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A new nonlinear Schrödinger equation (NLSE) is presented for ocean surface waves.
Earlier derivations of NLSEs that describe the evolution of deepwater waves have been
limited to a narrow bandwidth, for which the bound waves at second order in wave
steepness are described in leading-order approximations. This work generalizes these
earlier works to allow for deepwater waves of a broad bandwidth with large directional
spreading. The new NLSE permits simple numerical implementations and can be ex-
tended in a straightforward manner in order to account for waves on water of finite
depth. For the description of second-order waves, this paper proposes a semi-analytical
approach that can provide accurate and computationally efficient predictions. With a
leading-order approximation to the new NLSE, the instability region and energy growth
rate of Stokes waves are investigated. Compared with the exact results based on McLean
(J. Fluid Mech., vol. 511, 1982), predictions by the new NLSE show better agreement
than by Trulsen et al. (Phys. Fluids, vol. 12, 2000). With numerical implementations
of the new NLSE, the effects of wave directionality are investigated by examining the
evolution of a directionally spread focused wave group. A downward shift of the spectral
peak is observed, owing to the asymmetry in the change rate of energy in a more complex
manner than that for uniform Stokes waves. Rapid oblique energy transfers near the group
at linear focus are observed, likely arising from the instability of uniform Stokes waves
appearing in a narrow spectrum subject to oblique sideband disturbances.

1. Introduction

An important task in the study of surface gravity waves is the development of the
theoretical description of flow fields. Theoretical models of surface gravity waves are
essential in a wide range of fields, such as in engineering practices and for research
purposes. A theoretical study has obvious advantages in elucidating the underlying
physics, thereby advancing the understanding of realistic wave problems, compared with
other approaches such as experiments, field studies, and direct numerical computations.
Theoretical findings have contributed to providing possible explanations to the formation
mechanism of extremely large waves that appear suddenly of much larger amplitude
than their surroundings, known also as ‘rogue’ or ‘freak’ waves. A few examples of the
possible mechanisms proposed are modulational or Benjamin-Feir instability in deep
water (Onorato et al. 2009), refraction by ambient currents or bathymetry (Janssen &
Herbers 2009; Onorato et al. 2011), and effects on weakly nonlinear waves of a depth
change in shallow or intermediate water depth (Trulsen et al. 2020; Li et al. 2021a,b).
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Table 1. A summary of nonlinear Schrödinger equations (NLSEs) for waves on deep water and
the regimes of applicability which refer to the accuracy of lower-order wave fields considered in
a NLSE for the dynamic evolution of the (potential or elevation) envelope of the first harmonic,
in addition to the NLSEs for an arbitrary depth; ε denotes the dimensionless wave steepness,
δx and δy denote the dimensionless bandwidth in the main propagation direction and in the
direction normal to the main, respectively. δ∞x,y denotes arbitrary order in bandwidth.

Order in wave steepness Overall order of accuracy
first order second order third order

Dysthe (1979) O(εδnx δ
3−n
y ) O(ε2δx,y) O(ε3δx,y) O(ε3δx,y, εδ

n
x δ

3−n
y )

(O(δx,y) ∼ O(ε)) (n = 0, 1, 2, 3)
Trulsen & Dysthe (1996) O(εδnx δ

5−n
y ) O(ε2δx,y) O(ε3δx,y) O(ε3δx,y, εδ

n
x δ

5−n
y )

(O(δx,y) ∼ O(
√
ε)) (n = 0, 1, ..., 5)

Trulsen et al. (2000) O(εδ∞x,y) O(ε2δx,y) O(ε3δx,y) O(ε3δx,y,O(εδ∞x,y))
(δx,y < 1)
This paper (δx,y ∼ O(1)) O(ε) O(ε2) O(ε3) O(ε3)

The modulational instability of weakly nonlinear Stokes waves subject to sideband
disturbances was discovered by Benjamin & Feir (1967). Theoretical advances made in
the late 1960s in this perspective include contributions by Lighthill (1965); Benjamin
(1967); Whitham (1967); Zakharov (1968) and Benney & Roskes (1969). Since the
discovery of the instability of a train of Stokes waves, progress has been made both
numerically (Janssen 1983; Lo & Mei 1985; Trulsen & Dysthe 1997; Dysthe et al. 2003)
and experimentally (Lake et al. 1977; Melville 1982; Su 1982; Chabchoub et al. 2011) in
understanding the evolution properties of surface waves on deep water. For smaller values
of wave steepness, symmetrical upper and lower sidebands tend to grow equally in the
initial stage. This is due to the degenerate resonant interaction in the prestigious ‘figure
of eight’ quartet resonance loop (Phillips 1960, 1967; Longuet-Higgins 1976; Lake et al.
1977; McLean 1982), which corresponds to the special cases where two out of the four
wavenumbers obeying the ‘figure of eight’ loop are identical. As nonlinearity increases,
the sidebands appear to grow unequally, with the lower sideband growing faster than the
upper sideband (Lake et al. 1977; Lo & Mei 1985), reaching a maximum larger than the
minimum to which the spectrum peak drops. This unequal growth in energy, as a result of
a combination of dissipation, wave breaking, and nonlinear wave evolution, likely causes
the downward shift of the spectral peak of wind waves (Lake et al. 1977; Lo & Mei 1985;
Trulsen & Dysthe 1997) .

The so-called nonlinear Schrödinger equation (NLSE) has been widely known as a
convenient approach for analysing the instability of Stokes waves. For deepwater waves,
Zakharov (1968) found that the wave envelope satisfies the NLSE which is cubic in wave
slope ε (or wave steepness). The NLSE is derived based on the assumption of a small
wave slope and the so-called narrow-banded assumption that restricts the modulation of
the wave envelope to be slow in both space and time relative to a rapidly varying wave
phase.

Many attempts have been made to expand the applicability scope of the NLSE for
deepwater waves through adding higher-order terms, with a primary focus on reducing
the restrictions due to bandwidth, as shown in table 1. Table 1 indicates the lower-
order wave fields considered in a NLSE for the nonlinear and dynamic evolution of the
(potential or elevation) envelope of the first harmonic. Specifically, the second-order wave
fields do not appear alone in a NLSE but in combination with the first-order wave fields.
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Let δx,y be a small non-dimensional parameter as a measure of the bandwidth in the main
propagation (δx) and the transverse (δy) direction, respectively. With one step further,
Dysthe (1979) has obtained a NLSE that is correct to O(ε3δx,y, εδ

n
xδ

3−n
y ) (n = 0, 1, 2, 3),

known as Dysthe’s equation, or the fourth-order NLSE as O(δx,y) ∼ O(ε) is implied.
With the fourth-order NLSE, Dysthe (1979) finds that second-order mean flows play
a significant role in the instability of Stokes waves. It is shown by Stiassnie (1984)
that Dysthe’s equation can be derived from Zakharov’s integral equation (Zakharov
1968) through a narrow-banded assumption. Higher-order extensions in bandwidth are
derived by Trulsen & Dysthe (1996) with a modified NLSE correct to O(εδnxδ

5−n
y , ε3δx,y)

(n = 0, 1, ..., 5) and by Trulsen et al. (2000) in which the linear evolution of the envelope
of linear wave is described by the exact linear dispersion relation, giving a NLSE correct
to O(εδ∞x,y, ε

3δx,y). Using some of the earlier versions of NLSEs, Trulsen & Dysthe (1997)
and Dysthe et al. (2003) find that the NLSEs can recover a downward shift of the
spectral peak in a three- and two-dimensional narrow spectrum, respectively. The latter
occurs after the spectrum has reached a quasi-steady state and hence, is unlikely due to
the modulational instability which results in symmetrical growth of sidebands. Strong
frequency dependence developed in the temporal evolution of directional waves initially
of no frequency dependence is observed in NLSE-based numerical simulations and field
data (Simanesew et al. 2016). Simanesew et al. (2017) find the modified NLSE of Trulsen
et al. (2000) gives less accurate predictions for short crest waves with larger directional
spread.

Recent progress has also been made in generalising a NLSE in order to take into
account the interaction of waves with ambient environments, e.g. dissipation and forcing
effects due to wind actions and turbulence (cf. Wu et al. (2006); Dias et al. (2008); Kharif
et al. (2010); Slunyaev et al. (2015)) and wave current interaction (Dysthe & Das 1981;
Stocker & Peregrine 1999; Hjelmervik & Trulsen 2009; Curtis et al. 2018). In addition
to the NLSEs for deepwater waves, coupled NLSEs are derived to consider crossing sea
states, see Gramstad & Trulsen (2011); Trulsen et al. (2015) and references therein. A
generalisation to water of finite uniform depth is done by Davey & Stewartson (1974) and
higher-order corrections are added by Johnson (1977); Brinch-Nielsen & Jonsson (1986);
Slunyaev (2005); Gramstad (2014) among others. Modified cubic equations are obtained
that allow for waves in water of a finite, varying depth due to a mildly-sloping seabed
(Djordjevié & Redekopp 1978; Kirby & Dalrymple 1983).

Many other approaches have been developed as alternative tools to the NLSE for
understanding the properties of surface deepwater waves; such as the Zakharov integral
equation and its leading order approximations (see Zakharov (1968); Crawford et al.
(1980, 1981); Krasitskii (1994)), numerical wave tanks (e.g., Ducrozet et al. (2012);
Bateman et al. (2001)) based on the High-Order Spectral (HOS) method (Dommermuth
& Yue 1987; West et al. 1987), and direct numerical solutions of fully nonlinear potential-
flow equations (Engsig-Karup et al. 2009; Bihs et al. 2020; Zheng et al. 2020). Through
studying the temporal evolution of three-dimensional steep focused wave groups, rapid
energy changes in a wave spectrum are reported by earlier works e.g. Gibbs & Taylor
(2005); Gibson & Swan (2007). They attribute this phenomenon to the third-order
resonant interactions, which are considered as the cause for the formation of the so-
called ‘wing waves’ that appear in the transverse direction after the group at nonlinear
focus reported in Barratt et al. (2020). Direct numerical solutions were used by Barratt
et al. (2020) for the evolution of a steep focused wave group with directional spread.
In three dimensions, oblique energy transfer in a wave spectrum and a downward shift
of the spectral peak are observed in previous works, e.g. Trulsen & Dysthe (1997) and
Barratt et al. (2021).
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There is still room and need for further development of the models based on a
NLSE, with two aspects addressed here. Firstly, ocean surface waves are generally
three dimensional and broad banded. Nevertheless, it should be noted that the NLSEs
mentioned above, e.g. Dysthe (1979); Trulsen et al. (2000), are only correct to order
(ε3δx,y), as shown in table 1. This suggests the need for extending the bandwidth at
third order in wave steepness. Secondly, surface waves interact with ambient environments
such as sub-surface currents, turbulence, and wind actions in the atmosphere, which often
require explicit and accurate vertical structures of flow fields below the surface to allow for
coupling. In contrast, it is known that a NLSE is based on the description of the envelope
of the surface displacement, accompanied by mostly lowest-order approximations to the
vertical profiles of flow fields at second order in wave steepness, as shown in table 1.

This paper aims to make attempts to fill in gaps in the aforementioned two aspects,
through the development of a new framework that would allow for the study of three-
dimensional waves of a broad bandwidth and would take into account the structures of
flow fields below the surface without compromising much the computational efficiency
of a NLSE-based model. The objective of this paper is threefold. First, a new NLSE
for the evolution of three-dimensional deepwater surface waves is derived in §2–§4 that
does not rely on the assumption of a narrow bandwidth as aforementioned NLSEs.
Specially, the newly developed NLSE should allow for δx,y > 1 since it has relaxed
the narrowband assumption for wave fields at second order, as shown in table 1. Simple
numerical implementations of the new NLSE as performed with earlier versions of NLSEs
are explained. Second, a semi-analytical approach for the description of wave fields for
bound waves at second order in wave steepness is proposed in §3 which allows for simpler
and more efficient numerical implementations than by Dalzell (1999). Finally, a study of
the instability region and energy growth rate of Stokes waves and the temporal evolution
of a directionally-spread focused wave group are presented in §6, where comparisons
with Longuet-Higgins (1978), Dysthe (1979), Crawford et al. (1981), McLean (1982),
and Trulsen et al. (2000) are made.

2. Mathematical formulation and methodology

2.1. Problem definition

We consider ocean surface waves propagating on deep water in the framework of
potential-flow theory, thereby assuming incompressible inviscid flows, irrotational fluid
motions, and negligible effects of surface tension. A Cartesian coordinate system is chosen
with the undisturbed water surface located at z = 0. The system can be described as a
boundary value problem governed by the Laplace equation:

∇2
3Φ = 0 for −∞ < z < ζ(x, t), (2.1)

where Φ(x, z, t) denotes the velocity potential, ζ(x, t) is the free surface elevation, x is the
position vector in the horizontal plane, t is the time, and ∇3 = (∇, ∂z) with ∇ = (∂x, ∂y)
denoting the gradient in the horizontal plane. Equation (2.1) should be solved subject
to the nonlinear kinematic and dynamic boundary conditions (cf. Davey & Stewartson
(1974)) at the free water surface z = ζ(x, t):

∂tζ +∇Φ · ∇ζ − ∂zΦ = 0 and ΓΦ+ ∂t(∇3Φ)2 +
1

2
∇3Φ · ∇3(∇3Φ)2 = 0 (2.2a,b)
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where the operator Γ is defined as Γ = ∂tt + g∂z with g the gravitational acceleration;
A deepwater boundary condition:

∂zΦ = 0 for z → −∞. (2.3)

2.2. Stokes expansion and separation of harmonics

In order to solve the boundary value problem (2.1)-(2.3), we seek the solutions of
unknown Φ and ζ in a form of power series in wave steepness defined as ε = k0A0 (a
so-called Stokes expansion), with k0 and A0 denoting the characteristic wavenumber and
wave amplitude, respectively,

Φ = εΦ(1) + ε2Φ(2) + ε3Φ(3) +O(ε4) and ζ = εζ(1) + ε2ζ(2) + ε3ζ(3) +O(ε4), (2.4a,b)

where we consider the first three orders and the superscripts denote the order in ε.
Substituting (2.4) into the boundary value problem (2.1)-(2.3) leads to the decomposition
of the fully nonlinear system into different problems through a collection of the terms
at the same order in ε. The decomposed problems can be solved successively from the
lowest to higher orders, as presented in the following from the first (§2.3) to third order
(§5).

Let linear surface elevation ζ(1) be expressed in two equivalent forms as follows,

ζ(1)(x, t) =
1

2
A(x, t)ei(k0·x−ω0t) + c.c. or (2.5a)

ζ(1)(x, t) =
1

2

∞∫
−∞

ζ̂(k)ei(k·x−ω(k)t)dk2 + c.c., (2.5b)

in which c.c. denotes the complex conjugates, A denotes the complex wave envelope of the
surface displacement of the carrier wave with k0 = (k0, 0) the wavenumber vector chosen
in the x direction, ω0 denotes the angular frequency of the carrier wave that satisfies
the dispersion relation ω0 = ω(k0) given by ω(k) =

√
gk (where k = |k|); k = (kx, ky)

denotes a wave vector in the horizontal plane. (2.5a) denotes the first-order elevation
being expressed in an envelope-type form and (2.5b) a form through linear superposition
of monochromatic waves in the Fourier k plane. This paper focuses on the former which
leads to a nonlinear evolution equation for A that allows for the relaxation of a narrow
banded assumption (cf. Chu & Mei (1971) and Davey & Stewartson (1974)).

Equating (2.5a) and (2.5b) we obtain a relation between A and ζ̂ as follows

A(x, t) =

∞∫
−∞

ζ̂(κκκ+ k0)ei[κκκ·x−(ω(κκκ+k0)−ω0)t]dκκκ2, (2.6)

where the integral variable was replaced with κκκ through k = κκκ+k0. Introducing a Fourier
transform for A defined as follows

A(x, t) =

∞∫
−∞

Â(k, t)eik·xdk, we obtain Â(k, t) = ζ̂(k + k0)e−i(ω(k+k0)−ω0)t. (2.7a,b)

A linear evolution equation for A for waves of a broad bandwidth is derived by Trulsen



6

et al. (2000) in two equivalent forms as follows

∂tA+ iω0LA = 0 with (2.8a)

L(∂x, ∂y) =

[(
1− i∂x

k0

)2

+
(i∂y)2

k20

]1/4
− 1 and (2.8b)

∂tÂ+ i(ω(k + k0)− ω0)Â = 0, (2.8c)

where (2.8a) is used for constructing the solutions in §3, §4, and §6.2; equation (2.8c)
is in a form convenient for numerical implementations, as explained in §4.4. It is clear
that a narrow-banded assumption implies k0LA � O(ε), which, again, this paper aims
to drop. For convenience and later reference, we introduce a dimensionless bandwidth
parameter defined as follows

δx,y ∼
∆kx,y
k0

or δx,y ∼ O(
∂x,yA

ε
), (2.9)

where δx (∆kx) and δy (∆ky) denote the dimensionless (dimensional) bandwidth in
the x and y direction, respectively. The bandwidth is not assumed small, in contrast to
conventional, reduced-form evolution equations for A by earlier works e.g. Dysthe (1979);
Stiassnie (1984). Specifically, δx,y > 1 are permitted in this paper. Similar to (2.5a), ζ
and Φ are expressed in an envelope-type form through the separation of wave harmonics
as follows

Φ(x, z, t) =
1

2
ε(B + ε2B(31))ek0zei(k0·x−ω0t) + c.c. + ε2

[
Φ(20)(x, z, t) +

(
Φ(22)(x, z, t) + c.c.

)]
+ ε3(Φ(33)(x, z, t) + c.c.), (2.10a)

ζ(x, t) =
1

2
ε(A+ ε2A(31))ei(k0·x−ω0t) + c.c. + ε2

[
ζ(20) +

(1

2
A(22)e2i(k0·x−ω0t) + c.c.

)]
+

1

2
(ε3A(33)e3i(k0·x−ω0t) + c.c.), (2.10b)

in which the superscripts (ij) denote O(εi) and j-th harmonic, A(ij) = A(ij)(x, t)
and B(ij) = B(ij)(x, z, t) are the modulated amplitude and potential, respectively, the
potentials at second and third harmonics are given by, respectively

Φ(22)(x, z, t) =
1

2
B(22)e2k0ze2i(k0·x−ω0t) and Φ(33)(x, z, t) =

1

2
B(33)e3k0ze3i(k0·x−ω0t).

(2.11a,b)

It is worth noting, although (2.10a,b) are in a form similar to the so-called harmonic
expansion, the wave fields at second and third order in such a form are introduced for
convenience. They are due to the separation of wave harmonics arising from mainly the
forcing equations (e.g. (3.1b) and (4.1)) at still water surface presented in §3 at second
order and in §4 at third order.

2.3. Linear wave fields

Solutions to linearised boundary value problem from (2.1)-(2.3) are obtained for linear
wave fields. They are given here without detailed derivations (see §13 in Mei et al. (2005)),
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expressed in terms of Â(k) as follows

V(1) ≡ [u(1), w(1)] =
1

2
V̄(x, z, t)ek0zei(k0·x−ω0t) + c.c., with (2.12a)

V̄ = [ū(x, z, t), w̄(x, z, t)] and (2.12b) B
ū
w̄

 = − i

∞∫
−∞

 1
i(k + k0)
|k + k0|

 cp(k + k0)Â(k, t)e(|k+k0|−k0)zeik·xdk2, (2.12c)

in which V denotes linear velocity vector and V̄ its magnitude in the envelope-type
form, u(1)(x, z, t) and w(1)(x, z, t) denote linear velocity vector in the horizontal plane
and vertical component, respectively, ū and w̄ are their corresponding magnitude in
the envelope-type form, and cp(k) =

√
g/|k| denotes the phase velocity of wave k. It is

worth noting that (2.12c) is fundamental to the theory presented in this paper due to the
following two aspects; it allows for a nonlinear evolution equation for A being expressed
in terms of V̄ and it also facilitates simple numerical implementations of the evolution
equation for A presented in §4.

Using the definition of linear velocity potential Φ(1) and following similar procedures
that lead to the first-order evolution equation (2.8a), it is understood the following
identities hold (to the first order in wave steepness)

V̄ = ∇3B + k
(3d)
0 B and ∂t

 B
ū
w̄

+ iω0L

 B
ū
w̄

 = 0, (2.13a,b)

in which k
(3d)
0 = [ik0, k0] is introduced for convenience.

2.4. Quadratic property of linear waves: velocity head

Before presenting the wave solutions at second and third order in ε, we introduce a
leading-order approximation to the wave velocity head, Hv(x, z, t), defined as

Hv(x, z, t) =
1

2g
|∇3Φ

(1)|2, (2.14)

which is correct to O(ε2). The wave velocity head plays an essential role in the forcing of
bound waves at second order and, thus, the nonlinear evolution equation for A presented
in §4. Inserting the envelope-type expression for Φ(1) into (2.14) and using (2.12b), we
obtain

Hv = (H(22) + c.c.) +H(20) with (2.15a)

H(22)
v =

1

8g
V̄ · V̄e2k0ze2i(k0·x−ω0t) and H(20)

v =
1

4g
V̄ · V̄∗e2k0z (2.15b)

in which the asterisk ‘*’ denotes the complex conjugates, and we note that V̄ · V̄ =
ū2 + v̄2 + w̄2 with ū and v̄ denoting the velocity component of ū (ū = [ū, v̄]) in the x

and y direction, respectively. It is noticeable that H
(22)
v varies with the superharmonic

factor exp(2ik0 · x− 2iω0t) whereas the mean velocity head H
(20)
v is independent of the

carrier wave phase k0 · x− ω0t. Especially for a quasi-monochromatic wave group (or a
monochromatic wave) that admits ∇A � O(1) (or ∇A = 0), we obtain a leading order

approximation to the mean velocity head H
(20)
v given by

H(20)
v (x, z, t) =

1

g
U
SD
cg0 with U

SD
= k0ω0|A|2e2kz and cg0 =

ω0

2k0
, (2.16)
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where U
SD

and cg0 denote Stokes drift and the group velocity, respectively. We un-

derstand from (2.16) that the mean velocity head H
(20)
v maintains the energy for the

propagation of the Stokes drift at group velocity cg0 for a quasi-monochromatic wave
group. We show in §3.3.2 that it is also responsible for the generation of the Eulerian
return flow at second order.

In contrast, the rapidly varying velocity head, associated with the factor of second
harmonic exp(2ik0 ·x−2iω0t), has been rarely investigated as it is zero for unidirectional
waves. In particular, we note

1

4
V̄ · V̄e2k0ze2i(k0·x−ω0t) + c.c. = 0, (2.17)

which holds for unidirectional waves of a broad bandwidth, as can also be inferred from
earlier works e.g. equations (23) and (25) by Dalzell (1999). Due to this, we examine
the effects of the rapidly varying velocity head in §3.3.1 and §6.3.1 for multi-directional
waves.

3. Second-order solutions O(ε2)

In this section, the solutions for the second-order super- and sub-harmonic waves forced
by linear surface waves are presented. Compared with Dalzell (1999), the solutions in
this section are as exact but expressed in an envelope-type form. In contrast to Chu
& Mei (1971); Davey & Stewartson (1974); Dysthe (1979), the derivations do not rely
on a narrow-banded assumption except for §3.3 where leading-order approximations are
presented.

3.1. Governing equation and boundary conditions

The velocity potential at second order in wave steepness, Φ(2) = Φ(22) + c.c. + Φ(20),
are described by the following boundary value problem (Dalzell 1999; Li et al. 2021c)

∇3Φ
(2) = 0 for −∞ < z < 0, (3.1a)

(∂tt + g∂z)Φ
(2) = −ζ(1)ΓzΦ(1)︸ ︷︷ ︸

= 0

−∂t(|∇3Φ
(1)|2) for z = 0, (3.1b)

∂zΦ
(2) = 0 for z → −∞. (3.1c)

in which Γz is defined as Γz = ∂zΓ . As highlighted in (3.1b), the first term on the right
hand side does not contribute to the forcing on still water surface as it vanishes and,
thus, only the second term needs to be considered. Using the second term and (2.15b)
we define a forcing term S for z = 0 as follows

S(x, t) =
[
−∂t(|∇3Φ

(1)|2)
]
z=0

, which leads to S = (S(22)e2i(k0·x−ω0t) + c.c.) + S(20)

(3.2a,b)
with

S(22) = −2g∂tH
(22)
v (x, z, t)e−2i(k0·x−ω0t) and S(20) = −2g∂tH

(20)
v (x, z, t) for z = 0.

(3.3a,b)
The forcing term S (or the velocity head on still water surface) is responsible for the
forcing of the second-order bound waves. The negative sign on the right hand side of
(3.3a,b) implies a flow generated below still water surface, propagating in an opposite
direction to the change of the velocity head in time at z = 0; a so-called return flow
which is known for second-order subharmonic waves.
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In order to obtain the solution to boundary value problem (3.1a) –(3.1c) for Φ(2), two
different and novel approaches are proposed in this paper and presented in §3.2 and §3.3,
respectively. In particular, the first approach is applicable to three-dimensional waves of
a broad bandwidth, and the second is an approximate method based on the assumption
of a narrow bandwidth with δx,y � 1.

3.2. Approach I: semi-analytical approach for Φ(2)

Approach I, referred to as a semi-analytical approach, proposes solving boundary value
problem (3.1a) –(3.1c) in the Fourier k plane by using a pseudospectral and a finite
difference method. The boundary value problem for Φ(2j) from (3.1a) –(3.1c) is given by

∇2Φ(2j) = 0 for −∞ < z < 0, ΓΦ(2j) = S(2j) for z = 0 and ∂zΦ
(2j) = 0 for z → −∞,

(3.4a,b,c)
in which j = 0 and j = 2 denote the subharmonic and superharmonic wave, respectively.
The solutions of (3.4a,b,c) can be expressed in a form as follows

Φ(2j)(x, z, t) = eji(k0·x−ω0t)

∞∫
−∞

B̂(2j)(k, t) exp eik·x+|k+jk0|zdk2, (3.5)

for j = 0 and j = 2. Substituting (3.5) into (3.4b) leads to the second-order differential
equation for B̂(2j):

(∂t − ijω0)2B̂(2j) + g|k + jk0|B̂(2j) = 2j/2Ŝ(2j)(k, t), (3.6)

where Ŝ(2j) denotes the Fourier transform for S(2j) for j = 0 and j = 2. It is understood
that the second-order waves are bound which do not admit homogeneous solution of
(3.6) (Phillips 1960; Hasselmann 1962). As a result, equation (3.6) for B̂(2j) can be
solved numerically by a semi-analytical approach that proposes evaluating S(2j)(x, t) by
using a pseudospectral method and obtaining the numerical solution of (3.6) by available
time marching methods. The numerical procedures are explained in §4.4. For numerical
implementations, prescribed conditions at an initial instant are required for Φ(2)(x, 0, t0)
and ∂tΦ

(2)(x, 0, t0). In practice, multiple choices are available to this end, depending on
the purpose of wave predictions. For instance, a second-order wavemaker theory based
on Schäffer (1996), periodic boundary conditions as in Dommermuth & Yue (1987),
the framework by Bonnefoy et al. (2006) for the waves generation in a numerical wave
tank, stationary waves based on Dalzell (1999), and approximate initial conditions as
presented in §3.3. If the waves generation is based on linear wave theory, Φ(2)(x, 0, t0) = 0
and ∂tΦ

(2)(x, 0, t0) = 0 are implied, leading to inconsistency and additional generation of
spurious waves (Schäffer 1996). The semi-analytical approach leads to improved computa-
tional efficiency compared with the analytical method by Dalzell (1999) based on Fourier
integrals. For N Fourier modes, the semi-analytical approach requires computational
operations at O(N In(N)), whereas Dalzell (1999) requires O(N2). The validation of the
semi-analytical approach is presented in §6.1.

3.3. Approach II: an approximate method for Φ(2)

With a narrow-banded assumption, this section presents an approximate method for
Φ(22) (§3.3.1) and Φ(20) (§3.3.2). For identifying the correct order in bandwidth, we
assume small and non-dimensional bandwidth scaling parameters δx and δy that denote
the bandwidth in the x and y direction, respectively. The order of accuracy of the
approximate solutions is indicated by the product of ε2 and δjx,y with j non-zero integers.
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With a narrow-banded assumption, we seek the solutions of (3.1a) –(3.1c) for unknown
B(22) and Φ(20) in a form of power series in bandwidth as follows,

B(22) = δyB
(22)
≈,1 + δ2x,yB

(22)
≈,2 + ... and Φ(20) = δxΦ

(20)
≈,1 + δ2x,yΦ

(20)
≈,2 + ... (3.7a,b)

in which the subscripts ‘≈, j’ denote an approximation at O(ε2δjx,y), and we consider
leading-order approximations up to j = 2.

3.3.1. Forcing of second-order superharmonic waves by multi-directional waves

It is understood that the forcing term on the right hand side of (3.1b) (see also (2.17))
for Φ(22) for unidirectional waves is zero, which suggests Φ(22)(x, z, t) = 0. Hence, the
derivations for Φ(22) are only needed for multi-directional waves. Based on the boundary
value problem described by (3.1a)–(3.1c), the forcing equation of the superharmonic
bound waves for B(22) on still water surface reads

(∂tt − 4iω0∂t − 4ω2
0 + g∂z + 2gk0)B(22) = iω0V̄ · V̄ − V̄ · ∂tV̄ for z = 0, (3.8)

in which the first term on the right hand side is at O(ε2δy) and the second term at
O(ε2δyδx). Inserting the expanded form (3.7a) for B(22) into (3.8) and the Laplace
equation for Φ(22) and following the conventional procedures for perturbed solutions,
we obtain

B
(22)
≈,1 =

∞∫
−∞

iω0V̂
(22)
sq (k, t)

g|k + 2k0| − 4ω2
0

eik·x+(|k+2k0|−2k0)zdk2 and (3.9a)

B
(22)
≈,2 =

∞∫
−∞

−4ω2
0∂tV̂

(22)
sq + (4ω2

0 − g|k + 2k0|)V̂ (22)
sq,t (k, t)

(g|k + 2k0| − 4ω2
0)2

eik·x+(|k+2k0|−2k0)zdk2, (3.9b)

where V̂
(22)
sq and V̂

(22)
sq,t denote the Fourier transform for V̄ · V̄ and V̄ · ∂tV̄ with respect

to x for z = 0, respectively.

3.3.2. Potential for the second-order mean flows in two and three dimensions

Similar to the second-order superharmonic waves, the forcing equation of the subhar-
monic bound waves at second order for Φ(20) on still water surface (cf. (3.1b)) reads

∂ttΦ
(20) + g∂zΦ

(20) = S(20) for z = 0, (3.10)

where S(20) is defined by (3.3b) and S(20) ∼ O(ε2δx). With a narrow-banded assumption
and following the same procedures as for B(22), we obtain

Φ
(20)
≈,1 =

∞∫
−∞

Ŝ(20)

g|k|
eik·x+|k|zdk2 and Φ

(20)
≈,2 =

∞∫
−∞

−2Ŝ
(20)
t

(g|k|)2
eik·x+|k|zdk2, (3.11a,b)

in which Ŝ(20)(k, t) and Ŝ
(20)
t (k, t) denote the Fourier transform for S(20) and ∂tS

(20)

with respect to x, respectively.

3.4. Wave elevation ζ(2) and velocity V(2) at second order

With second-order potential Φ(2) given by the semi-analytical approach presented in
§3.2 or the approximate method presented in §3.3, the surface elevation at second order
is obtained from

ζ(2)(x, t) = −1

g

[
∂tΦ

(2) + ζ(1)∂tzΦ
(1) +

1

2
|∇3Φ

(1)|2
]

for z = 0, (3.12)
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where Φ(2) = Φ(20) for unidirectional waves and Φ(2) = Φ(20) + Φ(22) + c.c. for multi-
directional waves. Inserting the envelope-type expression for Φ(1) and Φ(2), we arrive
at

ζ(2) =ζ(20) +
(
ζ(22) + c.c.

)
with (3.13a)

ζ(22) =− 1

g

[
∂tΦ

(22) +
1

4

(
A(∂t − iω0)w̄ +

1

2
V̄ · V̄

)
e2i(k0·x−ω0t)

]
and (3.13b)

ζ(20) =− 1

g

[
∂tΦ

(20) +
1

4
V̄ · V̄∗ +

1

4

(
A∗(∂t − iω0)w̄ + c.c.

)]
for z = 0. (3.13c)

With Φ(22) = 0 in mind for unidirectional waves, (3.13b) gives an exact expression for the
elevation for second-order superharmonic waves that depend only on linear modulational
parameters e.g. A and V̄.

Similarly, the velocity at second order, V(2)(x, z, t), is given by

V(2) = V(20)(x, z, t) +
[
V̄(22)(x, z, t)e2k0ze2i(k0·x−ω0t) + c.c.

]
where (3.14a)

V(20) = ∇Φ(20) and V̄(22) =
1

2
(2k

(3d)
0 +∇3)B(22). (3.14b)

4. A new nonlinear Schrödinger equation for A (O(ε3))

In this section, a new NLSE for linear wave envelope A is presented in §4.1 for multi-
directional waves of a broad bandwidth. Based on a narrow-banded assumption, leading
order approximations to the new NLSE are derived in §4.2 and how this new evolution
equation recovers existing NLSEs is explained in §4.3. The numerical implementations
of the new NLSE are presented in §4.4.

4.1. An evolution equation correct to O(ε3) for waves of a broad bandwidth

Collecting the terms at third order in wave steepness in (2.2), we obtain

(∂tt + g∂z)Φ
(3) = −Q(3)(x, z, t) for z = 0, (4.1)

where the forcing term Q(3) is given by

Q(3) = ζ(2)ΓzΦ
(1) +

1

2
(ζ(1))2ΓzzΦ

(1)︸ ︷︷ ︸
= 0

+ζ(1)∂z

[
ΓΦ(2) + ∂t(|∇3Φ

(1)|2)
]

+

2∂t(∇3Φ
(1) · ∇3Φ

(2)) +
1

2
∇3Φ

(1) · ∇3(|∇3Φ
(1)|2), (4.2)

with Γzz = ∂zΓz. As indicated in (4.2), one would show that ΓzΦ
(1) = 0 and ΓzzΦ

(1) = 0,
which are not necessarily so for a finite depth. The terms in the square bracket on the
right hand side of (4.2) can be simplified due to (3.1b). In particular, it is noticed that
the following identity holds

∂z

[
ΓΦ(2) + ∂t(|∇3Φ

(1)|2)
]

= k0∂t(V̄ · V̄∗) for z = 0. (4.3)

Inserting the harmonic expansion for Φ(1) and Φ(2) into (4.2) leads to Q(3) being expressed
in a form as follows

Q(3)(x, t) = Q(31)(x, t) +Q(33)(x, t), (4.4)

where Q(31) denotes the forcing term with a factor exp (ik0 · x− iω0t) and Q(33) the term
with a factor exp (3ik0 · x− 3iω0t). Leaving the expression for Q(33) in §5 and focusing
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on Q(31) in this section, we obtain (see details in Appendix A)

Q(31) =Q̄(31)(x, z, t)ei(k0·x−ω0t) + c.c. for z = 0, with Q̄(31) = Q̄
(31)
all + Q̄

(31)
dir , (4.5a)

Q̄
(31)
all =(−iω0 + ∂t)

[
∇3Φ

(20) · V̄
]

+
1

8

[
∇3(V̄ · V̄∗)

]
· V̄ +

1

4
(k0w̄ + 2k0A∂t)(V̄ · V̄∗),

(4.5b)

Q̄
(31)
dir =(−iω0 + ∂t)

{
1

2

[(
2k

(3d)
0 +∇3

)
B(22)

]
· V̄∗

}
+

1

16

[
(2k

(3d)
0 +∇3)(|V̄|2)

]
· V̄∗,

(4.5c)

in which the subscripts ‘all’ and ‘dir’ are used to distinguish two different cases; the former
means the parameter expressed in terms that are non-constant for both unidirectional
and multi-unidirectional waves, and ‘dir’ means the parameter composed of terms that
are non-zero only for directional waves. Hence, Q̄(31) admits a much simpler expression

for waves considered in two dimensions or for long-crested waves due to Q̄
(31)
dir = 0.

Physically, Q(31) would lead to secular solutions that should be removed (see the
discussion on page 376 in Madsen & Fuhrman (2006)). In order to achieve this, a
conventional approach is to introduce a nonlinear amplitude-dependent frequency ω2

(∼ O(ε2)) for the first-order wave fields through replacing factor exp[i(k0 · x − ω0t)]
in (2.5a) and (2.12) with exp[i(k0 · x − ω0t) − iε2ω2t]. Thereby, it leads to additional
contribution of the updated first-order potential Φ(1) to (4.1) at O(ε3). Especially arising
from ∂ttΦ

(1), we obtain an additional term associated with first harmonic at O(ε3)
expressed as −iω2(∂t − iω0)B exp(i(k0 · x − ω0t) − iε2ω2t) + c.c.. Mathematically, the
secular solutions can be removed if the sum of this additional term and Q̄(31) equal zero.
Hence, we arrive at

iω2(∂t − iω0)B = Q̄(31) for z = 0. (4.6)

Noticing that ζ(1) = −∂tΦ(1)/g for z = 0 which gives (∂t − iω0)B = −gA, substituting
this expression for B into (4.6) leads to the equation for A as follows

−igω2A = Q̄(31) for z = 0. (4.7)

The evolution equation for A′ with A′ = A exp(−iω2t), correct to third order in wave
steepness, can now be expressed as

∂tA
′ + iω0LA′ + iω2A

′ = 0, (4.8)

Inserting (4.7) into (4.8) and omitting the prime leads to

∂tA+ iω0LA+N (x, z, t) = 0 for z = 0, with (4.9)

where N = −Q̄(31)/g denotes the nonlinear term, given by

N = Nall +Ndir with (4.10a)

Nall =
1

g
(iω0 − ∂t)

[
V(20) · V̄

]
− 1

8g

[
2k0w̄ + V̄ · ∇3 + 4k0A∂t

]
(V̄ · V̄∗), (4.10b)

Ndir =
1

g
(iω0 − ∂t)

(
V̄(22) · V̄∗

)
− 1

16g

[
(2k

(3d)
0 +∇3)(|V̄|2)

]
· V̄∗. (4.10c)

Equation (4.9) denotes the new nonlinear Schrödinger equation that describes the evolu-
tion of linear wave envelope A in time and space. In addition to the linear term associated
with the time derivative ∂t(...), equation (4.9) is composed of a term that denotes linear
dispersion relation due to iω0L and a nonlinear term denoted by N that is correct to
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O(ε3). For (4.9), no assumptions associated with the bandwidth have been introduced.
Thereby, it has relaxed the limitation arising from a narrow-banded assumption on which
most NLSEs are based, such as the NLSEs by Dysthe (1979), Trulsen & Dysthe (1996),
and Trulsen et al. (2000); i.e., the new NLSE should permit the prediction of waves with
bandwidth δx,y > 1. The implementation of the new NLSE for the wave envelope, A,
of the first-harmonic elevation requires the evaluation of linear term ∂tA in the Fourier
plane based on (2.8c) and the evaluation of the linear envelope (vector) of both the linear
and second-order velocity for N , which will be explained in detail in §4.4.

Extensions of the new NLSE (i.e. (4.9)) to more general cases are simple and straight-
forward. For example, the new NLSE can be extended to consider a finite water depth
following the derivations in this paper, except that one would expect that the nonlinear
term N may contain a few more terms that introduce a negligible additional computa-
tional cost. Following Dias et al. (2008) and Kharif et al. (2010), the new NLSE would
allow for weakly damped/forced free surface flows through adding the viscous effects in
the dynamic and kinematic boundary condition (cf. Eqs. (35, 37) by Dias et al. (2008))
at the water surface. Moreover, despite the new NLSE is formulated in the framework
of potential flow theory for simplicity, it is essentially an equation associated with linear
envelope A, linear velocity V̄, and second-order velocity V̄(2). This suggests the weak
effects due to viscosity and vorticity in a sub-surface layer can be easily incorporated,
allowing for waves interacting with ambient environments e.g. turbulence and background
rotational flows (cf. McWilliams et al. (2004)). These aspects will be considered in future
work.

4.2. Leading-order approximations to the new NLSE

Approximations to (4.9) correct to O(ε3δjx,y), with j = 0, 1, 2, and j = 3, are presented
in this section with a narrow-banded assumption, i.e. O(δ)� 1. In particular, we assume
that the bandwidths both in the longitudinal (x) direction and the transverse direction to
the propagation of the carrier wave are small and that O(δy) ∼ O(δ2x). Small directionally
spread is, hence, implied. Based on previous papers (e.g. Chu & Mei (1971); Li et al.
(2021c)), the order of magnitude associated with the relevant terms in (4.5) is assumed
as follows

[V̄, V̄∗] ∼ O(ε), [|V̄|2, V̄ · V̄∗] ∼ O(ε2δ2y, ε
2) , Φ(20) ∼ O(ε2δx), and B(22) ∼ O(ε2δ2y).

(4.11a,b,c,d)
Moreover, it is understood that the derivative operators (∂t,∇3) on the terms in (4.11)
would lead to an order of magnitude higher in bandwidth δx,y. With the right orders of
magnitude in mind, collecting the terms up to a particular order in ε and δ based on (4.5)
and (4.9b) and thus, leading order approximations to (4.9) are obtained. In particular,
they are expressed in a form as follows

∂tA+ iω0LA+N (3,j)
≈ = O(ε3δj+1

x,y ) for z = 0, (4.12)
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where N (3,j)
≈ denotes an approximation to N correct to O(ε3δjx,y), with j = 0, 1, 2, and

3, given by,

N (3,0)
≈ = − 1

4g
(V̄ · V̄∗)k0w̄, (4.13a)

N (3,1)
≈ = N (3,0)

≈ − 1

8g

[
∇3(V̄ · V̄∗)

]
· V̄ − k0

2g
A∂t(V̄ · V̄∗), (4.13b)

N (3,2)
≈ = N (3,1)

≈ +
iω0

g

(
∇3Φ

(20)
≈,1 · V̄

)
+N (3,2)

≈,dir, (4.13c)

N (3,3)
≈ = N (3,2)

≈ +
iω0

g

(
∇3Φ

(20)
≈,2 · V̄

)
− 1

g
∂t

(
∇3Φ

(20)
≈,1 · V̄

)
+N (3,3)

≈,dir, (4.13d)

N (3,4) = N , (4.13e)

where (4.13e) denotes that N (3,4) has an identical expression as N . As noted earlier, the
subscript ‘dir’ means the parameter being composed of nonlinear terms that are non-zero
only for multi-directional waves, given by

N (3,2)
≈,dir =

1

g

(
B

(22)
≈,1 −

1

8
V̄ · V̄

)
(ik0 · ū∗ + k0w̄

∗), (4.13f )

N (3,3)
≈,dir = − 1

16g

[
∇3(|V̄|2)

]
· V̄∗ − 1

g
∂t

[
(ik0 · ū∗ + k0w̄

∗)B
(22)
≈,1

]
+

1

g
B

(22)
≈,2 (ik0 · ū∗ + k0w̄

∗). (4.13g)

Equation (4.13b) denotes that a leading order approximation to N , correct to O(ε3δ),
does not require an evaluation of the second-order mean potential. Equation (4.13c) sug-
gests that the approximations to Φ(20) and B(22) that are presented in §3.3 are sufficient
to give a leading order approximation to (4.9), correct up to O(ε3δ3). Any approximations
correct to an order higher than O(ε3δ2) would require the same computational cost as

N because the approximations Φ
(20)
≈,2 and B

(22)
≈,2 do not lead to enhanced computational

efficiency, compared with solving for Φ(2) by the semi-analytical method.

4.3. Comparisons to two reduced-form equations for A

Two limiting cases are considered in this section in order to demonstrate that the
new NLSE can recover two reduced-form equations for A, including the NLSE for the
evolution of a train of Stokes wave ( §4.3.1) and the NLSEs by Dysthe (1979); Trulsen
& Dysthe (1996) and Trulsen et al. (2000) with a narrow-banded assumption (§4.3.2).

4.3.1. Uniform Stokes waves

For uniform Stokes waves on an infinite depth, that denote A and V̄ having no slow
modulation in x and z, the new NLSE leads to

N = N (3,0) and hence, N =
1

2
ik20ω0|A|2A. (4.14)

Introducing ε = k20|A|2 and α1 = 1
2 for Stokes waves, we obtain the evolution equation

for A as follows

∂tA+ iα1ε
2ω0A = 0, (4.15)

which agrees with the classic NLSE for a train of Stokes waves as presented in many
papers e.g. Benjamin & Feir (1967); Zakharov (1968). Equation (4.15) will be used for
the analysis of sideband instability of Stokes waves presented in §6.2.



Ocean surface waves of a broad bandwidth 15

4.3.2. Waves of a narrow bandwidth (O(ε3δx,y))

In order to recover the previous versions of NLSEs by Dysthe (1979); Trulsen & Dysthe
(1996); Trulsen et al. (2000) from the NLSE (4.9), two aspects are addressed. First, the
term associated with linear dispersion relation iω0L is identical to Eqs. (12) and (13) by
Trulsen et al. (2000) using the dimensional versions. It has been demonstrated in Trulsen
et al. (2000) how this term can recover the terms associated with linear dispersion relation
derived by Trulsen & Dysthe (1996) and Dysthe (1979). Second, the nonlinear term in
the NLSEs by Trulsen et al. (2000) and Trulsen & Dysthe (1996) are directly obtained
from the Dysthe equation by Dysthe (1979). Hence, we only have to demonstrate that N
can recover the nonlinear terms in the Dysthe equation. To this end, we start with (4.9b)
for unidirectional waves as the Dysthe equation has neglected the contribution from
Φ(22) (which is non-zero only for multi-directional waves). Moreover, a narrow-banded
assumption as in Dysthe (1979) is introduced; i.e. O(δx,y) ∼ O(ε) is assumed in this
section.

With a narrow-banded assumption, the velocity (magnitude) V̄ correct to O(εδx,y)
reads (cf. Eqs. (13.2.21) and (13.2.30) by Mei et al. (2005) for deepwater waves)

V̄(x, z, t) =
−ig

ω0

[
k
(3d)
0 A+

(
−i(k0z + iex)∇A
−i(k0z + 1)∂xA

)]
+O(εδ2), (4.16)

in which ex = [1, 0] denotes a unit vector along the x direction in the horizontal plane.
Inserting (4.16) into (4.9b) leads to a leading order approximation to gN as follows (see
Appendix A.2 for details)

Γ
Dysthe

C ≡ −gN = 4k40C|C|2 + 8ik30C(C∂xC
∗ − C∗∂xC)− 4ik0C∂x(C∗C)+

2k0ω0C(∂xΦ
(20) − ∂zΦ(20)), (4.17)

where C is defined as C ≡ B/2 = −iω0A/(2k0). The subscript ‘Dysthe’ means that the
parameter corresponds to the ‘Γ ’ by Dysthe (1979); i.e. (4.17) recovers ‘Γ ’ on the right
hand side of equation (2.17) by Dysthe (1979), while observing the following two aspects.
Firstly, the notation C defined here is denoted by ‘A’ in Dysthe (1979). Secondly, there
is one misprint in the equation for ‘Γ ’, as also pointed out by Brinch-Nielsen & Jonsson
(1986) (cf. page 461) and Janssen (1983); i.e. the second term in the expression ‘3ik(...)’
for ‘Γ ’ should read 8ik(...). For completeness, the detailed derivations for (4.17) are
presented in appendix A.2. The modified NLSE by Trulsen et al. (2000) (i.e. equations
(19-22) therein) is essentially a leading order approximation to (4.9), correct to O(ε3δx,y).

4.4. Numerical implementation

Figure 1 shows the detailed procedures of the numerical implementation of the new
NLSE (4.9) for A, including the solution of the second-order equation, (3.6), for B(2j)

and the evaluation of N by a pseudospectral method and a finite-difference method.
We remark here that it is conventional to solve a NLSE numerically for A in a moving
coordinate system through the transforms ξ = x − cg0t and η = t, which would also
follow similar numerical procedures as follows but for A′(ξ, y, η) with A′(ξ, y, η) = A(x, t)
instead.

At any temporal step tn = t0 + n∆t with t0 denoting the initial time, it is understood
that the value of A(x, tn) for all xs < x < xe, with xs and xe denoting the start and end
position vector of a chosen spatial domain, respectively, is given from earlier computa-
tions. The spatial domain is discretised by 2Nx×2Ny points at which A(x, tn) is known,
with 2Nx and 2Ny denoting the total number of points in x and y direction, respectively.
Transforming A to the discretised Fourier space using a fast Fourier transform (FFT)
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How to evaluate         is organised in a form of three consecutive steps highlighted with three different colors  

Numerical implementation of the extended NLS equation, Eq. (4.9), for A(x,t) 

Step I: obtaining linear terms based on              using iFFTs based on Eq. (4.19)A(k, t) 

¯ ¯ ¯ ¯ ¯[�tV,�xV,�yV,�zV ]= F -1{ -i(�(k+k0) - �0)V, ikxV, ikyV, (|k+k0|-k0)V }¯ ¯ ¯

tn+1

Step II: solving the second-order equations for second-order sub- and super-harmonic potentials numerically

[�t B,   �xB,    �yB,    �zB      ]= F -1{       , ikx B   ,  ikyB   , (|k+jk0|-jk0)B    }(2j ) (2j ) (2j ) (2j ) (2j ) (2j )
B

(2j ) (2j )

B (2j )
tn+0.5

B (2j )
tn+0.5

>>  The midpoint method based on Eq. (3.6) for            ,          ,             and           for j = 0 and 2; B
(2j )

B
(2j )

>>

tn+1
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Step III: evaluation of          and           by a pseudospectral method based on Eq. (4.10)tn tn+1
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Figure 1. Flow diagram of the numerical implementation of the new NLSE for A, and of the
numerical solution of (3.6) for B(2j)(x, z, t). Dot denotes the derivative with respect to time.

(Frigo & Johnson 1998), we obtain

Â(k, tn) = F {A(x, t)} , with k = (kx, ky), (4.18a)

kx = (0,±1,±2, ...,±Nx)× dkx, ky = (0,±1,±2, ...,±Ny)× dky, (4.18b)

where dkx and dky denote the interval between two adjacent points in the Fourier kx
and ky direction, respectively; F denotes a FFT with respect to x.

As highlighted in grey in figure 1 with the known value of Â(k, tn), the new NLSE is
solved numerically for by using a split-step Fourier method (Tappert 1974). The main
difference between the numerical procedures presented here and these presented in Lo &
Mei (1985), lie in the fact that the evaluation of N per time step is obtained differently as
N has different expressions. The numerical procedures for N at t = tn are decomposed
into three consecutive steps, as explained in the following.
(Step I ) The first step is to use the known value of Â(k, tn) to evaluate V̄(x, 0, tn)

and its derivative with respect to t, x, y, and z using an inverse FFT, as highlighted in

figure 1 in blue. Let ˆ̄V be the transformed linear velocity, V̄, in the Fourier k space. We
understand from (2.12) that

ˆ̄V(k, z) =

[
k + k0

−i|k + k0|

]
cp(k + k0)Âe|k0+k|z−k0z, and thus (4.19a)

F
{

[∂t, ∂x, ∂y, ∂z]V̄
}

= i[−ω(k + k0)− ω0, kx + k0, ky, |k0 + k| − k0] ˆ̄V(k, z). (4.19b)

Hence, V̄ and also its derivatives [∂t, ∂x, ∂y, ∂z]V̄ are evaluated for all spatial points
through an inverse FFT using (4.19) for z = 0.
(Step II ) The second step (highlighted in green in figure 1) is to solve the second-order

equations (3.6) for B(2j) with j = 0 and j = 2 by the semi-analytical approach presented
in §3.2. The forcing terms S(2j) for j = 0 and j = 2 are computed based on (3.3) in the
physical plane using ∂tV̄, V̄, and V̄∗ evaluated in Step I. The second-order potentials
B̂(2j) and their derivatives with respect to time, ∂tB̂

(2j) for j = 0 and j = 2, with
prescribed initial conditions, can be evaluated based on (3.6) by using a time marching
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method e.g. the midpoint method as indicated in figure 1. With the potentials computed
per time step, second-order velocity at different harmonics, V̄(2j) for j = 0 and j = 2,
and their derivatives with respect to t, x, y, and z can be readily obtained by an inverse
FFT.
(Step III ) The third step, as highlighted in purple in figure 1, is to evaluate N in the

physical space based on (4.9b) using the terms evaluated in Step I and Step II.

Some remarks on the numerical efficiency of the new NLSE are explained here for two
dimensional waves, which allow for a fair comparison with the efficiency of existing NLSEs
e.g. the Dysthe equation as explained in Lo & Mei (1985). In the pseudospectral method,
the nonlinear terms are evaluated through FFT at each x and tn before the integration
in time is performed. The evaluation requires 20 FFTs (cf. the areas highlighted in blue
and green in figure 1). The third-order nonlinear terms are evaluated in the physical
domain, and additional eight FFT computations arise from the terms associated with
∂t(∂x, ∂z)B

(2j) and (∂x, ∂z)B
(2j) due to an inverse FFT (cf. the areas highlighted in

green and purple in figure 1). Two FFTs are needed in the linear equation (i.e. the
equation in the last line highlighted in grey in figure 1). If N Fourier modes are used,
a total of 30N In(N) operations are needed for advancing the solution by one step in
time whereas 10N In(N) operations are required with NLSEs e.g. the Dysthe equation
and modified NLSE (Dysthe 1979; Lo & Mei 1985; Trulsen et al. 2000). Although a
slightly increased computational cost relative to the previous versions are inevitable as
expected, the new NLSE offers much better computational efficiency compared with
other methods e.g. solving the Zakharov integral equation that requires roughly O(N3)
operations when an explicit time-differencing scheme is used. Moreover, it is worthy
noting that the kinematics of the system, i.e. the elevation and velocities at the first
and second orders, are obtained at almost no additional cost throughout the numerical
implementations of the NLSE.

In contract to the High-Order Spectral (HOS) method which is also based on effi-
cient FFTs, a pseudospectral method and numerical methods for time marching (cf.
Dommermuth & Yue (1987); West et al. (1987)), the new NLSE has the following
main features. First, as aforementioned, the new NLSE allows for a computational
domain chosen based on the scaling of the wave envelope (or the maximum of the
side bandwidth of a spectrum), in a manner similar to other NLSE-based models. This
suggests a smaller number of discrete points than the HOS method can be chosen in a
computational domain. It is mainly achieved by the semi-analytical approach for second-
order superharmonic bound waves, which are expressed in an envelope-type form. It is
equivalent to shifting the spectrum of the second-order superharmonic bound waves by
2k0 towards the origin of the Fourier plane. In practice, the choice of the carrier wave
(i.e. k0) allows for flexibility and, therefore, can contribute to reducing the computational
cost, in particular for ocean spectra of a long tail. With a reasonable selection of k0, the
side bandwidth of an asymmetrical spectrum can be much reduced and therefore, a less
fine mesh would be allowed for the implementation of the new NLSE. For example, a
numerical test for a JONSWAP spectrum (see appendix C) was carried out with k0 = 4kp
chosen for computations, where kp denotes the spectrum peak. Secondly, the new NLSE
separately obtains the wave fields due to free waves and second-order bound waves at still
water surface. Last, with proper separation of the perturbed solutions and multiple scales
in time (in terms of wave steepness), the author conjectures that one would show that
the solution of the third-order HOS method following Onorato et al. (2007) (i.e. Eq. (13)
and (14) in the paper) can recover the new NLSE for the envelope of the first-harmonic
wave elevation. This will be addressed in future work.
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5. Solutions at third order O(ε3)

For completeness, this section presents the solutions at third order for both potential
Φ(33) given in §5.1 and elevation ζ(3) in §5.2.

5.1. Potential Φ(33) at third harmonic

Collecting the terms at third order in wave steepness in (2.1)–(2.3) and keeping the
terms that have a factor exp(3ik0 ·x−3iω0t), we obtain the following equations for Φ(33)

∇2
3Φ

(33) = 0 for −∞ < z < 0, ΓΦ(33) = Q(33) for z = 0 and ∂zΦ
(33) = 0 for z → −∞,

(5.1)

where the third-order term Q(33)(x, t) denotes the forcing of bound waves at third
harmonic on still water surface, as noted in §4, expressed as

Q(33) = Q
(33)

(x, z, t)e3ik·x−3iω0t for z = 0 and (5.2a)

Q
(33)

=
1

2
(∂t − 3iω0)[V̄ · (∇3 + 2ik

(3d)
0 )B(22)] +

1

16
V̄ · [(∇3 + 2ik

(3d)
0 )(V̄ · V̄)]. (5.2b)

For unidirectional waves, it is understood that bothB(22) and (V̄·V̄) have no contribution

to the third-order nonlinear terms as they vanish, meaning Q
(33)

= 0 and thus, Φ(33) = 0.

The solution of equations (5.1a,b,c) for Φ(33) can be obtained in a way similar to the
semi-analytical approach for Φ(2), i.e the solution can be obtained by a finite-difference
method in the Fourier k space based on the forcing equation on still water surface as
follows

(∂t − 3iω0)2B̂(33)(k, z, t) + g|k + 3k0|B̂(33)(k, z, t) = 2Q̂(33)(k, z, t) for z = 0, (5.3)

where, as defined in previous sections, ‘ ˆ(...)’ denotes a Fourier transform to the k plane
with respect to x. Thereby, Φ(33) is expressed as

Φ(33) =
1

2
B(33)e3k0ze3ik·x−3iω0t with B(33) =

∞∫
−∞

B̂(33)(k, 0, t)e|k+3k0|z−3k0zeik·xdk2.

(5.4a,b)

5.2. Elevation ζ(3) at third order

Based on the boundary conditions (2.2a,b) it is understood that the wave elevation at
third order can be obtained from (cf. (13.2.3) by Mei et al. (2005))

ζ(3) =− 1

g

[
∂tΦ

(3) + ζ(1)∂tzΦ
(2) + ζ(2)∂tzΦ

(1) +∇3Φ
(1) · ∇3Φ

(2)

+
1

2
(ζ(1))2∂tzzΦ

(1) +
1

2
ζ(1)∂z(∇3Φ

(1) · ∇3Φ
(1))

]
. (5.5)

Based on (5.5), it is understood ζ(3) can be expressed in a form as follows

ζ(3) =

(
1

2
A(31)(x, t)ei(k0·x−ω0t) + c.c.

)
+

(
1

2
A(33)(x, t)e3ik·x−3iω0t + c.c.

)
, (5.6)
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where amplitudes A(31)(x, t) and A(33)(x, t) are in a form given by, respectively,

A(31) =− 1

2g
[(∂t − 2iω0)(2k0 + ∂z)B

(22)]A∗ − 1

g
A∂tzΦ

(20) − 1

2g
A(22)[(∂t + iω0)w̄∗]

− 1

g
ζ(20)[(∂t − iω0)w̄]− 1

2g
V̄∗ · [(2k

(3d)
0 +∇3)B(22)]− A2

8g
(∂t + iω0)(k0 + ∂z)w̄

∗

− 1

4g
AA∗(∂t − iω0)(k0 + ∂z)w̄ −

1

8g
A∗[(∂z + 2k0)(V̄ · V̄)]

− 1

4g
A(∂z + 2k0)(V̄ · V̄∗)− 1

g
(∂t + iω0L)B, for z = 0, (5.7)

A(33) =− 1

g
(∂t − 3iω0)B(33) − 1

2g
[(∂t − 2iω0)(2k0 + ∂z)B

(22)]A− 1

2g
A(22)[(∂t + iω0)w̄]

− 1

2g
V̄ · [(2k

(3d)
0 +∇3)B(22)]− A2

8g
(∂t − iω0)(k0 + ∂z)w̄ −

1

8g
A[(∂z + 2k0)(V̄ · V̄)],

(5.8)

in which the nonlinear terms are obtained in the physical plane using a pseudospectral
method. As noted in §2.4 and §3.3.1, both B(22) and V̄ · V̄ vanishes for unidirectional
waves, under which circumstances the amplitudes at third order embrace a much simpler
expressions given by,

A
(31)
uni =− 1

g
A∂tzΦ

(20) − 1

2g
A(22)(∂t + iω0)w̄∗ − 1

g
ζ(20)(∂t − iω0)w̄ − A2

8g
(∂t + iω0)(k0 + ∂z)w̄

∗

− 1

4g
AA∗(∂t − iω0)(k0 + ∂z)w̄ −

1

4g
A[(∂z + 2k0)(V̄ · V̄∗)]− 1

g
(∂t + iω0L)B,

(5.9a)

A
(33)
uni =− A2

8g
(∂t − iω0)(k0 + ∂z)w̄ −

1

2g
A(22)(∂t − iω0)w̄. (5.9b)

in which the subscript ‘uni’ refers to the cases for unidirectional waves. With a narrow-
banded assumption O(δ) � 1, we readily obtain from (5.9) (through omitting terms
associated with the derivatives with respect to t and z and the second-order mean fields
and noting w̄ = −iω0A+O(εδ)):

A
(31)
uni,≈ = −3

8
k20|A|2A+O(ε3δ) and A

(33)
uni,≈ =

3

8
k20A

3 +O(ε3δ), (5.10a,b)

in which the subscript ‘≈’ denotes an approximate expression due to a narrow-banded
assumption. Inserting (5.10a,b) into (5.6) leads to a leading order approximation for ζ(3)

that agrees with (2.12) in Lo & Mei (1985).

6. Results

This section focuses on three aspects in order to explore and validate the theory
presented, including the second-order solutions presented in §3, sideband instability of
Stokes waves, and the roles of wave directionality. They are examined in §6.1, §6.2, and
§6.3, respectively.

For numerical implementations, a Gaussian amplitude spectrum (Ξ(k)) in wavenumber
and a (unnormalised) directional distribution (D(θ)) were chosen to generate a short
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Figure 2. A comparison of second-order superharmonic wave elevation ζ(22) for a unidirectional
wave group at different times between the predictions by (3.13b) (black solid line), Dalzell (1999)
(red dashed line), and (6.4)(blue dot-dashed line) based on a second-order Stokes wave theory.
The wave group started to propagate at an initial time t0 = −15T0 with T0 the period of the
peak wave; it focuses linearly at xf = −25λ0 with λ0 = 2π/kp, k0 = kp, and tf = −10T0. At
t = t0, an asymmetrical Gaussian spectrum, with kw = 0.27k0 for k < k0 and kw = 1.62k0 for
k > k0 and ε0 = 0.3, was chosen for ζ(1) based on (6.2). The top panels show for t = −10T0, the
middle panes for t = 20Tp, and the lower panels for t = 40T0. The right panels show the area
highlighted by the thick blue box in the left panels, respectively.

(focused) wave group, given by, respectively

Ξ(k) = exp

[
− (k − kp)2

2k2w

]
and D(θ) = exp

[
− (θ − θp)2

2θ2w

]
, (6.1a,b)

where kp denotes the peak wavenumber and θp denotes the propagation direction of the
peak wave at linear focus, kw and θw denote the standard deviation of the spectrum
in wavenumber and direction, respectively. An assymmetrical Gaussian spectrum is
obtained from (6.1a) through using two different values of kw for the upper sideband
k > kp and lower sideband k 6 kp, respectively. For the relevant cases computed in this
section, we used θp = 0 and kp = 0.02769 m−1 which is typical of the North Sea (Barratt
et al. 2021). Using the spectra described by (6.1a,b), linear elevation ζ(1) at t = t0 is
given as input by

ζ(1)(x, t) =
ε0

k0Ξk

Nk∑
n=1

Ξ(kn) cos[kn(x− xf)−
√
gkn(t0 − tf) + ψf] with Ξk =

Nk∑
n=1

Ξ(kn)

(6.2a,b)
for unidirectional waves, where ε0 denotes the dimensionless steepness of a wave group
at linear focus, kn and Nk denote the evenly spaced discrete wavenumbers and the total
number chosen for numerical implementations, respectively; the subscript ‘f’ denotes the
position or time for the wave group at linear focus; ψf denotes the wave phase at linear
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focus; for multi-directional waves:

ζ(1)(x, t) =
ε0

k0Ξk,θ

Nk∑
n=1

Mθ∑
m=1

Ξ(kn)D(θm) cos[kn,m · (x− xf)− ω(kn,m)(t0 − tf) + ψf] with

(6.3a)

Ξk,θ =

Nk∑
n=1

Mθ∑
m=1

Ξ(kn)D(θm) and kn,m = [kn cos θm, kn sin θm], (6.3b)

where θm and Mθ denote the evenly spaced discrete wave directions in the range of
(−π, π) and the total number chosen for numerical implementations, respectively. Despite
that the directional distribution described by (6.1b) is in an unnormalised form, (6.3a,b)
suggest that the integral unity of the directions of the linear multi-directional waves
generated has implicitly been satisfied due to the additional scaling factor, Ξk,θ, defined
in (6.3b).

6.1. Second-order solutions

We validate the second-order solutions presented in §3 in this section through com-
parisons with the analytical method by Dalzell (1999) and with existing approximate
methods. We focus on the temporal-spatial evolution of a wave group. For simplicity,
the effects at third order are neglected in this section as they do not affect qualitatively
the discussion presented here. Let a wave group start to propagate at t = t0 at which
the linear elevation ζ(1)(x, t0) of a group is given in space by (6.2) for a unidirectional
group and by (6.3a) for a directionally spread focused wave group. Inserting ζ(1)(x, t0)
into (2.6) leads to an expression for A(x, t). For a fair comparison, the input at t = t0
for second-order wave fields is based on the results by Dalzell (1999). Following the
numerical procedures explained in §4.4, ζ(22) and ζ(20) are readily obtained from (3.13b)
and (3.13c), respectively.

6.1.1. Unidirectional and multi-directional wave group

Figure 2 shows a comparison of the second-order superharmonic wave elevation for a
unidirectional wave group at two different times (noting that Φ(22)(x, t) = 0), between
the results predicted by (3.13b), Dalzell (1999), and a leading order approximation based
on a second-order Stokes theory given by

ζ(22)
Stokes

=
1

2
k0A

2(x, t) cos[k0(x− xf)− ω0(t− tf) + ψ0]. (6.4)

Due to an asymmetrical Gaussian amplitude spectrum chosen in figure 2, a good estimate
of the side bandwidth can be given by δ = 3kw/kp for k > kp, which measures from the
wavenumber (i.e. k = kp + 3kw) dropping by 99% in magnitude relative to the spectrum
peak. This gives δ = 4.86 for the case examined in figure 2 and 4. The good agreement
between (3.13b) and Dalzell (1999) is evident in figure 2, whereas the less satisfactory
agreement between the second-order superharmonic elevation (6.4) and the other two
methods is also shown. For completeness, the expressions for both ζ(22) and ζ(20) based
on Dalzell (1999) are presented in appendix B. It is understood Dalzell (1999) is capable
of providing exact predictions of second order wave fields based on Fourier integrals.
The agreement with Dalzell (1999) in figure 2 clearly demonstrates the semi-analytical
approach presented in §3.2 can also work for this purpose. Similar observations are also
shown in figure 3 for ζ(22) predicted for the evolution of a directionally spread focused
wave group at different times.
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Figure 3. Second-order superharmonic wave elevation ζ(22) for a directionally spread focused
wave group at different times; the left panels show the results predicted by (3.13b); the right
panels show a comparison of the prediction by (3.13b) (blue dot-dashed line) and Dalzell (1999)
(red solid line) for y = 0. The wave group started to propagate at an initial time t0 = −15T0

with T0 denoting the period of the peak wave kp = k0; it focuses linearly at xf = 0 and tf = 0.
At t = t0, a symmetrical Gaussian spectrum with kw = 0.3k0, ε0 = 0.3, θw = 15 deg was chosen
for ζ(1) based on (6.3a). In the figure λ0 = 2π/k0 denotes the wavelength of the carrier wave of
the group.
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Figure 4. A comparison of surface wave elevation ζ(20) for the second-order subharmonic waves
forced by a unidirectional wave group at different times between the prediction by (3.13c) (black
solid line), Dalzell (1999) (red dashed line), and Trulsen et al. (2000) (blue dot-dashed line). In
the figure, the top panels show for t = −10T0, the middle panels for t = 20T0, and the bottom
panels t = 40T0; and the parameters were chosen the same as in figure 2.

Figure 4 shows a comparison of the elevation for second-order subharmonic waves
forced by a unidirectional linear wave group on still water surface between the results
predicted by (3.13c), Dalzell (1999) (cf. appendix B), and Trulsen et al. (2000)(cf.
appendix D). It is clearly seen in figure 4 that (3.13c) can predict ζ(20) as good as
Dalzell (1999), whereas Trulsen et al. (2000) leads to less satisfactory agreement with
Dalzell (1999), owing to a narrow banded assumption.

6.2. Sideband instability of Stokes waves

In this section, we examine the capabilities of the new NLSE by investigating the
sideband instability of Stokes waves through comparisons with earlier works e.g. Dysthe
(1979); Crawford et al. (1981); McLean (1982); Trulsen et al. (2000). The approximations
to N presented in §4.2 are used in this section as they are sufficient to this end. The
contribution due to N≈,dir are neglected for simplicity. Based on (4.15), the stability of
Stokes waves to sideband perturbations can be investigated by assuming small distur-
bances in amplitude and phase for A in a form given by (cf. Trulsen et al. (2000))

A = a0(1 + a+ iθ)e−iα1ε
2
0ω0t with [a, θ] = 2[â, θ̂] cosψ(x, t), (6.5)

in which a0 denotes the amplitude of a train of Stokes wave, ε0 = k0a0 denotes the
dimensionless steepness of the Stokes wave, â and θ̂ are infinitesimal real parameters
(i.e. � O(1)) that denote small perturbations in amplitude and phase, respectively,
ψ(x, t) = k0[(1 + δx)x + δyy] − ω0δΩt denotes the modulated phase, with k0 and ω0

the wavenumber and angular frequency of the Stokes wave, respectively, δx and δy the
dimensionless sideband in wavenumber in the longitudinal (kx) and transverse/spanwise
(ky) direction, respectively, and δΩ the dimensionless sideband in frequency; as defined
in §4.3.1, α1 is defined as α1 = 1/2.

Treating the expression (6.5) for A as the modulated amplitude of a plane wave k0
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and inserting (6.5) into (2.12) leads to V̄(x, z, t) given by

V̄ =− i
ω0

k0
ε0


 i

0
1

+

 (iâ− θ̂)Vx,+(z) cosψ + (â+ iθ̂)Vx,−(z) sinψ

(iâ− θ̂)Vy,+(z) cosψ + (â+ iθ̂)Vy,−(z) sinψ

(â+ iθ̂)Vz,+(z) cosψ + (iâ− θ̂)Vz,−(z) sinψ

 e−iα1|a0|2t,

(6.6)

where the z dependent coefficients Vi,±(z) are

Vx,±(z) =

√
1 + δz,+

δz,+
(1 + δx)ek0zδz,+ ±

√
1 + δz,−

δz,−
(1− δx)ek0zδz,− , (6.7a)

Vy,±(z) =

√
1 + δz,+

δz,+
δyek0zδz,+ ±

√
1 + δz,−

δz,−
(−δy)ek0zδz,− , and (6.7b)

Vy,±(z) =
√

1 + δz,+ek0zδz,+ ±
√

1 + δz,−ek0zδz,− , with (6.7c)

δz,± =
√

(1± δx)2 + δ2y − 1. (6.7d)

The full solution for V̄ in a form as (6.6) allows for min(|δx|, |δy|) > 1. It should be noted
that, time dependant disturbances (small) for V̄ except for these due to linear dispersion
relation are neglected for simplicity. Or otherwise, the derivations following Benjamin
(1967) (e.g. starting from Eq. (11) and (21) in the paper) are needed that would lead to
numerical analysis for the sideband instability. The insertion of (6.6) into (4.12) for j = 3
leads to an eigenvalues equation for δΩ , with the terms at O(ε20δ

2
y) and higher neglected.

In particular, the eigenvalues equation for δΩ reads

(−δΩ + LI)2 + (−δΩ + LI) (α11 + α22) + α12α21 = 0, (6.8)

where Lr = 1
2 [L(ik0δx, ik0δx) + L(−ik0δx,−ik0δx)] and LI = 1

2 [L(ik0δx, ik0δy) −
L(−ik0δx,−ik0δx)] denote the contribution of the linear dispersion, and coefficients αij
are given by

α11 =
1

4
Vz,−ε

2
0 + (Vx,+ + Vz,+)

[
−1

8
δx +

(
1

2
L2 +

L2(1 + ε20)δ20 − δxL2
2

δ20 − L2
2

)]
ε20, (6.9a)

α12 =α1ε
2
0 − Lr −

1

4
Vz,+ε

2
0 − (Vx,− − Vz,−)

[
1

8
δx −

1

2

(
L2 +

2L2(1 + ε20)δ20 − 2δx(L2)2

δ20 − (L2)2

)]
ε20,

(6.9b)

α22 =

[
−1

4
(Vx,− − 2Vz,−)− 1

8
∂z(Vx,− − Vz,−) + (Vx,− − Vz,−)

δx(1 + ε20)L2 − δ20L2
2

δ20 − L2
2

]
ε20,

(6.9c)

α21 =Lr − α1ε
2
0 +

1

4
(Vx,+ + 2Vz,+)ε20 +

1

8
∂z(Vx,+ + Vz,+)ε20 − ε20(Vx,+ + Vz,+)×[

δx(1 + ε20)L2 − δ20L2
2

]
/
(
δ20 − L2

2

)
, (6.9d)

in which the z dependent variables associated with Vi,±(z) are evaluated for z = 0,

δ20 =
√
δ2x + δ2y denotes the dimensionless magnitude of the sidebands away from the

wavenumber of the Stokes wave, and the approximation L2 ≈ 1
2 (LI + Lr) (cf. equations

(11) and (15) by Crawford et al. (1981) for similar discussions) was used due to the
terms associated with ∂t(V̄ · V̄∗) and, therefore, V(20), arising from the symmetry of the
disturbances to the Stokes wave.

It is understood that the instability occurs if (6.8), a quadratic equation in δΩ , has a
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Figure 5. A comparison of the instability region predicted by Trulsen et al. (2000), the exact
computations based on McLean (1982), and the present theory based on (6.10) for three different
values of wave steepness defined as ε0 = k0a0; (a,d) ε0 = 0.0995, (b,e) ε0 = 0.197, and (c,f)
ε0 = 0.327. (a-f) the exact results based on McLean (1982) (indicated by black dashed lines) are
computed; (a-c) computations are based on equation (18) by Trulsen et al. (2000) (blue dots)
and a leading-order approximation based on (4.12) and (4.13a) (red solid); both approximations
are correct to O(ε30δ

0) with the exact linear dispersion relation; (d-f) the approximations based
on equations (19-22) by Trulsen et al. (2000) (blue dot-dashed), correct to O(ε20δ

2
x, ε

2
0δ

0
y), and

(6.10) derived in this paper (red dot-dashed).

positive imaginary root for δΩ . Thereby, the instability occurs if the following inequality
holds

RΩ ≡
1

4
(α11 + α22)2 − α12α21 < 0, (6.10)

in which RΩ is defined for later reference.
Figure 5 shows a comparison of the instability region predicted by (6.10) and its lower

order expression, equations (18-22) by Trulsen et al. (2000), and the exact computations
by McLean (1982) for three different values of wave steepness. The equations by Trulsen
et al. (2000) are presented in appendix D for reference. In the cases chosen by McLean
(1982) the value of a different steepness, defined as half the crest to trough height of
Stokes waves and referred to as εM here, is given. For a direct comparison, the identity
derived by Trulsen & Dysthe (1996)(i.e. equation (30) therein) was used to evaluate ε0
as follows

ε0 = εM −
1

2
ε3M . (6.11)

It is seen from figure 5(a-c) that, compared with McLean (1982), both approximations
behave similar; good agreement is shown for small δx and small steepness ε0, whereas
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the agreement becomes less satisfactory for larger ε0. As approximations of higher-order
accuracy are used, better agreement with McLean (1982) is clearly seen in figure 5(d-f)
compared with figure 5(a-c). In particular, as seen in figure 5(d-f), equation (6.10) agrees
with McLean (1982) in a nearly perfect manner for ε0 ≈ 0.1 and ε0 ≈ 0.2 in the range
δx . 1, while the predictions by (6.10) are also satisfactory for ε0 ≈ 0.33. Comparing the
results by Trulsen et al. (2000) and (6.10) with McLean (1982) shown in 5(d-f), it is clear
that (6.10) provides better prediction for all three cases. In particular, equation (6.10) is
capable of proving more accurate predictions for the instability of Stokes waves subject
to sidebands in the transverse direction, as clearly shown in figure 5(e,f). Focusing on
the instability due to transverse sidebands (δy), figure 5 shows that equations (19-22) by
Trulsen et al. (2000) fail to improve the accuracy of the lowest-order approximation (i.e.
equation (18) by Trulsen et al. (2000)) for small δx for all three cases. The reason to this
is explained as follows. Equations (19-22) by Trulsen et al. (2000), with the notation in
this paper, lead to the instability region described by the inequality as follows

RT ≡ Lr
[
Lr + ε20

(
1− δ2x

δ20

)]
+
ε40δ

2
x

16
< 0. (6.12)

where RT is introduced for later reference. Equation (6.12) gives the instability region
based on equation (18) by Trulsen et al. (2000) by setting δx to zero. For small ε0
(ε0 . 0.5), the last term in RT is negligible, which gives two conditions for instability to
occur

Lr < 0 or Lr + ε20

(
1− δ2x

δ20

)
< 0. (6.13)

Noting that δ2x/δ20 < 1 for δx . 1, the first condition in (6.13) dominates for small δx.
Using a leading order approximation to Lr, i.e. Lr ≈ (2δ2y − δ2x)/8, the first condition is
approximately

2δ2y − δ2x < 0, (6.14)

which corresponds to an (neutral) instability slope near the origin defined by δy/δx =
±1/
√

2 (corresponding to ∼ ±35.26◦ to the carrier wave k0), as pointed out by Longuet-
Higgins (1976) for the analysis of resonant energy transfer in a narrow spectrum and
clearly shown by the predictions based on Trulsen et al. (2000) in figure 5 (see also figure
12).

In contrast, equation (6.10) is capable of providing accurate prediction of the instability
region of Stokes waves subject to span-wise (y direction) sideband perturbations for
moderate values of wave steepness, ε0 . 0.2, as can be clearly seen in figure 5(d, e). This
is due to that (6.6) has taken into account the transverse sidebands δy in δz,± which
denotes the effects on wave kinematics (i.e. V̄) in addition to the wave envelope A. For
ε0 ≈ 0.33, the difference between (6.10) and McLean (1982) is likely due to that the terms
described by N≈,dir presented in §4.2 at O(ε20δ

2
y) were neglected in the computations.

Proceeding to examining the energy growth rate of Stokes waves, which can be defined
as the positive imaginary component of the roots of (6.8) as follows

Im(δΩ) = Im(
√
RΩ), (6.15)

where Im denotes the imaginary component. When instability occurs, the rate of ampli-
tude growth/decline behaves like exp[ 12 Im(δΩ)ω0t] based on (6.5). This will be further
examined in §6.3.2.

Figure 6 shows the energy growth rate, Im(δΩ), varying with the sideband δx for five
values of ε0 and varying with ε0 for two values of δx. In addition to the experimental
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Figure 6. The growth rate Im(δΩ) varying with the longitudinal bandwidth δx (left panel) and
ε0 = k0a0 (right panel) when the instability of Stokes waves occurs. In the figure, the predictions
are computed based on Crawford et al. (1981), (6.15), and equations (19-22) by Trulsen et al.
(2000) for three different values of steepness (left panel) and two different values of δx (right
panel). The right panel shows, in addition, experimental measurements by Benjamin & Feir
(1967) and Lake et al. (1977).

Figure 7. Stability boundary for growth of unstable perturbations for two-dimensional wave
trains predicted based on (6.15), compared with the results of Benjamin & Feir (1967);
Longuet-Higgins (1978), and the Zakharov equation due to Crawford et al. (1981).

measurements and the predictions of (6.15), figure 6 also presents the results due to
Crawford et al. (1981), for which small corrections following Krasitskii (1994) and Janssen
(2004) (cf. §4.11) were used. Crawford et al. (1981) is based on the Zakharov integral
equation for the study of a uniform wave train and the results are correct to third order
in wave steepness with all higher-order dispersion effects included. It is seen in figure 6
that (6.15) shows better agreement with Crawford et al. (1981) than Trulsen et al. (2000)
(i.e. predicted by Im

√
RT ), which is more so for 0.15 . ε0 and 0.4 . δx.

Figure 7 shows the instability boundary for growth of unstable perturbations for two
dimensional wave trains, predicted due to Benjamin & Feir (1967); Longuet-Higgins
(1978); Crawford et al. (1981), and by this paper based on (6.15). Compared with the
exact numerical results due to Longuet-Higgins (1976), (6.15) is in qualitative good
agreement whereas the quantitative discrepancy is∼ 23% for the restabilization of steeper
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Figure 8. The nondimensional superharmonic velocity head k0(H
(22)
v +c.c.) for the evolution of

a focused wave group at different times for z = 0. The parameters are the same as figure 3 except
that θw differs: (a-c) θw = 15 deg; (d-f) θw = 30 deg; (g-i) θw = 45 deg; (a,d,g) t = −15 × T0;
(b,e,h) t = 0 for the groups at linear focus with ε0 = 0.3; (c,f,i) t = 15× T0 after focus.

waves perturbed by long waves with δx → 0. Although the results based on (6.15) in figure
7 show slightly worse performance than the Zakharov equation, it can obviously yield
restabilization for larger wave steepness, being an improvement over earlier versions of
NLSEs.

For large values of wave steepness, i.e. 0.2 . ε0, as shown in figure 6(a,b) and 7, the
disagreement between (6.15) and Crawford et al. (1981) can be observed, which likely
arises from that the additional time-dependant (small) disturbances are neglected in
(6.15) to the linear velocity envelope (vector), V̄. The analysis in this section shows the
results due to (6.15) are satisfactory.

Figures 5, 6, and 7 suggest that the new NLSE described by (4.9) should work for
ε0 . 0.25 and δx,y > 1 for the evolution of surface waves with directional spread.

6.3. Effects of wave directionality

The presented theory permits us to investigate the effects of wave directionality based
on an order in wave steepness. Thereby, we focus the wave-directionality effects on waves
at second order (§6.3.1) and on nonlinear energy transfer in a narrow wave spectrum by
implementing the new NLSE numerically in §6.3.2.

6.3.1. Waves at second order

As explained in §2.4, one of the major effects of wave directionality arises from that the

superharmonic velocity head H
(22)
v throughout the water columns becomes non-zero for

directionally spread waves. This leads to both non-zero Φ(22), additional contributions
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Figure 9. The dimensionless velocity head k0H
(20)
v at different times for z = 0. See the

caption of figure 8 for the specific parameters.

to elevation ζ(22) due to both Φ(22) and H
(22)
v . These second-order effects on the spatial-

temporal evolution of potential or elevation envelope of the first harmonic are considered
negligible in most models based on an earlier version of NLSE e.g. the NLSE by Dysthe
(1979); Stiassnie (1984); Trulsen et al. (2000). We focus on examining the velocity head

H
(22)
v and H

(20)
v by studying the evolution of a directionally spread focused wave group

at different times. For simplicity, third order effects were neglected in the computations
as they do not affect the discussions here in a qualitative manner.

Figures 8 and 9 show the dimensionless superharmonic and subharmonic velocity head
defined in §2.4, respectively. It is seen from figure 8 that, except for the group at linear
focus (figure 8(b,e,h)), larger values of directional spread lead to smaller magnitudes in
superharmonic velocity head, owing to that, as the total wave energy is kept the same,
the wave energy distributes in larger areas for larger values of directional spread. The
magnitude of the superharmonic velocity head is shown to be . 10 ∼ 30%× ε0 in figure
8. Similar observations can be found in figure 9 for the subharmonic velocity head which
is of a similar order of magnitude as the superharmonic velocity head shown in figure
8. This indicates both components can be equally important for waves with directional
spread.

6.3.2. Nonlinear energy transfer in a narrow wave spectrum

In order to examine the nonlinear energy transfer in a narrow wave spectrum, the
temporal evolution of a ‘steep’ wave group is investigated numerically with the imple-
mentation of the new NLSE and equations (19-22) by Trulsen et al. (2000). Figure 10
shows the evolution of the discrete amplitude spectra, Â(k, t), in the first quadrant of
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Figure 10. Discrete dimensionless amplitude spectra, k0|Â(k, t)|, in the Fourier space at
different times in the first quadrant for the spatial evolution of a wave group with ε0 = 0.2.
The group starts to propagate at t = −15T0 and focuses linearly at xf = 0 and tf = 0. (a-c): the
approximate NLSE with (4.13b) was used for computations; (d-f): equations (19-22) by Trulsen
et al. (2000) were implemented. Contour levels (black solid line) are evenly distributed between
0.005 and 0.12 m in intervals of 0.005 m. (a) the red circles denote the wavenumbers chosen to

investigate the growth rate of |Â(k, t)| in figure 11. The longitudinal and transverse sidebands
are defined as δx = (kx − k0)/k0 and δy = ky/k0, respectively.

the Fourier space for a wave group at different times with ε0 = 0.2. It is seen in figure
10 that the results based on (4.9) and Trulsen et al. (2000) do not show differences in a
qualitative manner and the energy conservation described by∫ xe

xs

|A(x, t)|2dx = constant (6.16)

were verified (not shown) to be within 0.01% for both models. The dimensionless
sidebands in the longitudinal and transverse direction are defined as, respectively,

δx =
kx − k0
k0

and δy =
ky
k0
, (6.17a,b)

in which k0 was chosen to be the peak wavenumber of the initial wave spectrum, δx > 0
and δx < 0 denote the region of upper and lower sidebands in the longitudinal direction,
respectively.

Compared with the initial time shown in figure 10(a,d), figure 10(b,e) shows broadened
spectral amplitude in both the lower and higher sidebands in the longitudinal direction
but narrowed in the region of larger sidebands in the transverse (ky) direction, suggesting
energy transfers from the latter to the former.

From t = 0 to t = 24 × T0 with T0 denoting the wave period of the spectral peak,
two main features can be observed in figure 10. Firstly, oblique energy transfers are clear
and the change of the spectral amplitude in the regions of the lower (kx/k0 < 1 or
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δx < 0) and upper (kx/k0 > 1 or δx < 0) sidebands behaves differently. This indicates
asymmetrical change rate of the spectral amplitude in sidebands. Particularly, in the
region of the lower sidebands described by 0 < δx = (kx− k0)/k0 < −

√
2ky/k0, a decline

in the amplitude is indicated whereas an energy expansion is obvious in the region of
upper sidebands , especially for δy > δx/

√
2. Secondly, relative to the original spectral

peak at kx/k0 = 1, a small downward shift of the spectral peak can be observed in figure
10(c,f), as is clearly shown by the nearest contour in the vicinity of (1, 0) that is no longer
symmetrical relative to kx/k0 = 1.

In order to examine the change rate of the spectral amplitude in time, |Â(k, t)| were
calculated based on (4.9) at different times and |Â(k, t)| at 35 different wavenumbers were
chosen and shown in figure 11. Figure 11 shows the nondimensional spectral amplitude
as a function of the dimensionless time 1

2ε
2
0ω0t. As is seen in figure 11, the change rate

of |Â(k, t)| behaves differently at different wavenumbers. The most interesting range is
obviously for 1

2ε
2
0ω0(t− t0) in ∼ [1, 3] in which the amplitude changes rapidly. This range

is in the vicinity of t = tf at which the wave group focuses linearly. We refer to t . tf
and tf . t in this time range as the pre-focus and post-focus phase, respectively.

Focusing on the pre-focus phase first, figure 11 shows the amplitude grows for the
wavenumbers in the range δy . 0.1 and wavenumbers in the upper sidebands with δx =
0.36 for δy . 0.35. In contrast, the amplitudes for larger sidebands in the transverse
direction, i.e. for 0.18 . δy, experience a decline except for δx = 0.36. In the post-focus
phase, the amplitudes that have experienced a growth (decline) in the pre-focus phase
tend to decrease (grow) exponentially. Especially, for the amplitudes at the wavenumbers
in small transverse sidebands, i.e. δy . 0.09, the rate of decline is larger than that of
increase. The asymmetry in the rate of amplitude change in different regions is likely the
cause for the downward shift of the spectral peak shown in figure 10(c,f).

The change rate of In(k0|Â|) in the range for 1
2ε

2
0ω0(t− t0) in ∼ [1, 3] in figure 11 shows

that In(k0|Â|) decreases/grows with 1
2ε

2
0ω0(t− t0) (approximately) linearly with absolute

slopes . 1. This suggests that |Â(k, t)| changes exponentially with the dimensionless
time 1

2ε
2
0ω0(t − t0), unlikely arising from resonant energy transfers as resonance would

lead to the change rate to be linear in time. The rapid change of the spectral amplitudes
shown in figure 11 may be due to instability. This paper argues that it is likely due to a
mechanism similar to oblique sideband instability of Stokes waves. To illustrate this, the
amplitude change rate in the instability region of Stokes waves is shown in figure 12 for
five different values of wave steepness. The results in figure 12 were computed based on
(6.15) and equations (19-22) by Trulsen et al. (2000) (i.e. Im

√
RT ). As noted in §6.2, it

is understood that, when instability occurs, the amplitude behaves like

|A| ∼ a0eIm(δΩ)ω0(t−t0) and thus, Rc ≡
In(k0|A|)

1
2ω0ε20(t− t0)

∼ In(ε0)
Im(δΩ)

1
2ε

2
0

, (6.18a,b)

where Rc denotes the change rate of amplitude in the logarithmic scale, introduced for
convenience. It also corresponds to the gradient of In(k0|A|) with respect to 1

2ω0ε
2
0(t− t0)

shown in figure 11.
Based on (6.18b), it is clear that Rc depends on both ε0 and the magnitude of Im(δΩ).

Due to ε0 < 0.5 in general which means In(ε0) < 0, whether or not the amplitude grows in
time depends on the sign of Im(δΩ); a positive sign leads to a decline whereas a negative
sign a growth. In practice 0.1 . ε0 . 0.3 would give a good estimate of the steepness
range, yielding −2.3 . In(ε0) . −1.2. Figure 12 shows δΩ/(

1
2ε

2
0) varying with transverse

and longitudinal sidebands at five different values of ε0 varying from 0.1 to 0.3. The
contours of large growth rates shown in Figure 12 suggest that oblique energy transfers
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Figure 11. Amplitude spectra k0|Â(k, t)| at 35 wavenumbers in the first quadrant of the Fourier
k space as a function of the dimensionless time 1

2
ε20ω0(t− t0). The results are based on the new

NLSE and the parameters were chosen the same as figure 10. In the figure, δx = (kx − k0)/k0
and δy = ky/k0 denote the dimensionless sidebands in the longitudinal and transverse/span-wise
direction, respectively. Short vertical lines near 1

2
ε20ω0(t − t0) = 2 indicates for t = tf at which

the wave group focuses linearly.

would be favoured when instability occurs, although the maximum δΩ always lies on the
δx axis for deepwater Stokes waves. The magnitude of δΩ/(

1
2ε

2
0) predicted by both the

present theory and Trulsen et al. (2000) is . 1. Obvious ‘coincidences’ between figures
11 and 12 are that both indicate the same magnitude for Rc, i.e. . 1, and that the wave
amplitude in both cases changes exponentially. Due to the two points, this paper argues
the instability of Stokes waves subject to sidebands disturbances in oblique directions
would be a possible cause for the rapid change of wave amplitude shown in figure 11 in
the neighbourhood of the linear focused time t = tf.

Examining figures 10, 11, and 12 together, the following features are highlighted.
(i) The rapid energy transfers between upper and lower sidebands shown in figure 10

are likely due to the instability of stokes waves in addition to the degenerate resonant
interaction in the ‘figure of eight’ quartet resonant loop (Phillips 1967), as a result of that
the change rate of the amplitude shown in figure 11 is of the same order of magnitude
as those in figure 12 when instability occurs. It is well understood that the instability of
Stokes waves is mostly accompanied by the degenerate resonant interaction, as pointed
out by Phillips (1967) where it is shown that the neutral instability modes (i.e. Im(δΩ) =
0) of Stokes waves can be directly derived from the degenerate resonant interaction
(Hammack & Henderson 1993) and, most importantly, the instability of Stokes waves
subject to oblique wavetrain disturbances is likely to occur in a narrow spectrum.

(ii) A downward shift of the spectral peak arises likely from the asymmetrical change
rates of energy between the different regions of sidebands. This shift is consistent with the
finding of Trulsen & Dysthe (1997). When a downward shift of spectral peak is observed,
rapid energy transfers are shown between lower and upper sidebands in the longitudinal
direction, and between the transverse and longitudinal sidebands.

(iii) Oblique energy transfers towards large upper sidebands (0.3 . δx or 0.27 . δy)
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Figure 12. Instability growth rate of Stokes waves, defined as Im(δΩ)/(ε20/2), subject to oblique
sideband perturbations for five values of wave steepness ε0 = k0a0, obtained using the prediction
by (6.8) (a–e) and equations (19-22) (f–j) by Trulsen et al. (2000) for five different values of
steepness .

are obviously seen in figure 10(c,f), likely due to the different change rates within the
instability region of Stokes waves; the contour levels of large change rates of amplitude
have demonstrated that the change of energy favours more in oblique directions. This
observation is consistent with Trulsen & Dysthe (1997) and the rapid energy transfer
reported in Barratt et al. (2021). Barratt et al. (2021) focus on a numerical study of the
propagation of a steep wave group based on direct numerical solutions of fully nonlinear
potential flow equations. Barratt et al. (2021) reports an angle along ang(δy/δx) = ±55◦

to the spectral peak in the region of upper sidebands. This paper argues that the angle
as such ±55◦ may not exist. It is likely a coincidence to the effect shown in figure 11(d,e)
that larger upper sidebands (0.3 . δx or 0.27 . δy) tend to grow exponentially at
a rate among the largest. Moreover, Barratt et al. (2021) attribute the rapid oblique
energy transfers, similar to those shown in the region (i.e. δy > δx/

√
2 for 0.3 . δx)

of the uppder sidebands in figure 10(c,f), to non-degenerate resonant interaction. This
argument is different from what is shown in figures 10, 11, and 12; i.e. that the amplitude
changes exponentially is unlikely a result of resonant interactions.
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7. Concluding remarks

Using a perturbation expansion, this paper has derived a new nonlinear Schrödinger
equation (NLSE) for the linear envelope evolution of three-dimensional surface gravity
waves without the assumption of a narrow bandwidth. The new NLSE can be extended for
more general cases e.g. waves on water of finite uniform or slowly varying detph. Simple
numerical implementations of the NLSE for the wave envelope using a pseudospectral,
a split-step, and a finite-difference method are demonstrated. The computational cost is
in the same order as the numeral implementations of an existing NLSE e.g. the Dysthe
equation by Dysthe (1979) and the modified NLSE by Trulsen et al. (2000). With leading-
order approximations to the NLSE, its capabilities for studying the instability region and
energy growth rate of Stokes waves are demonstrated. The approximation is shown to
be capable of providing satisfactory predictions of the instability region, compared with
the exact computations by McLean (1982) for dimensionless wave steepness equal to as
large as 0.33. It can also provide good estimates of the energy growth rate and stability
boundary of unstable perturbations for two dimensional wave trains, compared with the
results due to Crawford et al. (1981) and the exact numerical results based on Longuet-
Higgins (1978). In these comparisons, the approximation has been demonstrated of better
performance than the modified NLSE by Trulsen et al. (2000), particularly for sideband
disturbances of waves in an oblique direction to a train of Stokes wave.

This paper has also proposed a semi-analytical approach for the description of wave
fields at second order in wave steepness, based on a pseudospectral and a finite-difference
method. It is demonstrated that the semi-analytical approach is capable of providing
exact predictions as that by Dalzell (1999). Compared with Dalzell (1999), the semi-
analytical approach can significantly improve the computational efficiency; the numerical
implementations of Dalzell (1999) require computational operations at O(N2) and the
semi-analytical approach requires O

(
N In(N)

)
if N Fourier modes are used. In analysis

of velocity head at second order in wave steepness, it is suggested that the super- and
sub-harmonic waves may be equally important in directional sea states due to the same
order of magnitude.

Through a study of the temporal evolution of a steep focused wave group, energy
transfers in a narrow spectrum have been investigated. For the time range in the vicinity
of the group at linear focus, rapid oblique energy transfers between different regions of
sidebands are observed, likely arising from degenerate resonant interactions in the so-
called ‘figure of eight’ quartet resonant loop (Phillips 1967) and the instability of Stokes
waves subject to oblique sideband perturbations. The change rate of wave amplitude
is found to be at the same order of magnitude as that of oblique instability of Stokes
waves. A downward shift of the spectral peak is also observed in this paper, consistent
with the finding in Trulsen & Dysthe (1997). This shift is observed in the course of rapid
energy transfers between different sideband regions when oblique modulational instability
occurs, in contrast to the temporal evolution of a unidirectional spectrum which is found
to lead to a permanent shift of the spectrum peak only in a quasi-steady state in Dysthe
et al. (2003). Rapid energy transfers towards the angle, ∼ ±55◦, to the spectral peak in
the region of upper sideband, that are reported in Barratt et al. (2021), are not supported
by this study. Instead, the upper sideband range of large oblique directions (> 45◦) to
the spectral peak is found to be favoured the most for the energy growth, coinciding with
the sideband region where the instability growth rate of three-dimensional Stokes waves
is among the largest.
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Appendix A. Third-order forcing term for the first harmonic

A.1. Full expression of Q(31)

The first term that has nonzero contribution to Q(31) is denoted by Q
(31)
1 , expressed

as

Q
(31)
1 = 2∂t(∇3Φ

(1) · ∇3Φ
(2)), (A 1)

which leads to

Q
(31)
1 = E(x, t)(−iω0 + ∂t)

{
1

2
[(2k

(3d)
0 +∇3)B(22)] · V̄∗ +∇3Φ

(20) · V̄
}

+ c.c., (A 2)

where E(x, t) = exp(ik0 · x − ω0t). The second term that has nonzero contribution to

Q(31) is denoted by Q
(31)
2 in a form as

Q
(31)
2 =

1

2
∇3Φ

(1) ·
[
∇3(|∇3Φ

(1)|2)
]
, (A 3)

yielding

Q
(31)
2 =

{
1

16

[
(2k

(3d)
0 +∇3)|V̄|2

]
· V̄∗ +

1

4
∇3

[
(V̄ · V̄∗)e2k0z

]
· 1

2
V̄

}
E(x, t) + c.c..

(A 4)

The third term that contribute to Q(31) is defined as

Q
(31)
3 = k0ζ∂t

(
V̄ · V̄∗

)
, (A 5)

which leads to

Q
(31)
3 =

1

2
k0A∂t

(
V̄ · V̄∗

)
E(x, t) + c.c.. (A 6)

The summation of the three terms for Q(31) yields

Q
(31)

=(−iω0 + ∂t)
(
∇3Φ

(20) · V̄
)

+
1

8

[
∇3(V̄ · V̄∗)

]
· V̄ +

1

4
(k0w̄ + 2k0A∂t)(V̄ · V̄∗)+

(−iω0 + ∂t)

{
1

2

[(
2k

(3d)
0 +∇3

)
B(22)

]
· V̄∗

}
+

1

16

[
(2k

(3d)
0 +∇3)(|V̄|2)

]
· V̄∗,

for z = 0. (A 7)
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For unidirectional waves we note that

B(22) = 0 and V̄ · V̄ = 0, (A 8)

which leads to

Q
(31)

all = (−iω0 + ∂t)
(
∇3Φ

(20) · V̄
)

+
1

8

[
∇3(V̄ · V̄∗)

]
· V̄ +

1

4
(k0w̄ + 2k0A∂t)(V̄ · V̄∗).

(A 9)

Combining (A 7) and (A 9), (4.5) in the main is obtained.

A.2. Details for ΓDysthe based on a narrow banded assumption

With a narrow-banded assumption, i.e. δ � O(1), V̄ and V̄∗ read, respectively

V̄ =
−iω0

k0


 ik0

0,
k0

A+

 i(k0z + 1)
0,

1 + k0z

 (−i∂xA)

+O(εδ2), (A 10a)

that leads to

V̄ · V̄∗ = 2ω2
0AA

∗ +
ω2
0

k0
[iA∂xA

∗(2 + 2k0z)− iA∗∂xA(2 + 2k0z)]

+O(ε2δ2), (A 11a)

∇3(V̄ · V̄∗e2k0z) = 2ω2
0 [∇, 2k0](AA∗) +

ω2
0

k0
[0, 0, 6k0](iA∂xA

∗ − iA∗∂xA)

+O(ε2δ2) for z = 0 and (A 11b)

∂t(V̄ · V̄∗) =− ω3
0

k0
(A∗∂xA+A∂xA

∗) +O(δ2ε2), (A 11c)

where the relations ∂tA = −ω0∂xA/(2k0) and ∂t∂xA
∗ = −ω0A

∗A/(2k0) were used in
(A 11c). Thus, we obtain for unidirectional waves

1

8
∇3

[
(V̄ · V̄∗)e2k0z

]
· V̄ +

1

2
k0A∂t(V̄ · V̄∗) =− 1

2
iω3

0k0A
2A∗ − 1

2
ω3
0A∂x(AA∗)+

ω3
0(A2∂xA

∗ −AA∗∂xA)+O(ε3δ2) for z = 0. (A 12)

Moreover, the second term in (4.5b) reads

(−iω0 + ∂t)
[
∇3Φ

(20) · V̄
]

=− ω2
0

k0
A[ik0∂xΦ

(20) + k0∂zΦ
(20)] +O(ε3δ2). (A 13)

Combing (A 12) and (A 13) leads to

Q
(31)

=− 1

2
iω3

0k0A
2A∗ + ω3

0(A2∂xA
∗ −AA∗∂xA)− 1

2
ω3
0A∂x(AA∗)

− iω2
0A∂xΦ

(20) − ω2
0A∂zΦ

(20) +O(ε3δ2). (A 14)

Introducing C = − iω0A

2k0
and inserting it for A into (A 14) yields (4.17) in the main.
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Appendix B. Wave elevation at second order by Dalzell (1999)

Based on Dalzell (1999), ζ(20) and ζ(22) are given by, respectively,

ζ(20)(x, t) =
1

2

N∑
n=1

M∑
m=1

A(20)
m |ζ̂(1)(kn)||ζ̂(1)(km)| cos(ψn − ψm), (B 1)

ζ(22)(x, t) =
1

2

N∑
n=1

M∑
m=1

A(22)
m |ζ̂(1)(kn)||ζ̂(1)(km)| cos(ψn + ψm), (B 2)

where ζ̂
(1)
n and ζ̂

(1)
m denotes the Fourier transform of ζ(1)(x, t), ψn = kn ·x+ang(ζ̂(1)(kn)),

ψm = km · x + ang(ζ̂(1)(km)), kn = |kn|(cos θn, sin θn), km = |km|(cos θm, sin θm),

A(20)
m =

ω2
n + ω2

m

2g
+
ω1ω2

2g
(1 + cos(θn − θm))

(ω1 − ω2)2 + g(|kn| − |km|)
(ω1 − ω2)2 − g(|kn| − |km|)

, (B 3)

A(22)
p =

ω2
n + ω2

m

2g
− ω1ω2

2g
(1− cos(θn − θm))

(ω1 + ω2)2 + g(|kn|+ |km|)
(ω1 + ω2)2 − g(|kn|+ |km|)

. (B 4)

Appendix C. Additional results

This section shows additional results for second-order superharnonic and subharmonic
elevations predicted by the present paper, compared with these due to Dalzell (1999)
and two other methods, as shown in figure 13 and figure 14, respectively. Figure 13 and
figure 14 show the spatial distribution of the second-order elevations driven by a focused
wave group at three instants, based on a JONSWAP (amplitude) spectrum with the
peak enhancement factor of 3.3 in frequency. For the results based on the semi-analytical
approach, the spectrum was truncated at the high wavenumber side up to k = 15kp
with kp the spectrum peak wavenumber. Agreement between Dalzell (1999) and the
semi-analytical approach is clearly seen in figure 13 and 14.

Appendix D. The modified evolution equation for A by Trulsen et al.
(2000)

Using the notation herein, equations (19-22) by Trulsen et al. (2000) read

∂tA+ iω0LA+
ik20ω0

2
|A|2A+

3k0ω0

2
|A|2∂xA−

k0ω0

4
A2∂xA

∗ + ik0∂xΦ
(20) = 0, (D 1a)

∂zΦ
(20) =

ω0

2
∂x|A|2 for z = 0, (D 1b)

∂zΦ
(20) = 0 for z → −∞, (D 1c)

it should be noted that the sign in front of the term that reads ‘k0ω0A
2∂xA

∗/4’ is positive
in Trulsen et al. (2000) whereas the negative sign is used in this paper due to the different
definition of A in this paper from that by Trulsen et al. (2000), consistent with equation
(2.1) in Lo & Mei (1985) and equation (14) by Stiassnie (1984). In Trulsen et al. (2000), A
is defined as the sum of the first- and third-order elevation envelope of the first harmonic.

REFERENCES

Barratt, D., Bingham, H. B. & Adcock, Thomas A. A. 2020 Nonlinear evolution of a
steep, focusing wave group in deep water simulated with oceanwave3d. J. Offshore Mech.
Arct. Eng. 142 (2).



38

Figure 13. A comparison of second-order superharmonic wave elevation ζ(22) for a
unidirectional wave group at different times between the predictions by (3.13b) (black solid line),
Dalzell (1999) (red dashed line), and (6.4)(blue dot-dashed line) that is based on a second-order
Stokes wave theory. The values for kp, xf, tf, and t0 are the same as figure 2 except that a
JONSWAP (amplitude) spectrum with the peak enhancement factor of 3.3 in frequency was
used in this figure. The top panels for t = −10T0 with T0 the peak wave period, the middle
panes for t = 20Tp, and the bottom panels for t = 40T0. The right panels show the area
highlighted by the thick blue box in the left panels, respectively.

Figure 14. A comparison of elevation ζ(20) for the second-order subharmonic waves forced by
a unidirectional wave group at different times between the predictions by (3.13c) (black solid
line), Dalzell (1999) (red dashed line), and Trulsen et al. (2000) (blue dot-dashed line). The
detailed parameters are the same as figure 13.



Ocean surface waves of a broad bandwidth 39

Barratt, D., Bingham, H. B., Taylor, P. H., van den Bremer, T. S. & Adcock, T. A,
A 2021 Rapid spectral evolution of steep surface wave groups with directional spreading.
J. Fluid Mech. 907.

Bateman, W. J. D., Swan, C. & Taylor, P. H. 2001 On the efficient numerical simulation
of directionally spread surface water waves. Journal of Computational Physics 174 (1),
277–305.

Benjamin, T. B. 1967 Instability of periodic wavetrains in nonlinear dispersive systems. Proc.
R. Soc. London, Ser. A. Math. & Phys. Sci. 299 (1456), 59–76.

Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water Part 1.
Theory. J. Fluid Mech. 27 (3), 417–430.

Benney, . D.J & Roskes, G. J. 1969 Wave instabilities. Stud. Appl. Math. 48 (4), 377–385.
Bihs, H., Wang, W., Pakozdi, C. & Kamath, A. 2020 REEF3D: FNPF–A flexible fully

nonlinear potential flow solver. J. Offshore Mech. Arct. Eng. 142 (4).
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