
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Fredrik Jenssen

Magno: An Application for Detection
of Dyslexia

From Native to Web App

Master’s thesis in Computer Science
Supervisor: John Krogstie

June 2021M
as

te
r’s

 th
es

is

Fredrik Jenssen

Magno: An Application for Detection of
Dyslexia

From Native to Web App

Master’s thesis in Computer Science
Supervisor: John Krogstie
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Dyslexia is a reading disorder that affects many. The magnocellular system, respon-
sible for motion detection in visual processing, appears to be deficient in people with
dyslexia. A Java application called Magno is used to test an individual for motion
detection deficiency. deCODE, a company studying genetics wants to use Magno
to discover the genes associated with this deficit. This thesis reimplements Magno
as a web application, aiming to increase the number of participants in deCODE’s
future studies by making it accessible in a browser. The thesis aims to answer which
optimizations are necessary when porting a Java app to a web app and how changing
from a facilitated to a self-managed test setting affects usability.

Usability testing was conducted on people from 24-81 years old and resulted in a Sys-
tem Usability Scale (SUS) score of 82,7. Previous usability testing resulted in a SUS
score of 92,7, suggesting that a self-managed test setting negatively affects usability.
Despite this decline, the current score is still considered excellent. Optimizations
resulted in stable performance on laptops and tablets, but further adjustments are
necessary to ensure high frame rates on weaker hardware. The web app needs to
be validated by testing people with high and low reading competence before being
employed in deCODE’s studies.

Sammendrag

Dysleksi er en leseforstyrrelse som påvirker mange. Det magnocellulære systemet,
ansvarlig for visuell bevegelsesoppfatning, synes svekket hos folk med dysleksi. En
Java-applikasjon kalt Magno brukes til å teste individer for svekket bevegelsesopp-
fatning. deCODE, et selskap som forsker på genetikk, ønsker å bruke Magno for
å oppdage genene assosiert med denne svekkelsen. Denne masteroppgaven imple-
menterer Magno som en webapplikasjon for å gjøre appen lettere tilgjengelig, og slik
øke antall deltakere i deCODE’s fremtidige genstudier. Oppgaven forsøker å svare
på hvilke optimaliseringer som er nødvendig når man omskriver en Java-app til en
webapp, samt hvordan å gå fra en fasilitert til selvstyrt test påvirker brukervenn-
lighet.

Brukervennlighetstesting ble utført på folk mellom 24 og 81 år og ga en System
Usability Scale-poengsum på 82,7. Tidligere brukervennlighetstesting resulterte i
en poengsum på 92,7 som antyder at et skifte til selvstyrte tester har en negativ
effekt på brukervennlighet. En poengsum på 82,7 er likevel ansett som utmerket, til
tross for poengsumnedgangen. Optimalisering resulterte i stabil ytelse på laptoper
og nettbrett, men videre justeringer er nødvendig for å sikre høy bildefrekvens på
svakere maskinvare. Webappen må videre valideres ved testing på folk med høy og
lav lesekompetanse før den kan tas i bruk av deCODE.

Preface

The work presented in this thesis is part of my master’s degree in computer science
at the Norwegian University of Science and Technology (NTNU). The project is
conducted under the Department of Computer Science under the supervision of
Professor J. Krogstie.

I would like to thank Professor John Krogstie for his support and advisory through-
out this master’s thesis. This thesis would not have been possible without his help.
I would also offer my thanks to classmates and friends who have struggled alongside
me and provided much-needed coffee breaks over this past year.

A big thanks to my family for their continued support, which has helped me see this
master’s degree through.

Fredrik Jenssen

June 23, 2021
Trondheim

Table of contents

List of Figures i

List of Tables iii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Outline . 2

2 Research Approach 3
2.1 Research Goals . 3
2.2 Research Questions . 3
2.3 Research Method . 4

2.3.1 Evaluation and Data Analysis 4

3 Background 5
3.1 Defining Dyslexia . 5
3.2 Consequences and the Importance of Early Detection 6
3.3 What Causes Dyslexia? . 7
3.4 Defining Usability . 9

4 Related Work 10
4.1 An App for Early Detection of Dyslexia 10

4.1.1 First Iteration: Functionality 10
4.1.2 Second Iteration: Usability . 14
4.1.3 Third Iteration: Data Storage 17

4.2 Web RDK . 22
4.3 Svipgerð: deCODE’s Test Platform 22
4.4 Requirements . 23

4.4.1 Out of Scope . 27

5 Methods, Tools and Technology 28
5.1 Scrum . 28
5.2 Usability Testing . 28

5.2.1 Remote Usability Testing . 28
5.2.2 The SUS Form . 29

5.3 Tools and Technology . 30

6 Implementation and Usability Testing 34
6.1 Workflow . 34
6.2 Software Architecture . 35
6.3 Design Choices . 36
6.4 First Iteration . 36

6.4.1 Application Overview . 36
6.4.2 Performance Optimization . 45
6.4.3 Usability Testing . 46
6.4.4 Written Feedback and Proposed Changes 48

6.5 Second Iteration . 49
6.5.1 Application Changes . 49
6.5.2 Usability Testing . 51
6.5.3 Written Feedback . 53

6.6 Classes and Interfaces . 54

7 Evaluation 57
7.1 Usability Testing . 57
7.2 Requirements Fulfillment . 59

7.2.1 Previous Requirements . 59
7.2.2 New Requirements . 62

8 Discussion, Conclusion and Further Work 64
8.1 Discussion . 64
8.2 Conclusion . 65
8.3 Further Work . 66

References 68

Appendix 73
A Previous requirements for Magno . 73
B Default Setting Values . 75
C Example Test Results . 77

C.1 Motion Test Results Example 77
C.2 Form Test Results Example 78

D SUS Form . 80
E Usability Test Email . 80
F First Usability Test: Free Text Answers 81
G Second Usability Test: Free Text Answers 83

List of Figures

1 Overview of the research process. From Oates, 2006 [1]. 4
2 Primary and secondary consquences of dyslexia [2]. 6
3 Illustration of a random-dot kinematogram. (a) with coherently mov-

ing dots (b) only randomly moving dots 9
4 (a), (b): Random-dot kinematograms with coherent motion in (a)

and random motion in (b). (c), (d): Form test with random pattern
in (c) concentric circles pattern in (d). 10

5 Main menu of Magno’s first version. 11
6 The motion test. 11
7 Form fixed test 100% coherency. 12
8 Form fixed test at 50% coherency. 12
9 Form random test 100% coherency. 13
10 Form random test at 50% coherency. 13
11 Form fixed test in auto and manual mode. 14
12 Home screen, navigation bar to the left. 15
13 Test results. 15
14 First screen of the tutorial. 16
15 Enter age screen. 16
16 Software architecture of the third iteration. Server, database, and

research website are hosted in Azure Cloud. MagnoClient refers to
the motion and form tests running on the tester’s device. 17

17 Landing page. 18
18 Login page. 18
19 Data view. 19
20 Contact page. 19
21 UML class diagram of the third iteration showing classes and their

relationships [3] . 21
22 Components in deCODE’s test system. 22
23 Svipgerð with the motion, form fixed and form random tests added

as new modules. 23
24 The modified SUS form with preliminary and optional questions added.

See the original SUS form in Appendix D. 30
25 Screenshot of the Trello board. 34
26 Example of branching and commits from the project’s Git repository.

In this particular example, performance-testing is branched out from
master but never merged since it was not intended to be part of the
application. 35

27 Introduction screen. 37
28 Tutorial introduction screen. 38
29 Tutorial task screen. 38
30 Tutorial trial screen. 39
31 The various states of the tutorial trial. 40
32 Test screen. 41
33 The various states of the motion test. 42
34 Result screen. 43
35 Loading screen. 44

i

36 Mobile screen. 44
37 Initial dot placement with straight lined grid and sine wave grid. . . . 46
38 Boxplot of SUS scores. 47
39 Participant distributions across age, gender and device. 47
40 Average score per SUS question. 48
41 Introduction screen. 50
42 Tutorial task screen. 50
43 Boxplot of SUS scores. 52
44 Participant distributions across age, gender and device. 52
45 Average score per SUS question. 53
46 UML class diagram of the final web application. 55
47 Box plot of SUS scores from both iterations’ usability tests. 57
48 The average SUS scores per age group. 58
49 Recorded performance from a complete run-through of the motion

and form fixed tests on an ASUS TUF gaming laptop using Brave
Browser. 60

50 Recorded performance from a complete run-through of the motion
test on a MacBook Air, Ipad Pro, and Samsung Tab A. 61

51 Original SUS form. 80

ii

List of Tables

1 Requirements brought over from previous iterations of Magno. See
Appendix A for all previous requirements, including those not brought
over. 24

2 New requirements for the web application 26
3 Quality attributes and associated non-functional requirements. 26
4 The proposed changes spawned from user feedback. 49
5 Requirements brought over from previous iterations of Magno. See

Appendix A for all previous requirements, including those not brought
over. 59

6 New requirements for the web application 63
7 Requirements from the first iteration of Magno [4]. 73
8 Requirements from the second iteration of Magno [5]. 74
9 Requirements from the third iteration of Magno [3]. 75
10 All textual feedback received from the first usability test. The motion

test was tested. 83
11 All textual feedback received from the second usability test. The form

fixed test was tested. 84

iii

1 Introduction

Developmental dyslexia henceforth referred to as dyslexia, is a hereditary reading
disorder that affects between 5-10% of the Norwegian population [6]. It comes with
several negative consequences for those affected and the society as a whole. A person
with dyslexia can experience poor academic results [7], stigmatisation at school and
in work, as well as reduced emotional well-being and self-esteem [8] [9].

However, these consequences can be mitigated. A positive diagnosis of dyslexia gives
people with dyslexia a label to attribute their differences in reading and learning
ability. Without the diagnosis, these people might attribute their differences to a
lack of intelligence. Multiple studies thus stress the importance of early detection
to reduce negative consequences and aid in the development of a positive self-image
[2] [8].

1.1 Motivation

In Norway, specific language difficulties, which may include early signs of dyslexia,
can be investigated at the age of 4. However, a dyslexia diagnosis investigation must
start in the 2. grade of primary school [6]. The investigation involves tests relying on
reading proficiency, putting specific learning measures in place, and then retaking
the tests. The schools could benefit from a screening tool to begin investigation
sooner and take preventive measures even before reading ability is acquired.

Magno, a screening tool built for this purpose [4], is based on the magnocellular
theory of visual processing and shows promising results [10] [11]. deCODE, an Ice-
landic company studying genetics, eyed an opportunity to use Magno to investigate
dyslexia’s hereditary causes. They wish to distribute Magno’s tests to around 15000
people and cross-analyze test results with their genes to search for the genetic cause
of impaired visual processing.

However, Magno is a native application for Android devices and desktop PCs, re-
quiring users to download and install it before the tests can be taken. deCODE’s
experience with similar tests shows that this process acts as a barrier, resulting in
fewer participants [12]. The work presented in this thesis aims to minimize this
barrier by rebuilding Magno as a web application to make it accessible directly in
the browser. As a web app, Magno can both increase study participants and become
a more accessible dyslexia screening tool.

1

1.2 Thesis Outline

Section 2 will detail my research approach, with specific research questions and the
research method applied. Section 3 will outline previous work in the area of dyslexia,
discussing consequences, definitions, and causes, as well as defining usability. Sec-
tion 4 details Magno’s development from the project’s beginning to its current state
and concludes with requirements for this project’s web solution, divided into func-
tional and non-functional requirements. Section 5 outlines development- and us-
ability test methods and briefly describes the tools and technology used. Section 6
outlines the workflow, design choices, software architecture, application overviews,
and results from usability testing. Section 7 discusses the results from usability
testing and evaluates the solution concerning functional and non-functional require-
ments. Finally, Section 8 discusses test results, concludes by answering the research
questions, and proposes further work for the project.

2

2 Research Approach

This section presents the chosen research approach. In Section 2.1 the research goals
are presented. Section 2.2 details the research questions sprung out of the research
goals. Section 2.3 outlines the research method applied with regards to strategies,
data generation, and data analysis. Section 2.3.1 further delves into how analysis
and evaluation of the solution are performed.

2.1 Research Goals

The overarching goal of this project is to allow for easy distribution of Magno’s mo-
tion and form tests to a multitude of people of varying reading competence, allowing
deCODE to progress research on dyslexia’s hereditary component and institutions
to more easily use it as a screening tool.

With the overarching goal in mind, this thesis’s practical goal is to reimplement the
motion, form fixed, and form random tests from the Magno application as a web
solution. The web solution must use technology that makes it easy for deCODE
to install it as a module in their online test platform Svipgerð, or Phenomenon,
in English. The new solution should be on par with the Java app’s usability and
provide similar test results for people with high- and low reading competence.

2.2 Research Questions

A critical difference between the new solution and the old is the test-setting. Whereas
the old solution was built around having an instructor facilitate the test, the new
solution will be self-managed. The test taker will now access the tests in a web
browser on their private PC or tablet device. In order to function well in this self-
managed setting, we chose to approach the reimplementation through the following
research questions:

RQ-1How is app performance maintained when porting a Java app to JavaScript?

RQ-2 How can Magno’s user interface support a self-managed test setting?

RQ-2.1 What changes to Magno’s tutorial instructions are needed to suffi-
ciently prepare the test taker?

RQ-3 How does a self-managed test setting affect the usability of the system?

RQ-4 How can motion test results be validated in a self-managed test setting?

3

2.3 Research Method

The research will follow Oates’ model on the research process [1]. An overview of
my research approach is shown in Figure 1.

Figure 1: Overview of the research process. From Oates, 2006 [1].

The literature review and implementation plan derived in the specialization project
provided the basis for the research goal and research questions mentioned above.
The main research strategy will be design and creation, producing new IT artifacts
in the form of the new web solution. The data to be analyzed will be twofold; from
questionnaires sent to users who participate in usability testing of the web app and
the application itself, including code structure, performance data, and design.

2.3.1 Evaluation and Data Analysis

The web app will undergo a qualitative and quantitative analysis during and at
the end of development. Usability testing will be conducted on adults of different
ages, ranging from 18 to 75. The first usability test will consist of test subjects
completing the motion test before being asked to fill out a System Usability Scale
(SUS) form [13]. The second test will have the same structure but replaces the
motion test for the form fixed test. In addition, the form will contain two additional
questions intended to identify specific issues related to the design and usability of
the application. Finally, the web app will be evaluated with regards to the functional
and non-functional requirements outlined in 4.4.

4

3 Background

This section defines dyslexia, its consequences on an individual and broader level,
and what causes it. The section concludes by defining usability.

3.1 Defining Dyslexia

There are many definitions of dyslexia, and defining it continues to be a topic of
discussion. What makes defining it tricky is its several manifestations. A person
with dyslexia may experience one or more of several symptoms related to dyslexia.
Pedagogues and special pedagogues tend to use practical definitions like those de-
fined by the International Dyslexia Association (IDA), British Dyslexia Association
(BDA) or the ROSE-report [14]. Here are the definitions:

IDA defines it as:

Dyslexia is a specific learning disability that is neurobiological in origin. It is char-
acterized by difficulties with accurate and/or fluent word recognition and by poor
spelling and decoding abilities. These difficulties typically result from a deficit in the
phonological component of language that is often unexpected in relation to other cog-
nitive abilities and the provision of effective classroom instruction. Secondary conse-
quences may include problems in reading comprehension and reduced reading experi-
ence that can impede the growth of vocabulary and background knowledge. [15]

The ROSE report’s definition:

Dyslexia is a learning difficulty that primarily affects the skills involved in accurate
and fluent word reading and spelling. Characteristic features of dyslexia are difficul-
ties in phonological awareness, verbal memory, and verbal processing speed. Dyslexia
occurs across the range of intellectual abilities. It is best thought of as a continuum,
not a distinct category, and there are no clear cut-off points. Co-occurring diffi-
culties may be seen in aspects of language, motor coordination, mental calculation,
concentration, and personal organization, but these are not, by themselves, markers
of dyslexia. A good indication of the severity and persistence of dyslexic difficul-
ties can be gained by examining how the individual responds or has responded to
well-founded intervention. [16]

BDA adopted ROSE’s definition in 2010, however extending it with the following
characteristics:

The British Dyslexia Association (BDA) acknowledges the visual and auditory pro-
cessing difficulties that some individuals with dyslexia can experience and points out
that dyslexic readers can show a combination of abilities and difficulties that af-
fect the learning process. Some also have strengths in other areas, such as design,
problem-solving, creative skills, interactive skills, and oral skills. [17]

5

Notably, BDA’s is the only definition to acknowledge the visual and auditory pro-
cessing difficulties in dyslexics, as will be discussed as possible causes of dyslexia in
Section 3.3. A notable difference between ROSE’s and IDA’s definition is ROSE’s
emphasis on the importance of seeing dyslexia as a continuum and examining the
effect of interventions to assess the degree of severity. Another difference is IDA’s
mention of secondary consequences, such as an impediment to vocabulary growth.
What the definitions agree on is that it causes difficulties with accurate and fluent
reading and spelling.

3.2 Consequences and the Importance of Early Detection

Dyslexia can have serious consequences for the individual, family, and society. A
study looking at the effects associated with dyslexia reviewed 97 articles on the sub-
ject from 1980 to 2018, categorizing consequences as primary or secondary as shown
in Figure 2.

Figure 2: Primary and secondary consquences of dyslexia [2].

The primary consequences can be poor performance in academics and work and
differences noticed by peers, teachers, and parents coming with real or perceived
stigma. Secondary consequences often start with negative self-evaluation due to
primary consequences, which can negatively impact self-esteem, social relationships,
motivation, and emotional well-being. The review also stresses that primary and
secondary consequences are intertwined. It concludes by highlighting the importance
of early, high-quality assessment and diagnosis of dyslexia to minimize the impact
of these consequences.

Another study of dyslexia’s consequences interviewed children with dyslexia attend-
ing secondary school in the UK who told of dyslexia’s impact on their self-evaluation.
Several of the pupils interviewed reported feeling stupid and isolated before diagno-
sis. After diagnosis, many no longer felt this way and said it had helped to know

6

others were sharing their problems. They also noted that the dyslexic label helped
them understand why they were struggling. The study concludes that an official
diagnosis is crucial for developing self-esteem.

A follow-up study of 29 adults with dyslexia in Germany supports the notion that
early diagnosis and preventive measures can mitigate consequences. The study in-
terviewed the adults 20 years after graduating from dyslexia boarding schools and
found increased spelling skills, high occupational status, and no significant psychi-
atric issues since attending school [18]. This change can, in part, be attributed to
the above-average IQ of the subjects and the high socioeconomic status of their
parents. However, the study also notes the importance of remedial work at their
schools.

These studies show evidence to support the notion that early detection and pre-
ventive measures play a crucial role in dyslexics’ development. Dysleksi Norge, the
advocacy group for dyslexics in Norway, also stresses the importance of early detec-
tion. They refer to a study which shows that the effectiveness of preventive measures
decreases from 80% in the 1. and 2. grades of elementary school to just 10-15% in
the 5. grade [6].

3.3 What Causes Dyslexia?

Reading is a complex function involving many cognitive processes, which are reduced
in people with dyslexia. Research has so far identified these processes to be verbal
short-term memory, phonological awareness, rapid naming, phonological and ortho-
graphic coding, and visual processing [19]. As visual processing is an obvious reading
component, I will give a short description of the other cognitive processes.

Verbal short-term memory refers to the ability to process unknown words into their
phonemes in order to read them. Known words are often recalled directly from
memory. This ability is often examined through a digit span task [20].

Phonological awareness is the ability to perceive, segment, and manipulate the
sounds of spoken words. Phonemes are the smallest unit of meaningful sound in
a language, which combined form words. Phonological awareness is often tested
through a phoneme deletion task, which removes a sound from a word and asks the
test taker to pronounce the altered word.

Rapid naming is a measure of speed processing, typically involving the naming of
numbers, letters, colors, and objects.

Phonological coding refers to being able to put phonemes together to pronounce
unknown words and is usually tested by asking the test taker to pronounce made-up
words.

Orthographic coding is the assumed ability to recognize a word by its holistic form
and is tested by presenting a word orally, then displaying two phonologically indis-
tinguishable words of which only one is correctly spelled.

7

The Phonological Theory

The theory garnering the most attention is the phonological theory, which suggests
that difficulties with reading stem from a failure to acquire the skill of separating
sounds into phonemes that match the letters that represent them [21]. The most
utilized test of this skill is to ask participants to read made-up pronounceable words.
This test is utilized because it requires letter-to-sound conversion without any help
from meaning or context, making it difficult for poor readers to pronounce.

However, this theory is criticized for its applicability to all poor readers, not just
dyslexics [21]. John Stein argues that the essence of reading is decoding - translat-
ing letters into their corresponding sounds - which the phonological theory reiterates
without providing evidence for why people with dyslexia fail to learn it. Further-
more, many dyslexics do not exhibit phonological problems, meaning it is not neces-
sarily a precondition for dyslexia [22]. The argument thus makes the case that poor
decoding skills are insufficient to distinguish dyslexics from those who struggle to
read due to other causes, such as poor teaching and lack of family support [21].

The Magnocellular Theory

Another theory called the magnocellular (M) theory links dyslexia to how visual
information is processed in the brain. M-neurons are part of the visual system and
are found in the retina, lateral geniculate nucleus (LGN), visual cortex, and in the
parietal and frontal cortices [21]. These neurons specialize in rapid temporal pro-
cessing, such as a change in luminance, localization of objects, and motion detection.
The cells dominate the dorsal pathway from the visual cortex, seemingly responsible
for directing the ventral stream’s direction to the word it should analyze at a given
moment [23]. In other words, the M-dorsal pathway seems to play a vital role in the
allocation of attention for reading.

Evidence has accumulated showing an impaired M-system in people with dyslexia.
MRI and histological studies of dyslexics’ brains have found abnormalities in the
M-layers of the LGN. Livingstone et al. found these layers to be 30% smaller and
more disorganized than in those of the control group [24]. Giraldo-Chica et al.
found the layers to be significantly thinner than in age-matched control groups [25].
Furthermore, Eden et al. used functional magnetic resonance imaging (fMRI) to
find that activity in the visual motion area, supplied mainly by the M-system, in
response to moving stimulus is much reduced [26].

Further evidence of an impaired M-system in dyslexics has been found by testing
visual motion sensitivity through psychophysical measures. Psychophysics is the
scientific study of the relationship between stimulus, and sensation [27]. Random dot
kinematograms, as shown in Figure 3, is a psychophysical way of measuring motion
sensitivity [28]. They consist of numerous dots where a portion moves randomly,
and the other portion moves in the same direction. The number of coherently
moving dots required to detect the motion determines their sensitivity to motion.
Several studies have found that dyslexics need a significantly greater proportion of
coherently moving dots to detect the motion [29] [30] [11].

8

Figure 3: Illustration of a random-dot kinematogram. (a) with coherently moving
dots (b) only randomly moving dots

Visual M-weakness is not detected in every person with dyslexia. Furthermore, many
children with impaired M-function learn to read well. Thus, an impaired M-system
cannot be the sole cause of dyslexia [31]. However, on average, it is shown to be
significantly impaired in dyslexics. This provides an opportunity for early detection
tools by testing the M-system’s sensitivity, at the benefit of being helpful to those
who cannot read.

3.4 Defining Usability

An important aspect of this thesis is the focus on maintaining usability in a self-
managed setting. Thus it is valuable to define what usability is. The ISO 9241-11
standardized a definition for usability and its measurement. This standard points
out that usability depends on context, where something usable is appropriate to its
context. The context consists of the task being done, the experience and background
of the user doing it, and the environment in which it is performed. [13] The ISO
standard further breaks down usability measurement into three categories:

• Effectiveness - how well the user is able to perform their tasks and achieve
their goals

• Efficiency - the amount of resources used to achieve their goals

• Satisfaction - the level of comfort experienced when performing tasks and
achieving goals

9

4 Related Work

This section will cover Magno’s conception, its several iterations since the project’s
start, and an alternative random-dot kinematogram web implementation. Further,
it will present an overview of deCODE’s test platform, how Magno’s tests will fit as
modules in it, and present the requirements specification that serves as a basis for
the web solution.

4.1 An App for Early Detection of Dyslexia

4.1.1 First Iteration: Functionality

The Magno project’s initial goal was to re-create an MS-DOS program from the early
2000s called Form. This program was used to check for vision problems and showed
promise as a screening tool for dyslexia [32]. As a program made for older hardware,
it was desirable to bring it to modern-day devices. Modernizing this program would
be the basis of master’s student Bjørnar Wold’s thesis. He re-created Form as a
Java application during the school year of 2015-2016. The tests included a motion
detection test based on random-dot kinematograms and two form tests based on
static global patterns. An illustration of these tests are seen in Figure 4.

Figure 4: (a), (b): Random-dot kinematograms with coherent motion in (a) and
random motion in (b). (c), (d): Form test with random pattern in (c) concentric
circles pattern in (d).

The project’s goal was to implement the functionality of these tests as close to the old
MS-DOS program as possible by interviewing people that partook in development
or utilized the program previously. A snapshot of the program’s main menu is seen
in Figure 5. The application was implemented in Java using a game development
framework called libGDX [33].

10

Figure 5: Main menu of Magno’s first version.

As illustrated, the application consisted of three tests: a motion, form fixed, and
form random test. The app also provided a settings view for tweaking test param-
eters. Following is a short description of each test’s workings with their default
settings.

(a) Motion test screen capture. (b) Motion test illustration at 50% coherency.

Figure 6: The motion test.

The motion test consists of two patches with 300 randomly placed dots with a radius
of 1 pixel. At the beginning of each test trial, a patch is chosen randomly to contain
the coherent-moving dots while the other contains only random-moving dots. The
coherent moving dots will move either left or right, reversing every 0,572 seconds.
The randomly moving dots change direction every 0,572 seconds or when colliding
with other dots.

The test participant detects the patch with coherent moving dots during the 5
seconds of animation time. After 5 seconds, the dots disappear, and the participant
selects the patch he believes to contain the coherent moving dots. On selection,
a new trial with increased or decreased level of coherency begins. Dots are given
new locations and movement directions. The coherency level decreases if the correct
patch is chosen and increases otherwise, making the next trial harder or easier.
Figure 6b illustrates the test at a 50% coherency threshold.

11

Figure 7: Form fixed test 100% coherency.

Figure 8: Form fixed test at 50% coherency.

12

Figure 9: Form random test 100% coherency.

Figure 10: Form random test at 50% coherency.

The form tests, as seen in Figure 7 and 9, consist of 600 line segments with each of
the lines having a length of 0,4◦ of the viewing angle and a height of 1 pixel. The
lines are distributed evenly. One of the patches is chosen at random to contain a
percentage of lines that form concentric circles. For the form fixed test, the center
of the concentric circle is always in the middle of the patch. In the form random
test, the center moves to a random position on the patch for each trial.

13

The test participant has 4 seconds to search for the patch containing the concentric
rings. The participant then selects the patch they believe contains the rings. The
pattern is recalculated with an increased or decreased coherency, similar to the
motion test. Figure 8 and Figure 7 show the form fixed test and Figure 10 and
Figure 9 show the form random test at 100% and 50% coherency thresholds. The
form tests can be run in two modes; auto mode, which distributes line segments
evenly as in Figure 11a, and manual mode, which distributes the line segments
randomly as in Figure 11b.

(a) Auto mode (b) Manual mode

Figure 11: Form fixed test in auto and manual mode.

4.1.2 Second Iteration: Usability

Thea Johansen and Maja Kirkerød made the second iteration of Magno in their
master thesis during 2016-2017 [3]. It focused mainly on upgrading the app’s us-
ability, with a big overhaul of the user interface. This iteration added a navigation
bar for easily accessing the different parts of the application, the ability to enter
your age for later statistical analysis, tutorials for enhancing self-management, and
a test-results screen showing how well one performed. Screenshots of these can be
seen in Figure 12, 13, 14, and 15.

14

Figure 12: Home screen, navigation bar to the left.

Figure 13: Test results.

15

Figure 14: First screen of the tutorial.

Figure 15: Enter age screen.

Johansen and Kirkerød made several dyslexia-friendly design choices. They chose
a blue-themed user interface based on studies showing that reading text on a blue
background can help keep letters still on a page. Another design choice made was to

16

use the Helvetica font, shown to be well suited for readers with dyslexia [34]. Their
digital prototype underwent usability testing with 10 students of ages 18-25 from
NTNU Gløshaugen. The prototype received a SUS score of 92,7 using a slightly
altered version of the SUS form that omitted its first question.

4.1.3 Third Iteration: Data Storage

The following year, Tore Angell Petersen continued work on Magno, focusing on
collecting test results and providing an interface for researchers to analyze these
results quickly. His project contributions were an SQL database for storing results,
a server with an API for receiving and saving results, and a website for researchers
to gather and view test results. The system architecture is shown in Figure 16.

Figure 16: Software architecture of the third iteration. Server, database, and re-
search website are hosted in Azure Cloud. MagnoClient refers to the motion and
form tests running on the tester’s device.

The MagnoClient in the figure refers to the Java application with the motion, form
fixed, and form random tests. Here Angell added a ServerConnection class that
connects to the MagnoAPI backend server. The server is based on REST principles
and includes a route for receiving results and sending the mean test score per age
group to the client. The server runs in a Node.js environment and is hosted in
Microsoft’s Azure Cloud alongside an SQL database and a website for viewing test
results. The MagnoWeb website is built with Microsoft’s Asp.Net framework.

17

Figure 17: Landing page.

Figure 18: Login page.

18

Figure 19: Data view.

Figure 20: Contact page.

Figures 17-20 show the various screens found on MagnoWeb, including a home page,
login page, data view and contact page. The system administrator must authorize
a user account before the test results can be accessed. The data view lets you filter
results within an age group. The site’s contact page is for reporting any errors with
the site.

19

Figure 21 shows the class diagram for the latest iteration Magno. Each square
represents a Java class, and a line indicates a dependency between two classes. The
yellow boxes represent classes that were altered for this iteration, and the red box
is the additional ServerConnection class.

20

F
igure

21:
U
M
L
class

diagram
ofthe

third
iteration

show
ing

classes
and

their
relationships

[3]

21

4.2 Web RDK

A research group from the University of California implemented the first open-access
random-dot kinematograms for web browsers [35]. Their solution was integrated as
a plugin in jsPsych, an open licensed JavaScript library for creating and running be-
havioral experiments in the browser [36]. It provides much of the same configurations
as Magno, with additional options for dot behavior, number of patches, background
color, and patch shapes. However, web RDK does not support Brownian motion1,
which is the dot behavior used in Magno.

4.3 Svipgerð: deCODE’s Test Platform

deCODE has built an application platform for distributing tests called Svipgerð [37].
Currently, it hosts three modules: Tóneyra og taktvísi, a screening test for tone and
rhythm blindness, Persónuleiki, a personality assessment of the five most-studied
personality traits, and Psoriasis, a questionnaire with health-related questions for
people with psoriasis.

Technology

Svipgerð and the tests residing in it are based on AngularJS v1.7.9 with Bootstrap
v4.4.1. deCODE’s backend consists of an Express.js server. The server is responsible
for the API that handles HTTP requests from clients and connects to the database
to retrieve and insert data. This data typically consists of test results along with
user information. deCODE runs an Oracle database for handling persistent storage
of these data. A visualization of the system’s components can be seen in Figure 22.

Figure 22: Components in deCODE’s test system.

1Random movement of particles in a fluid

22

Backend

The system is based on the client-server architecture, which uses a server to manage
and distribute resources requested by the client. The server is built with Express.js,
a web framework based on Node.js. This architecture makes it possible to distribute
incoming requests to multiple node processes for increased performance and scalabil-
ity. Additionally, Node.js supports effective load balancing through libraries such as
node-HTTP-proxy2, which manages workload across multiple node servers running
on separate machines.

Svipgerð Integration

deCODE has requested that the motion, form fixed, and form random tests be
implemented as independent applications so that each can be taken separately [38].
This independence entails each test residing as its own module in Svipgerð. As
modules in Svipgerð, the solution must be compatible with AngularJS. Figure 23
illustrates how the tests will fit into Svipgerð.

Figure 23: Svipgerð with the motion, form fixed and form random tests added as
new modules.

4.4 Requirements

We examined previous iterations of Magno to identify existing functionalities and
qualities that are fundamental to the application. Dialogue with deCODE resulted
in complementary specifications to better support a self-managed test setting. The
requirements brought over from previous iterations are in Table 1, with some given

2https://github.com/http-party/node-http-proxy

23

a slight rewording. The new requirements are in Table 2. The tables use the ab-
breviations FR for functional requirements and NFR for non-functional require-
ments.

Id Description Priority

FR1 The application should implement the motion test
using random-dot kinematograms and the form
tests using static global patterns as described in
Section 4.1.1.

High

FR2 The application must use screen size, screen reso-
lution, and viewing distance to calculate the size
of objects on the screen.

High

FR3 Default settings parameter-values are to be pro-
vided. See Appendix B for a comprehensive list of
these values.

High

FR4 The application should calculate a threshold score
after a successful test run of the motion, form fixed
or form random test.

High

FR5 The test subject should be prompted to complete
a tutorial before the test.

High

FR6 Threshold score and the settings used during a test
should be saved in a test results object.

High

FR7 It should be possible to exit the test at any time. High

FR8 The application should use screen size to make the
design responsive to different sized tablet and com-
puter screens.

High

NFR1 The application should have a minimum SUS score
of 80.

High

NFR2 The application should run close to 60 frames per
second (FPS) on desktop PCs and tablet devices.

High

Table 1: Requirements brought over from previous iterations of Magno. See Ap-
pendix A for all previous requirements, including those not brought over.

24

Id Description Priority

FR9∗ When accessed on a computer, the cursor should
change form when hovering over clickable content.

High

FR10 If accessed on a mobile device, it should not be
possible to take any of Magno’s tests.

High

FR11 If accessed on a mobile device, Magno should dis-
play a message telling the user it is unavailable
for mobile devices and propose using a tablet or
desktop PC.

Medium

FR12 The motion, form fixed, and form random tests
should be implemented as separate applications so
that they can run independently of each other.

High

FR13 Test settings should be kept in a configuration file
on the server, one for each test.

High

FR14 A simple HTTP server should be created to test
that POST requests containing test results are
properly received and acts as documentation for
deCODE’s team to see which API endpoints are
used.

Medium

FR15 The app shall use an HTTP client to send POST
requests with test results to an HTTP server.

High

FR16 In addition to the data already included in the
motion- and form test results, see Appendix C,
they should also include the test type: either mo-
tion, form fixed, or form random, as well as spec-
ifying auto or manual mode for the form tests. In
addition, each coherency threshold step should in-
clude:

• How long the user took to click a patch.
• The absolute pixel coordinates (x, y) of

where the user clicked on the screen.
• The current coherency threshold.
• Which key was pressed in case of keyboard

use
• The patch selected
• The target patch

High

FR17* The app should facilitate multi-language support. Medium

NFR3 Settings should be adjustable only by deCODE’s
system administrators.

High

∗Unattained requirements from the previous iterations.

25

NFR4 The test should be designed with self-management
in mind, such that a user is able to understand the
application quickly and complete the tests without
difficulty.

High

NFR5 The application should be based on JavaScript to
easily integrate as an application in deCODE’s
Svipgerð platform and ease continued develop-
ment.

High

NFR6 The app should cater to the technical abilities of
those in the age range of 18 to 75.

High

Table 2: New requirements for the web application

Examining the NFRs from Table 1 and Table 2 we can use the software quality model
of the ISO 25010 standard to identify key quality attributes of the system: usability,
performance efficiency, and maintainability. Table 3 shows the link between NFRs
and quality attributes. The quality attributes summarize aspects in focus when
developing the application.

Quality Attribute Id Description

Usability

NFR1 The application should have a minimum SUS score
of 80.

NFR4 The test should be designed with self-management
in mind, such that a user can understand the ap-
plication quickly and complete the tests without
difficulty.

NFR6 The app should cater to the technical abilities of
those in the age range of 18 to 75.

Performance Efficiency NFR2 The application should be able to run close to 60
FPS on desktop PCs and tablet devices.

Maintainability

NFR3 Settings should be adjustable only by deCODE’s
system administrators.

NFR5 The application should be based on JavaScript to
easily integrate as an application in deCODE’s
Svipgerð platform and for easing continued devel-
opment.

Table 3: Quality attributes and associated non-functional requirements.

26

ISO 25010 defines usability similarly to the definition in Section 3.4. Maintainability
and performance efficiency is defined as the following [39]:

• Performance Efficiency represents the performance relative to the number of
resources used under stated conditions. In this case, resource use must be kept
at a level where the device is able to run close to 60 FPS.

• Maintainability represents the degree of effectiveness and efficiency with which
a product or system can be modified to improve it, correct it, or adapt it to
changes in the environment and in requirements.

4.4.1 Out of Scope

Equally important to describe what the application will do is describing what it
will not. As the web solution will reside in deCODE’s Svipgerð platform, some
functionality is deemed out of scope for this project. Functionality that is already
handled by deCODE, or left for them to address, includes:

• Authorizing users through login capabilities.

• Handling multiple test-runs per user.

• Giving feedback on test scores relative to age group.

• Storing test results in a database.

• Creating and maintaining a server with an API for storing and retrieving
results from a database.

27

5 Methods, Tools and Technology

This section outlines the development method used, how usability is conducted, and
which tools and technology are used.

5.1 Scrum

Parts of Scrum will be used as the central development methodology for this project.
Scrum is an agile process framework, heavily used within project management and
software development [40]. The parts of Scrum we will utilize are the emphasis on
stakeholder involvement and iterative development. The framework is based around
teams of five to ten members but can also be applied successfully with smaller
teams. Scrum breaks work down into manageable pieces, which can be completed in
time-constrained iterations, called sprints. Sprints are usually around two weeks to a
month-long. This project will be divided into two sprints. The first sprint’s goal is to
complete an initial version of the application and test its usability. The second sprint
aims to improve the application based on feedback from the first usability test and
then perform another usability test to see if the changes improved usability.

5.2 Usability Testing

To verify that the solution’s usability is on par with the current solution, it is
necessary to scrutinize the app through usability testing. However, the ongoing
COVID-19 pandemic imposes limitations on how usability testing can be performed.
Notably, the situation prohibits the option of being physically present as a supervisor
to instruct and observe test takers. With a typical field study requiring physical
presence out of the question, usability testing will be performed remotely.

5.2.1 Remote Usability Testing

Remote usability testing consists of two main approaches: remote synchronous us-
ability testing (RSUT) and remote asynchronous usability testing (RAUT). RSUT
refers to real-time testing where the tester and evaluator are only separated spa-
tially. In RAUT, the tester and evaluator are separated both in time and space.
A study found RSUT to be virtually equivalent to conventional laboratory-based
think-aloud tests [41], but at the cost of being time-consuming as the facilitator has
to be present throughout the test for every tester. An example of a synchronous
setup is to use a live-video chat service such as Zoom or Skype to conduct testing
like one would in a lab-based setting.

RAUT has been shown to identify around half of the usability problems of tra-
ditional methods but also requires significantly less time to perform [42]. As the
facilitator does not have to be present, these tests can enable more participants,

28

leading to a larger quantity of results for analysis. Teston3 is a popular software
providing RAUT services such as screen and voice recordings. However, analyzing
video and voice recordings is a time-consuming process, so for this project, we will
have participants complete the test and fill out a questionnaire afterward. Besides
time constraints, RAUT is also used because it better reflects the intended user
setting: testers completing the tests individually.

5.2.2 The SUS Form

A popular questionnaire for usability testing is the System Usability Scale (SUS)
form. SUS was first created in the mid-80s by John Brooke as a quick way to test
the perceived usability of a computer system. It was made freely available in ’86 and
has gained much attention since, being cited in over 1,200 publications [13]. Sauro
[43] collected data of 5,000 SUS observations and analyzed it extensively, making
SUS an excellent tool for comparing usability to other software products. Some key
takeaways from his summary of the SUS form are:

• It is reliable. Users respond consistently to the questions, and the form is
shown to detect differences at smaller sample sizes than other questionnaires.

• It is valid, measuring what it intends to measure.

SUS is comprised of ten questions concerning usability. The questions are answered
with a number from 1 to 5, where 1 corresponds to strong disagreement and 5 to
strong agreement. The odd questions are positively worded, while the even questions
are negatively worded. The questionnaire is structured this way to avoid response
biases, such as marking only the extremes of the scale or agreeing to all items in the
questionnaire. The final SUS score is calculated in the following manner:

1. X = Sum of the points for all odd-numbered questions− 5

2. Y = 25− Sum of the points for all even-numbered questions

3. SUS Score = (X + Y)× 2.5

Subtracting 1 from each odd question makes the minimum score applied when
strongly disagreeing equal to 0 and 4 when strongly agreeing. The same applies
to Y , only in reverse. When strongly agreeing to the even-numbered questions, we
want to give the minimum score of 0. Likewise, we want to award the highest score
of 4 when strongly disagreeing with the same questions. Finally, we multiply by
2,5 to scale the score to be between 0 and 100. Initially, this scaling was a mar-
keting strategy to grab the attention of stakeholders more familiar with a 0 to 100
scale than a 10 to 50 scale. Brooke notes that this scaling has the downside of the
score being misinterpreted as a percentage. However, as SUS became increasingly
popular, this was the scale that stuck.

The questionnaire I will employ is a modified SUS form. The first question is changed
from "I think I would like to use this system frequently", to "I think I would like to use
this system if needed". This change is due to Magno not being intended for multiple

3https://teston.io/no/

29

https://teston.io/no/

uses. Three questions are added to the start of the form, asking the participant’s
age, gender, and device to gain insight of the participants’ demographics and to
analyze those using tablets and PCs separately. Additionally, two optional free text
questions are added to enable more detailed and diagnostic feedback, which can be
used to identify concrete examples of poor usability to improve upon in the second
iteration. The complete form is as follows:

1. Please enter your age.

2. Please select your gender.

3. Which device did you use when taking the test?

4. I think I would like to use this system if needed.

5. I found the system unnecessarily complex.

6. I thought the system was easy to use.

7. I think that I would need the support of a technical person to be able
to use this system.

8. I found the various functions in this system were well integrated.

9. I thought there was too much inconsistency in this system.

10. I would imagine that most people would learn to use this system very
quickly.

11. I found the system very cumbersome to use.

12. I felt very confident using the system.

13. I needed to learn a lot of things before I could get going with this
system.

14. Was there anything in the application that was particularly difficult
to understand?

15. Do you have any comments on the design of the application?

Figure 24: The modified SUS form with preliminary and optional questions added.
See the original SUS form in Appendix D.

Tullis and Stetson have shown that a sample size of 12-14 is needed to get reliable
test results. [44]. We will thus aim to recruit 12 or more participants for each
usability test in this thesis.

5.3 Tools and Technology

This section provides an introduction to the relevant tools and technologies used in
this project.

TypeScript

TypeScript is a programming language which transpiles to JavaScript. It provides
additional features to JavaScript like object-oriented programming concepts such as

30

inheritance and classes, strong static typing and pre-compilation error detection. As
TypeScript transpiles to JavaScript, it is also easily compatible with AngularJS [45]
[46] [47].

PixiJS

PixiJS is an open-source, free-to-use JavaScript library with fast 2D rendering us-
ing WebGL. It also supports fallback to Canvas for browsers that do not support
WebGL. The speed of PixiJS will help keep the frame rate at a steady 60 frames per
second when rendering the motion test, the most computationally heavy part of the
application. The library supports a variety of sprite sheet formats, with multiple
functions for transforming sprites. This makes it possible to reuse the skin of the
Java application. Another useful feature is its asset loader, which caches sprites and
graphics for quick access if multiple objects use the same sprite [48].

Babel

Babel is a JavaScript compiler that allows writing ES6 syntax without worrying
about compatibility with older browsers and environments that do not support the
newest JavaScript syntax. ES6 syntax enables features such as classes and arrow
functions, making it easier to re-implement Java classes from Magno and keeping
the code compact and easy to read [49].

Parcel

Parcel is a Web Application Bundler that offers a multitude of features with no
configuration [50]. Its main features are:

• Assets bundling (JavaScript, HTML, CSS, images)

• Zero configuration code splitting (shortening load times)

• Automatic transforms using Babel, PostCSS and PostHTML

• Hot module replacement, updating the content in your browser as you work,
allowing you to see changes instantly.

• Caching and parallel processing for faster builds.

Node.js

Node.js is a JavaScript run-time environment for server- and web applications. It
executes JavaScript code on Google’s V8 engine, allowing JavaScript programs to run
on servers. This will be useful to create the server code for handling POST-requests
of test result data and keep a consistent data model. It also has a built-in package
called node-fetch, which acts as an API to the native fetch API. Fetch will be used
to post test results to the server. Node.js also includes the Node Package Manager
(NPM), which keeps track of module dependencies and versions. NPM provides
a registry with free JavaScript packages for solving a multitude of problems and
installs them seamlessly by running a simple NPM install command [51] [52].

31

i18next

i18next is an internationalization framework for JavaScript [53]. It lets you add
multi-language support to your application by handling issues such as detecting
user language, and loading and caching translations.

Git

Git is a distributed version control system that enables software collaboration,
and code-change tracking [54]. It allows working on different features on separate
branches while maintaining a functioning master branch, providing a workflow that
makes life as a developer easier. This project will use it to maintain an organized
code structure.

GitHub

GitHub is a website offering cloud-based Git repository hosting [55]. This makes
collaborating on software projects easy, as every developer has access to the en-
tire codebase and its history through the GitHub repository. Among other services
provided by GitHub are access control, feature requests, bug tracking, task manage-
ment, continuous integration, wikis, and web hosting.

GitHub Pages

GitHub Pages is a service offered by GitHub which provides static web hosting for
rapid and easy deployment. It lets you publish your GitHub projects simply by
enabling it in your project settings and pushing your latest changes to master. This
project will use the NPM package gh-pages to deploy by running an NPM script
instead of pushing to master [56] [57].

Visual Studio Code

Visual Studio Code is one of the most popular integrated development environments
featuring syntax highlighting for hundreds of languages, debugging, code completion,
refactoring, Git integration, and community-made extensions for added functional-
ity. Especially relevant to the project is the built-in support for Node.js develop-
ment. It is also known for its simplicity, speed, and a high degree of customization
[58].

Trello

Trello is a cloud-based list-making application [59]. It is ideal for organizing workflow
and keeping track of task progression. Trello is free, focused on visual communica-
tion, highly customizable, and available directly in the browser. It will be used for
project management.

Nettskjema

A solution for quickly creating digital forms and collecting answers was needed to
conduct usability testing. Nettskjema is a website for creating forms developed by
the University of Oslo, available to students and employees in higher educational

32

institutions around Norway. It provides an intuitive interface for quickly generating
universally designed forms, secure data handling, and complies with GDPR. Form
responses are easily exported to Excel files for further data analysis [60].

33

6 Implementation and Usability Testing

This section details the development process and provides an overview of the ap-
plication screens with changes made from the Java app and the results of both
iterations’ usability tests.

6.1 Workflow

The Trello Board

Trello was used for task management, and the board was split into four lists. The
Backlog with proposed tasks, the Sprint Backlog with remaining tasks yet to be
started for this sprint, In Progress for tasks being worked on, and Complete for
finished tasks. Each task was seen as a feature or a bugfix comprised of several
subtasks. Once all subtasks of a feature task were completed, it was moved to
the Complete list. Figure 25 is a screen capture of the Trello board in its final
state.

Figure 25: Screenshot of the Trello board.

GitHub Branching and Deployment

Each task was worked on in its own feature branch to separate coding into manage-
able workloads and generally to avoid creating a mess. The feature branches were
named after the convention feature/{feature_name}. Using feature branches and
committing changes often made for an incremental workflow.

34

Figure 26: Example of branching and commits from the project’s Git repository. In
this particular example, performance-testing is branched out from master but never
merged since it was not intended to be part of the application.

When a feature was finished, it was merged into the master branch and hosted on
GitHub Pages to verify that the production build functioned properly for differ-
ent screen sizes. When the second iteration was completed, the main repository
was copied to enable usability testing of both the motion and form fixed tests in
parallel.

6.2 Software Architecture

The Model-View-Controller and PixiJS

The Java application employs the model-view-controller (MVC) pattern to clearly
separate the test logic and user interface. This provides the developer with a high
level of control, but at the cost of increased complexity. The web app’s core is
built with the PixiJS library and its components. PixiJS uses containers to store
objects such as sprites and graphics. These containers are passed to the renderer,
which draws container-content onto a WebGL-enabled canvas. As Magno is a fairly
small application and PixiJS containers are extendable classes, it was sensible to
combine the model, view, and controller into single classes. This class structure
links an object’s logic, graphics, and input handlers to a single class, which reduces
complexity by decreasing the number of interacting components the developer must
manage. A downside to this design pattern is that classes can get fairly large;
however, this was not an issue in this project.

35

The Game Loop

The game loop is at the core of any application that changes state based on time.
This loop typically computes logic and physics before drawing the updated model
to the screen [61]. JavaScript is a single-threaded language, which can cause tim-
ing issues in the game loop. These issues make the application non-deterministic,
meaning it can behave differently on various devices depending on hardware perfor-
mance. All tests must behave the same regardless of device, so we needed a game
loop implementation that behaves deterministically. Deterministic behavior is es-
pecially crucial for the motion test and its many collision computations which can
easily cause timing issues.

Luckily, a library called MainLoop.js provides a robust game loop for handling the
timing issues related to JavaScript [62]. With MainLoop.js, we can set the simulation
time between each frame update, allowing us to cap the maximum perceived FPS
to 60. More importantly, it gives us deterministic test behavior independent of
hardware limitations.

6.3 Design Choices

The application’s overall design remains the same as the Java app, including font
selection, colors, button layout, and tutorial structure. The overall design was kept
due to the Java app receiving a high SUS score of 92,7 and using dyslexia-friendly
fonts and colors. In addition, Johansen and Kirkerød concluded from user feedback
that their design was easy to understand and pleasing to look at [3]. The tutorial
structure is largely based on textual instructions, which fits the web solution as well,
with the intended user demographic being people aged 18 to 75. This application
assumes the tester to be literate, which is required to read and comprehend the
tutorial instructions. It also assumes basic computer interaction skills to navigate
the tutorial and complete the tests by interacting with a mouse, keyboard, or touch
device.

6.4 First Iteration

The first iteration’s goal was to implement the motion test with an introduction,
tutorial and result screen. This section will provide an overview of the first iteration’s
screens with notes on additions and changes to the graphical interface and changes
made to optimize performance. The section further presents SUS scores from the
usability test of this first iteration.

6.4.1 Application Overview

This section covers the app screens in chronological order starting with the first
screen you meet when visiting the website. Most of the screen captures were taken
on a wide monitor and cropped to make their contents readable. Thus, the con-
tents presented do not reflect the actual size computed from the monitor aspect

36

ratio.

Figure 27: Introduction screen.

Figure 27 shows the introduction screen which has the Magno logo [3] at the top and
the subheading "MOTION TEST". This subheading reflects the name of the test,
which is either "MOTION TEST", "FORM FIXED TEST" or "FORM RANDOM
TEST". Following the heading are two paragraphs: one explaining what the test
does and its purpose, and the second describing the application’s course of events.
The text buttons are revised, now sporting rounded edges with a darker shade of
blue and a drop shadow to visually stand out. The mouse becomes a pointer when
buttons are hovered and clicked. Notably, the navigation menu on the left-hand side
has been removed since the tests will live separately. The settings screens are also
removed since we no longer want to tweak the app on the client-side.

37

Figure 28: Tutorial introduction screen.

Figure 28 instructs the tester to sit close to the table with the device at a certain
length. A notable change is the removal of the "SKIP" button. This button allowed
the tester to go straight to the test without completing the tutorial. The button
was no longer wanted due to the increased risk of error in a self-managed setting,
where skipping the tutorial could confuse an cause invalid test results. Having the
tester go through the tutorial screens seeks to prepare the tester thoroughly. This
button is also removed from the other tutorial screens.

Figure 29: Tutorial task screen.

38

The tutorial task screen in Figure 29 details the test task. The text description is
far more detailed than before to accommodate the missing facilitator who previously
instructed the tester. It adds explanations of how long the dots are displayed, how
to select a box, and that the task is repeated multiple times. The word patch is
changed to box in the user interface to avoid confusion. A green checkmark replaces
the arrow pointing to the coherent patch, and a red cross is added to the random
patch. These symbols and their colors clearly distinguish correct from wrong. Patch
labels 1 and 2 are added to keep a consistent layout in the app.

Figure 30: Tutorial trial screen.

Figure 30 shows the tutorial trial screen which has only a few changes. The start
button’s text is modified from "START TRIAL" to "START TUTORIAL TRIAL"
to indicate that this test is part of the tutorial and not the actual test. The de-
scription is extended with a sentence that indicates the tester may proceed before
completing all trials.

39

(a) Running.

(b) Correct selection. (c) Incorrect selection.

(d) Paused. (e) Finished.

Figure 31: The various states of the tutorial trial.

The different states of a trial is shown in Figure 31. 31a shows a trial in the running
state, where some dots are moving coherently in one patch and randomly in the
other. 31b and 31c shows part of the screen when a patch is selected correctly
and incorrectly, respectively. The feedback text is moved below the patches to
not obstruct the view. It is also shortened to a single word, namely "Correct" and

40

"Incorrect". A white highlight surrounds the selected box, followed by a slight pause
before the next trial begins. The highlight is an addition that gives the tester clear
feedback on which patch they have selected. 31d shows the trial pause state. New
to this is the text displaying "Select a box" which was added to guide the tester in
case of confusion when dots are no longer displayed. The final state in 31e shows
the finished state, which occurs when all three trials are completed. The feedback
text is moved below the patches, as with the texts in the other states.

Figure 32: Test screen.

The test screen in 32 is modified with an added start button reading "START
TEST". The previous implementation showed empty patches before the test start
and instead required a click anywhere on the screen to start the first trial. The start
button provides a clear mechanism to start the test. It shares similar states to the
tutorial trial as seen in Figure 33, including the running state, selected state, and
paused state. In opposition to the tutorial trial, there is no indication of right or
wrong selection in the test. In the Java app, the next trial continues immediately
after selection. This sometimes made it difficult to see that a new trial had started,
which is why a slight pause was added between selection and the next trial.

41

(a) Running. (b) Patch selected.

(c) Paused.

Figure 33: The various states of the motion test.

42

Figure 34: Result screen.

The result screen received only minor changes. Replacing the button that takes you
to the introduction screen in Figure 27 and the button that copies test results to
the clipboard, there is now simply an exit button that closes the browser window.
The result bar’s extremes still have number labels, but their text labels are removed.
These labels stated "Little to no problems" on the left extreme and "Severe prob-
lems" on the right extreme. Neither the motion nor form tests are diagnostic, so
these wordings were deemed too conclusive and thus removed. A line has been added
to thank the tester for participation.

43

Figure 35: Loading screen.

Figure 36: Mobile screen.

44

A loading screen with the Magno logo and an orange spinning wheel in the center
of the screen, see Figure 35, was added. This screen is shown while the app loads
all screens and their components when first starting the app. The loading screen
communicates that the app is getting ready instead of showing a blank screen or a
stuttering app that might act as a nuisance.

Figure 36 shows the screen displayed when the tester tries to access the app on a
device whose screen width is less than 760 pixels. It displays a text explaining which
devices are supported and which are not.

6.4.2 Performance Optimization

The most computationally heavy part of the application is the motion test. It con-
tains hundreds of dots per patch that can collide with each other and the patch’s
boundaries. Additionally, they change direction approximately every half second.
The first attempt at implementing the motion test copied the Java app’s imple-
mentation. This implementation caused a significant performance hit, to the point
where the app struggled to maintain a steady frame rate even on high-end gaming
computers. A few changes were made to boost the motion test’s performance.

PixiJS has a built-in component called PIXI.ParticleContainer which can be used
to render many sprites at fast speeds. Switching from a regular PIXI.Container to
a PIXI.ParticleContainer improved the performance slightly. Another performance
booster is the quadtrees from the Java implementation, which are brought over to
prune dot collision checks. However, the main performance bottleneck discovered
was the function placing dots at their initial positions. In the motion test, dots are
initially placed randomly across the patch with a minimum distance to its neighbors.
The Java implementation randomly generates a location and checks that there are
no neighbors within the vicinity of the minimum distance. If a spot is occupied or
neighbors are too close, the function generates a new location until a free spot is
found. As the patch is increasingly occupied, the number of locations generated and
distance checks increase rapidly.

This problem was solved by reducing the location space of the patches. Instead of
using all possible patch locations, a grid of lines spaced at least by the minimum
dot distance was created. The intersecting lines make up the new location space.
These points are shuffled for randomness and stored in a list, and dots get their
location by pulling the first item off this list. The precomputed list significantly
improves performance while ensuring that dots are properly spaced. The straight
grid lines caused initial placements to not look random, so they were replaced by sine
waves to increase perceived randomness. Figure 37 shows the difference in perceived
randomness between straight grid lines and sine waves.

45

(a) Straight lined grid. (b) Sine wave grid.

Figure 37: Initial dot placement with straight lined grid and sine wave grid.

6.4.3 Usability Testing

The usability test of the first iteration was carried out by sending an email to
employees at the department of computer science (IDI) with a link to the website
hosting the motion test and a link to the questionnaire hosted on Nettskjema. The
email presents the web app and instructs the tester to first complete the motion
test before filling out the form, and noting that no sensitive data is recorded. There
were 20 participants aged 24-81 of which 5 were female, 14 were male and 1 who
preferred not to disclose their gender. 2 participants took the test on tablet devices,
18 on PCs. The age, gender and device distributions are in Figure 39. The average
SUS score was 76,8, as seen in Figure 38. Figure 40 shows the average score per
question.

46

40

60

80

100

min: 45

q1: 61.88

median: 83.75
q3: 90

max: 100

avg: 76.75

1st iteration, motion test. (n=20)

S
U
S
sc
or
e

Figure 38: Boxplot of SUS scores.

24-44 45-66 67-81
0

5

10

15

20

13

5

2

Age

#
P
ar
ti
ci
p
an

ts

(a)

Male Female Undisclosed
0

5

10

15

20

14

5

1

Gender

#
P
ar
ti
ci
p
an

ts

(b)

PC Tablet
0

5

10

15

20
18

2

Device

#
P
ar
ti
ci
p
an

ts

(c)

Figure 39: Participant distributions across age, gender and device.

47

1 2 3 4 5

I think I would like to use this system if needed.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

3.75

1.75

4.15

1.45

3.85

2.1

4

1.55

3.65

1.85

Score

Figure 40: Average score per SUS question.

6.4.4 Written Feedback and Proposed Changes

In addition to the SUS scores, testers provided useful feedback in their free-text
answers to question 14 and 15 in Figure 51. These answers were reviewed to discover
major or minor flaws that could be improved upon. Some of the feedback did not
make sense to act upon, such as a tester stating being confused when the difficulty
was great. This increase in difficulty is part of the test mechanic, so reducing it
would make it hard to validate the web app against the Java app. Many suggestions
were actionable, but time constraints forced prioritizing what to improve upon in
the second iteration. The prioritized changes are in Table 4. See Appendix F for all
written feedback provided by testers.

48

Id Proposed change description

C1 Clarify that the difficulty increases or decreases
depending on the answer given.

C2 Make sure both boxes are to be selected in the
tutorial trial, as not to prime the test subject to
either patch.

C3 Clarify that precision is valued over speed.

C4 Provide more tutorial trial examples.

C5 Increase the rate of change in difficulty in the tu-
torial trial so the user experiences a difficult trial
at least once before taking the test.

C6 Change the wording of the free text questions from
"application" to "tutorial or test".

Table 4: The proposed changes spawned from user feedback.

6.5 Second Iteration

The second development cycle sought to implement the two form tests, form fixed
and form random, with the auto and manual mode options as described in Sec-
tion 4.1.1. This section will provide an overview of the modifications made to the
user interface and other aspects of the app based on user feedback from the first us-
ability test. Furthermore, it will describe additional functionality that did not make
it into the first iteration before presenting this iteration’s usability test results.

6.5.1 Application Changes

Since the layout for the motion and form tests are the same, this section will cover
the implemented changes from Table 4.

49

Figure 41: Introduction screen.

The introduction screen’s text was reworded slightly by removing the second sen-
tence of the first paragraph to keep the introduction short and to the point.

Figure 42: Tutorial task screen.

In the tutorial task screen (Figure 42), proposed changes C1 and C3 from Table 4
were implemented. C1 was implemented by changing the second to last sentence
to:

50

This exercise is repeated several times, increasing in difficulty when answered cor-
rectly and decreasing otherwise.

This way, the change in difficulty is clear to the tester. C3 was implemented by
changing the last sentence to:

Please take as much time as you need before selecting a box.

This sentence aims to clarify the precision versus speed ambiguity, aiming to lead
the user to take their time rather than rushing through the test.

Further, the tutorial trial screen was changed to reflect the proposed changes C2, C4,
and C5. C2 was implemented by setting the coherent patch in the second trial as the
opposite of the coherent patch in the first trial. This ensures that both patches are
selected at least once during the tutorial trials, giving a smaller chance of priming
the test subject to either patch. C4 and C5 were implemented by increasing the
number of trials from 3 to 7 and increasing the change in difficulty from one trial to
the next.

Other additions to this iteration were a simple HTTP server to receive test re-
sults and a corresponding HTTP POST method with the fetch API for sending
test results. Multi-language support was added by storing all text in translation
files loaded by the i18next library. Resizing was changed from simple canvas scal-
ing to redrawing objects at the appropriate size with regard to the window aspect
ratio.

6.5.2 Usability Testing

For the second usability test, C6 was enacted to change the wording of the last two
questions from "application" to "tutorial or test" in order to avoid confusing terms.
This test was sent to other employees at IDI with a link to the website hosting the
form fixed test and a link to the questionnaire hosted on Nettskjema. The email sent
out shared the same format as the first one. This usability test had 12 participants
aged 24-59, of which 3 were female, and 9 were male. All participants conducted the
test on PCs. The age, gender and device distributions are in Figure 44. As seen in
Figure 43s boxplot, the average SUS score was 82,7, a significant increase. Figure 45
shows the average score per question.

51

70

80

90

100

min: 67.5

q1: 71.88

median: 85

q3: 91.25

max: 97.5

avg: 82.71

2nd iteration, form fixed test. (n=12)

S
U
S
sc
or
e

Figure 43: Boxplot of SUS scores.

24-44 45-66 67-81
0

2

4

6

8

10

12

8

4

0

Age

#
P
ar
ti
ci
p
an

ts

(a)

Male Female Undisclosed
0

2

4

6

8

10

12

9

3

0

Gender

#
P
ar
ti
ci
p
an

ts

(b)

PC Tablet
0

2

4

6

8

10

12
12

0

Device

#
P
ar
ti
ci
p
an

ts

(c)

Figure 44: Participant distributions across age, gender and device.

52

1 2 3 4 5

I think I would like to use this system if needed.

I found the system unnecessarily complex.

I thought the system was easy to use.

I think that I would need the support of a technical person to be able to use this system.

I found the various functions in this system were well integrated.

I thought there was too much inconsistency in this system.

I would imagine that most people would learn to use this system very quickly.

I found the system very cumbersome to use.

I felt very confident using the system.

I needed to learn a lot of things before I could get going with this system.

3.67

1.5

4.58

1.17

3.58

1.91

4.67

1.58

4

1.25

Score

Figure 45: Average score per SUS question.

6.5.3 Written Feedback

Again, the testers provided insightful feedback on the design and use of the appli-
cation in their written answers. Development seized after the second iteration, so
this feedback is discussed to address limitations of the project’s current state and
suggest future solutions. Only the feedback deemed most interesting is discussed
here. See Appendix G to read all answers given.

Three testers commented on the hard trials where the patches are almost indistin-
guishable, suggesting there is still ambiguity around what to in such cases:

After a few iterations I could really NOT see any circular patterns, so I was selecting
randomly. I would expect instructions on what to do in such a case to exist in the
tutorial.

When I swear there was no circle I just randomly picked and I sort of wish there
was a ’no circle’ option maybe by pressing down.

The hard tasks feel very random, they don’t make sense, which doesn’t feel very good.
I understand that the difficulty is supposed to be increasing, but I could imagine a
less experienced person being unsure if everything was working correctly when none
of the boxes have circular patterns.

This could be improved by explicitly instructing the tester to guess in such cases. Al-
ternatively, one could follow the second suggestion and include a "no circle" button,
which could be integrated into the existing format by counting a click on this button
as a wrong answer. Further, two testers noted they would like to get information
on the state of progress:

53

Translated from Norwegian: progress bar showing how far (in %) one has progressed
/ has left.

Provide feedback on the state of the process.

One of the testers in the first usability test also wanted feedback on the state of
progress. However, progress is non-linear and is instead dependent on the number
of reversal points, where the tester goes from having selected wrong to right, or right
to wrong. This would perhaps require a more sophisticated solution than showing
a percentage. For example, showing 50% when having reached half of the reversal
points does not necessarily imply that the remaining half takes as long as the first
half. Another issue is that it could distract from the task at hand, which is to
answer to ones best ability, and instead focus on progressing to the end of the test.
So instead of attempting to answer correctly, they may be busy figuring out how to
progress.

6.6 Classes and Interfaces

This section presents an overview of the classes and interfaces that make up the
final application and their relations. Figure 46 shows the UML class diagram of the
final app. Green boxes represent new classes and interfaces while white represents
those with the same name and purpose as in the Java app.4

4Additionally, there is an abstract Settings-class storing app settings in static variables, which
most classes use. This class has been excluded from the diagram to avoid cluttering.

54

F
igure

46:
U
M
L
class

diagram
ofthe

finalw
eb

application.

55

The class structure is similar in design to the Java app, with a few notable changes.
There are fewer classes in total due to some components being removed. The settings
screens were no longer needed as it did not make sense to have adjustable settings
on the client-side for deCODE’s use case. Input handler classes are also removed
as they are merged with each screen that has user interaction. The render classes
are also gone due to PixiJS handling the entire rendering process. The classes and
interfaces in green are now briefly described.

LandingPageScreen is the first page you visit which shows the logo and the intro-
ductory text. It has a next button that takes one to the tutorial.

Patch is a class for drawing the white rectangles that contain dots or line seg-
ments.

TextButton is used to create all buttons with text labels, such as the "NEXT",
"BACK" and "START TEST" buttons.

SpriteButton is for creating sprite-based buttons without text labels. It is used to
create the back arrow button in the TestScreen.

GameApp is responsible for handling the game loop, renderer, loading assets, and
managing screens. It uses the Screens interface to create the object for storing all
screens.

TestScreen is responsible for creating the motion and form tests and keeping track
of test progress. It uses the Trial interface to create objects that store data for each
test trial and generates test results when a test is finished. The results are passed
to GameApp which further instantiates ResultsScreen with the test results.

ResultsBar is an object used to create the bar which displays the test score.

The ScreenSettings, MotionSettings, FormSettings, StaircaseSettings and Tutori-
alSettings interfaces are used to clearly define the settings included in the test
results.

MobileScreen is the new screen shown when trying to access the app on a mobile
device.

LoadingScreen is used to display the logo and a spinning wheel to indicate the app
not being ready for user interaction.

56

7 Evaluation

This section will discuss the results of the usability tests and evaluate the application
with regards to the predetermined requirements in Section 4.4.

7.1 Usability Testing

With the two usability tests conducted, this section attempts to answer the following
questions:

1. How significant was the increase in SUS score from the first to the second
usability test?

2. What is the perceived usability of PC and tablet users?

3. What is the perceived usability across age groups?

To answer question 1, we will compare the results from the two usability tests.
Figure 47 shows a box plot of the SUS scores of both usability tests next to each
other.

1, (n=20) 2, (n=12)
40

60

80

100

min: 45

q1: 61.88

median: 83.75
q3: 90

max: 100

avg: 76.75
min: 67.5
q1: 71.88

median: 85
q3: 91.25
max: 97.5

avg: 82.71

Iteration

S
U
S
sc
or
e

Figure 47: Box plot of SUS scores from both iterations’ usability tests.

Both usability tests have roughly the same median, the first being 83,75 and the sec-
ond being 85. However, the first iteration received varied responses with a minimum
score of 45 and a maximum of 100, suggesting considerable disagreement between
testers on the perceived usability. The second box plot is more compact, supporting
the notion that users are more in agreement on the usability score than in the first
iteration. From this, we hypothesize an increase in perceived usability, which can
be tested statistically. With a confidence level of 95% and an α = 0.5, calculating

57

statistical significance between the SUS scores of test 1 and 2 gives p = 0, 0002 from
the t-distribution. Since our p-value is much lower than our α, there is a statistically
significant increase in perceived usability.

As for question 2, it is hard to say anything definite regarding the user experience
on tablet devices. There were only two tablet users in the first usability test and
none in the second. Observing the average SUS score of each device type in the
first test, the PC users had an average of 77,9 and the tablet users 66,3. This may
suggest responsiveness or performance is worse on tablets; however, further testing
with tablet users is required to pinpoint concrete issues.

Next, to indicate performance per age group, we first have to define the groups. We
will use the same age intervals as presented in the earlier age distribution graphs
and label ages 24-44 as adults, 45-66 as middle-aged, and 67-81 as seniors. We then
calculate the average SUS score for each group.

Adult Middle-age Senior
0

20

40

60

80

100

74.8 78
86.3

Age group

A
ve
ra
ge

S
U
S
S
co
re

(a) First usability test.

Adult Middle-age
0

20

40

60

80

100
85.3

77.5

Age group

A
ve
ra
ge

S
U
S
S
co
re

(b) Second usability test.

Figure 48: The average SUS scores per age group.

As Figure 48 shows, the average SUS score was highest among seniors and lowest
among adults in the first usability test. In the second usability test, adults scored
the highest, and middle-aged people scored the lowest. No seniors participated in
the second test. We can see that scores varied roughly between the mid-70s to
mid-80s for both tests, without significant score gaps. An interesting observation
in the first usability test is that the highest scores are among seniors. People’s
problem-solving proficiency in technically-rich environments is lower for middle-aged
and senior people [63], so it is peculiar that the first usability test contradicts this
result. This contradiction might be due to there only being two seniors among the
participants. Overall, the discrepancy between age groups is at most roughly 10
points for each test, suggesting that the app performs well for people of different
ages.

58

7.2 Requirements Fulfillment

This section evaluates the application with regards to the functional- and non-
functional requirements from Section 4.4, summarized in tables. Each table ref-
erences the requirements by id, provides an evaluation of the extent to which the
requirement is met, and labels them attained, partly attained, or unattained.

7.2.1 Previous Requirements

Table 5 evaluates the app with regards to the requirements brought over from pre-
vious iterations. To read their full descriptions, see Table 1.

Id Evaluation Fulfillment

FR1 The application implements the random-dot kine-
matogram and static global patterns as a motion,
form fixed, and form random test, described in Sec-
tion 4.1.1.

Attained

FR2 The application uses screen size, screen resolution
and viewing distance to calculate the size of ob-
jects on the screen.

Attained

FR3 The application provides a set of default settings. Attained

FR4 The application calculates a threshold score after
completing a test.

Attained

FR5 The test subject is first presented an introduction
and a tutorial before accessing the test.

Attained

FR6 The threshold score and settings are stored in a
test result object after a completed test run.

Attained

FR7 The test can be exited at any time simply by clos-
ing the browser or browser window. It is also
exited by clicking the back button or pressing
backspace on the keyboard.

Attained

FR8 The application is responsive to devices’ screen
size.

Attained

NFR1 The last usability test of the application reached a
SUS score of 82,7.

Attained

NFR2 The application runs close to 60 FPS on most de-
vices. See the next section for more details.

Partly Attained

Table 5: Requirements brought over from previous iterations of Magno. See Ap-
pendix A for all previous requirements, including those not brought over.

59

Performance Testing

Performance testing was conducted on various devices to verify that NFR2 was
met. A selection of high-end and low-end laptops and tablets were used to check
performance across different hardware. The devices used were an ASUS TUF gaming
laptop (2018), a MacBook Air (2011), an Ipad Pro (2017), and a Samsung Tab A
(2015). The Figure 49 shows the performance of the ASUS laptop during a run-
through of the motion and form fixed tests.

Start End

40

45

50

55

60
0 1 2 3 4 5

Frame (time)

F
P
S

(a) Motion test.

Start End
40

45

50

55

60
0

1

23 4 5

Frame (time)

(b) Form fixed test.

0 Introduction screen
1 Seating instructions screen
2 Task instruction screen
3 Tutorial trial screen
4 Test screen
5 Results screen

Figure 49: Recorded performance from a complete run-through of the motion and
form fixed tests on an ASUS TUF gaming laptop using Brave Browser.

Performance is very similar for both the motion and form fixed test. There is a
dip in performance when first loading the web page, but this slowdown is expected.
After loading, performance is fairly stable with only a few minor dips. Only the
motion test was used for performance testing of the other devices, due to being the
most computationally heavy test.

60

Start End
40

45

50

55

60
0 12

3

4

5

Frame (time)

F
P
S

(a) MacBook Air using Safari.

Start End

55

60
0 1 23 4

5

Frame (time)

(b) Ipad Pro using Safari.

Start End

10

20

30

40

50

60
0

123

4

5

Time

F
P
S

0 Introduction screen
1 Seating instructions screen
2 Task instruction screen
3 Tutorial trial screen
4 Test screen
5 Results screen

(c) Samsung Tab A using Chrome.

Figure 50: Recorded performance from a complete run-through of the motion test
on a MacBook Air, Ipad Pro, and Samsung Tab A.

As seen in Figure 50, both the MacBook Air and Ipad Pro performed well with a
steady frame rate of 55-60 FPS. However, the Samsung Tab A struggled significantly
compared to the other devices, which suggests further optimization is needed to
ensure the app runs smoothly on weaker hardware.

61

7.2.2 New Requirements

Table 6 evaluates the app with regards to the new requirements made in collab-
oration with my supervisor and deCODE. To read their full descriptions, see Ta-
ble 2.

Id Description Fulfillment

FR10 The cursor changes to a pointer when hovering
over clickable content.

Attained

FR11 We consider mobile devices to be those with a
screen width of less than 760 pixels. The app does
not load if the device width is beneath 760 pix-
els. It is still technically possible to access the test
on mobile devices by opening the page in desktop
mode.

Attained

FR12 When accessed on devices with a screen width less
than 760 pixels, the app displays a screen with a
message telling the user which devices it is unavail-
able and available for.

Attained

FR13 The motion, form fixed and form random tests are
implemented as separate applications so that they
can run independently of each other.

Attained

FR14 Settings are stored in a TypeScript class which is
compiled with the rest of the code. However, ex-
tracting this information and placing it in a con-
figuration file should be a straight forward task.

Unattained

FR15 An HTTP server with routes for handling POST-
requests has been created.

Attained

FR16 The app has a function which can be used to send
test results to a server.

Attained

FR17 The test results include the additional data for
each test trial.

Attained

FR18 The app uses the i18next library to facilitate multi-
language support by making it easy to add trans-
lation files for new languages. The app includes
both a Norwegian and English translation.

Attained

NFR3 Settings are currently only adjustable by altering
the Settings class in the source code.

Attained

NFR4 The SUS score from the final usability test sug-
gests that testers were quickly able to grasp test
concepts and complete them without too much dif-
ficulty. However, feedback shows there is still much
room for improvement.

Attained

62

NFR5 The application is based on TypeScript which
transpiles to JavaScript.

Attained

NFR6 The app has been tested on people of 24-81 years
old.

Partly Attained

Table 6: New requirements for the web application

63

8 Discussion, Conclusion and Further Work

This section will first discuss the limitations of the usability test and to what extent
the SUS score is satisfactory. The discussion is followed by a conclusion with answers
to the research questions. Finally, future work for this project is proposed.

8.1 Discussion

This thesis has focused on porting the Magno Java app to a web-based solution
while maintaining usability in the new, self-managed test environment. Remote
asynchronous usability tests consisting of motion- or form test completion and a
modified SUS questionnaire were conducted to test the application’s usability. This
test type was mainly used due to COVID restrictions and to reach a reasonably large
sample size in a short amount of time while reflecting the intended self-managed test
setting. However, several factors may have had an impact on the SUS score.

The first usability test employed the motion test, while the second used the form
fixed test. Due to development taking longer than expected, only the motion test
was completed after the first sprint. Thus, to receive feedback on both tests, the
form fixed test was used in the second usability test. The use of different tests might
impact the validity of the comparison between the two usability tests. However, both
tests share the same navigation, tutorial structure, and design, so perceived usability
on these aspects is assumed to remain consistent across both usability tests.

There are a couple of limitations relating to the participants’ demographics. One
limitation is that participants were only recruited from employees at NTNU’s depart-
ment of computer science. Employees of this particular department might be more
technically proficient than the average person, which could inflate the SUS score.
However, though no information on the participants’ job positions was collected,
they likely hold a range of different positions. Thus, actual technical proficiency
may not be higher in these employees. Another demographic limitation is that our
youngest participant was 24 years old, which did not meet deCODE’s lower target
age of 18 years old. However, research from OECD and Nielsen Norman Group has
shown that technical proficiency decreases with age [63] [64], so there is reason to
believe that an 18-year-old would not perceive usability as worse than a 24-year-
old.

A factor that is likely to have greatly impacted the SUS score is the remote asyn-
chronous test method used in this thesis instead of the local, synchronous method
used in previous testing. In the previous method, a facilitator voiced the instructions
to test subjects and divided the test into smaller sub-tasks. The method employed
in this thesis required testers to read instructions independently and there was only
one major task, which was to complete the motion or form fixed test. Providing
instructions in person is a more reliable way of ensuring the task is understood,

64

leading testers to complete the test more effectively with a greater sense of satis-
faction. Dividing the usability test into simpler sub-tasks could also contribute to
increased user satisfaction. These could both partly explain this usability test’s de-
crease in SUS score from the previous testing. Additionally, nine testers completed
the questionnaire in two minutes or less, which could make their answers a crude
representation of their experience.

8.2 Conclusion

In conclusion, the app performs well on most devices but still requires optimizing for
use on weaker hardware. The SUS score decreased from an average of 92,7 to 82,7
compared to the digital prototype of 2017. This decrease is likely due to the changed
usability test method. Still, the score meets the requirement NFR1 of reaching a
minimum SUS score of 80. Furthermore, a score of 82,7 is considered Excellent on
the adjective scale, and an A on the grade scale of Jeff Sauro [43]. With this in
mind, we will now review the research questions.

RQ-1 How is app performance maintained when porting a Java app to
JavaScript?

If the Java app requires a lot of graphics rendering, performance is maintained by
using a fast renderer, like the one provided by PixiJS. PixiJS was mainly used to
render the motion test’s dots quickly. Further, performance is kept by optimizing
slow algorithms. The bottleneck of the Java implementation was the algorithm
responsible for the initial placement of dots. The Java implementation generated
a random location for placement and checked that the new spot was unoccupied
before placing a dot. As the number of dots increases, so do the number of collisions.
The algorithm has to generate a new random location for every collision, causing
a significant performance slowdown. The need for collision checks was removed
entirely by creating a grid of equally spaced locations, guaranteeing proper spacing
between dots. The grid solution caused a major performance boost. To further
increase performance, all screens are loaded when first visiting the website to reduce
loading times when changing between screens.

RQ-2 How can Magno’s user interface support a self-managed test set-
ting?

The user interface was prepared for a self-managed test setting by:

• Having clearer button design.

• Changing the mouse to a pointer when hovering buttons.

• Clearly distinguishing patches from right and wrong with a green checkmark
and a red cross in the task instruction screen.

• Keeping patch labels consistent across the app to avoid confusion when they
appear in the test.

65

• Adding a start button in the test screen to provide a clear path for the user
to initiate the test.

• Highlighting the selected patch to communicate that selection is registered.

• Guiding the user when a test is paused.

• Supporting language translations for increased accessibility.

RQ-2.1 What changes to Magno’s tutorial instructions are needed to
sufficiently prepare the test taker?

The following changes were made to provide clearer instructions:

• Shortening the introduction screen’s text and changing it to describe the over-
all test structure.

• Increasing the level of detail describing the task in the tutorial description.

• Stating that continuation from the tutorial trial marks the end of the tutorial.

RQ-3 How does a self-managed test setting affect the usability of the
system?

The usability tests in this project were constructed to reflect the intended self-
managed test setting. From the final usability test, we observe the SUS score climb-
ing down from 92,7 to 82,7, despite maintaining the general layout of the Java app.
The remote and asynchronous usability test method could play a role in this de-
cline. Asynchronous testing asks more of the tester in that they have to read and
understand instructions themselves without consulting an expert. In conclusion, a
self-managed test setting appears to result in reduced perceived usability.

RQ-4 How can motion test results be validated in a self-managed test
setting?

Motion test results are validated using the form fixed test to check that a participant
has no issues with their parvocellular system. In addition, the total test completion
time can be inspected to determine whether a tester rushed through a test without
thoroughly considering which patch is correct.

8.3 Further Work

This section will discuss possible future work of the project with proposed actions
going forward.

Before deCODE can integrate the web solution into Svipgerd, the tests must be val-
idated against the Magno Java application. Test subjects should be recruited from
two categories of reading ability: those with low reading competence and a group
of subjects with high reading competence. The test results should be compared

66

to previous research using the Java app, to confirm that those with low reading
competence perform worse than those with high reading competence.

Further, more extensive browser testing is required to ensure that the app works
correctly for most modern browsers. The app has only been tested on recent
Chrome, Brave, Microsoft Edge, and Safari versions. Although demonstrably work-
ing smoothly on a few devices, the app needs further optimization for devices
with weaker hardware. The initial performance bottleneck was the spawning of
dots. Where the greatest potential for optimization lies now remains to be discov-
ered.

The remaining proposals are summarized in the following list:

• Further adjustments based on feedback from the questionnaires, including
showing progress to the user, having a Learn more-link for details on the
magnocellular dyslexia theory, and a third button for when testers deem the
patches indistinguishable.

• Reimplement the app’s UI components in a JavaScript framework or library,
such as React, which uses HTML and CSS to handle responsiveness.

• Adding an Icelandic translation for deCODE’s use case.

• Implement canvas fallback to support older browsers that do not yet support
WebGL.

• Add text-to-speech functionality to allow people with low reading competence
to hear the instructions read out loud.

• The results screen shows up a bit abruptly, so it might be sensible to include
a transition. For example, by showing the loading wheel with the text "Cal-
culating/sending results..." before changing to the results screen.

• Consider replacing the exit-button with a text saying: "You may close the
window," as it is not reliable in closing the browser window.

• Conduct a separate usability test for tablet devices only, as there were just
two participants using tablets.

• Host the project repository on a public account for easing further development
and multiple versions, for example, for use in dyslexia detection among children
or connecting to Angell’s backend project from 2018 to collect and analyze test
results.

67

8 References

[1] Benny J. Oates. Researching Information Systems and Computing. SAGE
Publications (2006).

[2] Emily M. Livingston and Linda S. Siegel. Developmental dyslexia: emotional
impact and consequences. Australian Journal of Learning Difficulties (2018).

[3] Tore Angell Petersen. App for Early Detection of Dyslexia (2018).

[4] Bjørnar H. Wold. App for Early Detection of Dyslexia (2016).

[5] Thea Johansen and Maja Kirkerød. Magno: An Application for Detection of
Dyslexia - Dyslexia and Interface Design (2017).

[6] Dysleksi Norge - Fagstoff. URL https://dysleksinorge.no/fagstoff/,
[Online], accessed: 28.11.2020.

[7] U. Strehlow, R. Kluge, H. Möller and J. Haffner. Long-term course of dyslexia
beyond the school years: catamnesis from pediatric psychiatric ambulatory
care. Zeitschrift für Kinder und Jugendpsychiatrie (1992).

[8] Jonathan Glazzard. The impact of dyslexia on pupils’ self-esteem. Support for
Learning (2010).

[9] Dr Neil Humphrey. Self-concept and self-esteem in developmental dyslexia.
Journal of Research in Special Educational Needs (JORSEN) (2004).

[10] John Stein and Vincent Walsh. To see but not to read; the magnocellular
theory of dyslexia. Trends in Neurosciences (1997).

[11] Kaja Egset, Bjørnar H. Wold, John Krogstie and Hermundur Sigmundsson.
Magno App: Exploring Visual Processing in Adults with High and Low Read-
ing Competence. Scandinavian Journal of Educational Research (2019).

[12] Bjarni Þorbjörnsson. private communication. Video meeting with deCODE,
01.10.2020.

[13] John Brooke. SUS: A Retrospective. Journal of Usability Studies (2013).

[14] Dysleksi Norge. Dysleksi Norge - faglige retningslinjer. Dysleksi Norge (2017).
ISBN 978-82-90503-15-9.

[15] G. Emerson Dickman, G. Reid Lyon, Jack Fletcher, Bennett, Sally Shaywitz,
Susan Brady, Hugh Catts, Guinevere Eden, Jeffrey Gilger, Robin Morris,
Thomas Viall and Harley Tomey. IDA: Definition of Dyslexia (2002). URL
https://dyslexiaida.org/definition-of-dyslexia/, [Online], accessed:
05.12.2020.

[16] Sir Jim Rose. Identifying and Teaching Children and Young People with
Dyslexia and Literacy Difficulties (2009). URL https://webarchive.

68

https://doi.org/10.1080/19404158.2018.1479975
https://doi.org/10.1080/19404158.2018.1479975
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2421182
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2421182
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2454100
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2454100
https://dysleksinorge.no/fagstoff/
https://pubmed.ncbi.nlm.nih.gov/1288034/
https://pubmed.ncbi.nlm.nih.gov/1288034/
https://pubmed.ncbi.nlm.nih.gov/1288034/
https://doi.org/10.1111/j.1467-9604.2010.01442.x
https://doi.org/10.1111/j.1471-3802.2002.00163.x
https://doi.org/10.1016/S0166-2236(96)01005-3
https://doi.org/10.1016/S0166-2236(96)01005-3
https://www.tandfonline.com/doi/full/10.1080/00313831.2019.1705903
https://www.tandfonline.com/doi/full/10.1080/00313831.2019.1705903
https://uxpajournal.org/wp-content/uploads/sites/8/pdf/JUS_Brooke_February_2013.pdf
https://dysleksinorge.no//wp-content/uploads/2017/08/faglige-retningslinjer-versjon-23.pdf
https://dyslexiaida.org/definition-of-dyslexia/
https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf
https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf
https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf

nationalarchives.gov.uk/20130321060616/https://www.education.gov.
uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf, [Online],
accessed: 05.12.2020.

[17] BDA. Definition of Dyslexia (2010). URL https://www.bdadyslexia.org.
uk/news/definition-of-dyslexia, [Online], accessed: 05.12.2020.

[18] Schulte-Körne G., Deimel W., Jungermann M. and Remschmidt H. Follow-up
of a sample of children with reading-spelling disorders in adulthood. Zeitschrift
fur Kinder- und Jugendpsychiatrie und Psychotherapie (2003).

[19] Johannes Schumacher, Per Hoffmann, Christine Schmäl, Gerd Schulte-Körne
and Markus M. Nöthen. Genetics of dyslexia: the evolving landscape. Journal
of Medical Genetics (2007).

[20] Mike Battista. What is the Digit Span test? URL http:
//help.cambridgebrainsciences.com/en/articles/
624895-what-is-the-digit-span-test, [Online], accessed: 04.12.2020.

[21] John Stein. The current status of the magnocellular theory of developmental
dyslexia. Neuropsychologia (2019).

[22] R.L. Peterson, B.F. Pennington, R.K. Olson and S.J. Wadsworth. Longitu-
dinal stability of phonological and surface subtypes of developmental dyslexia.
Scientific Studies of Reading (2014).

[23] Trichur R. Vidyasagar. Reading into neuronal oscillations in the visual sys-
tem: implications for developmental dyslexia. Frontiers in Human Neuro-
science (2013).

[24] M.S. Livingstone, G.D. Rosen, F.W. Drislane and A.M. Galaburda. Physio-
logical and anatomical evidence for a magnocellular deficit in developmental
dyslexia. Proc. Natl. Acad. Sci. (1991).

[25] M. Giraldo-Chica, J.P. Hegarty and K.A. Schneider. . Neuroimage: Clinical
(2015).

[26] G.F. Eden, J.W. VanMeter, J.M. Rumsey, J.M. Maisog, R.P. Woods and
T.A. Zeffiro. Abnormal processing of visual motion in dyslexia revealed by
functional brain imaging. Nature (1996).

[27] G. A. Gescheider, J. M. Thorpe, J. Goodarz and S. J. Bolanowski. The effects
of skin temperature on the detection and discrimination of tactile stimulation.
Somatosensory Motor Research (1997).

[28] K. Britten, M. Shadlen, W. Newsome, J. Movshon, Britten, Shadlen and
Movshon. The analysis of visual motion: a comparison of neuronal and psy-
chophysical performance. Journal of Neuroscience (1992).

[29] P. Cornelissen, A. Richardson, A. Mason, S. Fowler and J. Stein. Contrast

69

https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf
https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf
https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf
https://webarchive.nationalarchives.gov.uk/20130321060616/https://www.education.gov.uk/publications/eOrderingDownload/00659-2009DOM-EN.pdf
https://www.bdadyslexia.org.uk/news/definition-of-dyslexia
https://www.bdadyslexia.org.uk/news/definition-of-dyslexia
https://europepmc.org/article/med/14694843
https://europepmc.org/article/med/14694843
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597981/
http://help.cambridgebrainsciences.com/en/articles/624895-what-is-the-digit-span-test
http://help.cambridgebrainsciences.com/en/articles/624895-what-is-the-digit-span-test
http://help.cambridgebrainsciences.com/en/articles/624895-what-is-the-digit-span-test
https://www.sciencedirect.com/science/article/pii/S0028393218301155
https://www.sciencedirect.com/science/article/pii/S0028393218301155
https://www.tandfonline.com/doi/full/10.1080/10888438.2014.904870
https://www.tandfonline.com/doi/full/10.1080/10888438.2014.904870
https://doi.org/10.3389/fnhum.2013.00811
https://doi.org/10.3389/fnhum.2013.00811
https://www.pnas.org/content/88/18/7943.short
https://www.pnas.org/content/88/18/7943.short
https://www.pnas.org/content/88/18/7943.short
https://www.sciencedirect.com/science/article/pii/S2213158215000534?viadifferences in the lateral geniculate nucleus associated with dyslexia
https://www.nature.com/articles/382066a0
https://www.nature.com/articles/382066a0
https://www.tandfonline.com/doi/abs/10.1080/08990229771042
https://www.tandfonline.com/doi/abs/10.1080/08990229771042
https://www.nature.com/articles/382066a0
https://www.nature.com/articles/382066a0
https://doi.org/10.1016/0042-6989(95)98728-R
https://doi.org/10.1016/0042-6989(95)98728-R
https://doi.org/10.1016/0042-6989(95)98728-R

sensitivity and coherent motion detection measured at photopic luminance lev-
els in dyslexics and controls. Vision-Res. (1995).

[30] A.L. Downie, L.S. Jakobson, V. Frisk and I. Ushycky. Periventricular brain
injury, visual motion processing, and reading and spelling abilities in children
who were extremely low birthweights. J. Int, Neuropsychol. Soc. (2003).

[31] J. Skoyles and B.C. Skottun. On the prevalence of magnocellular deficits in
the visual system of non-dyslexic individuals. Brain and language (2004).

[32] Peter C. Hansen, John F. Stein, Sam R. Orde, Jonathan L. Winter and
Joel B. Talcott. Are dyslexics’ visual deficits limited to measures of dorsal
stream function? Neuroreport (2001).

[33] Mario Zechner. URL https://libgdx.com/, [Online], accessed: 09.12.2020.

[34] Luz Rello and Ricardo Baeza-Yates. Good fonts for dyslexia. ASSETS ’13:
Proceedings of the 15th International ACM SIGACCESS Conference on Com-
puters and Accessibility (2013).

[35] Sivananda Rajananda, Hakwan Lau and Brian Odegaard. A Random-Dot
Kinematogram for Web-Based Vision Research. Journal of Open Research
Software (2018).

[36] Josh de Leeuw. jsPsych. URL https://github.com/jspsych/jsPsych,
[Online], accessed: 06.21.2021.

[37] deCODE. Svipgerð.is, deCODE’s application platform. URL https://www.
svipgerd.is/, [Online], accessed: 08.12.2020.

[38] Bjarni Þorbjörnsson. private communication. Email received by Fredrik
Jenssen, 08.12.2020.

[39] ISO 25010: Software Quality Model. URL https://iso25000.com/index.
php/en/iso-25000-standards/iso-25010?start=0, [Online], accessed:
31.05.2021.

[40] Scrum.org. URL https://www.scrum.org/resources/what-is-scrum/,
[Online], accessed: 08.12.2020.

[41] Morten Sieker Andreasen, Henrik Villemann Nielsen, Simon Ormholt
Schrøder and Jan Stage. What happened to remote usability testing?: an em-
pirical study of three methods (2007).

[42] Anders Bruun, Peter Gull, Lene Hofmeister and Jan Stage. Let your users
do the testing: a comparison of three remote asynchronous usability testing
methods (2009).

[43] Jeff Sauro. A Practical Guide to the System Usability Scale: Background,
Benchmarks Best Practices. CreateSpace Independent Publishing Platform
(2011). ISBN 1461062705.

70

https://doi.org/10.1016/0042-6989(95)98728-R
https://doi.org/10.1016/0042-6989(95)98728-R
https://doi.org/10.1016/0042-6989(95)98728-R
https://doi.org/10.1016/0042-6989(95)98728-R
https://www.researchgate.net/profile/Lorna_Jakobson/publication/10829130_Periventricular_brain_injury_visual_motion_processing_and_reading_and_spelling_abilities_in_children_who_were_extremely_low_birthweight/links/5df791ba4585159aa480bdd6/Periventricular-brain-injury-visual-motion-processing-and-reading-and-spelling-abilities-in-children-who-were-extremely-low-birthweight.pdf
https://www.researchgate.net/profile/Lorna_Jakobson/publication/10829130_Periventricular_brain_injury_visual_motion_processing_and_reading_and_spelling_abilities_in_children_who_were_extremely_low_birthweight/links/5df791ba4585159aa480bdd6/Periventricular-brain-injury-visual-motion-processing-and-reading-and-spelling-abilities-in-children-who-were-extremely-low-birthweight.pdf
https://www.researchgate.net/profile/Lorna_Jakobson/publication/10829130_Periventricular_brain_injury_visual_motion_processing_and_reading_and_spelling_abilities_in_children_who_were_extremely_low_birthweight/links/5df791ba4585159aa480bdd6/Periventricular-brain-injury-visual-motion-processing-and-reading-and-spelling-abilities-in-children-who-were-extremely-low-birthweight.pdf
https://doi.org/10.1016/S0093-934X(03)00162-7
https://doi.org/10.1016/S0093-934X(03)00162-7
https://journals.lww.com/neuroreport/Abstract/2001/05250/Are_dyslexics__visual_deficits_limited_to_measures.45.aspx
https://journals.lww.com/neuroreport/Abstract/2001/05250/Are_dyslexics__visual_deficits_limited_to_measures.45.aspx
https://libgdx.com/
https://dl.acm.org/doi/10.1145/2513383.2513447
https://openresearchsoftware.metajnl.com/article/10.5334/jors.194/
https://openresearchsoftware.metajnl.com/article/10.5334/jors.194/
https://github.com/jspsych/jsPsych
https://www.svipgerd.is/
https://www.svipgerd.is/
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=0
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=0
https://www.scrum.org/resources/what-is-scrum/
https://dl.acm.org/doi/10.1145/1240624.1240838
https://dl.acm.org/doi/10.1145/1240624.1240838
https://dl.acm.org/doi/10.1145/1518701.1518948
https://dl.acm.org/doi/10.1145/1518701.1518948
https://dl.acm.org/doi/10.1145/1518701.1518948

[44] Thomas S. Tullis and Jacqueline N. Stetson. A comparison of questionnaires
for assessing website usability. Usability professional association conference.
Vol. 1 (2004).

[45] Brendan Eich. JavaScript. URL https://no.wikipedia.org/wiki/
JavaScript, [Online], accessed: 21.06.2021.

[46] Microsoft. TypeScript. URL https://www.typescriptlang.org/, [Online],
accessed: 21.06.2021.

[47] Alexandre Vinet. AngularJS + TypeScript. URL https://www.spiria.com/
en/blog/web-applications/angularjs-typescript/, [Online], accessed:
03.12.2020.

[48] Goodboy Digital and PixiJS community. PixiJS. URL https://www.pixijs.
com/, [Online], accessed: 07.12.2020.

[49] Sebastian McKenzie. Babel. URL https://babeljs.io/blog/, [Online],
accessed: 21.06.2021.

[50] Devon Govett. Parcel. URL https://v2.parceljs.org/, [Online], accessed:
21.06.2021.

[51] Node.js Foundation and Ryan Dahl. Node.js. URL https://nodejs.org/,
[Online], accessed: 07.12.2020.

[52] Isaac Z. Schlueter and Inc. npm. Node Package Manager (NPM). URL
https://www.npmjs.com/, [Online], accessed: 07.12.2020.

[53] Adriano Raiano and Jan Mühlenmann. i18next. URL https://www.i18next.
com/, [Online], accessed: 21.06.2021.

[54] Junio Hamano et al. Git. URL https://git-scm.com/, [Online], accessed:
07.12.2020.

[55] Tom Preston-Werner, Chris Wanstrath, P. J. Hyett and Scott Chacon.
GitHub. URL https://www.github.com, [Online], accessed: 04.06.2020.

[56] Microsoft. GitHub Pages. URL https://pages.github.com/, [Online], ac-
cessed: 04.06.2020.

[57] Tim Schaub. gh-pages. URL https://github.com/tschaub/gh-pages, [On-
line], accessed: 04.06.2020.

[58] Microsoft. Visual Studio Code. URL https://www.code.visualstudio.
com/, [Online], accessed: 04.06.2020.

[59] Joel Spolsky and Michael Pryor. Trello. URL https://www.trello.com/,
[Online], accessed: 04.06.2020.

[60] University of Oslo. Nettskjema. URL https://nettskjema.no, [Online],
accessed: 04.06.2020.

71

http://uxmetricsgeek.com/wp-content/uploads/2017/06/UPA2004TullisStetson.pdf
http://uxmetricsgeek.com/wp-content/uploads/2017/06/UPA2004TullisStetson.pdf
https://no.wikipedia.org/wiki/JavaScript
https://no.wikipedia.org/wiki/JavaScript
https://www.typescriptlang.org/
https://www.spiria.com/en/blog/web-applications/angularjs-typescript/
https://www.spiria.com/en/blog/web-applications/angularjs-typescript/
https://www.pixijs.com/
https://www.pixijs.com/
https://babeljs.io/blog/
https://v2.parceljs.org/
https://nodejs.org/
https://www.npmjs.com/
https://www.i18next.com/
https://www.i18next.com/
https://git-scm.com/
https://www.github.com
https://pages.github.com/
https://github.com/tschaub/gh-pages
https://www.code.visualstudio.com/
https://www.code.visualstudio.com/
https://www.trello.com/
https://nettskjema.no

[61] A Detailed Explanation of JavaScript Game Loops and Tim-
ing. URL https://www.isaacsukin.com/news/2015/01/
detailed-explanation-javascript-game-loops-and-timing, [Online],
accessed: 08.06.2021.

[62] MainLoop.js. URL https://github.com/IceCreamYou/MainLoop.js, [On-
line], accessed: 08.06.2021.

[63] OECD. Skills Matter: Further Results from the Survey of Adult Skills. OECD
Publishing, Paris (2016). ISBN 978-92-64-25805-1. (page 79).

[64] Jakob Nielsen. Middle-Aged Users’ Declining Web Performance. Jakob
Nielsen’s Alertbox. URL https://www.nngroup.com/articles/
middle-aged-web-users/, [Online], accessed: 18.06.2021.

72

https://www.isaacsukin.com/news/2015/01/detailed-explanation-javascript-game-loops-and-timing
https://www.isaacsukin.com/news/2015/01/detailed-explanation-javascript-game-loops-and-timing
https://github.com/IceCreamYou/MainLoop.js
http://dx.doi.org/10.1787/9789264258051-en
https://www.nngroup.com/articles/middle-aged-web-users/
https://www.nngroup.com/articles/middle-aged-web-users/

Appendix

A Previous requirements for Magno

Id Description Priority

FR1 The application must use screen size, screen reso-
lution and viewing distance to calculate the size of
objects on the screen.

High

FR2 It should be possible to tune the behavior of the
tests through a settings-Screen.

High

FR3 Due to the number of settings parameters, default
values are to be provided.

Medium

FR4 Settings are to be stored for the next time the ap-
plication runs.

High

FR5 The application should calculate a threshold score
after a successful test run.

High

FR6 Test results along with settings used during a test
should be possible to share.

Low

NFR1 The application should be able to run close to 60
frames per second on any device.

Medium

NFR2 A comprehensive user guide should be made, de-
scribing test procedures and settings.

Medium

Table 7: Requirements from the first iteration of Magno [4].

73

Id Description Priority

FR1 The application should use the screen size to make
the design responsive to fit to different types of
tablets and computers.

High

FR2 A tutorial must be implemented in the application
to make it possible to use the application without
any previous knowledge of the application.

High

FR3 The score view should contain an explanation of
the threshold score.

High

FR4 The system should include descriptions that indi-
cate that the user must click the boxes when taking
motion, form fixed or form random test.

High

FR5 It should be possible to cancel in the middle of a
test without using the computers’ keyboard or the
back button on an Android tablet.

High

FR6 On desktop versions of the application, the cursor
should change form when hovering over clickable
content.

High

FR7 The “Settings” view in the application should sort
different settings options under logical names.

Medium

FR8 It should be possible to start a test without com-
pleting a tutorial.

Medium

FR9 It should be possible to use the application without
a supervisor.

Low

FR10 The application should be able to store test results,
for use in comparisons based on age groups.

Low

NFR1 It should be possible to reach any given system
function from the main view within 3 clicks.

N/A

NFR2 A user should be able to understand the applica-
tion within 3 minutes.

N/A

NFR3 The application should have a minimum SUS score
of 80.

N/A

Table 8: Requirements from the second iteration of Magno [5].

74

Id Description Priority

FR1 The database should store the information needed
by the stakeholders

High

FR2 The system should connect to the rest-API seam-
lessly

High

FR3 The rest-API should collect data and input it to
the database

High

FR4 The system should be able to store test results for
use in comparisons based on age groups and sex

Medium

FR5 The system should be able to differentiate the dif-
ferent age groups set by the shareholders

Medium

FR6 It should be possible to use and navigate the web
page with little to none prior introduction

Medium

FR7 The web page should be able to show the research
information based on a selected age group

Medium

FR8 The system should be able to export data to an
excel file with some given parameters

Low

NFR1 The system should be available to receive data
from the application Magno 99.9% of the day

N/A

NFR2 The system should be running in less than 20 min
after any major incident

N/A

NFR3 A user should be able to get research data 99.9%
of the day

N/A

NFR4 The system should only show information to au-
thorized users

N/A

NFR5 The system should not store any personal informa-
tion about the user

N/A

NFR6 The system should be able to handle 50 simulta-
neous clients

N/A

NFR7 The administrator should be able to scale-up the
system to handle 100 simultaneous clients

N/A

Table 9: Requirements from the third iteration of Magno [3].

B Default Setting Values

1 // Screen default values
2 private static final int SCREEN_W_MM_DEF_VALUE =

75

3 (Gdx.app.getType ().equals(Application.ApplicationType.
Desktop)) ?

4 (int)(Gdx.graphics.getDesktopDisplayMode ().width /
(Gdx.graphics.getPpcX () / 10)) :

5 (int)(Gdx.graphics.getWidth () / (Gdx.graphics.
getPpcX () / 10));

6

7 private static final int SCREEN_H_MM_DEF_VALUE =
8 (Gdx.app.getType ().equals(Application.ApplicationType.

Desktop)) ?
9 (int)(Gdx.graphics.getDesktopDisplayMode ().height /

(Gdx.graphics.getPpcY () / 10)) :
10 (int)(Gdx.graphics.getHeight () / (Gdx.graphics.

getPpcY () / 10));
11

12 private static final int SCREEN_W_PX_DEF_VALUE =
13 (Gdx.app.getType ().equals(Application.ApplicationType.Desktop))

?
14 Gdx.graphics.getDesktopDisplayMode ().width :
15 (Gdx.graphics.getWidth ());
16

17 private static final int SCREEN_H_PX_DEF_VALUE =
18 (Gdx.app.getType ().equals(Application.ApplicationType.

Desktop)) ?
19 Gdx.graphics.getDesktopDisplayMode ().height :
20 (Gdx.graphics.getHeight ());
21

22 private static final int SCREEN_VD_MM_DEF_VALUE = 300;
23 private static final int SCREEN_PATCH_WIDTH_DEF_VALUE = 10;
24 private static final int SCREEN_PATCH_HEIGHT_DEF_VALUE = 14;
25 private static final int SCREEN_PATCH_GAP_DEF_VALUE = 5;
26

27 //Dot behavior default values
28 private static final int DOT_MAX_AMOUNT_DEF_VALUE = 300;
29 private static final float DOT_RADIUS_PIXELS_DEF_VALUE = 1f;
30 private static final float DOT_SPACING_DEF_VALUE = 1f;
31 private static final float DOT_VELOCITY_DEF_VALUE = 50f;
32 private static final float DOT_COHERENCY_DEF_VALUE = 50f;
33 private static final float DOT_ANIMATION_TIME_DEF_VALUE = 5f;
34 private static final float DOT_MAX_ALIVE_TIME_DEF_VALUE = 0.085f;
35 private static final int DOT_TO_KILL_DEF_VALUE = 10;
36 private static final float DOT_HORIZONTAL_REVERSAL_TIME_DEF_VALUE =

0.572f;
37 private static final float DOT_RANDOM_DIRECTION_TIME_DEF_VALUE =

0.572f;
38

39 //Form behaviour default values
40 private static final boolean FORM_AUTO_MODE_DEF_VALUE = true;
41 private static final int FORM_MAX_AMOUNT_DEF_VALUE = 600;
42 private static final float FORM_DIAMETER_WB_DEF_VALUE = 8f;
43 private static final int FORM_CIRCLES_DEF_VALUE = 4;
44 private static final float FORM_CIRCLES_GAP_DEF_VALUE = 0.9f;
45 private static final float FORM_LINE_LENGTH_DEF_VALUE = 0.4f;
46 private static final float FORM_LINE_HEIGHT_DEF_VALUE = 1f;
47 private static final float FORM_LINE_GAP_DEF_VALUE = 0.4f;
48 private static final float FORM_COHERENCY_DEF_VALUE = 100f;
49 private static final float FORM_F_DETECTION_TIME_DEF_VALUE = 4f;
50 private static final float FORM_R_DETECTION_TIME_DEF_VALUE = 1000f;

76

51

52 // Staircase default values
53 private static final float STAIR_CORRECT_ANSWER_DB_DEF_VALUE = 1f;
54 private static final float STAIR_WRONG_ANSWER_DB_DEF_VALUE = 3f;
55 private static final int STAIR_MAX_TRIES_DEF_VALUE = 100;
56 private static final int STAIR_REVERSAL_POINTS_DEF_VALUE = 10;
57 private static final int STAIR_REVERSALS_TO_USE_DEF_VALUE = 8;
58

59 //Input default values
60 private static final int INPUT_KEY_LEFT_DEF_VALUE = Input.Keys.S;
61 private static final int INPUT_KEY_RIGHT_DEF_VALUE = Input.Keys.L;
62 private static final int INPUT_KEY_BACK_DEF_VALUE = Input.Keys.

ESCAPE;
63 private static final boolean INPUT_CONTINUOUS_MODE_DEF_VALUE = true

;

C Example Test Results

C.1 Motion Test Results Example
1 {
2 correctAnswers: 23
3 wrongAnswers: 6
4 threshold: 17.167208
5 lowestCoherency: 11.890287
6 reversalValues: [
7 1: 13.608927
8 2: 19.22312
9 3: 13.010082

10 4: 25.958527
11 5: 11.890287
12 6: 16.795477
13 7: 14.746119
14 8: 20.829447
15 9: 16.056412
16 10: 22.680285
17]
18 screenSettings: [
19 screen_w_mm: 508
20 screen_h_mm: 285
21 screen_w_px: 1920
22 screen_h_px: 1080
23 viewing_distance: 300
24 patch_width: 10
25 patch_height: 14
26 patch_gap: 5
27]
28 motionSettings: [
29 dot_amount: 300
30 dot_radius: 1.0
31 dot_spacing: 1.0
32 dot_velocity: 80.0
33 dot_coherency: 50.0
34 dot_animation_time: 5.0
35 dot_max_life_time: 0.085
36 dot_kill_percentage: 10

77

37 dot_horizontal_reversal_time: 0.572
38 dot_random_direction_time: 0.572
39]
40 formSettings: [
41 form_auto_mode: false
42 form_line_amount: 600
43 form_diameter_wb: 12.0
44 form_nr_of_circles: 4
45 form_circle_gap: 0.9
46 form_line_length: 0.4
47 form_line_height: 1.0
48 form_line_gap: 0.4
49 form_coherency: 100.0
50 form_f_detection_time: 4.0
51 form_r_detection_time: 1000.0
52]
53 staircaseSettings: [
54 stair_correct_db: 1.0
55 stair_wrong_db: 3.0
56 stair_max_tries: 100
57 stair_reversal_points: 10
58 stair_mean_from_last: 8
59]
60 inputSettings: [
61 input_key_left: A
62 input_key_right: S
63 input_key_back: Escape
64 input_continuous_mode: true
65]
66 }

C.2 Form Test Results Example
1 {
2 correctAnswers: 33
3 wrongAnswers: 5
4 threshold: 6.0648336
5 lowestCoherency: 4.0231066
6 reversalValues: [
7 1: 8.437666
8 2: 11.91852
9 3: 5.459271

10 4: 7.7114253
11 5: 4.0231066
12 6: 5.6827893
13 7: 4.989384
14 8: 7.047693
15 9: 6.187744
16 10: 8.740421
17]
18 screenSettings: [
19 screen_w_mm: 508
20 screen_h_mm: 285
21 screen_w_px: 1920
22 screen_h_px: 1080
23 viewing_distance: 300
24 patch_width: 10
25 patch_height: 14

78

26 patch_gap: 5
27]
28 motionSettings: [
29 dot_amount: 300
30 dot_radius: 1.0
31 dot_spacing: 1.0
32 dot_velocity: 80.0
33 dot_coherency: 50.0
34 dot_animation_time: 5.0
35 dot_max_life_time: 0.085
36 dot_kill_percentage: 10
37 dot_horizontal_reversal_time: 0.572
38 dot_random_direction_time: 0.572
39]
40 formSettings: [
41 form_auto_mode: false
42 form_line_amount: 600
43 form_diameter_wb: 12.0
44 form_nr_of_circles: 4
45 form_circle_gap: 0.9
46 form_line_length: 0.4
47 form_line_height: 1.0
48 form_line_gap: 0.4
49 form_coherency: 100.0
50 form_f_detection_time: 4.0
51 form_r_detection_time: 1000.0
52]
53 staircaseSettings: [
54 stair_correct_db: 1.0
55 stair_wrong_db: 3.0
56 stair_max_tries: 100
57 stair_reversal_points: 10
58 stair_mean_from_last: 8
59]
60 inputSettings: [
61 input_key_left: A
62 input_key_right: S
63 input_key_back: Escape
64 input_continuous_mode: true
65]
66 }

79

D SUS Form

Figure 51: Original SUS form.

E Usability Test Email

My master student Fredrik Jenssen has made a web-app (Magno) for self-testing of
an aspect of visual processing.

The app provides a motion test intended for use in detection of probability of
having dyslexia.

We here want to evaluate the usability of the app, and would like to get help from
you in connection to that. The task consists of two steps:

1. Visit «website» and follow the instructions to take the motion test. You will
receive a score, but that score is not used further

2. Then complete a survey on your experience on using the app at «website»
The test and evaluation will take around 15 minutes in total.

No data is recorded to link you to the use of the app or what you fill in the form.

Thank you for your help, and have a nice day.

Best regards, John Krogstie

80

F First Usability Test: Free Text Answers

User Id Was there anything in the
application that was particu-
larly difficult to understand?

Do you have any comments
on the design of the applica-
tion?

13748216 It was easy in the beginning, and
then hard to keep them apart.
Very confusing.

N/A

13748888 Status of the process Provide feedback on the state of
the process

13749785 Mostly everything was quite
clear. Two points: It was not
clear if the time mattered in the
task. That is - precision versus
speed "heuristic" was not elabo-
rated on. Is it better to guess
if one is almost certain what to
pick, or, should one use up ALL
5 seconds and then pick what
one was almost sure earlier. The
size of the boxes will depend on
the screen size and the resolution
used - it was not clear if magnify-
ing the browser window will affect
the test or not.

In the tutorial, it just happened
that I had to press left arrow
for ALL the tests (which were
all scored as Correct). That was
somewhat biasing me later, in
the cases where I was not sure,
I tended to pick left also - for
no logical reason - just being
"primed" with ALL LEFT in the
tutorial. Perhaps make sure that
the tutorial balances left-right an-
swers if the "left" bias was side ef-
fect of some pseudo-randomness.

13786095 N/A I feel like the instructions should
have mentioned that the task dif-
ficulty will vary compared to the
tutorial examples. I was very sur-
prised I had to guess on half of
the tasks when the tutorial was so
easy. Survey: I didn’t use a tablet
or a desktop - I used a laptop.

13786599 No. Easy to undersstand. Only prob-
lem is that that the patterns dis-
sapear after a short time.

13789587 It would be nice to have more ex-
amples of what is the correct box

it is simple and understandable.
One idea is to have more interac-
tive or less text and more visual
presentation with instructions on
how to use it.

13792522 no, everything was understand-
able.

easy and straightforward to use.

81

13796068 none The patterns wanished to quickly

13796801 N/A The examples in the tutorial were
very straightforward/easy com-
pared to the second half of the
actual test. I would like to have
seen at least one difficult example
before taking the test itself.

13798018 N/A made me sick ;)

13876154 The task was a bit ambiguous.
What is exactly meant by "the
dots moving systematically back
and forth"? Which dots? Not
all of them move similarly in a
given box. And in which direc-
tion? Is "back and forth" from
left to right, or from top to bot-
tom? Otherwise, on the technical
side, it was super simple to use.

N/A

13901748 The sitting arrangement was
demonstrated with a desktop
computer. There was no demon-
stration for Tablet users

A design suitable for tablet users.
I thought i was in the exam-
ple experiment not knowing i al-
ready transited to the actual ex-
periment. There should be a clear
message to the user during the
transition to the actual experi-
ment. The text read TRIAL and
this seems like an example exper-
iment before the actual experi-
ment

13908231 N/A Some issues with the text dis-
playing on my Chrome browser.
Could be related to the aspect ra-
tio of the window I opened but
the text was written in full size
and did not seem to adapt to
change of window’s size.

13908425 No, all the instructions were very
clear.

I think the design is well struc-
tured, easy to use and clear!

82

13908505 What was the mentioned ’appli-
cation’, or ’system’, or intended
use? Does this survey relate to
the visual test at all?

I did not se an application, I
saw two boxes with hardly dis-
cernible content, and pushed left-
or right-arrow according to the in-
struction/tutorial (horizontal- or
not moving particles) Most of the
time I didnt not see much dif-
ference of movement between the
boxes.

Table 10: All textual feedback received from the first usability test. The motion
test was tested.

G Second Usability Test: Free Text Answers

User Id Was there anything in the tu-
torial or test that was par-
ticularly difficult to under-
stand?

Do you have any comments
on the design of the tutorial
or test?

13976438 No Easy to use and self explanatory

13977897 N/A I think many of the questions in
the survey were somewhat vague.
I mean, what is "the system" re-
ferred to in many of the ques-
tions?

13978288 Translated from Norwegian: The
pictures turned black pretty
quickly. What is the consequence
of clicking a black picture?

Translated from Norwegian: A
progress bar which shows how far
you have progressed / how much
of the test is left.

13978844 Not really except when I swear
there was no circle I just ran-
domly picked and I sort of wish
there was a ’no circle’ option
maybe by pressing down. Not
sure if that works in your cir-
cle/dislexia theory though.

It could be interesting to explain
or have a learn more section to
connect the identification of the
circles with dislexia.

83

13984125 yes - I was confused about which
part was the tutorial - thought I
was doing the actual test when I
was still in the tutorial.

looks like it could be a good tool.
But, I was a bit confused doing
the test, which maybe was due to
programming rather than design
- towards the end the images dis-
appeared before I had answered/-
chosen a box. And the screen still
said ’choose a box’, and did not
move on until I had done so. Also,
in some of the images I was won-
dering whether the circle should/-
could be off center.

14125549 No, everything was perfectly clear Maybe I wouldn’t include at the
beginning of the test the informa-
tion about the "best score". I
would leave out the part "where
1 is the best possible score". If a
person who would do the test had
dyslexia, maybe they would feel
bad about not getting "the best
possible score".

14125637 N/A The hard tasks feel very random,
they don’t make sense, which
doesn’t feel very good. I under-
stand that the difficulty is sup-
posed to be increasing, but I
could imagine a less experienced
person being unsure if everything
was working correctly when none
of the boxes have circular pat-
terns.

14139073 No. After a few iterations I could re-
ally NOT see any circular pat-
terns, so I was selecting randomly.
I would expect instructions on
what to do in such a case to exist
in the tutorial.

Table 11: All textual feedback received from the second usability test. The form
fixed test was tested.

84

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Fredrik Jenssen

Magno: An Application for Detection
of Dyslexia

From Native to Web App

Master’s thesis in Computer Science
Supervisor: John Krogstie

June 2021M
as

te
r’s

 th
es

is

	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Outline

	Research Approach
	Research Goals
	Research Questions
	Research Method
	Evaluation and Data Analysis

	Background
	Defining Dyslexia
	Consequences and the Importance of Early Detection
	What Causes Dyslexia?
	Defining Usability

	Related Work
	An App for Early Detection of Dyslexia
	First Iteration: Functionality
	Second Iteration: Usability
	Third Iteration: Data Storage

	Web RDK
	Svipgerð: deCODE's Test Platform
	Requirements
	Out of Scope

	Methods, Tools and Technology
	Scrum
	Usability Testing
	Remote Usability Testing
	The SUS Form

	Tools and Technology

	Implementation and Usability Testing
	Workflow
	Software Architecture
	Design Choices
	First Iteration
	Application Overview
	Performance Optimization
	Usability Testing
	Written Feedback and Proposed Changes

	Second Iteration
	Application Changes
	Usability Testing
	Written Feedback

	Classes and Interfaces

	Evaluation
	Usability Testing
	Requirements Fulfillment
	Previous Requirements
	New Requirements

	Discussion, Conclusion and Further Work
	Discussion
	Conclusion
	Further Work
	References
	Appendix
	Previous requirements for Magno
	Default Setting Values
	Example Test Results
	Motion Test Results Example
	Form Test Results Example

	SUS Form
	Usability Test Email
	First Usability Test: Free Text Answers
	Second Usability Test: Free Text Answers

