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Abstract 
In order to meet the ever more inevitable challenges of climate change, the 

global transportation sector will need to undergo great changes in the 

following decades. Electrification of road vehicles is seen as an essential part 

of the solution, with battery technology being a key enabler of the shift 

towards a more sustainable transport sector. Following ambitious mitigation 

policies and technological advancements, the number of electrical vehicles on 

the road has grown rapidly over the last decade and is predicted to accelerate 

its steep growth over the next decade. This development requires an 

increasement of battery production capacity and a focus on the energy usage 

and emissions from the manufacturing process.  

 

To avoid problem-shifting and to foster robust decisions on how production 

processes can be designed and improved, a life cycle perspective is needed, as 

well as the resolution, uncertainty and variance management that engineering 

models can bring to the table. The aim of this thesis is thus to combine the 

research strands of Life Cycle Assessment (LCA) and process modeling into 

a coupled battery production and Life Cycle Inventory (LCI) model. The 

development, hereunder programming, of this coupled model make up the 

largest part of the thesis work.   

 

The coupled model consists of a Python (3.9.2) based interface which connects 

an LCA model with a Python (3.7) based cell production model. A generalized 

and flexible battery production process model developed by Jinasena et al. 

(2021) has been coupled with the LCI of Ellingsen et al. (2014) for the 

materials and energy use for lithium-ion battery (LiB) manufacturing. The 
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resulting coupled model can semi-automatically incorporate the production 

information of battery production into the LCI for various input requirements. 

 

The Python interface thus eliminates the user’s need to use Microsoft Excel to 

structure the LCI, and allows the possibility of running multiple scenarios in 

a much more streamlined way. This approach has the potential to significantly 

reduce both the workload and time required to go from battery production data 

on energy and material consumption to a complete LCA. In addition, the 

flexibility of the program would allow the LCA to be adjusted and applied for 

several other products and services. 
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Sammendrag  
I et forsøk på å overkomme de stadig mer uunngåelige utfordringene som følge 

av klimaforandringene, må den globale transportsektoren gjennomgå store 

endringer de neste tiårene. Elektrifisering av kjøretøy blir sett på som en 

essensiell del av løsningen, hvor batteriteknologi spiller en sentral rolle i 

overgangen til en mer bærekraftig transportsektor. Ved hjelp av en ambisiøs 

politikk og teknologiske fremskritt har antallet elektriske kjøretøy på veiene 

økt betraktelig i løpet av det siste tiåret, og er forventet å øke i et enda raskere 

tempo over det neste tiåret. Denne utviklingen krever en økning av 

batteriproduksjonskapasiteten, og et fokus på energiforbruk og utslipp fra 

produksjonsprosessen. 

 

For å unngå å en problemforskyvning og for å fatte robuste vedtak for 

utviklingen og forbedringen av produksjonsprosesser, må man ha et 

livssyklusperspektiv, i tillegg til detaljnivået og usikkerhets- og 

endringshåndteringen man kan få ved å introdusere engineering-modeller. 

Målet med denne oppgaven er derfor å kombinere forskningsstrømmene i 

livssyklusanalyse og prosessmodellering til en sammenkoblet produksjons- og 

livssyklusinventarmodell. Utviklingen, herunder programmeringen, av den 

sammenkoblede modellen, utgjør den største delen av dette masterprosjektet. 

 

Den sammenkoblede modellen består av et Python (3.9.2)-basert grensesnitt, 

som kobler sammen en livssyklusmodell med en Python (3.7)-basert 

celleproduksjonsmodell. En generalisert og fleksibel batteriproduksjons-

prosessmodell utviklet av Jinasena et al. (2021) har blitt koblet sammen med 

livssyklusinventaret fra Ellingsen et al. (2014) for material- og energiforbruket 

for å produsere litium-ion-batteri. Den sammenkoblede modellen kan delvis 
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automatisk inkorporere produksjonsinformasjonen for batteriproduksjonen i 

livssyklusinventaret, basert på forskjellige kriterier. 

 

Python-grensesnittet eliminerer dermed brukerens behov for å bruke 

Microsoft Excel og for å strukturere livssyklusinventaret, og gjør at man kan 

kjøre flere ulike scenarioer mye mer strømlinjeformet. Denne 

fremgangsmåten har muligheten til å vesentlig redusere både arbeidsmengden 

og tidsbruken som er nødvendig for å gå fra å ha data på energi- og 

materialforbruk for batteriproduksjonen, til å ha en ferdig livssyklusanalyse. I 

tillegg kan programmets fleksibilitet gjøre at man kan tilpasse og bruke 

livssyklusanalyse for andre produkt og tjenester.  
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1 Introduction  
 

1.1 Background  
As the threats of climate change become more manifest in terms of both 

natural disasters and policy measures, the transport sector enters a critical 

phase. Transportation is responsible for about 24% of direct CO2 emissions 

from fuel combustion globally, with road vehicles accounting for nearly three-

quarters of the emissions (IEA, 2020c). The International Energy Agency has 

estimated that the transportation sector has the potential to reduce 18% of 

global greenhouse gas emissions by 2050 (IEA, 2019, as cited by Cerdas, 

2020). and electrification of vehicles is seen to play a key role in the transition 

to a more sustainable transport sector. Entering commercial markets around 

2010, the number of electrical vehicles (EVs) on the road has rapidly grown 

(IEA, 2020b). And the electrification of the transport sector is not expected to 

slow down soon, rather, the number of EVs is predicted to increase with more 

than 30 times of today’s amount by 2030 (ibid), and electrification of vehicles 

is seen to play a key role in the transition to a more sustainable transport sector. 

Entering commercial markets around 2010, the number of electrical vehicles 

(EVs) on the road has rapidly grown (IEA, 2020b). And the electrification of 

the transport sector is not expected to slow down soon, rather, the number of 

EVs is predicted to increase with more than 30 times of today’s amount by 

2030 (ibid).  

 

Electrifying the transport sector poses several challenges which needs to be 

addressed, avoiding emission-related problem shifting being one of them. For 

example, while EVs have no tailpipe emissions, the production phase exhibits 

higher Global Warming Potential (GWP) impacts than conventional vehicles 
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(Hawkins et al., 2013). Thus, when analyzing the environmental trade-offs of 

changing from conventional, fossil-fuel vehicles to EVs, a life cycle 

perspective is needed (Ellingsen et al., 2017), and life cycle assessment (LCA) 

is a fruitful approach herein (Nealer & Hendrickson, 2015). LCA also has the 

potential of providing environmental insights that can be valuable in 

improving EV production processes generally and for battery production 

processes more specifically (Cerdas, 2020).  

 

1.2 Literature review  
Following the rapid growth of global use of EVs, a considerable amount of 

LCAs of EV batteries have been performed over the past decade. Studies have 

estimated the battery system of EVs to account for 35–44% of the GWP caused 

during the production stage (Volkswagen, 2012; Hawkins et al., 2013; 

Ellingsen et al., 2014; Dunn et al., 2015; Cerdas, Titscher, et al., 2018; as cited 

by Cerdas, 2020).  Lithium-ion batteries are the most prevalent among EV 

batteries today, and is expected to dominate the EV battery market for the next 

decade (IEA, 2020a).  

 

However, there are several limitations in the current studies, which results in 

considerable disparities in the estimated GWP from EV battery production 

processes. Some of the biggest challenges is access to data; current LCA 

methodologies’ ineptness in dealing with the highly complex nature of battery 

production processes; and trade-offs between quality and resource-use of 

current practices, especially in the industry.  

 

Therefore, existing LCA studies of the production of lithium-ion batteries 

show a high variance of GWP emissions. Within what can be characterized as 

the main base studies of the field, the results range from 1,1 to 424 kg CO2-eq 
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per kWh (Jinasena, 2021), the two extremes being Notter et al. (2010) 

estimating 1,14 kg CO2-eq/kWh in their study on Lithium-ion Manganese 

Oxide (LMO) batteries for Battery Electric Vehicles (BEV), and Ellingsen et 

al. (2014) suggesting a range of 107–424 kg CO2-eq/kWh for Nickel 

Manganese Cobalt (NMO) BEV batteries. When reviewing recent LCA and 

modeling studies on lithium-ion battery production, Jinasena et al. (2021) find 

high variances between the studies’ reported battery manufacturing energy, 

both in terms of energy usage; percentage of total GWP emissions, and battery 

GWP, despite the fact that the LCA inventory values were based on the same 

set of base studies. The widely different results stem from the fact that most 

studies use general data for battery production systems that differ 

fundamentally, e.g., in terms of location of the battery production factory; and 

the type, energy and chemistry of the battery cells being produced (Jinasena, 

2021).  

 

There are, however, some studies that report on energy consumption for 

different process steps by using primary data from actual battery production 

plants (Schünemann, 2015; Pettinger & Dong, 2016; Yuan et al., 2017; Dai et 

al., 2019; Thomitzek et al., 2019; Sun et al., 2020). Summarizing the overall 

findings of these studies, Jinasena et al. (2021) argues that these data generally 

show that energy usage decreases when the plant capacity increases. 

Moreover, the authors argue that difference between these data and data from 

the above-mentioned LCA studies probably results from the fact that mass 

production plants optimize for profit and lowering energy usage, while pilot 

scale plant facilities that are designed for research optimize for product 

quality. 
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In order to deal with such variations and allow for effectively comparing of 

different production options (e.g., for different cell material and chemistry 

options), there is a need for process models that are flexible to key factors of 

general production processes (Jinasena, 2021).  

 

To date, few modeling studies have been conducted, and for the most part, 

these are developed for individual process steps, and mostly focused on quality 

parameters and performance, neglecting the GWP of the process (see for 

example Meyer et al., 2018; Schreiner et al., 2019; Mayer et al., 2020). The 

limited numbers of studies presenting model structures of material and energy 

flow modeling (see for example Herrmann & Thiede, 2009; Schönemann et 

al., 2019) are inadequate to use for general cases and not possible to integrate 

with LCA models (Jinasena, 2021).  

 

A promising exception from these limitations, is the multi-level modeling 

approach of Thomitzek et al. (2018) which can be used to predict the impact 

of different distributions of product and process parameter deviations in 

battery production processes. Building upon the work of Thomitzek et al. 

(2018), Jinasena et al. (2021) introduces an industrial scale process model that 

determines the material and energy flows of a general lithium-ion battery cell 

manufacturing, which is flexible for different battery chemistries, types, 

throughputs and process technologies, and which allows for integration with 

LCA models.  

 

1.3 Objective of the thesis  
Drawing upon the research strand of LCA on one hand, and process modeling 

on the other hand, this aim of the study at hand is to couple these approaches 



 

 5 

to create a model that semi-automatically produces LCIs based upon inputs 

from a battery-production process model and a set of user choices.  

 

The goal is to make use of the process model made by Jinasena et al. (2021) 

and convert the output of such process models into a format that can be useful 

in the context of LCA. Process models often do not keep track of production 

aspects of relevance for LCA, such as composition of electrolytes (i.e., how 

much material is used in 100g of electrolytes). Moreover, part of the work is 

to convert the list of material composition and energy consumption from 

Jinasena et al. (2021) into a matrix form that is in the right format for LCA, 

and matching the materials with the background processes. 

 

The thesis is structured in the following way: Chapter 2 provides an overview 

of relevant EV battery production processes and the engineering modeling 

approach the thesis builds upon. In chapter 3, the methodological framework 

LCA is presented. Here, a general introduction to LCA is given before the 

argument is made that bridging LCA and engineering models may yield 

several benefits for considering energy use and GHG emissions from EV 

battery production. Then, the development of the coupled model is described 

in chapter 4. First, the needs, objectives and requirements of the model is 

synthesized, before the model in itself is presented. Utilized software and the 

programming process are also described in this chapter, before moving on to 

an example application of the model. Chapter 5 concludes the thesis by 

summarizing the work and the capabilities of the model, as well as limitations 

and venues for further work.  
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2 Battery production and modelling 
This chapter provides an overview of battery production processes of 

relevance to this thesis and briefly describes battery production modelling. 

 

2.1 Battery production 
The production of a battery cell contains a lot of steps, some of which are 

dependent on the type of battery, e.g., if it is a prismatic cell, coin cell, or a 

cylindrical cell. In this chapter, a generalized production chain is shown and 

the necessary steps can sometimes be dependent on the type of battery cell. As 

shown in Figure 1, the battery cell production process chain can be divided 

into three main phases, namely electrode manufacturing, cell assembly, and 

cell finishing. This is a somewhat aggregated version, as a real battery 

production process usually can be divided into even more separate processes.  

 
Figure 1 A block diagram of a generalized battery cell production line (Jinasena et al., 2021). 

 

The first phase, electrode manufacturing, starts off with mixing the active 

material, solvent, binders, and conductive additives together to a slurry. This 

slurry is then coated on to thin metal sheets called current collectors. The 

material commonly used for the current collectors are copper for the negative 
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electrode and aluminum for the positive electrode. In the next step, the coated 

electrodes are dried by being fed through special ovens with different 

temperature zones, as shown in Figure 2. This is to adhere the coating to the 

current collectors in a controlled fashion, while achieving a middle ground 

between mechanical strength and flexibility. In addition, the solvent used in 

the slurry is removed from the coating during this step. When the coating is 

fixed, the now coated current collectors are calendered to compress the coating 

layer to carefully calculated densities. This phase ends by the slitting process, 

where the electrodes are slitted to their correct width. 

 

 
Figure 2 A four-stage convection heat oven for electrode drying (Bryntesen et al., 2021). 

 

In the second phase, which is the cell assembly phase, the first step is to make 

a winding if it is a prismatic, cylindrical or coin cell, or a stack if it is a pouch 

cell. This winding or stack contains several layers of the current collectors and 

a separator. This is done by alternating the type of current collector, while 

always having a separator between the current collectors, as can be seen in 

Figure 3. The two pictures on the left shows how the separator, represented by 

the white sheets or roll depending on if it is discrete sheets or a continuous roll 

of the separator material, is placed between the anode and cathode. The anode 
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is represented by the sheets of one shade of grey, while the cathode is 

represented by the sheets of the other shade of grey. In the bottom-left picture, 

one can see how the electrodes and the separator can be winded, with both 

electrodes and the separator material being continuous rolls of material. The 

materials shown in the picture are, from top to bottom, an anode (or cathode), 

a separator, a cathode (or anode), and finally another separator. 

 

 
Figure 3 Three ways to stack or wind the electrodes and separator (Schmitt et al., 2014).  

 

When the stacking process is complete, the stacks are packed in pouches, 

connector tabs in the same material as the respective current collectors are 

welded on to the end of the current collectors, before the cell is filled with 

electrolyte and sealed shut. The stacking, welding, filling and sealing process 

steps are all taking place inside a dry room e.g., to avoid moisture from 

reacting with the electrolyte, which would rend it unusable. 
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The final phase is the cell finishing, where it starts off by formation of the cell. 

That is, the cell is charged and discharged several times to produce the solid-

electrolyte interface (SEI) layer on the anode, which prevents it from 

degrading further as it limits the liquid contact between the electrolyte and the 

anode. The final three steps of the production-process chain are the ageing, 

quality control and sorting. For the ageing process step, the cell is stored away 

for some weeks time to see how it degrades over time. The quality control and 

sorting are where they measure various cell parameters and removes the ones 

that don’t pass the control and puts the rest into different categories based on 

their performance. 

 

2.2 Battery production modelling 
When incorporated into LCA models, process modelling can provide specific 

material and energy values to LCA studies on battery manufacturing; deal with 

the variations and uncertainties inherent in the manufacturing process; and 

allow for comparison of different production options (Jinasena et al., 2021). 

As described in the brief literature review in the introduction chapter of this 

thesis, there exists a few modeling studies looking at the energy flow and 

connected GWP of the battery manufacturing processes, but most of them are 

limited by scope (as they focus on individual process steps) and inaptness for 

integration with LCA models (see chapter 1).  

 

In this thesis, I build upon the battery production process model developed by 

Jinasena et al. (2021). Their process model calculates energy and material 

demands for different battery types, plant capacities, and process steps. 

Validating the results of the model using existing literature values, Jinasena et 

al. (2021) finds their process model to be comparable with studies of giga-

scale factories (Kurland, 2019; Sun et al., 2020). Note that the model is not 
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vaildated using industrial data; this could, as Jinasena et al. (2021) argue, have 

further enchanced the model’s accuracy. Because this model is flexible, 

includes material and energy flows and process steps for different cell types 

and chemistries, and is focused on industrial-scale plants (in contrast to the 

smaller pilot plants which oftentimes are used in research), it seems like a 

fruitful starting point for the study at hand. The rest of this sub-chapter 

provides an overview of the process model of Jinasena et al. (2021). The 

flexible model system structure which is applied in the process model, is 

shown in Figure 4. 

 
Figure 4 Illustration of the model system structure as applied in Jinasena et al. (2021), showing the 

selected battery production process steps and model structure, including the main inputs, outputs and 

the main units (figure from Jinasena et al., 2021, p. 13).  
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The variable inputs to the model include the cell chemistry, yielding a 

selection of ten different combinations of cathode and anode chemistries, 

which can be found in table x tk. Further, it gives the option to choose between 

the three different cell types: pouch, prismatic and cylindrical. The third input 

variable is the throughput, which lets the user vary the amount of annual 

throughput for the simulated production plant. The two final inputs let the user 

change the type of technology to consider and process parameters for selected 

process steps. The two inputs yield information about the material masses that 

goes into a process, how much of it that comes out of it, and the energy usage 

for each of the energy consuming processes. 

 

The model contains four main types of units. The first one is the product units, 

which keeps track of the initial, intermediate, and final material masses at each 

process step for components such as the active material, binder, electrolyte, 

separator, and carbon black. The second one is the machine units, which 

modifies the simulated specifications for the machinery in the production line, 

based upon commercially available information and the chosen throughput of 

cells to be simulated, by using engineering calculations. The process units 

monitor the energy consumption for some of the most energy intensive or cell-

quality influential processes in the production, by using physical principles 

that have been simplified. The final type is the building units. These types of 

units cover the energy use for the dry room and floor heating, using 

engineering calculations to account for several parameters such as the ambient 

air temperature, the total heating load, the floor heating area, and parameters 

to idling time of the machines and machine efficiencies. 
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3 LCA and methodological framework 
The first part of the chapter provides a general introduction to the field of life 

cycle assessment, how LCA is commonly divided into four stages, and finally 

an overview of the mathematical framework for LCA. The second part of the 

chapter highlights some of the advantages and need to link LCA models to 

engineering models together. 

 

3.1 Life Cycle Assessment 
In this subchapter, the Life Cycle Assessment (LCA) framework is introduced 

by a brief explanation of what LCA is, the stages of an LCA, and the 

mathematical framework of LCA. This subchapter is to a large extent based 

upon my own previous description of LCA in Johansen (2020).  

 

3.1.1 General introduction of the field 
Life Cycle Assessment (LCA) is a method used to assess the environmental 

impacts for a product due to the material and energy use related to the product, 

through parts of or the entire life cycle, where the entire life cycle is usually 

from resource extraction to disposal or recycling of the product (The 

International Standards Organisation, 2006). The system boundaries of this 

project’s LCA is cradle-to-gate, meaning that it starts at the extraction of the 

materials used (cradle) and ends at a complete product (gate), which in this 

thesis will be a battery cell. 

 

3.1.2 Four stages of LCA 
There are commonly four stages to an LCA, namely Goal and scope definition, 

Inventory analysis or Life Cycle Inventory (LCI), Impact Assessment (LCIA), 

and Interpretation, as visualized in Figure 5.  
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Figure 5 The four stages of an LCA (Ouellet-Plamondon & Habert, 2015) 

 

(1) Goal and scope definition 

The goal and scope definition cover, among other, which product and which 

environmental impact types to be investigated, the system boundaries, and the 

functional unit of the analysis, where the functional unit is a reference unit 

which allows for comparison between similar products i.e., 1 electric bike, 150 

000 km/year driven by a vehicle, per unit of battery cell, per kg of product, 

etc. 

 
(2) Life Cycle Inventory 

In the Life Cycle Inventory (LCI) stage, the activities associated with the 

processes within the system boundaries are mapped to get all the quantitative 

data which e.g., can be the emissions, energy and/or material flows, and much 

more. Once all the relevant data have been gathered, it must be systematized 

to find the various stressors, which is a term used in LCA terminology to 
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describe the emissions, waste, use of resources, etc., such as the number of 

CO2-equivalents emitted. This can be done e.g., by matrix algebra, as 

explained below, or by an LCA software, such as the Arda tool, which is an 

LCA software developed at NTNU. This stage is the focal point of this thesis.  

 
(3) Life Cycle Impact Assessment 

At the third stage, where the Life Cycle Impact Assessment (LCIA) is 

performed, the stressors are converted into comparable and more intuitive 

impact types, such as Global Warming Potential (GWP), using 

characterization factors. Characterization factors are values in terms of how 

much a stressor contributes to an impact, i.e., for GWP, which is commonly 

calculated in CO2-equivalents, CO2 has a value of 1 kg CO2-eq./kg CO2, CH4 

a value of 34 kg CO2-eq./kg CH4, and N2O a value of 298 kg CO2-eq./kg N2O, 

to mention some. It is also possible to extend this further to a midpoint level 

or endpoint level using the ReCiPe method, which for the endpoint level is to 

attempt to say something about the effects these stressors could have on e.g., 

ecosystem damage, human health, etc., but these impact categories become 

more abstract, and thus less accurate, the further they are extended from the 

basic impact level. 

 

(4) Interpretation 

Finally, we have the Interpretation stage. At this stage, the results are 

processed to draw conclusions and to make them more readily presentable to 

an audience. Uncertainties, critical assumptions and so forth, of the study 

should be identified at this stage. However, this stage runs alongside the three 

previous steps as an integral part of them throughout the entire LCA. This is a 

part of LCA which cannot be automated: it is up to the practitioner to find 

relevant outcomes and interpret results.  



 

 15 

 

3.1.3 Mathematical framework 
The LCA framework is mathematically operationalized by using a matrix 

notation structure. The primary matrices and vectors utilized in LCA are 

briefly presented in the following sections. 

 

The requirements matrix, represented by A, consists of a foreground and a 

background system. The foreground system is the processes defined in 

individual studies, while the background system consists of processes from a 

generic database. In addition, the values in the A matrix describes the 

interdependencies of the various processes. The y vector is a vector that 

describes the final demand of a LCA production process, and which is 

commonly the same as the functional unit described in the goal and scope 

definition. A total output vector, represented by x, can be calculated from the 

identity matrix I, the requirements matrix A, and the final demand vector y, 

using equation (1) below. 

 

(1) 𝑥 = (𝐼 – 𝐴)-1 ∗ 𝑦	

	

𝐴 = 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑚𝑎𝑡𝑟𝑖𝑥	

y = final demand = functional unit 

𝑥 = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟	

𝐼 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

 

Mathematically,	the	equation	is	calculated	and	rearranged	as	follows:		

𝑥 = 𝐴 ∗ 𝑥 + 𝑦 → 𝑥 − 𝐴 ∗ 𝑥 = 𝑦 → 𝑥 ∗ (𝐼 − 𝐴) = 𝑦 → 𝑥 = (𝐼 – 𝐴)-1 ∗ 𝑦 
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The C matrix is filled with characterization factors, which helps us convert 

different stressors into equivalent units i.e., CO2-equivalents, making it 

possible to compare and sum up the impacts caused by different stressors 

causing the same type of impact. S is the stressor intensity matrix and is 

defined as the intensity of a stressor per unit of output of a given process. By 

performing a contribution analysis, one can show where an impact stem from. 

To do this, one would calculate the 𝐷pro matrix by using a diagonalized x 

matrix, denoted as x̂, along with the C and S matrices which can be combined 

as shown in equation (2). 

 

(2) 𝐷pro = 𝐶 ∗ 𝑆 ∗ 𝑥̂	

	

𝐶 = 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 

𝑆 = 𝑠𝑡𝑟𝑒𝑠𝑠𝑜𝑟 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 

𝐷pro = 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑓𝑟𝑜𝑚 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠) 

 

To find the total impacts for each category, one can calculate the d vector, as 

shown in equation (3). 

(3) 𝑑 = 𝐶 ∗ 𝑆 ∗ 𝑥	

	

𝑑 = 𝐶 ∗ x = 𝑡𝑜𝑡𝑎𝑙 𝑖𝑚𝑝𝑎𝑐𝑡𝑠 𝑣𝑒𝑐𝑡𝑜𝑟	

 

Summing each of the rows of the 𝐷pro matrix will also yield the d vector.  
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3.2 The benefits and need for linking LCA and 
engineering models 

 

Athough LCA can be applied to engineering activities such as product 

development (Hauschild et al., 2013), various features inherent in LCA 

methodology have thus far hindered the framework from becoming a 

mainstream engineering tool (Cerdas, Thiede, et al., 2018). Current LCA 

methodologies and tools are unable to adequately cope with the increasing 

complexity of electrical vehicles and their components, thus hindering LCA’s 

usefulness in considering mitigation options within decision-making and 

product development in the sector (Cerdas, 2020). More specifically, issues 

arise from current LCA practices being assessment-oriented; reliant on high 

degrees of expert knowledge; and resource-intensive. 

 

Traditional LCA is, as the term implies, assessment oriented, with analyses 

resulting in concrete values (e.g. stating the CO2-eq of a process), hence 

overlooking the variability and uncertainty of the process at hand. Here lies a 

significantly beneficial potential of coupling LCA with engineering models, 

Cerdas (2020) argues:  
 

(…) if engineers change the focus from an assessment-oriented application 

(resulting, for instance, in a value e.g. 120 g CO2-eq/km) to a variability and 

uncertainty oriented application (resulting in a model, a range, a constraint, etc.), 

more reliable solutions can be developed, and better optimization strategies can be 

found. This is perhaps one of the most significant benefits of embedding LCA and 

its scientific foundation within engineering activities. (Cerdas, 2020, p. 12–13) 

 

Moreover, the LCA approach allows for a wide range of different modelling 

choices that may affect the result considerably, and therefore demands high 
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degrees of expert knowledge (Hauschild et al., 2018). The modelling freedom 

of LCA enables companies to make – knowingly or un-knowingly – 

misleading environmental claims about a system while arguing that they have 

applied scientific methodology (Cerdas, 2020). On a more practical level, 

LCAs are usually manually conducted. Conducting LCAs manually is a time-

consuming and error-prone endeavor: the cumbersome process of compiling 

inventories manually opens up for a plethora of typing errors; errors when 

linking processes; and when choosing materials.  

 

In conclusion, these issues may result in LCAs that overly simplifies or in 

other ways misrepresent the system under scrutiny, which may in turn lead to 

LCA results that misleads strategic decision-making processes; and it might 

become impossible to generate sufficient environmental insights to improve 

process development (Cerdas, 2020).  

 

Engineering models, in this case process models, on the other hand, often do 

not keep track of production aspects of relevance for LCA, such as 

composition of electrolytes (i.e., how much material is used in 100g of 

electrolytes). 

 

These shortcomings call for new tools and methodologies that integrate LCA 

within engineering activities in a way that minimizes the trade-offs between 

quality, robustness, and resolution of the analyses on one hand, and 

applicability and uptake in the industry on the other hand (as argued by f.ex. 

Cerdas, 2020, p. 173).   

 

There are several benefits of having a scripted model for this type of work. 

Firstly, building a modular framework gives the benefits of scalability and 
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extensibility, allowing the flexibility needed for product development and 

process optimization in the rapidly evolving field of EV battery production. 

When the model is coded, the code can be expanded upon with small scripts. 

This makes it easier to update the model with new knowledge, benchmarks 

and values, keeping up with the state of art. Secondly, the scripted model 

allows for the handling of uncertainty and variability inherent in EV battery 

production. Providing the possibility of generating inventories with minor 

changes, thus overcoming one of the main obstacles of the commonly applied 

Monte Carlo simulation – a sensitivity analysis that needs many runs to 

calculate variance (Groen et al., 2014). Thirdly, the scripted model limits 

human errors and the resource-intensiveness of conducting LCAs.  
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4 Model development 
This chapter is dedicated to presenting the Coupled Battery Production and 

LCI Model (CBPLM) and describe how it has been developed in practice. In 

the first part of this chapter, a synthesis of needs, objectives and requirements 

for the model is given. Then, the model is presented, first with a graphical 

overview, then with descriptions of inputs and choice of chemistry; material 

data and energy data. Further, software used to develop the model is described, 

before moving on to a more detailed description of the development of the 

CBPLM. This includes how the collection and processing of input data was 

handled, how the foreground was structured, what user choices are available 

and how the various choices the user can make was implemented, and finally, 

how the background was structured and what its structure is dependent on. The 

last subchapter provides an example of the model applications.  

 

4.1 Synthesis of needs, objectives and requirements  
As concluded in chapter 3.2, there is currently a need for integrating LCA and 

engineering models in order to improve the decision-making processes and 

engineering activities in the field of battery production, along with locating 

sources of emissions in the production line. The objective for this thesis is thus 

to develop a coupled model that semi-automatically produces LCIs based upon 

inputs from a battery-production process model and a set of user choices, and 

for these LCIs to be readily assessable for the Excel- and MATLAB-based 

LCA software Arda. 

 

The overall goal and scope of the model can be synthesized as follows:  

• The aim with the model is for it to produce an LCI for a battery 

production process, populated with data from an external source on 
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material mass and the energy consumption of given process steps, 

structured in a specific way, and certain user inputs. 

 

The requirements of the coupled model can be synthesized as follows:  

• The model should be able to edit values in the LCI and produce an 

.xlsx file format that can be analyzed using Arda. 

• There should be a way to choose which positive active material and 

electricity mix to be used, and the model should be able to make 

alterations depending on the user’s choices for both of these. 

• The model should be able to recalculate the input-output and process 

values given in a prespecified format to match the format of the LCI. 

• The model should be able to alter the energy consumption and material 

masses depending on which battery chemistry is chosen. 

• The model should be able to generate the file and the necessary sheets 

and save the file with either a predefined filename or a filename of the 

user’s choice. 

 

4.2 Presentation of the coupled model 
In this sub-chapter, the CBPLM is presented, and its various components are 

described. Figure 6 provides a graphical overview of the coupled model.   
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Figure 6 Coupled battery production and LCI model. The production model is adapted from Jinasena 

et al. (2021), while the LCI model is based upon a generic template. 
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First, a quick summary of the battery-production process model (see chapter 

2 for a further explanation): the model accepts five different types of inputs, 

and through engineering modelling delivers two types of outputs. The process 

model is structured around four different unit types: product units, process 

units, machine units and building units. These unit types have different tasks. 

While some keeps track of either the material throughput or energy use for the 

process steps, the others take the machine specifications into account and 

calculates energy use for a special areas or rooms depending on parameters 

such as target humidity, temperature, or floor area.  

 
Inputs and choice of chemistry 

To begin with, the engineer chooses the inputs to the production model. For 

more details on the inputs, see table 1–3 below. Based on the inputs, the 

production model generates outputs in the form of numerical values for the 

energy consumption for each of the processes modelled, and the throughput of 

material from start to finish. At this point, the practitioner will be prompted to 

make a choice for which battery-cell chemistry to use in the LCA. The 

required user inputs specific to the LCA, will not affect the inputs to the 

production model. However, the LCA specific user input for the chemistry is 

dependent on the production model in the way that the chemistry chosen must 

be in the set of chemistries used as an input to the production model. It is 

currently possible to choose between seven different combinations of the 

battery anode and cathode chemistries, with three more options being 

available in the code but inactive due to a lack of supplementary background 

data and/or was unavailable in the ecoinvent database at the time of writing. 

The various combinations of anode and cathode chemistries are shown in 

Table 1. 
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Table 1 The ten different combinations of cathode and anode active materials modelled by the process 

model, of which seven are active in the CBPLM. Inactive combinations are marked with an asterix. 

Cathode active material Anode active material 

LMO Graphite/Hard carbon 

NMC811 Graphite/Hard carbon 

LFP Graphite/Hard carbon 

NCA Graphite/Hard carbon 

NMC622 Graphite/Hard carbon 

NMC111 Graphite/Hard carbon 

NMC532 (50%) and LMO (50%) Graphite/Hard carbon 

NMC532 Graphite/Hard carbon 

LMO* LTO* 

NMC333 Si 

 

Once the choice has been made, the coupled model will extract the energy and 

material data from the set of chemistries represented in the output files from 

the production model. A more detailed description of the material data and 

energy data from the process model that is used in the CBPLM are given in 

the next paragraphs. 

 
Material data 

The material mass information is given as three different values, namely as 

cell, base and base-scrap. The cell value yields the mass of the components in 

the final cell. These are commonly categorized components in a cell such as 

active material, carbon, binder, etc. The base and base-scrap materials are 

further categorizations of the cell materials into battery grade materials such 

as SBR and PVDF (in binder), aluminum and plastic types in cell container, 
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etc. Also, the solvent types and amounts that were used for making the cell is 

available in here.  The total amount of material that goes into making the cell 

is the sum of the base and base-scrap values, which are given with a slightly 

higher resolution than the cell values. An example of the components that the 

outputs yield numerical information about is given in Table 2, with the main 

components listed on the left side of the table, with a higher resolution on the 

right side of the table. If the component either has alternatives to what material 

is used or if it requires a combination of materials, these are marked with an 

indent and a dash in front. 

 
Table 2 Overview of the cell components contained in the dataset.  

Cell component Subcomponents 

Anode 

Active material 

- Graphite 

- Silicon nano-wire 

Carbon black 

Binder 

- SBR/CMC 

- PVDF 

Solvent 

- NMP 

- Water 

Current collector 

Cathode 

Active material 

Carbon black 

Binder 
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- SBR/CMC 

- PVDF 

Solvent 

Current collector 

Container 

Pouch 

- Aluminum 

- Plastic PP 

- Plastic PET 

Positive terminal 

Negative terminal 

Electrolyte (LiFP6, EC, DMC/EMC) 

Separator 

 

Energy data 

For the energy inputs, a collection of the energy-consuming process steps and 

which component they are associated with in the CBPLM is given in table 3, 

while the different cathode and anode active material combinations that the 

battery-production process model produces outputs for are listed in table 1. 

 
Table 3 Process steps accounted for in the LCI (right side) and the associated main components (left 

side).  

Component Process step 

Anode 

Mixing 

Coating 

Drying 

Calendering 
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Slitting 

Cathode 

Mixing 

Coating 

Drying 

Calendering 

Slitting 

Cell 

Stacking/Winding 

Filling 

Formation 

Floor heating 

Dry room 

 

 

From here, the absolute energy consumed in the processes themselves are 

inserted into the correct cells of the Foreground sheet of the LCI, which has 

already been generated based upon a generic LCI template. Parallel to this, the 

material flows for the chosen chemistry, together with supplementary 

information from Ellingsen et al. (2014) on the necessary background 

processes and production facilities associated with the materials in question, 

and data from the ecoinvent database, are placed in the correct format in the 

Background sheet of the LCI. Not shown in the figure, are some necessary 

conversions of the units used in the production model’s outputs, for both the 

energy and material data, to units matching those of the econinvent 3.2 

database. 

 

Further, the energy amounts from the Foreground sheet are coupled with the 

ecoinvent database, along with supplementary data from Ellingsen et al. 
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(2014) with factors accounting for the losses in the electrical grid, length of 

various types of electrical grid needed, and a very climate-potent material 

associated with electricity production. 

 

At this point, the user will get another prompt, this time to somewhat account 

for the spatial variability in terms of GWP when producing a battery, as this is 

something that can affect the type and amounts of emissions substantially. To 

somewhat account for the this, the user must choose which electricity mix to 

be simulated in the LCI of the battery production. The global warming 

potential impacts related to the production of battery cells are highly 

dependent on the country they are produced in, as different countries’ sources 

of electricity production vary. Therefore, by allowing the user to choose the 

electricity mix, one can compare how changing the geographical location 

affects the impacts of the battery production. In the background tab of the LCI, 

the total amount of electricity used for a process is being read from the 

foreground section, before it is multiplied with the shares of the different 

electricity producing sources in the selected electricity mix. Further, it is 

multiplied with two factors to account for unavoidable losses such as losses 

associated with energy transfer in the transmission network. 

 

Once an electricity mix has been chosen, the data are inserted in the 

Background sheet in the correct format and structure. At this point, the 

compiled LCI has been populated with all the necessary data and is in a format 

accepted by the Arda software. 
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4.3 Software  
This section briefly describes which software was used to create the CBPLM, 

and which software is required to use the model.  

 

The model consists of a Python (3.9.2) based interface which connects an LCA 

model with a Python (3.7) based cell production model in order to produce 

Excel files that are accepted by the LCA software Arda.  

 

Here, Python is used (with the openpyxl module, an open-source Python 

library for reading and writing Excel) to fetch, structure and save data in Excel 

and to run Arda through MATLAB. The Phyton based cell production model 

from which I’m compiling the inventories needed in the Python file, is derived 

from Jensina et al (2021). My end result is Excel file(s) that is read by Arda 

through MATLAB to calculate the results of the LCI using the ecoinvent 3.2 

database, which was released in December 2020.  

 

As there are some issues with the MATLAB packages in Python, it is not 

possible to do this coupling in every Python version. To run MATLAB 

through Python, you need compatible versions of Python. This step therefore 

had to be truncated.  

 

In order to run the model, the user needs a virtual Python environment with 

the openpyxl module installed, and to run an impact assessment in Arda, the 

user needs access to MATLAB.  
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4.4 Development of the coupled model  
The following subchapter explains the technical development of the coupled 

model, i.e., the programming.  

 
Collection of input-output and process data 

The model is capable of using data from either a .CSV or .xlsx file as long as 

they are arranged in the correct way, as the same way as the file shown in the 

digital appendix. The LCI has been developed by using data from Jinasena et 

al. (2021) and supplemented with data from Ellingsen et al. (2014).  

 

Processing input-output and process data 

If the data source for the input data is in an .xlsx format, it can be directly 

recalculated and used to fill in the correct cells in the LCI, using the Python 

library openpyxl. If, however, the data source for the input data is in a .CSV 

format, it must first be read using the Python csv module, before using the 

openpyxl library to recalculate the values to their correct format, before using 

the values as input to the correct LCI cells. The name of the battery chemistry, 

along with the corresponding values are scanned, extracted and being 

structured based on the chemistry and type of value. 

 
Building foreground based on template 

The foreground is modelled after a template, and the main processes and 

components have been accounted for. First, the template itself, containing 

generic headlines and names which are not reliant on any external information, 

is coded in. Next, a variable containing the names of the main components and 

processes which are equal for all the battery types is created, named 

foreground_names. Then, a variable called battery_chemistries is generated, 

containing all the different names of the various positive electrode materials 
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that is currently accounted for. Both of the variables can be expanded/altered 

quite easily by going to the ‘’’Foreground’’’ section in the code and add/alter 

values in the two variables mentioned above. The foreground sections FULL 

NAME and NAME will, by the use of a for-loop and some if-conditions, be 

implemented, first by looping through and inserting the names in the 

foreground_names variable, and then by looping through and inserting the 

names in the battery_chemistries variable.  

 

Due to time constraints, some of the more absolute values such as the 

functional unit and the interdependencies between the main components, 

excluding the positive electrode active materials, have been programmed in 

such a way that they won’t change automatically if new processes/components 

are added. These can however easily be changed manually in the 

‘’’Foreground’’’ section to adapt the script to alterations. The energy use for 

the various process steps, which will be dependent on the battery chemistry in 

question, will be read from an external file with the correct format of the 

practitioner’s choice, and the energy values will be added to the correct cells 

after having been recalculated to a kWh format as described above. Only one 

of the positive electrode chemistries will be active at one time, chosen by the 

practitioner through an input query upon running the script. The chosen 

cathode material will receive a ‘1’ in the cell in the positive active material-

column on the 2nd row. 

 

Both the foreground and background process code have been color coded to 

improve readability.  

 
Importing and programming values for electricity mix  
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The electricity mix is based on data from IEA for data from 2019 (IEA, 

2020a). First, a sheet named Electricity_mixes is generated using the openpyxl 

library. Next, the names of the various countries and electricity sources are 

filled in in a table format. As the electricity mix values in IEA’s dataset is in 

absolute values (GWh), they have first been recalculated to percentage shares 

before being programmed in to excel in their respective cells. These values are 

later used in the background (A_bf), depending on the electricity mix chosen 

by the practitioner, as will be discussed further in the next section/subchapter. 

 
Building background based on foreground and data 

The background section is the largest and most complex part of the program, 

partly due to the sheer amount of information required. To begin with, 

variables containing necessary information, mostly Arda IDs for all the 

different processes, along with the generic template structure of the 

background are created. These variables, in addition to being used to populate 

the respective cells in the (Arda ID) column, are also used to decide the 

number of rows in the background sheet. In addition, by populating the cells 

in the A and F columns with the VLOOKUP function in Excel, using the Arda 

IDs in the C column as the lookup-value, the name and units of the 

corresponding processes are extracted directly from the PRO sheet in the LCI 

in the A and F columns respectively. To populate the E column, there are three 

ways the data is being generated. The first way is from the data gathered in the 

collection input-output and process data, either directly or after having been 

recalculated to fit the format of the LCI. The second way is where data is 

dependent on other values i.e., for the electricity mix, the energy use in kWh 

is being distributed between the energy production processes based on the 

shares of the selected electricity mix. The third and final way is data, which in 

this case is gathered from Ellingsen et al. (2014), to make up for the pieces of 
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missing information in the collection-of-data phase. For the latter, at the 

moment of programming and writing data for these background 

processes/materials were not available, and data from a different source was 

used to make up for that. For the electricity mix, the practitioner will get an 

input query upon running the script requesting which countries electricity mix 

is to be used. The various shares of the electricity mix will then change 

depending on the country chosen, and the name of the country will be 

displayed above the names of the energy production technologies. Further, the 

values in the E column for all the energy demanding process steps will be 

calculated based on the chosen electricity mix and the absolute energy value 

for the respective process steps in the foreground sheet. 

 

4.5 Model example applications  
This chapter is dedicated to give an example of the results obtained by using 

the coupled model and to compare these with some reference values from 

litterature. A breakdown of the values produced by the coupled model for one 

of the chemistries and a given electricity mix will then be presented to show 

the distribution of GWP impacts caused by the production of that particular 

cell using the chosen electricity mix. 

 

Figure 7 showcases reference values for GHG emissions for two battery cells 

from litterature, namely an NMC cell from Ellingsen et al. (2014) and a 

combined LMO and NMC cell from Kim et al. (2016). Further, it compares 

these reference values to values generated by the coupled model, using data 

from the process model of Jinasena et al. (2021).  
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Figure 7 Comparison of example data for GHG emissions from the coupled model with reference data 

from litterature 

Further, one can see that the GHG emissions attributed to the cell materials 

are much greater for all the coupled model cells than for the two cells from 

litterature. This is likely to stem from a difference in materials included, the 

composition of these and how the material shares between primary and 

recycled materials differ between the coupled model and the reference 

litterature. In the coupled model, an assumption of no recycled material was 

made, while Ellingsen et al. (2014) and Kim et al. (2016) both assume portions 

of the material to be recycled, which would lower the GWP impact of the cell 

materials. Other differences between the datasets can also be caused by the 

fact that the reference data are from 2014 and 2016, which can be a factor as 

the ecoinvent version used has changed, which can cause differences in the 

carbon footprint of the energy generation technologies, and that the battery 

production technology has improved since the reference literature studies were 

published. Another source of difference can be the input data, and the 
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increased resolution of the coupled model, which is made clear by the 

breakdowns of GHG emissions in Table 4 and Table 5, which allows for a 

better understanding of the source of the GHG emissions as the level of detail 

is increased, especially for the manufacturing processes. The cell used as an 

example in Table 4 and Table 5 is an NMC 811 cell. 

 
Table 4 Breakdown of CO2 emissions due to the cell materials 

GWP of cell materials 

Component Subcomponent kg CO2-eq./kWh Share of GWP 
(%) 

Battery cell - 0,21 0,27% 0,27% 

Anode 

Negative current collector 3,78 4,97% 

9,23% 
Negative electrode paste 0,76 1,00% 
Negative active material 2,25 2,96% 
Negative binder 0,24 0,31% 

Cathode 

Positive current collector 5,50 7,22% 

81,37% 

Positive electrode paste 13,77 18,09% 
Positive binder 0,87 1,14% 
NMC811-G 7,50 9,85% 
Precursor NCM 5,17 6,79% 
Cobalt sulphate 29,13 38,27% 

Container 
Pouch 1,51 1,98% 

4,71% Anode tab 1,06 1,39% 
Cathode tab 1,02 1,34% 

Electrolyte - 3,17 4,17% 4,17% 
Separator - 0,19 0,24% 0,24% 
Total   76,12 100% 100% 

 

Table 4 shows a breakdown of the GWP impacts for the cell materials. This 

breakdown shows that the cathode materials are responsible for the majority 

of the GHG emissions stemming from material usage (81,37 %), and that the 

cobalt sulphate and the other components for the positive electrode paste make 

up about 56 % of the cathode material’s GHG emissions. 
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In Table 5, a breakdown of the GHG emissions for the manufacturing 

processes required for the cell is given. Out of all the energy consuming 

processes, the dry room is responsible for over half the GWP impacts. Another 

major contributor to the GWP impacts is the drying of the cathode, responsible 

for almost 37 % of the manufacturing processes’ GHG emissions, which is 

almost four times as great as for the drying of the anode. The manufacturing 

processes make up 51 % of the cell’s total GHG emission, while the materials 

are responsible for the remaining 49 %. 
 

Table 5 Breakdown of CO2 emissions due to the direct energy use of the cell production processes 

GWP of cell manufacturing processes 

Component Process step kg CO2-eq./kWh Share of GWP 
(%) 

Anode 

Mixing 0,00 0,00% 

9,94% 
Coating 0,00 0,00% 
Drying 7,88 9,94% 
Calendering 0,00 0,00% 
Slitting 0,00 0,00% 

Cathode 

Mixing 0,00 0,00% 

38,67% 
Coating 0,00 0,00% 
Drying 30,68 38,67% 
Calendering 0,00 0,00% 
Slitting 0,00 0,00% 

Cell 

Stacking/Winding 0,00 0,00% 

51,40% 
Filling 0,00 0,00% 
Formation 0,15 0,19% 
Floor heating 0,00 0,00% 
Dry room 40,63 51,21% 

Total   79,33 100% 100% 
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5 Limitations and further work  
 

5.1 Limitations 
The lack of availability of primary data for the battery production limits the 

quality of the LCI, as some of the data can be outdated or only viable for 

smaller production scales. Further, there were significant gaps between the 

available data from the process model and the background data necessary to 

keep a high resolution. Preferably, this data would all come from one, primary 

source, instead of using supplementary data from other sources. In addition, 

the data could be crosschecked against more sources to validate its results 

further, which was not possible for this thesis due to time constraints. 

 

5.2 Further work 
There exist numerous possibilities for how to expand and further develop the 

coupled model, for the most part only limited by imagination, as new blocks 

of code can easily be added. A natural way to progress, would be to attempt to 

integrate the coupled model more into the process model so that one could get 

more direct results and the ability to only look at parts of the production chain. 

Further, a simple user interface would increase the user friendliness of the 

coupled model, and thus maybe making it more tempting to use in both 

industry and academia. Parts of the code could also be made more flexible to 

make it easier to use in combination with other process models. 
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Digital appendix 
The code and files used in developing the coupled model are available at: 

https://github.com/DanAndreJohansen/Master-project-A-coupled-battery-

production-and-LCI-model 
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