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Abstract

Hybrid analysis and modelling (HAM) is an emerging modelling paradigm where physics-
based modelling (PBM) and data-driven modelling (DDM) are combined with the aim of
creating models that are generalizable, trustworthy, accurate, computationally efficient
and self-evolving. In this thesis, we introduce, justify and demonstrate the Corrective
Source Term Approach (CoSTA), which is a novel generalization of earlier work within
the HAM paradigm. The crux of CoSTA is to augment the governing equation of
a physics-based model with a corrective source term. The corrective source term is
designed to correct any error in the original, non-augmented PBM, and can be learnt
using data-driven techniques such as deep neural networks. We conduct a series of
numerical experiments on one- and two-dimensional heat transfer problems, and find
that CoSTA significantly outperforms comparable PBM and DDM models in terms of
accuracy – often reducing predictive errors by several orders of magnitude. We also
find that CoSTA facilitates the development of models with excellent generalizability.
Additionally, we demonstrate how the learnt corrective source term can be analysed
within a physics-based framework, thereby adding a level of explainability not found in
pure DDM. In addition to increasing explainability, such analyses can also be used for
automatic performance monitoring. Thus, we believe that CoSTA can push data-driven
techniques to enter high-stakes applications previously reserved for pure PBM.

While our experimental results are mainly centered on heat transfer problems, CoSTA
is a completely general approach which can be used for modelling any deterministic
system. Furthermore, CoSTA does not impose any restrictions on what kind of data-
driven techniques can be used to learn the corrective source term. Due to its flexible
but solid theoretical foundation, CoSTA can therefore be used in a wide variety of
applications, and will be able to leverage future advances in both PBM and DDM. Among
possible areas of application within Norwegian industry and research communities, we
highlight aluminium production, off-shore wind and flow assurance (in the context of
e.g. hydrocarbon or CO2 transport) as particularly relevant examples.
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Sammendrag

Hybrid analyse og modellering (HAM) er et fremvoksende modelleringsparadigme hvor
fysikkbasert modellering (FBM) og datadreven modellering (DDM) kombineres for å
utvikle modeller som er generaliserbare, p̊alitelige, nøyaktige, ressurseffektive og selvut-
viklende. I denne masteroppgaven introduserer og demonstrerer vi CoSTA (fra engelsk
Corrective Source Term Approach), som er en innovativ generalisering av tidligere arbeid
innenfor HAM-paradigmet. Vi presenterer ogs̊a det teoretiske grunnlaget for CoSTA,
hvor hovedprinsippet er å utvide en eksisterende FBM med et korrigerende kildeledd.
Dette kildeleddet, som er definert slik at det korrigerer enhver feil i den opprinnelige
FBMen, kan læres ved hjelp av datadrevne modelleringsteknikker som dyp læring med
nevrale nettverk.

Vi har gjennomført en rekke numeriske eksperimenter p̊a en- og todimensjonal varme-
ledning hvor CoSTA predikerer temperatureprofiler som er opptil flere størrelsesordener
mer nøyaktige enn prediksjonene til sammenliknbare FBMer og DDMer. Av v̊are ekspe-
rimenter ser vi ogs̊a at CoSTA fasiliterer utvikling av modeller som generaliserer godt.
Videre demonstrerer vi hvordan det korrigerende kildeleddet kan analyseres innenfor
et fysikkbasert rammeverk. Dette medfører fortolkningsmuligheter som ikke har noen
parallell innen ren DDM. I tillegg kan analysemetodene vi presenterer ogs̊a brukes til
automatisk ytelseskontroll. Disse faktorene styrker p̊aliteligheten til CoSTA sammenlik-
net med ren DDM. Tatt i betraktning at CoSTA benytter DDM-teknikker, mener vi
at CoSTA dermed kan bidra til å øke relevansen av DDM innenfor bruksomr̊ader hvor
FBM tradisjonelt har vært foretrukket. Dette er særlig aktuelt innen bruksomr̊ader med
høy finansiell eller sikkerhetsmessig risiko, hvor p̊alitelighet er av særskilt betydning.

Selv om v̊are eksperimenter fokuserer p̊a varmeledning, kan CoSTA ogs̊a brukes til å
modellere enhver annen deterministisk prosess. Dessuten legger ikke CoSTA noen be-
grensninger p̊a hvilke DDM-teknikker som kan brukes for å lære det korrigerende kilde-
leddet. Denne fleksibiliteten gjør at CoSTA kan dra nytte av fremtidige innovasjoner
innen b̊ade FBM og DDM. Videre medfører den ogs̊a at CoSTA er relevant innenfor en
lang rekke varierte bruksomr̊ader. Aluminiumsproduksjon, havvind og strømningsflyt i
rørledninger (som er relevant i forbindelse med f.eks. olje- og gassproduksjon og karbon-
fangt og -lagring) kan trekkes frem som potensielle bruksomr̊ader innen norsk industri
og forskning.
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1. Introduction

1.1. Background and Motivation

In understanding and interacting with the world around us, predictive modelling tech-
niques are paramount. Such techniques are used in a vast and diverse array of applica-
tions, including weather forecasting, construction engineering and economics, to name
just a few. In all these applications, a model – which is essentially a structured collection
of knowledge – is used to make predictions (e.g. of the weather tomorrow, the maximum
load of a bridge or the housing prices next month). Another field where predictive mod-
elling plays an important role is that of modern digital twin (DT) technologies (Boschert
and Rosen, 2016; Rasheed et al., 2020). Digital twins, which are defined by Rasheed et al.
(2020) as virtual representations of physical assets enabled through data and simulators,
have seen a surge in popularity following the recent wave of digitalization. Among their
numerous applications, we find industrial manufacturing (Rosen et al., 2015; Stanko and
Stommel, 2020; Schleich et al., 2017), systems engineering (Madni et al., 2019), product
lifetime management (Tao et al., 2018) and aerospace engineering (Shafto et al., 2012;
Negri et al., 2017). In their work concerning the modelling aspect of DTs, San et al.
(2021) have identified the following key modelling characteristics:

1. Generalizability – the ability of the model to solve a variety of problems without
problem-specific fine-tuning.

2. Trustworthiness – the extent to which the model can be explained and analyzed
by human users and/or automated systems, e.g. for the purpose of monitoring the
performance of the model.

3. Computational efficiency and accuracy – the ability of the model to match ground
truth data while keeping computational cost to a minimum.

4. Self-adaptation – the ability of the model to learn and evolve as new situations are
encountered, even after the model has been deployed.

While San et al. (2021) consider these characteristics within the context of DTs, they
are certainly desirable in other contexts as well. Notable examples include autonomous
systems, flow assurance and off-shore wind modelling. Thus, when developing any new
predictive modelling technique, it is highly desirable for the technique to possess all of
the four characteristics listed above.

Historically, most predictive modelling techniques could be classified as either physics-
based modelling (PBM) or data-driven modelling (DDM). In addition, the new modelling
paradigm hybrid analysis and modelling (HAM), in which PBM and DDM are combined
in a single hybrid model, has recently been gaining traction (San et al., 2021). These
three kinds of modelling, and some examples of their applications, are described briefly
below.
Physics-Based Modelling: For any real-world system, physics-based modelling

aims to explain the system’s behaviour using existing knowledge of observable and ex-
plainable physics (illustrated by the red ellipse in Figure 1.1a). Thus, PBM is ignorant

1



1. Introduction

of any unknown physics, i.e. physics that is presently unrecognized or unexplained (the
dark background in Figure 1.1a). Using the first principles of known physics, PBM
requires the derivation of a governing equation. For example, when considering heat
transfer, known fundamentals such as the first law of thermodynamics can be used to
derive a governing equation describing the temporal and spatial development of a sys-
tem’s temperature. Typically, these derivations require one or more assumptions such
that only partial physics is captured by the governing equation (the blue ellipse in Fig-
ure 1.1a). Furthermore, governing equations are often difficult, if not impossible, to
solve analytically. For the physics-based model to yield any quantitative prediction, the
governing equation must then be solved with a numerical solver, the use of which can
be very computationally expensive. In addition, approximations made within a solver,
such as e.g. approximating a derivative with a finite difference approximation, can re-
sult in further loss of physics. Thus, the physics captured by a PBM (the green ellipse
in Figure 1.1a) is generally only part of the full physics governing the studied system.
Furthermore, PBMs are generally static, meaning that they do not automatically adapt
to new situations after model deployment.

Despite the weaknesses outlined above, PBM has seen wide-spread use in a vast ar-
ray of applications. Examples include weather forecasting (Müller et al., 2017), oil spill
modelling (Nordam et al., 2019), CO2 transport (Munkejord et al., 2016; Log et al.,
2021) and architectural engineering (Tuan and Shang, 2014), to name just a few. Addi-
tionally, an extensive review of PBM within DT applications can be found in (Rasheed
et al., 2020). The popularity of PBM largely stems from its great generalizability and
trustworthiness, both of which are results of its sound first-principles foundation. Fur-
thermore, the theory of numerical mathematics can be used to provide error bounds and
stability criteria for the numerical methods used in PBM. Thus, the behaviour of PBMs
are generally well-understood because we know exactly which physics is included in a
given model, and how well the included physics can be resolved by numerical methods
when analytic solutions are unattainable. These characteristics are particularly valued
in high-stakes industrial applications.
Data-Driven Modelling: In contrast to PBM, DDM is not limited to modelling

only known and understood physics. To the contrary, data-driven modelling thrives
on the notion that observational data is a manifestation of both known and unknown
physics, as illustrated in Figure 1.1b. Thus, if sufficient observational data is available,
DDM can learn the full physics governing a system on its own. As a growing number of
industrial and scientific applications migrate from sparse-data to big-data domains, the
applicability of DDM is increasing. Recent activity in DDM is also facilitated by the
availability of open-source cutting-edge machine learning libraries such as PyTorch and
TensorFlow, and by improvements in the quality and cost-effectiveness of computational
infrastructure such as GPUs and TPUs.

In recent years, data-driven techniques – and in particular those involving deep neu-
ral networks (DNNs) – have excelled at a multitude of tasks that were long considered
too challenging for computers. Notable examples include image classification (Szegedy
et al., 2017), speech recognition (see Bai and Zhang (2021) for a recent review), medical
diagnostics (Liu et al., 2019), image synthesis (Karras et al., 2019) and even playing the
board-game Go (Silver et al., 2016). These advances have recently helped push DDM for
scientific and engineering applications as well. Recent use of DDM in domains tradition-
ally dominated by PBM includes tropical cyclone intensity estimation (Lee et al., 2021),
modelling of percussive drilling (Afebu et al., 2021), and forecasting of wind (Chen et al.,
2018), precipitation (Shi et al., 2015) and solar activity (Pala and Atici, 2019).
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Physics captured by
governing equation

Observable and
explainable physics

Unknown physics

Physics captured by
numerical solution

(a) Physics captured by PBM.

Physics captured by
numerical solution

Physics captured by
governing equation

Observable and
explainable physics

Unknown physics

(b) Physics captured by DDM.

Figure 1.1.: In general, the full physics governing a system may encompass both known
and unknown physics, as illustrated by the red ellipse and the black back-
ground. PBM accounts for a portion of the known physics (the green ellipse),
while DDM accounts for observed physics (the small circles) no matter if it
is known or unknown to physicists.

PBM DDMHAM

(a) HAM combines PBM and DDM
in a single hybrid model.

PBM HAM DDM

Generalizability
Trustworthiness
Computational efficiency
Self-adaption

(b) HAM retains the strengths of PBM and DDM while
eliminating their weaknesses.

Figure 1.2.: Cartoon comparison of physics-based modelling (PBM), data-driven mod-
elling (DDM) and hybrid analysis and modelling (HAM).
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1. Introduction

As mentioned above, DDMs are not limited by current human knowledge since they
learn from observations which manifest both known and unknown physics. For this rea-
son, DDM can offer superior accuracy in comparison to PBM, especially in scenarios
where important characteristics of the system or process being modelled are unknown.
Furthermore, DDMs are typically less computationally expensive than PBMs. For exam-
ple, the numerical solvers often found in PBMs require large linear (or even non-linear)
systems of equations to be solved for a prediction to be made. In contrast, DNN-based
DDMs only require basic matrix multiplications and evaluations of simple functions.
Another advantage of DDMs is that they can continue to learn from and adapt to new
scenarios even after deployment – a significant improvement over the static nature of
PBMs. On the downside, DDMs can be difficult to interpret due to the black-box-like
nature of DNNs, and their generalizability is inherently limited due to the bias-variance
trade-off. The lack of well-known and robust model stability analysis methods is another
factor currently keeping DDMs away from high-stakes applications. For example, DNN-
based models are vulnerable to so-called adversarial examples, as studied by e.g. Szegedy
et al. (2013) and Akhtar and Mian (2018), and DNN-misbehaviour due to adversarial
examples may present an unacceptable security risk in safety-critical applications.
Hybrid Analysis and Modelling: From the discussion above, it is clear that nei-

ther PBM nor DDM possess the four desirable modelling characteristics identified by San
et al. (2021). However, we observe that all four characteristics are possessed by either
PBM or DDM, which motivates the combined use of both PBM and DDM in a single
model. The modelling paradigm hybrid analysis and modelling (HAM) encompasses such
hybrid models, as illustrated in Figure 1.2. Rasheed et al. (2020) define HAM as a mod-
elling approach that combines the interpretability, robust foundation and understanding
of PBM with the accuracy, efficiency, and automatic pattern-identification capabilities
of advanced DDM. This broad definition encompasses a wide variety of different models
and hybridization approaches. In their recent survey, Willard et al. (2020) highlight a
large number of techniques for combining PBM and DDM, particularly focusing on tech-
niques involving neural networks (NNs). These include, among others, physics-guided
NN cost functions, physics-guided NN architectures and residual modelling. The men-
tioned techniques cover a diverse range of applications such as reduced order modelling1

(ROM), inverse modelling and solving PDEs (see e.g. (Fan and Ying, 2020; Sun et al.,
2020; Thompson and Kramer, 1994; Wan et al., 2018; Yang et al., 2020; Ruthotto and
Haber, 2019) as cited by Willard et al. (2020)). Below, we provide our own brief survey
of different approaches to HAM.

One important approach to HAM is to speed up computationally expensive PBMs
using data-driven techniques. Some researchers (Lagaris et al., 1998; Sirignano and
Spiliopoulos, 2018; Ranade et al., 2021) explore the possibility of using NNs to replace
numerical solvers altogether. Others focus on improving pre-existing solvers, for exam-
ple by using NNs to learn improved coefficients in general time-stepping schemes such as
implicit multi-step methods (Mishra, 2018) or high-order Runge-Kutta schemes (Raissi
et al., 2019). Some particularly interesting research in this direction has been conducted
by Hsieh et al. (2019), who define an NN-generated correction term for iterative solvers
which shows remarkable generalization while retaining favourable properties of the un-
modified solvers. They report that their NN-corrected solvers use less than half the
computation time of unmodified state-of-the-art solvers. A different approach to speed-
ing up PBMs with HAM is to use data-driven techniques in the development of ROMs
(Pawar et al., 2020a,b; Ahmed et al., 2019). HAM also facilitates the combination of

1Quarteroni et al. (2015) provide a comprehensive introduction to reduced order modelling.
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ROMs with full-order models for applications where a ROM does not sufficiently resolve
all physics on its own (Pawar et al., 2021a).

Another fruitful approach to HAM is to improve the accuracy of well-known, robust
PBMs using data-driven techniques. For example, Wang et al. (2017) and Wu et al.
(2018) use random forest regression to compute an improved Reynolds stress tensor
for use in simulations based on the Reynolds-averaged Navier–Stokes equations. Also
in the field of computational fluid dynamics, Maulik et al. (2019) and Sirignano et al.
(2020) demonstrate the use of DNN-generated closures for large eddy simulations, and
report improved accuracy in comparison to benchmark physics-based closures such as
the Smagorinsky model (Smagorinsky, 1963). Other works where DNNs are used to
directly capture modelling errors of the PBM include those by Hanna et al. (2020) and
Pathak et al. (2020). In their work, Pathak et al. (2020) additionally consider another
HAM approach, which is to increase the resolution of numerical PBM solutions using
data-driven techniques. This line of work is also followed by Tran et al. (2020) as they
increase the resolution of wind fields using an adversarial framework. An adversarial
framework is also employed by Xie et al. (2018) who use a temporal discriminator to
ensure temporal coherence in super-resolved simulations of turbulent flow.

In addition to the different HAM approaches listed above, HAM can also be used
for parameter discovery. In parameter discovery applications, it is assumed that the
governing equation of the system at hand is known, but that some parameters of the
system are unknown or have some associated uncertainty. Pawar et al. (2021b) show how
a simple DNN can be used to improve a simplified PBM of aerodynamic coefficients, while
Raissi and colleagues successfully demonstrate how parameters of a governing equation
can be learnt directly from data using Gaussian priors (Raissi and Karniadakis, 2018)
or NNs (Raissi et al., 2019). Using a conceptually similar approach, Pun et al. (2019)
use an ensemble of NNs to predict an interatomic potential for atomistic modelling of
aluminium. Also in this line of work, Vaddireddy et al. (2020) successfully apply symbolic
regression with gene expression programming and sequential threshold ridge regression
for parameter discovery.

From the work highlighted above, it is clear that HAM enables the leveraging of
data-driven techniques for improving both the computational efficiency and accuracy of
physics-based models. This conclusion is supported by Willard et al. (2020), who identify
data-driven techniques as being particularly useful in solving two classes of problems:
1) problems where current computational resources are insufficient for obtaining results
of the desired accuracy, and 2) problems where no complete set of governing equations
is known. That is to say, combining PBM with DDM into a hybrid model is helpful
when stand-alone PBM lacks computational efficiency or accuracy. The use of DDM also
makes such hybrid models inherently self-adaptive. Furthermore, an important guideline
in HAM is to utilize relevant physics knowledge to the greatest extent possible, such that
hybrid models retain the generalizability and trustworthiness of their underlying PBM.
Thus, by combining PBM and DDM in a HAM framework, we can create models which
satisfy all four modelling characteristics identified by San et al. (2021). This observation
is the main motivation behind the study of HAM in present work.

1.2. Contribution and Research Objectives

The main theoretical contribution of the present work is the formal introduction and
theoretical justification of the Corrective Source Term Approach (CoSTA) to HAM. The
key concept of CoSTA is to perturb the governing equation of a PBM using a corrective
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1. Introduction

source term generated by a data-driven model such as a deep neural network. The
primary purpose of the corrective source term is to improve the accuracy of the PBM.
This concept builds on common practice in the field of computational fluid dynamics,
where physics-based corrective source terms have seen widespread use. Examples include
the use of closure relations in large eddy simulations (Smagorinsky, 1963) and the use
of non-conservative terms to account for 2D effects in 1D fluid flow simulations (Brown
et al., 2015; Log et al., 2021). The possibility of using data-driven corrective source
terms has been explored in recent research by Maulik et al. (2019) and Sirignano et al.
(2020). However, these works consider only application to large eddy simulations, and
are limited in their discussion of the generalizability and interpretability of the learnt
source term. The CoSTA framework proposed here can be viewed as a generalization
of the work by Maulik et al. (2019) and Sirignano et al. (2020), and is a fully general
approach which can be used to improve the accuracy of any deterministic PBM. We also
provide detailed discussions on the generalizability and trustworthiness of CoSTA-based
HAM models.

Another important contribution of the present work is the demonstration of CoSTA
in numerical experiments on unsteady heat transfer problems. Using these experiments,
we aim to answer the following research questions:

1. How does the predictive accuracy of a hybrid model using CoSTA compare to the
accuracy of stand-alone PBM and DDM?

2. How does the generalizability of a hybrid model using CoSTA compare to the
generalizability of stand-alone PBM and DDM?

3. Are predictions made by a CoSTA-based HAM model trustworthy?

These questions are all centered on the same topic: does CoSTA facilitate the develop-
ment of models which satisfy the four characteristics highlighted by San et al. (2021)?
Note, however, that we do not aim to provide a perfect predictive model for any given ap-
plication. To the contrary, we have selected basic PBMs and DDMs and simple physical
problems in an effort to ensure that the technical details do not obscure the discussion
on the general CoSTA framework.

To summarize, we enumerate the contributions of the present work as follows:

1. We formally define and justify the Corrective Source Term Approach (CoSTA)
based on a general PBM.

2. We demonstrate the benefits of CoSTA in comparison to stand-alone PBM or
DDM with regards to accuracy and generalizability. We particularly highlight our
explicit consideration of generalizability to extrapolation scenarios.

3. We provide a detailed discussion on the trustworthiness of CoSTA-based HAM
models, including a demonstration of how the learnt corrective source term can be
interpreted in a physics context.

All code used to produce the results of the main text was written by the author in
Python 3.6. The author wishes to highlight the use of the Python libraries PyTorch
(Paszke et al., 2019), NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020) and
Matplotlib (Hunter, 2007). The code used to perform the physics-based modelling de-
scribed in Appendix A is based on an unpublished Fortran implementation by A. M.
Log, and was translated into Python by the author. The exact solutions in the same ap-
pendix are courtesy of A. M. Log using the exact Riemann solver from the NUMERICA
library (Toro, 1999).
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1.3. Structure of the Thesis

This thesis has five chapters, the first of which is the current introduction. Here, we have
motivated the present work (Section 1.1), presented our research questions and briefly
described our most important contributions (Section 1.2).

In chapter 2, we present theory related to predictive modelling. The importance of
modelling heat transfer is presented first, in Section 2.1, while PBM and DDM are
covered in Sections 2.2 and 2.3, respectively. In the latter sections, we consider PBM
and DDM both in a general context, and in the context of heat transfer modelling.

Chapter 3 contains the major theoretical contribution of the present work, which is
the formal introduction and justification of CoSTA. The benefit of using a corrective
source term is explained in a general context in Section 3.1, and in the context of heat
transfer modelling in Section 3.2. In Section 3.3, we explain why we propose to learn
the corrective source term using a deep neural network.

The numerical experiments where we compare CoSTA to stand-alone PBM and DDM
are presented and discussed in Chapter 4. Our experimental setup is described in Sec-
tion 4.1, while our experiments on one- and two-dimensional heat transfer problems are
covered in Sections 4.2 and 4.3, respectively. The predictive uncertainty of data-driven
and hybrid models is investigated in Section 4.4, and the effects of grid refinement on
PBM, DDM and CoSTA models are explored in Section 4.5. In Section 4.6, we provide
an extensive discussion on how the corrective source term can be interpreted in a physics
context. Section 4.7 contains a summary of Chapter 4 where our empirical findings are
related to the research questions stated in Section 1.2.

Finally, in Chapter 5, the present work is concluded. The theoretical contributions
and empirical findings of the present work are summarized in Section 5.1, while the most
important directions of further research are addressed in Section 5.2.
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2. Theory

This chapter provides the theory required for performing physics-based modelling (PBM)
and data-driven modelling (DDM) of one- and two-dimensional time-dependent heat
transfer problems. We also discuss why heat transfer modelling is important. The
discussion on the importance of heat transfer modelling is presented first, in Section 2.1.
Thereafter, PBM and DDM are discussed in Sections 2.2 and 2.3, respectively. In each
of these two sections, we begin by covering the history, basic concepts and important
applications of the modelling approach covered in that section. In the latter parts
of Sections 2.2 and 2.3, we describe specific PBM and DDM models and techniques,
particularly focusing on heat transfer modelling.

2.1. The Importance of Heat Transfer Modelling

Naturally, heat transfer modelling is relevant in any application where heat conductance
has significant impact on the (local or global) behaviour of the system being studied. This
is a common situation in a large number of industrial engineering and design applications.
Trivial examples include metal casting, where heat transfer modelling is imperative to
ensure that the molds can handle the heat from the molten metal; computer design,
where sufficient heat transfer is essential in avoiding component malfunction due to CPU
overheating; and even cookware design, where care must be taken to avoid heat transfer
into the handles.1 Other examples include calculating thermal stresses in materials
and constructions (Hunt and Cooke, 1975; Hetnarski and Eslami, 2009), optimal design
through minimizing heat loss (Münch et al., 2008), development of thermal cloaking
techniques2 (Ma et al., 2013) and modelling of refrigeration systems (Risser et al., 2010).

Heat transfer modelling is also relevant to applications where heat conduction is not
the most prominent physical process. An example of this is pipeline depressurization,
where advection is the physical process that governs the behaviour of the system at
large. However, for increased accuracy, one may still want to model heat transfer, e.g.
from the pipe itself to the fluid inside. One can then use a heat transfer model like the
unsteady heat equation (cf. Section 2.2.2) to approximate the heat flux into the fluid,
and then add this heat flux as a source term in the advection equation (Munkejord and
Hammer, 2015).

Outside of industrial applications, heat transfer modelling is important in climate
modelling, where thermal conduction through the soil plays an important role in mod-
elling surface temperature and surface energy balance (Bhumralkar, 1975; Pitman, 2003).
Thermal conduction has also been identified as a significant factor in the study of glacier
energy-balance modelling (Pellicciotti et al., 2009). In a more exotic application, Roger
et al. (2016) consider an analogue between the unsteady heat equation and the Newton–
Schrödinger equation for experimental modelling of boson stars using lasers.

1The author’s empirical experience has shown that the heat transfer modelling in cookware design is
oftentimes not performed (to a sufficient extent) in practice. However, this has made the author
all-the-more convinced that heat transfer modelling is important in this application.

2Such techniques can e.g. be used for protecting heat-sensitive components from heat-generating com-
ponents in complex electrical systems
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In addition to being highly useful in its own right, heat transfer modelling is also impor-
tant because its governing equation – the heat equation – is mathematically equivalent to
many other important equations, as hinted at by the last example above. Of these analo-
gies, diffusion is arguably the most important one. Indeed, heat transfer, as described
by the heat equation, may be viewed as a special case of diffusion where the diffusing
quantity is thermal energy. This is why such heat transfer phenomena are sometimes
referred to as heat diffusion. Narasimhan (1999) gives an interesting discussion on the
history of the analogy between heat transfer and diffusion, while Jost (2007) considers
the analogy in great detail from a mathematical perspective. Jost (2007) also extends
the analogy to reaction-diffusion processes, which are widely used in chemistry. Other
analogies, such as hydraulic and electrodynamic phenomena, and their possible applica-
tions, are described in the work Bhattacharyya (1965) and references therein. The heat
equation also has an analogy in quantum mechanics, as the Schrödinger equation (see
(Hemmer, 2015a) for an introduction), which governs the wave function of a quantum
mechanical system, is mathematically equivalent to the heat equation. Additionally,
in financial sciences, the Black–Scholes equation used to model option pricing can be
transformed into the heat equation (see (Van der Wijst, 2013, chapter 8) and references
therein). Furthermore, for time-independent problems, the heat equation is a prototyp-
ical example of the Poisson equation, which is widely studied in e.g. (Quarteroni, 2014).
Among the numerous applications of the Poisson equation, we find electro- and magneto-
statics (Griffiths, 2017), Newtonian gravitation,3 and the incompressible Navier–Stokes
equations (Tannehill et al., 1997, chapter 9). Thus, it is clear that modelling techniques
for heat transfer problems are highly useful in a vast array of applications, including
applications where the connection to heat transfer problems is not immediately obvious.
This broad relevance is an important motivation for our study of heat transfer problems.

Another important motivational factor for the present work is the great availabil-
ity of temperature data. Temperature is known to affect easily measurable material
properties such as volume and resistivity (Lillestøl et al., 2015; Kittel, 2005), and this
facilitates the development of simple, inexpensive temperature measurement devices like
thermometers, bimetallic devices and thermistors. Furthermore, temperature gradients
are known to give rise to thermoelectric effects like the Seebeck effect, which facilitates
additional sensor technologies like thermocouples. Temperature can also be measured
in a completely non-intrusive way using thermal imaging techniques, since the heat ra-
diated by an object is directly related to its temperature in terms of the radiation’s
energy density and frequency spectrum. With all these methods for temperature mea-
surements, it is generally possible to generate ample amounts of temperature data for
use with data-driven techniques, either as stand-alone DDM or as part of a HAM model.

In addition to its availability, temperature data also benefits from being informative
about the state of the studied system. For example, in medicine, a fever is often a sign of
disease. High temperatures may also be a sign of component malfunction in inanimate
systems like computers or combustion engines. Overall, abrupt or otherwise unexpected
changes in a system’s temperature are often associated with some kind of an anomaly in
the system, such as a component that is beginning to fail. Temperature measurements
(especially when coupled with subsequent modelling) can thereby help in developing
cost-effective anomaly detectors. These can be used e.g. in autonomous systems or
digital twins, for example to make decisions regarding system maintenance. As such,

3This follows from the fact that Newton’s law of gravity is mathematically equivalent to Coulomb’s law
of electrostatic force. See e.g. (Lien and Løvhøiden, 2015, page 334) and (Griffiths, 2017, page 60)
for definitions of Newton’s law and Coulomb’s law, respectively.
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the impact of heat transfer modelling techniques will increase further as autonomous
systems and digital systems see increasingly widespread use.

2.2. Physics-based Modelling

This section is devoted to a presentation of physics-based modelling (PBM). A general
introduction to PBM is given in Section 2.2.1. We then focus on PBM for heat transfer
problems in Sections 2.2.2 and 2.2.3. In Section 2.2.2, we present the heat equation,
which is the governing equation for heat transfer problems. Subsequently, we present a
numerical method for solving the heat equation in Section 2.2.3.

2.2.1. An Introduction to Physics-Based Modelling

The core concept of physics-based modelling is to model any given system using pre-
existing physics knowledge. For any given modelling problem, the first step in the
development of a physics-based model is to study relevant physics theory. For example,
if one is tasked with modelling heat transfer, a natural place to start would be the
fundamental laws of thermodynamics.4 These provide a solid theoretical foundation on
which a PBM for heat transfer can be built. The next step is to derive a governing
equation using the established theoretical foundation. For heat transfer problems, the
governing equation is known as the heat equation, and we will discuss it further in
Section 2.2.2. Governing equations like the heat equation are highly useful because
they accurately describe the behaviour of any system for which their underlying first-
principles hold true. This results in excellent generalizability. Additionally, the physical
significance of each term in a governing equation is generally well-understood, which
contributes to the high trustworthiness of PBM.

Once we have obtained a governing equation for our system of interest, we typically
aim to solve this equation under some conditions to predict the system’s behaviour.
For some equations, such as the wave equation, this can be done analytically (Feldman,
2007). However, more often than not, we have to resort to numerical methods to solve
the equations. This is the case for e.g. the heat equation. In such cases, numerical
mathematics provides us with a score of numerical methods which can be used to solve
the equations approximately (or even exactly, if the true solution of the equation is
“nice enough”5). Popular classes of numerical methods include finite difference methods
(FDMs), finite volume methods (FVMs) and finite element methods (FEMs) (see e.g.
(Thomas, 1995), (Tannehill et al., 1997) and (Quarteroni, 2014) for introductions to
FDMs, FVMs and FEMs, respectively). The existence of both theoretical and empirical
analysis techniques like von Neumann stability analysis and grid refinement studies,
ensures that the accuracy and convergence of such methods is generally well-understood
(see e.g. (Tannehill et al., 1997, chapter 3) or (LeVeque, 2002, chapter 8) for introductions
to analysis techniques for FVMs). Through the use of such techniques, it is possible
to compute error bounds for the approximate solutions provided by these numerical
methods. Furthermore, the approximate solutions can typically be made arbitrarily
accurate,6 provided that sufficient computational resources are available. Thus, even

4Hemmer (2015b) gives a concise introduction to thermodynamics.
5For example, a first order approximation of a derivative is exact if the true solution is linear.
6An important exception is that of chaotic systems, whose long-term behaviour can be practically

impossible to determine numerically due to amplification of rounding errors stemming from the finite
numerical precision of computers (Strogatz, 2015).
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if a governing equation cannot be solved analytically, we can still obtain accurate and
trustworthy approximations of its solution.

An alternative to calculating a (numerical or exact) solution of the governing equation
is to analyze characteristic properties of the governing equation itself. Such analyses are
an important topic in non-linear dynamics, where the qualitative behaviour of a system
can remain elusive even in cases where explicit solutions of the governing equations are
available (Strogatz, 2015). Examples of characteristic properties include steady-state
solutions, bifurcation points, attractors and solution bounds. To examine the trustwor-
thiness of a governing equation, the characteristic properties of the governing equation
can be compared to observations of the real-world system being modelled. Similarly, to
examine the trustworthiness of a numerical solution of a governing equation, one can
examine if the numerical solution respects the properties of the governing equation, e.g.
that the numerical solutions converges to the correct steady state. Thus, the trustwor-
thiness of both the governing equations themselves and its (possibly numerical) solutions
can be evaluated a posteriori. This quality of PBM is especially useful in safety-critical
applications where it is imperative to monitor the well-behavedness of the predictive
model.

In the numerical experiments of the present work (cf. Chapter 4), we consider a variety
of different unsteady heat transfer problems in one and two dimensions where we aim to
compare PBM, DDM and CoSTA-based HAM. To do this, we need a PBM for unsteady
heat transfer, both for use as a stand-alone model and for use in the HAM model. The
next two sections are dedicated to the derivation of such a PBM, following the general
PBM development process outlined in this section. The PBM’s governing equation – the
heat equation – is derived from known first principles in Section 2.2.2, while we discuss
how to solve this equation numerically in Section 2.2.3.

2.2.2. The Heat Equation

As discussed in the previous section, physics-based modelling is based on deriving and
solving some governing equation which describes the known physics of the problem
at hand. For heat transfer problems, this governing equation is known as the heat
equation. A complete derivation of the heat equation in one dimension can be found in
the specialization project report (Blakseth, 2021). Here, we repeat the main points of
this derivation, while also generalizing the derivation to three dimensions. Moreover, at
the end of this section, we will rewrite the heat equation on several alternative forms
which will be used in later chapters.

The starting point for our derivation of the heat equation is the first law of thermo-
dynamics, which reads

∆U = Q+W. (2.1)

For a general system undergoing some process of duration ∆t, the first law of thermo-
dynamics states that the change ∆U in the system’s internal energy U is equal to the
heat Q added to the system and the work W performed on the system.

By definition, no work is performed by the system or its surroundings in pure heat
transfer problems, so W = 0. Furthermore, the heat Q can be split up into two con-
tributions: i) heat flowing into/out from the system, and ii) heat being generated (or
consumed) within the control volume. Mathematically, this can be expressed as

Q =

t+∆t∫

t



∫

∂V

q · (−n̂) dA+

∫

V

P dV


 dt′, (2.2)
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where V is the system’s volume, ∂V is its surface, q · (−n̂) is the heat flux into the
control volume across a unit surface with unit normal n̂, and P is the rate at which
heat is generated (per unit volume) within the system. The negative sign in front of n̂
appears because n̂ is conventionally defined as pointing out from the control volume. We
assume that the integrand of the temporal integral in Equation (2.2) is approximately
constant for small ∆t, such that dividing Equation (2.1) (with W = 0) by ∆t and
inserting Equation (2.2) for Q yields

∆U

∆t
= −

∫

∂V

q · n̂dA+

∫

V

P dV. (2.3)

In the limit ∆t→ 0, we then have

∂U

∂t
= −

∫

∂V

q · n̂dA+

∫

V

P dV. (2.4)

To make further progress, we employ a selection of thermodynamic identities (see
(Blakseth, 2021) for the details) to rewrite the temporal derivative of U as

∂U

∂t
=

∫

V

ρcV
∂T

∂t
dV, (2.5)

where ρ denotes density and cV denotes specific heat capacity at constant volume. Fur-
thermore, we assume that no heat is transferred across the system’s boundaries as a
result of advection. Then, the heat flux q · (−n̂) must be caused entirely be heat con-
duction, which is described by Fourier’s law (Lillestøl et al., 2015, chapter 18). It reads

q = −k∇T, (2.6)

where k denotes thermal conductivity and ∇T is the gradient of temperature T . Insert-
ing Equations (2.5) and (2.6) into Equation (2.4), we obtain the heat equation:

∫

V

ρcV
∂T

∂t
dV =

∫

∂V

(k∇T ) · n̂dA+

∫

V

P dV. (2.7)

Equation (2.7) is often referred to as the heat equation on integral form due to the
integrals appearing in the equation.

When considering problems in one or two dimensions, the surface integral in the
three-dimensional Equation (2.7) can sometimes be expressed more conveniently. For
one-dimensional problems, Equation (2.7) can be rewritten as

∫

V

ρcV
∂T

∂t
dV =

(
kA

∂T

∂x

)

e

−
(
kA

∂T

∂x

)

w

+

∫

V

P dV (2.8)

if the system’s eastern (right) and western (left) boundaries are perpendicular to the x-
axis. We use the subscripts e and w to denote quantities evaluated at the system’s eastern
and western boundary, respectively. For two-dimensional problems, Equation (2.7) can
instead be rewritten as
∫

V

ρcV
∂T

∂t
dV =

(
kA

∂T

∂x

)

e

−
(
kA

∂T

∂x

)

w

+

(
kA

∂T

∂y

)

n

−
(
kA

∂T

∂y

)

s

+

∫

V

P dV (2.9)
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if we additionally require that the system’s northern (upper) and southern (lower) bound-
aries are perpendicular to the y-axis. The subscripts n and s denote quantities evaluated
at, respectively, the northern boundary and the southern boundary.

As will be demonstrated in the next section, the integral forms given above are useful
for deriving numerical solvers for the heat equation. However, for certain purposes,
such as calculating the heat generation rate P given the temperature T , the integral
forms can be cumbersome to work with due to the integrals. In such cases, the so-called
differential forms, which can be derived from the integral forms under certain smoothness
conditions (cf. (Blakseth, 2021, Section 3.2)), are more convenient. The one-dimensional
heat equation on differential form reads

AρcV
∂T

∂t
=

∂

∂x

(
kA

∂T

∂x

)
+AP, (2.10)

while its two-dimensional counterpart is

AρcV
∂T

∂t
=

∂

∂x

(
kA

∂T

∂x

)
+

∂

∂y

(
kA

∂T

∂y

)
+AP. (2.11)

We mention that the smoothness conditions are satisfied for all temperature profiles
considered in this work, such that we can use the integral and differential forms inter-
changeably.

We have now defined the heat equation, which is the governing equation of unsteady
heat transfer, on both integral and differential form. Unfortunately, the heat equation
cannot be solved analytically in general, irrespective of which form is used to formulate
it. For the purposes of predictive modelling, we therefore need a method for solving the
heat equation numerically. Such a method is presented in the next section.

2.2.3. The Implicit Euler Finite Volume Method

This section is dedicated to presenting the Implicit Euler7 Finite Volume Method (FVM).
In the experiments described in Chapter 4, we use this method to solve the heat equation
numerically. The Implicit Euler FVM is a popular choice for solving the heat equation
because it is easy to implement and numerically stable for all discretizations of the spatial
and temporal domains (Tannehill et al., 1997).

Suppose now that we want to solve the heat equation on some spatial domain Ω and
temporal domain [0, tend] for some final time tend using the Implicit Euler FVM. We must
then begin by prescribing an initial temperature profile and a set of boundary conditions
(BCs). In this work, we only consider problems where the boundary temperatures are
fixed directly. Such BCs are commonly referred to as Dirichlet BCs.

In addition to prescribing an initial condition and a set of BCs, the Implicit Euler FVM
also requires us to discretize the spatial and the temporal domains. For the temporal
discretization, we split the temporal domain [0, tend] into Nt equally spaced time levels
separated by a constant time step ∆t, and we use a superscript n to denote that a
quantity is evaluated at the nth time level. With this notation, we thus have tn = n ·∆t.
When discretizing the spatial domain, we assume that Ω = [xa, xb] for 1D problems and
Ω = [xa, xb]× [yc, yd] for 2D problems. The spatial discretization is considered in greater
detail below, first in 1D and then in 2D.

For one-dimensional problems, we split the spatial domain [xa, xb] into Nj grid cells,
each of equal length ∆x. At the center of each grid cell, and at the boundary locations

7Also know as the Simple Implicit Method or the Laasonen Method.
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x

x1/2 x3/2 xw = xj−1/2 xj+1/2 = xe xNj−1/2 xNj+1/2

xa = x0 x1 x2 . . . xj−1 xj xj+1 . . . xNj−1 xNj xNj+1 = xb

1

Figure 2.1.: This figure illustrates how we have discretized the spatial domain along the
x-axis. Integral indices j are used to enumerate grid nodes (black dots),
including the nodes at the domain boundaries. Half-integral indices j + 1/2
are used to enumerate cell faces (dashed lines). Note that the location
of the left-most cell face coincides with the left-most grid node, such that
x0 = x1/2 = xa. Similarly, we have xNj+1 = xNj+1/2 = xb at the right
boundary. For 2D problems, the discretization along the y-axis is analogous.
In the y-direction, we use integral indices i to enumerate grid nodes and half-
integral indices i+ 1/2 to enumerate cell faces. The boundaries are treated
analogously, meaning that y0 = y1/2 = yc and yNi+1 = yNi+1/2 = yd.

xa and xb, we place so-called grid nodes, which are the locations where the numerical
FVM solution will be defined. We use an integral subscript j to indicate that a quantity
is evaluated at the grid node labelled j, as shown in Figure 2.1. Also illustrated in
this figure are the half-integral subscripts j + 1/2 and j − 1/2 used to denote quantities
evaluated at, respectively, the right and the left boundary (cell face) of the jth grid cell.

For two-dimensional problems, we treat the x-dimension just like in the 1D case,
while we treat the y-dimension analogously. That is to say, we split the spatial domain
[xa, xb] × [yc, yd] into Nj · Ni grid cells, each of equal area ∆x · ∆y. Each grid node
is identified by a pair of integral indices (j, i), where the first and second index denote
position along the x and y dimension respectively. We use half-integral subscripts i+1/2
and i − 1/2 to denote quantities evaluated at, respectively, upper and lower cell faces,
while the half-integral indices j+1/2 and j−1/2 retain their meaning from the 1D case.

Using the discretizations described above, we will now briefly explain how the Implicit
Euler FVM can be derived, beginning with 1D before extending to 2D. A last point
before we continue with the derivation is that, in the present work, we will only consider
problems where ρ, cV and A in Equations (2.8) and (2.9) are constant. We will also
only consider FVMs where k is assumed constant.8 For simplicity, we will therefore
assume that the quantities ρ, cV , A and k are all constant in the derivations below.
Note, however, that the Implicit Euler FVM does not require such an assumption, so
the derivations below can be made more general if necessary.

One Dimension

The starting point for the derivation of any FVM is the governing equation of the system
at hand, written on integral form (LeVeque, 2002, chapter 4). For us, this means that the
1D heat equation on integral form (2.8) is our starting point. Given the discretization
and assumptions outlined above, this equation can be written as

xe∫

xw

∂T

∂t
dx = κ

((
∂T

∂x

)

e

−
(
∂T

∂x

)

w

)
+

xe∫

xw

σ dx (2.12)

for an arbitrary grid cell j whose center, right boundary and left boundary are at xj , xe =
xj+1/2 and xw = xj−1/2, respectively. Here, κ = k/(ρcV ) denotes thermal diffusivity and

8We will consider problems where the true conductivity k is varying in space and time, but, for all
these problems, we synthesize modelling error by still assuming k to be constant in the FVM used.
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σ = P/(ρcV ) can be interpreted as a heating rate (or cooling rate, if σ < 0). Note
that the cross-sectional area A cancels from the equation because we assumed it to be
constant.

A central concept of FVM derivations is the use of cell-averaged quantities. In the
present derivation, we will make use of the cell-averaged temperature T̄ and the cell-
averaged heating rate σ̄, which are defined as follows:

T̄j =
1

∆x

xj+1/2∫

xj−1/2

T dx, σ̄j =
1

∆x

xj+1/2∫

xj−1/2

σ dx. (2.13)

In the Implicit Euler FVM, the cell-averaged values of T and σ are assumed to be
approximately equal to T and σ evaluated at the corresponding grid nodes. Addition-
ally, the spatial derivatives are approximated using central difference approximations.
Mathematically, we express these approximations as

T̄j ≈ Tj , σ̄j ≈ σj ,
(
∂T

∂x

)

j+1/2

≈ Tj+1 − Tj
∆xj+1/2

(
∂T

∂x

)

j−1/2

≈ Tj − Tj−1

∆xj−1/2
, (2.14)

where ∆xj+1/2 = xj+1−xj and ∆xj−1/2 = xj −xj−1.9 With the approximations above,
Equation (2.12) can be rewritten as

∂Tj
∂t

=
κ

∆x

(
Tj+1 − Tj
∆xj+1/2

− Tj − Tj−1

∆xj−1/2

)
+ σj =: Rj . (2.15)

We have one such equation for each of the Nj grid cells, and these Nj scalar equations
can be collected into the following vector equation:

∂T (t)

∂t
= R(T (t)) with T (t) = [T1, . . . , TNj ]

T , R(T (t)) = [R1, . . . , RNj ]
T . (2.16)

To obtain a fully discretized system of equations, we discretize the temporal derivative
such that

1

∆t

(
T n+1 − T n

)
= R

(
T n+1

)
. (2.17)

Finally, the above vector equation can be written on so-called matrix form

AT n+1 = b (T n) , (2.18)

where A is a tridiagonal matrix. The non-zero elements of A are

aj,j = 1 + κ
∆t

∆x

(
1

∆xj+1/2
+

1

∆xj−1/2

)
, j = 1, . . . , Nj ,

aj,j+1 = −κ∆t

∆x

1

∆xj+1/2
, j = 1, . . . , Nj − 1,

aj−1,j = −κ∆t

∆x

1

∆xj−1/2
, j = 2, . . . , Nj ,

9∆xj−1/2 is equal to 1
2
∆x if j = 1, and equal to ∆x otherwise, as can be seen from Figure 2.1. Similarly,

∆xj+1/2 is equal to 1
2
∆x if j = Nj , and equal to ∆x otherwise.
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while the components of b are

b1 = Tn1 + ∆tσn+1
1 + κ

∆t

∆x

1

∆x1/2
Tn+1
a ,

bj = Tnj + ∆tσn+1
j , j = 2, . . . , Nj − 1,

bNj = TnNj
+ ∆tσn+1

Nj
+ κ

∆t

∆x

1

∆xNj+1/2
Tn+1
b .

We observe that A is diagonally dominant, since

|a1,1| > κ
1

∆x3/2
= |a1,2| =

∑

i 6=1

|a1,i|,

|aj,j | > κ
∆t

∆x

(
1

∆xj+1/2
+

1

∆xj−1/2

)
= |aj,j+1|+ |aj,j−1| =

∑

i 6=j
|aj,i|, j = 2, . . . , Nj − 1,

|aNj ,Nj | > κ
1

∆xNj−1/2
= |aNj ,Nj−1| =

∑

i 6=Nj

|aNj ,i|.

The system (2.18) can therefore be solved using the highly efficient tridiagonal matrix al-
gorithm. An introduction to this algorithm can be found in (Versteeg and Malalasekera,
1995, pages 157–158).

Two Dimensions

The derivation of the two-dimensional Implicit Euler FVM largely follows the same steps
as the 1D derivation above. In 2D, our starting point is the 2D heat equation on integral
form, which, given our assumptions of constant ρ, cV , A and k, can be written as

yn∫

ys

xe∫

xw

∂T

∂t
dxdy = κ

((
∂T

∂x

)

e

−
(
∂T

∂x

)

w

+

(
∂T

∂y

)

n

−
(
∂T

∂y

)

s

)
+

yn∫

ys

xe∫

xw

σ dxdy, (2.19)

for the grid cell centered at the grid node (xj , yi) and with boundaries xe = xj+1/2,
xw = xj−1/2, yn = yi+1/2 and ys = yi−1/2. To discretize Equation (2.19), we use
the same approximations as before10 (cf. Equation (2.13)), in addition to the following
central difference discretizations of the spatial derivatives in the y-direction:

(
∂T

∂y

)

i+1/2

≈ Ti+1 − Ti
∆yi+1/2

,

(
∂T

∂y

)

i−1/2

≈ Ti − Ti−1

∆yi−1/2
, (2.20)

where ∆yi+1/2 = yi+1−yi and ∆yi−1/2 = yi−yi−1. With the approximations (2.13) and
(2.20), Equation (2.19) can be written as

∂Tj,i
∂t

=
κ

∆x∆y

(
Tj+1,i − Tj,i

∆xj+1/2
− Tj,i − Tj−1,i

∆xj−1/2
+
Tj,i+1 − Tj,i

∆yi+1/2
− Tj,i − Tj,i−1

∆yi−1/2

)
+ σj,i.

We have Nj · Ni equations like the one above – one for each grid cell. These can
be discretized using the same temporal discretization as we used in 1D, and the fully

10In 2D, the cell-averaged quantities are defined slightly differently than in 1D, since we must average
over the y-dimension as well. However, we still approximate the cell-averaged quantities using the
corresponding grid node values as in 1D.
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discretized equations can be collected into a single vector equation. Finally, the vector
equation can be written on the same matrix form as its 1D counterpart, namely

AT n+1 = b (T n) . (2.21)

However, A, T and b are defined differently here than in Equation (2.18). The matrix
A is now a banded (NjNi × NjNi)-matrix with five non-zero diagonals, while T and b
are now NjNi-dimensional vectors. Their precise definitions are quite voluminous in the
2D case, and are therefore deferred to Appendix G. Since A is no longer tridiagonal,
we cannot use the tridiagonal matrix algorithm to solve the system (2.21). However,
a wide variety of other solvers are applicable. For simulations with a large number of
grid points, we recommend the use of solvers that are specialized for sparse, banded
coefficient matrices. However, for the purposes of our 2D numerical experiments (cf.
Section 4.3), general-purpose solvers also suffice.11

2.3. Data-Driven Modelling

In this section, we shift our attention to data-driven modelling (DDM). A general intro-
duction to DDM is given in Section 2.3.1, while Section 2.3.2 is devoted to a discussion
on DDM for heat transfer problems. The latter section is where we explain and justify
the DDM used in the numerical experiments of Chapter 4. Finally, in Section 2.3.3, we
cover some basic concepts of deep neural networks, which are commonly used in DDM.

2.3.1. An Introduction to Data-Driven Modelling

When we study a system using DDM, we model the system using observational data only.
This means that we do not take into account any pre-existing knowledge of the system
at hand, which is a dual-edged sword. The downside is that we have to relearn whatever
useful knowledge we already have. However, on the positive side, it also means that we
are not limited by our current knowledge, which may be incomplete (or even incorrect).
In some sense, this characteristic of DDM is reminiscent of early physics research. For
example, early astronomers like Johannes Kepler did not know why the planets of our
solar system moved the way they did. Yet, through careful study of observational data,
they were able to formulate quantitative relations describing planetary motion. Notable
examples include Kepler’s laws, and even Isaac Newton’s law of gravity (Kutner, 2003,
page 434). It was only much later, after Albert Einstein published his theory of general
relativity, that the physics underlying the aforementioned laws became understood by
physicists.

As scientists developed a better understanding of physics, purely data-driven mod-
elling lost traction in favour of physics-based modelling. Instead of using data to con-
tinuously develop new models from scratch, it was far more efficient for scientists to
interpret data within pre-existing physical models in an effort to improve these models
through modifications and extensions. Additionally, PBM offers explanations of why
things are the way they are, while traditional DDM only explains how they are. For
both research scientists and engineers (especially in high-stakes applications), this is a
major disadvantage of DDM. Thus, for DDM to be worthwhile, it must offer something
which PBM cannot, such as superior computational efficiency or high modelling accu-
racy for phenomena that are poorly understood and/or difficult to model using PBM.

11We use the LAPACK routine “?gesv” accessed through the SciPy library in our numerical experiments
on 2D heat transfer problems.

17



2. Theory

As our understanding of both physics and numerical methods is ever-increasing, this is a
tall order for DDM to match. However, as a growing number of applications migrate to
big-data regimes, DDM is becoming increasingly relevant. Furthermore, as discussed in
Chapter 1, the advent of modern computing infrastructure, combined with new, power-
ful data-driven techniques, has levelled the playing field between PBM and DDM. Deep
neural networks (DNNs) have been particularly important in this development. We will
discuss the basics of DNNs at the end of this chapter, in Section 2.3.3. For now, we will
continue our high-level presentation of DDM.

In our study of the literature, we have identified two main approaches to DDM: Equa-
tion discovery and time series forecasting. The most important concepts of these two
approaches will be presented below, along with some examples of their applications.
Finally, this section will be concluded by a comparison of the two approaches.

Equation Discovery

Equation discovery is data-driven modelling in the spirit of the early experimental physi-
cists; its main objective is to discover an explicit governing equation from observational
data. Once a governing equation has been discovered, predictions for presently unseen
scenarios can be made by solving the discovered equation. While the earliest forms of
equation discovery were limited in their power due to manual data analysis, digital tech-
nologies have recently enabled the discovery of far more complex dynamics than was
previously possible.

An interesting work on equation discovery is that by Cranmer et al. (2020). In that
work, the authors first train a graph neural network (GNN) to capture the dynamics
of the system at hand, before using symbolic regression to recover an explicit governing
equation describing the dynamics learnt by the GNN. They demonstrate their approach
by recovering the governing equations of known systems such as damped oscillators, and
they also discover a novel equation describing dark matter overdensity from state-of-
the-art dark matter simulations. In other works on equation discovery, such as those by
Raissi et al. (2018) and Brunton et al. (2016), some basic structure is imposed on the
unknown governing equation for mathematical convenience.12 Both these works assume
that the quantity of interest, which we denote u, is governed by an equation on the form

du

dt
= f(u), (2.22)

where f is an unknown function that must be learnt from observations. Brunton et al.
(2016) use sparse regression techniques to learn f , while Raissi et al. (2018) learn f
using a simple neural network. In both works, the learnt functions f successfully capture
the behaviour of a variety of physical systems, including the chaotic Lorenz equations.
Equation discovery in this form is also studied by Ayed et al. (2019), who consider the
special case when the state of the system can only be partially observed.

Time Series Forecasting

In contrast to equation discovery, time series forecasting does not aim to learn an explicit
representation of a system’s dynamics. Instead, a hidden representation of the dynamics

12It is important to note that these works are still distinctly different to works in parameter discovery,
which we listed in Chapter 1 as one of the main approaches to HAM. In parameter discovery problems,
the functional form of the system’s governing equation is pre-imposed based on physical knowledge.
Here, the imposed mathematical form is still highly general and does not stem from knowledge of
system-specific physics.
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is learnt and parametrized by a data-driven model – typically a neural network. This
model is then used to make predictions without ever producing an explicit governing
equation. Typically, the model is designed to capture the dynamics of the system in
the form of a so-called transition function. For a general state variable u, the transition
function maps the value of u at some time level n to its value at the subsequent time
level n + 1 (possibly by utilizing historic values of u in addition to its current value).
The role of the transition function, which we denote τ , can be expressed mathematically
as

u(tn+1) = τ(u(tn), . . . , u(tn−nhist)), (2.23)

where nhist denotes the number of historic data points needed to predict u at the new
time level.13 The goal of learning an efficient parametrization of τ can be achieved e.g.
through the use of traditional regression techniques or more recent techniques based on
neural networks. Over the last decades, several research papers (Cai et al., 2019; Hill
et al., 1996; Jain and Kumar, 2007; Pala and Atici, 2019; Zhang, 2003) have advocated
the use of neural networks for time series forecasting, either as complete models or for
use in combination with traditional regression techniques. In the rest of this section, we
therefore focus on NN-based time series forecasting.

A wide variety of different neural network types can be used to parametrize the time
series transition function, as discussed in the well-organized review of DNN-based time
series forecasting by Mahmoud and Mohammed (2021). While some early research
advocated the use of simple, fully connected neural networks (Hill et al., 1996; Kaastra
and Boyd, 1996), recurrent neural networks (RNNs) and variations thereof have recently
been dominating the field (Bai et al., 2018). A particularly popular variation of RNNs
is long short-term memory networks (LSTMs), which have been used successfully for
e.g. wind forecasting (Chen et al., 2018), solar activity forecasting (Pala and Atici,
2019), (short-term) precipitation forecasting (Shi et al., 2015), and COVID-19 infections
forecasting (Zeroual et al., 2020). Zeroual et al. (2020) additionally consider variational
autoencoders (VAEs) in their COVID-19 forecasting study. VAEs are also considered
by Bao et al. (2017), who use them in combination with LSTMs and wavelet transforms
to predict stock prices. Yet another alternative approach is to use the recently proposed
temporal convolutional networks, which are demonstrated by Bai et al. (2018) and Wan
et al. (2019) for univariate and multivariate applications, respectively. In conclusion,
the examples above illustrate that a wide array of powerful DNN-based techniques is
available for time series forecasting.

A Comparison of Equation Discovery and Time Series Forecasting

In comparison to equation discovery, time series forecasting has the benefit of being self-
contained, in the sense that it does not rely on analytical or numerical solution methods
for producing predictions. This is especially beneficial when the true governing equation
cannot be solved analytically. In such cases, the accuracy of DDM based on equation
discovery will be limited by the finite accuracy of the numerical method used to solve
the governing equation. Since DDM based on time series forecasting does not rely on
any numerical solver, its accuracy is only limited by the extent to which the model has
learnt the underlying physics. Thus, a model based on time series forecasting will provide
predictions with zero error if the underlying physics is learnt perfectly. Consequently,
time series forecasting has a possible edge over equation discovery in terms of accuracy.

13For example, we will have nhist = 0 for any system with the Markov property (future behaviour
depends only on current state), while we will have nhist > 0 e.g. for systems experiencing hysteresis.
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However, when it comes to interpretability and trustworthiness, equation discovery is the
superior approach. Since equation discovery provides an explicit representation of the
learnt dynamics, the knowledge instilled in the DDM can be analyzed using both physics-
based and mathematical frameworks. This enables a posteriori verification of the learnt
dynamics as well as the development of stability conditions and error bounds. Such
analyses are not facilitated in the same way by DDMs based on time series forecasting,
since no explicit representation of the learnt dynamics is provided. Thus, equation
discovery and time series prediction each have their individual strong and weak points.
Which approach to use for any given problem must therefore be considered on a case-
by-case basis.

2.3.2. Data-Driven Modelling for Heat Transfer Problems

In this section, we will describe and justify the DDM for unsteady heat transfer mod-
elling that we use in our numerical experiments (cf. Chapter 4). To this end, we first
have to decide whether the model should be based on equation discovery or time-series
forecasting. We therefore begin by discussing this decision. Further details of the chosen
model will be covered thereafter – first in 1D, then in 2D.

Both equation discovery and time series prediction are generally well-suited approaches
to data-driven modelling of unsteady heat transfer. However, for the purposes of the
present work, time series prediction is the most relevant approach. The most important
reason for this is that we want to study cases where the heat equation cannot be solved
analytically. As discussed above, equation discovery-based models are then reliant upon
numerical methods like the Implicit Euler FVM to provide predictions. Using a numerical
method is undesirable in two ways: 1) it increases model complexity, which makes
analysis of the model and its predictions more difficult, and 2) it introduces numerical
error, thereby providing an upper bound to the model’s predictive accuracy even when
the full physics is learnt perfectly. This would put DDM at an unfair disadvantage in our
numerical experiments (cf. Chapter 4), where predictive accuracy is of great concern.
We therefore use DDM based on time series forecasting for the experiments in this work.

On the basis of the research on time series forecasting cited above, we choose to use a
deep neural network to learn a representation of the transition function τ . To have a well-
defined learning problem for the DNN, we must also choose the number nhist of historic
data points to include as input to the DNN, in addition to the data from the present
time level.14 As any smooth function T can be a solution of the heat equation for some
choice of P , there exists no upper bound on nhist which guarantees that T (tn+1) can be
uniquely identified given {T (tn), T (tn−1), . . . , T (tn−nhist)}. Furthermore, there exists no
general bound on nhist which holds in a certain percent of all possible scenarios. Instead,
an appropriate value of nhist must be chosen based on the particular application at hand.
We therefore make the arbitrary assumption that nhist = 0, and make sure that we define
our numerical experiments such that this does not result in an ill-posed DNN learning
objective. In other words, we assume that

T n+1 = τ(T n). (2.24)

yields a well-defined transition function τ , and we want to train a DNN to approximate

14These considerations apply to so-called feed-forward NNs, which is the kind of DNNs used in the
present work. For e.g. recurrent NNs, the handling of historic data would be taken care of automat-
ically by the NN.
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this function. For one-dimensional problems, the ideal DNN mapping is then defined by

DNNT : RNj+2 → RNj such that T n+1
d = T n+1

ref . (2.25)

T nd 7→ T n+1
d

Here, the subscript d is used to denote DDM-predicted temperature profiles, while the
subscript ref is used to denote observed reference data, i.e. solutions of the true governing
equation sampled at distinct spatial and temporal locations. For simplicity, we use
the same spatial and temporal discretization here as in Section 2.2.3. DNNT is here
taken to be the ideal mapping that the DNN will be trained to approximate, but we
will later also use the same notation to refer to DNNs trained to approximate this
mapping; the assumed meaning will always be clear from context. As we did for the
PBM discussed in the previous section, we assume that the boundary condition of our
system are known, and this is the reason why the DNN output has two fewer components
than the DNN input. As the BCs are known, we do not need to predict them, so the DNN
output does not have any component describing the boundary temperature. However,
we do want to include the boundary temperatures in the DNN input, as they contain
useful information about the system at hand. Note also that, if T 0

d = T 0
ref , then the

ideal mapping guarantees T nd = T nref also for all n > 0, as desired. Thus, if the DNN
successfully learns the ideal mapping, then the DDM-generated time series {T nd }

Nt−1
n=0

will be precisely equal to the true time series {T nref}
Nt−1
n=0 .

For two-dimensional problems, the ideal DNN mapping is defined analogously to that
of the 1D case described above:

DNNT : R(Nj+2)(Ni+2) → RNjNi such that T n+1
d = T n+1

ref . (2.26)

T nd 7→ T n+1
d

The only difference between this definition and the 1D definition is that we have increased
the dimensionality of the DNN’s input space and output space to accommodate the
extra spatial dimension. The discrete temperature vectors are defined using the same
2D discretization as was used in Section 2.2.3.

As the brief literature review given earlier in this chapter has shown, the mapping
DNNT can be learnt by a multitude of different types of DNNs using a score of different
DNN training routines. Specific details regarding the DNN architecture and training rou-
tines used in our numerical experiments are given in Section 4.1. However, as promised,
the basics of deep neural networks will be covered briefly in the next section.

2.3.3. An Introduction to Deep Neural Networks

In this section, we briefly cover some important concepts related to DNNs. We begin
defining what we mean by the term DNN. Subsequently, we explain how DNNs can learn
mappings like those defined in Equations (2.25) and (2.26). Along the way, we will also
introduce some DNN terminology which will be used throughout the rest of this thesis.
We highlight the use of the excellent textbooks by Nielsen (2015) and Goodfellow et al.
(2016) as source material for this section. Since these works are cited here, they will not
be cited again later in the section. However, other source material will be cited in the
text wherever relevant.

Before we discuss neural networks specifically, let us say some words about machine
learning at large. Machine learning is a branch of computer science concerned with the
study of models that learn from experience. To be precise about what we mean by
learning, we cite the definition given by Mitchell (1997):
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Definition A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.

For example, T can be to predict the future temperature of a system given its current and
past temperatures. E is then the feedback that the program has received on its earlier
attempts at making such predictions, while P could e.g. be the absolute value of the
difference between the predicted future temperature and the true future temperature.

A neural network (NN) is a special kind of machine learning model – i.e. a model
capable of learning. In fact, the Universal Approximation Theorem guarantees that a
neural network can learn any function, no matter how complicated. The name “neural
network” alludes to the structure of these models, which is inspired by human brains.
Just like brains, NNs consist of a (large) number of individual interconnected processing
units, which we call neurons. Each neuron is associated with a set of weights w and (pos-
sibly) a bias β. A neuron uses w and β, which are collectively known as its parameters,
to compute its output when given some input. Different types of neurons process their
input differently. Additionally, different types of NNs organize their neurons differently.
However, one often finds that NNs organize their neurons in layers, which are groups of
neurons that operate (independently of each other) to produce some collective output
when given a shared input. Again, different types of layers utilize their neurons differ-
ently to compute its output. Although it is beyond the scope of this section to consider
all the possibilities, we mention fully connected layers (which we will return to later),
convolutional layers and recurrent layers as important examples. We refer to the specific
combination of layers used to construct an NN as the NN’s architecture. Furthermore,
we say that a neural network is deep if it consists of many layers. However, there exists
no conventional lower bound for what counts as “many” in this context. For instance, an
NN might be considered deep if it consists of more than one so-called hidden layers. A
hidden layer is a term used to describe any layer which is not the NN’s input layer (the
layer which receives the NN’s input) or its output layer (the layer responsible for produc-
ing the NN’s final output). The appropriate number of layers for any given application
must be determined by the NN developer on a case-by-case basis. This also applies to
the number of neurons in each layer. We typically use the term hyperparameters when
referring to model parameters that must be chosen by the developer and whose optimal
values are not determined by the model itself. In addition to layer size and the number
of layers, important hyperparameters include e.g. batch size and learning rate, both of
which we will encounter later in this section.

For the numerical experiments described in Chapter 4, we use DNNs with fully con-
nected layers. We will therefore have a brief look at how these layers work. In a fully
connected layer, all neurons operate on the layer’s full input, which is a vector we denote
η. The neuron’s output z, which is a scalar, is then computed as z = w · η + β (cf.
Figure 2.2a). Subsequently, the individual neuron outputs are collected in a vector z,
which is the output of the layer as a whole. The output z is then passed through a
non-linear activation function Φ to produce φ = Φ(z). The activated output vector φ is
finally used as the input of the subsequent fully connected layer. Thus, the input of all
neurons in a fully connected layer depends on the output of all neurons in the preceding
layer, as illustrated in Figure 2.2b.

Let us take a moment to consider the activation function Φ in greater detail. First
of all, the non-linearity of the activation function is essential, because without it, an
NN with fully connected layers would just be a composition of matrix multiplications.
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η1

η2

η3

zw, β

(a) Neuron (b) Fully connected layers

Figure 2.2.: Left: An illustration of a neuron receiving an input vector η = [η1, η2, η3] and
outputting a scalar z = w ·η+β = w1η1 +w2η2 +w3η3 +β. w = [x1, w2, w3]
are the neuron’s weights, and β is its bias.
Right: An illustration of the connections between two fully connected layers,
each consisting of three neurons.

Secondly, any non-linear function is (in principle) fit for use as an activation function in
an NN. However, certain choices are more popular than others. Early works on neural
networks often used the so-called sigmoid function 1/(1 + exp(−z)), but this function
suffers from a phenomenon known as saturation. We say that an activation function
Φ is saturated if a large change in z results in a comparatively small change in Φ(z).
This is undesirable, because it inhibits information flow through the network due to
phenomena known as exploding and vanishing gradients. A more modern choice of
activation function is the Rectified Linear Unit (ReLU), which is defined as

ReLU(z) =

{
z z ≥ 0,
0 z < 0.

(2.27)

ReLU does not suffer from exploding/vanishing gradients in the same way as the sigmoid
function (Xu et al., 2015). However, the fact that it completely disregards all negative z
may also inhibit learning. This issue is addressed by the LeakyReLU activation function
(Maas et al., 2013). It is defined as

LeakyReLU(z) =

{
z z ≥ 0,
−Λz z < 0,

(2.28)

where Λ is a constant chosen by the NN developer.15

So far, we have talked a lot about what a (deep) neural network is, but not so much
about how it actually learns. On the most fundamental level, an NN learns by updating
the parameters of its neurons such as to obtain better performance, as measured by the
performance measure P. This learning process is commonly referred to as NN training,
and it can be carried out in a multitude of different ways. Here, we will focus on so-
called supervised learning. Supervised learning requires the preparation of a number of
data examples, each consisting of an NN input and a corresponding target output. For
any data example, the NN takes the input and produces an output which ideally should
be equal to the target output. The closeness of the NN output to the target output
is measured by a cost function. Generally, the cost function is defined to output small
values if the NN output is close to the target output and comparatively large values
when the output is dissimilar to the target output. Thus, the NN’s learning objective –

15The original incarnation of LeakyReLU used Λ = 0.01 (Maas et al., 2013).
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which is to make its output similar to the target output – is equivalent to minimizing
the cost function.

To minimize the cost function, NNs make use of an algorithm known as backpropaga-
tion, which is essentially a clever formulation of the chain rule for partial derivatives.16

Using the backpropagation algorithm, it is possible to calculate the partial derivative
of the cost function with respect to any of the individual parameters of the NN’s neu-
rons. With these gradients it is possible to optimize the parameters such as to minimize
the cost function for all data examples available for training. Exactly how this is done
depends on the optimization algorithm (also know as the optimizer) that is used.

For training NNs, optimizers based on stochastic gradient descent have proven to be
highly effective in practice. These optimizers divide the full set of training examples
into randomly chosen (small) groups known as batches. For each batch, the average
cost of all the examples in the batch is computed. The NN’s parameters are then
updated in the direction of negative gradient of the batch-averaged cost. We refer to
the process of updating the NN’s parameters given the gradients from a single batch
as a training iteration. The size of the updates naturally depends on the size of the
gradients, but it also depends on a model parameter known as the learning rate. Simply
put, a larger learning rate also yields larger updates per training iteration. For advanced
optimizers, other factors are also taken into account when determining the size of the
updates. For example, the Adam optimizer (Kingma and Ba, 2014) used in our numerical
experiments (cf. Chapter 4) accounts for two further observations: 1) If the gradients
have been pointing “in the same direction” for many subsequent training iterations, it
might increase efficiency to make larger updates in that direction until the gradients
are observed to change direction. 2) Some parameters may benefit from larger updates
than others, depending e.g. on the parameters’ relative importance and have often they
contribute significantly to the final output of the NN. An excellent overview of commonly
used optimizers (including the Adam optimizer) is given by Ruder (2016).

We conclude the present section by briefly covering the concepts of validation and
evaluation (also known as testing) in the context of NNs. Validation and evaluation
share a common objective, namely to assess the performance of an NN. The difference
between the two is that validation refers to pre-deployment assessment, while evaluation
refers to post-deployment assessment. Validation also has a clear analogy to training,
which evaluation does not: Training is performed such that the optimizer can adjust the
parameters of the neurons, while validation is performed such that the model developer
can adjust the hyperparameters of the NN as a whole. In contrast, no changes are to be
made on the basis of the evaluation results. The evaluation results constitute the final
measure of the NN’s performance after its development has been completed.

16Nielsen (2015, chapter 2) provides a particularly pedagogical explanation of backpropagation.
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In this chapter, we formally introduce and justify the Corrective Source Term Approach
(CoSTA) to hybrid analysis and modelling (HAM). We define CoSTA to encompass any
hybrid model developed by perturbing the governing equation of a physics-based model
with a corrective source term generated using data-driven techniques. The general ratio-
nale behind perturbing a PBM with a corrective source term is presented in Section 3.1.
Subsequently, in Section 3.2, we consider CoSTA’s underlying theoretical framework in
the context of heat transfer problems. Lastly, Section 3.3 is dedicated to a discussion on
how and why we propose to use data-driven techniques (and deep neural networks, in
particular) for generating the corrective source term.

3.1. Theoretical Justification of CoSTA

As discussed in Section 2.2, physics-based modelling involves formulating and solving a
governing equation for the system to be modelled. In this section, we consider a general
governing equation describing some quantity u on a domain Ω with boundary ∂Ω. Our
goal is to show that a cleverly defined corrective source term can be used to correct
any error in a physics-based model of u. To this end, let us assume that u is the exact
solution of a governing equation on the following general form (including BCs):

NΩu = f in Ω, (3.1)

N∂Ωu = g on ∂Ω. (3.2)

Here, NΩ and N∂Ω represent general, possibly non-linear operators1 acting on u, while
f and g are general functions. Note that this formulation also captures scenarios where
there are multiple governing equations. In such scenarios, u is a vector, and f and g are
vector-valued functions.

Assume now that we have a PBM designed to predict u, and let ũ denote the PBM’s
prediction of the true solution u. We argue that if ũ 6= u, then the error in PBM can
always be corrected using a corrective source term. The argument begins by observing
that any error in the PBM must stem from one of the following sources:

1. The true function f in Equation (3.1) is unknown, so it is approximated by f̃ .

2. The true operator NΩ in Equation (3.1) is unknown, so it is approximated by ÑΩ.

3. The true function g in Equation (3.2) is unknown, so it is approximated by g̃.

4. The true operator N∂Ω in Equation (3.2) is unknown, so it is approximated by
Ñ∂Ω.

5. A combination of the above.

1For u to be uniquely defined, N∂Ω must be the unity mapping for at least one location on ∂Ω.
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6. We know the true governing equation (3.1) and the true boundary conditions (3.2),
but we are unable to solve these equations exactly. To obtain a prediction ũ,
we must therefore solve some approximation of the true system constituted by
Equations (3.1) and (3.2). This puts us in one of the cases described above. One
typical example is to approximate NΩ using a numerical operator Nnum e.g. based
on finite-difference approximations, which puts us in Case 2.

As stated above, Case 6 is always mathematically equivalent to one of the other cases.
Additionally, Cases 3 and 4 are analogous to Cases 1 and 2 because N∂Ω and g play
exactly the same roles in Equation (3.2) as NΩ and f do in Equation (3.1); if any error
in Equation (3.1) can be corrected by adding a cleverly defined source term to its right-
hand side, then adding an analogously defined source term to the right-hand side of
Equation (3.2) must necessarily correct any error in the latter equation. To show that it
is always possible to correct any error in the PBM through the use of a corrective source
term, it therefore suffices to consider Cases 1 and 2, and combinations thereof.

Suppose now that the PBM-predicted solution ũ is given as the solution of the following
governing equation:

ÑΩũ = f̃ in Ω, (3.3)

N∂Ωũ = g on ∂Ω. (3.4)

This formulation encompasses both Case 1 (for ÑΩ = NΩ and f̃ 6= f), Case 2 (for
ÑΩ 6= NΩ and f̃ = f), and combinations thereof (for ÑΩ 6= NΩ and f̃ 6= f). Furthermore,
suppose we modify the system above by adding a source term σ̂ to Equation (3.3), and
let the solution of the modified system be denoted ˆ̃u. Then, the modified system reads

ÑΩ
ˆ̃u = f̃ + σ̂ in Ω, (3.5)

N∂Ω
ˆ̃u = g on ∂Ω. (3.6)

and the following theorem holds.

Theorem Let ˆ̃u be a solution of Equations (3.5) and (3.6), and let u be a solution
of Equations (3.1) and (3.2). Then, for all operators ÑΩ, NΩ, Ñ∂Ω and N∂Ω and all
functions f , f̃ , g and g̃ such that ˆ̃u and u are uniquely defined, there exists a function
σ̂ such that ˆ̃u = u.

Proof : Define the residual r of the PBM’s governing equation (3.3) as2

r = ÑΩu− f̃ . (3.7)

If we set σ̂ = r in Equation (3.5), we then obtain

ÑΩ
ˆ̃u = f̃ + σ̂

= f̃ + ÑΩu− f̃

= ÑΩu

=⇒ ˆ̃u = u �

2Note that our definition is in some sense opposite of common practice; we have defined the residual
by inserting the true solution into the approximate equation rather than inserting the approximate
solution into the true equation. The latter is the conventional approach, and is used e.g. in truncation
error analysis (LeVeque, 2002, chapter 8). The reason for our choice is two-fold: 1) It yields the
simplest proof of the theorem. 2) When observing a real-world system, it is often easier to measure
its state than to find the exact governing equation describing said state.
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The theorem above proves that, for any error in the PBM’s governing equation (3.3),
there always exists a source term σ̂ which we can add to that equation such that the
solution ˆ̃u of the modified governing equation (3.5) is equal to the true solution u. If
the source of the error in ũ was instead found in Equation (3.4), which defines the
PBM’s boundary conditions, we would modify that equation analogously. That is, we
would add a corrective source term to its right-hand side, and the source term would
be given by the residual of Equation (3.4) – not Equation (3.3) – with the true solution
u inserted in the place of ũ. Thus, the true solution u of the true governing equations
can always be retained by modifying an erroneous PBM with a corrective source term.
This observation is the principal theoretical justification of the Corrective Source Term
Approach presented in this work.

From a practical point of view, some challenges related to the definition of the correc-
tive source term still remain. The residual r defined in Equation (3.7), depends on the
true solution u. Thus, setting σ̂ = r in the modified PBM means that the prediction ˆ̃u
depends on u. For a posteriori analyses where u is known, this does not pose any issues.
However, it is an issue if we want to make a priori predictions of u, because u itself is
then unknown. When u is unknown, we cannot explicitly compute the residual r (as
defined in Equation (3.7)) and insert it as a source term in Equation (3.5). We discuss
how to circumvent this issue in Section 3.3.

3.2. Applying CoSTA to Heat Transfer Problems

In this section, we provide an in-depth discussion of how the general CoSTA framework
presented in Section 3.1 can be applied in practice. More specifically, we will apply the
framework to the heat equation and the Implicit Euler FVM for unsteady heat transfer
problems, which we presented in Section 2.2.

Let us begin by considering the heat equation. This equation is the true governing
equation for unsteady heat transfer, and is thus the manifestation of Equation (3.1) for
unsteady heat transfer problems. We have written the heat equation on both integral
and differential forms in various dimensions, and all these forms can be reconciled with
the general framework of Section 3.1. As an example, we demonstrate how to do this
for the 1D heat equation on differential form (2.10) with Dirichlet BCs. For any of the
other forms of the heat equation, the process would be analogous to the one used below.

Our quantity of interest in this example is the temperature T , so T now plays the role
of the general variable u used in Section 3.1. Furthermore, through a rearrangement of
terms, Equation (2.10) can be rewritten as

ρcV
∂T

∂t
− ∂

∂x

(
kA

∂T

∂x

)
= P. (3.8)

Comparing Equation (3.8) to Equation (3.1), it is clear that we have

u = T, NΩ = ρcV
∂

∂t
− ∂

∂x

(
kA

∂

∂x

)
and f = P. (3.9)

As for the boundary conditions, we know from the definition of Dirichlet BCs that
the temperature T is always equal to some function T∂Ω at all boundary locations.
In Equation (3.2), we then have that N∂Ω is the unity operator and g = T∂Ω is the
prescribed boundary temperature.

Continuing the example above, suppose that we do not know the true source term P or
the true conductivity k, such that these must be approximated by P̃ and k̃, respectively.
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The true governing equation (Equation (3.8) in this example) is then approximated by

ρcV
∂T

∂t
− ∂

∂x

(
k̃A

∂T

∂x

)
= P̃ , (3.10)

which is analogous to Equation (3.3). Consequently, we observe that the approximate
operator ÑΩ and the approximate function f̃ are

ÑΩ = ρcV
∂

∂t
− ∂

∂x

(
k̃A

∂

∂x

)
and f̃ = P̃ (3.11)

in the present example. Using the relations above, we could also define the corrective
source term σ̂. In a PBM where the governing equation can be solved exactly, this would
indeed be the natural next step. However, when a numerical solver is required for solving
the governing equation – as is generally the case for the heat equation – it is desirable
to correct for the numerical error of the solver in addition to any modelling error in the
governing equation. Defining the source term at this stage would enable us to capture
only the latter error. We therefore move on to discussing how the Implicit Euler FVM
fits in with the framework outlined in Section 3.1. The corrective source term will be
defined subsequently as a correction to the FVM. This way, the corrective source term
can capture both modelling error and discretization error.

In both one and two dimensions, the Implicit Euler FVM can be expressed on the
form

AT n+1
p = b

(
T np
)
, (3.12)

where we now use the subscript p to indicate that the solution of the system above is a
PBM approximation of the true solution. Furthermore, we use the notation Tref to refer
to the true solution of the heat equation, and we let Tref denote Tref evaluated at the
interior nodes used to define the FVM expressed in Equation (3.12). Upon comparison
of Equation (3.12) with Equation (3.3), we observe the following relations:

ÑΩ ↔ A, ũ↔ T n+1
p , f̃ ↔ b, u↔ T n+1

ref . (3.13)

With these relations, we can define the corrective source term for the Implicit Euler
FVM using the residual from Equation (3.7). The definition reads

σ̂n+1 = r = AT n+1
ref − b (T nref) . (3.14)

Note that we here write the corrective source term in bold because it is defined as a
vector for the relations (3.13) given by the Implicit Euler FVM. We also add a time-level
superscript to highlight the time-dependence of the corrective source term.

As in Section 3.1, we use the corrective source term to define a modified governing
equation whose solution is exactly equal to the reference solution at all grid nodes and
at all time levels. We use a subscript h (for “hybrid analysis and modelling”) to denote
the solution of the modified system, and we write the modified system as

AT n+1
h = b (T nh ) + σ̂n+1. (3.15)

When testing our CoSTA-based HAM models in Chapter 4, this is the equation we solve
to obtain the HAM predictions.

In Section 3.1, we explained how CoSTA can be used to correct errors in both the
governing equation and in the prescribed BCs. However, with the definition of the
corrective source term in Equation (3.14), it is not possible to correct the prescribed BCs
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because the discretized temperature vectors that appear in Equations (3.14) and (3.15)
describe only the temperature at interior grid nodes. The boundary temperatures are
therefore unaffected by σ̂n+1 when it is defined as in Equation (3.14). In all our numerical
experiments, we assume that the BCs are always known exactly, so the inability to correct
the BCs is not a concern in the present work. However, if necessary, it is possible to
reformulate the definition of the corrective source term in a way that permits correcting
the BCs. We show how to do this in Appendix B.

3.3. Calculating the Corrective Source Term

In the previous two sections, we have established that it is generally possible to recover
the true solution of any governing equation by modifying a PBM using a corrective
source term. We have also seen how to define this corrective source term, both generally
(in Equation (3.7)) and for the Implicit Euler FVM (in Equation (3.14)). As discussed
in Section 3.1, these definitions can be used as is for a posteriori calculations where
the quantity of interest (u in the general case, or T n+1

ref for the Implicit Euler FVM) is
known. However, when the quantity of interest is unknown, i.e. when we want to compute
the corrective source term a priori in order to make predictions into the future, these
definitions cannot be used directly. In this section, we discuss how and why we propose
to circumvent this issue using DNNs.

Co-dependence between unknown variables is actually quite common in real-world
scenarios; consider for example the possibility of σ in Equation (2.12) being temperature-
dependent. Then, in Equation (2.18), T n+1 depends on σn+1 (through the vector b)
whilst σn+1 also depends on T n+1 (through the constitutive relation defining σ). These
situations can be resolved using iterative methods3 where one first uses an approximation
of T n+1 to calculate an approximation of σn+1. The approximation of σn+1 is then used
to calculate a new approximation of T n+1 which is used to calculate a new approximation
of σn+1, and so on. The process continues until σn+1 and T n+1 change comparatively
little from one iteration to the next.

Unfortunately, for CoSTA, it is not possible to define an iterative scheme like the one
above which converges to σ̂ = r and ˆ̃u = u as one would desire. This is because no
matter which approximation of u we use to initiate the iterative process, the definition
of the modified system (3.5) ensures that the corrected prediction ˆ̃u will remain equal
to the chosen initial approximation at all subsequent iteration levels. That is to say,
the iterative process never leaves its starting point. This is illustrated below, where we
attempt to obtain ˆ̃u = u at some time level n > 0 using an iterative scheme with initial
guess4 ˆ̃un,0. Here, the second superscript denotes iteration level.

Initial guess : ˆ̃un,0

First iteration : σ̂n,1 = ÑΩ
ˆ̃un,0 − f̃n

ÑΩ
ˆ̃un,1 = f̃n + σ̂n,1

ÑΩ
ˆ̃un,1 = f̃n + ÑΩ

ˆ̃un,0 − f̃n = ÑΩ
ˆ̃un,0

=⇒ ˆ̃un,1 = ˆ̃un,0

3Another option is to linearize σ, which means that σ is approximated by a function that is linear in T .
However it is not clear how one would go about linearizing the corrective source term σ̂ in terms of
u in any meaningful way, so we do not discuss this option further.

4The initial guess is not to be confused with the initial condition u0, which fixes u at the initial time
level n = 0. The initial guess can e.g. be obtained by solving Equation (3.3).
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It is clear that if we continue iterating as above, we find that ˆ̃un,i = ˆ̃un,0 for all i ∈ N.
Hence, ˆ̃un,i cannot converge towards un as i → ∞ unless we have ˆ̃un,0 = un by chance.
We therefore need a different approach to determining the corrective source term, if we
are to make use of CoSTA for a priori predictions.

As long as the governing equation of our process of interest is deterministic, its true
solution u at any future time is, by definition, completely determined by its solution
in the present and past. That is to say, for deterministic systems, it is in principle
always possible to predict u at any future time given past and present data. It is then
necessarily also possible to predict the residual defined in Equation (3.7). Our problem
is that we do not know how to do this exactly, because we are not able to extract all
the necessary information from the past and present data. This is where data-driven
techniques enter the picture. As discussed in Section 2.3, data-driven techniques have
displayed great capabilities of extracting and utilizing relevant information from large
amounts of data. Indeed, this is what has motivated much of recent research into DDM.
In DDM, one typically focuses on the quantity of interest itself, but here, we instead
advocate the use of data-driven techniques for predicting the ideal corrective source term
σ̂ = r. This way, we retain whatever useful information is already instilled in our PBM,
which is a key point in the philosophy of HAM. All the data-driven techniques considered
in Section 2.3 could conceivable be adapted to for the purpose of learning σ̂. Thus, to
determine which technique is optimal would be a comprehensive undertaking that is
outside the scope of the present work. For the rest of this section, we will therefore focus
mainly on explaining and justifying our chosen technique – deep neural networks.

Motivated by the fact that neural networks are universal function approximators and
by the successes of deep learning as discussed in Sections 1.1 and 2.3, we choose to utilize
a deep neural network (DNN) to predict the corrective source term. We then have to de-
cide on what quantities to use as DNN input and as DNN target output during training.
For the target output, we seemingly have two options: 1) use σ̂ itself as target output,
or 2) use u as target output, and insert the DNN prediction of u into Equation (3.7)
to obtain the corrective source term. Because it facilitates re-purposing a pre-trained
DNN from a purely data-driven model, the second option might seem appealing. How-
ever, this option yields a problem similar to the one we encountered in our discussion of
iterative methods above; by construction, the solution of the modified governing equa-
tion (3.5) will be precisely the DNN’s prediction of u. Essentially, our hybrid model then
behaves exactly like a purely data-driven model followed by a computationally expensive
unity operator. This is clearly unsatisfactory, so we have to go with the first option, i.e.
training the DNN to predict σ̂ directly.5

We now move on to presenting our choice of DNN input. Here, we draw inspiration
from predictor-corrector methods used for numerical integration of ordinary differential
equations. Predictor-corrector methods can be viewed as two-step algorithms consisting
of a prediction step and a correction step. In the prediction step, one integration scheme
is used to calculate a so-called “predictor”, which is simply an approximation of the
solution at the new time level given the solution at the old time level. In the corrector
step, both the solution at the old time level and the predictor are used by a second
integration scheme to compute the final prediction at the new time level. Suppose
now that we have a discretized solution T nh of the heat equation, and that we want

5Note that, in certain circumstances, it may be more efficient to predict certain components of σ̂ rather
than to predict σ̂ as a whole. This is e.g. the case if σ̂ is a sparse vector or matrix, such as in
the example considered in Appendix A. However, this distinction is not relevant for the use-cases
considered in the main text, so we will not discuss it further here.
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to use CoSTA with the Implicit Euler FVM to predict T n+1
h . We may then use the

following procedure, which is analogous to the general predictor-corrector algorithm
outlined above.

1. Prediction step: Compute the predictor T̃ n+1
h as the solution of the Implicit Euler

FVM without the corrective source term, i.e. as the solution of

AT̃ n+1
h = b (T nh ) . (3.16)

2. Correction step: Feed the predictor T̃ n+1
h as input to a DNN trained to predict

σ̂n+1, thereby obtaining the DNN-predicted corrective source term σ̂n+1
nn . Then

compute the corrected prediction T n+1
h as the solution of the Implicit Euler FVM

with the corrective source term, i.e. as the solution of

AT n+1
h = b (T nh ) + σ̂n+1

nn . (3.17)

This procedure clearly suggests using T̃ n+1
h as DNN input, which is also essentially what

we do in our experiments, except that we make one small modification: We have typically
taken discrete temperature vectors like T̃ n+1

h to only contain components corresponding
to interior grid nodes. However, we want the DNN to be able to utilize information from
both the domain interior and the domain boundaries. For that reason, we extend T̃ n+1

h

to also include the boundary temperatures at time level n+ 1 before passing it as input
to the DNN. To avoid unnecessarily complex notation, we write T̃ n+1

h for temperature
vectors both with and without boundary temperatures included; the implied meaning
will generally be clear from context. With this clarification made, we can formally define
the function we train the DNN to approximate. In the 1D case, the definition reads

DNNσ : RNj+2 → RNj such that σ̂n+1
nn = σ̂n+1, (3.18)

T̃ n+1
h 7→ σ̂n+1

nn

while the 2D definition is

DNNσ : R(Nj+2)·(Ni+2) → RNj ·Ni such that σ̂n+1
nn = σ̂n+1. (3.19)

T̃ n+1
h 7→ σ̂n+1

nn

Later, we will additionally use the notation DNNσ to refer to any DNN trained to
approximate one of the functions defined in Equations (3.18) and (3.19); as with the
temperature vectors, the implied meaning should always be clear from context. Note
further that the dimensionality of the DNN’s output is lower than the dimensionality of
its input because the corrective source term, as defined in Equation (3.14), contains no
components corresponding to grid nodes at the domain boundary. Note also that the
condition σ̂n+1

nn = σ̂n+1 assumes that the DNN is trained perfectly, which is exceedingly
difficult to achieve in practice. Thus, the condition will likely only be approximately
satisfied by any real DNN. Our hypothesis is that even if the true corrective source term
is only approximately represented by the DNN-prediction, using the DNN-prediction
as a corrective source term will still yield better performance than comparable purely
physics-based or purely data-driven modelling techniques. This hypothesis will be put
to the test in Chapter 4.

We wrap up this section by summarizing the Corrective Source Term Approach
(CoSTA), as proposed in the present chapter. In Section 3.1, we proved that for any
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3. The Corrective Source Term Approach

physical system (Equations (3.1) and (3.2)) and any PBM approximating that system
(Equations (3.3) and (3.4)), we can always define an augmented PBM (Equations (3.5)
and (3.6)) which describes the behaviour of the physical system without error. More
specifically, the PBM is augmented by a corrective source term (hence the name of the
approach). This corrective source term is given as the residual of the PBM with the
true solution inserted (cf. Equation (3.7)). Due to its dependence on the true solu-
tion, the corrective source term cannot be computed a priori using neither direct nor
iterative methods. We therefore propose to use a deep neural network to approximate
the corrective source term. For the modified Implicit Euler FVM (Equation (3.15)), we
train the DNN to approximate the function DNNσ as defined in Equation (3.18) (for
1D problems) or Equation (3.19) (for 2D problems). CoSTA does not impose any sig-
nificant restrictions with regards to DNN architectures or training procedures, and it is
outside the scope of the present work to determine an optimal architecture or an optimal
training procedure. Our chosen DNN architecture and training procedure are described
in Section 4.1, where we also discuss all other aspects of our experimental setup and
methodology.
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4. Numerical Experiments – Results and
Discussions

In this chapter, we present a series of numerical experiments aimed at comparing the
performance of stand-alone physics-based modelling (PBM), stand-alone data-driven
modelling (DDM), and hybrid analysis and modelling (HAM) based on the corrective
source term approach (CoSTA). The experiments consider time-dependent heat transfer
problems in one and two dimensions. We mainly consider scenarios where modelling
error is the dominant source of error in the PBM, because the benefit from data-driven
techniques is greatest in such scenarios, as discussed in Chapter 1. However, to demon-
strate the broad applicability of CoSTA-based HAM, we also include some experiments
where discretization error is the only source of error in the PBM.

Our experimental setup and methodology is described in Section 4.1, while we present
and discuss results from the experiments on one-dimensional and two-dimensional sys-
tems in Sections 4.2 and 4.3, respectively. In Section 4.4, we compare the uncertainty of
predictions made using DDM and HAM, and, in Section 4.5, we conduct grid refinement
studies to explore how the accuracy of PBM, DDM and HAM predictions relates to the
spatial resolution at which predictions are made. Thereafter, in Section 4.6, we explore
how the corrective source term of CoSTA can be interpreted in a physics context. The
experiments and discussions of Sections 4.2, 4.3 and 4.5 are aimed at answering the
research questions concerning accuracy and generalizability of PBM, DDM and HAM
models, as formulated in Section 1.2, while Sections 4.4 and 4.6 address the research
question concerning the trustworthiness of CoSTA-based HAM models. The content of
this chapter is summarized and used to answer our research questions in Section 4.7.

4.1. Experimental Setup and Methodology

This section is dedicated to explaining the details of our experimental setup and method-
ology. All experiments considered in this chapter concern unsteady heat transfer in one
and two dimensions. Thus, in all experiments, the true governing equation is the heat
equation, defined e.g. in Equation (2.10) or Equation (2.11) for one- and two-dimensional
problems respectively. For predicting the solutions of the heat equation, we use the PBM,
DDM and HAM heat transfer models that were presented in Chapters 2 and 3. These
are briefly summarized in Section 4.1.1. In Section 4.1.2, we move on to explain how we
create reference data for the purposes of model evaluation and DNN training. Details
on our DNN training procedure can be found in Section 4.1.3, while details concerning
the DNNs themselves are given in Section 4.1.4. Finally, in Section 4.1.5, we cover the
model evaluation procedure used to generate the experimental results presented herein.

4.1.1. Model Summary

Below, we summarize the PBM presented in Section 2.2, the DDM presented in Sec-
tion 2.3 and the CoSTA-based HAM model presented in Sections 3.2 and 3.3. A visual
representation of these models can be found in Figure 4.1.
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(a) Training procedures for the DNNs used in DDM (left) and HAM (right).This is the approach I have been using.
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(b) Time stepping procedures for PBM (top), HAM (middle) and DDM (bottom).

Figure 4.1.: Training and time stepping procedures for the three modeling approaches
PBM (red), DDM (blue) and HAM (green). Note that PBM is not included
in (a) because it does not require any training.

Physics-Based Modelling Our PBM of choice is the Implicit Euler FVM, which we
defined in Section 2.2 for one- and two-dimensional problems. In both cases, it can be
written on the form

AT n+1
p = b

(
T np
)
, (4.1)

where all quantities are defined as in Equation (2.18) (for 1D problems) or Equa-
tion (2.21) (for 2D problems). The subscript p is used to indicate that the subscripted
temperature vectors are PBM predictions.

Data-Driven Modelling To perform DDM, we use the DNN-based approach described
in Section 2.3. That is to say, we train a deep neural network DNNT to approximate the
ideal mapping defined in Equation (2.25) (for 1D problems) or in Equation (2.26) (for
2D problems). The predictions of our DDM model, which we denote using a subscript d,
are then given by

T n+1
d = DNNT (T nd ). (4.2)

Hybrid Analysis and Modelling For our HAM model, we combine the Implicit Euler
FVM from our PBM model with a DNN using CoSTA, as described in Sections 3.2
and 3.3. We use a subscript h to denote HAM predictions, which we calculate using the
following equation

AT n+1
h = b (T nh ) + σ̂n+1

nn . (4.3)

This equation is analogous to Equation (3.15), except we have replaced the ideal σ̂n+1

with its DNN-approximation σ̂n+1
nn , in accordance with the discussion in Section 3.3.

The approximated corrective source term σ̂n+1
nn is defined by

σ̂n+1
nn = DNNσ(T̃ n+1

h ), (4.4)
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where DNNσ is a DNN trained to approximate the ideal mapping defined in Equa-
tion (3.18) (for 1D problems) or Equation (3.19). Furthermore, as discussed in Sec-
tion 3.3, the predictor T̃ n+1

h is defined by

AT̃ n+1
h = b (T nh ) . (4.5)

We highlight that, in any given experiment, we always use the same definitions of A and
b in Equations (4.3) and (4.5) as in Equation (4.1).1

4.1.2. Data Generation

A central part of our data generation procedure is the method of manufactured solu-
tions (MMS), which is a widely used method for verifying the correct implementation
of numerical solvers of partial differential equations (PDEs) (Roache, 2002). The key
concept of MMS is to first choose some conveniently expressible function, and then sub-
sequently define the parameters of the PDE in question such that the chosen function
satisfies the PDE. In our experiments, the PDE in question is the heat equation, such
that the first step of MMS amounts to choosing some convenient function Tref to act
as the exact temperature profile. We then split the second step into two parts: First,
we choose convenient functions to describe all physical parameters of the heat equation
except the heat generation rate P . Secondly, we compute P such that the heat equa-
tion on differential form2 is satisfied for the already chosen physical parameters and the
chosen solution Tref . In this way, the use of MMS allows us to obtain exact reference
solutions of the heat equation without using any computationally expensive high-fidelity
numerical solvers.

All manufactured solutions Tref used to conduct the present study are listed in Ta-
ble 4.1 (for 1D experiments) and Table 4.2 (for 2D experiments), along with the chosen
conductivity k and the required heat generation rate P . For simplicity, the remaining
physical variables were all set to unity, and they are therefore not listed in the afore-
mentioned tables.

Notice that all the manufactured solutions in Tables 4.1 and 4.2 are parametrized by
a parameter α. As such, each manufactured solution can be considered to represent a
family of time series, with each time series corresponding to a unique α. In an appli-
cation context, different α-values may correspond to e.g. different operating conditions
or different initial states. In our experiments, we consider a total of 22 α-values, dis-
tributed across three sets, Atrain, Aval and Atest, as defined in Table 4.3. Time series
corresponding to α ∈ Atrain or α ∈ Aval are both used in the DNN training process
described in Section 4.1.3. The remaining time series, corresponding to α ∈ Atest, are
used for evaluating the PBM, DDM and HAM models as described in Section 4.1.5.
Observe that, of the four α-values in Atest, two lie within the interval [0.1, 2.0] covered
by Atrain while two do not. This choice of Atest allows us to evaluate the generalizability
of our models in both interpolation and extrapolation scenarios. We also highlight that,
in each experiment, only individual manufactured solutions are considered. Thus, in any
given experiment, 16 time series are used for DNN training, 2 time series are used for
DNN validation, and 4 time series are used for model evaluation.

Since both the FVMs and DNNs operate on discrete data, it is necessary to discretize
the continuous time series discussed above over some fixed spatial and temporal domains.

1Note however that b in Equations (4.3) and (4.5) will still be different than b in Equation (4.1) if
T n

p 6= T n
h , despite the same definition being used to compute them.

2In principle, it is possible to use the integral form as well, but doing so makes the required calculations
more complicated.
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Table 4.1.: Manufactured solutions Tref used for our experiments in 1D. Each solution is
taken to be defined on the spatial domain [0 m, 1 m] and the temporal domain
[0 s, 5 s]. P and k are given in their respective SI units, while T is given in
degrees Celsius. This table is duplicated in landscape mode in Appendix H
for improved readability in print.

Label Tref(x, t;α) P (x, t;α) k(x, t;α)

d1 α
(
t+ 1

2x
2
)

0 1

P1 t+ 1
2αx

2 1− α 1
P2

√
t+ α+ 1 + 10x2(x− 1)(x+ 2) 1

2
√
t+α+1

− 120x2 − 60x+ 40 1

P3 2 + α(x− 1) tanh ( x
t+0.1) α

(t+0.1)2

(
x(1− x) + 2

(
(x− 1) tanh ( x

t+0.1)− t− 0.1
))

sech2 ( x
t+0.1) 1

P4 1 + sin (2πt+ α) cos (2πx) 2π (cos (2πt+ α) + 2π sin (2πt+ α)) cos (2πx) 1

k1 t+ αx 1− α 1 + x

k2 5− αx
1+t

α(x−α)
(1+t)2 5− αx

1+t

k3 e−t ·
{
α+ 2x, x ≤ 0.5
α+ 0.75 + 0.5x, x > 0.5

−e−t ·
{
α+ 2x, x ≤ 0.5
α+ 0.75 + 0.5x, x > 0.5

{
0.5, x ≤ 0.5
2, x > 0.5

k4 4x3 − 4x2 + α(t+ 1) α− 36x2 − 8x+ 8 1 + x

A
√
t+ α+ 1 + 7x2(x− 1)(x+ 2) 1

2
√
t+α+1

− 84x2 − 42x+ 28 1

B −x3(x−α)
t+0.1

x4−αx3

(t+0.1)2 + 12x2−6αx
t+0.1 1

Table 4.2.: Manufactured solutions Tref used for our experiments in 2D. Each solution
is taken to be defined on the spatial domain [0 m, 1 m] × [0 m, 1 m] and the
temporal domain [0 s, 5 s]. P and k are given in their respective SI units,
while T is given in degrees Celsius. This table is duplicated in landscape
mode in Appendix H for improved readability in print.

Label Tref(x, y, t;α) P (x, y, t;α) k(x, y, t;α)

2P1 t+ 0.5α(x2 + y2) + x (1− 2α) 1
2P2 1 + sin (2πt+ α) cos (2πx) cos (2πy) 2π cos (2πx) cos (2πy) (cos (2πt+ α) + 4π sin (2πt+ α)) 1

2k1 t+ αx+ y2 −(1 + α+ 2x+ 4y) 1 + x+ y
2k2 α+ (t+ 1) cos (2πx) cos (4πy) cos (2πx) cos (4πy)

(
1 + 40π2(t+ 1) (1 + sin (1πx) sin (4πy))

)
2 + sin (2πx) sin (4πy)

In all experiments, we consider the temporal domain [t0, tend] = [0 s, 5 s], which we split
into Nt = 5001 equally spaced time levels, including the initial time level n = 0. The
distance between two consecutive time levels is then ∆t = 0.001 s. The discretization of
the spatial domain depends on the dimensionality of the problem at hand. For all ex-
periments concerning 1D problems, we consider the spatial domain [xa, xb] = [0 m, 1 m],
which we split into Nj equally sized grid cells. In 2D, we consider instead the spatial
domain [xa, xb] × [yc, yd] = [0 m, 1 m] × [0 m, 1 m], which we split into N2

j equally sized
grid cells. The value of Nj varies across experiments, and is therefore given in the intro-
duction of each experiment. With the appropriate spatial discretization, we define grid
nodes as in Section 2.2.3, and sample each manufactured solution Tref at all grid nodes
and time levels to define one discrete time series {T nref}

Nt−1
n=0 per value of α.

Table 4.3.: Parametrization: Selection of α-values corresponding to the training, valida-
tion and testing time series used in our experiments.

Purpose Set of α-values Symbol

Training {0.1, 0.2, . . . , 2.0}\{0.7, 0.8, 1.1, 1.5} Atrain

Validation {0.8, 1.1} Aval

Testing {−0.5, 0.7, 1.5, 2.5} Atest
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Table 4.4.: The DNN hyperparameters used in our experiments.

Parameter Value

Loss function MSE
Learning rate 1e-5
Optimizer Adam
Batch size 32
# hidden FC layers 4
Hidden FC layer width 80
LeakyReLU slope 0.01
Validation period 1e2
Overfit limit 20

4.1.3. DNN Training

Both DDM and CoSTA-based HAM require training of DNNs using the reference data
described above. In accordance with the general discussion on DNN training in Sec-
tion 2.3.3, one batch of data examples (T nref ,T

n+1
ref ) (from the set of training data) is

used to update the network’s parameters per training iteration. The training procedure
for both DNNs is illustrated in Figure 4.1a.3 As illustrated, we use the mean squared
error (MSE) cost function to measure the accuracy of the DNN predictions during train-
ing. For a DNN output vector O and a corresponding target output vector Oref , each
with NO components,4 the MSE cost function is defined as

MSE =

√√√√ 1

NO

NO∑

l=1

(Ol − (Oref)l)2. (4.6)

Based on the computed cost function, the Adam optimizer (Kingma and Ba, 2014) is
used to update the network parameters at the end of each training iteration.

After a set period of training iterations (which we refer to as the “validation period”),
the total MSE cost for all data examples in the validation set is computed. The validation
cost is computed analogously to the training cost, but using all data examples from the
validation data rather than a selection of data examples from the training data. We
utilize the early stopping regularization technique by stopping the DNN training if a
new lowest validation cost has not been recorded for a certain number of consecutive
validation periods (this number is denoted “overfit limit” in Table 4.4).

4.1.4. DNN Architecture and Hyperparameters

Deep neural networks are used in both our DDM model and our HAM model. To ensure
a fair comparison between the two models, we use the same DNN architecture and hyper-

3For simplicity, the figure assumes a batch size of 1. The true batch size used in our experiments is
listed in Table 4.4. We also mention that, in accordance with current best practices, we normalize
the temperature profiles in the training set to have a mean of zero and a standard deviation of 1
before using them to train the DNNs. All DNN inputs/outputs must therefore be normalized/unnor-
malized accordingly, but this is not illustrated to avoid cluttering the figure. We emphasize that the
normalization coefficients are computed using the training data only, such as to avoid data leakage.

4For the DNN used for DDM, O = Td and Oref = Tref . For the DNN used for HAM, O = σ̂nn and
Oref = σ̂. For 1D problems, NO = Nj , and for 2D problems, NO = Nj ·Ni.
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Figure 4.2.: The fully connected DNN architecture used in the 1D experiments of the
present work. The same architecture is used for the 2D experiments, except
the input and output layers are then larger to accommodate the increased
number of components in the input and target output vectors. The defi-
nitions of the input vector I and the output vector O depend on whether
the DNN is used for HAM or DDM. However, note that I always has more
components than O since we only consider problems with known Dirichlet
boundary conditions in this work.

parameters for both. For simplicity, we also keep the architecture5 and hyperparameters
the same across all experiments. Our chosen architecture, which is a fully connected ar-
chitecture with LeakyReLU activation functions after each hidden layer, is illustrated in
Figure 4.2. It was selected due to its simplicity, such that implementation details would
not obscure the main focus of this thesis, which is the CoSTA framework. All relevant
DNN hyperparameters are listed in Table 4.4. These parameter values were selected
on the basis that we observed satisfactory and similar performance6 for both DDM and
HAM during a short series of preliminary experiments using these hyperparameters.
These experiments were conducted in the same way as the experiments discussed in Sec-
tion 4.2.2, but using different manufactured solutions (Solutions A and B from Table 4.1)
to avoid data leakage. No further parameter tuning is required to answer our primary
research questions, which are related to comparing functional and comparable – but not
necessarily optimal – PBM, DDM and HAM models. Further research is required to
define optimal DDM or HAM models for any given application, and some suggestions
for such research are provided in Section 5.2.

4.1.5. Model Evaluation

In each numerical experiment, we consider one of the manufactured solutions listed in
Table 4.1 or Table 4.2. In any given experiment, we aim to reproduce the time series
{T nref}

Nt−1
n=0 for each α ∈ Atest using our PBM, DDM and HAM models. We do this

by first initializing all models to the true initial condition, i.e., we set T 0
p = T 0

d =
T 0

h = T 0
ref . Then, we use the time stepping procedure illustrated in Figure 4.1b to

generate the predicted time series {T np }
Nt−1
n=0 , {T nd }

Nt−1
n=0 , and {T nh }

Nt−1
n=0 . To quantify

the models’ performance, we present the temporal development of the relative `2-errors,

5With the exception of the input and output layer size, which must be changed to accommodate the
spatial discretization used in the individual experiments.

6By ‘similar performance’, we mean that the DNN validation losses recorded at the end of training was
similar for DDM and HAM.
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∥∥T np − T nref

∥∥
2
/‖T nref‖2, ‖T nd − T nref‖2/‖T

n
ref‖2, and ‖T nh − T nref‖2/‖T

n
ref‖2, of the PBM-,

DDM- and HAM predictions with respect to the sampled manufactured solution T nref .
We also present the temperature profiles predicted by PBM, DDM and HAM at the final
time level n = Nt − 1 (corresponding to t = 5.0 s) alongside the manufactured solution
Tref(x, t

Nt−1;α). For completeness, we state that, for any vector ω ∈ RNω , Nω ∈ N, the

`2-norm is defined as ‖ω‖2 =
( Nω∑
l=1

ω2
l

)1/2
.

4.2. One-Dimensional Heat Transfer Experiments

In this section, we present and discuss the results of our numerical experiments on one-
dimensional (1D) heat transfer problems. Three series of experiments with differing a
priori physics knowledge are considered. From a PBM perspective, this means that we
consider three different error sources. First, in Section 4.2.1, we consider experiments
where all physics is known, such that any error in the PBM can be attributed to its
numerical solver. Later, we consider scenarios where important physics is unknown,
thereby resulting in modelling error. In Section 4.2.2, we consider experiments with
an unknown source term P , while experiments with an unknown conductivity k are
considered in Section 4.2.3.

4.2.1. Experiments without Modelling Error

In this section, we consider two experiments where all relevant physics is known. Com-
paring to the framework of Section 3.1, this means that we know the true operator NΩ

and the true right-hand side function f . However, as we cannot solve the heat equation
analytically in general, we must approximate NΩ with some numerical operator Nnum,
which corresponds to the Implicit Euler FVM. This introduces discretization error into
the PBM and HAM models studied here.7 In the first experiment, we study Solution d1
with Nj = 20, and in the second experiment, we study Solution P3 with Nj = 200.
We expect PBM to perform well in these experiments, both in terms of accuracy and
generalizability, considering that the FVM discretization is its only source of error. Fur-
thermore, we expect PBM to be more accurate in the second experiment than in the
first, since the more refined grid used in the second experiment will reduce the PBM’s
discretization error.8

We expect that it will be difficult for DDM to outperform PBM in the experiments
considered here, as that would require the DDM to learn the full physics already instilled
in the PBM and how to handle errors induced by the spatial and temporal discretizations.
In comparison, the DNN in CoSTA-based HAM only has to learn how to correct the
discretization error of the PBM. We therefore hypothesize that HAM will outperform
DDM, and possibly also PBM, in the experiments of this section.

Below, we present and discuss the results of our 1D experiments without modelling
error. We present the interpolation scenarios α ∈ {0.7, 1.5} first, and the extrapolation
scenarios α ∈ {−0.5, 2.5} later.

7Recall that the DDM is completely independent of whatever a priori knowledge we assume to have
(apart from the initial conditions and BCs), as it always learns the full dynamics from scratch. Hence
it is never mentioned in discussions related to a priori knowledge.

8It should be noted that the PBM accuracy will also be the highest in the second experiment if
Solution P3 is easier to model than Solution d1. However, looking at the analytic expressions for
these solutions, as listed in Table 4.1, we see no reason to believe that this is the case. Therefore, we
assume that any improved PBM accuracy in the second experiment can be attributed to the finer
discretization.
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Interpolation Scenarios

The results for the experiment considering Solution d1 with α ∈ {0.7, 1.5} are presented
in Figure 4.3. As expected, PBM gives predictions which are highly accurate and qual-
itatively indistinguishable from the true solutions (cf. Figures 4.3c and 4.3d). DDM
also yields predictions which are good in accuracy, but they are still significantly less
accurate than the PBM predictions (cf. Figures 4.3a and 4.3b), indicating that the DDM
has not learnt the full physics of the problem. Lastly, CoSTA-based HAM, significantly
outperforms both PBM and DDM, yielding errors that are several order of magnitude
lower than the two other models. This indicates that the DNN-generated corrective
source term of the HAM model is successful in correcting the discretization error of the
Implicit Euler FVM. It also indicates that, in accordance with expectations, the learning
task of the DNN in the HAM model is easier than that of the DNN in the DDM model.

For the experiment considering Solution P3, whose results are presented in Figure 4.4,
we observe that DDM performs moderately well with relative errors of a few percent.
However, both PBM and HAM produce predictions which are several orders of magni-
tude more accurate than the DDM predictions (cf. Figures 4.4a and 4.4b). Note also that
the PBM predictions are several orders of magnitude more accurate in this experiment
than in the previous experiment, which is consistent with the finer spatial discretization
used here. Even so, HAM still outperforms PBM, but the improvement is now much
smaller than in the previous experiment. This could be due to Solution P3 being a
more complex function of x and t than Solution d1. An important contribution to the
discretization error of the PBM comes from the truncation errors of the finite differ-
ence approximations of the spatial and temporal derivatives in the heat equation. These
truncation errors can generally be expressed using Taylor series expansions of the true
solution Tref . Thus, the complexity of Tref affects the complexity of the truncation error,
and thereby also the complexity of the discretization error of the PBM. Nonetheless,
the DNN-generated corrective source term successfully reduces the discretization error
in this experiment also.

It is worth noting that, in both experiments, we can observe a decreasing trend in the
temporal development of the relative errors.9 This trend, which is particularly promi-
nent for PBM, may appear counter-intuitive as we naturally expect errors to accumulate
across time levels. However, since we are considering relative errors, the accumulation
of error in the numerical solutions is counteracted by the fact that ‖T nref‖2 is an increas-
ing function of time for both solutions considered here. Furthermore, for Solution P3,
another contributing factor is the fact that the true solution converges to a steady state.
Thus, if a numerical solution converges to the correct steady state, but converges too
slow or too fast, a significant error will be observed at the earliest time levels where the
temperature changes are at their fastest. However, at later time levels, where both the
true and numerical solutions are quite close to the steady state, their errors are expected
to go to zero as they reach steady state. These factors explain the decreasing trends of
the relative errors.

9With the exception of the DDM errors for Solution P3, which are roughly constant in time.
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(a) α = 0.7, relative errors.
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(c) α = 0.7, time level n = 5000.
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(d) α = 1.5, time level n = 5000.

Figure 4.3.: Solution d1, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = 0.7, relative errors.

0 1000 2000 3000 4000 5000
Time level

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
el

at
iv

e 
` 2

-e
rr

or

(b) α = 1.5, relative errors.
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Figure 4.4.: Solution P3 with fine grid, interpolation: Comparison of relative `2-errors
and final temperature profiles for α ∈ {0.7, 1.5} (— Exact, — PBM, —

DDM, — HAM).
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Extrapolation Scenarios

The results for the extrapolation scenarios α ∈ {−0.5, 2.5} are shown in Figure 4.5 for
the experiment considering Solution d1, and in Figure 4.6 for the experiment consider-
ing Solution P3. Owing to its well-known, excellent generalizability, the PBM performs
equally well in the extrapolation scenarios as in the interpolation scenarios considered
previously. On the other hand, both DDM and HAM suffer a loss of accuracy in com-
parison to the interpolation scenarios. The loss of accuracy is particularly prominent
for both solutions with α = −0.5 (compare Figures 4.5a and 4.6a to e.g. Figures 4.3a
and 4.4a), as both models see their DNN failing to generalize to this case. This is perhaps
not surprising, since α = −0.5 yields temperature profiles that are qualitatively different
than those seen during training for both Solution d1 and Solution P3. Based on this
observation, it is clear that both DDM and HAM would likely benefit from the use of
data augmentation. As the applicability of data augmentation techniques vary from one
problem to another (and even from one heat transfer problem to another), it is beyond
the scope of the present work to consider data augmentation experimentally. However,
we highly recommend exploring the use of data augmentation when using CoSTA-based
HAM in any real-world application. Among possible techniques to consider, we men-
tion inverting the spatial domain, as well as multiplicative and/or additive re-scaling of
temperature profiles.

While HAM generally performs worse in the extrapolation scenarios than in the inter-
polation scenarios, it is still the most accurate model for both solutions with α = 2.5 (cf.
Figures 4.5b and 4.6b). Furthermore, HAM is roughly as accurate as PBM and roughly
four orders of magnitude more accurate than DDM for Solution d1 with α = −0.5 (cf.
Figure 4.5a). In the final scenario, Solution P3 with α = −0.5, PBM is the most accurate
model (which means that the DNN-generated corrective source term of the HAM model
is actually increasing the predictive error rather than reducing it). However, HAM is
still several orders of magnitude more accurate than DDM (cf. Figure 4.6a). It is impor-
tant to note that HAM’s prediction at the final time level is also qualitatively correct,
while the DDM prediction is not (cf. Figure 4.6c). Similarly, the HAM prediction for
Solution d1 with α = −0.5 is also qualitatively correct, while the DDM prediction is not
(cf. Figure 4.5c). In conclusion, HAM is found to be more accurate and to generalize
better than DDM. In comparing HAM to PBM, the situation is more nuanced, as HAM
performs better than DDM for α = 2.5, but worse for α = −0.5. Overall, our results
indicate that PBM generalizes slightly better than HAM, while both perform very well
in terms of accuracy. When the interpolation cases are taken into account, HAM is gen-
erally more accurate than PBM. This indicates that the DNN of HAM has successfully
learnt how to correct discretization errors in most scenarios considered.
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(a) α = −0.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.5.: Solution d1, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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Figure 4.6.: Solution P3 with fine grid, extrapolation: Comparison of relative `2-errors
and final temperature profiles for α ∈ {−0.5, 2.5} (— Exact, — PBM, —

DDM, — HAM).
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4.2.2. Experiments with Unknown Source Term

We now move on to the first series of experiments where the PBM and CoSTA-based
HAM models are subject to modelling error. Here, we synthesize modelling error by as-
suming that the source term P in the heat equation is unknown. We therefore set P = 0
when calculating the vector b appearing in the FVM equations (4.1), (4.3) and (4.5).
Comparing to the general framework of Section 3.1, this case corresponds to having an
unknown f in Equation (3.1). Keep in mind that we still also have a discretization
error (corresponding to using a numerical operator Nnum to approximate NΩ in Equa-
tion (3.1)), such that the objective of the DNN-generated corrective source term in the
HAM model is now to correct for both the unknown P and discretization errors.10 Yet,
this is still a more limited task than that of the DNN in DDM, which, as always, has to
learn the full physics from data observations alone. We therefore hypothesize that DDM
will be outperformed by HAM in these experiments. However, as the observational data
implicitly inform the DDM of the unknown P , DDM may outperform PBM.

In this section, we consider four experiments, each based on one of the manufactured
solutions P1–P4 (cf. Table 4.1). As stated above, we assume that the corresponding
source terms P (listed in the third column of Table 4.1) are unknown. No further
error is synthesized, and we utilize the exact boundary conditions in all models. The
same spatial discretization with Nj = 20 equally sized grid cells was used in all four
experiments. Below, we consider first the interpolation scenarios α ∈ {0.7, 1.5} for all
four experiments, and then the extrapolation scenarios α ∈ {−0.5, 2.5} thereafter.

Interpolation Scenarios

The interpolation scenario results for Solutions P1–P4 are presented in Figures 4.7–
4.10. From these figures, we observe that PBM generally performs poorly because it
is unable to model the unknown source term. While yielding decent predictions at the
final time level for Solution P1 (cf. the bottom row of Figure 4.7), the final-time-level
PBM predictions for all other solutions are qualitatively incorrect and/or yield a large
relative error exceeding 10% (cf. Figures 4.8–4.10). DDM performs significantly better
than PBM, and provides qualitatively correct predictions for Solutions P1, P2 and P4
(cf. the bottom rows of Figures 4.7, 4.8 and 4.10). This indicates that the DDM has
successfully learnt both known and unknown physics in these experiments. However,
in the experiment on Solution P3 (Figure 4.9), which appears to be the most difficult
experiment considered in this section, only HAM is able to provide qualitatively correct
predictions at the final time level. Furthermore, the HAM predictions are several orders
of magnitude more accurate than the PBM and DDM predictions for the other three
solutions.

Since DDM and HAM both use exactly the same DNN architecture with the same
hyperparameters, the difference in performance between the two can only be attributed
to the PBM incorporated in the HAM model. As discussed previously, the purpose of
this PBM is to ease the learning task of the DNN by accounting for known physics such
that the DNN does not have to learn all the relevant physics, as is the case for DDM.
From the results presented here, it is clear that CoSTA-based HAM benefits from the
PBM even when the PBM yields poor predictive accuracy when used on its own.

10In Appendix F, we discuss the relative impact of the discretization error and the modelling error on
the PBM, and find that the modelling error is the dominant error for the four solutions considered in
this section. Thus, if HAM significantly outperforms PBM here, we know that the DNN-generated
corrective source term successfully corrects modelling error.
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(a) α = 0.7, relative errors.
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(c) α = 0.7, time level n = 5000.

0.0 0.2 0.4 0.6 0.8 1.0
x (m)

5.0

5.1

5.2

5.3

5.4

5.5

5.6

5.7

T
 (°

C
)

(d) α = 1.5, time level n = 5000.

Figure 4.7.: Solution P1, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).

0 1000 2000 3000 4000 5000
Time level

10-6

10-5

10-4

10-3

10-2

10-1

100

R
el

at
iv

e 
` 2

-e
rr

or

(a) α = 0.7, relative errors.
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(d) α = 1.5, time level n = 5000.

Figure 4.8.: Solution P2, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = 0.7, relative errors.
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(c) α = 0.7, time level n = 5000.
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(d) α = 1.5, time level n = 5000.

Figure 4.9.: Solution P3, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = 0.7, relative errors.
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(c) α = 0.7, time level n = 5000.
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Figure 4.10.: Solution P4, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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Extrapolation Scenarios

The results for Solutions P1–P4 with α ∈ {−0.5, 2.5} are shown in Figures 4.11–4.14.
Just like in the experiments of Section 4.2.1, we observe that PBM performs similarly in
the extrapolation scenarios as in the interpolation scenarios. However, as PBM generally
exhibited poor accuracy in the interpolation scenarios, its accuracy leaves much to be de-
sired also in the extrapolation scenarios. DDM performs significantly better than PBM,
giving qualitatively correct predictions at the final time level for Solutions P2 and P4
(cf. the bottom rows of Figures 4.12 and 4.14). However, in terms of accuracy, HAM
outperforms DDM for both these solutions (cf. the top rows of Figures 4.12 and 4.14).
HAM also outperforms DDM for Solution P1, where the DDM prediction for α = −0.5 is
qualitatively incorrect while the HAM prediction is not (cf. Figure 4.11c). Furthermore,
HAM is more accurate than both PBM and DDM for Solution P3 with α = 2.5 (cf.
Figure 4.13b). The remaining scenario – Solution P3 with α = −0.5 – proves to be the
most difficult scenario considered, as all three models fail to provide qualitatively correct
predictions for this scenario (cf. Figure 4.13c). Overall, HAM is found to be the most
accurate model in the scenarios considered here, followed by DDM and PBM.
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(d) α = 2.5, time level n = 5000.

Figure 4.11.: Solution P1, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.12.: Solution P2, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.13.: Solution P3, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.14.: Solution P4, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).

4.2.3. Experiments with Unknown Conductivity

In this section, we will consider a second series of 1D experiments where the PBM and
HAM models are affected by modelling error. This time, the modelling error stems from
an unknown conductivity k, which is approximated by a constant unit conductivity.
Comparing to the framework of Section 3.1, the case considered here corresponds to
not knowing the true operator NΩ in the governing equation (3.1). This operator is
therefore approximated by another operator Ñ in the governing equation of our PBM
(3.3). As we still cannot solve the PBM’s governing equation analytically, we must
further approximate Ñ with a numerical operator Ñnum to obtain our PBM predictions.
Relating this back to the present experiments, Ñnum corresponds to the Implicit Euler
FVM, which is utilized in Equations (4.1), (4.3) and (4.5). We use k = 1 when calculating
A and b in all three of these equations.

The manufactured solutions considered in the experiments of this section are Solu-
tions k1–k4, and we use a spatial discretization with Nj = 50 grid cells. These are all
listed in Table 4.2, along with their corresponding conductivities k (which are assumed
unknown here) and their corresponding heat generation rates P (which are considered
known here, in contrast to the previous experiment series). From an application perspec-
tive, Solutions k2 and k3 are particularly interesting due to their physical interpretation.
For Solution k2, the conductivity is proportional to the temperature, which holds true
for so-called Fermi gases. As discussed by Kittel (2005, chapter 6), the Fermi gas model
is useful for modelling the physical properties of metals. For Solution k3, we have a
piecewise constant conductivity, which can be thought of as a rudimentary model for
two adjacent materials with different conductivities. Such a scenario is relevant e.g. for
modelling heat transfer through walls, which are seldom made from just one material.
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As before, the results for the interpolation scenarios α ∈ {0.7, 1.5} are presented first,
while the extrapolation scenarios α ∈ {−0.5, 2.5} are considered later. Just like in the
previous series of experiments, we expect DDM and HAM to outperform PBM because
both these models can learn about the unknown conductivity from observations, while
PBM cannot. We also hypothesize that CoSTA-based HAM will continue to outperform
DDM, due to its use of PBM to presumably make the DNN’s learning task easier.

Interpolation Scenarios

Figures 4.15–4.18 display the interpolation scenario results for Solutions k1–k4, respec-
tively. For Solution k1 (cf. Figure 4.15), we observe that the PBM predictions are
correct near the boundaries since the boundary conditions are known. However, as the
temperature increases as a function of time, the PBM predictions lag behind the true
solutions in the middle of the domain, causing significant errors in that region. Looking
at Figures 4.15c and 4.15d, it is clear that both DDM and HAM are significantly more
accurate than PBM, as both (approximately) capture the linear nature of Solution k1.
Furthermore, from Figures 4.15a and 4.15b, we observe that the HAM predictions are
several orders of magnitude more accurate than those of the DDM.

Interestingly, it appears that all three models are able to accurately model Solution k2
(cf. Figure 4.16). This is not so surprising for the DDM; it is only trained to learn the
true temperature profile, which is linear in both time and space and therefore presumably
quite easy to learn. It is perhaps more surprising that the PBM performs as well as it
does, but knowledge of the correct conductivity is evidently not necessary for the PBM
to provide qualitatively correct predictions for this solution, as can be seen from the
bottom row of Figure 4.16. Since the PBM performs rather well, it is not surprising
that the HAM model also has high predictive accuracy. Still, it is remarkable that HAM
yet again provides predictions whose relative `2-error is consistently at least one order
of magnitude lower than for the other models (cf. the top rows of Figure 4.16).

There are much greater performance differences between the models for Solution k3 (cf.
Figure 4.17. Unsurprisingly, PBM does not capture the discontinuity in the conductivity
at the domain center, and thereby predicts a smooth temperature profile. In contrast,
both HAM and DDM learn about the discontinuity from data observations, as can be
seen from the bottom row of Figure 4.17. However, only HAM is able to give an accurate
prediction of the temperature profile at the final time level. Looking at the development
of the `2-errors in the top row of Figure 4.17, it appears that DDM starts off making
quite accurate predictions, but that a small error in the solution has amplified and
accumulated over time. As the DNN of the data-driven model is trained using error-
free reference data only, it is not trained to correct for errors in its input. Therefore,
when presented with input that has errors in it, this error might as well be amplified
in the DNN’s output. When this output is then used as input at the next time level,
it is easy to see how errors can accumulate rather quickly. As our DDM does not have
any mechanism to avoid this kind of error inflation, its predictions could in principle
diverge all the way to numerical overflow. Such divergent behaviour could in principle
also occur for the DNN in CoSTA-based HAM models, although it is not observed in the
experiments of the present work. Still, this is a theoretical weak-point of CoSTA-based
HAM (or of our realization of the approach, at least) which should be addressed in future
research, as we highlight in Section 5.2.

The results for Solution k4 tell much the same story as those for Solution k1. From the
bottom row of Figure 4.18, we see that both DDM and HAM provide qualitatively good
predictions, while PBM has significant error in the middle of the domain. Furthermore,
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HAM is significantly more accurate than DDM. An interesting feature of the `2-error
curves in the bottom row of Figure 4.18 is the presence of a large spike in each of the
DDM error curves. Similar spikes can be seen in other error curves as well, but the
ones shown here are the most prominent so far. Such spikes occur when a model’s
predictions transition from being too hot to being too cold, or vice versa. Similarly,
smaller and more frequent spikes correspond to oscillations about the true solution in
parts of the spatial domain, while the predictive error is more stable in other regions.
As can be seen from all `2-error curves presented so far in this chapter, both DDM
and HAM are susceptible to significant fluctuations in the temporal development of the
`2-error of their predictions. This can be explained by the fact that their DNNs are
not trained to output temporally coherent data. During training, they are simply given
randomly selected temperature profiles and tasked with predicting the corresponding
subsequent temperature profiles. This issue could be addressed e.g. by using recurrent
neural networks or temporal convolutional networks, which are specifically designed to
handle and take advantage of temporal correlations in time series (cf. Section 2.3.1).
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(a) α = 0.7, relative errors.
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0.0 0.2 0.4 0.6 0.8 1.0
x (m)

5.0

5.2

5.4

5.6

5.8

6.0

6.2

6.4

T
 (°

C
)

(d) α = 1.5, time level n = 5000.

Figure 4.15.: Solution k1, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = 0.7, relative errors.
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(b) α = 1.5, relative errors.
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(c) α = 0.7, time level n = 5000.
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(d) α = 1.5, time level n = 5000.

Figure 4.16.: Solution k2, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = 0.7, relative errors.
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(b) α = 1.5, relative errors.
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(c) α = 0.7, time level n = 5000.
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(d) α = 1.5, time level n = 5000.

Figure 4.17.: Solution k3, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = 0.7, relative errors.
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(b) α = 1.5, relative errors.
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(c) α = 0.7, time level n = 5000.
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(d) α = 1.5, time level n = 5000.

Figure 4.18.: Solution k4, interpolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {0.7, 1.5} (— Exact, ◦ PBM, � DDM, � HAM).

Extrapolation Scenarios

We present the extrapolation scenario results for Solutions k1–k4 in Figures 4.19–4.22.
As in the previous two experiment series, we observe that PBM generalizes very well;
its predictive accuracy is virtually unchanged from the interpolation scenarios to the
extrapolation scenarios for all four solutions considered here (compare Figures 4.19–4.22
to Figures 4.15–4.18). In contrast, DDM struggles significantly in the extrapolation sce-
narios, providing qualitatively incorrect predictions for both Solution k1 and Solution k2
with α = −0.5 (cf. Figures 4.19c and 4.20c). Additionally, for Solution k3 and Solu-
tion k4 with α = −0.5, the relative `2-error of the DDM predictions at the final time level
far exceeds 10%, which is poor (cf. Figures 4.21a and 4.22a). Furthermore, it is worth
noting the that DDM continues to struggle with the same error amplification issues for
Solution k3 as in the interpolation scenarios. A similar phenomenon also appears to be
occurring for Solution k4 in the extrapolation scenarios considered here (cf. Figure 4.22).

The HAM model does not struggle with generalization in the same way as the DDM,
as it provides qualitatively correct predictions for all four solutions with both α = −0.5
and α = 2.5. The HAM and PBM models are roughly equally accurate for solutions k1
and k2 with α = −0.5, while HAM is clearly the most accurate model for all other
scenarios. Thus, HAM once again demonstrates superior accuracy paired with great
generalizability.
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(a) α = −0.5, relative errors.
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(b) α = 2.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.19.: Solution k1, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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(b) α = 2.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.20.: Solution k2, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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(b) α = 2.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.21.: Solution k3, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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(a) α = −0.5, relative errors.
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(b) α = 2.5, relative errors.
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(c) α = −0.5, time level n = 5000.
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(d) α = 2.5, time level n = 5000.

Figure 4.22.: Solution k4, extrapolation: Comparison of relative `2-errors and final tem-
perature profiles for α ∈ {−0.5, 2.5} (— Exact, ◦ PBM, � DDM, � HAM).
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4.2.4. Summary and Further Discussion of Experiments in One Dimension

In this section, we have considered three series of experiments where the predictive accu-
racy and generalizability of PBM, DDM and CoSTA-based HAM models is investigated.
The experiments are all based on one-dimensional heat transfer problems where varying
degrees of a priori knowledge is assumed. In the first series of experiments, described in
Section 4.2.1, we assumed that the full physics were known, such that the discretization
error was the only error present in the physics-based predictions. For the remaining two
series, modelling error was synthesized as we either assumed zero internal heating/cool-
ing (P = 0, cf. Section 4.2.2) or a constant unit conductivity (k = 1, cf. Section 4.2.3).

HAM significantly outperforms PBM and DDM in terms of accuracy in all experi-
ments. This holds true even when both PBM and DDM perform poorly on their own,
such as in the experiment considering Solution P1 with α = −0.5 (cf. Figure 4.11c).
Thus, the hybrid model is in some sense greater than the sum of its parts. In terms of
generalizability, PBM is virtually unbeatable, as it generalizes perfectly to any scenario
where its underlying assumptions hold. Due to the bias-variance trade-off11 affecting
its DNN, HAM does not generalize quite as well as PBM, but still offers impressive
generalizability even in the extrapolation scenarios. In fact, HAM only fails to provide
qualitatively correct predictions for one scenario in one experiment (cf. Figure 4.13c). It
should also be mentioned that, due to modelling error, the PBM prediction is qualita-
tively incorrect for that scenario as well. Overall, the generalizability of the HAM model
is far superior to that of the DDM. Thus, the results discussed here indicate that there is
significant merit to the concept of combining PBM and DDM in a single CoSTA-based
HAM model.

While the results of this section are indeed promising, it is important to keep in mind
that we have identified some important weak-points of CoSTA-based HAM. First of all,
we have observed a lack of coherence in the temporal development of the `2-errors of
the HAM (and DDM) predictions. This comes as a direct result of our choice of DNN
architecture and training routine. A simple fully-connected neural network trained in
the way we described in Section 4.1 has no way of learning that there is a temporal
correlation between certain data samples. This is indeed why other types of DNNs such
as recurrent neural networks have been popular for time series forecasting over the last
decades (cf. Section 2.3). As such, the experiments indicate that the DNN we have used,
which was chosen to be as simple as possible for the purpose of not obscuring the CoSTA
framework itself, has compromised the accuracy of our models to some extent. This is
not to say that our comparison of HAM and DDM is unfair or invalid, as they both
use the same sub-optimal DNN. However, it does indicates that one should probably
implement a different DNN if using CoSTA-based HAM for any real-world application.

Another important observation, which also relates to the DNN, is the sign of divergent
behaviour observed for the DDM. Although we have not observed equally strong signs for
HAM, we currently have no reason to assume that HAM cannot exhibit such behaviour
as well. The main issue is that we do not know a priori how errors in the prediction
at one time level will affect predictions at later time levels. Ideally, we would want the
DNN to ignore any features in its input that stem from errors made at earlier time levels.
In practice, this is difficult, as it would require the DNN to be able to both recognize
and correct its own errors. If it was generally possible for a DNN to do this, then simply

11The bias-variance trade-off essentially states that when optimizing a DNN for accuracy on a finite set
of training data, the DNN becomes biased towards the training data. This bias negatively affects
DNN accuracy on data not in the training set. Maier (2020) provides an excellent introduction to
the bias-variance trade-off.
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applying the part of the DNN responsible for the error recognition and correction to the
DNN’s output would yield error-free predictions for all problems in all scenarios always.
Such a perfect DNN does not exist, due to the bias-variance trade-off. One possible
option is to explore adversarial training (Goodfellow et al., 2014), which should reduce
the influence of small errors on the DNN’s predictions. While adversarial training would
likely reduce the probability of divergent behaviour by making the DNN more robust,
it does not provide any stability guarantees. This is because adversarial training does
not provide any bound on error accumulation across multiple time levels. If we want to
ensure that our HAM model cannot exhibit divergent behaviour, we therefore have to
look elsewhere.

This problem of handling errors in past predictions is conceptually similar to the topic
of stability analysis in numerical mathematics. When conducting a stability analysis, one
is interested in determining if a numerical scheme amplifies or attenuates rounding errors.
Mathematically, there is no difference between rounding errors and errors stemming
from sub-optimal DNN predictions at past time levels. This suggests that traditional
stability analysis techniques may provide some insight into the long-term behaviour
of the CoSTA-based model. However, applying these techniques to hybrid models is
not straight-forward, because the mathematical properties of the mapping parametrized
by the DNN are generally unknown. Investigating how traditional stability analysis
techniques can be extended or adapted for use with hybrid models is an interesting
line of research which, if successful, would increase the trustworthiness of CoSTA-based
HAM models.

Lastly, we highlight that in spite of the overall good performance of HAM in our
experiments, it is still possible and desirable to improve HAM further, both in terms
of accuracy and generalizability. The aforementioned change of DNN architecture may
help in this respect. Another possibility worth exploring is data augmentation, as briefly
discussed in Section 4.2.2.

4.3. Two-Dimensional Heat Transfer Experiments

We now move on to experiments concerning two-dimensional (2D) heat transfer prob-
lems. For brevity, we restrict ourselves to scenarios where modelling error is the dominant
error source in the PBM. However, we still consider two different origins of the modelling
error; in Section 4.3.1, the modelling error is caused by an unknown source term P , while
in Section 4.3.2, it is caused by an unknown conductivity k. Neither HAM nor DDM
have their DNN architecture of hyperparameters changed from the 1D experiments of
the previous section, except that the dimensionality of the input and output layers must
be increased to match the number of grid cells.

In the 1D experiments, we have presented the predicted solutions at the final time
level in order to facilitate qualitative assessment of the PBM, DDM and HAM models.
However, in 2D, the analogous contour plots of the predicted temperature fields were
found to be largely uninformative, as only very large relative errors result in noticeable
colour changes. In this section, we therefore present the relative difference between the
predicted fields and the reference fields at the final time level. That is, we illustrate
the relative differences (TNt−1

p −TNt−1
ref )/TNt−1

ref , (TNt−1
d −TNt−1

ref )/TNt−1
ref , and (TNt−1

h −
TNt−1

ref )/TNt−1
ref , where all subtractions and divisions are applied component-wise.12 As

12For these illustrations, we use the imshow function of Matplotlib, which interpolates the discrete
differences to produce smooth error fields.
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before, we also present the temporal development of the relative `2-errors of the three
models’ predictions.

4.3.1. Experiments with Unknown Source Term

In this section, we consider two experiments where the source term of the heat equation is
assumed unknown. As for the experiments in Section 4.2.2, we therefore use P = 0 when
calculating b in Equations (4.1), (4.3) and (4.5). In the first experiment, we consider
Solution 2P1, while Solution 2P2 is considered in the second experiment (cf. Table 4.2).
For both experiments, we use Nj = Ni = 20, resulting in a total of 202 = 400 grid cells.
As in earlier experiments, we present the interpolation scenarios α ∈ {0.7, 1.5} first and
the extrapolation scenarios α ∈ {−0.5, 2.5} thereafter.

Interpolation Scenarios

The temporal development of the models’ predictive error is shown in Figure 4.23 for
both Solution 2P1 and Solution 2P2 with α ∈ {0.7, 1.5}. Figures 4.24 and 4.25 display
the models’ error fields at the final time level for Solution 2P1, while the final-time-level
error fields for Solution 2P2 are displayed in Figures 4.26 and 4.27.

We first consider the PBM predictions for Solution 2P1 (cf. Figures 4.24 and 4.25).
For this solution, the unknown source term P = 1 − 2α is negative, which means that
it pulls heat out of the system. It is therefore not surprising that the PBM predictions
are consistently too hot. Furthermore, since |P | is greater for α = 1.5 than for α = 0.7,
it is sensible that PBM performs worse for the former α-value than for the latter.

For Solution 2P2, the unknown P is spatially periodic, which causes the reference
solution itself to be periodic as well. As the PBM is unaware of P and its effect on the
temperature, it naturally predicts temperature fields that are too flat. That is, the PBM
predictions are too cold in the hot regions and too hot in the cold regions (cf. the top
right corners of Figures 4.26 and 4.27). Overall, the `2-error curves of Figure 4.23 show
that PBM yields the lowest accuracy of all three models due to its inability to take the
unknown P into account.

Moving over to DDM, we see from Figure 4.23 that DDM outperforms PBM in terms of
accuracy in all four scenarios considered here. Indeed, DDM performs quite well, as the
relative `2-error of its predictions stay at roughly 1% or less. However, the error fields in
the lower left corner of Figures 4.24–4.27 show that DDM yields significant errors in some
areas of the spatial domain. For Solution 2P1 (lower left corner of Figures 4.24 and 4.25),
the DDM predictions are consistently too hot in the upper left corner of the domain and
too cold in the domain’s lower right corner. Comparing with the true solutions (upper
left corners of the same figures), these errors are somewhat surprising, and it may look
as though the DDM errors have simply been displayed with an inadvertent rotation
or inversion. However, the author has double-checked that both figures do display the
experimental data correctly. Hence, this observation is a good example of data-driven
techniques obtaining errors which can be unpredictable and hard to interpret. Moving
over to Solution 2P2, the DDM errors for this solution are somewhat easier to interpret;
for α = 0.7 (cf. Figure 4.26), the DDM prediction is generally too flat, while the DDM
prediction for α = 1.5 (cf. Figure 4.27) is generally too curved. This is consistent with
the DNN having learnt the correct spatial periodicity of the true solution, but also having
failed to learn the correct amplitude.

Finally, we consider the results of CoSTA-based HAM. As in most other experiments
considered so far, HAM again demonstrates predictive accuracy superior to both PBM
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and DDM. The HAM errors for Solution 2P1, which are illustrated in the bottom right
corners of Figures 4.24 and 4.25, are virtually unnoticeable with the color scheme that
has been used. The HAM errors for Solution 2P2 are more significant, as they are clearly
visible in the colder regions of the domain. However, these errors are still more than
one order of magnitude lower than the PBM and DDM errors. Thus, it is clear that the
hybrid model once again benefits from the use of the PBM to ease the learning task of
its DNN. It is remarkable that this holds true despite the large errors of the stand-alone
PBM, which periodically exceed 30% for Solution 2P2 (cf. bottom row of Figure 4.23).
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(a) 2P1, α = 0.7.
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(b) 2P1, α = 1.5.
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(c) 2P2, α = 0.7.
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(d) 2P2, α = 1.5.

Figure 4.23.: Solutions 2P1 and 2P2, interpolation: Relative `2-errors for α ∈ {0.7, 1.5}
(— PBM, — DDM, — HAM).
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Figure 4.24.: Solution 2P1, α = 0.7: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.25.: Solution 2P1, α = 1.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.26.: Solution 2P2, α = 0.7: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.27.: Solution 2P2, α = 1.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Extrapolation Scenarios

The results for the extrapolation scenarios are presented in Figure 4.28 (temporal devel-
opment of `2-errors for Solutions 2P1 and 2P2), Figures 4.29 and 4.30 (error fields for
Solutions 2P1), and Figures 4.31 and 4.32 (error fields for Solutions 2P2). These results
tell much the same story as we have seen in the extrapolation scenarios of the 1D exper-
iments. PBM generalizes well, but the modelling error caused by the unknown source
term still results in PBM performing significantly worse than the other two models for
three of the four scenarios considered (cf. Figure 4.28): Solution 2P1 with α = 2.5 and
Solution 2P2 with α ∈ {−0.5, 2.5}. In these scenarios, HAM is by far the most accurate
model, with DDM following thereafter and PBM being the least accurate model.

The results for Solution 2P1 with α = −0.5 are somewhat different to those of the
other scenarios. In terms of accuracy, the performance of DDM is roughly as good as
that of PBM, while HAM outperforms the other two models by only a small margin, as
can be seen from Figures 4.28a and 4.29. In this scenario, it is particularly interesting to
compare the errors of the final-time-level predictions, as illustrated in Figure 4.29. We
see that the PBM and HAM predictions (right column) are generally too cold, which
is consistent with the unknown P being positive for this value of α. Furthermore, we
observe that the HAM prediction is significantly warmer than the PBM prediction,
which indicates that the DNN of the HAM model is able provide a correction that is
qualitatively correct. However, the correction is too weak for the HAM model to achieve
the same level of accuracy as for α ∈ {0.7, 1.5, 2.5}. Nonetheless, this indicates that
HAM generalizes better than DDM, which fails to realize that the hottest part of the
domain in this scenario is the bottom right corner – not the top right corner, as for the
other α-values.

We can also make an interesting observation from the DDM error field for Solution 2P1
with α = 2.5, which is illustrated in the bottom left corner of Figure 4.30. This error
field appears very noisy, as the DDM predicts temperatures which are too hot in some
grid cells while simultaneously predicting temperatures that are too cold in neighbouring
grid cells. A similar phenomenon can also be observed in the HAM error fields for Solu-
tion 2P2, as shown in the bottom right corner of Figures 4.31 and 4.32. In these figures,
the noise is not as pronounced, but the correlation between the reference temperature
fields and the error fields of the HAM predictions still appears to be rather weak. That
is to say, the HAM predictions also seem to contain some level of noise.

The perceived noisiness of the HAM and DDM predictions can be attributed to the
DNN training process, which does not encourage the DNN outputs to be smooth in
space. As discussed in Section 4.1, the DNNs are trained using the mean square error cost
functions, which does not take into account the spatial distribution of the DNNs’ errors.
Thus, this cost function does not reward smooth DNN outputs over irregular outputs,
which means that the DNNs have no reason to prefer smooth outputs over irregular
outputs. As irregular outputs have larger entropy (more disorder) than smooth outputs,
it is then much more likely that a DNN will end up producing irregular outputs than
smooth outputs.13 As discussed in Section 4.2.3, small error fluctuations in an otherwise
correct prediction may amplify over time, possible even causing long-term divergent
behaviour. Therefore, further research into how appropriate smoothness can be imposed
on the output of DNNs used in CoSTA-based HAM models would be highly relevant for
the future development of CoSTA. One possibility is to add an extra term to the cost
function used during DNN training, in order to enforce a smoothness requirement. This

13This follows intuitively from the realization that there exists many more possibilities for a system to
be disordered than for it to be ordered.
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term could for instance be proportional to the sum of absolute differences between the
DNN’s prediction and the corresponding target output at neighbouring grid cells. One
possible mathematical formulation of such a cost term is

1

NO − 1

NO−1∑

l=1

∣∣|Ol − (Oref)l| − |Ol+1 − (Oref)l+1|
∣∣, (4.7)

where we have used the same notation as in Equation (4.6). Enforcing smoothness by
minimizing the finite difference approximations of higher-order spatial derivatives is also
a possibility. Moreover, one may consider applying some post-processing like Gaussian
blur to the DNN output. However, for any of these techniques to work as intended, one
needs a priori knowledge of what the smallest length-scale of the problem is. otherwise,
one could end up smoothing away variations of physical significance. Another issue is
that there exists problems where the true corrective source term itself is far from smooth.
An example of such a problem is considered in Appendix A. For such problems, naive
smoothening of the DNN output would be detrimental to the accuracy of the model.
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(a) 2P1, α = −0.5, relative errors.
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(b) 2P1, α = 2.5, relative errors.
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(c) 2P2, α = −0.5, relative errors.
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(d) 2P2, α = 2.5, relative errors.

Figure 4.28.: Solutions 2P1 and 2P2, extrapolation: Relative `2-errors for α ∈ {0.7, 1.5}
(— PBM, — DDM, — HAM).
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Figure 4.29.: Solution 2P1, α = −0.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.30.: Solution 2P1, α = 2.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.31.: Solution 2P2, α = −0.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.32.: Solution 2P2, α = 2.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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4.3.2. Experiments with Unknown Conductivity

In this second and final series of 2D experiments, we consider two experiments where
the conductivity k is unknown, while the source term P is known. This means we set
k = 1 when defining A and b in Equations (4.1), (4.3) and (4.5), just like we did for the
experiments of Section 4.2.3. For the experiments considered here, we use Solutions 2k1
and 2k2 (cf. Table 4.2) with Nj = Ni = 20, which yields 400 grid cells. As the results
of these experiments do not warrant any lengthy discussions, we discuss both the inter-
polation and extrapolation scenarios at once in the paragraphs below. The results from
the interpolation scenarios are displayed in Figures 4.33–4.37, while the extrapolation
scenario results can be found in Figures 4.38–4.42.

The `2-error curves for the interpolation scenarios α ∈ {0.7, 1.5} and the extrapola-
tion scenarios α ∈ {−0.5, 2.5} are shown in Figures 4.33 and 4.38, respectively. From
these figures, we see that HAM is generally more accurate than DDM, which in turn is
generally more accurate than PBM. The exceptions are the extrapolation scenarios for
Solution 2k1. For Solution 2k1 with α = −0.5, we see that HAM is the most accurate
model, while DDM fails completely to generalize to this case and performs the worst of
all three methods (cf. Figures 4.38a and 4.39). The DDM generalizes much better to
Solution 2k1 with α = 2.5, and actually matches the accuracy of HAM in this scenario.
However, while HAM and DDM achieve the same accuracy in this scenario, as measured
by the `2-norm, there is still an important difference between their predicted solutions.
From Figure 4.40, we see that HAM’s error field (bottom right) is completely smooth,
indicating that the corrective source term resulted in a correction that was qualitatively
correct, but too weak. In comparison, the DDM’s error field (bottom left) is less smooth,
and has a peak in the upper left corner of the spatial domain which has no obvious re-
lation to the reference temperature field (top left). Thus, the HAM prediction is easier
to interpret than that of the DDM, and therefore also more trustworthy.

Another observation worth noting is that we once again see noise-like fluctuations
in the error fields of HAM and DDM. These fluctuations are particularly noticeable in
Figures 4.34 and 4.35 (for DDM) and Figures 4.41 and 4.42 (for both HAM and DDM).
At first glance, it may appear from Figures 4.36 and 4.37 that the PBM predictions
are affected by some random noise as well. However, this is not the case. Upon close
inspection, one case see that the PBM predictions are point-symmetric with respect to
the center of the spatial domain. The complex pattern is caused by the source term P ,
which itself is a complex function of x and y. In the reference solution, some of this
complexity is cancelled out by the non-constant conductivity. However, the complexity
of P is retained in the PBM predictions, since the PBM assumes the conductivity to be
constant. The only non-deterministic aspect in the PBM is rounding error. Since the
Implicit Euler FVM is a stable numerical solver, it never amplifies rounding errors across
time levels, and rounding errors are therefore not observable in the figures presented here.
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(a) 2k1, α = 0.7, relative errors.
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(b) 2k1, α = 1.5, relative errors.
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(c) 2k2, α = 0.7, relative errors.
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(d) 2k2, α = 1.5, relative errors.

Figure 4.33.: Solutions 2k1 and 2k2, interpolation: Relative `2-errors for α ∈ {0.7, 1.5}
(— PBM, — DDM, — HAM).
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Figure 4.34.: Solution 2k1, α = 0.7: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.35.: Solution 2k1, α = 1.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.36.: Solution 2k2, α = 0.7: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.37.: Solution 2k2, α = 1.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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(a) 2k1, α = −0.5, relative errors.
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(b) 2k1, α = 2.5, relative errors.
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(c) 2k2, α = −0.5, relative errors.
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(d) 2k2, α = 2.5, relative errors.

Figure 4.38.: Solutions 2k1 and 2k2, extrapolation: Relative `2-errors for α ∈ {0.7, 1.5}
(— PBM, — DDM, — HAM).
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Figure 4.39.: Solution 2k1, α = −0.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.40.: Solution 2k1, α = 2.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.41.: Solution 2k2, α = −0.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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Figure 4.42.: Solution 2k2, α = 2.5: Reference temperature field and relative `2-errors
of PBM, DDM and HAM.
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4.3.3. Summary of Experiments in Two Dimensions

At large, the experiments considered in this section indicate that CoSTA-based HAM is
more accurate than PBM and DDM in 2D heat transfer problems. This supports the
findings from the 1D experiments of the previous section, where we found that combining
a PBM and a DDM in a single hybrid model yields better accuracy than using either
of the two traditional modelling approaches on their own. The experimental results of
the present section also indicate that HAM generalizes significantly better than DDM
in both interpolation and extrapolation scenarios. In fact, HAM generalizes well enough
the be the most accurate model even in extrapolation scenarios that are qualitatively
different to the scenarios seen during training.

On the downside, the experiments of this section has revealed that both DDM and
HAM are prone to creating noisy temperature predictions. As the influence of noise
on the long-term behaviour of both HAM (and also DDM) is poorly understood at
present (cf. Section 4.2.4), this represent a potential trustworthiness issue which should
be addressed in future work. However, it is worth mentioning that HAM is significantly
less noise-prone than DDM in the experiments considered in this section.

4.4. Predictive Uncertainty

As discussed in Section 2.3.3, DNNs are customarily trained using stochastic learning
algorithms. A result of this is that different instances of the same DNN may yield differ-
ent predictions when presented with exactly the same data. Consequently, predictions
made by a model with one or more DNN-based components are associated with some
inherent uncertainty. This negatively affects the model’s explainability, and thereby also
its trustworthiness. In this section, we investigate the inherent uncertainty of the DDM
and HAM models used for the numerical experiments discussed in Section 4.2.2.14 This
investigation is motivated by our third research question, which concerns the trustwor-
thiness of CoSTA-based HAM models (cf. Section 1.2).

In our simple study of model variability, we repeat the experiments of Section 4.2.2
with a small modification: Instead of training one DDM model instance and one HAM
model instance per manufactured solution, we now train five separate instances of each
model for each manufactured solution. Each of these model instances is initialized using
the standard PyTorch initialization scheme, but with its own unique seed. For each group
of five model instances, we calculate the component-wise mean and standard deviation
of their predicted temperature profiles at the final time level. We label these statistical
quantities µ[TNt−1

d ] and std[TNt−1
d ] for DDM, and µ[TNt−1

h ] and std[TNt−1
h ] for HAM.

While the means are only used for visualization purposes, we use the empirical standard
deviations as heuristic measures of the models’ inherent uncertainty. This approach to
uncertainty estimation is used e.g. in the work by Pawar et al. (2021b) on physics-guided
machine learning. It is a far simpler approach than the Bayesian NNs that are commonly
used for high-quality predictive uncertainty estimation, because it does not require any
alterations to our chosen DNN architectures or training procedures.

The empirical means and standard deviations for our DDM and HAM models were
used to generate Figures 4.43 and 4.44. These figures illustrate the predictive uncertainty
of the models for Solutions P1 and P3, respectively. In each figure, the blue-coloured
area is defined as the area between the two curves

µ[TNt−1
d ] + 5 std[TNt−1

d ] and µ[TNt−1
d ]− 5 std[TNt−1

d ], (4.8)

14We do not discuss the PBM here, since it is deterministic up to machine epsilon.
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and it is taken to represent the predictive uncertainty of the DDM model for the corre-
sponding solution. Analogously, the area between the two curves

µ[TNt−1
h ] + 5 std[TNt−1

h ] and µ[TNt−1
h ]− 5 std[TNt−1

h ], (4.9)

which is coloured in green, is taken to represent the predictive uncertainty of the HAM
model. Where the two areas overlap, the result is a dark shade of turquoise. With
these definitions, it is clear that a large coloured area corresponds to a large empirical
standard deviation. As stated above, we assume that a large empirical standard deviation
correlates to a large model uncertainty.15

From Figures 4.43 and 4.44, we see that the DDM model has a significantly larger
empirical standard deviation than the HAM model in all scenarios except for Solution P3
with α = −0.5. However, as is clear from Figure 4.44c, neither DDM nor HAM provide
qualitatively correct predictions for that scenario. Thus, that result merely indicates
that DDM is more certain of its wrong prediction than is HAM, which is arguably not a
favourable trait of the DDM. In all other scenarios (where HAM does provide accurate
predictions (cf. Section 4.2.2), such that low uncertainty is indeed desirable) the standard
deviation of HAM is far smaller than that of DDM.

In addition to Figures 4.43 and 4.44, which correspond to Solutions P1 and P3, we
have also created similar figures for Solutions P2 and P4, and they can be found in
Appendix E. These figures are not included here simply because the green areas serving
as a proxy for the HAM uncertainty are so small that they are not visible. As the blue
areas corresponding to the DDM uncertainty are clearly visible in these same figures, our
results indicate that the HAM model has less inherent uncertainty than the DDM also
for Solutions P2 and P4. Overall, our experiments indicate that the model uncertainty
of DDM is larger than that of HAM by one order of magnitude or more for all four
Solutions P1–P4. This makes the CoSTA-based HAM model more trustworthy than the
DDM.

While the results presented in this section are very promising for CoSTA-based HAM,
we highlight that they should be viewed with some caution. In the supplementary ma-
terial of their work on uncertainty estimation using deep ensembles, Lakshminarayanan
et al. (2017) demonstrate that the heuristic we have been using here is not a well-
calibrated uncertainty estimate. Therefore, we cannot rule out the possibility that the
results presented here are incidentally biased in favour of HAM. A more thorough inves-
tigation of model uncertainty is therefore warranted. Such an investigation can e.g. be
conducted in a Bayesian framework, or using the deep ensemble approach advocated by
Lakshminarayanan et al. (2017).

15The validity of this assumption will be discussed at the end of the section.
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Figure 4.43.: Solution P1: Visualization of the inherent uncertainty of DDM and HAM
models, where a large coloured area corresponds to a large model uncer-
tainty. Blue area corresponds to uncertainty of DDM, and green area corre-
sponds to uncertainty of HAM. Where the two areas overlap, the result is a
dark shade of turquoise. The dashed line represents the exact solution P1.
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Figure 4.44.: Solution P3: Visualization of the inherent uncertainty of DDM and HAM
models, where a large coloured area corresponds to a large model uncer-
tainty. Blue area corresponds to uncertainty of DDM, and green area corre-
sponds to uncertainty of HAM. Where the two areas overlap, the result is a
dark shade of turquoise. The dashed line represents the exact solution P3.
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4.5. Grid Refinement Studies

Grid refinement studies are commonly used for verifying the implementation of numerical
solvers such as the Implicit Euler FVM described in Section 2.2.3.16 These studies are
therefore widely seen in conjunction with physics-based modelling. However, to the
author’s knowledge, little research has been performed regarding what can be learnt
from grid refinement on purely data-driven or hybrid models. In this section, we conduct
a series of novel grid refinement studies where we include both DDM and HAM models,
in addition to the customary PBM. The structure of the section is as follows: First, we
give a brief introduction to the basics of grid refinement studies. We then explain how
the grid refinement studies of the present work were conducted. At last, we present and
discuss the results of these grid refinement studies.

4.5.1. Background

As the name suggests, grid refinement studies are studies where we investigate the effect
of refining the discretization (grid) used by some predictive model. When performing
grid refinement studies in the context of PBMs, one typically assumes that the true
governing equation is known exactly, such that the discretization used in the numerical
solver is the PBM’s only source of error. For any convergent numerical solver, the
discretization error goes to zero in the limit of an “infinitely fine” discretization, by
definition. For 1D time-dependent problems such as those we consider in this section,
an “infinitely fine” discretization corresponds to the limits ∆t,∆x→ 0, or equivalently
Nt, Nj →∞. The speed at which the error goes to zero as the (spatial or temporal) grid
is refined, is known as the solver’s order of accuracy. LeVeque (2002) defines a method’s
(spatial)17 order of accuracy, λ, using the following equation:18

‖E‖ = C(∆x)λ + higher order terms in ∆x (4.10)

Here, E is the error of the numerical solution with respect to the true solution at some
time t, ‖·‖ is some arbitrary norm and C is some constant which depends on the choice
of norm ‖·‖, the temporal discretization, the time t and the solution being modelled. If
λ ∈ N, we say that the numerical solver is λth order accurate. Tannehill et al. (1997,
page 48) show that the central difference approximations used in our derivation of the
Implicit Euler FVM are second order accurate, which means that the Implicit Euler
FVM itself is also second order accurate (in space).

If the order of accuracy λ for some numerical solver is known, then grid refinement
studies can be used to verify any implementation of that solver. A general procedure
for conducting grid refinement studies is described in Algorithm 1. The crux of the
procedure is to calculate the solver’s empirical order of accuracy λν (see formula in
Algorithm 1) at different grid refinement levels ν = 1, . . . , Nν , where Nν is the number
of grid refinements performed. If the solver has been correctly implemented (and, for
time-dependent problems, if the temporal discretization error is sufficiently small), we

16See e.g. the online resource by Slater (2021) and the textbook by Roache (1998) cited therein.
17A temporal order of accuracy can be defined analogously, but we do not consider temporal grid

refinement studies in this work, so its definition is not given here.
18For time-dependent problems, E also has terms which are proportional to ∆t. These are not included

in LeVeque’s definition, but it is intuitively obvious that they must exist as a temporal discretization
will not generally be error-free. However, in spatial grid refinement studies, the contribution of the
temporal discretization to the total error is assumed negligible. Some care must be taken when
choosing ∆t to ensure that this assumption actually holds in practice.
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will observe λ ≈ λν ∀ ν ∈ {1, . . . , Nν}. An alternative to calculating λν is to create a
plot of data points (Nj , E(Nj)). According to Equation (4.10), these data points should
(approximately) lie on a line with slope −λ in a loglog-plot.

Algorithm 1: General procedure for verifying the correct implementation of
a PBM without modelling error using a grid refinement study. We use the
formal notation up = PBM(Nj) to denote the PBMs approximation of u when
a spatial discretization with Nj grid cells is used.

Choose some initial number of grid cells Nj ∈ N.
Choose some grid refinement factor ζ ∈ N.
Choose some number Nν ∈ N of grid refinements to perform.
for ν in {0, . . . , Nν} do

up ← PBM(Nj)
Eν ← ‖u− up‖
if ν > 0 then

λν ← logζ (Eν−1/Eν)

end
Nj ← ζ ·Nj

end
If the true λ is known, assert λ ≈ λν ∀ ν ∈ {1, . . . , Nν}.

4.5.2. Procedure for Grid Refinement Studies with Data-Driven or Hybrid
Models

Here, we will describe the procedure used to conduct the two grid refinement studies
presented in the next section. In addition to considering PBM, as is customary, these
studies also consider DDM and HAM models. Since DDM and HAM models require
training, it might not be possible to use such models with different grids without re-
training them. This raises some questions regarding how grid refinements should be
performed when considering DDM or HAM models. Below, we will simply describe the
procedure we have used in our two studies; a more in-depth discussion can be found in
Appendix C.

For the first study, we use Solution P1 as the reference solution, while Solution P3
is used as the reference solution for the second study. In both studies, we assume that
the full physics is known to our PBM and HAM models. (As always, the DDM has
to learn the full physics from scratch.) We perform Nν = 5 refinements in each study,
starting with Nj = 5 grid cells for the coarsest grid and increasing the number of grid
cells by a factor ζ = 3 for each refinement. The DDM and HAM models use the DNN
architecture and hyperparameters described in Section 4.1.4 at all resolutions in both
studies. However, note that the dimensionality of the DNNs’ input and output layers
must be different for different discretizations, since the number of nodes in these layers
must match the number of components in the discrete temperature profiles. That is,
the DNN architecture must be altered slightly from one refinement level to the next.
Consequently, the DNNs must be retrained from scratch at every refinement level. We
train the DNNs using the procedure described in Section 4.1.3, such that the DNNs are
trained and validated using data corresponding to α ∈ Atrain and α ∈ Aval, respectively.
The complete models are then evaluated using data corresponding to α ∈ Atest. An
overview of the procedure used to conduct our two grid refinement studies is presented
in Algorithm 2.
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Algorithm 2: Procedure used in the two grid refinements conducted as part
of the present work.

Set the initial number of grid cells, Nj = 5.
Set the grid refinement factor, ζ = 3.
Set the number of grid refinements to perform, Nν = 5.
for ν in {0, . . . , Nν} do

Train the DNNs of HAM and DDM for the current Nj using data
corresponding to α ∈ Atrain.

for α in Atest do

Compute TNt−1
p , TNt−1

d and TNt−1
h for the current Nj .

Compute the relative `2-errors of TNt−1
p , TNt−1

d , TNt−1
h w.r.t. TNt−1

ref .

end
Nj ← ζ ·Nj

end

4.5.3. Results and Discussion

The results of the grid refinement study considering Solution P1 are shown in Figure 4.45,
while Figure 4.46 present the results of the study considering Solution P3.

In Figure 4.45, we see that the error of the PBM is a steadily decreasing function of Nj .
For all four α-values, it closely follows the dashed line indicating second order accuracy.
This is the expected behaviour, since the Implicit Euler FVM is second order accurate.
In contrast, there does not seem to be any clear trend in the DDM errors. They appear
to be mostly constant, albeit with some noise. The noise is particularly prominent for
α = 1.5. A possible explanation for the noise is that the chosen DNN hyperparameters
might incidentally be better suited for handling data at certain resolutions.

Though we have no results from the literature to compare with, it appears reasonable
that the DDM errors are more or less independent of the spatial resolution. This is
because the DDM always has to learn the full physics, regardless of the resolution of the
data. Thus, the DDM’s accuracy will only increase for higher resolutions if increasing
the resolution uncovers new information in its training data. This could conceivably
occur e.g. in turbulent flow scenarios, but it is not the case for the smooth temperature
profiles considered here.

Looking at the HAM errors in Figure 4.45, we observe a behaviour that is somewhere
in between PBM and DDM. This is perhaps not so surprising, considering that our HAM
model is a hybrid of PBM and DDM. For all four α ∈ Atest, we observe that the `2-error
of the HAM predictions is a decreasing function of Nj . However, it does not decrease at
a steady rate like the PBM error. Just like for the DDM, this might be because the DNN
is incidentally better configured for some resolutions than for others. We also observe
that the HAM error for α = 1.5 is not decreasing for large Nj . This could possibly be
attributed to the finite numerical precision of the data type (float64) used to conduct the
studies. A relative `2-error of roughly 1e-8 implies that the components of the difference
vector TNt−1

h − TNt−1
ref are of the order 1e-16, which is also the order of machine epsilon

for float64. For this reason, we do not put much emphasis on the results for α = 1.5 and
large Nj .

Figure 4.46 tells much the same story as Figure 4.45. The most prominent difference
is perhaps that the PBM errors level off at large Nj . Such behaviour occurs when the
temporal discretization error becomes non-negligible, such that Equation (4.10) does
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Figure 4.45.: Solution P1, spatial grid refinement: Relative `2-error of predicted temper-
ature at the final time level, shown as a function of the number of grid cells
Nj for all α ∈ Atest (◦ PBM, � DDM, � HAM, - - 2nd order accuracy).

not hold. This observation is therefore not a reason for concern. As for the DDM,
we observe that its `2-error is virtually independent of Nj , just like in the other study.
Another observation that is common between the two studies is that HAM improves as
Nj increases, and we attribute this to the improved accuracy of the PBM for increasing
Nj . However, unlike the PBM, the HAM model does not improve at a steady rate.

In conclusion, the results indicate that grid refinement studies do not facilitate the
establishment of en empirical order of accuracy for data-driven or hybrid models, because
their errors do not decrease at an (approximately) constant rate. As such, grid refinement
studies (at least in their present form19) are not as valuable for verification of DDM
or HAM models as for PBMs. However, the studies presented here have illustrated
an important characteristic of CoSTA-based HAM models: Improving the accuracy of
a PBM also improves the accuracy of HAM models based on that PBM. This is a
powerful result, because it implies that CoSTA-based models benefit from advances in
physic-based modelling, e.g. as a result of novel experimental research. Interestingly,
advances in physics-based modelling may also come from interpreting the HAM model
itself, as we will discuss in the next section.

19We cannot exclude the possibility that some of the alternative approaches to grid refinement studies
discussed in Appendix C would provide different results.
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Figure 4.46.: Solution P3, spatial grid refinement: Relative `2-error of predicted temper-
ature at the final time level, shown as a function of the number of grid cells
Nj for all α ∈ Atest (◦ PBM, � DDM, � HAM, - - 2nd order accuracy).

4.6. Interpretability of the Corrective Source Term

A strong-point of CoSTA-based HAM is that the corrective source term can be inter-
preted in a physics-based framework. For heat transfer problems like the ones considered
in this chapter, the most intuitive interpretation is that the corrective source term can
be seen as a correction to the modelling of the physical source term stemming from
the internal heat generation rate P . However, the corrective source term can also be
interpreted as a correction to other physical parameters, such as the conductivity k or
the density ρ. Below, we demonstrate how to recover an unknown heat generation rate
P and an unknown conductivity profile k using data from experiments considered in
Sections 4.2.2 and 4.2.3. We also discuss how an unknown density ρ or heat capacity
cV can be recovered in similar ways. These ways of interpreting the corrective source
term have great implications for the trustworthiness of CoSTA-based HAM, and are thus
highly relevant for the third research question listed in Section 1.2.

4.6.1. Recovering an Unknown Source Term

Suppose we approximate the true heat generation rate P in the heat equation (2.8) with
P̃ = P − εP , where εP 6= 0 is the error of the approximation. Inserting P̃ + εP for P in
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Equation (2.8), we obtain

∫

V

ρcV
∂T

∂t
dV =

(
kA

∂T

∂x

)

e

−
(
kA

∂T

∂x

)

w

+

∫

V

P dV (4.11)

=

(
kA

∂T

∂x

)

e

−
(
kA

∂T

∂x

)

w

+

∫

V

P̃ dV +

∫

V

εP dV. (4.12)

Following the discretization procedure used in Section 2.2.3, we can discretize the above
equation as follows:

AT n+1 = b (T n) + ∆tσ̃P . (4.13)

Here, A, T and b are defined as in Equation (2.18), and σ̃P = εP /(ρcV ), where εP =
[εP (x1), . . . , εP (xNj )] and x1, . . . , xNj are the grid nodes used to define T . Comparing
Equation (4.13) to Equation (3.15), we can see that there is a clear connection between
σ̃P and the corrective source term σ̂ used in CoSTA. In fact, it appears that we can
simply write ∆tσ̃P = σ̂. However, this equality does not hold in general, as σ̂ is defined
to correct for any discretization error in the PBM as well as possible modelling error,
while σ̃P only corrects errors in the modelling of P . To make progress, we split σ̂ into
two contributions, σ̂discr and σ̂mod, corresponding to discretization error and modelling
error, respectively. If we now assume that σ̂discr � σ̂mod, then σ̂ ≈ σ̂mod. Furthermore,
if σ̂mod stems from an incorrect value of P , we then have

σ̂ ≈ ∆tσ̃P ⇐⇒ 1

∆t
σ̂ ≈ σ̃P =

εP
ρcV

. (4.14)

Using the relations above, we can define the DNN-predicted error in P , ε̂P , as

ε̂P =
ρcV
∆t

σ̂nn ≈ εP . (4.15)

The take-away point here is that, given the DNN-predicted corrective source term σ̂nn,
we can compute an approximation ε̂P of the true error εP in the modelling of the heat
generation rate P .

In Section 4.2.2, we considered a series of 1D experiments with significant modelling
error due to incorrect modelling of P . We will now use data from the experiment
considering Solution P1 therein to demonstrate how an unknown source term can be
recovered from the DNN-generated corrective source term σ̂nn.

The first step in recovering the unknown source term is to compute ε̂P given σ̂nn

using Equation (4.15). For this particular example, σ̂nn is the same for all time levels
(bar some random noise), so it is not important which time level we take data from.
However, for completeness, we state that we use data from the final time tend = 5.0 s.
In Figure 4.47, we have plotted the DNN-predicted error ε̂P computed using σ̂nn for
α = 0.7 and α = 1.5.

In the second step, we analyze the data from Figure 4.47. The analysis will inher-
ently depend on what we know about the system at hand and about the PBM used.
As an example, we will here assume that the we know that some temporally and spa-
tially uniform heating/cooling is applied to the system, and that this heating/cooling
is unaccounted for by the PBM. Furthermore, we assume that we know that the heat-
ing/cooling is related to α in some unknown way. For both α-values, Figure 4.47 shows
that ε̂P is roughly constant throughout the entire domain except at the grid nodes clos-
est to the boundary. In this example, we have no a priori knowledge indicating that
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Figure 4.47.: Solution P1, interpolation: Corrective source terms predicted by the DNN
of HAM at the final time level (�), and the constant function 1− α, which
corresponds to the unknown source term of Solution P1 (—). The data
for this figure was generated using the same HAM model as was used to
generate Figure 4.7.

there is anything interesting going on at the boundaries, and we therefore disregard the
boundary behaviour as being caused by numerical effects unrelated to the unmodelled
heating/cooling.20 Instead, we focus on the fact that ε̂P is roughly constant in both
time and space, which makes it likely that it can account for the heating/cooling not
included in the PBM. From Figure 4.47, it appears that we have εP (α = 0.7) ≈ 0.3 and
εP (α = 1.5) ≈ −0.5, which is consistent with εP = 1 − α. Since the PBM discussed in
Section 4.2.2 has P̃ = 0, this implies P = P̃ + εP = 1 − α, which is indeed the true
source term of Solution P1 (cf. Table 4.1). In an application context, where we would
not know for sure that we had recovered the exact εP , we would still know whether the
obtained εP is consistent with the postulated behaviour of the unknown P . This could
serve as a sanity check for the DNN in the HAM model. However, at present, this sanity
check requires human interaction at several levels, such as when we decided to ignore
the behaviour of σ̂nn near the boundaries. Further research into automating this sanity
check would be useful.

Of course, in a high-stakes application, we would require more than two data points
before claiming εP ≈ 1 − α as we did above. For example, εP = 2.05 − 3.2α + α2

is also reconcilable with the Figure 4.47. Furthermore, if εP appears to be varying in
space and/or time, we would have to use some regression technique to find a probable
explicit expression for εP . However, the underlying principles remain the same as those
used above also in more complex scenarios. Furthermore, we highlight that the procedure
used above is also valid for higher-dimensional problems, as the error εP will be captured
by an extra term on the right-hand side of the FVM’s matrix form regardless of the
problem’s dimensionality.

Even without obtaining any general explicit expression for ε̂P through regression,
calculating ε̂P at regular time intervals might still give important qualitative insight
into the behaviour of a CoSTA-based HAM model’s DNN. For instance if it is known
that the system is being heated by some unmodelled heat source, then we know that P̃ is

20Since this is a synthesized example, we know that this is a valid assumptions. In a real-world applica-
tion scenario, further investigations may be warranted before such an assumption can be made with
a sufficient degree of certainty.
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too low, which corresponds to positive εP . In such a scenario, it would thus be grounds
for concern if the DNN-predicted error ε̂P has components that are significantly negative.
Similarly, if we know that the heat added to a system is bounded, then we know that
the DNN-corrected source term

P̂ = P̃ + ε̂P = P̃ +
ρcV
∆t

σ̂nn (4.16)

must also be bounded. At any given time level, we can check if the appropriate bounds
are respected, and this can serve as an automatic sanity check for the DNN. Such sanity
checks make the complete model far more trustworthy. Note however that care must
be taken when defining the bounds. Some numerical methods do not conserve energy,
and when a CoSTA-based HAM model utilizes such a solver in its PBM, it may be
desirable for the corrective source term to add energy to the system. Thus, determining
the appropriate bounds must done with care on a case-by-case basis. The important
point here is that CoSTA facilitates application-specific sanity checks for its DNN when
such checks are appropriate.

Aside from providing valuable sanity checks for the DNN, the approach outlined above
can also be used to define a new and improved PBM. Instead of studying the DNN-
predicted error in P , as defined in Equation (4.15), it can be fruitful to look deeper into
the right-hand side of Equation (4.14), which defines an approximate relation between
the true error in the modelling of P and the true corrective source term used to train
the DNN. We now postulate that this approximate relation is instead an equality (which
is true if incorrect modelling of P is our only source of error), such that we have

εP =
ρcV
∆t

σ̂. (4.17)

We can then take all the true corrective source terms σ̂ from the DNN training data and
use the equation above to calculate the corresponding εP . Subsequently, it is possible to
apply some regression technique, e.g. symbolic regression, to the calculated errors εP . If
successful, this would yield an explicit formula for εP . Using this formula, it is possible to
define an alternative PBM where P is approximated by P̃+εP rather than just P̃ . If this
alternative PBM is found to outperform the original PBM, one may consider updating
the PBM in the HAM accordingly. While this would require the DNN to be retrained, it
would also make the resulting HAM model more powerful than the previous one, since
improving the PBM also improves the full HAM model (cf. Section 4.5). Updating the
PBM is especially relevant if the regressed εP has a meaningful physical interpretation,
as that would increase the trustworthiness of the regressed correction significantly. In
conclusion, the CoSTA framework not only facilitates the correction of a PBM using
data-driven techniques – it also facilitates improving the original PBM, thereby also
improving the full HAM model.

4.6.2. Recovering an Unknown Conductivity

We will now consider how an unknown conductivity can be recovered using the CoSTA
framework. Suppose that the true conductivity k of a system is approximated by some
k̃ = k − εk, where εk 6= 0 is the error of the approximation (analogously to εP in the
previous section). We consider here an approach that is different from the one used
above in the sense that we use the differential form of the heat equation – not the
integral form – as our starting point. The benefit of this approach is that it enables us
to compute an explicit expression for εk for 1D problems. To begin, we insert k̃+ εk into
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the one-dimensional heat equation on differential form to obtain

∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+ P (4.18)

=
∂

∂x

((
k̃ + εk

) ∂T
∂x

)
+ P (4.19)

=
∂

∂x

(
k̃
∂T

∂x

)
+ P +

∂

∂x

(
εk
∂T

∂x

)
(4.20)

=⇒
(
∂

∂t
− ∂

∂x

(
k̃
∂

∂x

))
T = P +

∂

∂x

(
εk
∂T

∂x

)
. (4.21)

Comparing to Equation (3.5), we see that

σ̂ =
∂

∂x

(
εk
∂T

∂x

)
. (4.22)

Under the assumption that ∂T/∂x 6= 0, the equation above can be solved for εk, such
that we obtain the following explicit formula:

εk =

(
∂T

∂x

)−1
x∫

xa

σ̂(x′) dx′. (4.23)

Now, given a DNN-predicted corrective source term σ̂nnn and the corresponding predicted
temperature profile T nh , we can compute the DNN-predicted error ε̂nk in the modelling
of the conductivity k. At any time level n, the components of ε̂nk are given by

(ε̂nk)j =
(Tnh )j+1 − 2(Tnh )j + (Tnh )j−1

(xj+1 − xj)(xj − xj−1)

xj∫

xa

I[σ̂nnn](x′) dx′, j = 1, . . . , Nj . (4.24)

Here, I[σ̂nnn] is some integrable spatial interpolant of σ̂nnn, and we have approximated
∂T/∂x with a second order central difference approximation using T nh . Fifth order
Gaussian interpolation is a scheme which we have found to work well for interpolating
σ̂nnn. Before moving on to some practical examples, we highlight that Equation (4.24)
implicitly assumes that the modelling error due to the incorrect conductivity is much
larger than other errors affecting the model.

In Section 4.2.3, we considered a series of numerical experiments with unknown con-
ductivity. We will now attempt to recover the conductivities corresponding to Solution k1
and Solution k2 in Table 4.1 using data from these experiments. More specifically, we
will insert the corrective source term σ̂Nt−1

nn and the predicted temperature TNt−1
h into

Equation (4.24) to predict the conductivity error ε̂k. The DNN-corrected conductivity
at the final time tend = 5.0 s is then calculated using the formula k̂ = k̃ + ε̂k. We illus-
trate k̂ for Solutions k1 and k2 in Figures 4.48 and 4.49, respectively. As can be seen
from the figures, the corrected conductivities k̂ (green diamonds) correspond very well
to the true conductivities (black line). It is especially noteworthy that k̂ is so similar to
k for Solution k2, where k is proportional to T and therefore varies not only in space,
but also in time.

Despite the good results illustrated in Figures 4.48 and 4.49, the approach we used
above has several weakness which must be highlighted. First of all, Equation (4.24)
is numerically unstable for small ∂T/∂x. Secondly, due to the outer spacial derivative
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Figure 4.48.: Solution k1, interpolation: Conductivity profiles at the final time level
recovered using the corrective source term predicted by HAM (�), and
true conductivity profiles of Solution k1 (—) for α ∈ {0.7, 1.5}. The data
for this figure was generated using the same HAM model as was used to
generate Figure 4.15.

in the differential form of the heat equation, any constant terms in k(∂T/∂x) will not
have any influence on the true corrective source term σ̂ and they will therefore not be
reflected in the DNN-generated corrective source term σ̂nn either. This means that, in
some scenarios, it is impossible to recover the true conductivity exactly. For example,
if T is linear in space, any unknown constant term in k cannot be recovered using
Equation (4.24). Consequently, it is e.g. impossible to recover the ratio between the two
constant conductivity levels used to define Solution k3 from σ̂nn. However, it would
have been possible if we had chosen a different manufactured solution such that we did
not have k(∂T/∂x) = 0 everywhere except at the discontinuity.

Another weakness of the approach used above is that it cannot be generally extended
to higher-dimensional problems. As an example, we use k̃ = k − εk in the 2D heat
equation on differential form below.

∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+ P (4.25)

=
∂

∂x

((
k̃ + εk

) ∂T
∂x

)
+

∂

∂y

((
k̃ + εk

) ∂T
∂y

)
+ P (4.26)

=
∂

∂x

(
k̃
∂T

∂x

)
+

∂

∂y

(
k̃
∂T

∂y

)
+ P +

∂

∂x

(
εk
∂T

∂x

)
+

∂

∂y

(
εk
∂T

∂y

)
(4.27)

Comparing the above to Equation (3.5) and Equation (4.21), it is clear that we have

σ̂ =
∂

∂x

(
εk
∂T

∂x

)
+

∂

∂y

(
εk
∂T

∂y

)

which can be rewritten as

y∫

yc

x∫

xa

σ̂(x′, y′) dx′dy′ =

y∫

yc

εk
∂T

∂x
dy′ +

x∫

xa

εk
∂T

∂y
dx′. (4.28)

Unfortunately, Equation (4.28) cannot be solved for εk in general.
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Figure 4.49.: Solution k2, interpolation: Conductivity profiles at the final time level
recovered using the corrective source term predicted by HAM (�), and
true conductivity profiles of Solution k2 (—) for α ∈ {0.7, 1.5}. The data
for this figure was generated using the same HAM model as was used to
generate Figure 4.16.

One possible fix for higher-dimensional problems is to instead use the integral form
of the heat equation as the starting point. For example, in 2D, using k = k̃ + εk in the
heat equation on integral form yields

∫

V

ρcV
∂T

∂t
dV =

(
kA

∂T

∂x

)

e

−
(
kA

∂T

∂x

)

w

+

(
kA

∂T

∂y

)

n

−
(
kA

∂T

∂y

)

s

+

∫

V

P dV

=

(
(k̃ + εk)A

∂T

∂x

)

e

−
(

(k̃ + εk)A
∂T

∂x

)

w

+

(
(k̃ + εk)A

∂T

∂y

)

n

−
(

(k̃ + εk)A
∂T

∂y

)

s

+

∫

V

P dV

=

(
k̃A

∂T

∂x

)

e

−
(
k̃A

∂T

∂x

)

w

+

(
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∂T

∂y

)

n

−
(
k̃A

∂T
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)

s

+

∫

V

P dV

+

(
εkA

∂T

∂x

)

e

−
(
εkA

∂T

∂x

)

w

+

(
εkA

∂T

∂y

)

n

−
(
εkA

∂T
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)

s

,

from which it is clear that

σ̂ =

(
εkA

∂T

∂x

)

e

−
(
εkA

∂T

∂x

)

w

+

(
εkA

∂T

∂y

)

n

−
(
εkA

∂T

∂y

)

s

. (4.29)

Now, to make use of the discrete DNN-predicted σ̂nn, we have to discretize the equation
above. For the derivative of the temperature, we can use the same central difference
approximations as we used for deriving the Implicit Euler FVM (cf. Equations (2.13)
and (2.20)). For the conductivity modelling error εk, we suggest using arithmetic av-
eraging because it is linear (which means we end up with a linear system of equations
later). Using the index notation of Section 2.2.3, the averages read

(εk)j+1/2,i ≈
(εk)j+1,i + (εk)j,i

2
, (εk)j−1/2,i ≈

(εk)j,i + (εk)j−1,i

2
, (4.30)

(εk)j,i+1/2 ≈
(εk)j,i+1 + (εk)j,i

2
, (εk)j,i−1/2 ≈

(εk)j,i + (εk)j,i−1

2
. (4.31)
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Inserting these approximations into Equation (4.29) and making the replacements σ̂ →
σ̂nn, εk → ε̂k and T → Th, we obtain

(σ̂nn)i,j =
(ε̂k)j+1,i + (ε̂k)j,i

2

(Th)j+1,i − (Th)j,i
xj+1 − xj

− (ε̂k)j,i + (ε̂k)j−1,i

2

(Th)j,i − (Th)j−1,i

xj − xj−1

(ε̂k)j,i+1 + (ε̂k)j,i
2

(Th)j,i+1 − (Th)j,i
yi+1 − yi

− (ε̂k)j,i + (ε̂k)j,i−1

2

(Th)j,i − (Th)j,i−1

yi − yi−1
,

which constitutes a linear system of Nj ·Ni equations. Unfortunately, it has (Nj + 2) ·
(Ni + 2) unknowns, and is thereby underdetermined. However, applying e.g. extrapo-
lating boundary conditions21 would make the system determined, thereby allowing us
to compute ε̂k at any time level given σ̂nn and Th from the same time level. We recom-
mend looking further into this approach to computing ε̂k in future work regarding the
interpretability of CoSTA-based HAM models.

4.6.3. Recovering an Unknown Density or Heat Capacity

In the present work, we have not conducted any experiments with an unknown density
ρ or an unknown heat capacity cV . Still, we provide the theoretical foundation for
recovering an unknown density or heat capacity from the DNN-predicted corrective
source term σ̂nn. Below, we focus on recovering an unknown density, but the process for
recovering an unknown heat capacity is entirely analogous. For simplicity, we also only
cover 1D problems explicitly, but the procedure for higher-dimensional problems is also
completely analogous.

Suppose that the true density ρ is approximated by some ρ̃ = ρ− ερ, where ερ 6= 0 is
the error of the approximation. Inserting this approximation into the 1D heat equation
on integral form yields

∫

V

ρcV
∂T

∂t
dV =

∂

∂x

(
kA

∂T

∂x

)

e

−
(
kA

∂T

∂x

)

w

+

∫

V

PdV (4.32)

∫

V

(ρ̃+ ερ)cV
∂T

∂t
dV =

∂
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(
kA
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)

e

−
(
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)

w

+

∫

V

PdV (4.33)

=⇒
∫

V

ρ̃cV
∂T

∂t
dV =
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)

e

−
(
kA

∂T
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)

w

+

∫

V

PdV −
∫

V

ερcV
∂T

∂t
dV (4.34)

such that the continuous formulation of the corrective source term is

σ̂ = −
∫

V

ερcV
∂T

∂t
dV. (4.35)

To express the predicted error in the modelling of ρ using the discrete quantities σ̂nn

and Th, we need to discretize the equation above. This includes discretizing both the
heat capacity and the error of the density. Here, we pick one mathematically convenient
option for discretizing these quantities. First, we impose the following assumption on
the cell-average of the right-hand-side integrand:

1

∆xj

xj+1/2∫

xj−1/2

ερcV
∂T

∂t
dx ≈

(
ερcV

∂T

∂t

)

j

, j = 1, . . . , Nj . (4.36)

21Meaning that the value at any boundary node is set to the same value as that at its closest neighbouring
node in the domain interior.

88



4. Numerical Experiments – Results and Discussions

Then (
∂T

∂t

)

j

= − σ̂j
(cV )j(ερ)j

(4.37)

To discretize the temporal derivative, we use the same discretization as for the Implicit
Euler FVM (cf. Section 2.2.3), such that we obtain

Tn+1
j − Tnj

∆t
= −

σ̂n+1
j

(cV )n+1
j (ερ)

n+1
j

. (4.38)

Making the substitutions σ̂ → σ̂nn, T → Th and ερ → ε̂ρ yields

(Th)n+1
j − (Th)nj

∆t
= −

(σ̂nn)n+1
j

(cV )n+1
j (ε̂ρ)

n+1
j

, (4.39)

which can be rewritten as

(ε̂ρ)
n+1
j = −

σ̂n+1
j

(cV )n+1
j

∆t

(Th)n+1
j − (Th)nj

. (4.40)

The DNN-corrected density is then

ρ̂ = ρ̃+ ε̂ρ, (4.41)

where the components of ε̂ρ are defined by Equation (4.40) for all j = 1, . . . , Nj . This
DNN-corrected density can be used for sanity-checking the DNN of the CoSTA-based
HAM model, or for updating the HAM model’s internal PBM, analogously to the dis-
cussion on ε̂P earlier in this section.

4.6.4. Concluding Remarks on CoSTA Interpretability

In this section, we have discussed how the DNN-generated corrective source term σ̂nn

of CoSTA-based HAM models can be interpreted in a physical context. More specifi-
cally, we have used σ̂nn to recover unknown source terms and unknown conductivities
using experimental data from earlier experiments, and we have discussed how analogous
procedures can be used to recover other unknown parameters. Similar procedures can
also be used for other physical systems than those governed by the heat equation. For
example, in Appendix D, we explore how to recover an unknown wave speed for the
wave equation.

The interpretability of the corrective source term has two main benefits. First of all,
it facilitates sanity checks for the DNN used in the CoSTA-based HAM model. This
results in increased trustworthiness, as divergent or otherwise unphysical behaviour can
be detected automatically. Such automatic failure detection is especially important
in high-stakes applications. Secondly, we have discussed how analyzing the corrective
source term facilitates improvements in the PBM. As discussed in Section 4.5, improving
the accuracy of the PBM generally leads to improved accuracy of the full CoSTA-based
HAM model as well.

It should be mentioned that our approach to recovering unknown parameters assumes
that the error of the unmodified PBM is dominated by a single error source. If several
error sources contribute significantly to the total error, providing a useful analysis is more
difficult. The reason for this is that one cannot determine the contribution of each error
source to the corrective source term as a whole based on the corrective source term itself.

89



4. Numerical Experiments – Results and Discussions

This is a well-known issue, which also occurs in traditional physics-based modelling. One
topical example is climate modelling, where it can be difficult to accurately determine the
specific influence of factors like solar irradiance variability, ENSO cycles22 and volcanic
activity on the atmospheric temperature at large (see e.g. (Lean, 2005; Lean and Rind,
2008) for interesting discussions on this topic). As such, this issue is not something
that arises as a consequence of the CoSTA framework. Instead, it is a general issue
encountered whenever one can only measure the cumulative effect of several partially
understood phenomena. One should also keep in mind that useful analyses are still very
much possible. The analyses are just more difficult to carry out, and may be influenced
by larger uncertainty.

4.7. Review of Numerical Experiments

In this chapter, we have presented a variety of numerical experiments concerning un-
steady heat transfer problems. In these experiments, traditional PBM and DDM are
compared with the novel CoSTA-based HAM. To ensure a fair comparison, the physics-
based and data-driven components of the HAM model are as similar to the stand-alone
PBM and DDM as possible (cf. Section 4.1). Any performance difference between the
HAM model and the other models can thus be attributed to the CoSTA framework,
rather than the individual components of the HAM model. In Section 4.2, we considered
1D experiments, while 2D experiments were considered in Section 4.3. Three categories
of a priori physics knowledge were studied in these experiments. In Section 4.2.1, we
considered experiments where all physics was known, such that the goal of CoSTA was to
reduce the discretization error of the PBM. Sections 4.2.2, 4.3.1, 4.2.3 and 4.3.2 were all
devoted to experiments where some physics was unknown, such that CoSTA would addi-
tionally have to correct modelling error. In the former two sections, the modelling error
resulted from an unknown source term, while an unknown conductivity was the source
of error in the latter two sections. All the aforementioned experiments were aimed at
answering our research questions regarding the accuracy and generalizability of CoSTA
(cf. Section 1.2). The grid refinement studies conducted in Section 4.5 also contribute to
answering these questions. The remaining two sections, Section 4.4 and Section 4.6, were
aimed at answering the final research question concerning CoSTA’s trustworthiness. In
Section 4.4, we studied the inherent uncertainty of DDM and HAM models, while we
discussed the interpretability of CoSTA’s corrective source term in Section 4.6.

Below, we discuss and answer our three research questions (cf. Section 1.2) in light of
the results and discussions presented in this chapter. We will thereafter highlight some
important limitations of the present work, and briefly discuss how the present work could
have been improved with the benefit of hindsight.

4.7.1. Answering the Research Questions

How does the predictive accuracy of a hybrid model using CoSTA compare
to the accuracy of stand-alone PBM and DDM?

In the experiments of Sections 4.2 and 4.3, we have investigated the accuracy of PBM,
DDM and CoSTA-based HAM for a variety of 1D and 2D heat transfer problems. A
total of 28 interpolation scenarios and equally many extrapolation scenarios are con-
sidered in these experiments. The CoSTA-based HAM model is found to be the most
accurate model in all 28 interpolation scenarios. In numerous interpolation scenarios,

22ENSO is short for El Niño Southern oscillation.
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HAM outperforms the other models by several orders of magnitude in terms of relative
`2-error. The HAM model is also significantly more accurate than the other models in
22 out of 28 extrapolation scenarios. HAM and PBM are jointly most accurate in 4 of
the remaining 6 scenarios, while PBM is the most accurate model in the remaining two
scenarios. Overall, it is clear that HAM is the most accurate model in the experiments
described in Sections 4.2 and 4.3.

The grid refinement studies presented in Section 4.5 also allow us to compare the
accuracy of the three models. Again, HAM is the most accurate in all interpolation
scenarios. In the extrapolation scenarios, HAM significantly outperforms DDM, and is
roughly as accurate as PBM. In general, it appears that PBM has a slight edge for sce-
narios with α = −0.5 and large Nj . This is not surprising, given that, for both solutions
considered in Section 4.5, α = −0.5 yields temperature profiles that are qualitatively
different to those seen during training. Additionally, the DNN hyperparameters were
tuned on the basis of preliminary experiments with small Nj , so the HAM model is likely
poorly tuned for use with large Nj . Still, HAM is the most accurate model in 15 out of
the 24 extrapolation scenarios considered in Section 4.5.

In addition to accuracy in terms of `2-error, it is also interesting to compare how often
the different models predict temperature profiles which are qualitatively incorrect. Of
the 56 scenarios considered in Sections 4.2 and 4.3, DDM provides qualitatively incorrect
predictions in 10 scenarios (mainly extrapolation scenarios), while PBM provides qual-
itatively incorrect predictions in 21 scenarios (all of which are scenarios with unknown
physics). In comparison, HAM provides a qualitatively incorrect prediction in only one
scenario. (In that scenario, the PBM and DDM predictions are also qualitatively incor-
rect, cf. Figure 4.13c.) Interestingly, CoSTA-based HAM is able to provide qualitatively
correct predictions even when both PBM and DDM fail to do so (cf. Figure 4.11c).

In summary, CoSTA-based HAM is the most accurate model considered in our exper-
iments. It provides better predictive accuracy than PBM and DDM, both in terms of
relative `2-error and qualitative correctness. We have seen that this holds for both one-
and two-dimensional problems. Additionally we have seen that CoSTA-based HAM is
often able to improve the accuracy of PBM even when all physics is known a priori.
This stands in contrast to DDM, which, in our experiments, only outperforms PBM in
scenarios where some physics is unknown. Thus, for the purpose of predictive accuracy,
we find that CoSTA better leverages the power of data-driven techniques than does
stand-alone DDM.

How does the generalizability of a hybrid model using CoSTA compare to
the generalizability of stand-alone PBM and DDM?

In Sections 4.2, 4.3 and 4.5, we have investigated the performance of PBM, DDM and
CoSTA-based HAM in both interpolation and extrapolation scenarios. In analyzing the
models’ generalizability, we put emphasis on the results for the extrapolation scenarios.
However, this analysis can be conducted from two different view-points. In Section 1.1,
we defined a model’s generalizability as its ability to solve a variety of problems without
problem-specific fine-tuning. The two view-points differ in how they reconcile this def-
inition with our experimental data. The first option is to look at how well the models
retain their accuracy from the interpolation scenario in the extrapolation scenarios. The
second option is to look at how well the models perform in the extrapolation scenarios
without regarding their performance in the interpolation scenarios.

From the first point of view, PBM is the model with the highest generalizability. In
all experiments we have conducted, the underlying assumptions of the PBM have been
satisfied to the same extent for all scenarios within any one experiment. For example,

91



4. Numerical Experiments – Results and Discussions

in the experiments with unknown conductivity, the unknown conductivity was not more
important for the overall behaviour in the system for some α-values than for others.
Therefore, the accuracy of PBM is roughly the same in the extrapolation scenarios as in
the interpolation scenarios. This level of performance consistency cannot be expected
from DDM and HAM, as their DNNs are inherently affected by the bias-variance trade-
off. Indeed, we observe that their `2-errors are consistently lower in the interpolation
scenarios than in the extrapolation scenarios. However, the performance reduction is
greater for DDM than for HAM. This is most clearly illustrated by the fact that DDM
provides qualitatively incorrect predictions in a much higher number of extrapolation
scenarios than does HAM.

From the second point of view, HAM exhibits the greatest generalizability of the three
models. As mentioned in our discussion on model accuracy earlier, HAM is significantly
more accurate than the other models in 22 out of 28 extrapolation scenarios, while being
roughly as accurate as PBM in an additional 4 extrapolation scenarios. Furthermore,
HAM also provides qualitatively correct predictions more frequently than the other two
models. Thus, HAM is clearly the model that is most able to provide accurate predictions
in the extrapolation scenarios. From this second point of view, one would therefore
conclude that HAM exhibits the greatest generalizability.

It is an open question whether the first or second point of view is the “correct”
one. Generally, the application will dictate which is the most reasonable. If consistent
performance is more important than accuracy, then the first point of view is the most
appropriate. However, if what matters most is the number of scenarios for which the
model is able to provide accurate predictions, then the second point of view is a more
natural choice. What is clear is that regardless of which point of view is chosen, CoSTA-
based HAM generalizes better than pure DDM.

At last, we highlight the possibility of applying symbolic regression techniques to the
corrective source term, as discussed briefly in Section 4.6. Cranmer et al. (2020) have
shown that such an approach can be used to learn the complete governing equation.
We therefore have reason to believe that symbolic regression can be used to learn an
explicit representation of (some of) the physics captured by the corrective source term.
Even if the symbolic regression does not capture all the physics of the corrective source
term, obtaining explicit expressions for partial physics is also beneficial. The use of
symbolic regression may increase generalizability of CoSTA-based models, as Cranmer
et al. (2020) note that their regressed expressions generalize better than the DNNs to
which the symbolic regression was applied. Combining CoSTA with symbolic regression
is therefore an interesting research area which can be explored in the future.

Are predictions made by a CoSTA-based HAM model trustworthy?
In Section 1.1, we defined a model’s trustworthiness as the extent to which the model

can be explained and analyzed. Recall also that a CoSTA-based HAM model is created
by augmenting a PBM with a corrective source term. We take it for granted that the
original, non-augmented PBM can be derived from sound first principles, just like we
derived the Implicit Euler FVM for the heat equation in Section 2.2. This derivation is
in and of itself an explanation of the PBM. It also provides a framework for analyzing
the PBM’s behaviour, as different parameters with clear physical interpretations can be
adjusted to analyze their impact on the model as a whole. For CoSTA, what remains is
then to explain and analyze the corrective source term.

In Section 4.6, we discussed how the corrective source term of CoSTA-based HAM
models can be interpreted in a physics context. We demonstrated how the corrective
source term can be analyzed to recover unknown heating/cooling or unknown conduc-
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tivity, and we also discussed how other unknown parameters could be recovered in the
context of heat transfer problems. The presented recovery approach is completely gen-
eral, and can also be applied to CoSTA-based HAM models for other systems. For
example, Appendix D offers a discussion on how to recover an unknown wave speed
from systems governed by the wave equation. As discussed in Section 4.6, the presented
way of interpreting the corrective source term facilitates automatic performance moni-
toring, which is essential in safety-critical applications. It also facilitates updating the
PBM of the CoSTA-based HAM model through e.g. symbolic regression. In addition to
providing an accuracy boost to the HAM model (cf. the last paragraph of Section 4.5),
this would also increase the model’s interpretability and predictability, since we then get
an explicit expression describing (some of) the unknown physics of the problem at hand.

Another important aspect of a model’s trustworthiness is its susceptibility to noise.
Random noise inherently degrades the explainability of a model, and thereby also its
trustworthiness, because it introduces uncertainty in the model’s predictions. There-
fore, in an effort to develop trustworthy models, we want to keep the models’ inherent
uncertainty to a minimum. In Section 4.4, we presented results which are clearly in-
dicative that the HAM models studied in our experiments have less inherent uncertainty
than the DDM models. This conclusion is supported by observations from Section 4.3,
where we noted that the DDM predictions are generally more noisy than the correspond-
ing HAM predictions. Generally, our results suggest that CoSTA-based HAM yields a
higher signal-to-noise ratio than DDM. This increases the interpretability of HAM in
comparison to DDM, as whichever method is used for model analysis must deal with
less noise. However, it is important to keep in mind that CoSTA-based HAM is, to some
extent, influenced by noise. At present, we do not know how the long-term behaviour
of CoSTA-based models is affected by the noise, and this lack of knowledge reduces
the models’ trustworthiness. More research into the long-term stability of CoSTA-based
HAM models is therefore needed to unleash CoSTA’s full potential in terms of trustwor-
thiness. However, we observe that CoSTA is already more trustworthy than DDM, due
to the reduced level of noise, the facilitated sanity-checks and the interpretability of the
corrective source term.

At last, we highlight that the interpretability facilitated by the CoSTA-framework is
complementary to ongoing research into DNN interpretability. In the computer science
community, much research is devoted to finding systematic ways of interpreting the
latent representations learnt by DNNs. That is to say, this work focuses on interpreting
the inner workings of DNNs in an effort to understand why they make the predictions
they do. Such knowledge is undoubtedly useful for any model based on DNNs, including
CoSTA-based HAM models. In this work, we have explored a different approach to
DNN interpretability, as we focus on the DNN’s output rather than its internal latent
representations. Such an approach has limited value for pure DDM, as it is difficult
to analyze a time series of temperature profiles in any meaningful way without any
further knowledge of the underlying physics. However, as we have demonstrated, such an
approach is fruitful for CoSTA-based HAM models since the DNN output (the corrective
source term) is then included in a physics-based framework. In this sense, CoSTA offers
an extra layer of interpretability to data-driven techniques. It also offers an extra level
of control over the impact of the data-driven techniques on the predictions made by the
full model, because the corrective source term can be filtered, attenuated or otherwise
modified before being coupled with the rest of the model. We envision that the improved
interpretability and control offered by CoSTA can make data-driven techniques more
attractive within high-stakes applications.
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4.7.2. Limitations of the Present Work

From the results summarized above, it is clear that CoSTA has demonstrated many
favourable characteristics in our numerical experiments. However, it is important to
keep in mind that these experiments do not cover all relevant aspects of CoSTA for all
conceivable applications. The major limitations of the present work are discussed below.

The most prominent limitation of the present work is that we have focused almost
exclusively on heat transfer problems. This is not a necessary limitation, since CoSTA
is a completely general framework, as discussed in Section 3.1. Therefore, it would be
interesting to investigate to what extent the findings of the present chapter generalize to
other kinds of problems. An initial effort in this direction is described in Appendix A,
where we utilize CoSTA to reduce numerical diffusion in numerical solutions of the Euler
equations used in e.g. gas dynamics research. However, Appendix A considers only a
single experiment, and therefore has limited impact other than being a practical demon-
stration that CoSTA can be applied to other kinds of problems. More comprehensive
studies are required to provide the full picture of CoSTA’s performance for other appli-
cations.

Another important limitation of the experiments in the present chapter is that we
have only considered a single PBM and a single DDM. Furthermore, the PBM and
DDM considered here are both among the most basic models available. This was a
deliberate choice by the author to make the demonstrations of CoSTA as simple as
possible. Given the good results we have obtained for the basic models considered here,
a natural next step is to investigate the performance of CoSTA using state-of-the-art
data-driven techniques and physics-based models that are used in real-world industrial
applications.

We highlight that the DDM and HAM models studied in this chapter both rely on
the assumption that there is a strong correlation between data sampled at subsequent
time levels. In cases where this assumption does not hold, there will not be a strong
correlation between the target DNN input and output for these models. Their DNNs
will then not have a well-defined learning problem, and will consequently learn poorly.
The full models will then also perform poorly as a whole. An example of a problem
where data from subsequent time levels is weakly correlated is the problem considered
in Appendix A. Thus, while the CoSTA-framework itself is completely general, our
particular implementation of the framework is not general. The particular issue noted
here can be addressed by adopting a DNN architecture designed to handle temporally
correlated data, such as recurrent neural networks.

Another example of our implementation not being general is that we have not informed
the DNNs explicitly of α. This means that if different α-values yield the same initial
temperature profile, then the DDM and HAM models considered here will not be able
to differentiate between the two scenarios. For this reason, we could e.g. not use T =
x + αt as a manufactured solution in our experiments, because we would then have
T (t = 0) = x for all α. We have taken care to choose manufactured solutions such
that this has not been a problem in our experiments, but this is certainly something
one would want to avoid in a general-purpose implementation. One option is to adopt
a DNN-architecture like the one described by Pawar et al. (2021b) in their work on
physics-guided machine learning. With such an architecture, the DNN can be explicitly
informed of any important parameters in an efficient manner.
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4.7.3. Lessons Learnt

With hindsight, one always discovers ways in which any research endeavour could have
been improved. Below, we enumerate some additions and improvements the author
would have made if the present work was to be repeated.

1. As discussed in Section 4.4, our method for measuring model uncertainty is some-
what unsatisfactory. The results of that section would have been more useful if
we had e.g. used the ensembling approach advocated by Lakshminarayanan et al.
(2017).

2. In Section 4.6, we considered a posteriori analysis of the corrective source term for
the purpose of interpretability. However, other applications of a posteriori analysis
have largely gone unexplored. Further considerations regarding the usefulness of
such analysis would have been interesting.

3. Also in Section 4.6, we outlined an alternative approach to recovering an unknown
conductivity profile. It would be valuable to know what quality of empirical results
could be obtained using that method.

4. It would have increased the impact of this thesis if we had included at least one
experiment where data-driven techniques specifically designed for time series fore-
casting had been used in the DDM and HAM models. For example, we could have
used simple recurrent neural networks or temporal convolutional networks. This
would have served two purposes. First of all, it would have been a clear demon-
stration of the fact that CoSTA is compatible with such techniques. Secondly,
we could then have studied how improvements in DDM affect the performance of
CoSTA-based HAM models, much like we investigated the effects of improving the
PBM in Section 4.5.

5. The impact of the present work would also have increased if we would have been
able to include some experiments based on real-world experimental data. A rele-
vant experiment on heat transfer was originally intended to be discussed as part
of this thesis, but the experimental rig was unfortunately not up and running in
time for that to be possible.
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5.1. Conclusion

Predictive modelling techniques are paramount to our understanding and interaction
with the world around us, as they play an important role within a wide array of in-
dustrial and scientific applications. Notable examples include climate modelling, metal
production, off-shore wind and digital twins. Historically, most modelling techniques
could be classified within one of two categories – physics-based modelling (PBM) and
data-driven modelling (DDM) – with each category having its advantages and draw-
backs. Due to its sound, first-principles foundation, PBM performs well in terms of
generalizability and trustworthiness. However, these models are generally expensive in
terms of computational resources, and they are static, meaning that they do not learn
automatically from observations. In contrast, DDMs are inherently capable of learning
from observations, and they exhibit high computational efficiency (at least for inference).
However, they simultaneously suffer from limited generalizability due to the bias-variance
trade-off. In addition, DDMs lack trustworthiness because their black-box-like nature
inhibits rigorous analysis of the physics instilled into them. In response to the respective
short-comings of pure PBM and DDM, a new modelling paradigm called hybrid analysis
and modelling (HAM) has recently emerged. Within the HAM paradigm, PBM and
DDM techniques are combined with the goal of creating hybrid models that retain the
strengths of pure PBM and DDM, while eliminating their weaknesses. As such, success-
ful development of modelling techniques within the HAM paradigm has the potential to
positively impact numerous important applications, including those listed above.

In this thesis, we have formally introduced, justified and demonstrated the Corrective
Source Term Approach (CoSTA) to HAM. The key concept of CoSTA is to augment
the governing equation of a PBM with a corrective source term that is generated using
DDM techniques. The purpose of the corrective source term is to account for any
physics left unresolved by the original PBM. A similar concept has been utilized by
Maulik et al. (2019) and Sirignano et al. (2020), who explore the use of deep neural
networks (DNNs) to account for sub-grid processes in turbulence modelling. CoSTA can
be seen as a generalization of these works, and is applicable to any deterministic system.
Furthermore, as CoSTA does not require any a priori assumptions regarding the form
of the error in the PBM, the corrective source term can account for all kinds of errors.

To investigate the accuracy and generalizability of CoSTA, we have conducted a series
of numerical experiments on unsteady heat transfer problems. The experiments include
both one- and two-dimensional problems, and consider varying levels of a priori knowl-
edge of the physics to be modelled. Overall, CoSTA is found to be significantly more
accurate than comparable PBM and DDM models – often outperforming the other mod-
els by several orders of magnitude in terms of relative `2-error. Furthermore, CoSTA
provided qualitatively correct predictions in all but one of the scenarios considered in
our experiments. This is again far better than DDM and PBM, which provided roughly
10 and roughly 20 qualitatively incorrect predictions, respectively. Interestingly, CoSTA
has been found to provide accurate and qualitatively correct predictions even in scenarios
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where PBM and DDM both provide qualitatively incorrect predictions. In our exper-
iments, CoSTA also demonstrates excellent generalizability in both interpolation and
extrapolation scenarios. We draw particular attention to the observation that CoSTA
generalizes significantly better than pure DDM. Overall, our experiments show that us-
ing PBM to account for known physics while allowing DDM to focus on learning what is
truly unknown, is more efficient than using DDM to model all the physics of a system.

The findings listed above indicate that CoSTA can facilitate significant advances
within a number of important applications. For example, the observation that CoSTA
successfully reduces discretization error can be utilized to accelerate predictive models,
as it enables the use of coarser discretizations for any desired level of accuracy. This
is particularly useful for fluid flow simulations where state-of-the-art PBMs often take
days to complete, even on high-end super-computers. Among the many applications that
will benefit from speeding up fluid flow simulations, we highlight flow assurance and off-
shore wind as topical examples. Additionally, digital twin applications will also benefit
greatly, as the need for real-time predictions necessitates the use of coarse discretizations
with significant discretization error. The observation that CoSTA can reduce modelling
error is also of great practical importance, e.g. for the production of aluminium (and
other metals). In such applications, the (possibly non-linear) effects of temperature on
material properties like conductivity and heat capacity, can be difficult to model using
pure PBM. Other factors may also be difficult to capture using PBM, such as the ef-
fects of impurities within the metal and heat transfer into the production environment.
CoSTA offers a way to account for these complex effects using data-driven techniques
while maintaining the knowledge contained in the presently used PBM.

The applications used as examples above are all so-called high-stakes applications,
where poor predictive modelling can result in unacceptable security risks and financial
losses. Model trustworthiness is therefore of utmost importance in these applications,
and they have consequently been dominated by pure PBM. However, we believe that
CoSTA has the potential to change this, as it offers a new level of model explainability
presently not found in DDM. Since CoSTA uses DDM techniques within a physics-based
framework, the performance of the DDM can be analyzed within this physics-based
framework. For example, we have demonstrated how the corrective source term can be
used to recover unknown model parameters, such as an unknown heating/cooling term
or an unknown conductivity profile. We have also discussed the possibility of using
techniques like symbolic regression to learn explicit formulas representing (the whole or
parts of) the physics accounted for by the corrective source term. If successful, such an
approach may further increase the accuracy and generalizability of the CoSTA model.
Additionally, we have discussed that the physicality of the corrective source term can
be used to monitor the well-behavedness of the DDM component of the full CoSTA
model. This facilitates in-built, fully automated sanity checks which can be used to
avoid potentially dangerous model behaviour. In light of these observations, we believe
that CoSTA can be a catalyst for DDM techniques to enter high-stakes applications
presently reserved for pure PBM.

5.2. Further Work

In this thesis, we have chosen to use well-known, simple PBM and DDM techniques
to demonstrate CoSTA, such that the technical details would not obscure the CoSTA
framework itself. However, this also means that the power of CoSTA has not been fully
explored in the present work. For example, we expect that the use of DDM techniques
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better suited for handling temporally correlated data will improve the performance of
CoSTA-based models. In relation to this, it is important to investigate whether or not
CoSTA maintains its edge over pure DDM when more advanced DDM techniques are
considered. Among the many possible choices of DDM techniques, we highlight recurrent
neural networks (RNNs) and temporal convolutional networks (TCNs) as being partic-
ularly interesting options, since these are designed specifically for use with temporally
correlated data. The applicability of symbolic regression to CoSTA is also an interesting
area of research.

A natural extension of the present work is to apply CoSTA to physical problems which
are qualitatively different to the unsteady heat transfer problems that have been our
primary focus. From the theoretical justification of CoSTA which we have presented, it
follows that CoSTA is a valid approach for modelling any deterministic system. However,
the ideal way of learning the corrective source term is not the same for all applications.
Indeed, as we have noted, the approach we have used for heat transfer problems is
not generally valid e.g. for systems that can develop discontinuities. From a practical
point of view, it is important to discover such pitfalls, and to find general solutions for
overcoming them. For the particular issue related to discontinuities, one possible fix is
to adopt a neural network architecture that is better suited for handling time series,
such as RNNs or TCNs.

At last, we highlight the importance of investigating the long-term stability of CoSTA-
based models. As observed in our experiments, CoSTA is, to a certain extent, influenced
by noise originating from the stochastic training process of its DNN. Currently, we have
no theoretical framework to describe how such errors accumulate in time. In the most
extreme consequence, this could result in divergent behaviour, even if the original PBM
is convergent. In terms of trustworthiness, this is a significant issue which may delay
the adoption of CoSTA in certain high-stakes applications. As rigorous frameworks
for analysing the stability of pure PBM are already well-developed, a natural place to
start is to investigate if these can be extended for use with hybrid models. For CoSTA
models utilizing DNNs, these frameworks will likely have to be coupled with functional
analysis, to take into account the influence of the DNN’s output space on the overall
behaviour of the hybrid model. In the current absence of a comprehensive theory on
the stability of CoSTA-based models, it might also be worthwhile to develop heuristics
to avoid the most severe consequences of error accumulation. One may for example
apply filtering techniques to the corrective source term, such as to avoid divergent or
otherwise unphysical behaviour. One may also explore the possibility of forcing the
model to converge to the correct steady-state solution, if the steady-state solution is
known. Overall, research into the long-term stability of CoSTA-based models would
boost the trustworthiness of these models significantly. Consequently, CoSTA’s relevance
as an enabler for DDM to enter high-stakes application would be further increased.
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A. Correcting Fluid Flow Problems Using
CoSTA

In this chapter, we study the application of CoSTA to a physical problem that is quali-
tatively different to the unsteady heat transfer problems studied in the main text. More
specifically, we now focus on applying CoSTA to fluid flow problems described by the
Euler equations. These equations are commonly used in simulations of fluid flow in
pipelines (Brown et al., 2015; Munkejord and Hammer, 2015; Log et al., 2021), and are
therefore relevant for e.g. hydrocarbon transport and carbon capture and storage. They
can be derived from the Navier–Stokes equations by neglecting second-order derivatives,
and constitute a system of so-called hyperbolic equations. Hyperbolic equations are fun-
damentally different from parabolic equations like the unsteady heat equation in the sense
that hyperbolic equations permit discontinuous solutions, while parabolic equations do
not. This makes the phenomenon of numerical diffusion much more pronounced for
hyperbolic equations. Simply put, numerical diffusion refers to artificial smoothening
that occurs in numerical solvers. For example, it can result in a discontinuity in the
true solution of a hyperbolic governing equation being replaced by a smooth transition
in the corresponding numerical solution, thereby reducing accuracy. The main goal of
this chapter is to investigate if CoSTA can alleviate the issue of numerical diffusion in
numerical solutions of hyperbolic governing equations.

A.1. Physics-Based Modelling of Fluid Flow

Here, we describe a physics-based model for fluid flow governed by the Euler equation.
Our description is, in its entirety, based on the excellent textbook by LeVeque (2002).
A brief introduction to the Euler equations and its solutions for so-called Riemann
problems is given in Section A.1.1. Subsequently, we present a method for solving the
Euler equations numerically in Section A.1.2.

A.1.1. The Euler Equations

The 1D Euler equations describe the mass balance, momentum balance and energy
balance for closed systems with constant cross-section, no source terms and no viscous
stresses, as expressed mathematically by the three equations below

∂ρ

∂t
+
∂ρv

∂x
= 0, (A.1)

∂ρv

∂t
+
∂(ρv2 + p)

∂x
= 0, (A.2)

∂E

∂t
+
∂(E + p)v

∂x
= 0. (A.3)

Here, v denotes velocity in the x-direction, p denotes pressure and E denotes total energy
per unit volume, while ρ, x and t retain their meaning from the main text. The energy
E is given as the sum of the kinetic energy 1

2ρv
2 and the internal energy ρe, where
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e denotes specific internal energy. The 1D Euler equations can also be written more
compactly as

∂U

∂t
+
∂F

∂x
= 0, (A.4)

where

U =




U1

U2

U3


 =




ρ

ρv

E


 (A.5)

is known as the vector of conserved variables and

and F (U) =



F1

F2

F3


 =




ρv
ρv2 + p

(E + p)v


 (A.6)

is known as the flux vector. The 1D Euler equations do not constitute a closed system
of equations on their own; we must also specify a so-called equation of state relating
pressure, density and temperature. For our purposes it is sufficient to consider the
simple ideal gas equation of state

p = ρcV (γ − 1)T, (A.7)

where γ = cp/cV is the ratio between the specific heat capacity at constant pressure, cp,
and the specific heat capacity at constant volume, cV .

In applications, we are often not only interested in the conserved variables U , but also
in variables such as the pressure p, the velocity v, and the temperature T . For the ideal
gas equation of state, the internal energy e can be expressed as

e = E − 1

2
v2 =

U3

U1
− 1

2

(
U2

U1

)2

(A.8)

such that the variables p, v and T can be computed from the conserved variables using
the following relations:

p = (γ − 1)ρe = (γ − 1)

(
U3 −

U2
2

U1

)
, (A.9)

v =
ρv

ρ
=
U2

U1
, (A.10)

T =
e

cV
=

1

cV

(
U3

U1
− 1

2

(
U2

U1

)2
)
. (A.11)

In the study of fluid flow governed by the 1D Euler equations, Riemann problems is
a particularly important class of problems. Riemann problems are characterized by a
piecewise constant initial condition consisting of a left state Ul and a right state Ur

separated by a discontinuity. For the 1D Euler equations, all Riemann problems can be
solved exactly, and this has two major benefits. The first benefit is that we can then
compare numerical solutions of Riemann problems to the corresponding exact solutions,
thereby establishing the accuracy of the numerical solutions. The second benefit is that
the behaviour of solutions of the 1D Euler equations for Riemann problems are well-
understood. In particular, it is known that the solution of any Riemann problem is
characterized by the presence of four constant states Ul, U

∗
l , U∗r and Ur, where Ul and
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Ur are the initial states. The states Ul and U∗l are either separated by a rarefaction
wave (a finite region where U transitions smoothly between the two states) or a shock
(a discontinuous transition between the two states). Similarly, the states Ur and U∗r are
also separated by either a rarefaction wave or a shock. Lastly, the states U∗l and U∗r
are separated by a so-called contact discontinuity across which certain properties (e.g.
ρ) are discontinuous while others (e.g. v and p) are constant. Note that if U∗l = Ul and
U∗r = Ur, we have a Riemann problem where the solution contains an isolated contact
discontinuity. This is the class of Riemann problems we will study in our numerical
experiment (cf. Section A.2).

A.1.2. The Lax–Friedrichs Method

The Lax–Friedrichs Method (LxF) is a widely used method for solving the 1D Euler
equations. It is well-renowned for its robustness, but also suffers from severe numerical
dissipation, which results in unsatisfactory accuracy in many applications. However, for
our purposes, the dissipative nature of LxF is precisely the reason we choose to use it;
since its dissipative behaviour is well-understood, we know exactly what errors to expect.
It is then easy to observe if CoSTA is successful in correcting these errors.

Using the spatial and temporal discretizations defined in Section 2.2.3, LxF can be
written on the following form:

Un+1
j = Un

j −
∆t

∆x

(
Fn
j+1/2 −Fn

j−1/2

)
, j = 1, . . . , Nj (A.12)

where

Fn
j+1/2 =

1

2

(
F (Un

j ) + F (Un
j+1)− ∆x

∆t
(Un

j+1 −Un
j )

)
, j = 1, . . . , Nj − 1, (A.13)

and Fn
j−1/2 is defined analogously for j = 2, . . . , Nj . F is known as the numerical flux

vector, and has presently been defined at all interior cell faces. To define the numerical
flux vector at the boundary cell faces j = 1/2 and j = Nj + 1/2, we use extrapolation
boundary conditions. That is, we assume Un

0 = Un
1 and Un

Nj+1 = Un
Nj

. This yields

Fn
1/2 = F (Un

1 ) and Fn
Nj+1/2 = F (Un

Nj
). (A.14)

Unlike the Implicit Euler FVM considered in Section 2.2.3, LxF is not stable for all
choices of ∆x and ∆t. Indeed, LxF is only stable if our chosen ∆x and ∆t satisfy the
so-called CFL-condition:

∆x

∆t
≥ max

j∈[1,Nj ]
{|vj |+ cj} . (A.15)

Here, c is the speed of sound. For the ideal gas equation of state, it is given as

cj =
√

(γ − 1) γcV Tj , j = 1, . . . , Nj . (A.16)

A.2. Numerical Experiment

In this section, we consider a single numerical experiment where we attempt to use
CoSTA to reduce numerical dissipation in numerical solutions of the 1D Euler equations
computed using LxF.
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A.2.1. Experimental Setup and Method

In the present experiment, we consider a series of Riemann problems where the true
solution consists of a constant left state Ul and a constant right state Ur separated by a
contact discontinuity (CD). The velocity of this CD is different for the different Riemann
problems, and we parametrize its velocity (which is equal to the velocity v of both the
left state and the right state) by a parameter α. The right and left states considered in
our experiment are given by

Ul =




ρl

ρlv

El


 =




1.4

0.14α

2.5 + 0.007α2


 , Ur =




ρr

ρrv

Er


 =




1.0

0.1α

2.5 + 0.005α2


 . (A.17)

A complete overview of our Riemann problem configurations can be found in Table A.1.
We use LxF with extrapolation boundary conditions as our baseline PBM for solving
these Riemann problems. Additionally, we use CoSTA to define a HAM model based on
LxF. More specifically, we augment Equation (A.12) with a DNN-generated corrective
source term σ̂nn such that we obtain

Un+1
j = Un

j −
∆t

∆x

(
Fn
j+1/2 −Fn

j−1/2

)
+ (σ̂n+1

nn )j , j = 1, . . . , Nj . (A.18)

Note that while σ̂nn was a vector when we considered the Implicit Euler FVM in the
main text, it is now a rank-2 tensor in R3 × RNj . We will shortly explain how we train
the DNN that generates σ̂nn in our experiments. However, as this explanation will be
somewhat lengthy, we first mention which α-values we have used to define our series of
Riemann problems.

As in the experiments of Chapter 4, we consider 22 different α-values split into three
sets, Atrain, Aval and Atest. We choose Atrain as the roots of the 16th degree Legendre
polynomial on the interval [0, 1]. Furthermore, we choose Aval = {0.25, 0.75} and Atest =
{0.1, 0.5, 0.9, 1.5}. The 16 α-values in Atrain are used for DNN training, the 2 α-values
in Aval are used for DNN validation, and the 4 α-values in Atest are used for model
evaluation (testing). Since we are considering Riemann problems, we can obtain exact
solutions Uref for all 22 α-values using e.g. the solver found in the NUMERICA library
(Toro, 1999).

We will now discuss how to train a DNN to generate the corrective source term σ̂nn

used in Equation (A.18). The first thing we must do is to establish the DNN training
targets. Given an an exact solution Uref evaluated at grid nodes x1, . . . , xNj and time
levels n and n+ 1, we define (the columns of) the ideal corrective source term as

σ̂n+1
j = (Un+1

ref )j − (Un
ref)j −

∆t

∆x

(
Fn
j+1/2 −Fn

j−1/2

)
, j = 1, . . . , Nj , (A.19)

where the numerical flux vector is also calculated using the exact solution Uref . With
the explicit formula for the ideal corrective source term given above, it is tempting to
follow our approach from Section 3.3 and train the DNN to learn the following mapping

DNNσ : R3 × RNj → R3 × RNj such that σ̂n+1
nn = σ̂n+1, (A.20)

Ũn+1
h 7→ σ̂n+1

nn

where Ũn+1
h is an approximation of Un+1 calculated using Equation (A.12) with Un

h

inserted in the place of Un. However, for the present Riemann problems, such an
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Table A.1.: Configuration of Riemann problems. All quantities given in their respective
SI unit. Quantities not listed can be computed using those that are listed.
Note that the choices of Nj and ∆t are such that the CFL condition (A.15)
is satisfied for all experiments considered herein.

Quantity Value

Left-state density, ρl 1.4
Left-state velocity, ul 0.1α
Left-state pressure, pl 1.0
Right-state density, ρr 1.0
Right-state velocity, ur 0.1α
Right-state pressure, pr 1.0
Temporal domain, [t0, tend] [0.0, 1.4]
Spatial domain, [xa, xb] [0.0, 1.0]
Initial location of CD, xcd 0.5
Specific heat capacity at constant volume, cV 2.5
Ratio of heat capacities, γ 1.4

Number of grid cells, Nj 100
Time step, ∆t 5e-3

approach will fail. The reason is simply that the relation defined in Equation (A.20)
does not generally satisfy the definition of a map (Fraleigh, 2014, page 4). The problem is
that Equation (A.20) relates predictors Ũn+1

h that are equal to each other with corrective
source terms σ̂n+1

nn that are different from each other. That is, some elements of the input
space are related to multiple elements of the output space, and this is prohibited by the
definition of a map. The key to realizing why this occurs, is to study the CFL-condition
in greater detail. In all our problems, v is constant and larger than zero, such that the
CFL-condition can be rewritten as

∆x ≥ max
j∈[1,Nj ]

{v + cj}∆t. (A.21)

We know that the speed of sound is always strictly positive, such that v is strictly smaller
than max

j∈[1,Nj ]
{v + cj}. We also know that the rarefaction wave travels at velocity v for

all problems considered here. Thus, the distance v∆t travelled by the rarefaction wave
during a time step ∆t is always strictly smaller than the grid spacing ∆x due to the
CFL condition. This means that there always exists some time level n′ ≥ 0 and some
grid node xj′ such that the following holds:

1. The true location of the contact discontinuity at time level n′ is in the interval
[xj′−1, xj′).

2. The true locations of the contact discontinuity at time levels n′ + 1 and n′ + 2 are
in the interval [xj′ , xj′+1).

For the sampled reference solutions at time levels n′, n′ + 1 and n′ + 2, the above
implies Un′

ref 6= Un′+1
ref = Un′+2

ref . This further implies that Ũn′
h 6= Ũn′+1

h = Ũn′+2
h .

Simultaneously, it also implies that Equation (A.19) yields σ̂n
′+1 6= σ̂n

′+2. In summary,
we then have Ũn′+1

h = Ũn′+2
h and σ̂n

′+1 6= σ̂n
′+2, which means that Equation (A.20)

does not define a map. Through analogous arguments, one can also show that using
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another sampled U (e.g. Un
ref) as DNN input does not remedy the problem; no relation

like the one defined in Equation (A.20), where only data from a single time level is used
as DNN input, can ever be a well-defined map for the present class of problems. For
that reason, attempts at training DNNs to approximate such relations will necessarily
be unsuccessful.

A naive attempt at fixing the problem outlined above would be to use DNN input
sampled at several time levels. While this is conceivably doable when ∆x and ∆t are
fixed and bounds of c can be determined, it is still poses some problems of its own. First
of all, if v is such that data from three time levels must be included for the DNN input
to be unique, this means we cannot straight-forwardly apply any correction for the first
time step. This error will then be propagated through to later time levels, and the DNN-
generated corrective source term will never be able to account for or correct this error.
Note also that the severity of this problem increases if data from an even larger number
of time levels must be used as DNN input. Another problem is that this approach is
highly inefficient in its utilization of data. Consider for example our test scenario where
α = 0.1. In this scenario, it will take 200 time steps for the CD to propagate a distance
of ∆x, which means that we must use data sampled at 200 time levels as DNN input for
the learning problem of the DNN to be well-posed. This is clearly an undesirable use of
computational resources.

To define a well-posed learning problem for the DNN, we turn to a manual inspection of
the true corrective source terms calculated from the training data using Equation (A.19).
It is then immediately clear that the corrective source terms are very sparse, containing
only two non-zero entries per conserved variable. One will also quickly realize that the
peak heights depend on only two factors: 1) the parameter α, and 2) whether or not the
CD moved from one grid cell to another during the previous time step. Furthermore,
we empirically find that the peak heights for a time step where the CD moved from one
grid cell to another can be calculated using the peak heights for a time step where the
CD stayed within a single grid cell, and vice versa. Thus, if we can predict the peak
heights at a single time level given α, we can reconstruct the corrective source term for
that α at all grid nodes and time levels. That is, given a single parameter α, we want to
predict a total of six peak heights. To make this prediction task easier, through careful
observation of the training data, the author was able to identify an explicit formula1

for the peaks in the first row of σ̂. For predicting the final 4 peak heights, we resort
to using a DNN. Upon collecting the unknown peak heights in a single vector denoted
ξ = [ξ1, ξ2, ξ3, ξ4], the ideal mapping for the DNN can be written as

DNNξ : R→ R4 such that ξnn = ξ. (A.22)

α 7→ ξnn

Note that we now use the subscript ξ to indicate that the DNN will be trained to predict
the corrective source term peak heights ξ, not the corrective source term σ̂ itself. Our
predicted corrective source term σ̂nn will be computed from the DNN-predicted peak
heights ξnn using the relations between σ̂ and ξ that were identified manually.

We have now finally obtained a well-defined mapping which we can train a DNN to ap-
proximate. To this end, we use the same training procedure as described in Section 4.1.
We also continue to use the same fully-connected DNN architecture with the same hy-
perparameters (cf. Table 4.4), except for two small modifications. First of all, the input
and output dimensionality must be altered to accommodate the mapping (A.22). Fur-
thermore, in an effort to reduce overfitting we have reduced the layer width to 25. We

1It’s precise mathematical form does not add value to the present discussion, so it is not written here.
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also follow the procedure outlined in Section 4.1 for model evaluation, with the exception
that we do not include any pure DDM in the present experiment.

A.2.2. Results

In Figure A.1, we present the temporal development of the `2-errors
∥∥Un

p −Un
ref

∥∥
2
/‖Un

ref‖2
and ‖Un

h −Un
ref‖2/‖U

n
ref‖2 of the PBM predictions Un

p and the HAM predictions Un
h .

From the figure, it is clear that the HAM drastically outperforms PBM. In fact, the use
of the DNN-generated corrective source term in HAM has lowered the relative `2-error
by at least two orders of magnitude in all interpolation scenarios when comparing to
stand-alone PBM. The performance difference is particularly clear for α = 0.5, which
lies in the middle of the domain from which the α-values in Atrain were drawn. The
accuracy of HAM is slightly degraded in the extrapolation scenario α = 1.5, but its
accuracy is still far superior to that of the PBM.

The reader is made aware that the error spikes in Figure A.1d are caused by rounding
errors resulting in erroneous predictions of the location of the contact discontinuity,
which in turn cause the corrective source term to be applied at the wrong locations. In
cases where the exact location of the contact discontinuity is precisely at a grid node,
LxF must still define a state at the grid node, and rounding error can influence if LxF
chooses the right state or the left state at the grid node. This also applies to the exact
solver in the NUMERICA library, and the large error spikes result from NUMERICA
and LxF being influenced differently by the rounding errors, thereby choosing different
states at the location of the CD.

In Figures A.2–A.5, we display the pressure p, velocity v, temperature T and density
ρ as predicted by PBM and HAM at the final time tend = 1.4 s. From the T - and
ρ-profiles, one can observe that the prominent numerical diffusion of LxF has been
significantly reduced by the CoSTA-based HAM model. Indeed, the HAM-predicted T -
and ρ-profiles appear truly discontinuous, while significant smoothening is present in the
corresponding PBM-predicted profiles. Thus, HAM is successful in reducing numerical
diffusion. However, as can be seen from the p- and v-profiles, the HAM predictions
are more noisy than the PBM predictions. While the scaling of the vertical axis makes
the noise look more prominent than it really is, it can still be of significance. As the
long-term stability of CoSTA-based models has yet to be guaranteed, as discussed in
the main text, one cannot rule out that this noise will be amplified over time, thereby
diminishing predictive accuracy over large temporal domains. Another issue is that the
noise may result in the predicted state being unphysical. In certain applications, even
solutions that are only marginally unphysical (meaning they are very similar to physical
solutions) may present serious problems. For example, if the numerical solver is coupled
with a thermodynamics library, the thermodynamics library may fail when presented
with any unphysical prediction, regardless of the severity of the unphysicality. This was
not a problem we had to consider for unsteady heat transfer, as no single temperature
profile can be deemed unphysical and thereby crash a heat transfer simulation.

A.2.3. Discussion

The experimental results presented here show that CoSTA can be used to reduce nu-
merical dissipation in numerical solutions of the 1D Euler equations. More broadly, the
results also show that CoSTA is applicable to systems with hyperbolic governing equa-
tions. This drastically widens the potential impact of CoSTA, as many important PDEs
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(d) α = 1.5,

Figure A.1.: Euler equations: Relative `2-errors for all α ∈ Atest (—PBM, —HAM).

and PDE systems are hyperbolic, including the wave equation and the inviscid Burgers’
equation in addition to the Euler equations studied herein.

With the above said, it is clear that the particular example studied in this chapter has
limited value in real-world applications, because we have restricted ourselves to study
a problem for which the exact solution is readily available. The DNN training routine
used here is purely based on empirical observations of the training set for Riemann
problems with isolated CDs. Therefore, it is unclear to what extent similar procedures
would be successful in more complex scenarios. In particular, we do not presently know
how interaction between the contact discontinuity and any possible shocks or rarefaction
waves will affect the nature of the corrective source term. If corrections add linearly, a
good corrective model can possibly be developed by studying rarefaction waves, contact
discontinuities and shocks independently, and then later combining the results into a
more general model. However, if they prove to be non-linear, a different approach must
probably be taken. It also remains to investigate how the presence of non-conservative
terms will affect the dynamics of CoSTA-based HAM models for the Euler equations.
Still, corrective source terms defined using Equation (A.19) are always uniquely defined
by x, t and α (since Uref is uniquely defined by x, t and α). Thus, an appropriate DNN
mapping always exists – the difficult part is finding one that can be learnt efficiently.
In that respect, the experiment presented in this chapter conveniently illustrates some
of the challenges one might face when developing a CoSTA-based HAM model. It also
motivates further research concerning the applicability of CoSTA to hyperbolic problems.
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Figure A.2.: Euler equations: Predicted pressure, velocity, temperature and density pro-
files at the final time level for α = 0.1 (◦ PBM, � HAM).

0.00 0.25 0.50 0.75 1.00
x (m)

2

1

0

1

2

p 
(P

a)

1e 5+1

0.00 0.25 0.50 0.75 1.00
x (m)

0.05000

0.05001

0.05002

0.05003

0.05004

v 
(m

/s
)

0.00 0.25 0.50 0.75 1.00
x (m)

0.7

0.8

0.9

1.0

T 
(°

C
)

0.00 0.25 0.50 0.75 1.00
x (m)

1.0

1.1

1.2

1.3

1.4

 (k
g/

m
3 )

Figure A.3.: Euler equations: Predicted pressure, velocity, temperature and density pro-
files at the final time level for α = 0.5 (◦ PBM, � HAM).
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Figure A.4.: Euler equations: Predicted pressure, velocity, temperature and density pro-
files at the final time level for α = 0.9 (◦ PBM, � HAM).
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Figure A.5.: Euler equations: Predicted pressure, velocity, temperature and density pro-
files at the final time level for α = 1.5 (◦ PBM, � HAM).
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B. Correcting Boundary Conditions Using
CoSTA

The purpose of this chapter is to show how to correct the boundary conditions (BCs)
of the one-dimensional (1D) Implicit Euler Finite Volume Method (FVM) using the
Corrective Source Term Approach (CoSTA).1 As shown in Section 2.2.3, the 1D Implicit
Euler FVM can be written on the form

AT n+1 = b (T n) , (B.1)

where T = [T1, . . . , TNj ] describes the temperature at all Nj interior grid nodes (which
we denote x1, . . . , xNj ), and the superscripts denote the time level at which the grid
node temperatures are evaluated. Furthermore, A is a tridiagonal matrix whose non-
zero elements are

aj,j = 1 + κ
∆t

∆x

(
1

∆xj+1/2
+

1

∆xj−1/2

)
, j = 1, . . . , Nj ,

aj,j+1 = −κ∆t

∆x

1

∆xj+1/2
, j = 1, . . . , Nj − 1,

aj−1,j = −κ∆t

∆x

1

∆xj−1/2
, j = 2, . . . , Nj ,

and b is a vector whose components are

b1 = Tn1 + ∆tσn+1
1 + κ

∆t

∆x

1

∆x1/2
Tn+1
a ,

bj = Tnj + ∆tσn+1
j , j = 2, . . . , Nj − 1,

bNj = TnNj
+ ∆tσn+1

Nj
+ κ

∆t

∆x

1

∆xNj+1/2
Tn+1
b .

Note that the BCs Ta and Tb are assumed known in the derivation of the FVM (cf. Sec-
tion 2.2.3) and therefore appear in the right-hand side vector b. Note also that the vector
of free variables, T n+1, is only defined for interior grid nodes. Any source term designed
to correct T n+1 can therefore only correct interior temperatures, not boundary tem-
peratures. We fix this issue by increasing the dimensionality of the temperature vector
such that it also describes boundary temperatures. We define the extended temperature
vector as T = [T0, T1, . . . , TNj , TNj+1], where T0 = T (x0) and TNj+1 = T (xNj+1) are the
boundary temperatures, which we now consider as free variables. Furthermore, let A be

1The procedure for correcting BCs in higher-dimensional problems is analogous to the one described
here.
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an Nj + 2×Nj + 2-dimensional tridiagonal matrix with non-zero elements

a0,0 = 1

a1,0 = −κ∆t

∆x

1

∆x1/2

aj,j = 1 + κ
∆t

∆x

(
1

∆xj+1/2
+

1

∆xj−1/2

)
, j = 1, . . . , Nj ,

aj,j+1 = −κ∆t

∆x

1

∆xj+1/2
, j = 1, . . . , Nj − 1,

aj−1,j = −κ∆t

∆x

1

∆xj−1/2
, j = 2, . . . , Nj ,

aNj ,Nj+1 = −κ∆t

∆x

1

∆xNj+1/2
,

aNj+1,Nj+1 = 1,

and let b be an Nj + 2-dimensional vector with components

b0 = Tn+1
a

b1 = Tn1 + ∆tσn+1
1 ,

bj = Tnj + ∆tσn+1
j , j = 2, . . . , Nj − 1,

bNj
= TnNj

+ ∆tσn+1
Nj

bNj+1 = Tn+1
b .

Note that we have used zero-indexing in the definitions of A and b, such that any element
in A or b can be found at the same index in A or b (with the exceptions of b1 and bNj ).
With these definitions of A, T and b,

AT n+1 = b (T n) (B.2)

is an equivalent formulation of Equation B.1, in the sense that the middle Nj components
of T n+1 are equal to the components of T n+1 if and only if the middle Nj components
of T n are equal to the components of T n.

The FVM formulation (B.2) is never used in pure physics-based modelling because it is
less computationally efficient than the formulation (B.1). However, from the perspective
of CoSTA, the fact that the boundary temperatures are considered free variables in
the formulation (B.2) is a major advantage, since we can then correct these boundary
temperatures.

Suppose now that T ref denotes the true solution Tref of a heat transfer problem eval-
uated at all grid nodes, including the grid nodes at the boundaries. Analogously to
the regular corrective source term definition in Equation (3.14), we can then define an
extended corrective source term as

σ̂n+1 = AT n+1
ref − b (T nref) . (B.3)

We then get a modified system

AT n+1
h = b (T nh) + σ̂n+1, (B.4)

which is analogous to the modified system (3.15). The advantage of the definitions
presented here is that the components σ̂0 and σ̂Nj+1 of σ̂ allow us to correct the boundary
temperatures if the BCs Ta and Tb prescribed by the original PBM are incorrect.
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C. A Note on Conducting Grid Refinement
Studies with Data-Driven or Hybrid
Models

When grid refinement studies are to be performed for data-driven or hybrid models, it is
vital to consider that these models require training before they can be deployed. Addi-
tionally, it is not guaranteed that any individual model can be used to make predictions
for several discretizations unless specifically trained to do so. This stands in contrast to
PBM, where the discretization can be altered without having to adjust the model in any
other way. It also raises some fundamental questions regarding how a grid refinement
study should be performed for models with data-driven components. We frame these
questions in the context of DDM and HAM models based on DNNs, as that is the kind
of models we have studied in detail in the present work. The questions are:

Q1 Are the DNN’s architecture and training routine defined such that the DNN can
be used with different discretizations?

Q2 If the answer to Q1 is yes: Should the grid refinement study use the same or
different discretizations than those seen during training?

Q3 Should a unique set of hyperparameters be used for each discretization?

These are all open questions, and we do not claim to have perfect answers to them.
However, they must be considered before any grid refinement study with DNN-based
DDM or HAM models can be conducted. Below, we discuss our thoughts on these
questions.

First, we observe that the answer to Q1 is specific to the DNN architecture and
training routine used in the particular model that is studied. In the present work, the
studied DDM and HAM models have utilized DNNs with a fully-connected architecture
(cf. Section 4.1.4). For such an architecture, the number of parameters belonging to each
neuron in the first hidden layer depends on the dimensionality of the input layer. For
that reason, the DDM and HAM models we have considered all require input at a fixed
resolution. It is therefore not straightforward to use them in a grid refinement study.
Generally, one is then left with two options: 1) Train one model instance per resolution,
with each model instance having input and output layers that match its resolution 2)
Train one model instance whose input and output layers match the finest resolution,
and upscale the coarse data to this resolution for use with the DNN.1 In Section 4.5,
we went with option 1), but we do not really have any theoretical reason for choosing
one of these options over the other; they are both valid approaches worthy of greater
consideration than could be given within the scope of the present work. However, it
should be noted that option 1) may not be practically feasible for models which are
computationally expensive to train.

1Upscaling can e.g. be performed using various interpolation techniques. If the DNN’s neurons do
not have biases, it is also possible to pad or dilute the input vectors with zeroes to increase their
dimensionality.
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It is worth noting that there do exist DNNs for which the answer to the first ques-
tion is undoubtedly “yes”. So-called convolutional layers (see (Goodfellow et al., 2016,
chapter 9) for an introduction) operate independently of their inputs’ dimensionality.
Thus, any DDM or hybrid model based on a DNN with only convolutional layers will be
compatible with multiple discretizations of the spatial domain. By compatible, we mean
that these models can operate on data sampled using different discretizations. Whether
or not their learning will generalize to different discretizations than those used to gen-
erate the data can only be determined through empiric investigations. Still, one would
at minimum expect the model to work for any discretization used to define its training
data. Whether or not it would generalize to other discretizations is an open question
that is closely related to Q2 in the list above.

The answer to Q2 depends greatly on what it is we want to achieve with the grid
refinement study. If we want the DNN to work for data sampled at varying resolutions,
it could be a good idea to use different discretizations in the grid refinement study than
during training. However, this would make the study much “harder” for the DNN,
compared to using the same discretizations. Therefore, if we are not interested in this
kind of generalization, it is probably best to use the same discretizations. Otherwise, we
would just be diminishing the model’s accuracy for no good reason.

Finally, we consider Q3, which is clearly an important question for us, given that we
opted to train individual model instances for each resolution in Section 4.5. Ideally, we
would want each model instance to be perfectly tuned for the discretization used to gen-
erate the data it operates on. However, performing full parameter tuning processes for
all discretizations considered would be prohibitly expensive in terms of computational
cost. Furthermore, we do not have any heuristic for adjusting DNN hyperparameters
to accommodate different discretizations either. For these reasons, we simply used the
same hyperparameters for all discretizations. More specifically, we used the same hyper-
parameters as in all our other experiments: the hyperparameters of Table 4.4. Note that
we did not make this choice because we have reason to believe it is the best choice, but
rather because we could not find any better option. If grid refinement studies are going
to be a staple analysis method for data-driven or hybrid models, more consideration
should be given to questions Q1–Q3 than the scope of the present work permits.

121



D. Recovering an Unknown Wave Speed
Using the CoSTA Framework

So far, we have only discussed how to recover unknown properties of the heat equation
using DNN-generated corrective source terms. However, the main points of the discussion
in Section 4.6 hold for other physical systems as well. This includes systems whose
governing equation is mathematically equivalent to the heat equation (cf. Section 2.2),
and systems with completely different governing equations. Here, we briefly illustrate
how to recover unknown properties of systems governed by the wave equation.

The wave equation is an important equation in classical physics governing the prop-
agation of both mechanical (e.g. sound or other vibrations) and electromagnetic (e.g.
light) waves (Griffiths, 2017, chapter 9). For a general variable u, it reads

∂2u

∂t2
= c2∇2u, (D.1)

where c is the wave speed. Suppose now that the true wave speed c is approximated by
c̃ = c− εc. The true wave equation can then be written as

∂2u

∂t2
= c2∇2u = (c̃+ εc)

2∇2u = c̃2∇2u+ (2c̃εc + ε2c)∇2u, (D.2)

while the wave equation of the model based on the approximate wave speed c̃ is

∂2ũ

∂t2
= c̃2∇2ũ, (D.3)

where ũ is the model’s approximation of the true solution u. Comparing the latter
equation to Equation (3.3), we have ÑΩ = ∂2/∂t2 − c̃2∇2 and f̃ = 0. Equation (D.2)
can then be rewritten as

∂2u

∂t2
− c̃2∇2u = ÑΩu = (2c̃εc + ε2c)∇2u, (D.4)

Upon comparison with Equation (3.5), we can then conclude that the corrective source
term is

σ̂ = (2c̃εc + ε2c)∇2u. (D.5)

If the incorrect modelling of c is the model’s primary source of error, we can make the
replacements εc → ε̂c and u→ ˆ̃u in the equation above to obtain

σ̂nn ≈ (2c̃ε̂c + ε̂2c)∇2 ˆ̃u. (D.6)

Here, σ̂nn is the predicted corrective source term, ˆ̃u is the corrected model’s approxima-
tion of u, and ε̂c is the predicted error in the modelling of c. After solving the above for
ε̂c, we can (approximately) recover the true wave speed as c ≈ ĉ = c̃+ ε̂c from σ̂nn.

We observe that Equation (D.6) generally has two solutions for ε̂c. Some physical
intuition may therefore be required for choosing which solution to use when defining the
corrected wave speed ĉ = c̃+ ε̂c. However, in scenarios where only one solution yields a
physically viable ĉ, the choice is obvious.
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E. Additional Results Regarding Predictive
Uncertainty

In Section 4.4, we provided some visualizations of the inherent uncertainty of the DDM
and CoSTA-based HAM models used in the experiments described in Section 4.2.2.
These visualizations (i.e. Figures 4.43 and 4.44) contain coloured areas whose sizes cor-
respond to standard deviations of the models’ predictions for Solutions P1 and P3. The
analogous visualization for Solutions P2 and P4 are shown in Figures E.1 and E.2. As
claimed in Section 4.4, the areas supposed to visualize the uncertainty of the HAM model
are so small that they are not visible in these figures. For this reason, they are not really
successful as visualizations, and that is why they are included here rather than in the
main text.
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Figure E.1.: Solution P2: Visualization of the inherent uncertainty of DDM and HAM
models, where a large coloured area corresponds to a large model uncer-
tainty. Blue area corresponds to uncertainty of DDM, and green area (not
visible) corresponds to uncertainty of HAM. The dashed line represents the
exact solution P2.
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E. Additional Results Regarding Predictive Uncertainty
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Figure E.2.: Solution P4: Visualization of the inherent uncertainty of DDM and HAM
models, where a large coloured area corresponds to a large model uncer-
tainty. Blue area corresponds to uncertainty of DDM, and green area (not
visible) corresponds to uncertainty of HAM. The dashed line represents the
exact solution P4.
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F. Estimating the Relative Impact of
Modelling Error and Discretization Error
in 1D Experiments

For the experiments considered in Section 4.2.2, the PBM is affected by both discretiza-
tion error and modelling error. Here, we aim to determine the relative impact of these
two error sources. (For completeness, similar analyses for the experiments considered
in Sections 4.2.3, 4.3.1 and 4.3.2 would have been desirable, but such analyses were not
conducted due to time constraints.)

For a given manufactured solution Tref , we compute the modelling error Emod of a
PBM with P = 0 as

Emod = ‖Tp(P = 0, tend)− Tref(tend)‖2/‖Tref(tend)‖2, (F.1)

where Tp and Tref must be defined on a very fine grid to reduce the influence of the
discretization error. In our calculations of Emod, we use Nj = 1000 and Nt = 50000,
which is a very fine discretization compared to the discretization with Nj = 20 and
Nt = 5000 used in Section 4.2.2.

We compute the discretization error Ediscr as

Ediscr = ‖Tp(P, tend)− Tref(tend)‖2/‖Tref(tend)‖2, (F.2)

where we use same discretization as in Section 4.2.2, and where the true value of P is
used in the PBM.

The modelling and discretization errors of Solutions P1, P2, P3 and P4 (cf. Table 4.1)
are compared in Table F.1. We observe that the modelling error is dominant for all four
solutions.

Table F.1.: Comparison of modelling error and discretization error for the solutions con-
sidered in the experiments of Section 4.2.2.

Solution Emod Ediscr
Emod

Emod+Ediscr

Ediscr
Emod+Ediscr

P1 3.48e-2 6.41e-3 0.8445 0.1555
P2 1.76e0 1.19e-2 0.9933 0.0067
P3 6.44e-2 4.61e-4 0.9929 0.0071
P4 6.20e-1 1.26e-2 0.9800 0.0200
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G. Technical Details of the 2D Implicit
Euler FVM

In the main text, we did not define the temperature vector T , the coefficient matrix A
or the right-hand-side vector b of the 2D Implicit Euler FVM on matrix form (Equa-
tion (2.21)). Due to space concerns, their definitions are instead given here. From a geo-
metric perspective, the matrix A in Equation (2.21) can be viewed as a block-tridiagonal
matrix. Then, both A and its main-diagonal blocks become tridiagonal matrices similar
to A in Equation (2.18). Moreover, the sub- and super-diagonal blocks are then diago-
nal matrices. From this same perspective, both b in Equation (2.21) and its constituent
blocks take the form of b in Equation (2.18). However, these block-formulations are not
particularly useful for implementing the 2D Implicit Euler FVM. We therefore define A
and b algorithmically, as one would do when writing a computer implementation of the
FVM. A is defined in Algorithm 3, while b is defined in Algorithm 4. Note that we use
% to denote the modulo operator, and that we write “//” to denote line comments.

Algorithm 3: Algorithm for defining A in Equation (2.21).

Initialize A as an NjNi ×NjNi matrix of zeros.
for j = 1, 2, . . . , NjNi do

for i = 1, 2, . . . , NjNi do
// Define main diagonal of A
if i = j then

aj,i ← 1 + 2κ∆t
∆x2 + 2κ∆t

∆y2

if i ≤ Nj or i > Nj(Ni − 1) then

aj,i ← aj,i + κ∆t
∆y2

end
if j%Nj = 0 or j%Nj = 1 then

aj,i ← aj,i + κ∆t
∆x2

end

end
// Define 1st super-diagonal and sub-diagonal of A
if i = j + 1 or i = j − 1 then

if max{i, j}%Nj 6= 1 then

aj,i ← − κ∆t
∆x2

end

end
// Define Njth super-diagonal and sub-diagonal of A
if i = j +Nj or i = j −Nj then

aj,i ← − κ∆t
∆y2

end

end

end
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G. Technical Details of the 2D Implicit Euler FVM

Algorithm 4: Algorithm for defining b in Equation (2.21).

Initialize b as an NjNi-component vector of zeros.
for j = 1, 2, . . . , NjNi do

bj ← T n+1
j + ∆tσn+1

j

// Account for left BC.
if j%Nj = 1 then

bj ← bj + 2κ∆t
∆x2 T

n+1
a

end
// Account for right BC.
if j%Nj = 0 then

bj ← bj + 2κ∆t
∆x2 T

n+1
b

end
// Account for bottom BC.
if j ≤ Nj then

bj ← bj + 2κ∆t
∆y2 T

n+1
c

end
// Account for top BC.
if j > Nj(Ni + 1) then

bj ← bj + 2κ∆t
∆y2 T

n+1
d

end

end

Finally, we must define the temperature vector T . Generally, the temperature Tj,i at
the grid node (xj , yi) can be found at index i ·Nj + j in T .
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H. Tables in Landscape Format

Due to their large width, a very small font size was required for Tables 4.1 and 4.2 to
fit the page. When reading on screen, this is not an issue, since it is then possible to
zoom in to make the writing larger. However, it may pose a significant problem when
reading in print. To the benefit of readers with a printed copy of this thesis, duplicates
of Tables 4.1 and 4.2 in landscape format are provided below. The use of landscape
mode allows for a larger font size, which improves readability on paper. Note that tables
in landscape mode are difficult to read on fixed screens, and generally inhibit reading
flow regardless of medium. These are the reasons why the tables were presented using
the standard portrait format in the main text.
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H. Tables in Landscape Format
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