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Abstract. Cloud computing offers elastic and ubiquitous computing
services, thereby receiving extensive attention recently. However, cloud
servers have also become the targets of malicious attacks or hackers due
to the centralization of data storage and computing facilities. Most intru-
sion attacks to cloud servers are often originated from inner or external
networks. Intrusion detection is a prerequisite to designing anti-intrusion
countermeasures of cloud systems. In this paper, we explore deep learn-
ing algorithms to design intrusion detection methods. In particular, we
present a deep learning-based method with the integration of conven-
tional neural networks, self-attention mechanism, and Long short-term
memory (LSTM), namely CNN-A-LSTM to detect intrusion. CNN-A-
LSTM leverages the merits of CNN in processing local correlation data
and extracting features, the time feature extracting capability of LSTM,
and the self-attention mechanism to better exact features. We conduct
extensive experiments on the KDDcup99 dataset to evaluate the per-
formance of our CNN-A-LSTM model. Compared with other machine
learning and deep learning models, our CNN-A-LSTM has superior per-
formance.

Keywords: Deep Learning · Convolution Neural Network · Self-Attention
· Long Short-Term Memory · Network Intrusion Detection.

1 Introduction

Cloud computing can greatly complement to computing insufficiency of mobile
devices or personal computers and the Internet of Things (IoT) nodes. More-
over, the recent advances in artificial intelligence, such as deep learning also put
forth more stringent requirements on the computing capability of end devices.
Moreover, the massive volumes of various data also drive the high storage capac-
ity of end devices. However, either mobile devices and IoT nodes cannot cater
to the rising demands on computing and storage capacity due to the built-in
limitations while cloud computing facilities can fulfill the stringent computing
requirements and provide users with elastic and ubiquitous computing services.

However, cloud computing is also faced with more and more security con-
cerns [14, 15, 27]. For example, malicious cloud users (or tenants) may install
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Fig. 1. An overview of cloud intrusion detection

malicious software (or malware) to a virtual machine (VM), which may infect
other VMs. Meanwhile, malicious VMs may launch malicious attacks, such as
distributed denial of services (DDoS) attack to affect other VMs or even para-
lyze the entire cloud. It is worth mentioning that those malicious attacks mainly
happen inside the cloud network (i.e., internal network traffic) or outside the
cloud network (i.e., external network traffic) as shown in Fig. 1.

There are a diversity of solutions to malicious attacks in cloud computing
systems. Among them, intrusion detection for cloud network is the most crucial
method since it is often the prerequisite for other countermeasures. The idea of
intrusion detection for cloud networks is to analyze cloud network traffic and
identify abnormal traffic. Thus, intrusion detection is essentially equivalent to
a classification problem in machine learning. As a result, many recent studies
attempt to apply machine learning methods to solve this classification problem.

Although conventional machine learning classifiers such as naive Bayes, lo-
gistic regression, decision tree, random forest have been adopted in intrusion
detection systems (IDS), most of them suffer from poor performance in terms of
classification accuracy. The root cause of the poor performance of these machine
learning methods can mainly owe to the fact that they are incapable of properly
processing and analyzing network intrusion detection data, which has the charac-
teristics of high dimension and feature redundancy. Thus, sophisticated feature
engineering is often required to process the network intrusion detection data.
Different from conventional machine learning classifiers, the recent advances in
deep learning methods can handle high-dimensional and redundant data without
extract efforts on feature engineering.
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Although deep learning methods have been used in intrusion detection and
demonstrate the performance improvement over conventional machine learning
methods [3,8,22,29], most of them adopt a singular structure, which may be ben-
eficial to several dimensions of intrusion data while is struggling to handle other
dimensions properly. Therefore, we present a composite deep learning model in
this paper for cloud intrusion detection.

The key contributions of this paper are listed as follows.

• We propose a novel framework combining conventional neural networks, self-
attention mechanism, and Long short-term memory, namely CNN-A-LSTM,
for network intrusion detection.

• CNN-A-LSTM can well conduct network intrusion detection task. In par-
ticular, the CNN structure can process network intrusion data with spatial
correlation while the self-attention mechanism can improve the learned pa-
rameters. The LSTM module can extract key time features from intrusion
data. In this way, the characteristics of the network intrusion dataset can be
better extracted.

• We evaluate our proposed CNN-A-LSTM model by conducting extensive ex-
periments. Experimental results compare our model with other state-of-the-
art methods and show that our CNN-A-LSTM achieves superior performance
than other methods.

Following the introduction, Section 2 reviews related work. We then conduct
a problem analysis in Section 3. Section 4 next briefs the main framework of
CNN-A-LSTM and Section 5 presents the implementation details of CNN-A-
LSTM. Section 6 gives the experiments results. Finally, Section 7 summarizes
the paper.

2 Related Work

This section presents a literature survey on cloud security and challenges as well
as traditional methods and deep learning models for detecting related security
events.

2.1 Cloud security and challenges

Although cloud computing can provide users with elastic and ubiquitous com-
puting servers, the centralization of cloud architecture also results in security vul-
nerabilities. Many research scholars have done relevant studies. Khalil et al. [7]
conducted a comprehensive study of cloud security and privacy issues, catego-
rizing known security threats and attacks, identifying 28 cloud security threats,
and dividing them into five categories. Meanwhile, Singh et al. [19] introduced
cloud computing challenges in eight categories. The main security challenges in
cloud computing mainly include illegal access, data security, etc [19, 21, 23, 24].
In particular, the authors make a comparative analysis of existing data security
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and privacy protection technologies in cloud computing in [23]. From another di-
mension, the work of [20] provides an overview of security issues that affect cloud
computing and some security issues related to public and private cloud manage-
ment. As in [5], the authors attempt to address human and technology-related
threats and find security solutions.

2.2 Network Intrusion Detection

There is no denying that quickly identifying the security vulnerabilities of the
network is critical to secure cloud computing. Network intrusion detection system
(NIDS) has great potential to help detect threats and address security concerns.
NIDS can detect abnormal behaviors that compromise the security of computer
systems. We roughly divide the recent research on NIDS into two types: conven-
tional methods and deep learning methods.

Conventional Methods Behl et al. [2] delved into several ways to secure cloud
infrastructure and also compare their weaknesses. A scalable architecture for the
deployment of IDS in the cloud for new application scenarios is proposed in [16].
Some traditional detection methods have been adopted in cloud computing, such
as rule-based [1,11,12] for monitoring network traffic. They [10,12,18] have the
limitations as follows: i) An unknown attack in the dataset cannot be detected.
ii) The model needs to be regularly training to maintain a high detection rate.
iii) Getting tag data is extremely difficult. iv) False positives are still high.

Deep Learning Methods Encouraged by the advent of machine learning and
deep learning methods in computer vision and natural language processing fields,
some related deep learning methods [3, 8, 13, 17, 22, 28, 29, 31] have been applied
to intrusion detection. The work [29] proposed the CNN-based NIDS model
to extract intrusion identification information through supervised learning. An
RNN IDS based on computational efficiency is proposed in [3]. Kim et al. [8]
presented a host IDS based on exceptions, which adopts the LSTM model and
system call language modeling method. Furthermore, Wang et al. [28] combine
CNN and LSTM to learn the spatial and temporal respectively among multiple
network packets.

Despite the progress of deep learning methods in intrusion detection, most
of them adopt a singular structure, which cannot properly handle the high-
dimensional data.

3 Problem Analysis

In related research experiments, the KDDcup99 network intrusion dataset [25]
is one of widely used training sets. In previous studies such as [13], the KDD-
cup99 dataset was adopted to test the semi-supervised machine learning model
using a trapezoidal network. We also choose the KDDcup99 dataset to conduct
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Fig. 2. The example records of KDDcup99 dataset

the intrusion detection analysis. The KDDcup99 dataset contains 41 attributes,
including both discrete and continuous attributes. As shown in Fig. 2, these
attributes can be divided into four categories: i) network connection basic char-
acteristics in Category R, ii) network connection content characteristics in Cat-
egory G, iii) network traffic time-based statistical characteristics in Category Y,
iv) network traffic host-based statistical characteristic in Category B. In these
categories, we also show the representative attributes (e.g., ‘duration’, ‘service’
and ‘hot’). Moreover, we add a new attribute (namely ‘label’) to represent the
state of each network connection, marking as ‘normal’ or ‘attack’.

3.1 Preliminary Analysis

We conduct a preliminary analysis by classifying and analyzing all the attributes
of KDDcup99. Since the dataset contains 41 attribute features, it has more
complex spatial features.

• Category R contains attribute 1 to 9 in KDDcup99 dataset, representing the
basic characteristics of a transmission control protocol (TCP) connection. In
particular, the ‘duration’ attribute corresponds to continuous data and the
‘service’ attribute corresponds to discrete data.

• Next, the following 13 attributes in Category G represent TCP connection
content characteristics. For example, ‘hot’ attribute represents the times
of access system-sensitive files and directories, and ‘num shells’ attribute
represents the number of shell terminals opened. In addition, all the data in
Category G is continuous data.

• Category Y contains 9 attributes, i.e., 23 to 31, which are mainly applied to
depict time-based network traffic statistical characteristics. In this category,
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the data of every attribute is continuous data (e.g., ‘serror rate’: the per-
centage of connections with synchronized sequence numbers (SYN) errors in
the past two seconds).

• The remaining 10 attributes fall into Category B, being mainly used to
describe host-based network traffic statistical characteristics. For example,
‘dst host srv count (dhsc)’ is the number of connections with the same target
host and service as the current connection in the previous 100 connections.

Since the dataset consists of the continuous data and discrete data with
heterogeneous types of attributes and the attributes contain the complex tem-
poral and spatial features, it is difficult to properly select and fully extract the
attribute features via the traditional methods.

3.2 Challenges

Preliminary analysis in Section 3.1 implies the following characteristics of net-
work intrusion detection datasets.

1. The dataset contains heterogeneous types of attributes, resulting in the com-
plex spatial relationship between them. Traditional methods are difficult to
extract the spatial content characteristics and to reflect the intrusion behav-
ior effectively.

2. There are a lot of attributes based on time characteristics in the dataset.
However, the statistical time of the network intrusion is too short (only 2
seconds). Therefore, it is difficult to learn the features and get an effective
relationship between these attributes.

3. The dataset has a strong temporal correlation. In general, it is difficult to
identify whether the state of a connection is ’attack’ or ’normal’, by only
making statistics of connections between the current and the previous con-
nection record in a period of time.

Therefore, the above characteristics pose challenges in conducting network
intrusion detection with existing methods. To this end, we propose a CNN-A-
LSTM model to address the above challenges. In particular, we adopt our ap-
proach to solve the problems of complex spatial and time relationships, obtaining
the interdependent features of content over long distances.

4 Overview of Architecture

We propose CNN-A-LSTM model to detect network intrusion in this paper.
The proposed model is composed of the following components, and its overview
architecture is shown in Fig. 3.

1. Data Preprocessing. At this stage, we conduct preliminary analysis and
preprocessing on network intrusion traffic in the KDDcup99 dataset.
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Fig. 3. An architecture of our CNN-A-LSTM model

2. Convolution Layer. The Convolution layer can effectively extract features
from the dataset through a neural network. Motivated by [28], we exploit
the CNN structure since the components of CNN can extract the spatial
dependent characteristics of network intrusion traffic.

3. Self-attention Mechanism. For the sake of better filter out the features to
get the network flow volume from the CNN layer, which is helpful to realize
more accurate network traffic classification, we leverage the self-attention
mechanism. The attention mechanism is used to analyze the importance of
the packet vector and to obtain more prominent fine-grained features for
malicious traffic detection.

4. LSTM Layer. Fundamentally, LSTM is an improved version of RNN pro-
posed by [6] and further improved by [9]. As shown in Fig. 3, the LSTM
layer in our model consists of three LSTM units (input gate, output gate
and forget gate) with end-to-end training.

5. Fully-connected Layer. After the above several layers of training, at the
bottom layer, we use a fully-connected layer composed of multiple neurons
to extract key features.

Our target is to design a stable model for network intrusion detection. To
achieve this goal, we employ 1 CNN layer to capture the features for the net-
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work intrusion traffic. The importance of packet vectors is analyzed by using
the attention mechanism to obtain more prominent fine-grained features for ma-
licious traffic detection. Moreover, based on the timing dependence of network
intrusion data, the LSTM layer is used to extract the timing characteristics of
network intrusion data. Finally, at the bottom of the model, a fully-connected
layer is utilized. It can reduce the dimension of spatial representations used for
detection.

5 Implementation

In this section, we present the details on the implementation of CNN-A-LSTM.

5.1 Data Preprocessing

In this paper, we choose KDDcup99 dataset to conduct the intrusion detection
experiments. First, we need to preprocess the dataset, due to the symbolic data
attributes of KDDcup99 dataset. The dataset pretreatment has two processes,
namely: numerical standardization and numerical normalization.

Numerical Standardization First, the average value and average absolute
error of each attribute can be calculated by the following Eq. (1) and Eq. (2),
respectively:

ak =
1

n

n∑
p=1

apk, (1)

Tj =

√√√√ 1

n

n∑
p=1

(apj − aj)
2
, (2)

where aj represents the mean value of the j-th attribute, Tj represents the
average absolute error of the j-th attribute, and apj represents the j-th attribute
recorded in p-th records.

A standardized measurement is then performed for each data record, as
shown in Eq. (3):

Ypj =
apj − aj
Tj

, (3)

where Ypj represents the j-th attribute value of the normalized p data record.

Numerical Normalization As shown in Eq. (4), each value is normalized to
the interval [0, 1]:

a∗ =
a− dmin

dmax − dmin
, (4)

where dmax is the maximum and dmin is the minimum value of the sample data,
and a is the standardized data.
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5.2 CNN

In general, network traffic (e.g., KDDcup99 dataset) consists of several different
types of packets. Since the features in different types of packets are quite dis-
crepant, we need to extract the features of them separately. In our CNN-A-LSTM
model as shown in Fig. 3, we use a convolution layer to obtain the spatial fea-
tures of each network traffic. The convolution layer can effectively maintain the
spatial continuity and facilitate the extraction of local characteristics of network
traffic. In order to reduce the dimension of the hidden layer and the computation
of the subsequent layer, the pooling layer uses the max-pooling or mean-pooling,
in addition to providing rotation invariance.

In particular, we also employ a one-dimensional CNN layer to process time
series analysis and analyze signal data with a fixed length period, since the
internal features in our model can be easily extracted and mapped from one-
dimensional sequence data via the one-dimensional CNN layer. Therefore, due
to the simplicity of the one-dimensional CNN layer, our model can further reduce
the computational complexity.

5.3 Self-attention Mechanism

Then, in order to obtain the interdependent features of content over long dis-
tances, we use the self-attention mechanism. Using the self-attention mechanism,
our model can pay more attention to the significant features of network intru-
sion in KDDcup99 dataset. This mechanism can act on the internal elements of
the source or the target [30]. Therefore, it can improve the effectiveness of the
learning features in the training phase via self-attention mechanism calculation.

Furthermore, self-attention is capable of linking the connection directly be-
tween any two parts of the relevant content through a calculation step in the
calculation process. The distance between the long-distance dependence features
is greatly shortened, which is conducive to the effective use of these features.

The equation for calculating the output result of self-attention is as follows,

ut = tanh (W · ht) , (5)

αt,i =
exp (score (ut, u))∑T
t=1 exp (score (ut, u))

, (6)

s =

T∑
t=1

αt · ht. (7)

In Eq. (5), ht gets the output ut. The allocation coefficient is obtained by
comparing ut in Eq. (6) with a trainable parameter matrix u (random initializa-
tion) used to represent context information. The softmax normalization is then
carried out. Finally, as shown in Eq. (7), the focused vector s is obtained.
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5.4 LSTM

In order to better extract and learn the characteristics of traffic bytes in each
packet data, we add an LSTM layer after the self-attention mechanism. Using
LSTM can greatly improve the efficiency of our experimental training. Since the
dataset we used in the experiment has 41 attributes, the LSTM forget gate can
discard the attributes with less correlation. In our model, the LSTM layer can
make use of the previous information of the data for effective feature learning
and can learn the sequential features within the traffic bytes. The traffic bytes
of each packet are input into the LSTM layer sequentially. Therefore, we can get
a vector for the packet data finally.

The key implementation of the LSTM layer in our model is to control the
long-term state d. In particular, the LSTM layer controls the information transfer
by comparing the internal storage unit d through the design of three gates (input
gate, forget gate, and output gate). The first gate is the input gate to control
the continuation of the long-term state d. The second gate is the forget gate to
control the information preserving or discarding. For example, when the input
information is satisfied the requirements of our model, the learning features will
be retained. Otherwise, the feature will be forgotten by the forget gate. Moreover,
the third gate is the output gate to control the long-term state d as the output
of the current LSTM layer.

Equations for calculating the output result of the LSTM layer are as follows,

pi = σ (Xp · [qi−1, ni] + gp) , (8)

ai = σ (Xa · [qi−1, ni] + ga) , (9)

d̃i = tanh (Xd · [qi−1, ni] + gd) , (10)

di = pi · di−1 + ai · d̃i, (11)

mi = σ (Xm [qi−1, ni] + gm) , (12)

qi = mi · tanh (di) . (13)

In the above equations, Eq. (8) is the formula for the forget gate, where
the weight matrix of forget gate is Xp. The term [qi−1, ni] represents a valid
way to connect two vectors into a longer vector. Besides, the Eq. (9) refers to
the calculation formula of the output gate. Meanwhile, we employ Eq. (10) to

calculate the current input d̃i. Furthermore, we use Eq. (11) to calculate the
current unit state di. Moreover, the impact of long-term memory on the current
output is controlled by Eq. (12). Lastly, Eq. (13) refers to the final output of
LSTM depends on both the output gate and the unit state.
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6 Performance Evaluation

We conduct the experiments to evaluate the performance of the proposed CNN-
A-LSTM model in this section. Most importantly, in Section 6.1, we present
the detailed experimental setup and performance metrics. The comparison re-
sults of our proposed CNN-A-LSTM method with other baseline models are also
presented. Finally, we conduct the parameter study in Section 6.2.

6.1 Preliminary Results

Experiment Settings a) Dataset description: We use the network intrusion
data from KDDcup99 dataset to conduct the experiments. The attack types are
divided into four categories, including Probe, Dos, U2R, R2L. Moreover, they
can also be subdivided into 39 subcategories. In our experiment, we employ 22
types of attack data as a training set and the remaining data as a testing set [32].

b) Model setting: In our experiment, we conduct experiments by configuring
1 CNN layer, then add the self-attention mechanism and LSTM component. We
vary different dropout values as well as the different number of epochs. In every
model, we set dropout equal to 0.01, 0.1, 0.5, and epoch equal to 50, 100, and
1000.

c) Performance metrics: In these experiments, we adopt four metrics, namely
Accuracy, Precision, Recall, and F1-score (F1) to compare the proposed model
with other baseline models. In particular, we calculate these metrics via four
parameters, including True positives (TP), False positives (FP), False negatives
(FN), True negatives (TN).

• Accuracy: It is one of the most common metrics. The number of the correct
samples is divided by the number of total samples. In general, the higher
accuracy results represent better performance.

accuracy =
TP + TN

TP + FP + TN + FN
, (14)

• Precision: It is a measure of the accuracy of the algorithm. The rate of the
number of the exact positive samples is divided into the number of actually
positive samples.

precision =
TP

TP + FP
, (15)

• Recall: It is a measure of coverage. Obviously, the calculation method and
result of recall rate are identical with the sensitivity.

recall =
TP

TP + FN
, (16)

• F1: It is an index used to evaluate the accuracy of the binary classification
model, considering both precision and recall rate. It can be regarded as a
harmonic average of precision rate and recall rate.

F1 =
(
1 + β2

)
∗ precision ∗ recall
β2 (precision + recall)

, (17)
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Table 1. Summary of test result for KDDcup99

Algorithm Accuracy Precision Recall F1

Naive Bayes 0.4533 0.93 0.07 0.61

Logistic Regression 0.7114 0.87 0.58 0.69

Decision Tree 0.8080 0.97 0.69 0.80

Random Forest 0.7759 0.97 0.63 0.76

KNN 0.924037 0.984880 0.908875 0.945352

DNN 0.930129 0.997936 0.915116 0.954733

CNN 0.929582 0.998391 0.914018 0.954343

LSTM 0.922038 0.943180 0.965217 0.954071

CNN-LSTM 0.934726 0.998423 0.920387 0.957818

CNN-A-LSTM 0.945126 0.997432 0.925494 0.960117

where β = 1 (means that Precision is as important as Recall).

Performance Comparison Baseline models: After performing these experi-
ments, we select the following representative baseline models for comparisons
with the proposed model.

– KNN: The main idea of KNN algorithm is to infer your category by your
neighbors [26]. We use KNN to conduct the network intrusion detection
experiments.

– DNN: DNN is a feedforward neural network with at least one hidden neural
layer. For the comparison experiments, we use both ReLU and Sigmoid as
the activation function and the threshold function, respectively. We set the
dropout to be 0.01 and set 100 epochs.

– CNN: CNN is a feedforward neural network, which is usually composed
of a convolution layer, a pooling layer, and a full connection layer. It can
effectively utilize the two-dimensional structure of input data. In this paper,
we use a CNN layer model to carry out the experiment of network intrusion
detection.

– LSTM: LSTM is a time recursive neural network, which plays a very good
role in processing and predicting data based on time series. We use the 1-
layer LSTM model to conduct network intrusion detection experiments.

– CNN-LSTM: In CNN-LSTM and CNN-A-LSTM, we set dropout = 0.1 and
also epoch = 100 to conduct the network intrusion detection experiment.
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We consider Keras as a wrapper on top of TensorFlow as the software frame-
work [4]. The experiment is performed on a personal laptop MSI GL63 8RE,
which has a configuration of an Intel Core i7-8750H CPU @ 2.20 GHz, 24 GB
memory and using GPU acceleration. In the binary classification experiments,
we have compared the performance with a Naive Bayes, Logistic Regression,
Decision Tree, Random Forest, KNN, DNN, CNN, LSTM, CNN-LSTM, and
CNN-A-LSTM. The results are as shown in Table 1.

From these experiments, we find that the CNN-A-LSTM model has the high-
est accuracy, compared with other algorithms. It is worth noting that although
the DNN framework is very simple, it still shows its ability in dichotomy.

Moreover, we select Naive Bayes, Decision Tree, CNN, and LSTM and com-
pare them with our CNN-A-LSTM model. Fig. 4 plots accuracy and F1-score and
made the comparison. We can observe that our CNN-A-LSTM model achieves
the highest scores in both accuracy and F1-score, implying the superior perfor-
mance of our model.

6.2 Parameter Study

We next evaluate the impacts of parameters on the performance of our CNN-
A-LSTM model. We use 1 CNN layer to do the experiment. Then, we add the
LSTM layer and self-attention mechanism. In 1 CNN layer, we vary different
dropouts (0.01, 0.1 and 0.5) and different epochs (50, 100 and 1000). As shown
in Fig. 5, when dropout is 0.01 or 0.1, the accuracy of the training set is very
high. In order to reduce the number of dropouts and improve the accuracy,
dropout is selected as 0.1. Fig. 6 shows that when the dropout is equal to 0.1
and the dense is equal to 128, the accuracy of each model will be very high. So,
we set dropout = 0.1, dense = 128 and epoch = 100 in CNN, CNN-LSTM as
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well as CNN-A-LSTM. Fig. 7 shows the accuracy of testing, and our model is
the most stable and accurate one, and it demonstrates the best performance.

We also compare the CNN-A-LSTM model along with different models in
every epoch in terms of Accuracy and Loss values. Fig. 8 shows the results.
The accuracy of the CNN-A-LSTM model is always higher than those of the
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Fig. 8. Accuracy (a) and Loss (b) of different models

other two models. It shows stable performance with the lowest loss. Therefore,
its performance is the best among those models.

7 Conclusion

Cloud computing can provide users with elastic and ubiquitous computing and
data storage services. However, cloud servers have also become targets for ma-
licious attacks. The network intrusion detection is the prerequisite for taking
countermeasures against malicious attacks. The recent advances in deep learn-
ing bring the chances to network intrusion detection. In this paper, we propose
a new intrusion detection model namely CNN-A-LSTM by integrating CNN,
LSTM, and the attention mechanism together. Experimental results show that
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our CNN-A-LSTM model achieves superior performance compared with other
existing methods. In the future, we will explore the usage of our CNN-A-LSTM
model for more complex network intrusion detection tasks, such as multinomial
classification.
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4. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media (2019)

5. Ghaffari, F., Gharaee, H., Arabsorkhi, A.: Cloud security issues based on people,
process and technology model: A survey. In: 2019 5th International Conference on
Web Research (ICWR). pp. 196–202. IEEE (2019)

6. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

7. Khalil, I.M., Khreishah, A., Azeem, M.: Cloud computing security: a survey. Com-
puters 3(1), 1–35 (2014)

8. Kim, G., Yi, H., Lee, J., Paek, Y., Yoon, S.: Lstm-based system-call language
modeling and robust ensemble method for designing host-based intrusion detection
systems. arXiv preprint arXiv:1611.01726 (2016)

9. Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural
network classifier for intrusion detection. In: 2016 International Conference on
Platform Technology and Service (PlatCon). pp. 1–5. IEEE (2016)

10. Kimani, K., Oduol, V., Langat, K.: Cyber security challenges for iot-based smart
grid networks. International Journal of Critical Infrastructure Protection 25, 36–49
(2019)

11. Kumar, V., Sangwan, O.P.: Signature based intrusion detection system using snort.
International Journal of Computer Applications & Information Technology 1(3),
35–41 (2012)

12. Modi, C.N., Patel, D.R., Patel, A., Rajarajan, M.: Integrating signature apriori
based network intrusion detection system (nids) in cloud computing. Procedia
Technology 6, 905–912 (2012)

13. Nadeem, M., Marshall, O., Singh, S., Fang, X., Yuan, X.: Semi-supervised deep
neural network for network intrusion detection (2016)



Self-Attention Mechanism of Deep Learning in Cloud Intrusion Detection 17

14. Peng, K., Leung, V., Zheng, L., Wang, S., Huang, C., Lin, T.: Intrusion detection
system based on decision tree over big data in fog environment. Wireless Commu-
nications and Mobile Computing 2018

15. Rafique, W., Qi, L., Yaqoob, I., Imran, M., u. Rasool, R., Dou, W.: Complementing
iot services through software defined networking and edge computing: A compre-
hensive survey. IEEE Communications Surveys & Tutorials pp. 1–1 (2020)

16. Roschke, S., Cheng, F., Meinel, C.: Intrusion detection in the cloud. In: 2009 Eighth
IEEE International Conference on Dependable, Autonomic and Secure Computing.
pp. 729–734. IEEE (2009)

17. Roy, S.S., Mallik, A., Gulati, R., Obaidat, M.S., Krishna, P.V.: A deep learning
based artificial neural network approach for intrusion detection. In: International
Conference on Mathematics and Computing. pp. 44–53. Springer (2017)

18. Saenko, I., Kotenko, I.: Administrating role-based access control by ge-
netic algorithms. In: Proceedings of the Genetic and Evolutionary Compu-
tation Conference Companion. p. 1463–1470. Association for Computing Ma-
chinery (2017). https://doi.org/10.1145/3067695.3082509, https://doi.org/10.

1145/3067695.3082509
19. Singh, A., Chatterjee, K.: Cloud security issues and challenges: A survey. Journal

of Network and Computer Applications 79, 88–115 (2017)
20. Singh, S., Jeong, Y.S., Park, J.H.: A survey on cloud computing security: Issues,

threats, and solutions. Journal of Network and Computer Applications 75, 200–222
(2016)

21. Sood, A.K., Enbody, R.J.: Targeted cyberattacks: a superset of advanced persistent
threats. IEEE security & privacy 11(1), 54–61 (2012)

22. Staudemeyer, R.C.: Applying long short-term memory recurrent neural networks
to intrusion detection. South African Computer Journal 56(1), 136–154 (2015)

23. Sun, Y., Zhang, J., Xiong, Y., Zhu, G.: Data security and privacy in cloud comput-
ing. International Journal of Distributed Sensor Networks 10(7), 190903 (2014)

24. Takabi, H., Joshi, J.B., Ahn, G.J.: Security and privacy challenges in cloud com-
puting environments. IEEE Security & Privacy 8(6), 24–31 (2010)

25. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the
kdd cup 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications. pp. 1–6. IEEE (2009)

26. Vinayakumar, R., Soman, K., Poornachandran, P.: Applying convolutional neural
network for network intrusion detection. In: 2017 International Conference on Ad-
vances in Computing, Communications and Informatics (ICACCI). pp. 1222–1228.
IEEE (2017)

27. Wang, W., Du, X., Shan, D., Qin, R., Wang, N.: Cloud intrusion detection method
based on stacked contractive auto-encoder and support vector machine. IEEE
Transactions on Cloud Computing pp. 1–1 (2020)

28. Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M.: Hast-
ids: Learning hierarchical spatial-temporal features using deep neural networks to
improve intrusion detection. IEEE Access 6, 1792–1806 (2017)

29. Xiao, Y., Xing, C., Zhang, T., Zhao, Z.: An intrusion detection model based on
feature reduction and convolutional neural networks. IEEE Access 7, 42210–42219
(2019)

30. Yang, R., Qu, D., Gao, Y., Qian, Y., Tang, Y.: nlsalog: An anomaly detection
framework for log sequence in security management. IEEE Access 7, 181152–
181164 (2019). https://doi.org/10.1109/ACCESS.2019.2953981

31. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection
using recurrent neural networks. Ieee Access 5, 21954–21961 (2017)

https://doi.org/10.1145/3067695.3082509
https://doi.org/10.1145/3067695.3082509
https://doi.org/10.1145/3067695.3082509
https://doi.org/10.1109/ACCESS.2019.2953981


18 Lu et al.

32. Zheng, W.F.: Intrusion detection based on convolutional neural network. In: 2020
International Conference on Computer Engineering and Application (ICCEA). pp.
273–277. IEEE (2020)


	Exploring Self-Attention Mechanism of Deep Learning in Cloud Intrusion Detection

