
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ellisiv Sætherø Steen

A PDE-Based Strategy for
Reconstructing Curves from Irregular
and Unstructured Sampled Data

Master’s thesis in Applied Physics and Mathematics
Supervisor: Anne Kværnø
June 2021

M
as

te
r’s

 th
es

is

Ellisiv Sætherø Steen

A PDE-Based Strategy for
Reconstructing Curves from Irregular
and Unstructured Sampled Data

Master’s thesis in Applied Physics and Mathematics
Supervisor: Anne Kværnø
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

We consider the problem of two-dimensional curve reconstruction from
pointwise measurements from a PDE perspective. The PDE approach is an
implicit level set approach that aims to be robust for noisy and irregular
data sets. The theory presented in this thesis can be extended to three-
dimensional surface reconstruction without difficulty. It can be applied in
various applications where the aim is to reconstruct a curve or surface from
a set of data measurements with few assumptions.

This thesis provides the theoretical background for deriving new level set
models, and implementational details to solve the problems numerically.
The models are tested on four data sets constructed to demonstrate their
strengths and weaknesses. In addition, the test cases validate the theoret-
ical analysis performed for all derived models. The numerical simulations
also demonstrate how to adjust the model parameters to adapt to specific
configurations of sample points. The resulting curves are smooth and ap-
proximate the data points nicely provided good parameter choices. How-
ever, the solutions are only macroscopically stationary, and the solutions
for the noisy data sets tend to show a slight bias.

iii

Sammendrag

Vi ser på todimensjonal rekonstruksjon av kurver fra et PDE-perspektiv.
PDE-perspektivet er en implisitt nivåsett-tilnærming med formål om å hånd-
tere irregulære datasett med støy. All teorien i denne oppgaven kan utvides
til det tredimensjonale tilfellet uten vanskeligheter, hvis man vil bruke
metoden til å rekonstruere overflater. Metoden har en rekke bruksområder
der overflater eller kurver skal rekonstrueres fra måledata og få antakelser
kan tas på forhånd.

Oppgaven vil ta for seg den teoretiske bakgrunnen for å utlede nye nivåsett-
metoder, samt implementeringsdetaljer knyttet til numeriske løsninger.
Modellene testes på fire datasett, konstruert for å vise styrker og svakheter
ved modellene. Testene validerer de teoretiske resultatene og simulerin-
gene demonstrerer hvordan de ulike modellene kan justeres for å tilpasses
spesifikke datasett. Når parametrene er valgt riktig viser resultatene glatte
kurver som tilpasser seg datapunktene godt. Likevel er løsningene bare
makroskopisk stasjonære og løsningene for datasett med støy viser en viss
strukturell skjevhet.

v

Preface

This master’s thesis marks the end of my five years at the Norwegian Uni-
versity of Science and Technology and completes my degree in applied
mathematics. The work has been done in close collaboration with my su-
pervisor at the Department of Mathematical Sciences, Anne Kværnø, to-
gether with her colleague from the University of Lund, Claus Führer and
their Ph.D students Samson Seifu and Alemayehu Adugna.

First of all, I want to thank Professor Anne Kværnø for taking me in on
short notice and giving me an interesting topic. She has been a motivator,
discussion partner, and a great supervisor this semester, and I could not ask
for anyone better. I also want to thank the rest of the team working with
me on this project. For your sense of humor, our enjoyable Friday meetings,
and valuable feedback and discussions. It has been a pleasure working with
you, and I wish you luck with your further work and collaboration.

Most importantly, I would like to thank my family, friends, and partner for
supporting me and being patient with me when I have been focused on my
studies—not only this semester but all my five years of study. I also want
to give special thanks to my classmates, who have given me invaluable
motivation and companionship.

vii

Contents

1 Introduction . 1

2 Background Theory . 5

2.1 Level Set Methods . 5

2.2 Distance Functions . 14

2.3 Gradient Flow and Derivatives of Domain Integrals 17

3 Modeling . 21

3.1 Model 1 . 22

3.2 Model 2 . 33

3.3 Model 3 . 37

4 Implementation . 39

4.1 Outline of the Main Algorithm 40

4.2 Initialization . 41

4.3 Time Integration . 44

4.4 Updating the sign function, σ(X , t) 45

4.5 Re-Initialization . 48

4.6 Stopping Criterion . 51

5 Numerical Results and Discussion 53

ix

x E. Steen: Reconstructing Curves from Sampled Data

5.1 Presentation of Test Cases . 53

5.2 Test Case 1: Circle of Dense Points 55

5.3 Test Case 2: Three Equidistant Points 63

5.4 Test Case 3: Dense and Irregular Data 68

5.5 Test Case 4: Noisy Data . 74

5.6 Summary of Results . 78

6 Concluding Remarks . 79

6.1 Further Research . 79

A Additional Material . 85

Figures

2.1 Level set function . 6

2.2 Zero level curves over time . 10

2.3 Relation between ∇u(x, t) and the curve speed 12

2.4 Level set function and iso-contours 13

2.5 Distance functions . 16

2.6 Shape transformation by velocity field 18

3.1 The cohort of v for all v ∈ V . 24

3.2 One dimensional analytical example 26

3.3 Minimization problem . 27

3.4 Streamlines for zero level curves for model 1 29

3.5 Streamlines for all level curves for model 1 31

3.6 Streamlines for zero level curves of model 2 35

3.7 Streamlines for model 3 . 38

4.1 Algorithm - overview . 40

5.1 All test cases . 54

5.2 Model 1 - Circular example α= 0.96 56

xi

xii E. Steen: Reconstructing Curves from Sampled Data

5.3 Model 1 - Circular example, testing α 57

5.4 Model 2 - Circular example α= 0.2, β = 1, δ = 10−2 58

5.5 Model 2 - Circular example, testing δ 59

5.6 Model 3 - Circular example α= 0.9, β = 2 61

5.7 Model 3 - Circular example, testing β 62

5.8 Model 1 - Triangular example, testing α 64

5.9 Model 2 - Triangular example, testing α 66

5.10 Model 3 - Triangular example 67

5.11 Model 1 - Dense, Irregular example, testing α 69

5.12 Model 2 - Dense, Irregular example, testing δ 71

5.13 Model 3 - Dense, Irregular example 73

5.14 Model 1 - Noisy data set, testing α 75

5.15 Model 2 - Noisy data set . 76

5.16 Model 3 - Noisy data set . 77

Chapter 1

Introduction

Shape reconstruction from irregular, sampled data is a challenging prob-
lem since we often have little a priori knowledge about the original shape.
Shape reconstruction is necessary when an object is only observed through
pointwise measurements. This is so, when the object cannot be observed
explicitly, for instance, in medical imaging and geology. In such cases, the
measurements often contain noise, and we usually have no information
concerning the connections between the data points.

There exist different approaches and methods for solving the shape recon-
struction problem. One strategy is to first find reasonable connections in
the data points by using, for instance, Veroni diagrams or Delaunay trian-
gulations [1–3]. From this, we can construct a surface from the obtained
net of connected data points using interpolation techniques. Finding the
right connections is essential but could be challenging, particularly when
the data contains noise. Gaussian Process Regression is another method,
which does not find connections between individual data points but, builds
surface segments from regressions on clusters of neighboring points. This
method has previously been applied successfully, especially for noisy data
sets [4].

This thesis investigates an implicit approach, namely a level set method.
The level set method does not prioritize resources on pre-processing to
find any patterns or connections in the data. Instead, it makes an initial
guess without assumptions on the structure and gradually improves the
solution with respect to pre-defined quality measures using a PDE formu-
lation. Furthermore, the curve is not described parametrically, making it
possible to form complex shapes and provides the topological flexibility to

1

2 E. Steen: Reconstructing Curves from Sampled Data

handle splitting and merging of surfaces naturally.

Level set methods for tracking surfaces moving with curvature-dependent
speed were first introduced by S. Osher and J. A. Sethian in 1988 [5]. Many
have used this paper as a stepping stone and applied level set methods to
a variety of physical applications like multi-phase flow [6, 7] and crystal
growth [8], in addition to image applications like image enhancement,
noise reduction [8, 9] and shape detection [8, 10, 11].

The underlying application that motivated surface reconstruction for our
team was the estimation of bedrock topography. This is a shape recon-
struction problem since samples are taken of the sediment thickness, and
these samples are used to estimate the full shape of the bedrock. Because
the sediment thickness can only be described implicitly through measure-
ments, this is an example where few assumptions can be made about the
data. This motivated the use of an implicit method.

To apply an implicit method, we were inspired by a paper from 2011 au-
thored by A. Claisse and P. Frey [12]. The paper proposed the level set
method to obtain a low-curvature surface approximating a set of data
points. In other words, the surface moves with a velocity, dependent on
the distance to the sampled points and the surface’s curvature. The final
solution is thus located close to the points and has low curvature.

This thesis is mainly a preliminary study on level set methods in general.
We investigate how they can be used to formulate mathematical models
to gradually deform a curve over time to approximate a set of points. The
models we derive will approximate a curve to a set of data points inR2, sim-
plifying the surface reconstruction problem of the bedrock topography to a
one-dimensional curve reconstruction problem. Hence, we have detached
ourselves from the underlying application in order to study the theory of
level set methods and how to apply them to construct models with specific
traits. The content of this thesis can thus be used as a general introduction
to level set methods for shape reconstruction independent of the applica-
tion.

Chapter 1: Introduction 3

The thesis is divided into six chapters:

Chapter 1 presents the level set method in a shape reconstruction con-
text and motivates this thesis.

Chapter 2 introduces the theoretical background of the level set meth-
ods and the tools needed to formulate specific level set mod-
els.

Chapter 3 applies the theory and constructs models to reconstruct curves
from sampled data.

Chapter 4 discusses the implementational aspect of applying the mod-
els and how to reproduce the results that will be presented.

Chapter 5 presents the obtained results from different test cases and
shows how the models can be adapted to different configu-
rations of points.

Chapter 6 concludes the thesis and suggests future work.

Chapter 2

Background Theory

This chapter presents some preliminaries on general level set methods.
Specifically, we will show how to derive the level set method from a mov-
ing curve, and we will present some key features. In addition, we include
some theory on distance functions which is relevant for level set methods
in general but will prove especially useful for our application. Finally, we
look at shape derivatives, or more specifically derivatives of domain inte-
grals, and how they can be utilized to model the level set method for a
specific application.

2.1 Level Set Methods

Before we begin, we must clarify that all derivations in this section will be
performed for curves in R2, but everything can be extended to surfaces in
a multidimensional space Rn. This simplification is done to be consistent
with the modeling and implementation, which is only applied to curves in
a two-dimensional space.

The level set formulation is an implicit representation of a closed curve or
curves. The curve is described by being a constant value on some higher
dimensional function. We explain this concept through a familiar example,
namely level curves on a map. Provided a continuous ground surface el-
evation, the level curves, or contours, join points on the surface of equal
elevation. All curves representing the same value, or elevation in the car-
tographic setting, are called iso-curves or iso-contours. On a map, there are

5

6 E. Steen: Reconstructing Curves from Sampled Data

u< 0
Ω(t)

u> 0

Γ (t)

#»n Γ
D

Figure 2.1: Level set representation of a curve Γ (t)with outward pointing
normal #»n Γ located in a domain, D. u is the higher dimensional level set
function satisfying (2.1)-(2.3).

numerous iso-curves of different values separated by a constant height.
Hence, the iso-curves effectively describe the steepness and height, and
consequently, the shape of the ground in the area. In a level set context,
we are not interested in the shape of the underlying higher dimensional
function. We look at a single iso-value, which by standard practice is chosen
to be the zero iso-value, which yields a curve called the zero iso-contour.
The corresponding zero iso-contour(s) splits the domain into regions of
two types: one where the underlying function is positive and one where
it is negative. Level set methods track the shape of these curves and how
they change over time.

2.1.1 Implicit Derivation

Now that we have introduced iso-curves, we can discuss the principle of
the level set method. The goal is to represent a closed curve, Γ (t), that
moves under the influence of a velocity field that can change over time,
#»v (x, t). From now on, we use boldface letters for vectors and vector arrows
for vector fields. The level set approach to this problem, as first presented
in 1988 by S. Osher and J. Sethian [5], is to define a continuous function
u(x, t) on a domain D ∈ R2 containing the initial curve Γ |t=0. The domain D
is split into two parts by the curve Γ (t), the interior Ω, and the exterior D\
Ω. See Figure 2.1 as a reference. The function u(x, t) must be constructed

Chapter 2: Background Theory 7

in a way that satisfies the following properties

u(x, t)< 0 for x ∈ Ω(t), (2.1)

u(x, t) = 0 for x ∈ Γ (t), (2.2)

u(x, t)> 0 for x ∈ D \Ω(t). (2.3)

Now, the curve, Γ (t), can be described in terms of u(x, t) by being its zero
iso-contour. Hence, if we can find the proper evolution of u(x, t), we can
implicitly track the motion of the curve. This means that we must find a
model for the change in u(x, t) to simulate the level curve, Γ (t), as a curve
flowing in the velocity field, #»v (x, t). Because the zero iso-curve of u(x, t)
is the only region of interest, we differentiate (2.2) with respect to time.
Assuming that u(x, t) is at least in C1(Γ (t)), the following must hold.

�

u(x, t)t +∇u(x, t)
∂ x
∂ t

�

x∈Γ (t)
= 0. (2.4)

The term xt =
∂ x
∂ t for x ∈ Γ (t) is the velocity of the curve. The curve has

no density because it only represents a shape or boundary of a domain.
Hence, the only component of the velocity that influences the movement
is the normal component. We define #»n (x) to be the vector field pointing in
the outward normal direction for all level curves and the positive direction
of speed to be inwards. Hence, the velocity for the zero level curve xt must
be

xt = (
#»v (x, t) · #»n)#»n = −vn

#»n , for x ∈ Γ (t). (2.5)

We can also see from (2.1)-(2.3) that the gradient of u(x, t) at the curve
Γ (t) is always pointing in the direction of the normal vector of Γ (t), #»n .
Thus we can write the normal vector for all x ∈ D as

#»n (x) =
∇u(x, t)
|∇u(x, t)|

. (2.6)

Inserting (2.5) and (2.6) into (2.4), yields
�

u(x, t)t − vn|∇u(x, t)|
�

x∈Γ (t)
= 0,

which extended to the entire domain is the level set evolution equation.
The level set evolution equation

ut − vn |∇u|= 0 (2.7)

8 E. Steen: Reconstructing Curves from Sampled Data

We constructed this partial differential equation to let the curve, Γ (t), flow
in the velocity field, #»v (x, t). We set no restrictions on the rest of the higher
dimensional function, u(x, t). However, we see that we could have repro-
duced the calculations for any other iso-value of u(x, t) by defining

u(x, t)< k for x ∈ Ωk(t),
u(x, t) = k for x ∈ Γk(t),
u(x, t)> k for x ∈ D \Ωk(t).

and differentiating the iso-curve with respect to time. Since the right-hand
side, k, is only a constant, this would make no difference to the resulting
PDE. Consequently, we see that both the zero iso-contour and the entire
function u(x, t) are transported in the velocity field #»v (x, t).

We will now show that this implicit formulation yields the same solution
as explicitly tracking the curve in the given velocity field. S. Osher and J.
Sethian proposed the strategy in the paper [5], which introduced level set
methods. Given a parametric curve with a specified speed, we can track its
position through the equations of motion. These equations can be refor-
mulated to yield an implicit formulation identical to the general level set
equation.

2.1.2 Explicit Derivation

We begin with a closed initial curve, Γ0, that moves along the normal direc-
tion with speed vn = vn(x, t) for x ∈ Γ . Given a non-zero velocity, the curve
evolves and we let Γ (t) be the set of curves for t ∈ [0,∞]. In an explicit
formulation, every curve Γ (t) can be parameterized by a variable s ∈ [0, S].
Let the parameterized position vectors be denoted C(s, t) = (x(s, t), y(s, t))
for every curve in Γ (t). Now, for a fixed s = s∗ this can be viewed as the
Lagrangian perspective, following a certain particle moving with speed vn.
Fixing the time t = t∗ yields the parameterized curve C(s, t∗) = Γ (t∗).

The tangent vector field of the curve,
#»
T (C) comes easily from the param-

eterization by derivation with of x and y respect to s:

#»
T (C) =

�

xs

ys

�

.

Since the unit normal is orthogonal to the tangent, we write it as

#»n (C) =
1

Æ

x2
s + y2

s

�

ys

−xs

�

. (2.8)

Chapter 2: Background Theory 9

We now get the equations of motion for a curve moving with a known
speed, vn, in the normal direction,

C(s, t)t =
�

x t

yt

�

= vn
#»n =

vn
Æ

x2
s + y2

s

�

ys

−xs

�

. (2.9)

The function C : [0, S]× [0,∞)→ R2 forms a continuous mapping from
(t, s)→ (x , y). The Jacobi matrix of this mapping is defined by the relations

d x = xs ds+ x t d t,
d y = ys ds+ yt d t.

In matrix form, this is written as follows
�

d x
d y

�

= J ·
�

ds
d t

�

=
�

xs x t

ys yt

�

·
�

ds
d t

�

. (2.10)

The determinant of the Jacobi matrix, called the Jacobian, is

|J |= xs yt − x t ys = vn

−x2
s − y2

s
Æ

x2
s + y2

s

= −vn

Æ

x2
s + y2

s , (2.11)

where we have used (2.9) for the relation between (x t , yt)→ (xs, ys).

As long as the Jacobian is non-zero at a given point, the inverse function
theorem [13] claims that there exists an inverse mapping locally around
the point. That is the case here as long as the normal speed, vn, is non-zero
and the parameterization is chosen to avoid xs = ys = 0 simultaneously.

Hence, there locally exist an inverse mapping C−1 : (x , y) → (t, s) and
consequently a relation t = f (x , y). An example of how the function f can
look is displayed in Figure 2.2. Here we can see that this function is well
defined if a curve does not cross the same spatial point more than once.
If the speed function is continuous and non-zero, this is fulfilled. Then the
function f (x , y) can be used to implicitly describe the set of curves Γ (t)
by its iso-contours.

Using this, we can transform (2.9) into a PDE governing the motion of the
curve, as shown in the following proposition.

Proposition 2.1. The inverse mapping t = f (x , y) must satisfy

v2
n(f

2
x + f 2

y) = 1, (2.12)

for a non-zero vn ∈ C0.

10 E. Steen: Reconstructing Curves from Sampled Data

0.5 1 1.5

1
0

10

16

14

12

12

10

10

8
8

6

6

6

4

4

4

2

2 2

2
0

0
0

0

0

x
y

t

Figure 2.2: An example of the function t = f (x , y) for some curves in the
set Γ (t). The contours of f (x , y) represents the curves and the value of f
represents the time at which the curves occurred.

Proof. The derivative d t, can be written in two ways.

d t = t x d x + t y d y, (2.13)

d t =
1
|J |
(ysd x − xsd y). (2.14)

The equation (2.13) is the total derivative, and (2.14) comes from (2.10)
solved for d t. By comparing (2.13) and (2.14) we get that the terms in
front of d x and d y have to be equal and thus

t x =
ys

|J |
, t y = −

xs

|J |
. (2.15)

Moreover, using the relation between the Jacobian and the normal velocity
from (2.11), we get

f 2
x + f 2

y = t2
x + t2

y =
y2

s + x2
s

|J |2
=

1
v2

n

.

The partial differential equation (2.12) can be solved for (x , y, f), where
t = f (x , y) is the time the curve passed a spatial point (x , y). We can see
from (2.15) that all the information needed to solve (2.12) is possible to

Chapter 2: Background Theory 11

obtain from the given parameterization of the initial curve. Hence, we can
find the entire three-dimensional surface described by f (x , y) = t only
from its boundary where f (x , y) = 0. We now prove that the solution of
(2.12) yields the same solution as the level set evolution equation (2.7).

The trick to reformulate this into an implicit formulation, as we did for
the implicit derivation, is to define a higher dimensional function u(x, t)
satisfying (2.1)-(2.3). The level curves of this function is defined by con-
stant values of u(x, t), and t = f (x , y) as before. In two dimensions,
u= u(x , y, f (x , y)) and since the level curves have constant values,

0=
du
dx
= ux + ut fx ,

0=
du
dy
= uy + ut f y .

Solving for fx and f y , we directly get the relations

fx =
−ux

ut
, f y =

−uy

ut
. (2.16)

Inserting (2.16) into (2.12), the PDE governing the motion of the level
curves is u2

t = v2
n(u

2
x + u2

y) and taking the square root yields

ut = ±vn(u
2
x + u2

y)
1/2 = ±vn|∇u|,

where the sign decides the direction of propagation.

Because u(x, t) is defined to be negative inside the curve, decreasing u(x, t)
means outward propagation of the zero level curve, Γ (t). Look at Figure 2.3
for reference. Previously, we defined positive speed as inward-pointing. It
follows that the higher dimensional function must increase, and we conse-
quently choose the positive sign. Had either positive velocity been defined
outwards, or the level set function been positive inside by definition, we
would choose the negative sign. Hence, we see that the sign is only a ques-
tion of definition.

The resulting equation is the level set evolution equation we found earlier:

ut − vn|∇u|= 0.

2.1.3 Distance- and Curvature-Dependent Speed

In the modeling aspect of this thesis, which will be discussed in Chapter 3,
we want the level set velocity to transport a curve towards a set of sam-

12 E. Steen: Reconstructing Curves from Sampled Data

u(x, t)|t=t∗

θ

vn

Figure 2.3: A cross section of a level set function u(x, t)satisfying (2.1)-
(2.3). When u(x, t) increases, the zero level curve moves with a speed vn
inwards.

pled points, V. We define the point set to be V = {vr}, r = 1,2, . . . R, where
vr ∈ R2 are coordinates of the sampled curve and R is the number of mea-
surements taken. The normal velocity, vn, from before, will for this case,
both be dependent on the curvature, κ(Γ (t)), and a constant distance func-
tion d(x;V). The distance function, d(x;V), expresses the distance from
any point x ∈ D to the set of sampled points, V. This function will be fur-
ther discussed later, but for now, we only need to know that it is constant
and well-defined on the entire domain.

We will now see that all the derivations above holds also for the distance-
and curvature-dependent velocity function, vn = vn(d(x;V)|x∈Γ (t),κ(Γ (t))).
The distance function, d(x;V), is constant in time even though it is spatially
dependent. The distance function on the curve d(x;V) for x ∈ Γ (t) will
therefore vary in time, but be independent on the curve’s shape. It is thus on
the same form as the velocity in the derivations above; vn(d(x;V)|x∈Γ (t)) =
vn(x, t).

The curvature is, however, dependent on the shape of the curve and we
need to express it as a function of the parameterized curves C(x(s, t), y(s, t)).
Otherwise (2.12) will not be solvable given an initial curve C(x(s, 0), y(s, 0)).
The curvature is defined do be the divergence of the normal vector, #»n (C),
[14] and using (2.8) it can be written as

κ(C) =∇ · #»n (C) =
yss xs − xss ys

(x2
s + y2

s)
3
2

. (2.17)

We see that all terms in (2.17) comes from the parameterization. Conse-
quently, the equation (2.12) can, given an initial parameterized curve, be

Chapter 2: Background Theory 13

−1 0
1

2−1

0

1
0

1

−0.2 0 0.2 0.4 0.6 0.8 1

Figure 2.4: A three-dimensional function with two zero iso-contours plot-
ted in solid lines and one contour with value of 0.4.

solved for (x , y, f) even with curvature- and distance-dependent speed.

It follows that the level set evolution equation is

ut − vn(κ(u), d(x;V))|∇u|= 0.

The curvature as a function of the higher dimensional function comes from
taking the divergence of the normal vector of the level curves defined in
(2.6), and is written

κ(u) =
−ux xu2

y + 2ux yuxuy − uy yu2
x

(u2
x + u2

y)3/2
. (2.18)

We have now found a way to model a curve influenced by a velocity field
that could be curvature- and distance-dependent. We conclude this general
discussion of level set methods with some notes concerning the implicit
formulation compared to an explicit tracking of the curve.

When the curve is described implicitly as a level curve, an advantage is that
merging and splitting come naturally and do not need specific implementa-
tion. Take, for example, the function in Figure 2.4, which has two separate
zero iso-contours, but only lowering the function by 0.4 merges the two
contours into the single dashed iso-contour. So, merging of two separate
iso-contours can be performed simply by lowering the higher dimensional
function. Also, oppositely, if the shape of the higher dimensional function
allows it, elevating the function could split a curve.

14 E. Steen: Reconstructing Curves from Sampled Data

One drawback to the level set method is that instead of solving the equa-
tions of motion for the curve, we increase the complexity when we solve
the general level set equation, (2.7), for the entire domain. It is only the
curve that is relevant for the solution, and the shape and value of the higher
dimensional function are irrelevant.

It is theoretically justified in [15] and [16] that the evolution of the curve is
not dependent on the shape of the higher dimensional function as long as
the zero level set is untouched. Calculations performed on the parts of the
domain not containing the zero level set are thus wasteful. For this reason,
it has been developed local level set methods that only solve the PDE in a
layer around the curve. We refer to [17] for details and implementation of
a local level set method.

2.2 Distance Functions

We have now presented the idea behind the general level set method. In the
discussion, it was said that the shape of the higher-dimensional function,
u(x, t), was insignificant to the shape and motion of the curve. In theory,
this is true, but we will see that some properties are favorable, and as it
turns out, a signed distance function is a natural choice of a higher dimen-
sional function. This section will present the unsigned and signed distance
function and justify why the signed distance is a natural level set function.

We begin with the unsigned distance function, which is everywhere the
euclidean distance to an object. This is the standard distance function, but
it is called the unsigned distance function in order to separate it from the
signed distance function.

Chapter 2: Background Theory 15

Definition 2.1 (distance function). [18] A distance function, applied to a
point set, V = {v1,v2, . . .vR} for v ∈ R2, yields the minimal euclidean distance
from all spatial points x ∈ R2 to the point set. Thus d(x;V) is defined as

d(x;V) =min
v∈V
‖x− v‖2. (2.19)

When the function, d, measures the distance to a curve, Γ , it is denoted d(x; Γ)
and defined as

d(x; Γ) = inf
xΓ∈Γ
‖x− xΓ‖2. (2.20)

The norm ‖x− v‖2 is positive for all input x and v, and thus the distance
function is globally positive, or unsigned.

The distance function can be computed to an arbitrary point set or curve,
and the notion of a distance function makes intuitive sense. Solving the
minimization problem can be time consuming, but as long as V 6= ; or
Γ 6= ;, d(x, ·) is uniquely defined everywhere.

Furthermore, as long as there exists a well defined closest point, the gra-
dient of an unsigned distance function |∇d(x; ·)| = 1 everywhere ∇d is
defined. However, the gradient ∇d is not defined where x is equidistant
from at least two points in V or Γ , and when d(x; ·) = 0 [18].

We denote the signed distance function as ud(x; Γ). The function ud(x; Γ)
can only be applied to curves, or surfaces in general. It is a distance func-
tion that also provides information about whether or not a spatial point x
is inside or outside the curve. It follows that we need information about
where the inside and outside of the curve are to construct such function.
Note that the inside can be established for a closed curve without prior
knowledge, but this is not true for non-closed curves.

Definition 2.2 (signed distance function). In a domain, D, including a
closed region, Ω, with surface or boundary, Γ , the signed distance function
ud(x; Γ) is defined as

ud(x; Γ) =

¨

d(x; Γ) if x ∈ Ω,

−d(x; Γ) if x ∈ D \Ω.

The signs are exclusively a question of definition and could as easily be de-
fined oppositely. What is convenient about this definition is that the signed

16 E. Steen: Reconstructing Curves from Sampled Data

Ω

ud = −d

ud = dud = d

ud(x)
d(x)

Figure 2.5: A cross section of the signed distance function, ud(x), and the
(unsigned) distance function, d(x), applied to a closed curve Ω.

distance function satisfies the conditions (2.1)-(2.3) concerning the higher
dimensional level set function, u(x, t). A picture showing both the signed
and unsigned distance function together can be viewed in Figure 2.5.

In addition to being qualified as a level set function, the signed distance
function ud(x; Γ) is a natural choice for the following reasons. First of all, it
can be constructed easily from any initial curve, Γ0, because signed distance
functions are uniquely defined by their zero level set.

Since the distance function d(x, Γ) has the property of |∇d|= 1, the signed
distance function ud(x, Γ) inherits the same property, |∇ud | = 1, through
the definition. However, the gradient ∇ud(x; Γ) is defined also for x ∈ Γ ,
which can be seen from Figure 2.5.

The property of the gradient is desirable in the level set equation (2.7)
because the absolute value of the gradient decides the sensitivity of the
higher dimensional function. The sensitivity can be seen in Figure 2.3 by
observing that the gradient of the higher dimensional function decides the
angle, θ , between the curve and the x-axis (or (x , y)-plane in R2). The in-
ward velocity vn ∼ cos(θ), which means that when the gradient increases,
α increases and the velocity vn decreases. Hence, if the level set function
is a signed distance function, the sensitivity is constant over the domain,
and a constant lifting leads to a constant inward velocity.

Chapter 2: Background Theory 17

2.3 Gradient Flow and Derivatives of Domain
Integrals

The motivation behind this section is to introduce gradient flow, an opti-
mization strategy used to model the general level set equation (2.7) to a
specific application. The gradient flow equation applied to the level set
method relies on transformations produced by velocity fields and their
corresponding derivatives. We will briefly go through the background for
derivatives of domain integrals and we end this section with a useful result.

We ease into this subject by explaining the concept of gradient flow and
its relation to the level set equation. We remember the level set equation
ut − vn|∇u|= 0, where the normal speed, vn, is extended from the desired
speed of the zero level curve. We now want to derive this speed function
to get a curve fulfilling the objective of this thesis; a curve with low cur-
vature, approximating a set of sampled points. Hence, the velocity field
should have a normal component that gradually deforms an initial curve
until we reach a stationary situation where the objective is fulfilled. In or-
der to construct the velocity function, we must mathematically define our
objectives. By defining the desirable properties as measurable quantities,
we can use optimization to find an optimal solution.

We approach the problem inspired by physics, introducing an energy func-
tional measuring the potential energy of the curve through some properties
we want to minimize. We use the notation from Section 2.1, where Ω(t)
denotes the area bounded by the curve, Γ (t). We define a general energy
function, J , for a domain, Ω(t), bounded by the curve, Γ (t), as

J(Ω(t)) =

∫

Ω(t)

f (x)dΩ+

∫

∂Ω(t)

g(x)dS, (2.21)

where f and g are the measurable quantities of the curve we want to con-
trol.

If we still follow the physical way of thinking, the natural state will min-
imize the potential energy field, and if not affected by other forces, this
state will be stationary. The flow in a potential energy field will always
move toward the fastest falling potential energy, and the same idea holds
for gradient flow.

Gradient flow is a continuous version of the well known gradient descent
method, also known as the steepest descent method. For an optimization

18 E. Steen: Reconstructing Curves from Sampled Data

X

x(t;X)

Ω0

Ωt = Tt(Ω)

#»v

Figure 2.6: A transformation, Tt , of a domain Ω0 → Ωt by flowing in a
velocity field #»v over a time t. The function x(t;X) describes the path of a
material point X moving in the velocity field.

problem on the form x∗ = argminx h(x), given an initial guess x0, we im-
prove the solution by following the motion in negative gradient direction,
xt = −∇h(x).

We go back to the energy function, J(Ω). We want to decrease the energy
functional by deforming the domain, which leads to a change in the inte-
gration domain, Ω. We have that, unlike h(x), the input is not a coordinate
in R2, but a domain of integration, Ω ⊂ R2. In order to choose the optimal
deformation to minimize the energy, we need to formulate how the energy
changes when Ω is deformed. We define this change as the derivative of J
and denote it dJ(Ω).

We assume that a domain, Ω, is a bounded, open set in R2 with a bound-
ary Γ = ∂Ω. A change in the domain into some Ωt can be described by a
transformation T t(Ω) = Ωt . The velocity method is about describing the
domain as a continuum of points where all points are flowing in a velocity
field, #»v , which perturbs the shape of the domain. The transformation is
thus driven by the velocity field. Look at Figure 2.6 for reference.

We consider a material point X, moving under the influence of a velocity
field, #»v (x , t). The trajectory of the material point, X, in Eulerian coordi-
nates is denoted x(t;X), and will follow the velocity field, #»v (x , t). From
this, we get the differential equation for the movement of the material
points

dx
dt
(X, t) = #»v (x(t;X), t), x(t;X) = X, t ≥ 0.

Chapter 2: Background Theory 19

The transformation, T t , moves the material points along their trajectories
given by the velocity field, which mathematically can be formulated as

X 7→ T t(X; #»v) = x(t;X).

For the domain, Ω, the transformation moves all material points in Ω along
their respective trajectories. The time t in the transformation, T t , repre-
sents how long we move along the trajectories. This means that T 0(Ω) = Ω,
or in other words, T 0 = I . When t 6= 0, the total shape transformation of
Ω along a velocity field, #»v , is denoted as follows

Ωt(#»v) = T t(#»v)(Ω) = {T t(X; #»v), ∀X ∈ Ω}.

We have now presented the notation we need to introduce derivatives of
domain integrals. The following proposition and the proof can be found in
a more general version in the book "Introduction to Shape Optimization"
Section 2.31 and 2.33 by J. Sokolowski and J. Zolesio [19]. See also Lemma
2.1 in the paper by Claisse and Frey [12].

Proposition 2.2. Let Ω(t) be a smooth domain in R2 bounded by the bound-
ary curve Γ (t). Define the functions f (x) ∈ W 1,1(R2) and g(x) ∈ W 2,1(R2)
not dependent on the domain of integration, Ω(t). Define the functions J1

and J2:

J1(Ω(t)) =

∫

Ω(t)

f (x)dΩ,

J2(Ω(t)) =

∫

Γ (t)

g(x)dS(Γ).

Let the integration domain, Ω(t), be transformed under the velocity field
#»v (x , t) ∈ C0. The derivatives of J1 and J2 with respect to the integration
domain at a fixed time t = t∗ is

dJ1(Ω(t
∗), #»v (t∗)) =

∫

Γ (t∗)

f (x)(#»v (t∗) · #»n)dS(Γ), (2.22)

dJ2(Ω(t
∗), #»v (t∗)) =

∫

Γ (t∗)

� ∂

∂ #»n
g(x) + κ(x)g(x))(#»v (t∗) · #»n

�

dS(Γ).

(2.23)

20 E. Steen: Reconstructing Curves from Sampled Data

Now, returning to gradient flow, we need to find the direction of #»v (x , t)
from Proposition 2.2 that maximizes dJ(Ω(t)) and then move in the op-
posite direction. Since the gradient is dependent on the inner product
#»v (t) · #»n , the direction of maximal derivative is when #»v (t) is parallel to #»n .
For the general energy function, J(Ω), this means that the curve velocity
Γt following gradient flow will have speed

Γt = −vn
#»n Γ = −(f (x) + κ(x)g(x) +

∂

∂ #»n
g(x))#»n Γ . (2.24)

Hence, we can find the optimal curve speed by defining the functions f (x)
and g(x). This yields a flexible approach for modeling the general level set
method, which will be useful in the following chapter.

Chapter 3

Modeling

We have now introduced the general level set method with curvature- and
distance-dependent flow. However, we have not yet defined a velocity func-
tion to approximate the zero level curves to a set of points. Nevertheless,
we have seen that if we can describe the desired properties of our curve
through an energy function, we can move the curve in the steepest descent
direction. As a result, the curve approaches an optimal curve for the de-
fined properties using the gradient flow formulation. This chapter describes
how to formulate reasonable energy functions and combine the gradient
flow theory with the level set method. We use this to derive three specific
models.

We saw in Section 2.3, that the optimal velocity function (2.24) is given
by the functions f (x) and g(x). Defining these functions is the modeling
aspect of the problem. In our case, the curve should approximate a set
of points as close as possible while having low curvature. Consequently,
we need to define the functions f (x) and g(x) to be measures of distance
and curvature. In general, a minimal curve has the property of having zero
mean curvature [20]. Thus we define g(x) = 1. It follows that the gradient
in the normal direction ∂ g

∂ #»n = 0.

The models we derive in this chapter have three different choices of distance-
dependent velocity functions, which we denote fp(d(x;V)), p = 1, 2,3. We
define a potential energy function, E, on the same form as (2.21) but in-
cluding a weighting parameter α ∈ [0, 1] such that the smoothness of the

21

22 E. Steen: Reconstructing Curves from Sampled Data

curves can be adjusted. We define it as

E(Ω) = α

∫

Ω

fp(d(x;V))dΩ+ (1−α)
∫

∂Ω

1dS. (3.1)

We remember from the introduction to gradient flow that we want to min-
imize the energy function. We observe already now that if fp(d(x;V)) > 0
for all x, this energy function is positive everywhere and the optimal curve
is the trivial zero solution Γ (t) = ∂Ω = ;. We are not interested in the
trivial solution, and we need to be aware of this when we construct appro-
priate distance measures fp(d(x;V)).

Now, as presented in Section 2.3, we minimize the potential energy func-
tion (3.1) using gradient flow, and for that, we need to find the gradient,
dE, of E. We apply the differentiation formulas (2.22) and (2.23) from
Section 2.3 for the two terms of E. The resulting derivative is

dE(Ω, #»v) =

∫

Γ

�

α fp(d(x;V)) + (1−α)κ(u)(#»v (t) · #»n Γ)
�

dS.

Going in the direction of negative directional derivative means moving the
curve with speed Γt defined in (2.24). Inserted for f and g, we obtain

vn = α fp(d(x;V)) + (1−α)κ(u). (3.2)

We get a level set model for a curve with minimal curvature and minimizing
a function of the distance to a point set, by inserting the normal speed
function (3.2) into the general level set method (2.7).

Generalized level set model

ut = |∇u|(α fp(d(x;V)) + (1−α)κ(u)) (3.3)

In the following, we will introduce the three distance-dependent functions,
fp, and the resulting models. Then, we will, for all models, perform some
one-dimensional analysis to get a grasp of the theoretical behavior of the
models.

3.1 Model 1

Model 1 is essentially the model proposed by Claisse and Frey [12]. They
introduced a distance-dependent function that were linearly dependent on

Chapter 3: Modeling 23

an unsigned distance function to the point set. For this reason we begin by
looking at a function

f̂1(d(x;V)) = d(x;V).

As stated above, a distance-dependent function that is positive everywhere
would yield no optimal curve satisfying dE(Ω) = 0, except for the trivial
zero solution. Also, for the attraction term defined above, we see from (3.2)
that even when the curve is inside the point set, the velocity would have
direction inwards. A natural choice to avoid this is to define the distance
to be negative inside the point set. This yields a curve moving outwards
when inside the point set.

This brings us to an interesting question. How do we determine what is
on the inside or outside of a set of points? When we discussed the signed
distance function, the distance was related to a closed curve with a defined
inside. When there are only points, we must somehow draw the border
between the inside and outside. This border is a closed curve.

We denote the constructed closed curve as CV , and the signed distance to
that curve, ud(x;CV). Assuming that we can construct such a curve, we
define the distance-dependent velocity as

f̃1(d(x;V)) = ud(x;CV). (3.4)

The signed distance function may seem like a nice solution. Outside CV , the
curve, Γ (t), is pulled inwards by (3.4), and oppositely it is pulled outwards
if inside CV . With no curvature-dependent term, we would expect a final
curve exactly equal CV .

The problem is that we are looking for a curve that can approximate any
set of points without assumptions on the structure of the sample points.
Without information about the connections between the data points, we
cannot construct, for instance, a polygon from the data points. This would
otherwise have been a natural choice.

Hence, because (3.4) do not correspond well with the assumptions for the
thesis, we approach the problem differently. With no information about
the configuration of points, we go back to the unsigned distance function
applied to our point set d(x;V). At all points x ∈ R2, d(x;V) provides the
distance to the closest sampled point in V. Now the speed is decided by the
distance to the closest point, and we want to construct a sign functionσ(x)
to give the attraction the right direction. The distance function, d(x;V),
makes no assumptions on V and neither should σ.

24 E. Steen: Reconstructing Curves from Sampled Data

Figure 3.1: For a point set V = v1,v2,v3, the lines divides the space into
segments where vr is the closest sample point. These lines divide the curve
Γ into line segments Γr which should be drawn towards vr.

To construct the sign function, recognize that the only movement we are
interested in is the movement of the zero iso-contour and the sign function
only needs a reasonable sign at that curve. We can thus turn the problem
around. Rather than checking if the curve is inside the point set, we detect
whether or not the sampled points are outside the zero level curve. The
curve, Γ (t), is closed and must consequently have a meaningful inside and
outside. In addition, by construction the sign of u(x, t) is negative inside
Γ (t) and oppositely positive outside as seen in (2.1)-(2.3). Hence, we can
use the sign of u(x, t) to detect which side of the curve a sample point is
on.

Using this, we construct the sign function, σ(x, t), for a fixed t = t∗ as
follows. Look at Figure 3.1 for reference. Denote the rth sample point in V
as vr , r = 1,2, . . . R. Divide the curve, Γ , into segments denoted Γr where vr

is the closest sample point for all x ∈ Γr . Now, to move the curves to their
closest point, we define a sign function fulfillingσ(Γ (t∗)r) = sgn(u(vr , t∗)).
We can extend this function to all points in the domain by dividing D into
sectors which in the implementation will be denoted as the cohort of vr .
These sectors consist of all spatial points that has vr as the closest sample
point. The extended σ(x, t) is thus defined as

σ(x, t) = sgn((u(vr(x), t))), vr = argmin
v∈V

(‖x− v‖2). (3.5)

Using the above, we get a distance-dependent speed, drawing the curve

Chapter 3: Modeling 25

towards the closest sample point at all times:

f1(d(x;V)) = σ(x, t)d(x;V). (3.6)

The full model is obtained by inserting (3.6) into the general curvature-
dependent model (3.3):

Model 1

ut = |∇u|(ασ(x, t)d(x;V) + (1−α)κ(x)), α ∈ R (3.7)

Remark:The way σ(x, t) is defined in (3.5) violates the assumptions in
Proposition 2.2 and we cannot find dE1 using the proposition. The sign
function makes f discontinuous which makes the velocity discontinuous.
This was not mentioned by Claisse and Frey [12] in their Lemma 2.1, which
as we read it must have the same issue.

As we will see later, this does not damage the numerical results. The dis-
cretization makes the velocity discontinuous in any case. Thus, as long
as the grid size is bounded away from zero, the discontinuity is not de-
tectable. When the grid size is is bigger than some bounding ε > 0, one
can construct a smooth function, σ̃, connecting σ = 1 and σ = −1 with
a bounded derivative which is in L1. The resulting velocity is continuous,
and the discretization cannot separate σ from σ̃. However, this is not an-
alyzed fully, since the discrepancy between the theory and the model was
realized rather late in the process.

3.1.1 Radially Symmetric Analysis

We now reduce the situation down to a radially symmetric setting, and
we perform some simplified analysis of the energy function. The setup can
be viewed in Figure 3.2, where we have a circular curve Γ (t) with radius
rΓ (t) and center at the origin. The point set, V, is also distributed circularly
around the same center and with radius rv. Furthermore, we assume that
the density of the point set is so high that we can approximate the set of
points as a continuous curve denoted ΓV .

Because of the symmetry and the high-density assumption, there are no
spatial discontinuities because the entire curve is either inside or outside
the point set. The resulting σ(x, t) = sgn{rΓ (t)− rv} is constant in space
but still time-dependent. Now the energy function, E, is only a function of

26 E. Steen: Reconstructing Curves from Sampled Data

r v
+ d

r v

Γ (t)

ΓV

Figure 3.2: A radially symmetric set up with a point set, ΓV , and curve,
Γ (t) centered around the origin with radii independent of the angle with
respect to the x-axis.

rΓ (t) and is written

E(rΓ) = sgn{rΓ − rv}α
∫ rΓ

0

(r − rv)2πr dr

︸ ︷︷ ︸

E1

+(1−α) · 2πrΓ
︸ ︷︷ ︸

E2

,

E(rΓ) =

2πα
�

r3
Γ

3 −
r2
Γ rv

2

�

+ 2π(1−α)rΓ if rΓ ≤ rv,

α

�

2πr3
v

3 + 2π
�

r3
Γ

3 −
r2
Γ rv

2

��

+ (1−α)2πrΓ if rΓ > rv.
(3.8)

Note that if we introduce a physical unit for r, for instance, meters (m), we
must add a scaling parameter to E1 and E2 to get a meaningful total energy.
The total energy function is displayed in Figure 3.3b with its separate terms
displayed in Figure 3.3a for specific parameters α= 0.85 and rv = 1. Here,
we see that the energy function does obtain a minimum besides the trivial
solution, and it is the global minimum. Note also that the minimum is not
rΓ = rv, but inside the point set, where rΓ < rv.

Method of characteristics

A scalar hyperbolic conservation law is a PDE that can be written in the
form

ut +∇ · (f (u)) = 0, (3.9)

where f = (f1, . . . , fm) and x = (x1, . . . , xn)[21]. The model (3.7) is not
a hyperbolic conservation law in the general two-dimensional case be-

Chapter 3: Modeling 27

0.2 0.4 0.6 0.8 1 1.2 1.4

−2

2

4

6

8

E1(r)

E2(r)

rv

r

(a) The separate energy terms

0.2 0.4 0.6 0.8 1 1.2 1.4

1

2

3

rv

r

E(Ω(r))

(b) Total energy function

Figure 3.3: The potential energy function for model 1 (3.8) in the radially
symmetric situation with α= 0.85 and rv = 1.

cause the curvature term is parabolic. However, in the one-dimensional
case and the radially symmetric situation the model is hyperbolic. In the
one-dimensional case, this is so because the curvature is zero, so we look
instead further into the radially symmetric case.

The setup is the same as in the calculations leading up to (3.8), and is
shown in Figure 3.2. For both V and Γ being circles with the same center,
the distance d(r;V) = |r − rv| and the curvature of a circle is known as

κ(r) =
1
r

. (3.10)

The term |∇u| can be expressed in terms of r through a simple change of
variables:

r =
p

x2 + y2

=⇒
dr
d x
=

x
p

x2 + y2

=⇒
dr
d y
=

y
p

x2 + y2

|∇u|=
q

u2
x + u2

y =

√

√∂ u
∂ r

dr
d x
+
∂ u
∂ r

dr
d y

=⇒ |∇u|=

√

√

√
u2

r

x2 + y2
(x2 + y2) = ur , if ur ≥ 0. (3.11)

28 E. Steen: Reconstructing Curves from Sampled Data

Inserting (3.10) and (3.11) into the model equation in (3.7), we get

ut = ur vn = ur

�

ασ(t)|r − rv|+
(1−α)

r

�

. (3.12)

We now have a conservation law on the form (3.9) for r. Because the PDE
is now only dependent on the radius, the total derivative of u(r(t), t) with
respect to time is

du
dt
= ut + ur rt . (3.13)

We want to investigate how the curve moves in time. The value of u(x, t)
is by definition constant at the curve because it is the zero level curve.
Moreover, the PDE can be simplified further at the curve since the sign
function changes at the point when rΓ = rv. Hence, σ(t)(|rΓ − rv|) = (rΓ −
rv). The simplified PDE on the zero level curve is now

ut = ur

�

α(r − rv) +
(1−α)

r

�

for r = rΓ (t). (3.14)

Since u(r(t), t) is constant at the level curves per definition, du
dt = 0, so we

set the left hand side of (3.13) equals zero and get

ut = −ur rt . (3.15)

By comparing (3.15) with (3.12), we see that

rt = −vn = −
�

ασ|r(t)− rv|+
(1−α)

r(t)

�

, (3.16)

where r(t) is the radius for a single iso-contour which moves in time. We
will call the trajectories of the curves following (3.16), the streamlines for
the solution. First, we want to analyze how the zero level curve moves
given an initial radius, r0. We compare (3.14) and (3.15) to obtain the
ODE for the streamline of a zero iso-contour

rt = −
�

α(r(t)− rv) +
(1−α)

r(t)

�

for r(t) = rΓ . (3.17)

The equation (3.17) is a separable equation, and the solution is an implicit
function of r(t),

ln(α(r(t)2 − rv r(t)− 1) + 1)−
2
p
α rv tan−1

�

p
α(rv−2r(t))p

4−α(r2
v+4)

�

p
4−α(r2

v+4)

2α
= −t + C , (3.18)

Chapter 3: Modeling 29

(a) α= 0.96 (b) α= 0.99

Figure 3.4: Streamlines for zero level set curves with initial radius r0,
following the ODE (3.17). The point set, ΓV has radius rv = 0.5.

where the constant, C , is decided from the initial conditions, t = 0, r = r0

as follows

C =
ln(α(r2

0 − rv r0 − 1) + 1)−
2
p
α rv tan−1

�

p
α(rv−2r0)p
4−α(r2

v+4)

�

p
4−α(r2

v+4)

2α
. (3.19)

We see the streamlines following (3.17) in Figure 3.4. It is important to
notice that these are only streamlines for zero level curves given an initial
radius, r0.

We can also construct a general characteristic field for a situation with a
fixed α, a point set radius rv and initial radius, r0 by solving (3.16). First
we look at the term σ(t)d(r)with a given radius of the zero level set curve
rΓ :

σ(t; rΓ)d(r) = |r − rv| when rΓ (t)≥ rv, (3.20)

σ(t; rΓ)d(r) = −|r − rv| when rΓ (t)< rv. (3.21)

Using this, we can write (3.16) in terms of rΓ as

rt = −
�

α|r(t)− rv|+
1−α
r(t)

�

when rΓ (t)≥ rv, (3.22)

rt =
�

α|r(t)− rv| −
1−α
r(t)

�

when rΓ (t)< rv. (3.23)

30 E. Steen: Reconstructing Curves from Sampled Data

The only thing we need in order to make the full characteristic field is to
find the time when rΓ = rv, which can be found from (3.18) and (3.19).

This is done in Figure 3.5 for a curve starting with r0 = 0.6, with a point
set, V, situated in rv = 0.5 and the weighting α = 0.96. Figure 3.5 is the
total characteristic field for all level curves. We see that the streamlines
stemming from the area around the initial curve moves similarly to the
zero iso-contours in Figure 3.4a, but further away, they differ more and
more. That is because the sign change of σ(r, t) happens more and more
out of sync with when that particular level set falls into the point set. We
see that even though all level curves flow in the velocity field given by vn,
the velocity is only constructed to approximate the zero iso-contour to the
point set.

We also observe in the Figure 3.5 that level curves in a band around the
zero level curve approaches the stationary radius as well. When numerous
level curves approach the same radius, the higher dimensional function be-
comes steeper and steeper. This can cause problems for a numerical scheme
which is sensitive to steep gradients.

Chapter 3: Modeling 31

(a) Streamlines with σ(r, t) = 1 (b) Streamlines when σ(r, t) = −1

(c) Streamlines for all level curves when the zero level set curve, Γ (t) has initial radius,
r0 = 0.6.

Figure 3.5: The two figures on top shows streamlines when the sign func-
tion is σ(r, t) = +1 and σ(r, t) = −1, for a point set with radius, rv = 0.5
and weight α = 0.96. The lowermost figure shows the streamlines fol-
lowing (3.22) and (3.23), when the zero level set curve has initial radius
r0 = 0.6. The sign function σ(r, t) changes sign when rΓ (t) = rv which
for this situation is in t = 0.86.

32 E. Steen: Reconstructing Curves from Sampled Data

Stationary solutions

We now want to examine stationary solutions for the radially symmetric
model in (3.12). In the context of level set methods, the stationary solu-
tion is obtained when the zero level curve is stationary. See for example in
Figure 3.5 that when the zero level curve converges, the iso-curves above
a certain value diverges and the entire function is never stationary. The
stationary zero level curve can be obtained by finding the minima of E(Ω)
or in the radially symmetric situation – finding r f = limt→∞ r(t) given an
initial radius, r0. In other words when rt = 0 in (3.17).

We can see from Figure 3.4 that there are two stationary radii, r f and that
one is stable and the other is unstable. The stable solution is the outermost
of two and is also the radius closest to the point set radius, rv. We observe
further by comparing the streamlines for the possible zero iso-curves for
two different values of α, shown in Figure 3.4a and Figure 3.4b, that the
radii of the stationary curves depends on α. We will now find the exact
relation.

We set rt equal zero in (3.17) and denote the radius where this is fulfilled
as r f . We thus obtain

0= α(r f − rv) +
1−α

r f
.

We multiply with r f /α and obtain a quadratic equation

r2
f − rv r f +

1−α
α
= 0,

which has the solution

r f =
rv

2
±

Æ

r2
v − 4(1−α)/α

2
. (3.24)

First of all, we see that for α = 1, r f = rv. Setting α = 1 is equal to a
velocity field that is only distance-dependent. As expected, the curve will
cover the point set, unaffected by curvature. We also immediately see two
solutions: two stationary radii, located at both sides of r = rv/2. This is
also what we observe in Figure 3.4. From before, we saw that only the
outermost of the two solutions is stable, and the innermost is unstable. If
the curve is located inside the innermost and unstable radius, it will shrink

Chapter 3: Modeling 33

to the zero-solution, Γ = ;. We can from (3.24) further find the minimal α
for which there exists any stationary solution.

When

r2
v <

4(1−α)
α

,

there will be no real solution to (3.24). Solving for α gives the restriction
for the weighting parameter, which is

α≥
4

r2
v + 4

. (3.25)

When α does not fulfill (3.25), the zero level curve will have a velocity
driven mainly by the curvature and with constant direction inwards, which
will drive the radius smaller and smaller, until the circle disappears.

An important result is that when α < 1, meaning whenever the curva-
ture influences the motion, the stationary curve will always be inside the
sampled points. The distance is given by d(r f) = |r f − rv| and inserting
r f from (3.24). We can see the same directly from our velocity function
(3.2). When the curve covers our point set, the distance function is zero,
but κ(r) = 1/rv 6= 0. Hence, the curve still has speed inwards when r f = rv.

Thus we do not minimize both the curvature and distance separately, but
we get a curve weighting the two. The result is a curve with low curvature
close to the point set and high curvature further away.

3.2 Model 2

As seen from the analysis for the first model, the stationary solution for a
circle of dense points would not approach the point set except for α = 1.
Further motivation for a new model came when we ran numerical results.
For example, for three points forming an equilateral triangle, model 1 gave
solutions as displayed in Figure 5.8. There, we see that the curve is flat at
the sample points, and the total shape looks like an opposite triangle with
corners far away from the sample points.

The new model aimed to approximate the equilateral triangle with smooth
corners at the sample points for the same set of points. To generalize, this

34 E. Steen: Reconstructing Curves from Sampled Data

means a model with high curvature close to the sample points and low cur-
vature, approaching straight lines further away. This is similar to smoothed
polygons with the point set as corners.

In order to do so, the distance-dependent function, f2(d(x; V), is chosen to
be inversely proportional to the distance and is defined as

f2(d(x; V) =
σ(x, t)
βd(x) +δ

. (3.26)

Hence f2(d(x; V) is large close to the point set, yielding a stationary solu-
tion of high curvature. Furthermore, the distance-dependent term in the
energy function acts similar to a gravitational field, attracting more and
more the closer to the source. The resulting model is obtained by inserting
(3.26) into the general level set model (3.3).

Model 2

ut = |∇u|
�

α
σ(x, t)
βd(x) +δ

+ (1−α)κ(u)
�

, α,β ,δ ∈ R (3.27)

The parameter δ > 0 avoids the velocity having a singularity at the data
points, and the term β > 0 is a scaling parameter for the distance. With-
out varying the parameter β with the domain size, identical point sets of
different scalings would yield different curves.

3.2.1 Radially Symmetric Analysis

We conduct the same analysis for model 2 as for model 1. Using (3.10) and
(3.11) we rewrite the curvature and gradient to be dependent of r. Using
that d(r) = |r − rv|, we obtain a radially dependent normal velocity

vn =
ασ(rΓ , t)

β(|r − rv|) +δ
+

1−α
r

. (3.28)

Following the procedure for model 1 further, we find that the ODE for
the characteristics/streamlines for the level curves is defined by rt = −vn.
Using (3.20) and (3.21) to rewrite σ(r, t) and by inserting everything into
(3.28), we get the velocity for all level curves with a radius r(t):

rt = −
�

α

β(|r(t)− rv|) +δ
+

1−α
r(t)

�

if rΓ ≥ rv, (3.29)

rt =
�

α

β(|r(t)− rv|) +δ
−

1−α
r(t)

�

if rΓ < rv. (3.30)

Chapter 3: Modeling 35

(a) α= 0.4 (b) α= 0.2

Figure 3.6: Streamlines for the zero level set curve, Γ (t), in the radially
symmetric situation with the point set, V, situated at rv = 0.5 and for the
velocity field depending on the inverse distance (3.28). The remaining
model parameters are β = 1 and δ = 10−2.

We saw for model 1 that the ODEs for the streamlines could be simplified
down to one equation for the zero level curves. Because the small constant
δ is added in the denominator in (3.28), we cannot do the same for model
2. The equations (3.29) and (3.30) for the zero level curve with r(t) =
rΓ (t), is given by the two equations:

rt = −
�

α

β(rΓ (t)− rv) +δ
+
(1−α)
rΓ (t)

�

for rΓ (t)> rv, (3.31)

rt =
�

α

β(rv − rΓ (t)) +δ
−
(1−α)
rΓ (t)

�

for rΓ (t)> rv, (3.32)

which correspond to the two cases where the curve is, respectively, outside
and inside the point set. The streamlines for the zero level curves are dis-
played in a streamline plot in Figure 3.6 for two choices of α. It seems like
there are two stationary radii, one at the point set, which is stable, and one
unstable radius inside the point set.

We investigate the stationary solutions further by solving (3.31) and (3.32)
with rt = 0. The radii fulfilling this must be stationary and is denoted r f .
We begin with (3.31) which yields

¨

r f =
β(1−α)
α+β(1−α)(rv −δ/β),

r f > rv.

36 E. Steen: Reconstructing Curves from Sampled Data

We see that for all choices of α ∈ [0, 1], δ > 0 and β > 0; r f will have to
be smaller than rv. This does not satisfy the constraint r f > rv, and thus
the stationary solution of (3.31) is not feasible. We proceed to look at the
situation where rΓ < rv in (3.32) which has the stationary solution

¨

r f =
β(1−α)
α+β(1−α)(rv +δ/β),

r f < rv.
(3.33)

For the values α = 0.4, β = 1 and δ = 0.01 as in Figure 3.6, we get r f =
0.306 which is the inside rv = 0.5. This must be the unstable stationary
radius. What appeared to be a stable stationary solution in rΓ (t) = rv is
actually a discontinuity. We see this by inserting rΓ (t) = rv:

rt = −
�

α

δ
+
(1−α)

rv

�

for r(t) = rΓ ≥ rv, (3.34)

rt =
�

α

δ
−
(1−α)

rv

�

for r(t) = rΓ < rv, (3.35)

which is non-zero for δ 6= (αrv)/(1 − α). The velocity is very high in op-
posite directions, slightly inwards or outwards of the point set radius, rv.
Thus, if we solve this equation numerically, we could observe oscillations
around the radius of the point set if we use a fixed step size for the numer-
ical time integration.

This oscillating behavior is important to notice. As we now have seen, there
is no guarantee that we obtain a stable stationary solution for all configu-
rations of point sets. Because the sign function is discontinuous and time-
dependent, we can observe temporal discontinuities in the velocity func-
tion. However, since the sign draws the curve in the direction of the point
set, it will still stay at rΓ (t) = rv, and the oscillations will depend on the
size of the time steps.

Furthermore, the oscillations mean that we cannot make a similar stream-
line picture for all level curves for model 2 as we did in Figure 3.5 for
model 1. For model 1, we got that the sign only changed once and the
time of the sign change could be calculated, but for model 2, the sign will
change infinitely fast and infinitely many times.

We thus do not get as much information about model 2 for this radially
symmetric situation. Nevertheless, this is an interesting result because we
have seen that not all point sets for all models yield a stable stationary so-
lution. We have here seen that the zero level curve will stop at the point set
for the provided example, but the requirement that rt = 0 is not fulfilled.

Chapter 3: Modeling 37

3.3 Model 3

As we just saw, model 2 is constructed to have high curvature close to the
sampled points only bounded by the small parameter δ > 0. The idea for
the third model, proposed by Seifu [22], is to still have an inverse relation
to the distance but to bound the distance-dependent function in a more
controlled way. The solution was the arctangent of the inverse distance:

f3(d(x; V)) =
σ(x, t)
π/2

arctan(1/(βd(x; V)))

When d → 0, f3(d)→ 1, and there is no need for the parameter δ to avoid
a singularity. The resulting model is

Model 3

ut = |∇u|
�

ασ(x, t)
π/2

tan−1
�

1
βd(x;V)

�

+ (1−α)κ(u)
�

, α,β ∈ R

(3.36)

Again, we do the same analysis on the radially symmetric example to see
how the model moves the curve, Γ (t).

3.3.1 Radially Symmetric Analysis

We proceed in the in the same manner as for the two previous models.
First, we rewrite the equation from u(x , y)→ u(r), and get

ut = ur

�

ασ(r, t)
π/2

tan−1
�

1
β |r − rv|

�

+
1−α

r

�

. (3.37)

We can further derive the ODE for the streamlines for the zero level curve,
Γ (t), following the procedure presented for models 1 and 2, and obtain

rt =
α

π/2
tan−1

�

1
β(r(t)− rv)

�

+
1−α
r(t)

for r(t) = rΓ (t). (3.38)

Using (3.20) and (3.21) for the sign function σ(r, t) in (3.37), we get the
ODEs for all level curves:

rt = −(α tan−1
� 1
β |r(t)− rv|

�

+
1−α
r(t)

) when rΓ (t)≥ rv, (3.39)

rt = (α tan−1
� 1
β |r(t)− rv|

�

−
1−α
r(t)

) when rΓ (t)< rv. (3.40)

38 E. Steen: Reconstructing Curves from Sampled Data

(a) β = 1 (b) β = 5

Figure 3.7: Streamlines for the zero level set curves, Γ (t), in the radially
symmetric situation for model 3 defined in (3.36) with the point set, V,
situated at rv = 0.5 and with parameter α= 0.9.

Examples of the streamlines for the zero level curves can be viewed in
Figure 3.7. Here we can see that compared to model 2, the velocity near
the point set is not as big, but increasing the value of β yields a more similar
shape for the streamline compared to model 2.

By looking at the streamlines in Figure 3.7 it seems like there are two
stationary solutions. One unstable inside the point set and one stable at
rΓ = rv. To check this, so we set rt from (3.38) equal to zero. We denote
the stationary radius as r f and get

0= α tan−1
�

1
β(r f − rv)

�

+
1−α

r f
. (3.41)

By inserting r f = rv, we can never fulfill (3.41) for rv, α > 0, since

0 6= α+
1−α

rv
.

Similar to model 2, r f gives the unstable stationary curve and rΓ = rv is a
discontinuity.

Chapter 4

Implementation

We have looked at theoretical aspects of the level set method and con-
structed velocity models to reconstruct curves with minimal curvature from
sampled data. The implementation and practical aspects have not been a
subject. This chapter will answer questions concerning the technical im-
plementation, the overall strategy chosen in this thesis, and possible pit-
falls and solutions. The entire code base for the implementation is written
in Python. However, most of this chapter explains logic and algorithms,
which are adaptable to any preferred language.

More concrete, we will discuss the spatial and temporal discretization, suit-
able algorithms for producing the distance function and sign function, and
how to prevent steep gradients from forming through a re-initialization
procedure. We first present an outline of the main algorithm before going
into detail to examine the different steps of the implementation.

Before we discuss this further, we remind ourselves of the three models
we presented in Chapter 3. These are the partial differential equations we
want our program to solve numerically.

ut = |∇u| [ασ(x, t)d(x;V) + (1−α)κ(u)], (4.1)

ut = |∇u|
�

α
σ(x, t)

βd(x;V) +δ
+ (1−α)κ(u)

�

, (4.2)

ut = |∇u|
�

ασ(x, t)
π/2

tan−1
�

1
βd(x;V)

�

+ (1−α)κ(u)
�

, (4.3)

for α ∈ [0,1] and β ,δ ∈ R+.

39

40 E. Steen: Reconstructing Curves from Sampled Data

Initialization

Time integrationUpdate σ(X , t)

Reinitialization

Stopping criterion

Convergence

s steps

Figure 4.1: An overview of the main algorithm. We have an inner loop of
s steps of time integration, before we re-initialize and check for conver-
gence.

4.1 Outline of the Main Algorithm

An overview of the main steps in the implementation is found in Figure 4.1,
where we see that our program consists of three phases. The first phase
is the initialization, where we define all constants and initialize the grid,
the curve, and the higher dimensional level set function. The complete
initialization procedure will be presented in Section 4.2.

Then we have two loops, where we begin with the inner loop consisting
of s steps of time integration followed by updates of the time-dependent
sign function. The time integration procedure will be further explained in
Section 4.3 and the sign update is described in Section 4.4. After s steps
of time integration, the implementation moves to the third phase, which is
the outer loop in Figure 4.1.

The outer loop consists of a re-initialization procedure and a convergence
check. The higher dimensional function is perturbed, and the zero level
curve consequently moved, through the time integration steps. Re-initialization
in this context means substituting the perturbed level set function with
a signed distance function to the zero level curve. We will go detailed
through this in Section 4.5. The stopping criterion checks for a station-
ary curve and decides whether or not the program returns to phase two
for further time integration.

Chapter 4: Implementation 41

4.2 Initialization

4.2.1 Constructing the Mesh

The initialization phase consists of defining all global constants and initial
values for all variables. We start with the mesh used to discretize the spa-
tial domain, D. For this thesis, all the data sets, V, are fabricated test cases,
and the domain has been chosen as D = [−1, 1]× [−1,1]. There several
approaches for constructing a mesh to discretize the domain. When effi-
ciency is essential, adaptive mesh strategies or local methods can be of
use. However, the focus of this project was investigating the behaviors of
the proposed models. Therefore, efficiency was not the priority, and we
consequently chose a straightforward rectangular discretization.

The grid resolution is measured by the parameters Nx and Ny , the num-
ber of nodes in respectively x- and y- direction. The corresponding grid
size is hx = 2/(Nx − 1) and hy = 2/(Ny − 1). The numbering follows the
convention of NumPy’s two-dimensional arrays. A grid point (x j, yi) is po-
sitioned in the ith row counted from the bottom and jth column counted
from the left. We have used NumPy’s meshgrid to produce the grid, which
is represented by the matrix X containing both x- and y-coordinates. Note
that this is a simplification of the notation, as meshgrid stores the mesh as
X , Y , where the corresponding x- and y-variables are stored separately. A
grid node in the mesh is denoted X i, j = (x j, yi).

4.2.2 Defining the Level Set Function

We denote the discretized level set function at a grid point X i, j and time
tn as Un

i, j. In the initialization, we must define U0(X), which is needed for
the first step of time integration. In the background theory for distance
functions, presented in Section 2.2, we motivated why the signed distance
function was a natural choice for u(x, t). It can be solely defined from a
curve and has neither a steep or slow gradient.

An uncomplicated choice of the initial curve is the circle enclosing all sam-
ple points. This circle can be implemented without any prior assumptions
about the distribution of points or information about the final solution. The
generality fits our objective well. Also, this choice of the initial curve makes
the construction of U0 particularly easy. For a circular Γ 0 with radius rΓ and

42 E. Steen: Reconstructing Curves from Sampled Data

center in c = (c1, c2) we calculate the discretized signed distance function
using Algorithm 1.

Algorithm 1: Signed Distance to a Circular Curve

Function signed_distance(X , rΓ , c):
/* X: mesh, rΓ: radius of initial curve, c: center of

initial curve */
U0 = zeros(Ny , Nx)
for i← 0 to Ny do

for j← 0 to Nx do
U[i, j] = ‖X [i, j]− c‖2 − rΓ

end
end
return U0

4.2.3 Initialization of the Distance and Sign Function

The point set, V, is assumed to be a list of coordinates, {vr} ∈ R2, r =
1,2, . . . R and R is the number of sample points. These coordinates are de-
fined independent from the mesh, and hence, all algorithms needing infor-
mation about U(vr) become more challenging. In order to simplify some
of the later procedures, we define an object containing the information we
need. This means a slightly more comprehensive initialization, but it will
make the following algorithms more intuitive.

It is natural to present the implementation of the distance function d(x;V)
and the construction of the sample point object simultaneously. This is be-
cause one of the sample point’s object variables can be computed within
the initialization of the distance function. We come to this shortly, but first,
we define the structure of the sample point object.

The object sample_point contains a state variable v.sign, the spatial co-
ordinate of the sample point v.coordinate, the grid point to the lower-left
v.Xl and its cohort v.cohort. The state variable is the sign of the higher di-
mensional function at the sample point, and as it turns out, the sign and the
cohort of v will together be sufficient to update the sign function σ(X , tn).
However, we will come to that in Section 4.4.

We define the cohort of a sample point, vr , as all the grid nodes that has vr

as the solution to vr = argminv∈V(‖x−v‖2). Note that the object is denoted

Chapter 4: Implementation 43

vr , while the coordinate has bald-face letter vr .

We initialize sample_point as shown in Algorithm 2. The initial sign is
negative since the initial curve is encircling the point set by definition and
all points lie on the inside of the curve. The coordinate is given, and from
that information, we can also find the grid node placed on the lower left
of the sample point. When we store the lower-left point, we always know
which grid cell that contains the sample point. Note in Algorithm 2 that
(xstart, ystart) = X [0,0] which in our case means (xstart, ystart) = (−1,−1).
The cohort of v is still left to find.

Algorithm 2: Initialize Point Set

v = Object sample_point(v):
/* v: coordinate of sample point */
v.sign= −1
v.coordinate= v

v.Xl= (floor
� c[0]−xstart

hx

�

,floor
� c[1]−ystart

hy

�

)
v.cohort= None

The next step calculates the constant distance function from all spatial
points to the point set and initializes the sign function. Since the initial
curve encircles the point set, the sign function must be positive everywhere
to transport the curve in the direction of the sample points.

The distance function is defined in (2.19). We must solve a minimization
problem for all grid points: finding the closest sample point. Then, the dis-
tance function is defined as the distance to that point. We will see in Sec-
tion 4.5 that there are more efficient procedures for calculating a distance
function than Algorithm 3. However, there are two reasons why it is used
in this setting. The first is that the initialization stage is not repeated, mak-
ing it tolerable to lose some efficiency. Secondly, we utilize the procedure
additionally to define the cohort of the sample points.

44 E. Steen: Reconstructing Curves from Sampled Data

Algorithm 3: Initialize Distance and Sign Function

Procedure init_distance_and_sign(X , V):
/* X: mesh, V: list of all sample points */
σ = ones(Nx , Ny)
dv = zeros(Nx , Ny)
for i← 0 to Ny do

for j← 0 to Nx do
c_p = [‖X i, j − v.coordinate‖2∀ v ∈ V].argmin()
dv[i, j] = ‖X i, j − c_p.coordinate‖
c_p.cohort += ([i, j])

end
end
return dv, σ, V

This concludes the initialization procedure, and we are ready to advance
to the second phase of the program.

4.3 Time Integration

The first step of the second phase is the time integration procedure. This
step solves the differential equations numerically. We will now go through
the discretization of the differential operators in the PDEs (4.1) – (4.3)
and the temporal discretization technique. Generally, we can express all
models as

ut = |∇u| (α fp(x) + (1−α)κ(u)),

where p = 1, 2,3, and fp is the distance-dependent velocity for model p.
Expanding all terms and using (2.18), this can be reformulated as

ut = α (u
2
x + u2

y)
1/2 fp(x) + (1−α)

ux xu2
y − 2ux yuxuy + uy yu2

x

u2
x + u2

y

. (4.4)

We use a central difference scheme for the spatial differential operators
defined in (A.1) – (A.5). The implemented time integration scheme is the
Explicit/Forward Euler method defined in (A.6) with a step size k. Forward
Euler is very easy to implement, but it may require small step sizes to en-
sure stability. As expressed earlier, this implementation does not have the
main focus on efficiency, and we only refer to J. Sethian [8] Chapter 6 for
a more thorough review of suitable discretization techniques.

Chapter 4: Implementation 45

To solve the numerical system, we furthermore need to introduce boundary
conditions. Because the curve is the only region of interest, the choice of
boundary conditions is less important, and we choose standard Neumann
boundaries. The following initial value problem is

ut = |∇u| (α fp(x) + (1−α)κ(u)), for x ∈ D
∇u · #»nD = 0, for x ∈ ∂D,

where #»nD is the outward-pointing normal to the boundary of the domain
∂D.

We see from (4.4) that it is easy to switch between the different models by
changing fp. Flexibility is thus one of the advantages of this method; it is
easy to formulate new models and quickly test their behaviors.

4.4 Updating the sign function, σ(X , t)

When we have performed a step of time integration, the curve Γ n may have
moved. If a curve section has passed a sample point, but the sample point
is still the closest point for that curve section, the sign function must be
updated. We have discussed the reasons why in Chapter 3, but we repeat
it once more. Because the distance function is always positive, the sign
function must give the attraction the right direction. We remember that
positive velocity is defined inwards, so when the closest sample point is
inside the curve, the sign must be negative, to pull it outwards.

The initialization procedure for the sign function was easy because the
initial curve encircled the point set. We did not need the definition of the
sign function at all because it was guaranteed to be positive on the entire
domain. In the update procedure, on the other hand, we must use the
definition to update only the right grid points. For that reason, we repeat
the definition stated in (3.5), but now in its discretized version:

σ(X i, j, t) = sgn((u(vr(X i, j), t))), vr = argmin
v∈V

(‖X i, j − v‖2). (4.5)

We see that solving (4.5) in practice consists of two parts: solving a mini-
mization problem to find the closest sample point in the point set and cal-
culating the sign of the higher dimensional level set function at that point.
We will now, as we promised, use the information we get from the cohort
of each sample point to skip the first step, namely solving the minimization
problem.

46 E. Steen: Reconstructing Curves from Sampled Data

Instead of recalculating (4.5) at every update, we only calculate the val-
ues at the sample points to see if an update is necessary. The cohort of a
sample point contains all grid points that need updating if the sign of the
sample point has changed. For a visual explanation of the cohort, go back
to Figure 3.1, where the cohorts are the three regions dividing the domain.
However, since the sample points are not on the grid, we cannot obtain the
value of U on vr directly. Instead, we need to estimate the value from the
surrounding grid points by interpolation. We have implemented bilinear
interpolation, which should be adequate since we have |∇u| ∼ 1.

We can approximate the higher dimensional function u(x , y, t) for a fixed
t = t∗ on a grid cell [x i, x i+1] × [y j, y j+1] by bilinear interpolation using
the following formula [23]

u(x , y) =
1

(x j+1 − x j)(yi+1 − yi)

�

x j+1 − x x − x j

�

�

Ui, j Ui, j+1

Ui+1, j Ui+1, j+1

��

yi+1 − y
y − yi

�

.

(4.6)

We see that equation (4.6) needs the four neighboring grid points of each
sample point. In the data structure we defined in Algorithm 2, we saw
that the grid point to the lower-left was stored. Given the lower-left point,
we can always find the grid cell containing the sample point. The four grid
nodes of the cell can then be used to perform bilinear interpolation through
equation (4.6). The algorithm is explained in detail in Algorithm 4

The complete algorithm for updating the sign function is to go through
every sample point, estimate the sign of U at that point and check if it is
equal to the state variable v.sign. If the sign has changed, the sign func-
tion at every grid point in the cohort of v changes sign. This is shown in
Algorithm 5.

Chapter 4: Implementation 47

Algorithm 4: Linear Interpolation on Sample Point

Function bilinear_interpolation(X , U, vr):
/* X: mesh, U: discretized level set function, vr:

sample point */
i1, j1 = vr .X l // Grid numbers for closest point
x1, y1 = X [i1, j1] // Grid values for closest point
xv, yv = vr .coordinate // Coordinates of vr

d1 = xv − x1

d2 = yv − y1

x2 = x1

y2 = y1

i2 = i1 + 1
j2 = j1 + 1
/* Define the four points needed for bilinear

interpolation */
U1 = U[i1, j1]
U2 = U[i1, j2]
U3 = U[i2, j1]
U4 = U[i2, j2]
/* Solve (4.6) */
b1 = [hx − abs(d1),abs(d1)]
A= [[U1, U2], [U3, U4]]
b2 = [hy − abs(d2),abs(d2)]
uv =

1
hx hy

b1AbT
2

return uv

Algorithm 5: Updating the Sign Function

Procedure update_sigma(X , V, σ):
/* X: mesh, V: list of sample points, σ: discretized

sign function */
for v ∈ V do

uv = bilinear_interpolation(v)
if sgn(uv) 6= v.sign then
σ[v.cohort] ∗= −1
v.sign ∗= −1

end
end

return σ(x, tn)

48 E. Steen: Reconstructing Curves from Sampled Data

4.5 Re-Initialization

After s steps of time integration and updating the sign function, we advance
to the outer loop in Figure 4.1. This stage is where we re-initialize and
check a stopping criterion. This section will address the re-initialization
and present some theory on calculating distance functions, which is needed
in the procedure.

To start, we begin with the motivation for a re-initialization procedure. We
discussed in Section 2.1 on level set methods that |∇u| scales the change
needed to move the curve, Γ , with a given speed, vn. This means in practice
that the curve is more sensitive to changes when the gradient is small, and
oppositely, insensitive to changes if the gradient is large. It has also been
shown in practice, for example, by D. Peng et al. [17] that the evolution
of the curve may be unstable if the gradient is too steep or flat. Addition-
ally, our discretization techniques are vulnerable to steep gradients, where
oscillations could start to form.

Re-initialization aims to adjust the shape of the higher dimensional func-
tion to fulfill |∇u| = 1 while keeping the curve untouched. As we remem-
ber, the shape of the higher dimensional function does not impact the mo-
tion of the curve. Hence, we can perform this considerable change in u(x, t)
without impacting curve evolution.

The strategy is to construct the higher dimensional function as a signed dis-
tance function to the current zero level curve. The function Un is replaced
with a function Ũ = ud(X , Γ n) using Definition 2.2 from Section 2.2. We
note that in the implementation, we do not store the parameterization of
the curve. The curve can be found as the zero iso-contour, for instance,
using the matplotlib.pyplot.contour() function, which yields a list of
intersection points where the level curve crosses the grid lines. Hence, nu-
merically calculating the distance to a curve reduces to calculating the dis-
tance to a set of points.

Due to this, we can use the same strategy as in Algorithm 3 where we
constructed d(X ,V) to make an unsigned distance function, and construct
Ũn as

Ũn = d(x; Γ n) · sign(Un). (4.7)

However, this algorithm loops through all nodes and goes through a list of
all points on the curve for each grid point. The size of the list Γ n also scales
linearly with the grid size, which culminates in a complexity of O((Nx ×

Chapter 4: Implementation 49

Ny)×(Nx+Ny)) which is far worse than O(Nx×Ny×len(V)) in Algorithm
3. In addition, the re-initialization is performed every sth time steps, which
makes the high complexity far less acceptable.

We observed in the implementation that this strategy slowed down the
runtime of the overall algorithm, and we were thus on the lookout for
something else. The answer became the Fast Marching Method derived and
developed by Sethian in the 90s. A thorough introduction can be found in
his book "Level Set Methods and Fast Marching Methods" [8]. We provide a
brief discussion of the Fast Marching Method below, which shows why the
method is relevant to our situation. For the implementation, we only need
to know that there exists a python package named scikit.fmm, which is
easy to use and perfectly compatible with level set functions. Furthermore,
it is open-source, and both the code and documentation can be found on
GitHub 1.

Remark: The re-initialization does not necessarily need to be performed
regularly at every sth step; it is also possible to check the gradients and set
a criterion for how much they are allowed to deviate from |∇U |= 1.

4.5.1 The Fast Marching Method

The Fast Marching Method is a standard method for solving an equation
called the Eikonal equation. We will first show that the distance function
is only a special case of the Eikonal equation and then present the idea
behind the Fast Marching Method.

Definition 4.1 (The Eikonal Equation). Assume that we are tracking a front
Γ (t), expanding with a velocity vn(x, t) starting from an initial curve Γ (0).
The time of arrival, T (x) is the time the front crosses the point x. This function
T (x) can be found by solving the Eikonal equation [8]

|∇T (x)|=
1

vn(x, t)
. (4.8)

Recalling |∇d(x, ·)| = 1, we immediately see that the distance function
must satisfy (4.8) for a velocity vn = 1. It is infact obvious that the travel
time and distance traveled is identical when vn = 1 by the physical fact
that time=distance/speed. From now on, we replace the time of arrival
T with the distance d(x, Γ) when vn = 1.

1https://github.com/scikit-fmm/scikit-fmm

50 E. Steen: Reconstructing Curves from Sampled Data

The time of arrival at a grid point X i, j is uniquely defined by the time of
arrival of the neighboring grid points where the front has already crossed.
Thus information spreads outwards, and upwind schemes are appropriate
to use. The direction of the upwinding is decided by which direction the
time increases. The resulting upwind scheme [8] for solving (4.8) for a
speed of propagation vn = 1 is

�

max(D−x
i, j d(x, Γ), 0)2 +min(D+x

i, j d(x, Γ), 0)2

+max(D−y
i, j d(x, Γ), 0)2 +min(D+y

i, j d(x, Γ), 0)2
�

= 1.
(4.9)

The operators D−x
i, j d(x, Γ) and D+x

i, j d(x, Γ) is the corresponding backward
and forward difference operators

D−x
i, j d(x, Γ) =

d(X i, j)− d(X i, j−1)

hx
, D+x

i, j d(x, Γ) =
d(X i, j+1)− d(X i, j)

hx
.

We see that (4.9) automatically chooses the direction where the deriva-
tive increases, and hence, ensures that information flows from small to big
distances, meaning from the curve and outwards.

The overall strategy is to mark all grid points with known distance values
in a list K , calculate the distances in their neighboring points using the
upwind scheme (4.9), and store them in a data structure, T . The list K
stands for known and T for trial. The list of trial points must contain both
the grid point and trial value.

Since all information travels from lower to higher values, the smallest value
of T must be independent of all the other points in T , and it must have the
correct value. Hence, the strategy is to continually move the lowest point
in T to K and recalculate its neighbors. We summarize this in a pseudo
Algorithm 6, below.

Chapter 4: Implementation 51

Algorithm 6: The Fast Marching Method for Distance Functions

d(X ; Γ) = zeros(N , M);
T = Array{ (i, j) : 0} for (i, j) ∈ Γ ;
K = Array {}
while T 6= {} do
(i, j) = argmin(T) ;
ud(i, j) = T (i, j) ;
K += (i, j) ;
T −= (i, j) ;
N = neighbors(i, j) /∈ K;
for (p, q) ∈ N do

T += (p, q) : (solve (4.9))
end

end
Result: d(x; Γ)

For a rectangular grid, each grid point can at most be recalculated four
times because it only has four neighbors.Consequently it will have a worst-
case complexity bounded by O(4(Nx × Ny)), which can be significantly
smaller than the alternative O((Nx × Ny)× (Nx + Ny)). Consequently, the
fast marching method becomes increasingly superior for large point sets
or equivalently increasing grid resolution when calculating the distance
function to curves.

4.6 Stopping Criterion

Moving on to the final step in the third phase, we discuss a possible stop-
ping criterion for the program. We are looking for a stationary curve, mak-
ing it natural to check if the curve is still moving. However, the curve is
only implicitly defined by the higher dimensional function, and one would
have to find the zero contour explicitly to compare curves directly.

As stated in Section 4.5, there are packages in Python that lets you ex-
tract an approximated zero level curve, but we will see now that after re-
initialization, a more convenient strategy exists. After re-initialization, the
curve is a pure signed distance function to the zero level set. Since the
zero-contour uniquely defines the signed distance function, we could now
compare higher dimensional functions instead of zero level curves.

52 E. Steen: Reconstructing Curves from Sampled Data

We denote the re-initialized function Un. We have that n = ls, s is the
number of time steps before re-initialization, and l denotes the lth time
we re-initialize. A stopping criterion measuring how much the curve has
moved since last re-initialization could be defined as follows

‖U ls − U (l−1)s‖2 < ε, (4.10)

for some tolerance ε > 0. Note that U is a matrix but in the calculations
the matrices are flattened to vectors before taking the two-norm. If (4.10)
is fulfilled, we announce the curve as stationary and stop the program. If
not, we proceed to phase two for further time integration.

Even though this is a working stopping criterion that would detect station-
ary curves, we will see in the results that almost all presented examples end
in oscillating curves. This is because even though the curves seem station-
ary macroscopically, they keep on having non-zero speed, and the stopping
criterion is never triggered. A time limit is implemented to end the simu-
lations, which in terms of a stopping criterion checks if tn > tbound . Since
this does not require any re-initialization, it is implemented inside the in-
ner loop before every time integration step.

Chapter 5

Numerical Results and
Discussion

We present numerical results based on the implementation suggested in
Chapter 4 for the models derived in Chapter 3. We construct four sets of
test cases to demonstrate the strengths and weaknesses of the proposed
models. All three models will be tested on all test cases, and we present
the resulting curves and information about the transitional movement from
the initial to the final solution.

Since the objective of this thesis is primarily to investigate level set meth-
ods, we have no real-world data and no objective quality measures for our
solution. It is consequently not possible to compare the obtained results
with an optimal solution. The presented curves will thus only display the
effect of the model parameters and show how the models treat the test
cases. This chapter aims to show how to adjust the presented models to
obtain shapes with different features. Understanding the models will also
be useful if one were to construct new velocity functions based on the pre-
sented theory.

5.1 Presentation of Test Cases

Each separate test case intends to show the models’ specific traits, but the
overall goal is to illustrate how they perform for irregular and noisy data
sets. Furthermore, since we have performed some theoretical analysis, the

53

54 E. Steen: Reconstructing Curves from Sampled Data

(a) Circle (b) Three points (c) Irregular shape (d) Noisy circle

Figure 5.1: The four sets of sample points used to produce the results
presented in this chapter.

test cases should also test the compliance between the theory and the nu-
merical simulations. Consequently, we have constructed four test cases that
separately display different qualities, but together demonstrate how well
the models fulfill the thesis’s objective. Finally, the data sets for all test
cases are presented in Figure 5.1, and we will go through the reasoning
behind each test.

The first point set is displayed in Figure 5.1a, where 200 data points are
distributed in a circle of radius rv = 0.5. This test case is constructed to
approximate the setting for the radially symmetric analysis in Chapter 3
and ergo to examine the numerical simulations compared to the theoretical
results.

The point set displayed in Figure 5.1b consists only of three points with
equal spacing. These points are also distributed in a circle of radius rv =
0.55. The purpose of this example is to show how the solution will look if
the spacing between the sample points is relatively large. Larger spacing
will also show what kinds of shapes we obtain if there are few measure-
ments.

In Figure 5.1c the points are distributed dense enough, such that the un-
derlying shape is imaginable. Thus, we can, to some degree, envision how
an optimal solution should look. At the same time, the shape includes con-
cave and convex regions of different curvatures, which is interesting to see
how the models treat.

The last test case is presented in Figure 5.1d and demonstrates how the
models handle noise in the data. The radius is rv = 0.5, identical to the
first test case, but noise is added by sampling a normal distribution with a
standard deviation of SD = 0.08.

Chapter 5: Numerical Results and Discussion 55

Model 1 Model 2 Model 3
k 10−3 5 · 10−5 5 · 10−5

s 50 50 50

Table 5.1: k: size of time steps, s: number of time steps between re-
initializations.

Test Case 1 Test Case 2 Test Case 3 Test Case 4
hx = hy 0.01 0.01 0.01 0.01
R 200 3 62 100
rv 0.5 0.55 – 0.5
r0 0.9 0.9 0.9 0.9

Table 5.2: hx , hy : grid size, R: number of data points, rv: radius of the
circle which the point sets are sampled from (center in the origin), r0:
radius of the initial curve (center in the origin).

All parameters apart from the model parameters α, β and δ is not going
to be tested, and the values of the parameters are found in 5.1 and Table
5.2.

5.2 Test Case 1: Circle of Dense Points

This example aims to test the numerical implementation against the analyt-
ical results for all test cases. We will, in addition, begin to test the different
model parameters. Seven tests will be performed in total; two simulations
for models 1 and 3, and three simulations for model 2.

For every simulation, we present a displacement plot and a plot of the radius
of the curve during the curve evolution. The displacement plot presents
a measure of the curve movement since the last re-initialization, and an
example can be viewed in Figure 5.2 to the right. It is calculated as in (4.10)
by flattening the matrices containing the higher dimensional functions and
calculating the two-norm of the difference. Thus, it provides information
about how close the curve is to a stationary solution at all times. Concretely,
the value of the displacement plot will vary with the mean velocity over
the last s = 50 time steps.

Moreover, a contour plot will be presented for all models. The contours are
zero contours at different times, and the time is represented as the opacity

56 E. Steen: Reconstructing Curves from Sampled Data

Figure 5.2: Curve evolution and displacement plot for model 1 on the
circular test case displayed in Figure 5.1a. The contour plot shows 10 level
curves and the parameters for this simulation are as stated in Table 5.1 and
Table 5.2 and α= 0.96.

of the plot. The first contour is the lightest and is always the initial curve.
The time of the first and last contour are displayed in the legend to the
right. The curves are sampled uniformly in time and all plots contain 10
level curves. Hence the spacing and color of the curves will also provide
an impression of the velocity during the evolution.

5.2.1 Model 1

We begin with model 1, where we want to test the simulations against the
analytical results and how the resulting curves depend on α. We thus run
two simulations with α = 0.96 and α = 0.99. We expect from the theo-
retical analysis and the streamline plot in Figure 3.4, that the stationary
radius will be closer to rv = 0.5 for α = 0.99 than for α = 0.96. Actually,
we can use equation (3.24) to find the expected radius of the stationary
curve and get for α= 0.96: r f = 0.39433 and for α= 0.99: r f = 0.4789.

The results of the simulations are found in Figure 5.2 and Figure 5.3. We
see by comparing Figure 5.3a and Figure 5.3b that the evolution of the
curve follows the theoretical evolution perfectly. We also calculate the ra-
dius of the last zero level curve and find r96(10) = 0.3941, which is not far
from the theoretical stationary radius. We see an error in the fourth decimal
place, but this is not discouraging as the discretizations of the differential
operators are only second order.

Furthermore, we see in Figure 5.3c that when α = 0.99, the curve con-
verges to a radius closer to the point set, as expected. The radius of the
last zero level curve was calculated to be r99(10) = 0.4788, which is very

Chapter 5: Numerical Results and Discussion 57

(a) Numerical solution, α= 0.96 (b) Analytical streamline, α= 0.96

(c) Numerical solution, α= 0.99 (d) Displacement plot

Figure 5.3: Results for model 1 on the test case displayed in Figure 5.1a
for α = 0.96 and α = 0.99 and with remaining parameters as stated in
Table 5.1 and Table 5.2.

close to the theoretical value.

The contour plot to the left in Figure 5.2 stems from the simulation of α=
0.96. We see that the level curves move symmetrically towards the point
set, and the speed slows down gradually during the evolution. The same
is seen to the right in Figure 5.2, where the displacement plot implies a
velocity going to zero, meaning a curve approaching a stationary solution.
The displacement plots for both simulations can be found in Figure 5.3d
where we see that increasing α means slowing down the curve. This is
natural as the curvature is the main drive close to the point set.

5.2.2 Model 2

For the second model, we present the results from three different simula-
tions. We want to test the behavior against the theoretical results and test
the effect of the bounding parameter δ. In addition, we want to see the
differences between models 1 and 2.

58 E. Steen: Reconstructing Curves from Sampled Data

Figure 5.4: Curve evolution for model 2 on the circular test case displayed
in Figure 5.1a. The contour plot shows 10 level curves and the parameters
for this simulation are as stated in Table 5.1 and Table 5.2 and α = 0.2,
β = 1, δ = 10−2.

We expect that the zero level curve for model 2 will approach the point set,
moving faster and faster on the way in. From the streamlines in Figure 3.6
we saw that the velocity had a discontinuity at the radius of the point set.
The velocity would be big in the inward direction when rΓ > rv and big
outwards when rΓ < rv. Since we saw that the curve would never get a
stationary solution when rΓ = rv, we expect oscillations for the numerical
simulations. The amplitude of the oscillations will be decided from the time
step size, k, and the bounding parameter δ. The parameter δ decides the
velocity, and k decides how far the curve moves between every time step.
We want to check this hypothesis by varying the parameter δ and observing
the oscillations’ size.

We see the evolution of a simulation using α = 0.2, β = 1, δ = 10−2 in
Figure 5.5a and compare with the analytical evolution using the same pa-
rameters in Figure 5.5b. The motion is almost identical up until the curve
hits the point set. We see that the numerical simulation seems slower at
exactly that moment. However, the radius is only calculated every 50th
time steps, and hence poor resolution is the most probable cause of the
smoothened line. In the contour plot to the left in Figure 5.4 we also see
that the curve speeds up near the point set, as the spacing between con-
tours is larger here than in the beginning. The evolution is also completely
symmetric, which is as expected for the symmetric problem.

Now, we discuss the result of the comparison of different values of δ found
in Figure 5.5c and Figure 5.5d. We see in the plot of the radii that the
motion is very similar for δ = 10−2 and δ = 10−4. The bound δ is very
small compared to the distance until r ∼ rv, and it is thus expected that
the differences are small. For δ = 0.1, the bound is more influential earlier
in the evolution, and the curve moves slower than for the other tests. The

Chapter 5: Numerical Results and Discussion 59

(a) Numerical solution, α = 0.2, β = 1, δ =
10−2

(b) Analytical streamline, α = 0.2, β = 1,
δ = 10−2

(c) Numerical solution, varying δ (d) Displacement plot, varying δ

Figure 5.5: Results for model 2 on the test case displayed in Figure 5.1a
for δ = 10−1, δ = 10−2 and δ = 10−2. α = 0.2, β = 1 for all simulations
and the remaining parameters are as stated in Table 5.1 and Table 5.2.

60 E. Steen: Reconstructing Curves from Sampled Data

speed at the curve is also reflected in the displacement plot where we, as
expected, see that the curve has bigger oscillations for smaller δ.

We end with a discussion concerning the displacement plot in Figure 5.5d
compared to model 1 in Figure 5.3d and what they mean for a stopping
criterion. For model 1, we saw that the displacement kept shrinking near
the point set, and a stopping criterion could easily be implemented almost
no matter the choice of ε. For model 2, on the other hand, it could be
very challenging to choose the right tolerance. Look at Figure 5.5d for δ =
10−4 for instance. Choosing ε ¦ 0.8 and the stopping criterion is triggered
instantly and choosing ε ® 0.1 and the stopping criterion is never triggered
at all.

5.2.3 Model 3

Moving on to model 3, the model parameter left to test is β . Similar to the
other models, we run a comparison between the numerical simulations
and the analysis performed in Chapter 3. In addition, it is interesting to
compare models 2 and 3 since their velocity functions are similar. Hence,
we have run two simulations with β = 2 and β = 8 to see the parameter’s
effect properly.

As for model 2, we expect the curve to move faster and faster inwards
to the point set, where it should suddenly stop. Since the velocity func-
tion is discontinuous in time here, we believe that there will be oscillations
around the radius of the point set. A relevant difference between the mod-
els 2 and 3 is how they are bounded when d(x;V)→ 0. We saw that the
bounding parameter, δ, was very important for the behavior of model 2
in Section 5.2.2. For model 3, the distance term f3 in (4.3) is naturally
bounded since f3 → 1 as d → 0 and thus we do not expect β to influence
the amount of oscillations. Furthermore, this means that the maximum
velocity should be equal for the two test runs. However, how the speed
increase is expected to differ since parameter β scales the distance.

We see the results of the simulations in Figure 5.6 and Figure 5.7. First, we
observe from the radius plot from the numerical simulations, displayed in
Figure 5.7a compared to the analytical streamline in Figure 5.7b, that the
curve evolution coincides with the analytical streamline. The curves also
move symmetrically inwards in the contour plot to the left in Figure 5.6 as
expected. We see that the curves are moving with what looks like constant

Chapter 5: Numerical Results and Discussion 61

Figure 5.6: Curve evolution for model 3 on the circular test case displayed
in Figure 5.1a. The contour plot shows 10 level curves and the parameters
for this simulation are as stated in Table 5.1 and Table 5.2 and α = 0.9,
β = 2.

speed because the spacing of the contours is almost equal. This can also be
seen by how the radius changes in Figure 5.7a.

We move on to the effect of the parameter β . As predicted, it has no clear
effect on the oscillations after the curve has reached the point set. In ad-
dition, observe that the maximum velocity is unaffected, as expected. An
important observation is that when the distance is scaled up, the velocity
far away is smaller, but the acceleration is bigger near the point set. This
comes directly from the inverse relation to the distance. As a result, we see
that if we start sufficiently far from the sample points, or β is big enough;
the velocity would be minimal. The small velocity would complicate a stop-
ping criterion.

Fortunately, the velocity would not become zero, and the curvature and
distance would draw in the same inward direction. Hence, the curve would
reach the point set, but the first phase of the evolution would be very slow.
This observation also holds for model 2.

62 E. Steen: Reconstructing Curves from Sampled Data

(a) Numerical solution, α= 0.9, β = 2 (b) Analytical streamline, α= 0.9, β = 2

(c) Numerical solution, varying β (d) Displacement plot, varying β

Figure 5.7: Results for model 3 on the test case displayed in Figure 5.1a
for β = 2 and β = 8. α = 0.9 for all simulations and the remaining
parameters are as stated in Table 5.1 and Table 5.2.

Chapter 5: Numerical Results and Discussion 63

5.3 Test Case 2: Three Equidistant Points

We saw from test case 1 that the simulations were consistent with the the-
oretical analysis and expectations. Unfortunately, we do not have any the-
oretical results for this test case to compare with, so we rely only on the
numerical simulations alone.

We will investigate further the differences between the models and how
adjusting the parameters changes the evolution and the final curves. We
will, in addition, see an example of what can happen if the parameters are
not chosen carefully, and there is no final curve. In the first test case, the
problem was completely symmetric, and the point set was very dense. This
gave little flexibility for different curve shapes. We will now see much more
interesting contour plots, and contours are presented for all simulations.
Now that there are only three points, the curves are not expected to be
symmetric around the origin, and no plots of the radius are presented.
There are carried out six simulations in total, two for each model.

5.3.1 Model 1

We will run two simulations with α= 0.96 and α= 0.99. The aim is to see
how α can affect the curve shape and how the curvature differs over the
curve when there are few sample points.

As observed when we introduced model 1 in Section 3.1 the stationary
solution would not minimize both the curvature and the distance, but it
will yield a curve balancing the two. When the distance is low, the curva-
ture will be low and vice versa. Hence, we expect to see curves with low
curvature near the points and increasing curvature as the distance to the
point increases. When α is changed, the balance is shifted. We expect in-
creased curvature further away from the data points for α= 0.99 than for
α= 0.96.

We see the resulting curve evolution in Figure 5.8 for both simulations.
The final curves have the darkest color and fulfill the expectations, having
low curvature close to the points and higher curvature further away. It is,
however, challenging to see clear differences between the final curves for
the two simulations. This is most likely due to the oscillating behavior we
see in Figure 5.8c, which comes when the requirement for zero velocity is
not fulfilled. We predicted differences in the stationary solutions, but we

64 E. Steen: Reconstructing Curves from Sampled Data

(a) α= 0.96 (b) α= 0.99

(c) Displacement plot for α= 0.96 and α= 0.99

Figure 5.8: Results for model 1 on the test case in Figure 5.1b forα= 0.96
and α = 0.99 and the remaining parameters as stated in Table 5.1 and
Table 5.2.

never actually obtain the stationary curves.

The biggest differences are seen in the evolution of the curves. When α is
big, the curve sections furthest away move fastest, and the result is seen in
Figure 5.8a and Figure 5.8b. In Figure 5.8b the curves almost meet before
the curve crosses the sample points, and the sign function draws the curve
outward again. For an even increased α, the curves will meet and split the
curve into smaller closed sub-curves. This would not yield a meaningful
final solution.

Observe further that multiple zero contours are touching the three sample
points. They have different shapes, but since we have no prior information
about the curve shape, any of these solutions would be acceptable. When
we now move on to model 2, we will see that the curves will be more similar
to the innermost curve in Figure 5.8a. This contour is the most similar to
the minimal curve going through the sample points.

Chapter 5: Numerical Results and Discussion 65

5.3.2 Model 2

There will be run two simulations for model 2. The purpose is to see how
easily a curve can be transformed from what seems like a stationary curve
to a meaningless solution. More concrete, the parameter α will be tested,
and we will see what happens if it is chosen too small and the curvature
dominates. The tests are for α= 0.4 and α= 0.2.

When α decreases, the balance is shifted, and the curve flows towards low
curvature. In practice, this means that curves with high curvatures will
have higher velocity inwards. However, model 2 is constructed to have
high curvature close to the points, and it will thus be vulnerable for too
low α near the data points.

We see the results of the simulations in Figure 5.9. For α = 0.4, we see
a nice final solution going through the sample points while resembling
a minimal curve. We can see from the contours in Figure 5.9a that the
five last contours are inseparable, and the cure is in practice stationary.
There are in total ten curves in both figures. By counting the curves in
Figure 5.9b, we see that there are two inseparable curves also for α = 0.2
that resemble the solution for α= 0.4. However, the curvature is too strong
for this example, and the curve slips the points and falls inwards. Note
that the curve is stopped at t = 0.5 because the curve moves very fast
towards the middle and disappears. Without the curve, re-initialization is
not possible, and the simulation breaks.

We see when we compare the displacement plots in Figure 5.9c and Fig-
ure 5.9d that the evolution of the curves are very similar. The curve in
Figure 5.9b is very close to obtaining its final solution at the point set, and
there is no way to see that the simulation will go wrong before the curve
slips.

We have thus seen that the models are very sensitive for alpha. Further,
note that since the distance grows large close to the sample points, α needs
to be smaller for model 2 than model 1.

5.3.3 Model 3

For model 3, we will see that the parameter β is very important to con-
struct different shapes. Two simulations with different choices of β are

66 E. Steen: Reconstructing Curves from Sampled Data

(a) Curves, α= 0.4 (b) Curves, α= 0.2

(c) Displacement plot, α= 0.4 (d) Displacement plot, α= 0.2

Figure 5.9: Results for model 2 on the test case displayed in Figure 5.1b
for α= 0.4 and α= 0.2 and fixed model parameters β = 1 and δ = 10−2.
The remaining parameters are as stated in Table 5.1 and Table 5.2.

Chapter 5: Numerical Results and Discussion 67

(a) β = 2 (b) β = 8

(c) Displacement plot for β = 2 and β = 8

Figure 5.10: Results for model 3 on the test case in Figure 5.1b for β = 2
and β = 8. α= 0.9 for both simulations and the remaining parameters as
stated in Table 5.1 and Table 5.2.

constructed to show this. Furthermore, the simulations show how similar
model 3 can look to model 2 while still having differences.

The parameter β scales the distance function for model 3. If β = 2 that is
equal to doubling the domain, D, and doubling the spacing between the
points. The relation between the curvature and distance is that the further
away from the points, the smaller the curvature. It follows that scaling up
β will lead to lower curvature between the points. If β is set extremely
high, the curvature decreases to zero almost instantly, leading to a curve
similar to a polygon.

We see the results of the two simulations in Figure 5.10. Again, the curves
move as expected. Moreover, we see that the curve for β = 8 looks much
more similar to the polygon and thus model 2. It is, however, rounder in
the corners.

From the displacement plot in Figure 5.10c, we see that even though model

68 E. Steen: Reconstructing Curves from Sampled Data

3 with β = 8 looks similar to the simulations of model 2, the velocity is
slower, which causes the oscillations to diminish. Moreover, the velocity is
overall smaller when β is big because the velocity for models 2 and 3 is
slower the further away.

5.4 Test Case 3: Dense and Irregular Data

In this test case, the points are dense compared to the last example. More-
over, there is much more flexibility to form different shapes than for the
first circular example. The shape also includes regions with different cur-
vatures, and we will see that the curves will fit the data points differently
from model to model. For the circular test case, the circle having a radius of
r = 0.5 was obviously the correct answer. Test case 2 showed the complete
opposite, where there were too few points to say anything about a correct
reconstruction.

This test case will be a little bit of both; the data set provides some flexibility
while we can still visualize a good solution. This point set can be similar to
a real-world example because we know roughly what the solution should
look like, but the exact curve is unknown. Therefore, we will try to find
suitable parameter choices for all models to obtain nice solutions, like we
would have done for real-world data. We try to find one set of parameters
yielding a curve with lower curvature and one where we try to fit the data
points exactly. There will, in total, be presented seven test cases; two for
models 1 and 2 and three for model 3.

5.4.1 Model 1

Two tests are performed with two different choices of α. This will show
how solutions depending on the balance between curvature and distance
attraction. The first test will have α = 0.99, and we compare the solution
with a test run with α= 0.999. Note that both tests have a relatively high
α compared to the already presented results. The distance function needs
to be dominant to catch the details of the shape.

The results are shown in Figure 5.11. For the first simulation with α= 0.99,
we see that the curve quickly obtains a shape similar to the point set. The
final curve fulfills the goal of approximating the sample points while having

Chapter 5: Numerical Results and Discussion 69

(a) Curves, α= 0.99 (b) Curves, α= 0.999

(c) Displacement plot, α= 0.99 (d) Displacement plot, α= 0.999

Figure 5.11: Results for model 1 on the test case displayed in Figure 5.1c
for α= 0.99 and α= 0.999 and fixed model parameters as stated in Table
5.1 and Table 5.2.

70 E. Steen: Reconstructing Curves from Sampled Data

low curvature, although the curve is slightly biased towards the inside.
The bias is similar to what we saw in the circular example. A nice detail
observed from this simulation is that the curve is almost a straight line up
in the right corner while it seems to approximate the points well. Hence,
we can assume that model 1 will be very well suited to filter noise from
approximately straight lines.

For α= 0.999 we catch much more details in the shape as we hoped, and
the curves provide a nice approximation to the underlying shape. However,
there is one small region where the curve does not cover the data points,
which is in the middle right part of Figure 5.11b. However, this is also
the curve section with the highest curvature and the most densely spaced
points. Consequently, the curvature will be most prominent in this region
compared to the distance function.

The residual plots for α = 0.99 and α = 0.999 in Figure 5.11c and Fig-
ure 5.11d shows that both curves have a small velocity at the end of the
simulations. Furthermore, smaller α leads to a more curvature-driven flow
and an even more decreasing velocity. The curvature always pulls in the
same direction, and the curve will not be drawn back and forth over the
points to the same extent. It is the sign-changes that cause the oscillations.
Thus, a less distance-dependent velocity leads to smaller oscillations.

5.4.2 Model 2

For model 2, we perform two tests, which collectively show that changing
the parameter δ can vary the degree of smoothing. Note that smoothing
was performed solely by α for model 1 discussed above. The first test has
δ = 10−1, and for the second case, we decrease it to δ = 10−2.

In order to predict the δ-dependency for model 2, we look at the model
equation restated in (4.2) with ut = 0, meaning stationary solution. We
have

(1−α)κ(u) = ±
α

βd(x;V) +δ
,

where the sign is decided by the sign function. We see that by decreasing
δ, the right hand side increases and the curvature increase. From this short
argument, we expect a final curve with higher curvature for δ = 10−2 than
for δ = 10−1. This is also what we see in the contour plots in Figure 5.12a
and Figure 5.12b. The displacement plots in Figure 5.12c and Figure 5.12d
further show that we still get higher velocity oscillations for smaller δ.

Chapter 5: Numerical Results and Discussion 71

Case
(a) Curves, δ = 10−1 (b) Curves, δ = 10−2

(c) Displacement plot, δ = 10−1 (d) Displacement plot, δ = 10−2

Figure 5.12: Results for model 2 on the test case displayed in Figure 5.1c
for β = 1 and β = 0.7 and fixed model parameters δ = 10−1 and δ =
10−2 and the remaining parameters α = 0.5, β = 1.2 and the constant
parameters as stated in Table 5.1 and Table 5.2.

72 E. Steen: Reconstructing Curves from Sampled Data

5.4.3 Model 3

There will be run three simulations for model 3 for this test case, and the
simulations aim to present good parameter choices. We vary both model
parameters α and β and observe the effects on the resulting curves.

We expect to see that α affects the curvature similarly to what we saw
for model 1 on the same example. The question is how β will influence
the solution. Remember that β is the scaling of the distance function for
the model. Since the curve moves faster when closer to the point set, a
down-scaling would make the distances smaller, and the curves would
move faster.

The effects are seen in Figure 5.13. A smaller α smooths the solution in
Figure 5.13c and increasing α in Figure 5.13b compared with Figure 5.13a
leads to a slower evolution. The speed difference can be seen both in the
contour plots from the spacing of the curves and more clearly in the dis-
placement plot in Figure 5.13d.

Chapter 5: Numerical Results and Discussion 73

Case
(a) Curves, α= 0.99, β = 1 (b) Curves, α= 0.99, β = 2

(c) Curves, α= 0.9, β = 2 (d) Displacement plot for all simulations

Figure 5.13: Results for model 3 on the test case displayed in Figure 5.1c
for alpha = 0.9 and α = 0.99, and for β = 1 and β = 2. The remaining
constant parameters are as stated in Table 5.1 and Table 5.2.

74 E. Steen: Reconstructing Curves from Sampled Data

5.5 Test Case 4: Noisy Data

The noisy data set and the dense and irregular data set in test case 3 are
together constructed to give an impression of how well the models achieve
the goals set for this thesis: to reconstruct curves from irregular and noisy
data. The data points are distributed in a circle with a radius of r = 0.5,
just like in test case 1. However, there is added visible noise. The example
is designed this way to be able to compare the models from tests 1 and 4,
while the noise is visible enough to see clear differences. There are per-
formed two simulations for each model, which makes six simulations in
total.

5.5.1 Model 1

We have seen in the earlier tests that the parameter α can be adjusted
to increase or decrease the curvature for model 1. For the first circular
example, we also saw that decreasing αwould lead to a curve falling inside
the point set. Specifically for α = 0.96 in test case 1, the end radius was
distinctly inside the point set. For this reason, both simulations are run
with relatively high values of α to obtain better approximations.

The tests are run with α = 0.99 and α = 0.995. Since α = 0.99 had an
analytical stationary radius of r f = 0.479 < 0.5 with no noise, we expect
the curve to be slightly biased inward. We further calculate the analytical
radius without noise for α = 0.995, and get r f = 0.491. This is still inside
the point set, but we expect a smaller bias for this simulation. However,
we expect a smoother curve with lower curvature for α = 0.99 than α =
0.995, so the choice of α is a trade-off between low curvature and a good
approximation, as we have also seen in the earlier results.

We see the results in Figure 5.14a and Figure 5.14b, and we observe the
expected difference in curvature. We have also calculated the end radius for
the curves and got r99(20) = 0.4643 and r995(20) = 0.5011. The resulting
curves display the importance of α and how sensitive the model is to a
small change in the parameter.

For α= 0.996 in Figure 5.14b, we observe that the final curve catches some
of the patterns in the random noise. At the bottom, the points are located
densely and slightly further from the center, and the final curve covers
these points. We can also see from the final radius that this simulation is

Chapter 5: Numerical Results and Discussion 75

(a) Curves, α= 0.99 (b) Curves, α= 0.996

(c) Displacement plot, α= 0.9 (d) Displacement plot, α= 0.999

Figure 5.14: Results for model 1 on the test case displayed in Figure 5.1d
for α= 0.99 and α= 0.995 and fixed model parameters as stated in Table
5.1 and Table 5.2.

not biased inwards as we expected. That is explained by the local behavior
of the level set models; the curve is only attracted to its closest points.
Thus, when the points have noise, and the curve is on its way in, it will
be attracted to the furthest points from the center. If the attraction is big
enough, the curve will stop here, leading to a bias outward.

5.5.2 Model 2

We have seen that changing the parameter δ makes the curves smoother.
It bounds the distance-dependent function f2(d(x;V)) and, hence, the cur-
vature. We will run two simulations in order to see if we can produce a
smooth curve by varying δ for model 2.

In the first test run, δ = 10−2 and α = 0.2. The parameter α must be
low because the function f3(d(x;V)) is allowed to grow big. The second

76 E. Steen: Reconstructing Curves from Sampled Data

(a) Curves, α= 0.2, δ = 10−2 (b) Curves, α= 0.3, δ = 10−1

(c) Displacement plot, α= 0.2, δ = 10−2 (d) Displacement plot, α= 0.3, δ = 10−1

Figure 5.15: Results for model 2 on the test case displayed in Figure 5.1d
for α= 0.2 and δ = 10−2, and α= 0.3 and δ = 10−2 and fixed β = 1 and
remaining model parameters as stated in Table 5.1 and Table 5.2.

simulation is for δ = 10−1 which bounds f3 and we increase α to α = 0.3
to prevent an entirely curvature driven evolution.

If we only consider the increase in α, we would expect the smoothest curve
for the first simulation. However, since the points are densely spaced, the
distance-dependent function f3 is mainly decided by the bound 1/δ. It is
consequently a combination of α and δ that decides the curvature. There-
fore, we expect a considerably smoother curve for the second test where
we have decreased the bound from f3 < 100 to f3 < 10.

The results are shown in Figure 5.15 and we see from the contours in
Figure 5.15a and Figure 5.15b that the curve is as expected noticeably
smoother for higher δ. In Figure 5.15b we see similarly to model 1, that the
curve is slightly biased towards the inside of the sample points. Increasing
α further is the strategy to mend this, but as we know, this would also
affect the curvature.

Chapter 5: Numerical Results and Discussion 77

(a) Curves, α= 0.9 (b) Curves, α= 0.8

(c) Displacement plot, α= 0.9 (d) Displacement plot, α= 0.8

Figure 5.16: Results for model 3 on the test case displayed in Figure 5.1d
for α= 0.9, and α= 0.8, and fixed β = 1, and remaining model parame-
ters as stated in Table 5.1 and Table 5.2.

5.5.3 Model 3

We saw in the last test case that the scaling parameter β had little effect
on the curvature when the distance to the points is small. Furthermore,
adjusting the curvature is important in examples where the points are noisy
and densely spaced.

We will hence adjust α to obtain two curves of different curvatures just like
the two previous models. The results are presented in Figure 5.16 and the
contours in Figure 5.16b shows as expected, curves with lower curvature
than in Figure 5.16a. This example concludes the testing of the models,
and we end with a summary of what we observed from the presented sim-
ulations.

78 E. Steen: Reconstructing Curves from Sampled Data

5.6 Summary of Results

We have seen that all the models behave as expected for the circle. The pa-
rameter α scales how much the curvature affects the solution for all mod-
els. When we introduce the parameter δ for model 2, we also see that this
affects the curvature of the final solution near the points. If δ is increased,
it bounds the growing curvature, such that the edges are less sharp. The
parameter β in models 2 and 3 does not affect the maximum sharpness of
the edges, but it scales the distance. A higher β means flatter regions fur-
ther away, but it does not bound the curvature close to the sample points.

We have seen that choosing suitable parameters is essential for all models,
and for proper values, all models yield similar curves if the data set is
dense. The difference between the models was most apparent for the point
set with three points, where it was most visible how the curvature varies
when the distance increases.

If we now assume that we have some a priori knowledge about the under-
lying shape, we can pick the sample points to represent certain qualities
of the curve and then choose a model that fits. For example, if we sam-
ple the curve where the curvature is lowest, model 1 is the best choice to
reconstruct it afterward. On the other hand, if the points are sampled at
something similar to edges on the underlying curve, model 2 with a small
δ would be preferred.

Also, model 3 has the advantage over model 2 by having fewer parameters
to tune, so the behavior of the model is less complicated. However, it does
not have the same flexibility to tune the curvature vs. distance relation.

Finally, notice that none of the models reached clean stationary solutions
for all problems. The reason is the local behavior of the distance function,
which creates oscillations if the curve goes back and forth over the curve.
Nevertheless, with suitable tuning parameters, the models reached a sta-
tionary solution on a macroscopic level. The oscillations are less problem-
atic since we assume little about the underlying shape, and the oscillations
do not perturb the solution much. Since this is an approximation prob-
lem without a solution to compare with, any of the final curves would be
acceptable.

Chapter 6

Concluding Remarks

We introduced three level set models and presented results based on four
constructed test cases. The variety of results demonstrated flexibility, and
we saw that it was relatively simple to formulate new models. In addition,
by choosing the proper parameters, we obtained nice solutions for all test
cases. However, the obtained solutions were not stationary but oscillated
around the data points due to the alternating sign function. The oscillations
did not alter the overall shape, but it made a stopping criterion hard to
implement and was not the elegant solution we hoped for. Finally, it is
hard to conclude how these models performed compared to other shape
reconstruction methods, as these have not been studied.

6.1 Further Research

One of the aspects that we wanted to investigate further was the discrep-
ancy between the assumptions in the theory and the introduced sign func-
tion. This issue was found relatively late in the process, but a more firm an-
choring in the theory would improve the overall impression of the models.
Moreover, it would be interesting to implement time discretization tech-
niques with a step size control adjusted to handle temporal discontinuities.
This would potentially reduce the oscillations drastically, and in this way,
make a stepping criterion more applicable. Furthermore, we observed that
model 1 improved the curves more in the early stages, but models 2 and 3
moved the curve faster in the final stages of the simulations. An idea could
thus be to combine different models to take advantage of their strengths.

79

Bibliography

[1] J.-D. Boissonnat and B. Geiger, “Three-dimensional reconstruction
of complex shapes based on the Delaunay triangulation,” in Biomed-
ical Image Processing and Biomedical Visualization, R. S. Acharya and
D. B. Goldgof, Eds., International Society for Optics and Photonics,
vol. 1905, SPIE, 1993, pp. 964–975. [Online]. Available: https:
//doi.org/10.1117/12.148710.

[2] N. Amenta and M. Bern, “Surface reconstruction by Voronoi filter-
ing,” in, 4, vol. 22, 14th Annual ACM Symposium on Computa-
tional Geometry (Minneapolis, MN, 1998), 1999, pp. 481–504. DOI:
10.1007/PL00009475. [Online]. Available: https://doi.org/10.
1007/PL00009475.

[3] J.-D. Boissonnat and F. Cazals, “Smooth surface reconstruction via
natural neighbour interpolation of distance functions,” in, 1-3, vol. 22,
16th ACM Symposium on Computational Geometry (Hong Kong,
2000), 2002, pp. 185–203. DOI: 10.1016/S0925-7721(01)00048-7.
[Online]. Available: https://doi.org/10.1016/S0925-7721(01)
00048-7.

[4] M. G. López, B. Mederos, and O. Dalmau, “Gp-mpu method for im-
plicit surface reconstruction,” in Human-Inspired Computing and Its
Applications, A. Gelbukh, F. C. Espinoza, and S. N. Galicia-Haro,
Eds., Cham: Springer International Publishing, 2014, pp. 269–280,
ISBN: 978-3-319-13647-9.

[5] S. Osher and J. A. Sethian, “Fronts propagating with curvature-
dependent speed: Algorithms based on Hamilton-Jacobi formula-
tions,” J. Comput. Phys., vol. 79, no. 1, pp. 12–49, 1988, ISSN: 0021-
9991. DOI: 10.1016/0021-9991(88)90002-2. [Online]. Available:
https://doi.org/10.1016/0021-9991(88)90002-2.

[6] M. Sussman, P. Smereka, and S. Osher, “A level set approach for
computing solutions to incompressible two-phase flow,” Journal of
Computational Physics, vol. 114, no. 1, pp. 146–159, 1994, ISSN:

81

https://doi.org/10.1117/12.148710
https://doi.org/10.1117/12.148710
https://doi.org/10.1007/PL00009475
https://doi.org/10.1007/PL00009475
https://doi.org/10.1007/PL00009475
https://doi.org/10.1016/S0925-7721(01)00048-7
https://doi.org/10.1016/S0925-7721(01)00048-7
https://doi.org/10.1016/S0925-7721(01)00048-7
https://doi.org/10.1016/0021-9991(88)90002-2
https://doi.org/10.1016/0021-9991(88)90002-2

82 E. Steen: Reconstructing Curves from Sampled Data

0021-9991. DOI: https://doi.org/10.1006/jcph.1994.1155.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0021999184711557.

[7] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher, “A variational level
set approach to multiphase motion,” Journal of Computational Physics,
vol. 127, no. 1, pp. 179–195, 1996, ISSN: 0021-9991. DOI: https://
doi.org/10.1006/jcph.1996.0167. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0021999196901679.

[8] J. Sethian, Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer Vi-
sion, and Materials Science, ser. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, 1999,
ISBN: 9780521645577. [Online]. Available: https://books.google.
no/books?id=ErpOoynE4dIC.

[9] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1, pp. 259–268, 1992, ISSN: 0167-2789. DOI: https://doi.org/
10.1016/0167-2789(92)90242-F. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/016727899290242F.

[10] R. Malladi, J. Sethian, and B. Vemuri, “Shape modeling with front
propagation: A level set approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, no. 2, pp. 158–175, 1995.
DOI: 10.1109/34.368173.

[11] C. Li, R. Huang, Z. Ding, J. C. Gatenby, D. N. Metaxas, and J. C.
Gore, “A level set method for image segmentation in the presence
of intensity inhomogeneities with application to mri,” IEEE Transac-
tions on Image Processing, vol. 20, no. 7, pp. 2007–2016, 2011. DOI:
10.1109/TIP.2011.2146190.

[12] A. Claisse and P. Frey, “A nonlinear PDE model for reconstructing
a regular surface from sampled data using a level set formulation
on triangular meshes,” J. Comput. Phys., vol. 230, no. 12, pp. 4636–
4656, 2011, ISSN: 0021-9991. DOI: 10.1016/j.jcp.2011.02.039.
[Online]. Available: https://doi.org/10.1016/j.jcp.2011.02.
039.

[13] P. Baxandall and H. Liebeck, Vector calculus, ser. Oxford Applied
Mathematics and Computing Science Series. The Clarendon Press,
Oxford University Press, New York, 1986, pp. x+550, ISBN: 0-19-
859652-9.

https://doi.org/https://doi.org/10.1006/jcph.1994.1155
https://www.sciencedirect.com/science/article/pii/S0021999184711557
https://www.sciencedirect.com/science/article/pii/S0021999184711557
https://doi.org/https://doi.org/10.1006/jcph.1996.0167
https://doi.org/https://doi.org/10.1006/jcph.1996.0167
https://www.sciencedirect.com/science/article/pii/S0021999196901679
https://www.sciencedirect.com/science/article/pii/S0021999196901679
https://books.google.no/books?id=ErpOoynE4dIC
https://books.google.no/books?id=ErpOoynE4dIC
https://doi.org/https://doi.org/10.1016/0167-2789(92)90242-F
https://doi.org/https://doi.org/10.1016/0167-2789(92)90242-F
https://www.sciencedirect.com/science/article/pii/016727899290242F
https://www.sciencedirect.com/science/article/pii/016727899290242F
https://doi.org/10.1109/34.368173
https://doi.org/10.1109/TIP.2011.2146190
https://doi.org/10.1016/j.jcp.2011.02.039
https://doi.org/10.1016/j.jcp.2011.02.039
https://doi.org/10.1016/j.jcp.2011.02.039

Chapter 6: Concluding Remarks 83

[14] R. Adams and C. Essex, Calculus: A Complete Course. Pearson Canada,
2009, ISBN: 9780321549280. [Online]. Available: https://books.
google.no/books?id=vFdKPgAACAAJ.

[15] Y. G. Chen, Y. Giga, and S. Goto, “Uniqueness and existence of vis-
cosity solutions of generalized mean curvature flow equations,” J.
Differential Geom., vol. 33, no. 3, pp. 749–786, 1991, ISSN: 0022-
040X. [Online]. Available: http://projecteuclid.org/euclid.
jdg/1214446564.

[16] L. C. Evans and J. Spruck, “Motion of level sets by mean curvature.
I,” J. Differential Geom., vol. 33, no. 3, pp. 635–681, 1991, ISSN:
0022-040X. [Online]. Available: http://projecteuclid.org/euclid.
jdg/1214446559.

[17] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang, “A PDE-
based fast local level set method,” J. Comput. Phys., vol. 155, no. 2,
pp. 410–438, 1999, ISSN: 0021-9991. DOI: 10.1006/jcph.1999.
6345. [Online]. Available: https://doi.org/10.1006/jcph.1999.
6345.

[18] S. Osher and R. Fedkiw, Level set methods and dynamic implicit sur-
faces, ser. Applied Mathematical Sciences. Springer-Verlag, New York,
2003, vol. 153, pp. xiv+273, ISBN: 0-387-95482-1. DOI: 10.1007/
b98879. [Online]. Available: https://doi.org/10.1007/b98879.

[19] J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization,
ser. Springer Series in Computational Mathematics. Springer-Verlag,
Berlin, 1992, vol. 16, pp. ii+250, Shape sensitivity analysis, ISBN: 3-
540-54177-2. DOI: 10.1007/978-3-642-58106-9. [Online]. Avail-
able: https://doi.org/10.1007/978-3-642-58106-9.

[20] R. Courant, Dirichlet’s Principle, Conformal Mapping, and Minimal
Surfaces. Interscience Publishers, Inc., New York, N.Y., 1950, pp. xiii+330,
Appendix by M. Schiffer.

[21] H. Holden and N. H. Risebro, Front tracking for hyperbolic conser-
vation laws, Second, ser. Applied Mathematical Sciences. Springer,
Heidelberg, 2015, vol. 152, pp. xiv+515, ISBN: 978-3-662-47506-5.
DOI: 10.1007/978-3-662-47507-2. [Online]. Available: https:
//doi.org/10.1007/978-3-662-47507-2.

[22] S. Seifu, personal communication, May 2021.

https://books.google.no/books?id=vFdKPgAACAAJ
https://books.google.no/books?id=vFdKPgAACAAJ
http://projecteuclid.org/euclid.jdg/1214446564
http://projecteuclid.org/euclid.jdg/1214446564
http://projecteuclid.org/euclid.jdg/1214446559
http://projecteuclid.org/euclid.jdg/1214446559
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1007/b98879
https://doi.org/10.1007/b98879
https://doi.org/10.1007/b98879
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1007/978-3-642-58106-9
https://doi.org/10.1007/978-3-662-47507-2
https://doi.org/10.1007/978-3-662-47507-2
https://doi.org/10.1007/978-3-662-47507-2

84 E. Steen: Reconstructing Curves from Sampled Data

[23] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Nu-
merical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed.
Cambridge University Press, Sep. 2007, ISBN: 0521880688. [On-
line]. Available: http://www.amazon.com/exec/obidos/redirect?
tag=citeulike07-20%5C&path=ASIN/0521880688.

http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0521880688
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20%5C&path=ASIN/0521880688

Appendix A

Additional Material

Central Difference Discretizations

ux(x j, yi, tn)'
Un

i, j+1 − Un
i, j−1

hx
(A.1)

uy(x j, yi, tn)'
Un

i+1, j − Un
i−1, j

hy
(A.2)

ux x(x j, yi, tn)'
Un

i, j+1 − 2Un
i, j + Un

i, j−1

h2
x

(A.3)

uy y(x j, yi, tn)'
Un

i+1, j − 2Un
i, j + Un

i−1, j

h2
y

(A.4)

ux ,y(x j, yi, tn)'
Un

i+1, j+1 − Un
i+1, j−1 − Un

i−1, j+1 + Un
i−1, j−1

4 hxhy
(A.5)

Forward Euler

ut(x j, yi, tn)'
Un+1

i, j − Un
i, j

k
(A.6)

85

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Ellisiv Sætherø Steen

A PDE-Based Strategy for
Reconstructing Curves from Irregular
and Unstructured Sampled Data

Master’s thesis in Applied Physics and Mathematics
Supervisor: Anne Kværnø
June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Background Theory
	Level Set Methods
	Distance Functions
	Gradient Flow and Derivatives of Domain Integrals

	Modeling
	Model 1
	Model 2
	Model 3

	Implementation
	Outline of the Main Algorithm
	Initialization
	Time Integration
	Updating the sign function, sigma
	Re-Initialization
	Stopping Criterion

	Numerical Results and Discussion
	Presentation of Test Cases
	Test Case 1: Circle of Dense Points
	Test Case 2: Three Equidistant Points
	Test Case 3: Dense and Irregular Data
	Test Case 4: Noisy Data
	Summary of Results

	Concluding Remarks
	Further Research

	Additional Material

