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Abstract

Wind energy has become a viable renewable energy source, and it has abundant potential in both

onshore and offshore regions. The wind turbine is encouraged to implement in the deep waters with

the support of floating platforms for better wind profile and larger potential than onshore wind.

However, the wave load acting on the platform, coupled with varying wind load, introduces a

dominant disturbance to its stability. During the operation, the motion uncertainty of the platform

tends to compromise the system’s performance in terms of power maximization, power regulation,

and load mitigation. Various controllers are reported in the literature to deal with the platform

instability of floating wind turbines. However, it is a great challenge to achieve optimal power, power

regulation, and acceptable load mitigation in the presence of incident wind and waves. This paper

presents a review of the published control algorithms used to suppress the platform’s motion and

evaluates their performance with respect to platform motion minimization, load mitigation, power

optimization, and regulation. Potential controller performance improvement based on predicted

incident wind and wave is discussed. Recommendations and suggestions for further research are

also provided at the end.
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Nomenclature1

ANFIS Adaptive Neuro-Fuzzy Inference System2

ANN Artificial Neural Network3

AR Auto-Regressive4

ARIMA Auto-Regressive Integral Moving Average5

ARMA Auto-Regressive Moving Average6

BEM Blade Element Momentum7

CBP Collective Blade Pitch8

CBPC Collective Blade Pitch Control9

DOF Degree of freedom10

DAC Disturbance Accommodating Control11

DMD Dynamic Mode Decomposition12

EMD Ensemble Mode Decomposition13

ESPRIT Estimation of Signal Parameters via Rotational Invariance Techniques14

ELM Extreme Learning Machine15

FAST Fatigue Aerodynamics Structures and Turbulence16

FOWT Floating Offshore Wind Turbine17

GSPI Gain-Scheduled Proportional-Integral18

GP Gaussian Process19

HAR Hammerstein Auto-Regressive20

HAWC2 Horizontal Axis Wind Turbine Code-Second generation21

HAWT Horizontal Axis Wind Turbine22
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HMD Hybrid Mass Damper23

IBP Individual Blade Pitch24

IBPC Individual Blade Pitch Control25

IEA International Energy Agency26

LSSVM Least Square Vector Support Machine27

LCOE Levelized Cost of Energy28

LIDAR Light detection and ranging29

LPV Linear Parameter Varying30

LQR Linear Quadratic Regulator31

MLC Machine learning control32

MPC Model Predictive Control33

MBS Multi-Body System34

MIMO Multi-Input Multi-Output35

NREL National Renewable Energy Lab36

Prated Rated Power37

PI Proportional Integral38

Vrated Rated Wind Speed39

RNN Recurrent Neural Network40

SISO Single-Input Single-Output41

SINDy Sparse Identification of Nonlinear Dynamics42

SMC Sliding Mode Control43

SC Structural Control44
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SVM Support Vector Machine45

TRL Technology Readiness Level46

TLP Tension leg platform47

TMD Tune Mass Damper48

TLD Tuned Liquid Damper49

Vcut−in Cut-in wind speed50

Vcut−off Cut-off wind speed51

Vrated Rated wind speed52

Vwind Wind speed53

1. Introduction54

Wind energy is one of the leading commercial renewable energy resources, and it has significant55

potential in both onshore and offshore areas [1, 2]. There is a rapid increase in global wind power56

(onshore and offshore) production in the last decade to utilize this potential, as shown in Figure 1.57

The total installed capacity for onshore wind turbines has increased from 159GW to 651GW in the58

last decade. Moreover, an increase in the annual installed offshore wind energy capacity is reported,59

with a record capacity addition of 6.1GW annual offshore wind energy in 2019. An estimate of new60

annual offshore installed capacity may exceed 30 GW in 2030, with a compound annual growth rate61

of 18.6% for the first half and 8.2% during the latter part of the decade, as shown in Figure 2.62

1.1. Outlook of Offshore wind63

Wind characteristics in the deep sea are more steady, streamlined, and it has a higher annual64

mean speed than onshore wind [3, 4].Superior wind quality improves wind energy generation of wind65

turbines operating in the deep sea. 80% offshore wind energy potential of Europe lies in a water field66

deeper than 60 meters [5], and therefore, arises a need to install the wind turbine in the deep sea.67

Additionally, it is encouraged to utilize the offshore wind potential to ease the transition towards68

renewable energy resources and keep the global temperature at 1.5 degrees Celsius, according to69
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the Intergovernmental Panel’s recommendation on Climate Change (IPCC) [6]. The onshore wind70

farms pose environmental harm to human beings and wildlife (i.e., visual and noise impacts) [7–9].71

The hazards caused by the land-based wind farms and the low characteristics of onshore wind may72

be avoided by installing the wind turbines in the deep offshore regions73
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Figure 1: Cumulative installed (onshore and offshore) wind energy capacity of the world (data obtained from [10])
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Figure 2: New annual installation prediction until 2030 (data obtained from [11])
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1.2. Floating platform and associated problems74

Wind turbine placed on top of a floating platform is a feasible solution to operate in deep-sea75

as the economic constraint hinders the development of a fixed bottom support structure for wind76

turbines operating beyond 60m water depth. Building a fixed bottom platform for a wind turbine77

in the deep sea would likely increase the overall cost. Offshore oil and gas exploration in the deep78

sea greatly relies on floating platforms [12]. Similarly, wind turbines may be operated in the deep79

ocean using a floating platform attached to the sea bottom. Several concepts exist in the literature80

to achieve platform stability for FOWT such as Barge, Tension leg platform (TLP), Spar-buoy and81

Semi-submersible, as shown in Figure 3. These concepts include buoyancy stabilized platforms,82

mooring lines stabilized platforms, and ballast stabilized platforms . Buoyancy stabilized platforms83

use submerged body volume to achieve stability, e.g., Barge and Semi-submersible platforms. The84

tension leg platform (TLP) is a typical example of mooring lines stabilized platform, where the85

platform is stabilized using mooing lines. In comparison, the spar-buoy is an example of ballast86

stabilized platform that benefits from the heavy ballasting of the platform’s bottom to stabilize87

the structure. There are two type of wind turbines that are used to generate wind energy i.e.,88

Horizontal axis wind turbines (HAWTs) and Vertical axis wind turbines (VAWTs), however the89

scope of this paper is limited to the HAWTs operating in deep-sea.90

Semi-submersible 
platform Barge platform

Tension-leg
Platform 

Spar-buoy 
platform

Figure 3: FOWT platforms (Semi-submersible platform, Barge, Tension-leg, and Spar-buoy)

Using these floating platforms, wind turbine extract energy from the superior offshore wind91
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operating in the deep ocean. However, floating platforms introduce additional loadings (hydro-92

dynamic loading, mooring loading) due to incident wave along with the aerodynamic loading on93

wind turbine. Incident wave associated loadings of floating offshore wind turbine (FOWT) leads94

to additional 6 degree-of-freedom (DOF) motion compared to the fixed bottom WTs, as shown in95

Figure 4 where a FOWT is stabilized using a TLP base. The stability of the floating platform is96

one of the dominant concerns of FOWT technology which may directly impact the performance97

and safety of FOWTs, leading to increased cost [13].98

The performance of a FOWT system can be significantly compromised due to the motion of a99

floating platform. An unstable platform may decrease the nominal wind turbine area and affect100

energy generation. Platform motions may also increase tower loads compared to fixed bottom101

wind turbines and negatively impact the system’s structural life. Furthermore, it also increases102

the cost and weakens the economic advantage as compared to onshore wind turbines. Various103

control algorithms attempt to achieve efficiency and platform motion suppressions by controlling the104

blade pitch actuator and generator torque of wind turbine. There have been numerous controllers105

designed to address the shortcomings of floating platform using a range of controllers, such as106

Proportional Integral (PI), Linear Quadratic Regulator (LQR), Linear Parameter Varying (LPV),107

and Model Predictive Control (MPC) [14–29]. Some advanced control algorithms utilize the blade108

pitch mechanism by actuating blades identically (Collective blade pitch) or separately (Individual109

blade pitch) to provide the wind turbine required aerodynamic thrust to suppress platform motions,110

maximize power generation and load mitigation. In comparison, Tuned Mass Damper (TMD)111

based structural control systems [30–33] introduce an extra degree of freedom and decouple the112

pitching mechanism from providing the required thrust to reduce the pitching phenomena. Advance113

controllers like MPC based on Light Detection and Ranging (LIDAR) information [25] incorporate114

the incident wind disturbance before reaching the wind turbine, thus enhancing the performance115

compared to traditional feedback controllers that function after experiencing incident disturbance.116

However, the levelized cost of energy cost of energy (LCOE) of FOWT is still higher than the fixed117

bottom wind turbines. Improved control mechanism may elevate the performance of a FOWT that118

would lead to reduction in LCOE.119

The performance of advanced controllers can be improved by incorporating wind and wave fore-120

cast techniques. Predicted wind and wave information ahead of its encounter with the wind turbine121

can provide preview based advanced controllers enough time to respond to incoming disturbances122
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Figure 4: Floating offshore wind turbine in its surroundings

and orient wind turbine for optimal and efficient performance. The wind turbine industry is al-123

ready benefiting from the wind forecast for wind farm planning, operation, and grid integration124

[34]. Numerous forecasting techniques for wind and wave are present in the literature, ranging from125

long-term (3 days - 1 week or more) to short-term(few seconds – 30 minutes) prediction horizons126

[35–50]. However, the controller response time for FOWT falls in the short-term prediction horizon127

category [51, 52]. An accurate short-term disturbance prediction incorporated in modern control128

systems, e.g., feed-forward control or MPC, can enhance the performance in terms of platform129

stability and loadings and deal with the incident disturbance better than the counterpart feedback130
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controllers, resulting in further lowering the LCOE.131

1.3. Objective132

This paper reviews the controllers designed for FOTWs aiming at the platform stability enhance-133

ment, maximum power generation and structural life extension. A detailed discussion is presented,134

and potential improvements based on the reviewed controllers are provided. The paper outline is135

as followed: Section 2 presents the system overview. Control structure and methodologies used136

for FOWTs are discussed in Section 3. In Section 4, the wind and wave prediction for the control137

design is introduced. The discussion and the summary is presented in Section 5 and Section 6,138

respectively.139

2. System description140

FOWT operates in the deep sea with an extension of a floating platform attached to the sea141

bottom with mooring lines. However, the foundation of a FOWT exhibits 6 degrees of motion142

due to incident wave, as shown in Figure 4. The performance and operation of the wind turbine143

is coupled with the platform motion. Therefore, it is essential to minimize the platform motions144

during the operation of FOWT. A description of the operation of the FOWT is provided below.145

2.1. Wind turbine146

Wind turbines deployed in the deep sea operate similarly to land-based wind turbines to extract147

kinetic energy from the wind. Air passes through the blades and causes the rotor to rotate. The148

rotor is connected to a generator which produces energy. The maximum possible energy extracted149

from wind is 59.3%, known as the Betz limit [53]. Maximum power (Pmax) generated by a wind150

turbine in a given scenario can be calculated by the following formula, as shown in Figure 5.151

Pmax =
1

2
ρAv3Cp(λ, β) (1)

152

λ =
ΩR

v
(2)

where153

• ρ= Air density154
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• A= Swept Area155

• Cp = Power coefficient (based on tip-speed ratio (λ ) and blade pitch angle β )156

• R= Rotor radius157

• Ω= Angular speed158

• v= Wind speed159

A

v

R

Figure 5: Wind energy extraction using wind turbine

The incoming wind speed is an essential factor in the control system design, control objectives160

and operation of wind turbines. The operating spectrum of a wind turbine is divided into three161

significant regions, as shown in Figure 6. In region I, the wind speed is less than the cut-in wind162

speed (Vcut-in), and the wind turbine is in parked condition. In region II, the wind speed value is163

less than the rated value (VRated). The control objective focuses on the maximum energy extraction164

from the wind by keeping the blade pitch at an optimal angle. In region III, where the wind speed165

value surpasses the (VRated), the objective shifts towards regulating generated power with pitch166

angle activity. When the wind speed reaches cut-off wind speed (Vcut-off) the mechanical brakes are167

applied for the safety of wind turbine. In the case of FOWTs, the number of control objectives are168

increased with the consideration of platform motion. For a FOWT, the floating platform, regardless169

of being tied to the seabed, may generate significant problems due to incident waves and wind loads.170
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Figure 6: Operating regions of a wind turbine

2.2. Framework of FOWT control systems171

FOWTs are prone to platform motions due to floating base which leads to performance deteriora-172

tion. However, an effective control system may deal with the platform motions and achieve optimal173

wind energy generation. Existing control mechanisms for fixed bottom wind turbine are rendered174

infeasible for FOWTs due to the additional platform motion of FOWT. However, fixed-bottom175

wind turbine controllers maybe modified to include the platform motion suppression objective.176

Majority of the FOWT controllers are based on feedback control mechanism. In addition, there177

are advanced feed-forward controllers available in the literature as well. A detail discussion on178

these controllers is given in the Section 3. The benefit of feedforward mechanism may be further179

extrapolated by using incident wind and wave forecast to improve the controller performance. An180

account of incident wind and wave forecast is given in Section 4.181

3. FOWT Control structure182

Control system of a wind turbine is responsible for handling the aerodynamic wind load and183

converts the wind energy into electric power. In general, there are multiple control levels to deal184

with the wind turbine operation. The primary-level supervisory control level deals with the startup185

and shutdown of the wind turbine. The wind turbine is only started up when there is enough186

wind, and shutdown is triggered in the presence of excessive wind, as it may harm the wind turbine187

structure. The second-level operational control is dedicated to achieving control objectives based188
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Figure 7: Associated platform motions of FOWT

on the wind turbine operating region, as shown in Figure 6. In comparison, the third-level control189

is concerned with the yaw and pitch actuation system and related electronic units. The scope of190

this paper is limited to the second-level operational control of a wind turbine. Later in this section,191

the control objectives and control methodologies used to achieve these objectives for FOWTs are192

discussed in detail.193
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3.1. Control objectives194

Control objectives of a wind turbine vary based on the operating regions, namely maximum195

power generation operating in region II and power regulation in III, as shown in Figure 6. There196

are generally two control loops to achieve these control objectives, as shown in Figure 8. Operating197

in region II, the torque control loop of the wind turbine is used to maximize the generated power198

by operating near the optimal Cp by using fixed blade-pitch angle to an optimal value, based199

on equation 3. In region III, the objective shifts towards regulating the generated power at the200

rated value. The blade-pitch control loop regulates the aerodynamic loads and generated power201

by manipulating the blade pitch value. There are two standard pitching strategies for the region202

III pitch control loop, pitch-to-stall and pitch-to-feather [54]. The generator torque control while203

operating in region III, is calculated based on the relationship in equation 3.204

However, the major problem associated with FOWT occurs due to platform motion while op-205

erating in region III. The wind turbine structure undergoes undesired pitching phenomena, often206

called negative pitching [55]. The frequency of the platform is coupled with the blade pitch mecha-207

nism while operating in region III, causing a surge in the pitching motions of the platform leading208

to issues like poor power quality and increased loads. Therefore, an adequate control mechanism to209

achieve the standard wind turbine control objectives and deal with the platform pitching phenomena210

associated with floating platform of FOWT is needed.211

Tgen =
πρR5

rotorCp,max

2λ2
oN

3
ω2
gen = Kω2

gen (3)

Tgen =
Prated

ηgenωgen
(4)

where212

• Tgen=Generator torque213

• ρ= Air density214

• Rrotor= Rotor radius215

• N= Gear box ratio216

• Cp,max = Maximum power coefficient217
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• λo = tip speed ratio related to Cp,max218

• ωgen= Generator rotational speed219

• ηgen= Generator efficiency220

• Prated= Rated generated power221

A range of system models are available in the literature, that are used to develop control schemes222

for FOWT and preview the outcome without running the actual wind turbines. Appendix A223

contains the details of these simulation codes for the readers further interested in FOWT system224

models.225

3.2. Control methodologies226

Control methodologies for FOWT to deal with the undesired platform associated motions while227

operating the wind turbine at optimal level are based on traditional single-input single-output228

(SISO) and advanced multi-variable multiple-input-multiple-output (MIMO) mechanisms. This229

section provides a discussion on the range of these controllers reported in the literature.230

3.2.1. Traditional FOWT controllers231

The traditional FOWT controllers are simple and easy to design control mechanisms that are232

based on the single-input single-output (SISO) principle. Independent control loops are applied in233

parallel to achieve multiple control objectives, as shown in Figure 8.234

Platform pitching motion of FOWT was minimized by keeping the frequency of the blade pitch235

mechanism lower than the resonance frequency of the platform by Larsen et. al [14]. For region236

2, a variable speed control loop was used to maximize the generated power. A region of constant237

speed was introduced between regions 2 and 3, followed by a constant torque loop in region 3.238

Pitching action is determined by a gain-scheduled proportional-integral (GSPI) controller for region239

3. Improved platform pitching was achieved using less aggressive control methodology at the cost240

of lowered power quality and poor rotor speed regulation.241

Another GSPI controller based solution for negative platform damping problem of barge based242

FOWT was provided by Jonkman [15]. Two independent SISO controls were designed; A generator-243

torque controller to generate maximum power in region 2 and keep the power captured at the rated244

value in region 3. A GSPI controller was considered to adjust rotor speed as a function of blade pitch245
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Figure 8: Wind turbine standard control loops

activity based on the collective blade pitch (CBP). Jonkman et al. [15] designed additional control246

loops upon facing complications regarding platform oscillations and power fluctuation during the247

early design synthesis. Tower-top feedback control, active pitch-to-stall control and a controller248

based on detuned gains were the additional loops included in the original design mechanism. These249

additional loops were proposed to minimize the fore-aft motion of the tower, instability of platform250

yaw, and excessive barge motions, respectively. Tower top feedback control failed to improve the251

pitching motions of the platform.252

Furthermore, active pitch-to-stall control was found good at power regulation for the barge253

platform at the expense of increased platform pitching motion. Whereas, detuned gains proved254

to be the most suited controller among others, as it reduced the blade activity and addressed255

the platform pitching issue. This configuration is used for testing newly designed controllers and256

labeled as baseline FOWT control [56]. The use of individual blade pitch (IBP) and multiple-input-257

multiple-output (MIMO) state-space controllers were suggested to enhance performance further.258

Baseline controller designed by Jonkman et al. [15] was analyzed for different platforms by259

Matha et al. [57]. The TLP, Barge, and Spar-buoy floating concepts were compared concerning260

fatigue loads and platform stability. Matha et al [57] modified the baseline controller for the spar-261

buoy platform. Constant torque control was designed to improve the platform pitching motion while262

operating in region 3, contrary to a constant power controller originally designed by Jonkman et al.263
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[15]. Meanwhile, the controller’s bandwidth was kept low to avoid coupling with the frequency of264

the platform. It was noticed that the barge platform is cost-effective, but its inability to withstand265

incident loads may cause stability issues. The spar-buoy platform showed resistance towards tower266

loading as compared to the barge platform. However, the deployment of the spar-buoy platform267

is costly due to its intricate design and assembly. In comparison, TLP was found to have better268

performance among the compared concepts. However, it was found that the anchoring system of269

TLP may increase the cost.270

Platform instability was addressed by using the pitching velocity as an input to regulate the271

generator rated speed in region 3 [16]. The generator speed was used to provide the counter thrust to272

suppress the platform pitch motion and achieve platform stability. This unique control methodology273

reduced negative damping and blade pitch activity at the cost of acceptable rotor speed fluctuations274

and power variation. In a subset simulation, Individual blade pitch control (IBPC) was implemented275

using the Coleman transformation [58] to reduce blade loads. However, the IBPC increased the276

blade pitch activity resulting in inadequate blade load reduction.277

A control strategy based on the estimation of wind speed to suppress the negative damping for278

the Hywind concept platform [55] was proposed by Skaare et al. [17]. The control mechanism de-279

signed by Skaare et al. [17] improved the tower loading and the nacelle oscillations. Simultaneously,280

the poor rotor speed regulation and the reduced power generated were observed compared to the281

conventional blade pitch mechanism. Moreover, since the strategy was based on the estimated form282

of wind in region 3, this control scheme’s effectiveness was mainly governed by the wind estimation283

quality.284

3.2.2. Advanced control methods285

The classical SISO controllers are easy to realize controllers, however may not be a suitable op-286

tion for highly coupled multi-objective systems like FOWTs. The design process of SISO controllers287

requires a thorough understanding of the system and careful tuning of control loops separately. Oth-288

erwise, multiple control loops may couple with each other and affect the overall system operation.289

As suggested by Jonkman et al. in [15], advanced controllers based on multi-input multi-output290

(MIMO) may further improve the performance of FOWT due to its inherent ability to deal with291

short comings of SISO control. Multi-variable MIMO control schemes such as Linear Quadratic292

Regulator Control (LQR), Linear Parameter Varying control (LPV), Model Predictive Control293
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(MPC), used for FOTWs reported in the literature are described below.294

Most of the advanced controller designed for FOWT are based on State-space control. State-295

space control design involves linearizing the non-linear system model at an operating point xop such296

that state x transforms into the deviation ∆x around the xop. Later, linear control theory is applied297

to design a controller to achieve the given objectives. State-space equation is shown below,298

∆ẋ = A∆x+B∆u+Bd∆ud

∆y = C∆x+D∆u+Dd∆ud
(5)

where299

• x= xop+∆x300

• y= Measurement matrix301

• u= Actuator matrix302

• ∆ud= Disturbance matrix303

• A = State matrix304

• B = Actuator Gain matrix305

• Bd= Disturbance gain matrix306

• C= Output matrix307

• D= Feed-through inputs308

• Dd= feed-through disturbance309

Several advanced controllers were designed using MIMO state-space methodology on Barge,310

TLP, and Spar-Buoy platform based FOWT [20–22]. The collective blade pitch controller (CBPC)311

and IBPC were designed for a barge platform [20]. The IBPC and wind disturbance-based Dis-312

turbance Accommodating Control (DAC) were designed for FOWTs on a barge, and TLP [22].313

The controllers designed for Barge and TLP were later used to investigate the performance of the314

Spar-buoy platform [21]. In region 3, the CBPC scheme for FOWT showed improvements in better315

speed regulation, mainly due to constant power control instead of constant torque control and the316

platform pitch motion reduction.317
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IBPC was utilized to deal with the overlapping blade pitch commands issued for the rotor speed318

control and the platform pitch minimization [21]. IBPC mechanism improved tower loading for the319

barge platform. In comparison, the performance of IBPC was found limited due to the relatively320

lower platform frequency spar-buoy platform. On the other hand, DAC has an advantage due to321

improved rotor and power regulation based on increased blade pitch actuation for the spar-buoy322

platform.323

Controller-based on IBP achieved improvements when applied to the Barge platform compared324

to the CBP control [20]. DAC was rendered not useful for barge platform because the barge platform325

is mainly influenced by waves; however, DAC is used to influence wind disturbances. [22]. IBPC326

was shown to have improvements regarding rotor speed and power regulations for Barge and TLP,327

but for Spar-buoy, when dealing with the platform pitching, this scheme was not as effective due328

to the low natural frequency of the platform. Further improvements related to power and speed329

regulations were achieved using DAC for the TLP platform.330

A study was conducted on the input-output relation of the 10MW FOWT to find out the331

frequencies with a substantial impact on the output with the least control variable impact by F.332

Lemmer et al. [23]. The wave information was added to produce a realistic environment and333

representation of the coupled frequencies with the parametric wave excitation model from [59].334

Wind and wave disturbances with significant impact on the output due to the minimum control335

actuation were chosen. This information was used to design an LQR controller based on input blade336

pitch angle and generator torque, and a comparison to a conventional PI controller was made. The337

designed controller was noticed to have improvements concerning system response reduction and338

damping various resonances. However, the control mechanism could not completely overcome the339

effect of incoming wave disturbance.340

Gain scheduled output feedback H-infinity control based on collective blade pitch approach for341

FOWT operating in region 3 was designed by T. Bakka et al. [18]. A simplified model is generated342

based on significant FAST model dynamics for control synthesis, namely, the rotor generator and343

tower. Linear models are generated at multiple operating points based on output feedback H-infinity344

control, and a scheduling mechanism is developed. Substantial improvements were found in terms345

of the tower loadings and rotor speed regulation.346

Linear Parameter Varying (LPV) and Linear Quadratic Regulator (LQR) developed by using347

gain-scheduled (GS) blade pitch controller for a barge platform-based FOWT [19]. The objective348

18



was to regulate the generated power and minimize structural loadings while operating in region 3.349

The LPV was further modified with the state feedback and output feedback control mechanisms350

and compared with the baseline wind turbine [15, 60]. It was found that the GS-LPV and GS-351

LQR controllers performed better in terms of power regulation and platform pitch minimization.352

Whereas, LPV-GS controller with state-feedback has shown superior improvements in platform353

pitch motion damping than the rest of the controllers.354

Input/output feedback linearization (IOFL) and Sliding Mode Control (SMC) methods were355

used to analyze the effects of incident disturbance on platform motions and regulate generator356

speed and of FOWTs operating in region 3 [24]. A simplified model based on the DOFs of blade357

pitch and generator speed, and platform pitch was obtained. Later, a simplified non-linear model358

based on series of linearized simplified models is designed. The switching mechanism between these359

linear models is obtained based on the LPV model as a blade pitch angle function. Compared360

with the baseline model, SMC showed improvements regarding generator speed regulation, while361

the platform pitch motions were on a similar level as for the baseline wind turbine. The reason362

for speed regulation was, the wind speed was considered for control design. However, the platform363

motions were observed without adding to the control design. Contrary to SMC, IOFL control364

causes increased platform pitching motion when compared with the baseline controller. Another365

important finding was observed that the performance of the developed controller was degraded366

when implemented on complex models.367

Model predictive control (MPC) is an advanced control method that predicts future action368

based on the internal system model’s available information fulfilling a set of constraints. Numerous369

examples are available in the literature regarding the use of MPC for fixed bottom wind turbines.370

[61–64]. D. Schlipf et al. [25] designed a non-linear-MPC (NMPC) for FOWTs operating in region371

3 based on the simplified Sander model [65]. The incident wind and the wave preview was used372

for the controller design based on CBP and generated torque. The control objective was to keep373

the generated power and rotor speed steady based on an ideal estimation of the wind and the374

wave preview [61]. The designed controller was later used on the baseline FOWT [15] placed on375

a spar-buoy platform under an intense wave and wind profiles. The controller showed satisfactory376

results regarding the generated power and speed regulation error, including the blade load reduction;377

However, the NMPC controller requires higher computational resources.378

Following the CBP-based non-linear MPC design for FOWT in [25], S. Raach et al. [26] came379
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up with an extended version of NMPC based on the IBP mechanism. The IBPC-NMPC included380

the rotor and the blade load reductions alongside the existing benefits of the original CBP-NMPC,381

platform pitch reduction and rotor speed regulation. After the controller design, its successful382

implementation on the baseline wind turbine exposed to the turbulent loads was achieved. The383

rotor’s fatigue loads were reduced significantly by using the extended NMPC based on the IBP384

mechanism.385

An optimal linear MPC implemented on a 10 MW FOWT by F. Lemmer et al. [27]. A tunable386

controller was designed to provide early-stage design assistance during the fabrication of FOWT.387

The linear-MPC based on the MIMO system was designed to operate in region 3 to regulate the388

power to a constant value and minimize the structural loads. In comparison, maximum power389

generation was the primary objective for region 2. Linear-MPC showed adequate improvement390

than a PI controller for the rotor speed and generator power regulation. Moreover, the tower top391

movement and negative platform pitch were also minimized.392

3.2.3. LIDAR based advanced control393

Reduction in LCOE of FOWT may be achieved through enhanced structural performance394

against incident loads . For this purpose, we have discussed several feedback controllers. One395

major drawback is that these control mechanisms are designed to respond to the incident impact396

after its interaction with the system structure. For FOWT, wind turbine structure experiences the397

incoming wind and wave and feedback control system is activated after the interaction of incoming398

wind and waves with the system. Such interaction may degrade the structural life over a period399

of time. Thus traditional controllers may not achieve extended structural life and would increase400

LCOE subsequently.401

To circumvent the shortcomings of feedback controllers, the researchers may use feedforward402

control loops to deal with the incident disturbances before contacting the wind turbine. LIDAR is403

used to measure the incoming wind disturbance. There have been numerous attempts made to use404

LIDAR for fixed-bottom wind turbines. [66–68], LIDAR is based on Doppler’s principle, where a405

laser beam is spread out which upon reflection is received [69]. The wavelength of the transmitted406

and received beam is used to estimate the incoming wind speed. Two types of LIDARs are available407

based on the wind speed calculation methods, i.e., continuous and pulsed wave. The continuous408

wave LIDAR uses a laser beam focused at the focal point while the pulsed wave LIDAR calculates409
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wind speed at multiple distances [66].410

Unlike fixed-bottom wind turbines, preview-based LIDAR assisted control for FOWT is still411

under development. An extended version of feedforward collective blade pitch control, initially used412

for fixed-bottom wind turbines in [70], was designed for FOWT using H-infinity control synthesis413

by S.T. Navalkar et al. [28]. Based on the combination feedforward-feedback newly formulated414

CBPC was found useful at minimizing the loads and generator speed oscillations. D. Schlipf et al.415

[29] designed a CBP-feedforward controller for FOWTs based on LIDAR data. The feedforward416

control was designed using a simplified non-linear model for ideal wind preview and used along with417

the traditional feedback controller designed by Jonkman et al. [56]. Later, the design procedure418

was followed by using nacelle-based LIDAR information instead of ideal preview wind. With the419

addition of wind uncertainty, a realistic feedforward controller proved useful compared with the420

standalone baseline controller to minimize rotor speed and power fluctuation and reduce blade,421

rotor shaft, and tower loads, respectively.422

3.2.4. Structural control423

There is another approach reported in the literature to minimize the structure loadings, and424

external influences called structural control (SC). In this methodology, extra DOFs are introduced425

to influence the structural behavior of the system. This methodology has been vastly used to426

minimize the oscillations and vibrations of mechanical structure efficiently, and systems [71–74].427

For FOWTs, the aim of using the SC is to damp the platform oscillations and tower loading. The428

critical advantage of the SC for the FOWT is observed while operating in region 3. Blade pitch429

mechanism is not required to regulate the platform stability, a significant issue observed in region 3,430

and SC addresses the platform’s pitching phenomenon. The SC is based on passive, semi-active, and431

active control approaches [75]. Passive structural control systems use a set of constant parameters432

to damp the oscillations. Whereas, the semi-active controllers are mainly tunable over a period of433

time. Contrary to the passive control approach, active structural control differs based on generating434

the restoring force with dedicated actuators to address the structure loading and oscillation.435

Passive and active structural control schemes based on two independent Tuned Mass Dampers436

(TMDs) to deal with the loading and damp the platform oscillation were designed by M. Lackner437

et al. [30]. These TMDs were placed in the nacelle of a floating barge, operating in region 2 and438

3. M. Lackner et al. [30] modified the baseline wind turbine [15] by integrating TMD systems439
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and incorporating passive, semi-active active structural control synthesis. Based on input-output440

data, a high order design model is created using system identification. The control synthesis is441

achieved based on the loop shaping mechanism. It was observed that both techniques reduced wind442

turbine loadings when compared with the baseline wind turbine. On the other hand, the complexity443

and overall cost were increased due to the addition of TMDs. Moreover, active structural control444

outperformed in reducing the tower’s fore-aft fatigue load at the expense of energy consumption,445

which may be obtained from the high wind while operating in region 3. However, in region 2,446

active structural control proved costly, and for this purpose, a hybrid mass damper (HMD) was447

incorporated to work as passive TMD while operating in region 2.448

Nacelle-based TMD system used Lackner et al. [30] is redesigned by Namik et al. [31]to449

examine the impact of actuator dynamics on TMDs. Load reduction and power consumption were450

also investigated for the passive and active control strategies on a barge platform-based FOWT.451

Although the newly designed controllers followed the simulation trends as shown by Lackner et al.452

[30] concerning load reduction, the redesigned TMD system achieved platform pitch minimization453

by consuming relatively less average power.454

Simplified models of the Mono-pile, Barge, Hywind Spar-buoy, and TLP were used to design an455

optimal passive TMD based on genetic algorithm by Stewart et al. [32]. This TMD was found to456

reduce the side-to-side tower fatigue load, which is one of the main components of fatigue loads of457

FOWTs, better for barge and mono-pile than the TLP and Spar buoy platforms.458

A Semi-active TMD placed in the nacelle of a wind turbine was used to minimize the incident459

loads for two platforms: a fixed bottom mono-pile and a TLP, while operating in region 2 and 3460

[33]. The designed semi-active TMD has a low power energy source, and it swiftly switches between461

active and passive modes. This mechanism minimizes the side-to-side tower loading of mono-pile462

and slackline incidents regarding TLP. A platform-based TMD for barge platform FOWT is used463

to minimize the platform motions and tower loading while operating in region 2, and 3 [76]. A464

simple static output-feedback mechanism was proposed to generate the stroke, using generalized465

H∞ control. Input-output linear model was obtained using system identification. Improved results466

were obtained in terms of fatigue load and generator power error reduction, while upon comparison,467

the generalized H∞ control overperforms H∞ structural control. Similarly, a Multi-layered Tuned468

liquid damper (TLD) was developed in [77] for a spar-buoy floating platform and was found useful469

to minimize platform motions.470
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The traditional passive TMD system’s performance was improved by introducing an inerter in471

the system [78]. The proposed TMD system was placed in the nacelle of the FOWT attached to472

a barge. The improvement was evaluated in the presence of real incident disturbances, waves and473

wind. This novel extension of the TMD was found helpful in reducing tower loading. In a relatively474

similar approach, a STAM (sewing thread artificial muscle) based on thermal actuation attached to475

mooring lines of the TLP platform was proposed to minimize platform pitching and tower loading476

for regions 2 and 3 [79]. The active mooring method showed improved results regarding tower477

loading and pitching motions.478

4. Wind and wave forecast algorithms for FOWT control479

Incident disturbance forecast is an essential feature of advanced control algorithms like predictive480

model control and feedforward control. Unlike feedback control, where the controller responds to481

the disturbance after the system interacts with it, feedforward controllers react to the preview of482

incoming disturbance ahead of its contact with the system. This approach elevates the performance483

because the incident disturbance preview provides the controller enough time to respond to the484

incoming disturbance and adjust parameters to achieve control objectives. Preview-enabled control485

also enhances the system’s structural life as it responds to the incident disturbances ahead of its486

contact with the system structure.487

FOWTs are exposed to incident wind and wave disturbance operating in the deep sea. A lot of488

controllers are designed to stabilize the platform and achieve the control objectives by minimizing489

the effects of wind and wave disturbances. However, the performance and structural life of FOWTs490

is still lagging behind when compared with the fixed bottom offshore wind turbines, as most of these491

control systems are feedback control systems. The incident wind and wave prediction may effectively492

improve the performance, loading, and structural life of FOWTs with the help of advanced control493

algorithms like MPC or feedforward control, as proven by the LIDAR based incident wind preview494

enabled feedforward controllers [29].495

There are several forecast techniques for wind and wave are reported in the literature, which496

could be used for preview-based advanced controllers. However, there are issues concerning the497

prediction horizon length and the forecast quality are to be considered when using these prediction498

mechanisms. In this section, wind and wave forecast algorithms are discussed.499
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4.1. Wind forecast500

The wind turbine industry extensively employs the wind forecast to examine a region’s seasonal501

power production, grid integration, and wind farm design [80]. Based on its application, the length502

of the prediction horizon of wind forecast ranges from few hours to months, namely; short, medium,503

and long-term. However, the prediction horizon length for individual wind turbine control systems504

based on preview information is few seconds. Advanced controllers such as feedforward control505

require a preview time of a few seconds [51]. Similarly, MPC uses a 5-10s long horizon to compute506

the input values for system response [52]. Therefore the scope of this paper is limited to the wind507

forecast for wind turbine control, referred to as ultrashort wind forecast in this paper. An overview508

of models and devices used for ultra-short wind forecasts is provided below.509

Statistical time-series models used for wind forecasts are based on the historical site data. Based510

on the historical wind data, these models tend to learn the underlying patterns in the available511

data and calculate the future values ahead of time. Widely used conventional statistical models512

for wind forecast includes autoregressive model (AR) [42, 43], autoregressive moving average model513

(ARMA) [44], autoregressive integral moving average (ARIMA) [45], fractional-ARIMA [46], and514

Hammerstein auto-regressive (HAR) [47] etc. Statistical methods heavily rely on historical wind515

data thus may provide faulty wind forecasts in the absence of enough historical site data.516

Machine learning (ML) techniques rely on historical data and consider the atmospheric variables517

that affect the wind speed, such as humidity, elevation, and atmospheric pressure for wind forecast.518

Therefore, ML methods deal with the nonlinearity of wind better than the statistical methods. ML519

non-linear prediction methods include artificial neural networks (ANNs) [81, 82], recurrent neural520

networks (RNN) [83], support vector machine (SVM) [84, 85], least-square support vector machine521

(LSSVM) [86, 87], Gaussian process (GP) [88], Bayesian networks [89], and extreme learning ma-522

chine (ELM) [90]. Overfitting and minimum local existence are major drawbacks of ANNs [91].523

Whereas ELM is proven to have better performance than conventional ANNs and is used for both524

speed estimation and power forecasting [90, 92, 93]. Hybrid models, a combination of existing525

model techniques, are also reported in the literature for improved performance. For example, A526

linear ARIMA and a non-linear ANN are used in a combination for improved wind forecast [94].527

Similarly, a combination of ELM and ARIMA is shown to have enhanced performance for wind528

forecast [95].529

LIDAR is used in the wind turbine industry for several applications such as wind power es-530
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timation and site analysis [96]. They are also used to provide the preview of incident wind for531

an ultrashort scale horizon upstream of the wind turbine. Wind speed is calculated based on532

the reflected lasers from the incoming wind particles emitted from LIDAR. Preview measurement533

of incoming wind speed for FOWT control is discussed in Section 3]. LIDAR-based forecasting534

techniques are reported to outperform forecasting techniques like ARIMA and persistent methods535

[97, 98]. However, the higher cost and weather-dependent performance are challenges yet to be536

further researched.537

4.2. Wave forecast538

Incident wave accounts for a significant part of FOWT loads when minimizing the platform539

motions. Therefore, it is also an essential feature to be considered alongside the incident wind in540

the preview-based FOWT control. Feedforward controllers based on the wind and wave preview may541

improve the FOWTs loading and platform stability compared to feedback controllers by providing542

the system enough time to deal with the incoming disturbances. Many wave forecast methods are543

reported in the literature, such as physics-based models, statistical models, and machine learning544

models. A discussion on these models is given below.545

Physics-based models are numerically designed models that solve the complexity of waves based546

on the physics behind wave mechanics. Physics-based wave forecast models include WAVEWATCH547

III (WW3) [99], European Center for Medium-range Weather Forecasts (ECMWF) [100], and548

SWAN (Simulating Waves Nearshore) [101]. These models are generally used for long-term pre-549

diction horizons over an extensive area. In contrast to the physics-based theory-driven models,550

data-driven statistical and machine learning provide accurate predictions based on the historical551

site data. These time-series algorithms extrapolate the past values to provide future wave predic-552

tions. Statical wave prediction models for wave prediction reported in the literature includes AR,553

ARMA, ARIMA [48–50]. As compared to statistical models, machine learning prediction models554

provide improved nonlinear trends identifications in time series wave data. ANN, RNN, CNN, and555

ANFIS based prediction models [102–106] are some of the examples of machine learning models556

used for wave prediction in the literature. A comparison of time series-based models and physics-557

based model (ECMWF) at multiple sites highlights the weakness and strengths of these models558

[107]. Physics based model performs better for longer prediction horizons, whereas the time series559

models are better for a shorter prediction horizon. Combinations of physics-based and data-driven560
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statistical models are also reported in the literature [108, 109].561

5. Discussion562

FOWT technology is still in the pre-commercial phase as compared to the fixed-bottom off-563

shore wind turbines. The primary concern of FOWT development is the associated cost of energy564

production and the potential to achieve a cost-effective advantage compared to the fixed-bottom,565

which is deteriorated by the floating base of FOWT. However, an efficient control mechanism may566

deal with the shortcoming of the platform, making it economically feasible. These control methods567

aim to lower LCOE while operating the region below and above the rated wind speed, making it568

economically feasible. Several control schemes are recently developed for this purpose.569

5.1. Comparison between traditional SISO and advanced controllers570

The conventional SISO feedback controllers are a natural choice for FOWTs by manipulating571

the aerodynamic wind load using blade pitch angle and generator torque. Its simple design and572

easy realization make them a suitable option for fixed-bottom wind turbines. However, the floating573

platform’s natural frequency is lower than the fixed-bottom wind turbines foundation, which causes574

negative platform damping operating in region III [14]. Controllers designed for fixed-bottom wind575

turbines may increase the negative platform damping when used for FOWT. Several SISO control576

strategies are reported in the literature to deal with this issue; refer to Table 1 for details. For577

example, negative platform damping is addressed by reducing control bandwidth; however, power578

and speed variations were observed [14]. B. Skaare et al. [17] came up with wind speed estimator-579

based blade pitch control to deal with the platform’s floating motions. Improvement in terms580

of platform motion damping was achieved at the cost of rotor speed and power output deviation.581

Jonkman et al. [15] utilized Gain scheduled SISO controller with detuned gains to deal with negative582

platform damping on a barge platform. However, achieved performance is likely to increase using583

MIMO controllers, suggested by Jonkman et al. [15]. The coupling between the unmodelled DOF584

and SISO control loops of FOWT causes inadequate platform motion minimization, power and585

rotor speed regulation.586

On the other hand, advanced MIMO controllers can deal with cross-coupling between the un-587

modeled DOF and control loops better than SISO controllers. These controllers are based on the588
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linearized system model and exhibit superior performance compared with the baseline SISO con-589

troller. The conflicting blade pitch commands for the platform and rotor regulation are dealt with590

Individual blade pitch control (IBPC) by creating asymmetric rotor load. However, the platform591

properties affect the performance of MIMO controllers, as shown in the Table 4. For example, the592

Barge platform is prone to increased loads due to the inherent platform motion inducing incident593

waves. MIMO control based on Individual blade pitch control (IBPC) used for barge results in594

lowered tower loads and platform motion. However, the rotor and power regulation are at a similar595

level compared to the baseline controller. The reduction in loads is due to increased blade pitch596

activity. DAC is seen to have no further improvement as it is mainly responsible for lowering the597

wind disturbances, and the barge platform is mainly affected by incident wave load [22]. Due to its598

lowered pitch frequency, the Spar-buoy platform is observed to have a slight improvement in the599

use of IBP based MIMO control compared to other platforms. DAC control effectively reduced the600

wind disturbance for Spar-buoy, thus leading to better rotor regulation. However, DAC negatively601

affects the platform motions based on the increased blade pitch activity [21] For the case of TLP,602

the platform is less affected by the incident waves. IBPC improves the tower loads and platform603

motions. A significant improvement is observed in the rotor and power regulation which may be604

attributed to the platform’s inherent stability due to tensioned mooring lines. Subsequently, the605

DAC controller incurs additional improvement by reducing incoming wind disturbance [22].606

Most of the MIMO controllers for FOWTs are designed around a single operating point. The607

controller performs well around the operating point; however, moving away from the operating608

point may lead to performance degradation. To overcome this obstacle, a gain-scheduled controller609

based on a series of linearized models on a range of operating points improves power regulation610

and platform motions. LPV controllers offer another switching mechanism to incorporate multiple611

linear models for a range of operations and deal with the limitation of linearized MIMO models612

that are only valid around linearization points.613

Advanced controllers like MPC controllers improve performance while dealing with uncertainties614

and unmodeled system dynamics. Based on preview wind and wind measurements, MPC corrects615

the control trajectory based on the plant model at every step. It also allows designers to include616

the constraints on inputs and states in control design, thus effectively avoiding physical satura-617

tions. However, MPC is a computationally demanding control mechanism for complex systems like618

FOWTs. Advanced controllers based on preview information of incident disturbance are superior619
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alternatives to feedback controllers. LIDAR is a valuable addition to improving fixed-bottom wind620

turbines; however, LIDAR performance is yet to be evaluated for FOWTs are exposed to wave621

disturbances. Details of advanced MIMO controllers is provided in Table 2.622

Structural controllers based on TMDs adequately reduce the pitching phenomena and reduce623

the wind turbine loads, mainly operating in region 3. Controllers we have discussed until now are624

mainly based on blade pitch mechanism control. However, structural controllers include additional625

DOF that deals with platform motions and tower loading. This way, controller mechanisms ease the626

high blade pitch activity and provide a further performance improvement. However, the addition627

of TMDs causes an increase in the complexity of the FOWTs. Moreover, the power required to628

generate a heavy stroke in active dampers requires further investigation regarding cost-effectiveness629

on an industrial scale. List of existing structural controllers is provided in Table 3.630

Table 1: Traditional control methods

Method Model Platform Description Economic viability OR

CBP- GSPI [14] HAWC2/ SIMO -

RIFLEX

Spar-buoy

(Hywind)

Region-dependent control based on

simple switching process, pitching

controller of frequency lower than

the platform pitching frequency is

employed for region 3.

Improved tower stability. however,

degraded power quality and poor

rotor speed regulation.

2,3

CBP-GSPI [15, 57] FAST Barge, TLP,

Spar - buoy

Feedback loop based on Tower-

top movement,pitch-to-stall regula-

tion and detuned gains.

Only detuned gains control im-

proves the negative damping issue.

Further use of MIMO control is sug-

gested including IBPC.

2,3

Simple Platform Pitch

Control [16]

FAST Barge Platform pitch velocity based gener-

ator speed control in region 3. Also

used IBPC.

Reduced negative damping and

blade pitch activity at the cost of

the rotor speed fluctuations and

power variation. IBPC showed in-

adequate load reduction.

3

Control based on esti-

mated wind speed [17]

HAWC2/ SIMO -

RIFLEX

Spar-buoy

(Hywind)

Estimator based control mechanism. Tower Loading, nacelle oscillation

and rotor loads are found reduced.

However, poor rotor speed regula-

tion and reduced power generated

are observed.

3

631

632

5.2. Impact of the platform on the controllers performance633

So far, we have discussed a range of controllers designed for FOWTs for their pros and cons.634

SISO and advanced MIMO controllers are incorporated to deal with shortcomings associated with635

the platform motions. However controller performance may vary based on the type of platform636

used for the operation. We have compared several advanced controllers based on the utilized637

platform type and their performance in Table 4. Comparison is made in terms of improvement638
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in tower loading, power regulation and platform motions damping to give readers an overview of639

how control performance may vary based on different platform types. Controllers for the barge640

platform improved tower loadings and platform motions; however, they perform poorly in terms641

of power regulations. The TLP platform has inherent stability over its counterpart platforms thus642

we see improvement compared to the barge platform. MIMO controller based on the IBPC with643

an extension of DAC ranks higher because it manages to minimize the incident wind disturbance644

better for the TLP than the barge. Due to lower platform frequency, the spar-buoy platform may645

not perform well enough, although it has better power regulation, which is mainly due to increased646

blade pitch activity. However, advanced controllers like MPC and preview-enabled feed-forward647

controllers exhibit superior performance, especially for the case of power regulations. MPC has a648

higher ranking also due to the ability to deal with the input and system state constraints.649

6. Summary650

The control mechanisms we have discussed are all based on model-based design. In complex651

systems like FOWTs, accurate system modeling is essential for dealing with model uncertainties652

and complex incident disturbances – wind and wave. In an ideal situation, the plant represents the653

actual systems and actuators, whereas, in reality, it is a fair approximation of the system. There are654

expected errors that may result from a poor understanding of the system and un-modeled dynamics,655

leading to a compromise of system performance. In this case, the model-free control approach may656

be utilized to represent the plant model and deal with the shortcomings not addressed by first-657

principle mathematical modeling. Input-output data may be used to deduce a plant representation658

for the respective controller design after careful assessment and performance evolution. Unlike the659

model-based design, the data-driven model-free controllers don’t rely on the system characteristics,660

eliminating the need for controller dependency on the plant model. Furthermore, unlike the model-661

based control approach, in the model-free methodology, the system stability is not relying on the662

model accuracy [110]. Machine learning techniques may address this issue by finding the optimal663

control laws by mapping the sensor’s output to control actuators. These techniques are based on664

bio-inspired computational methods, including Genetic Algorithm and Reinforcement and Iterative665

learning [111]. These algorithms may be used to minimized constraint-based cost functions designed666

according to the control objectives. One such example of MLC usage for complex structures like667

FOWTs is reported in the literature [112]. Input-output data is correlated to for a control law668
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u = k(y) and evaluated using a cost function J , as shown in schematic Figure 9. It shows improved669

performance compared to the baseline controller and demonstrates a viable solution for further670

research for complex control synthesis for FOWTs.671

Table 2: Advanced control methods

Control methods Model Platform Description Economic viability OR

MIMO-CBP [20] FAST Barge CBP based Rotor thrust is

used to regulate platform pitch

and rotor speed.

Poor power and rotor regu-

lation compared with baseline

controller. Improved tower

loading, platform motions.

3

MIMO-IBPC [20–

22]

FAST Barge,

TLP,

Spar-Buoy

Asymmetric rotor aerodynamic

load is used to regulate the

platform pitch and rotor speed.

Tower loads are decreased for

the barge, however poor rotor

and power regulation. TLP,

compared to the Barge and

spar-buoy, exhibits less plat-

form movement when IBPC.

Due to the lower natural plat-

form frequency, IBPC on Spar-

buoy is not useful regardless of

the improved rotor regulation.

3

IBPC-DAC

[21, 22]

FAST Barge,

TLP,

Spar-Buoy

DAC is used as an extension of

IBPC with an additional wind

disturbance rejection.

DAC has no further improve-

ment on the barge compared to

the IBPC applied on a barge.

Whereas, when it is utilized on

TLP, power and speed regula-

tion are improved with a reduc-

tion in side-to-side loads. DAC

used on spar-buoy improves ro-

tor speed but increases the

blade pitch activity and loads.

3

MIMO (LQR) [23] DTU-

10MW

Spar-Buoy

Triple Spar

Effects of the control inputs are

analyzed based on how they af-

fects the output for a floating

wind turbine in an open loop

scenario and an LQR based on

observations is synthesized.

Damped various resonances,

but observed not being able to

suppress the wave excitations

entirely.

3

GS-Output feed-

back H∞ [18]

FAST Barge Generator speed is regulated at

the rated value using a gain

scheduled controller to keep

drive train and tower oscilla-

tions low.

Improvements in platform

stability and reduced fatigue

loads, LPV based GS con-

troller is suggested for further

improvements.

3

LPV and LQR

based GS [19]

FAST Barge GS-LPV and GS-LQR based

on output feedback and state

feedback are employed.

Improved power regulation and

platform pitch minimization is

achieved.

3
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SMC and IOFL

[24]

FAST Barge Methods based on LPV control

are implemented; to regulate

generator speed, and to ana-

lyze the effects of incident dis-

turbance on platform motions.

SMC is found to have achieved

generator speed regulation bet-

ter than IOFL for simplified

wind turbine models and per-

formance degraded when com-

plex wind turbine models are

utilized.

3

NMPC (CBP) [25] Sand-

ner

Model

Spar-buoy NMPC based on CBP mecha-

nism and generator torque is

employed.

Enhanced performance in

terms of rotor regulation,

platform motion minimization

and improved loads. However,

the computational cost is

significantly higher.

3

N-MPC (IBP) [26] Sand-

ner

Model

Spar-buoy IBP mechanism is extended

based on the collective blade

pitch approach.

Lowered pitch and yaw mo-

tion, improved speed regula-

tion and reduction of the loads

on blades.

3

Linear - MPC

(CBP) [27]

Sand-

ner

Model

Modified

Spar

Linear-MPC based MIMO sys-

tem is deigned using CBC ap-

proach.

Speed and generated power

regulation. Improved negative

platform pitch motions.

2,3

LIDAR (FF-

CBPC) [28]

FAST TLP Feed-forward controller based

on CBP mechanism is intro-

duced for wind speed regula-

tion.

Improved speed regulation and

minimized the loads.

3

LIDAR (FF-

CBPC) [29]

FAST Spar-buoy CBP FF controller is formu-

lated based on ideal wind speed

estimation.

Improved rotor speed and

power regulation, along with

blades, rotor, and tower load

reductions.

3

The complex nature of incoming wind and wave limits the control design for FOWTs. Instanta-672

neous changes in these disturbances, such as wind and wave gusts, may affect the control systems’673

design for FOWTs. Moreover, if not considered, these flows’ stochastic nature may also degrade the674

structural life and performance of wind turbines. Incoming disturbances may be modeled to circum-675

vent these issues. However, it is challenging to design perfect mathematical models of incident wind676

and wave due to the inherent complicated properties and high dimensions. Data-driven machine677

learning plays a promising role in solving complex real-life problems. Dynamic Mode Decomposition678

(DMD) [113], Sparse Identification of Non-linear Dynamics (SINDy) [114], and Koopman Operator679

Theory [115] are some of the data-driven methods that may be used to understand complex tur-680

bulent flows and interpret the underlying behaviors. Simplified models of the incident disturbance681

- wind and wave - may improve the incoming disturbance prediction and estimation process based682

on these techniques. The LCOE of large FOWT can be reduced by better understanding the effect683
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of incident disturbances on FOWT and subsequent efficient control design.684

In this review paper, we have reviewed a range of control mechanisms listed in the literature685

to deal with the shortcomings of FOWT associated with floating platform. SISO and MIMO686

controllers are discussed based on their improvements in the control objectives of FOWT. structural687

controllers are analyzed for their unique way of dealing with FOWT loadings. The possibility of688

utilizing forecasting techniques and model-free control is drawn as well.689
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Figure 9: Machine learning control
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Table 3: Structural control methods

Control methods Model Platform Description Economic viability OR

Active and passive

TMD [30]

FAST-

SC

Barge/ Fixed

bottom

monopole

TMD placed in the nacelle,

H∞ based loop shaping con-

trollers.

Reduced tower loading, In-

creased complexity and power

consumption due to active-

TMDs.

2,3

Improved Active

and passive TMD

[31]

FAST-

SC

Barge Nacelle based redesigned

TMDs taking actuator model

into consideration.

Fore-aft loads reduction and

tower base bending minimiza-

tion.

2,3

Optimal Passive

TMD [32]

FAST-

SC

Mono-pile,

barge , Hywind

spar-buoy and

TLP

Optimal passive TMD is de-

veloped based on available

platforms using genetic algo-

rithm.

Fatigue loads are found re-

duced for barge and mono-

pile better than the TLP and

Spar buoy.

2,3

Semi active TMD

[33]

FAST-

Or-

caflex

Mono-pile and

TLP (Pelastar)

Nacelle based semi-active

TMD.

Minimized side-to-side tower

loading of mono-pile and

slackline incidents of TLP.

2,3

Active TMD [76] FAST-

SC

Barge Platform-based TMD, A

static output-feedback mech-

anism is proposed using a

generalized H∞ control

Fatigue load and generator

power error is reduced while

reliability and robustness is-

sues of controller designed are

found.

2,3

TLD [77] Nu-

merical

meth-

ods

Spar-buoy Nacelle based single and mul-

tilayer TLDs are examined

and validated.

Enhanced platform pitching

motion based on Multilayer

TLD than single layer TLD.

-

Passive TMD [78] FAST-

SC

Barge TMD placed in nacelle, In-

erter based damping mecha-

nism.

Effectively reduced wind and

wave induced loads in com-

parison with similar tradi-

tional TMD control.

2

Active Mooring

line control based

on STAM [79]

FAST TLP STAM-integrated mooring

lines.

Platform motions (pitch and

roll) and tower bending mo-

ment, are minimized.

2,3

690

The different aspects of FOWTs reviewed for controller design lay a foundation for future work691

with the following recommendations:692

• Most of the research on the control design concerns the wind disturbance and neglects the693

wave disturbance. It may be advantageous to include the wave information in the control694

design and the wind disturbance to improve performance further.695

• Structural controllers may be further investigated as a viable solution for pitching phenomena696

and wind turbine loading. Its ability to minimize the platform pitching phenomena without697

using blade pitch can give designers more freedom to design controllers. However, a cost-698

effective approach and subsequent validation studies are needed.699
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Table 4: Performance comparison of MIMO control schemes compared to baseline controller

Tower Loads Power regulation Platform motions Cost

Barge
IBPC 3 1 3 2

IBPC- DAC 3 1 3 2

TLP
IBPC 2 3 3 3

IBPC- DAC 2 4 4 5

Spar-buoy

IBPC 2 3 3 3

IBPC- DAC 2 4 2 3

FF-CB 2 5 2 4

NMPC-CBP 2 5 3 5

NMPC-IBPC 2 5 3 5

5= Massive improvement

4= Major improvement

3= Minor improvement

2= Slight improvement

1= Decrease in performance

• The effectiveness of the LIDAR for FOWTs needs to be experimentally validated. Moreover,700

a device capable of sensing waves similar to LIDAR may help designers include wave preview701

information alongside wind preview in advanced control mechanisms like MPC.702

• Further development is suggested in the use of prediction algorithms together with advanced703

controllers. Developing models based on machine learning tools would be of significant ad-704

vantage, especially in understanding the underlying behaviors and designing optimal control705

laws.706
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Appendix A. Simulation codes and models for FOWTs711

The existing system models designed for the fixed-bottom WTs may not be able to reflect the712

performance of FOWTs. It is mainly due to the moving base of FOWTs and associated motions.713

Therefore, a system model is required to analyze the FOWTs that incorporates all the significant714

DOFs, including the floating base. A brief description of some of the major simulation codes used715

is given below.716

Fatigue, Aerodynamics, Structures, and Turbulence (FAST)717

The National Renewable Energy Lab (NREL) has designed a modular computer-aided engineer-718

ing (CAE) open-source software testFatigue, Aerodynamics, Structures, and Turbulence (FAST) to719

simulate WTs at the desired operating conditions [116]. The FAST code may be used to model WTs720

by inflow wind, structural dynamics, aerodynamics, and for the case of offshore scenario, mooring721

line dynamics, hydrodynamics, etc.[117]. FAST uses a Multi-body/modal system (MB/Mod) rep-722

resentation. The aerodynamics module is based on the Blade element momentum (BEM) theory723

(quasi-static). At the same time, the hydrodyn modules offer modeling based on Potential flow724

(PF) and Morison’s equation (ME). Furthermore, models based on FAST can generate linearized725

models useful for the linear control design.726

A standard multi-megawatt fictitious model of a FOWT is designed based on FAST to assist the727

development of FOWTs, named NREL 5MW baseline WT [56]. This utility-scale WT is developed728

based on the publicly available data of existing WTs and simulation models such as WindPACT729

[118], RECOFF [119], and DOWEC [120].730

Horizontal Axis Wind Turbine Code-Second generation (HAWC2)731

Horizontal Axis Wind Turbine Code-Second generation (HAWC2) is a time-domain commer-732

cially available code that is mainly used to study the dynamics of fixed bottom WTs operating733

under externals loads [121]. The structural dynamics is based on MBS, whereas the aerodynamic734

module relies on BEM theory. The WT with a floating base is simulated using the SIMO/RIFLEX735

code coupled with HAWC2 [55], where SIMO/RIFLEX is used to model the floating foundation736

and mooring lines, whereas the rotor, blades, and nacelle are designed in HAWC2.737

A next-generation 10 MW reference WT based on HAWC2 [122] similar to 5 MW baseline WT738

[56] is also available for the research and development. It was originally designed for the project739

INNWIND.EU [123].740
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Bladed741

Bladed is a commercial software to simulate WTs for both onshore and offshore sites [124].742

The FOWTs may be modeled using Bladed by considering the dynamics and the complexity of the743

system parameters. Bladed code also considers incident wave and wind loads, structural dynamics,744

aerodynamics, and suitable controller response.745

The structural dynamics of the Bladed code are based on the multi-body modal (ModMB) sys-746

tem representation. The aerodynamic module uses both the momentum and blade element model.747

Simultaneously, an extended version of this model is used to consider models such as Prandtl’s tip748

and root losses, dynamic wake models, and Glauert skew wake model. The hydrodynamic module749

utilizes the penal method and Morison equation. With a built-in Light detection and ranging (LI-750

DAR) module, Bladed code may be used to develop advanced control designs based on the LIDAR751

preview information. The Bladed code can generate the linearized model and state-space matrices,752

an essential part of linear control theory.753

As a part of LEANWIND project [125] an 8 MW reference WT [126] is designed based on data754

available online of WTs and validated using Bladed.755

SIMPACK756

SIMPACK code is designed to simulate a range of industrial applications such as robotics, auto-757

motive aerospace, and railway [127].It a general-purpose software based on MBS and is applicable758

for the WTs as well. An extension to the existing code is used for FOWT, connecting HydroDyn759

and SIMPACK with the help of SIMHydroDyn [128] . These additional modules are to deal with760

the hydrodynamics and the mooring lines of FOWTs.761

A comparison of the parameters and properties of the 5 MW, 8 MW and 10 MW reference wind762

turbines is given in Table Appendix A1.763

764
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Table Appendix A1: Summary of 5, 8 and 10 MW reference wind turbines

Turbine Name NREL (5MW) LEANWIND (8MW) DTU (10MW)

Number of blades and rotor orientation 3 blades, Upwind 3 blades, Upwind 3 blades, Upwind

Rotor Diameter (meters) 126 164 178.3

Tower and Hub height (meters) 90, 87.6 110, 106.3 119, 115.6

Cut in, cut out and rated wind speed (m/s) 3, 25, 11.4 4, 25, 12.5 4, 25, 11.4

Rotor speed range (rpm) 6.9, 12.1 6.3, 10.5 6, 9.6

Hub Nacelle and blade mass (tons) 56.8, 240, 17.7 90, 285, 35 105.5, 446, 41.7

765

Simplified models766

To minimize external disturbances, achieve platform stability, and improved power quality, com-767

plex simulation codes like FAST are considered an appropriate choice. However, the complex nature768

of these models may cause problems in the control design process. To circumvent shortcomings as-769

sociated with the complex models, a simple yet accurate model can be developed to model the770

essential dynamics and behavior of a FOWT with high accuracy. The effectiveness of simplified771

models for FOWTs in designing useful controllers has been proven [129]. To facilitate the sim-772

ple control design process, researchers have produced simplified FOWT models. Below are a few773

noticeable models available in the literature.774

Betti model775

To address the complexity of the existing simulation models for the FOWTs, a simplistic control-776

oriented 2-D rigid model is proposed by Betti et al. [130]. Betti model is designed with 7 states,777

whereas incident wind and wave disturbances are considered acting in 2-D plane. The schematic778

of this model is given in Figure Appendix A1. This model may also generate linearized models at779

various locations within the operating range. Unlike FAST, this model may also be used to calculate780

the wave disturbance matrix, which provides the incident wave information into the advanced781

control design process. The Betti model is used for the controller synthesis on a TLP based 5 MW782

FOWT considering 2-D incident disturbances. However, it was found that the model had a small783

effect on the platform motions and generated power despite the accurate 2-D motion representation784

[129, 130].785
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Figure Appendix A1: Adapted layout of Betti model [129]

Sander Model786

Sandner et al. [65] designed a less-complex FOWT model for a spar buoy platform as shown787

in Figure Appendix A2. The DOFs of this model includes platform motion, rotor speed, nacelle788

movement, and pitching angle of the blades. The Sander model has a 2-D structure similar to Betti789

model [130] and it’s performance is found accurate when compared with the complex FAST model.790

However, Sander model may not be used to study FOWT based on other platforms because it is791

designed for a spar boy platform, where there is less hydrodynamics involved due to its unique792

geometry. Moreover, Sandner model is only used for the 2-D disturbances, and its effectiveness in793

a 3-D scenario is yet to be assessed.794

Homer model795

Homer et al. [131] proposed a simplified and effective control-oriented 3-D design for advanced796

control synthesis of a FOWT, as shown in Figure Appendix A3. Like other similar models, the797

Homer model also has fewer DOFs (15/16), and it may also be used to generate linearized models798
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Figure Appendix A2: Adapted layout of Sander model [65]

at a given operating point. The model is capable of reflecting 3-D motion, and assist controller799

synthesis to eliminate or reduce the effect of wind and wave disturbances. Furthermore, the Homer800

model also comes with an ability to generate wave disturbance matrix. The simplified models are801

compared with complex model FAST in terms of their particular characteristics in Table Appendix802

A2.803

804

Table Appendix A2: Model comparison of existing FOWTs controllers

Model Nature DOFs Incorporates incident wind/wave in controller synthesis

Jonkman [116] Flexible 3-D 22/24 Wind only

Betti [130] Rigid 2-D 7 Wind and Wave

Sandner [65] Flexible 3-D 18 Wind and Wave

Homer [131] Rigid 3-D 15/16 Wind and Wave

805
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Figure Appendix A3: Adapted layout of Hommer model
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