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a b s t r a c t

Safety instrumented systems often employ redundancy to enhance the ability to detect and respond
to hazardous events. The use of redundancy increases the fault tolerance to single failure but remains
vulnerable in case of dependent failures, including common cause failures and cascading failures.
Reliability analysis of safety instrumented systems therefore involves the impact of dependent failures.
The used approaches have primarily focused on common cause failures. In this paper, it is argued the
need to consider the efforts of cascading failures that are caused by functional dependencies, hazardous
events, and shared resources. A recursive aggregation-based approach is proposed for performance
analyzing of K -out-of-N safety instrumented systems with consideration of cascading failures. General
approximation formulas are developed for estimating the average probability of failures on demand of
different configurations of safety instrumented systems. These formulas are compared with those for
common cause failures. Then a case of fire water pump is studied to illustrate the effects of cascading
failures on safety instrumented systems.
© 2021 The Authors. Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Safety instrumented systems (SISs) are employed to prevent
azardous events and mitigate damages in diverse industries,
ncluding but not limited to process and nuclear power plants,
nd oil and gas facilities. A SIS is characterized as a system that
elies on electrical/electronic/programmable electronic (E/E/PE)
echnologies to detect abnormal situations [1]. A SIS performs
ne or more safety instrumented functions (SIFs) to protect the
quipment under control (EUC) [2]. It often consists of one or
ore components (such as sensors, gas detectors), logic solvers

such as programmable logic controller) and final elements (such
s circuit breakers). Considering a process shutdown system as
n example of SISs, it performs its safety function as following:
n case of process upsets, the sensors of the SIS s detect possible
bnormal situations. The sensors will send the alarm information
o the logic solver(s), which can activate the final elements,
hutdown valves, to stop production [3].
According to the standards IEC 61508 [1] and IEC 61511 [2],

erformance requirement on a SIS is often assigned to each SIF
nd reliability assessment is carried out to prove compliance to
he requirement [1,2]. It is stated that the SIFs performed by a SIS
ust fulfill specified safety integrity levels (SILs). Four different

∗ Corresponding author.
E-mail address: yiliu.liu@ntnu.no (Y. Liu).
ttps://doi.org/10.1016/j.isatra.2021.02.015
019-0578/© 2021 The Authors. Published by Elsevier Ltd on behalf of ISA. This is

licenses/by/4.0/).
SILs are defined in accordance with the average probability of
failure on demands (PFDavg), ranging the safety integrity from
SIL 1 (the lowest level) to SIL4 (the highest level). PFDavg is
the performance measure for SISs operating in the low-demand
mode [1]. It can also be interpreted as a mean proportion of time
that the item is not able to perform its specified SIF in a certain
period or a long term [4]. PFDavg may be calculated on the basis of
several methods: simplified formulas based on fault tree analysis
(FTA) [4], IEC 61508 formulas [1], PDS method [5], and Markov
methods [6].

To reduce PFDavg, it is often effective to introduce redundancy,
such as K-out-of-N (KooN) configurations, into a SIS subsystem.
KooN means that the subsystem with N parallel components is
available when at least K components are functioning. A typical
SIS in the oil & gas industry, high-integrity pressure protection
system (HIPPS), can comprise a 2oo3 configuration of pressure
transmitters, a 1oo1 configuration of logic solver, and a 1oo2
configuration of shutdown valves. The HIPPS does not terminate
its SIF until there are two or more failures on transmitters, one
failure on the logic solver, or two failures on the valves. Such
kind of configurations normally can increase the reliability and
availability of systems. This redundancy often brings dependent
failures, which occur on multiple components with functional
dependencies and shared resources [7]. IEC 61508 [1], ISO/TR
12489 [8] and PDS (‘‘Reliability of SIS’’ in Norwegian) hand-
book [5] have indicated that the effects of dependent failures on
the performance of SISs should be considered. Biswal et al. have
an open access article under the CC BY license (http://creativecommons.org/
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roposed approaches based on FTA for redundant structure in
roduction systems like hydrogen cooling systems [9]. However,
t is difficult to straightforwardly use by such traditional methods
ike FTA, IEC 61508 formulas and Markov to deal with dependent
ssues with SISs [10–12].

IEC 61508 and relevant literature focus primarily on common
ause failures (CCFs) as dependent failures. CCFs are character-
zed by the failures of two or more components fail due to the
ame reasons [1]. They can be modeled by the standard and the
ultiple beta-factor model incorporated with FTA, PDS method
nd Markov model in PFDavg calculation [5,12]. Cascading fail-

ures (CAFs) are another type of dependent failures, reflecting the
multiple failures that one component’s failure results in chain
reactions [12]. The differences between cascading and CCFs in
interdependences and propagation mechanisms have been dis-
cussed in the previous work [13]. CCFs are the failures that are
first in line and directly linked to the failure causes, while the
propagation of CAFs follows a series of interactions. Therefore,
the models for assessing performance of SISs with CCFs are not
applicable for the SISs with CAFs.

SISs are vulnerable to CAFs that are originated from the re-
liance on shared loads, shared testing and maintenance resources,
hazardous events, and dependent functions [13,14]. For example,
several components are configured in parallel in a flow trans-
mission system sharing maintenance resources. The failure of
one component may occupy the maintenance resource, decrease
the possibilities of maintenances on other components, and then
trigger more failures [14]. Another example is a fire water supply
system where the pumps are operating in a KooN configura-
ion. When one of the pumps fails, the corresponding pipeline is
losed, and other pumps must carry the whole loads. The prob-
bilities of failures-to-start of the other pumps thereby increase.
any researchers analyze the impacts of CAFs on general systems
ased on different theory and models including but not limited
o complex network [15–18], risk analysis [19–22], probabilistic
nalysis [23,24] and maintenance optimizations [25,26].
Nevertheless, performance assessment of SISs that are subject

o CAFs is seldom explored. SISs are such a kind of systems
hose SIFs are only be activated upon abnormal situations. Since
ISs are not running all the time in the low demand opera-
ional mode, many failures cannot be detected immediately after
heir occurrences. These so-called hidden failures can be both
ndependent- and dependent-failures. Periodical proof tests, such
s once per year, are conducted in many process plants to reveal
idden failures of SISs, but with noticeable delays. Performance
ssessment of SISs thus needs specific measures, such as PFDavg
or low demand mode of SISs. The value of PFDavg is not only
related with the internal properties of a SIS, but also related with
the frequency and effectiveness of proof tests (see [1,2] and [4]).
These particularities distinguish SISs from production or general
systems and impede the adaption of the existing approaches for
CAF analysis to SISs.

Therefore, the objective of this paper is to introduce the ap-
proaches for incorporating CAFs into performance assessment of
SISs: (1) A generalized approach based on recursive aggregation
for reliability analysis of SISs subsystems voted KooN. (2) Approx-
imation formulas for performance assessment of most common
configuration SISs. The approximation formulas may be consid-
ered for the standards with respect to SISs, such as IEC 61508
and ISO TR 12489, as a complement to the existing formulas for
performance assessment of SISs.

The rest of the paper is organized as follows: Section 2 dis-
cusses the considerations in SIS performance assessment and
the basic analysis approaches for CAFs. Section 3 presents an
approach based on recursive aggregations for reliability analy-

sis of SISs that subject to CAFs, and Monto Carlo Simulation is
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adopted to verify the numerical results. Section 4 introduces ap-
proximation formulas for evaluating the performance of SISs with
general configurations, and Section 5 illustrates the approach and
the effects of CAFs with a case study. Finally, a discussion is
presented, and further works are discussed in Section 6.

2. Considerations in assessing SISs with CAFs

It is important to clarify the characteristics of CAFs and SISs be-
fore quantitative analysis, in consideration that many arguments
still exist.

2.1. Failures and performance measures of SISs

IEC 61508 splits the failures of SISs into two groups [1]:
dangerous failures and safe failures. Owing to many automatic
diagnosis functions in SISs, some dangerous failures can be found
immediately when they occur, as dangerous detected (DD) fail-
ures, but some other failures are hidden after occurrence for some
time, as dangerous undetected (DU) failures. DU failures are more
of interests in many studies including this paper, because DU
failures are the main contributors to the unavailability of SISs
and only can be revealed by proof tests or when a demand/shock
occurs [4]. A proof test is a periodic test performed to detect
DU failures in SISs so that, if necessary, a repair can restore the
system to an ‘as-good-as-new’ condition or as close as practical
to this condition. In case of DU failures, the SISs cannot activate
when a demand comes, and a disaster may therefore occur.

Performance of a SIS is often measured by PFDavg if the SIS
is in low demand mode, namely the demand rate is less than
once per year according to IEC 61508 [2]. PFDavg of subsystems
(sensors, logical solvers, and final elements) is dependent on DU
failure rates of components, system configurations, and frequency
and effectiveness of tests and maintenances. The overall PFDavg
of a SIS is a sum of the values of PFDavg of its three subsystems.
The rest parts of this paper will be limited to the SIS subsystems
in low-demand modes, concerning DU failures and PFDavg in the
quantification of SILs. For the assessment of SISs in other demand
modes and the applicability of PFDavg, readers can find more
information in [6,27].

2.2. CAFs analysis

CAFs appear in the current literatures with different names,
including induced failures, domino failures, and propagating fail-
ures [19,25,28]. Rausand and Høyland [12] define CAFs as the
multiple failures that the failure of one component result in a
chain reaction. Murthy and Nguyen regard CAFs as the failures
that affect the remaining components in a system [25]. Hauge
et al. [9] view CAFs as the escalating failures that one or more
components fail caused by failures of other components. Al-
though there is no standard definition for CAFs, researchers have
some common agreements that CAFs start from one component
and spread to more in the system. On the contrary, there are
some failures whose occurrence probabilities are irrelevant with
other components [4], like, an age-related failure. In this paper,
such failures are called as independent failures or self-failures,
and their occurrences are irrelevant with other components.

For subsystems in a SIS, especially for sensor- and final el-
ement subsystems, it is common that identical components are
installed in a voting structure. These components can suffer from
the same hazardous events and are monitored with the same
mechanism. Thus, the dependency among these components, as
the root cause of CAFs, is difficult to be avoided.

In this study on the performance assessment of SISs, the

following assumptions are existing:
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(1) All the components in a subsystem of SISs are identical and
unrepairable.

(2) Only two states account for all the components: either
functioning or failed.

(3) An independent/self-failure of a component is character-
ized by a distribution function F (t), and the time to failures
is assumed as an exponential distribution, namely the com-
ponent has a constant failure rate λ. Other distributions,
such as Weibull distribution for many mechanical systems
can also be considered.

Considering the particulars of CAFs, additional assumptions
re needed in analysis:

(1) Any component can lose its SIF due to a self-failure or the
cascading impact of the failures of other components.

(2) Propagation duration of CAFs is rather short and can be
ignored.

We use cascading intensity γij(t) ∈ (0, 1] (i ̸= j) to reflect the
easiness of failure propagation from component i to component
j. In mathematics, the cascading intensity is expressed as the
conditional failure probability of component j when component i
fails by time t:

γij (t) = Pr (comp. j fails by t | comp. i has failed by t) (1)

The value of cascading intensity γij (t) can be estimated by
either parametric or nonparametric techniques based on historic
data. It is not difficult to identify cascading failures that origin
from a failure in another component from review of mainte-
nance notifications in case of adequate and detailed failure causes
descriptions. The probability γij(t) is arranged as a matrix γ
that represents failure propagation between the components. The
probabilities escaping from CAFs are δij(t) = 1 − γij(t). With the
assumption of exponential distributions, γij(t) and δij(t) can be
simplified as two constants γij and δij, or even γ and δ for identical
components in the rest parts of this paper.

3. SIS reliability analysis with CAFs

The performance assessment often starts from reliability anal-
ysis based on probabilistic theory and models [12]. This section
suggests a system reliability analysis approach of KooN configu-
rations subject to CAFs. Then, Monte Carlo simulation is used to
check whether the analytical results are appropriate or not.

3.1. The recursive aggression-based approach

The reliability of the systems in parallel and in series that
are affected by CAFs has been discussed in [26]. For many tra-
ditional reliability methods, such as fault tree, they are not effec-
tive in dealing with failures with dependencies. In this section,
we extend the research to SISs, and to more general configura-
tions, namely KooN voting structures. A recursive aggregation-
based approach proposed can be applicable for analyzing systems
with several components and many CAFs propagation paths. Re-
cursive aggregation means that evaluation is repeated for each
combination of the components in the systems.

Let FΩ (ta, t) express a probability that the system Ω (Ω =

[1, 2 . . . n]) fails by time t , conditioned on that all the component
in the system Ω is functioning by time ta. Let GΩ (ti, t) denote the
probability that the system Ω fails in [ti, t] given that component
i fails at time ti. The failure probability of the system Ω is
obtained:

FΩ (ta, t) =

∑∫ t

t
GΩ (ti, t)

∏
Rjm (t) /

∏
Rj (ta) dFi(ti) (2)
i∈Ω a j̸=i,j∈Ω j∈Ω
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where Rjm (t) denotes the reliability of component jm(∀jm ∈

Ω − i,m ∈ [1, 2, . . . , n − k − 1]) at time t . Fi(ti) denotes the
failure probability because of independent /self-failures. GΩ (ti, t)
is given by:

GΩ (ti, t) = Pr(nc = 0)FΩ−{i} (ti, t)

+

∑
j1∈Ω−{i}

Pr (nc = 1) FΩ−{i,j1} (ti, t)

+

∑
j1,j2∈Ω−{i}

Pr (nc = 2) FΩ−{i,j1,j2} (ti, t) . . .

+

∑
j1,j2...jn−k−1∈Ω−{i}

Pr (nc = n − k − 1)

× FΩ−{i,j1,j2...jn−k−1}
(ti, t) + Pr (nc ≥ n − k) (3)

where nc denotes the number of CAFs. Pr(nc)(m ∈ [0, 1, 2, . . . ,
n − k − 1]) denotes the probability that the system is subject to
CAFs with number of nc . All the components in the SIS subsystem
are identical and Pr(nc) can be expressed as:

Pr (nc) =

(
nc

n − 1

)
δn−nc−1γ nc (4)

In consideration of the exponential distribution assumption,
the starting point of the study, ta, can be regarded as zero when
the system like Ω − {i} , Ω − {i, jm} is regarded as a new system
Ω . Fs (t) denotes failure probability of system Ω , and Fs (t) =

FΩ (t) = FΩ (0, t).
The failure rates for all the components are λ. Hence, the

system failure probability Fs (t) can be obtained by using Eqs. (3)
and (4) when ta = 0:

Fs (t) = FΩ (t) = n
[
δn−1FΩ−1 (t) +

(
1

n − 1

)
δn−2γ FΩ−2 (t)

+

(
2

n − 1

)
δn−3γ 2FΩ−2 (t) + · · ·

+

(
n − k − 1
n − 1

)
δkγ n−k−1FΩ−(n−k−1) (t)

+

((
n − k
n − 1

)
δk−1γ n−k

+

(
n − k − 1
n − 1

)
δk−2γ n−k+1 . . .

+

(
n − 1
n − 1

)
γ n−1

)]
(5)

The failure probability FΩm (tm, t) for any subsystem Ωm is ob-
tained in a similar way by using Eqs. (4) and (5). This aggregation
stops when there are more than N-K-1 failures in Ωm. Then, the
failure probability of this subsystem is FΩ−(n−k−1) (t) = 1− e−kλt .

The convolution and Laplace transformation is used to facili-
tate integration of system failure probabilities in Eq. (2) [12]. We
obtained:

L [FS (t)] = L [GΩ (t)] λ/(S + nλ) (6)

· · · · · ·

L
[
FΩ−(n−k−1) (t)

]
=

1
S

−
1

S + kλ
(7)

Then, the system failure probability Fs(t) and system reliability
(t) can be obtained by inverting Laplace transforms.

3.2. Verification with Monte Carlo simulations

To examine whether the analytical algorithms are appropriate,
Monte Carlo (MC) simulations are conducted in MATLAB in this
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able 1
nputs parameters for the models.
Parameter Values

γ 0.1, 0.2 and 0.5
λ 2.0 × 10−6 per hour
t 2.5 × 104 hours

section. Two typical configurations of SIS subsystems, 2oo3 and
oo3 voting structures, have been chosen as examples for for-
ula verification. For a 2oo3 configuration, its reliability can be

obtained by Eqs. (3)–(7) as:

R (t) = 3δ2e−2λt
+ (1 − 3δ2)e−3λt (8)

Similarly, the reliability of a 1oo3 configuration can be ob-
tained as:

R (t) = 3δ (1 − δγ ) e−λt
+ 3δ2(2γ − 1)e−2λt

+ (1 − 3δ (1 − δγ ) − 3δ2(2γ − 1))e−3λt (9)

Fig. 1 shows the flowchart of MC simulation for CAFs propa-
gation. Ti(λ) denotes random exponential variables. They are the
time to failure of component i with λ failure rate. Let Pij denote a
random variable that is generated from a uniform distribution in
[0, 1]. It is limited by γij that represents the propagated probabil-
ity from component i to component j. Ts(t) denotes the simulated
time to system failures.

To verify the proposed algorithms, without losing general-
ity, it is assumed that γij has fixed values of 0.1, 0.2 and 0.5
respectively for all cascades between components. The time to
independent/self-failures Fi (t) is exponentially distributed with a
constant failure rate of 2.1× 10−6 per hour. We run Monte Carlo
simulations over a period of 2.5 × 104 hours with 105 iterations.
Inputs of the parameters are summarized in Table 1.

The results of system reliability for 2oo3 and 1oo3 configura-
tions using analytical approach and MC simulation are presented
in Figs. 2 and 3.

As seen, the results using analytical formulas give the almost
same results as the MC simulations of 2oo3 and 1oo3 configu-
rations. That gives the confidence on the proposed approach for
further reliability analysis of KooN SISs subject to CAFs.

4. Analysis for PFDavg and approximation formulas

In this section, the reliability analysis results can be trans-
formed to PFDavg. Moreover, to simplify the calculations and
analyses in practices, approximation formulas for PFDavg of a SIS
subsystem with consideration of CAFs are summarized. Then, we
have compared of these approximation formulas for CAFs with
those for CCFs.

4.1. PFDavg With CAFs

PFDavg is the average probability that the component is not
able to react and perform its safety function in response to the
demand. Such a measure relates to the time dependent unavail-
ability (PFD (t)) in a proof test interval, denoted by τ . PFD (t) can
be expressed as in [4]:

PFD (t) = Pr (a DU failure has occurred at or before time t)

= Pr (T ≤ t) = F (t) (10)

The long-run average PFDavg is equal to the average value of
PFD (t) in the first proof test interval (0, τ ):

PFDavg =
1

∫ τ

PFD(t)dt =
1

∫ τ

F (t)dt = 1 −
1

∫ τ

R(t)dt (11)

τ 0 τ 0 τ 0

38
Fig. 1. Flowchart of MC simulation of CAFs propagation.

Fig. 2. Simulated and analytical system reliability for 2oo3 configuration.

where τ denotes the length of proof test interval.
Reconsider the two systems, namely 2oo3 and 1oo3 configu-

rations, with all components having a constant DU failure rate λ

and cascaded failure probability γ (δ = 1 − γ ) between any two
components. Based on system reliability obtained in Section 3,
PFDavg of the 2oo3 configuration can be expressed as:

PFDavg
(2oo3)

= 1 −
1

∫ τ

R (t) dt

τ 0
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Fig. 3. Simulated and analytical system reliability for 1oo3 configuration.

able 2
pproximation formulas for PFDavg with CAFs.

K/N N = 1 N = 2 N = 3 N = 4

K = 1 λτ/2 2γ · λτ/2 3γ 2
· λτ/2 4γ 3

· λτ/2
K = 2 – λτ 3γ (2 − γ ) · λτ/2 4γ 2(3 − 2γ ) · λτ/2
K = 3 – – 3λτ/2 4γ (3 − 3γ + γ 2) · λτ/2
K = 4 – – – 2λτ

= 1 −

∫ τ

0
(3δ2e−2λt

+ (1 − 3δ2)e−3λt )dt

= 1 −
3δ2

2λτ

(
1 − e−2λt)

−
(1 − 3δ2)

3λτ

(
1 − e−3λt) (12)

Since SIS components are always highly reliable, λ is a rather
mall number. Given that λτ is small (<0.1), we can replace e−2λt

and e−3λt by using Taylor series deployment:

PFDavg
(2oo3)

= 1 − 3δ2
(
1 −

2λτ

2
+

(2λτ)2

3!
. . .

)
−

(
1 − 3δ2

) (
1 −

3λτ

2
+

(3λτ)2

3!
. . .

)
≈ 3

(
1 − δ2

) λτ

2
(13)

While for the 1oo3 configuration, the PFDavg can be obtained
s:

FDavg
(1oo3)

≈ 3γ 2 λτ

2
(14)

4.2. Generalized formulas for PFDavg with CAFs

With the same approach, PFDavg for other KooN systems can
be obtained. PFDavg of some simple KooN (n ≤ 4) systems are
listed in Table 2.

When cascaded failure probability γ is small (for example
when γ ≤ 0.2), γ 2, γ 3, γ 4 . . . are negligible. Therefore, simplified
formulas for PFDavg is presented in Table 3.

By observing the values in Table 3, a general approximation
formula for PFDavg of any KooN configurations is summarized as:

PFDavg
(KooN)

=

(
N − 1
K − 1

)
Nγ N−K λτ

2
(15)

The general formula is more meaningful for practitioners of
ISs, because it can provide enough information only with some
imple input numbers.
39
Table 3
Approximation formulas for PFDavg with CAFs after simplification.

K/N N = 1 N = 2 N = 3 N = 4

K = 1 λτ/2 2γ · λτ/2 3γ 2
· λτ/2 4γ 3

· λτ/2
K = 2 – λτ 6γ · λτ/2 12γ 2

· λτ/2
K = 3 – – 3λτ/2 12γ · λτ/2
K = 4 – – – 2λτ

Table 4
Factors σKooN for different configurations.
K/N N = 2 N = 3 N = 4 N = 5

K = 1 2γ 3γ 2 4γ 3 5γ 4

K = 2 – 6γ 12γ 2 20γ 3

K = 3 – – 12γ 30γ 2

K = 4 – – – 20γ

Table 5
σkoon(γ = 0.05) for CAFs in different configurations.
σkoon N = 2 N = 3 N = 4 N = 5

K = 1 1.0 × 10−1 7.5 × 10−3 5.0 × 10−4 3.1 × 10−5

K = 2 – 3.0 × 10−1 3.0 × 10−2 2.5 × 10−3

K = 3 – – 6.0 × 10−1 7.5 × 10−2

K = 4 – – – 10.0 × 10−1

The validity of such a general formula needs to be examined. A
more complicate system of 3oo5 configuration is concerned. The
system reliability of the 3oo5 configuration subject to CAFs can
be expressed as:

R (t) = (10δ3γ + 10δ7)e−3λt
+ (5δ4 − 20δ7)e−4λt

+
[
1 − (10δ3γ + 10δ7) − (5δ4 − 20δ7)

]
e−5λt (16)

PFDavg of 3oo5 configuration is found to be:

FDavg
(3oo5)

= 1 −
1
τ

∫ τ

0
R (t) dt = 5γ 2 (

6 − 8γ + 3γ 2) λτ

2

≈ 30γ 2
∗
λτ

2

=

(
5 − 1
3 − 1

)
5γ 5−3 λτ

2
(17)

The result matches the general formula Eq. (15) that is pro-
posed in this subsection.

4.3. Comparisons of formulas for CCFs and CAFs

In the PDS handbook [5], PFDavg of SISs subject to CCFs have
also been summarized to be approximation formulas relevant
with configurations. Here we compare the formulas for PFDavg
considering CCFs and CAFs. A factor σKooN is introduced to distin-
guish the effects of CAFs on the value of PFDavg among various
configurations. Based on Eq. (15), the factors σKooN for CAFs in
different configurations are summarized in Table 4.

PFDavg of the KooN configurations subject to CAFs is therefore
calculated as:

PFDavg
KooN
(CAF) = σKooN

λτ

2
(18)

The factor CKooN is used to describe the effects of CCFs [5]. The
general formula for PFDavg is expressed as [5]:

PFDavg
KooN
(CCF) = CKooNβ

λτ

2
(19)

To compare the effects of two factors, γ and β are assigned
as 0.05 as an example. The factors σKooN and CKooNβ for different
configurations are illustrated in Tables 5 and 6.
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T
C

able 6
koonβ(β = 0.05) for CCFs in different configurations.
CMooNβ N = 2 N = 3 N = 4 N = 5

K = 1 5 × 10−2 2.5 × 10−2 1.5 × 10−2 1.0 × 10−2

K = 2 – 1.0 × 10−1 5.5 × 10−2 4.0 × 10−2

K = 3 – – 1.4 × 10−1 8.0 × 10−2

K = 4 – – – 1.8 × 10−1

Fig. 4. Comparison of the factors for CCFs and CAFs.

Apparently, the value of factor σKooN for CAFs is higher than
that of CKooNβ for CCFs, when K is close to N, for example N-K is
equal to 1, as shown in Fig. 4. This deviation can be explained that
the value of CKooNβ for CCFs is constant, whereas σKooN for CAFs
relies on γ N−K . Fig. 4 indicates that the curve of CAFs fluctuates
much more than that of CCFs, in other words the effects of CAFs
towards PFDavg are more likely to rely on configurations. Such a
phenomenon with case studies is explored in the next section.

5. Case studies

The purpose of case studies is to investigate the changing
trend of SIS performance related to CAFs and then to examine
the relevant operational strategies. We consider a fire water
supply system, with the focus on the subsystem of final elements,
namely firewater pumps.

5.1. System description

The fire water supply system consists of three parts: sen-

sors (for example fire and gas (F&G) detectors, signal from ESD
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Fig. 6. PFD(t) without and with CAFs for 2oo3 system.

system), logic solver (for example F&G logic solver) and final
elements (for example fire water pumps, deluge valves). Our
study here is limited to firewater pumps that are structured in
a KooN configuration and are subject to CAFs, as shown in Fig. 5.
In this case study, some situations like the system lose power and
the logic solver fails, are beyond the delimitation.

The fire pump subsystem is a load-sharing system, where the
pumps share common loads, such as water pressure. If one pump
fails, the other pumps must carry the whole loads, and thus their
failure rates can increase. Such failures are referred to as CAFs in
the SIS.

5.2. PFD(t) and PFDavg with CAFs

Two configurations of such a SIS subsystem: 2oo3 and 1oo3
are considered in this subsection. The time to self-failures Fi (t)
for all the pumps is assumed to be distributed exponentially
with constant failure rates of 2.1 × 10−6 per hour. The cascaded
failure probability γ of each pump is set as a fixed value of 0.05.
The relevant PFD(t) over time within three proof test intervals is
calculated by Eqs. (8) and (9).

Figs. 6 and 7 illustrate PFD(t) with and without CAFs for 2oo3
and 1oo3 configurations, respectively. It is found that the effects
of CAFs on 2oo3 configuration are more obvious than those on
1oo3 configuration. For the 2oo3 configuration, PFDavg increase
dramatically from 3.4 × 10−4 to 2.7 × 10−3, while PFDavg of the
1oo3 configuration rises from 1.6 × 10−6 to 6.9 × 10−5. The ab-
solute difference of PFD for 2oo3 configuration that are caused
avg
Fig. 5. Research boundary in fire water supply system.
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Fig. 7. PFD (t) without and with CAFs for 1oo3 system.

y CAFs is obviously bigger than that for 1oo3 configuration. It
mplies that the 2oo3 configuration is more sensitive to CAFs
compared to the 1oo3 one. That is because only one cascade
result in the failures within 2oo3 configuration. The implication
to the SIS designer is to increase the number of N-K in the voting
structure if the budget is allowed.

5.3. Effects of cascaded failure probability γ

To examine the effect of the cascading failure probability γ ,
the changes of PFDavg and SILs are observed in different con-
figurations when γ varying from 0 to 0.2. PFDavg is calculated
by the proposed formulas Eq. (15) for some selected typical
configurations, such as 1oo2, 1oo3, 1oo4, 2oo3, 3oo4 and 2oo4
configurations. Fig. 8 illustrates how γ affects PFDavg in different
system configurations. It is obvious that the PFDavg increases
along with γ and the values of PFDavg for 3oo4 and 2oo3 config-
urations are more sensitive to CAFs. A conclusion can be reached
that CAFs have more significant influence on the PFDavg when the
value of N-K decrease. Particularly, if N-K is equal to one, the con-
figurations are the most vulnerable to CAFs. On the other hand,
when the configuration is limited as N-K=1, the effectiveness of
reducing γ in controlling PFDavg is higher.

It is essential to ensure that SISs can achieve required SIL re-
quirement in operational phase. Log10(PFDavg) is used to illustrate
corresponding SILs for these configurations in Fig. 9. The variation
of SILs with different γ dependents on configurations, namely
the value of N-K. In this case, PFDavg of the 1oo4 configuration
is always within the range of SIL4. The values of PFDavg for 2oo4
and 1oo3 configurations drop from the range of SIL4 to that of
SIL3. The values of PFDavg for 3oo4, 2oo3 and 1oo2 configurations
change from SIL3 to SIL2.

The findings are helpful in determining SIL of SISs. When
considering CAFs in SISs, their integrities are not only relying
on the reliability of parallel components, but on the identified
dependency of components and the system configurations. It
shows that the impacts of CAFs on PFDavg and SILs are unignorable
regardless SIS configurations, especially when γ is not small. The
results encourage the industry to put more efforts into analyzing
and avoiding CAFs.
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Fig. 8. PFDavg of different configurations subject to CAFs.

Fig. 9. Log10(PFDavg) of different configurations subject to CAFs.

5.4. The effects of CCFs and CAFs

To illustrate the need to consider the efforts of CAFs, we
compare the effects of CCFs and CAFs on PFDavg with different
parameters, beta value β for CCFs and cascading intensity γ for
CAFs. The configurations 2oo3 and 1oo3 are reconsidered in this
subsection. According to Table 4, σKooN for 2oo3 and 1oo3 configu-
rations are 3γ 2 and 6. CKooN for 2oo3 and 1oo3 configurations are
0.5 and 2. PFDavg can be calculated by Eqs. (18) and (19), and the
results are shown in Figs. 10 and 11. It is demonstrated that CAFs
have comparable effects on PFDavg and SIL as CCFs in this case.

The effects of CCFs and cascading failure on PFDavg become
more significant when the parameters increase. PFDavg of the
oo3 configuration considering CAFs is always higher than that of
he same configuration considering CCFs. In a 1oo3 configuration,
however, the effects of CCFs on PFDavg are more significant than
hose from CAFs when the value of parameter is less than 0.17
pproximately. Both two figures show that performance assess-
ent of redundant SISs should be conservative since CAFs have
omparable effects on PFDavg and SIL as CCFs. It is noted that dif-
ferent configurations of SISs perform differently in terms of their
vulnerabilities to CAFs and CCFs, even though the parameters of
these two types of failures are set as equal.
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Fig. 10. The effects of CCFs and CAFs in 2oo3 systems.

Fig. 11. The effects of CCFs and CAFs in 1oo3 systems.

The results of the case studies may increase the awareness to
ow CAFs can impact on the SIS performance and encourage that
ontribution of CAFs are considered in analyzes carried out design
nd in the operational phase. It is necessary to investigate the root
auses and possible influence factors of CAFs. Possible solutions
o decrease cascading intensities may include reducing functional
ependence or sharing loads, enhancing absorptive ability and
esistant capacity. In the operation phase, when determining
roof test interval of SISs, the potential effects of CAFs should also
e considered to ensure that the SISs can met SIL requirement.

. Conclusions and future works

In this paper, a recursive aggregation-based approach has been
eveloped for incorporating CAFs into reliability and availability
nalysis of SISs. General approximation formulas for PFDavg of
ooN voted SISs have been proposed considering CAFs. The ef-
ects of cascading failures in the performance of SISs have been
resented in comparison with those by CCFs. Numerical examples
ave shown that the contribution of CAFs towards PFDavg relies
n not only the cascaded failure probability, but also the system
onfigurations. Such analysis can help designers and operators
42
better evaluate effects of dependent failures and estimate system
performance of SISs. The proposed approach has been illustrated
in the case study of SISs, but it must be highlighted that the ana-
lytical formulas can be more generally applied to other industrial
KooN voted systems.

Independent/self-failures are assumed to be exponential dis-
tribution because the exponential distribution is the most used
life distribution in applied reliability analysis. However, many
other distributions, such as Weibull distribution for many me-
chanical systems, can also be considered by using the convolu-
tions in the approach.

In this paper, we assume constant cascading probability, which
is rather restrictive. It is worthy to consider statistical depen-
dency, such as time-dependent cascading probability between
CAFs. Further, the future work can involve performance assess-
ment for the SISs in high/continuous mode, where average fre-
quency of failure (PFH) are used as a measure. New approxima-
tion formulas for these SISs are needed.

Another topic to be explored is how to allocate SILs to reduce
required amount of risk with consideration of dependent failures,
like CCFs and CAFs. Traditionally, the allocation process often
excludes dependent failures that may exist within and between
SISs. It is thus of interest to perform further studies on the SIL
allocation considering dependent failures.
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