 10th International Conference on Availability, Reliability and Security, ARES
2015, 2015, doi:10.1109/ARES.2015.45.

[58] Datatilsynet, “Software development with Data Protection by De-
sign and by Default,” 2017, accessed: 22-04-2021. [Online]. Avail-
able: https://www.datatilsynet.no/en/about-privacy/virksomhetenes-plikter/
innebygd-personvern/data-protection-by-design-and-by-default/

[59] C. Cummings, “The complete web application security testing checklist,” 2016,
accessed: 28-05-2021. [Online]. Available: https://www.synopsys.com/blogs/
software-security/complete-web-application-security-testing-checklist/

https://www.synopsys.com/glossary/what-is-bsimm.html
https://www.synopsys.com/glossary/what-is-bsimm.html
https://www.bsimm.com/framework/governance/software-security-metrics-strategy.html
https://www.bsimm.com/framework/governance/software-security-metrics-strategy.html
http://www.swsec.com/resources/touchpoints/
https://owasp.org/www-project-samm/
https://www.microsoft.com/en-us/securityengineering/sdl
https://www.datatilsynet.no/en/about-privacy/virksomhetenes-plikter/innebygd-personvern/data-protection-by-design-and-by-default/
https://www.datatilsynet.no/en/about-privacy/virksomhetenes-plikter/innebygd-personvern/data-protection-by-design-and-by-default/
https://www.synopsys.com/blogs/software-security/complete-web-application-security-testing-checklist/
https://www.synopsys.com/blogs/software-security/complete-web-application-security-testing-checklist/

74 REFERENCES

[60] Synopsys Editorial Team, “The Complete Application Security Checklist,” 2020,
accessed: 28-05-2021. [Online]. Available: https://www.synopsys.com/blogs/
software-security/complete-application-security-checklist/

[61] D. P. Gilliam, T. L. Wolfe, J. S. Sherif, and M. Bishop, “Software security checklist
for the software life cycle,” Proceedings of the Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises, WETICE, vol. 2003-Janua, 2003,
doi:10.1109/ENABL.2003.1231415.

[62] Datatilsynet, “Virksomhetenes plikter: Sjekkliste,” 2018, accessed: 28-05-
2021. [Online]. Available: https://www.datatilsynet.no/rettigheter-og-plikter/
virksomhetenes-plikter/sjekkliste/

[63] Amazon, “AWS Well-Achitected,” accessed: 28-05-2021. [Online]. Available:
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.
sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc

[64] B. Fitzgerald and K. J. Stol, “Continuous software engineering: A
roadmap and agenda,” Journal of Systems and Software, vol. 123, 2017,
doi:10.1016/j.jss.2015.06.063.

[65] C. Robson, “Real world research : a resource for users of social research methods
in applied settings,” 2016.

[66] M. Hewstone and W. Stroebe, An Introduction to Social Psychology, 7th ed.
John Wiley & Sons Ltd, 2020.

[67] European Commission, “Commission recommendation of 6 May 2003 concerning
the definition of micro, small and medium-sized enterprises,” Official Journal of
the European Union, May 2003.

[68] “Ordinal Scale: Definition, Level of Measurement and Examples | QuestionPro,”
accessed: 27-05-2021. [Online]. Available: https://www.questionpro.com/blog/
ordinal-scale/

[69] V. Stray, T. E. Fægri, and N. B. Moe, “Exploring norms in agile software teams,”
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 10027 LNCS, no. 2, 2016,
doi:10.1007/978-3-319-49094-6_31.

[70] J. Cole and A. J. Martin, “Developing a winning sport team culture: organi-
zational culture in theory and practice,” Sport in Society, vol. 21, no. 8, 2018,
doi:10.1080/17430437.2018.1442197.

[71] L. Kocksch, M. Korn, A. Poller, and S. Wagenknecht, “Caring for IT Security,”
Proceedings of the ACM on Human-Computer Interaction, vol. 2, no. CSCW,
2018, doi:10.1145/3274361.

[72] H. P. Sanghvi and M. S. Dahiya, “Cyber Reconnaissance: An Alarm before Cyber
Attack,” International Journal of Computer Applications, vol. 63, no. 6, 2013,
doi:10.5120/10472-5202.

https://www.synopsys.com/blogs/software-security/complete-application-security-checklist/
https://www.synopsys.com/blogs/software-security/complete-application-security-checklist/
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/sjekkliste/
https://www.datatilsynet.no/rettigheter-og-plikter/virksomhetenes-plikter/sjekkliste/
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc
https://aws.amazon.com/architecture/well-architected/?wa-lens-whitepapers.sort-by=item.additionalFields.sortDate&wa-lens-whitepapers.sort-order=desc
https://www.questionpro.com/blog/ordinal-scale/
https://www.questionpro.com/blog/ordinal-scale/

REFERENCES 75

[73] R. Malan and D. Bredemeyer, “Functional requirements and use cases,” 2001.

[74] D. Geer, “Are Companies Actually Using Secure Development Life Cycles?”
Computer, vol. 43, no. 6, pp. 12–16, 2010, doi:10.1109/MC.2010.159.

AppendixAInformation Sheet to Participants

The information sheet, including letter of consent, was sent to the participants ahead
of the interviews. The sheet is written in Norwegian. This sheet is strongly influenced
by the template provided by NSD.

77

Vil du delta i masteroppgave om «Programvaresikkerhetskultur i

utviklingsteam»?

Dette er et spørsmål til deg om å delta i et forskningsprosjekt hvor formålet er å identifisere

suksessfaktorer til god programvaresikkerhetskultur i et utviklingsteam. I dette skrivet gir vi deg

informasjon om målene for prosjektet og hva deltakelse vil innebære for deg.

Formål

Formålet med prosjektet er å finne ut hvordan utviklingsteam forholder seg til programvaresikkerhet

og suksessfaktorer for god programvaresikkerhetskultur. Prosjektet er del av en masteroppgave i

informasjonssikkerhet, og vi kommer derfor til å ha søkelys på sikkerhetsarbeid og

personvernsutfordringer.

Forskningsspørsmål vi ønsker å besvare er:

1. Hvilke faktorer utgjør god kultur for arbeid med programvaresikkerhet i utviklingsteam i

konsulentselskaper?

Hvem er ansvarlig for forskningsprosjektet?

Norges tekniske naturvitenskapelige universitet er ansvarlig for prosjektet.

Hvorfor får du spørsmål om å delta?

Du jobber med å utvikle programvare i et konsulentselskap.

Vi tar kontakt med totalt cirka ti personer som i jobben sin er involvert i utvikling av programvare.

Hva innebærer det for deg å delta?

Dersom du ønsker å delta i prosjektet innebærer det at du er med på en samtale (med mulig

oppfølging) i løpet av våren 2021.

Vi ønsker å snakke med deg om hvordan du opplever kulturen i ulike team knyttet til

programvaresikkerhet.

Dersom det er i orden for deg (frivillig) ønsker vi å ta opp intervjuet på video eller kun lydopptak for å

unngå å måtte notere underveis.

Det er frivillig å delta

Det er frivillig å delta i prosjektet. Hvis du velger å delta, kan du når som helst trekke samtykket

tilbake uten å oppgi noen grunn. Alle dine personopplysninger vil da bli slettet. Det vil ikke ha noen

negative konsekvenser for deg hvis du ikke vil delta eller senere velger å trekke deg.

Ditt personvern – hvordan vi oppbevarer og bruker dine opplysninger

Vi vil bare bruke opplysningene om deg til formålene vi har fortalt om i dette skrivet. Vi behandler

opplysningene konfidensielt og i samsvar med personvernregelverket.

De som vil ha tilgang på personopplysningene dine er Hanna-Kai Barstad Golberg og Nora Bodin

(studentene som gjør masteroppgaven), samt veilederne våre Maria Bartnes og Robert Larsen.

Deltakerne eller bedriftene i prosjektet vil ikke kunne gjenkjennes i publikasjonen av masteroppgaven.

Hva skjer med opplysningene dine når vi avslutter forskningsprosjektet?

Opplysningene slettes når prosjektet avsluttes/oppgaven er godkjent, noe som etter planen er

november 2021.

Alle opptak fra intervjuer vil bli slettet ved prosjektslutt.

Dine rettigheter

Så lenge du kan identifiseres i datamaterialet, har du rett til:

- innsyn i hvilke personopplysninger som er registrert om deg, og å få utlevert en kopi av

opplysningene,

- å få rettet personopplysninger om deg,

- å få slettet personopplysninger om deg, og

- å sende klage til Datatilsynet om behandlingen av dine personopplysninger.

Hva gir oss rett til å behandle personopplysninger om deg?

Vi behandler opplysninger om deg basert på ditt samtykke.

På oppdrag fra NTNU – Norges Teknisk- Vitenskapelige Universitet har NSD – Norsk senter for

forskningsdata AS vurdert at behandlingen av personopplysninger i dette prosjektet er i samsvar med

personvernregelverket.

Hvor kan jeg finne ut mer?

Hvis du har spørsmål til studien, eller ønsker å benytte deg av dine rettigheter, ta kontakt med:

• NTNU ved Maria Bartnes, 45218102

• Vårt personvernombud: NTNU ved Thomas Helgesen, 93079038

Hvis du har spørsmål knyttet til NSD sin vurdering av prosjektet, kan du ta kontakt med:

• NSD – Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no) eller på

telefon: 55 58 21 17.

Med vennlig hilsen

Maria Bartnes Nora Bodin Hanna-Kai Barstad Golberg

(Forsker/veileder) (Student) (Student)

Samtykkeerklæring

Jeg har mottatt og forstått informasjon om prosjektet «Masteroppgave: Programvaresikkerhetskultur i

utviklingsteam», og har fått anledning til å stille spørsmål. Jeg samtykker til:

 å delta i samtale

 at opptak av samtale blir lagret til prosjektslutt (valgfri)

Jeg samtykker til at mine opplysninger behandles frem til prosjektet er avsluttet

--

(Signert av prosjektdeltaker, dato)

AppendixBInterview Guide

Due to the semi-structured interviews, we have not asked all interviewees the same
standardised questions. The interview guide is adapted to the interviewees career,
role and the natural development during the conversation. The interview guide is
written in Norwegian.

81

Nora Bodin og Hanna Kai Barstad Golberg Versjon 05.03.2021

Intervjuguide til masteroppgave

Oppvarming:
● Fortell litt om deg selv og hvilke arbeidsoppgaver du har.

● Hvor bevisst vil du si at du er på programvaresikkerhet i arbeidshverdagen?

● Hva legger du i det å inkludere sikkerhet i utviklingsprosessen?

Hoveddel:
● Hvilke typer sikkerhetsaktiviteter arrangeres i løpet av et semester/prosjekt? (Her

mener vi alle aktiviteter som er med bevisstgjøring av “sikker programvareutvikling)

● Hvordan legger dere til rette for kunnskapspåfyll knyttet til programvaresikkerhet?

● Hvordan jobber du for å inkludere nyansatte i bedriftens/ teamets

programvaresikkerhetskultur?

● I hvilken grad opplever du at kollegaer er interessert i å drøfte en

sikkerhetsproblemstilling?

● Hvordan påvirker kundenes sikkerhetskultur deres arbeid med sikkerhet i

programvaren?

● Hva tenker du er viktige faktorer for god programvaresikkerhetskultur?

Avslutning:
● Hvilke sikkerhetsaktiviteter skulle det vært mer av, eller lettere tilgjengelig i din

bedrift?

● Hva innenfor programvaresikkerhet skulle du ønske at du kunne mer om?

○ Hva skal til for at du lærer deg det?

● Er det noe mer du vil legge til?

AppendixCFollow-Up Questions

One and a half month after we finished the interviews, we sent follow-up questions
to the interviewees by e-mail. These questions are written in Norwegian.

85

Nora Bodin og Hanna Kai Barstad Golberg Versjon 20.04.2021

Oppfølgingsspørsmål

1. Bruk av ressurser
a. Har du kjennskap til noen veiledere for sikkerhetsarbeid (f. eks. BSIMM,

Microsoft SDL, OWASP SAMM, Seven touchpoints)?

b. Hvilke har du brukt i ditt arbeid som utvikler? Fortell også hvordan du har

brukt dem.

c. Hvis du har brukt noen sjekklister i forbindelse med utvikling, hvilke har du

brukt, og hvordan brukte du dem?

d. Hvordan fikk du kjennskap til ressursene du brukte?

e. Vet du om andre i bedriften har brukt veiledere eller sjekklister i prosjekt?

f. Er det noen ressurser du skulle ønske fantes?

g. Noe annet du vil tilføye?

2. Utdanningsbakgrunn
a. Hvilken studiebakgrunn har du? (Studie og skole, evt. om du er selvlært)

b. Hadde du noen fag med hovedfokus på informasjonssikkerhet i løpet av

studiet? Var det obligatorisk eller valgfag?

3. Interesse
a. På en skala fra 1 til 5, hvor 1 er svært uinteressert og 5 er svært interessert:

Hvor interessert vil du si at du er i programvaresikkerhet?

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

N
ora Bodin and H

anna Kai Barstad G
olberg

Softw
are Security Culture in D

evelopm
ent Team

s: An Em
pirical Study

Nora Bodin
Hanna Kai Barstad Golberg

Software Security Culture in
Development Teams: An Empirical
Study

Master’s thesis in Communication Technology
Supervisor: Maria Bartnes
Co-supervisor: Robert Larsen

June 2021

M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Research Questions
	Contributions
	Outline

	Background
	Agile Software Development
	The DevOps Paradigm
	Team Culture in Software Development
	The Individual's Perspective on Software Security
	Organisational and Environmental Influences
	Security Training Initiated by Consulting firms
	Security Training in Educational Institutions
	Prioritisation of Requirements
	Trusted Third-Parties
	Separated Divisions and Security Consultants
	Automatic Tools and Scans
	Security Guidelines and Checklists

	Method
	Overview of the Process
	Qualitative Semi-Structured Interviews
	Literature Review
	Selection of Participants
	The Interviews
	The Implementation
	Follow-up Questions

	Thematic Code Analysis
	Limitations
	Interview Method
	Interviews Over Video Link

	Results
	Findings Regarding the Individual Developer
	Personal Interest
	Awareness and Responsibility
	Knowledge and Experience
	Educational Background
	Summary of Findings Regarding the Individual Developer

	Findings Regarding Team Culture and Activities
	Diversity and Team Membership
	Psychological Safety
	Activities Within the Team
	Summary of Findings Regarding Team Culture and Activities

	Findings Regarding Organisational Factors
	Security Training
	Competence Development
	Security Roles
	Delivery Models
	Traditional Boundaries
	Use of Security Guidelines and Checklists
	Development Technologies and Environments
	External Security Consultants
	Security Activities Organised by the Consultancy
	Summary of Findings Regarding Organisational Factors

	Findings Regarding Customers' Effect on Security Work
	Start-Ups Differ from Mature Customers
	Reputation
	Trade-Off Between Security and Business
	Summary of Findings Regarding Customers' Effect on Security Work

	Discussion
	RQ1: What Factors Influence the Software Security Culture on an Individual Level?
	Personal Interest
	Individuals' Initiatives Within Development Teams
	Increased Personal Responsibility
	Summary: Individual Factors

	RQ2: What Organisational Factors Influence the Software Security Culture?
	Compulsory Security Courses in Education
	Team Culture
	Security Activities
	Separated Divisions and Security Teams
	Customers and Customer Relations
	Summary: Organisational Factors

	RQ3: What Material Factors Influence the Software Security Culture?
	Dependencies
	Use of Security Guidelines
	Automatic Tools and Scans
	Summary: Material Factors

	Relationships Between Individual, Organisational and Material Factors in a Software Security Culture
	Recommendations
	Security Knowledge and Training
	Team Culture
	Structure

	Limitations

	Conclusion and Future Work
	References
	Information Sheet to Participants
	Interview Guide
	Follow-Up Questions

