
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
sQ

uantifying Predictive U
ncertainty in Artificial N

eural N
etw

orks

Christian Nilsen Lehre

Quantifying Predictive Uncertainty in
Artificial Neural Networks

With a Case Study from the Norwegian Oil and
Gas Industry

Master’s thesis in Industrial Mathematics
Supervisor: Gunnar Taraldsen
Co-supervisor: Peder Aursand, Bjarne Andre Grimstad

June 2021

M
as

te
r’s

 th
es

is

Christian Nilsen Lehre

Quantifying Predictive Uncertainty in
Artificial Neural Networks

With a Case Study from the Norwegian Oil and Gas
Industry

Master’s thesis in Industrial Mathematics
Supervisor: Gunnar Taraldsen
Co-supervisor: Peder Aursand, Bjarne Andre Grimstad
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Two methods for constructing Bayesian neural networks (BNNs), MC
Dropout and SGVB, are implemented and applied to a real-world dataset
provided by the Norwegian E&P company Aker BP. The dataset consists of
borehole data gathered from 34 wells from offshore Norway, and the problem
aims at predicting the acoustic log of S-waves based on geophysical
measurements. The resulting BNNs can quantify the uncertainty in the
models (epistemic) and the uncertainty in the data (aleatoric), making up
the total predictive uncertainty. Moreover, the aleatoric uncertainty is
modelled in a homoscedastic and heteroscedastic way, and the latter model
is shown to consistently outperform the former for both methods.
Furthermore, a qualitative analysis of the aleatoric uncertainty clearly shows
that it captures uncertainty in the data at particular points in space.

All considered models are shown to accurately estimate the predictive
uncertainty by using an analogy between the Bayesian credible interval and
the frequentist coverage probability for a wide range of significance levels.
Moreover, by neglecting the aleatoric component, the resulting uncertainty
becomes highly under-estimated. Consequently, the majority of the predictive
uncertainty is attributed to the data.

For the SGVB models, the epistemic uncertainty is shown to be reducible
in terms of increasing the training set size and the hypothesis space
representing model complexity. The epistemic uncertainty provided by the
homoscedastic and heteroscedastic models steadily decrease when observing
more data until converging to approximately the same values. In terms of
model complexity, a single layer BNN is needed for explaining away the
epistemic uncertainty, while a linear model does not suffice. By further
increasing the model complexity, the epistemic uncertainty remains
constant. On the contrary, the provided epistemic uncertainty by the MC
Dropout models is not affected by the size of the training set. However, they
are highly dependent on the dropout rate.

The MC Dropout models need careful tuning of a hyper-parameter to
obtain proper uncertainty estimates, while the SGVB models are more flexible
in terms of epistemic uncertainty. Consequently, we conclude that the SGVB
method is superior to MC Dropout in quantifying the predictive uncertainty
in artificial neural networks.

Extensions to the methods and analyses are proposed to obtain an even
richer representation of the predictive uncertainty and to reduce inference
time and inductive bias.

i

Sammendrag

To metoder for å konstruere Bayesianske nevrale nettverk, MC Dropout og
SGVB, er implementert og anvendt p̊a et reelt datasett levert av det norske
E&P selskapet Aker BP. Datasettet best̊ar av brønndata hentet fra 34
brønner utenfor Norskekysten, og problemet best̊ar i å predikere den
akustiske S-bølge loggen basert p̊a geofysiske m̊alinger. De resulterende
nettverkene kan forklare usikkerheten i modellene (epistemisk) og
usikkerheten i dataene (aleatorisk), som utgjør den totale prediktive
usikkerheten. Den aleatoriske usikkerheten er modellert p̊a en
homoskedastisk og heteroskedastisk m̊ate, og den sistnevnte modellen
presterer konsekvent bedre enn den førstnevnte for begge metodene. Videre
viser en kvalitativ analyse at den aleatoriske usikkerheten tydelig fanger
usikkerheten i dataen.

Alle betraktede modeller oppn̊ar gode estimater for den prediktive
usikkerheten. Dette er vist numerisk ved å bruke sammenhengen mellom
Bayesianske kredibilitetsintervaller of frekventistiske konfidensintervaller.
Videre, ved å se vekk fra den aleatoriske komponenten blir den resulterende
usikkerheten høyt underestimert. Følgelig tilskrives størstedelen av den
prediktive usikkerheten til dataen.

For SGVB-modellene er den epistemiske usikkerheten reduserbar b̊ade
n̊ar det gjelder å øke treningssettets størrelse og hypoteserommet som
representerer modellkompleksiteten. Den epistemiske usikkerheten til de
homoskedastiske og heteroskedastiske modellene avtar jevnt n̊ar de
observerer mer treningsdata, til de konvergerer til omtrent de samme
verdiene. N̊ar det gjelder modellkompleksitet, trengs en BNN med ett skjult
lag for å forklare vekk den epistemiske usikkerheten, mens en lineær modell
ikke er tilstrekkelig. Ved ytterligere å øke modellkompleksiteten forblir den
epistemiske usikkerheten tilnærmet konstant. Den epistemiske usikkerheten
til MC Dropout-modellene p̊avirkes tilsynelatende ikke av størrelsen p̊a
treningssettet. De er imidlertid sterkt avhengige av hyper-parameteren som
tilhører dropout-laget som brukes til å trene modellene.

MC Dropout-modellene trenger nøye justering av en hyper-parameter for å
oppn̊a nøyaktige usikkerhetsestimater, mens SGVB-modellene er mer fleksible
n̊ar det gjelder den epistemiske usikkerheten. Følgelig konkluderer vi med at
SGVB er en bedre metode enn MC Dropout for å estimere den prediktive
usikkerheten til kunstige nevrale nettverk.

Det foresl̊as utvidelser av metodene og analysene for å f̊a en enda rikere
fremstilling av den prediktive usikkerheten, og for å redusere regnekraft og
forbedre generalisering av modellene.

ii

Preface

This work has been carried out as a final part of my master’s studies in Industrial
Mathematics at the Norwegian University of Science and Technology (NTNU), and
concludes my time as a student. Prior to my studies at NTNU, I graduated with
a BSc. in Geophysics from the University of Bergen. For my master’s project,
I wanted to use my knowledge in geophysics, and I reached out to Aker BP to
ask if they wanted to cooperate. The inquiry resulted in this thesis, where Aker
BP provided me with a dataset based on geophysical measurements. During my
exchange semester in Bologna, Italy, I participated in a course in Bayesian statistics.
I was intrigued by the topic, and quickly found out that there is a lot of ongoing
research in the intersection of Bayesian inference and another great interest of mine,
namely artificial intelligence and deep learning. I reached out to professor Gunnar
Taraldsen at the Department of Mathematical Sciences at NTNU with a proposal
for a master’s project about Bayesian neural networks, and he gladly accepted me
as his student.

I want to thank my formal supervisor, Professor Gunnar Taraldsen, for allowing
me to work on a topic that I genuinely find interesting and important.

Furthermore, I want to thank my co-supervisor, Peder Aursand (Aker BP), for
our meetings and discussions during my master’s semester. Peder has practically
been my main supervisor and provided me with much insight into the problem
provided by dataset and practicalities in machine learning. Even though Peder went
on paternity leave early in the semester, we continued to have weekly discussion in
the evenings. I am very grateful to have had Peder as my supervisor, and I really
enjoyed our collaboration.

Last but certainly not least, I want to thank my other co-supervisor, Bjarne
Grimstad (NTNU and Solution Seeker), for taking the time to supervise me in the
field of Bayesian Neural Networks. Even though Bjarne had too much on his plate
this semester, he took some time off to supervise me simply out of his own interest in
the topic. Our meetings have been truly inspiring, and I owe him a debt of gratitude
for helping me shape my thesis.

Christian N. Lehre
Trondheim, June 2021

iii

Contents

Abstract i

Sammendrag ii

Preface iii

1 Introduction 1
1.1 Outline . 2
1.2 History of Bayesian Neural Networks 3
1.3 Sources of Uncertainty . 5
1.4 Importance of Quantifying Predictive Uncertainty 6
1.5 Problem Statement and Motivation 7

2 Theory 9
2.1 Machine Learning . 9

2.1.1 Brief Introduction . 9
2.1.2 Sources of Uncertainty in Machine Learning 14

2.2 Linear Regression . 18
2.3 Neural Networks . 21

2.3.1 Preprocessing and Feature Engineering 28
2.4 Bayesian Inference . 30

2.4.1 Variational Inference . 31
2.5 Bayesian Neural Networks . 34

3 Methodology 37
3.1 Monte Carlo Dropout . 37
3.2 Stochastic Gradient Variational Bayes 42
3.3 Quantifying Predictive Uncertainty 45

3.3.1 Decomposing the Uncertainty 46
3.4 Quantitatively Evaluating the Predictive Uncertainty 48

3.4.1 Effect of Modelling Aleatoric Uncertainty 49
3.5 Epistemic Uncertainty and Training Set Size 50
3.6 Epistemic Uncertainty and Model Complexity 52

4 Experimental Setting 53
4.1 Motivation . 54
4.2 Data . 54

4.2.1 Preprocessing and Feature Engineering 59
4.2.2 Train/Test split . 61

4.3 Preliminary analysis . 62
4.4 Models and Architectures . 64

iv

4.4.1 Mathematical model . 64
4.4.2 Neural Network Architecture 67

4.5 Deep Learning Framework . 70

5 Results 71
5.1 MC Dropout . 72
5.2 Stochastic Gradient Variational Bayes 76
5.3 Qualitative Analysis . 80
5.4 Quantitatively Evaluating the Predictive Uncertainty 85

5.4.1 Effect of Modelling the Aleatoric Uncertainty 87
5.5 Epistemic Uncertainty and Training Set Size 89
5.6 Epistemic Uncertainty and Model Complexity 91

6 Discussion 93
6.1 Methods for Obtaining Bayesian Neural Networks 94
6.2 Qualitative Analysis . 97
6.3 Quantitatively Evaluating the Predictive Uncertainty 99
6.4 Analysis of the Epistemic Uncertainty 101

6.4.1 Epistemic Uncertainty and Training Set Size 101
6.4.2 Epistemic Uncertainty and Model Complexity 102

7 Closing Remarks 107

A Well-wise distribution of target variable 109
A.1 Training set . 109
A.2 Validation set . 110
A.3 Test set . 110

B Analytical derivation of the ELBO loss 111

C Wellwise predictions 115
C.1 MC Dropout . 116
C.2 SGVB . 124

D Calibration curves 133
D.1 MC Dropout . 134

D.1.1 Homoscedastic . 134
D.1.2 Heteroscedastic . 135

D.2 SGVB . 136
D.2.1 Homoscedastic . 136
D.2.2 Heteroscedastic . 137

Bibliography 143

v

List of Figures

2.1 Bias-variance trade-off . 12
2.2 Epistemic uncertainty in machine learning 15
2.3 Homoscedastic and heteroscedastic aleatoric uncertainty 16
2.4 Computational graph of a neuron . 21
2.5 Computational graph of a Feedforward Neural Network 22
2.6 Variational distribution approximating the true posterior 32
2.7 Computational graph of a Bayesian Neural Network 34

3.1 Computational graph of a multi-headed Neural Network 39
3.2 Reparametrization trick . 43

4.1 Map of wells in the dataset . 55
4.2 Distribution of target variable . 57
4.3 Distribution of target variable for a random subset of 4 wells 57
4.4 Distribution of explanatory variables 58
4.5 Distribution of explanatory variables for a single well 58
4.6 Distribution of target variable across datasets 61
4.7 Residual plot for the linear model . 62
4.8 Scale-location plot for a linear, homoscedastic model 63
4.9 Normal Q-Q plot and distribution of standardized residuals 63
4.10 Probabilistic graphical model . 65
4.11 Architecture of the neural network models 67

5.1 MC Dropout prediction curves for well 30/8-5 T2 72
5.2 Zoomed out MC Dropout prediction curves for well 30/8-5 T2 73
5.3 MC Dropout loss curves . 74
5.4 SGVB prediction curves for well 30/8-5 T2 76
5.5 Zoomed out SGVB prediction curves for well 30/8-5 T2 77
5.6 SGVB loss curves . 78
5.7 Qualitative analysis of the spike in aleatoric uncertainty for well 30/8-

5 T2 . 81
5.8 Qualitative analysis of the aleatoric uncertainty for well 30/8-5 T2,

interval 2 . 82
5.9 Qualitative analysis of the aleatoric uncertainty at the end of well

30/8-5 T2 . 83
5.10 MC Dropout calibration curves across wells 85
5.11 SGVB calibration curves across wells 86
5.12 MC Dropout Calibration Curves for Epistemic and Total Predictive

Uncertainty . 87
5.13 SGVB Calibration Curves for Epistemic and Total Predictive

Uncertainty . 88
5.14 Epistemic uncertainty with varying training set size 89

vi

5.15 Epistemic uncertainty for varying sized training set size using different
dropout rates . 90

5.16 Epistemic uncertainty for varying model complexity 91

A.1 Well-wise distribution of target variable in the training set 109
A.2 Well-wise distribution of target variable in the validation set 110
A.3 Well-wise distribution of target variable in the test set 110

C.1 MC Dropout prediction curves for well 24/4-10 S 116
C.2 MC Dropout prediction curves for well 25/7-6 117
C.3 MC Dropout prediction curves for well 30/6-26 118
C.4 MC Dropout prediction curves for well 30/8-5 T2 119
C.5 MC Dropout prediction curves for well 30/11-7 120
C.6 MC Dropout prediction curves for well 30/11-9 ST2 121
C.7 MC Dropout prediction curves for well 30/11-10 122
C.8 MC Dropout prediction curves for well 30/11-11 S 123
C.9 SGVB prediction curves for well 25/4-10 S 124
C.10 SGVB prediction curves for well 25/7-6 125
C.11 SGVB prediction curves for well 30/6-26 126
C.12 SGVB prediction curves for well 30/8-5 T2 127
C.13 SGVB prediction curves for well 30/11-7 128
C.14 SGVB prediction curves for well 30/11-9 ST2 129
C.15 SGVB prediction curves for well 30/11-10 130
C.16 SGVB prediction curves for well 30/11-11 S 131

D.1 Homoscedastic MC Dropout calibration curves 134
D.2 Heteroscedastic MC Dropout calibration curves 135
D.3 Homoscedastic SGVB calibration curves 136
D.4 Heteroscedastic SGVB calibration curves 137

vii

List of Tables

3.1 Hyper-parameters introduced by the prior in MC Dropout. 38

4.1 Variables in the dataset . 55
4.2 Number of samples and wells in the different datasets 61
4.3 Hyper-parameters and training configuration 69

5.1 MC Dropout well-wise predictive performance 75
5.2 MC Dropout predictive performance over full test set 75
5.3 SGVB well-wise predictive performance 79
5.4 SGVB predictive performance over full test set 79
5.5 Predictive performance for all models 79

viii

List of Algorithms

1 Batch normalization for a single mini-batch 25

2 MC Dropout for a single input instance. 40
3 SGVB for a single iteration . 44
4 Calculating predictive uncertainty for a single input instance. 47
5 Epistemic uncertainty for a fraction of the training set. 51

ix

Chapter 1

Introduction

Machine learning models as deep neural networks aim to approximate a functional
relationship between the input and output, describing a data-generating process
through a joint probability distribution. This is traditionally done by learning
point estimates for the parameters in the network through optimization. These
networks are deterministic by nature and will not provide any measure of
uncertainty in their output. By introducing prior distributions into the network’s
parameters and updating the priors during training, the network can learn
probability distributions rather than point estimates for its parameters. This
allows us to reason about uncertainty when using the networks to make
predictions, which is essential in scenarios where models are being used as
decision-support, in particular in safety-critical contexts like autonomous vehicles
and medical diagnosis. The resulting probabilistic models are referred to as
Bayesian neural networks. Traditional neural network models are known for their
lack of interpretability, and one is often referring to them as black-box models. By
extending the traditional neural networks and allowing them to reason about their
predictive uncertainty, we are attempting to open up the black box and increase
the interpretability of the models.

This thesis extends upon the work done in my specialization project, where two
different methods for obtaining Bayesian neural networks were explored and applied
to a toy dataset in a regression and classification setting. Consequently, some of the
theory and methodology is based on the specialization project.

2 Introduction

1.1 Outline

This chapter gives the reader an introduction to the history of Bayesian neural
networks before describing the different sources of uncertainty we are concerned with
within predictive modelling. Further on, two examples highlighting the importance
of quantifying the predictive uncertainty in machine learning are given. In the last
section of this chapter, we present the problem statement and motivate the problem.

The remaining part of this thesis is structured in the following way. Chapter 2
provides a theoretical background for machine learning and the accompanying
sources of uncertainty. Further on, the model assumptions and corresponding
diagnostic tools for a linear regression model are presented before providing the
theory of neural networks relevant for this thesis. Next, we present the theoretical
framework of Bayesian inference. The final section of the theory chapter presents
Bayesian neural networks, where neural networks and Bayesian inference are
united.

In Chapter 3, two methods for constructing Bayesian neural networks are
presented before describing the different methods for solving the problems stated
in Section 1.5.

The experimental setting is presented in Chapter 4, where a motivation behind
the provided problem is presented, as well as an exploratory analysis of the data.
Furthermore, a preliminary analysis based on a linear model is performed to justify
the choice of models before presenting the chosen models and architectures.

In Chapter 5, we present the results of our analysis before discussing our findings
in Chapter 6. The thesis is concluded in Chapter 7, where the main findings are
summarized.

3

1.2 History of Bayesian Neural Networks

The earliest article describing and investigating a Bayesian neural network (BNN)
dates back to 1987 [57], where the authors develop a statistical framework to
reason about the generalization error of a neural network. The authors show that
using a Euclidean loss function to train a neural network is statistically equivalent
to performing maximum likelihood with respect to a Gaussian distribution over
outputs of the network. Further on, they define a prior distribution of the
network’s parameters and show that inference could theoretically be performed
using Bayes rule. A few years later, in 1990, some of the colleagues of the previous
authors extended upon the idea in [57], where they suggested applying Laplace’s
method to approximate the posterior distribution of the parameters in a neural
network [11].

A more extensive study of BNNs was carried out in 1992, where Mackay
suggested using model evidence to perform model comparison [41], and obtained
the results following the Laplace approximation in [11]. With a large number of
experiments using different models and configurations, Mackay showed that model
evidence is correlated with generalization error. Furthermore, he showed that
model misspecification could lead to situations where model evidence is not
indicative of model generalization [15].

In 1993, Hinton and Van Camp suggested using the information-theoretic
minimum description length to penalize the amount of information in the
parameters of a neural network as a way of regularization [25]. This is the first
attempt at performing variational inference on the parameters of a neural network
to approximate the corresponding posterior distributions. Variational inference
will be described in greater detail in Section 2.4.1.

A few years later, in 1995, Neal developed a hybrid Markov Chain Monte Carlo
(MCMC) method to perform approximate inference in BNNs, known as Hamiltonian
Monte Carlo (HMC) [43]. The method revolves around generating samples from the
posterior distribution of the neural network parameters that are otherwise difficult or
intractable to compute. The proposed method was the first use of MCMC algorithms
applied to the parameters of neural networks. Moreover, the work was the first to
establish a link between Gaussian processes and Bayesian neural networks.

Much modern research is being done in the field of Bayesian neural networks,
and the majority extends on the work done by Hinton and Van Camp on variational
inference in [25].

In 2011, Graves attempted to resolve the computational challenges in training
BNNs with variational inference. In his work [19] the intractable expected log-
likelihood term in the loss function is approximated using Monte Carlo sampling,
allowing the method to scale better. A few years later, in 2015, Blundell et al. extend
on Graves method in conjunction with the reparametrization trick proposed by
Kingma and Welling [33] in 2013. In their work [7] the expected log-likelihood is re-
parametrized to allow for backpropagation through stochastic nodes in the network.
However, the method is restricted to Gaussian distribution of the parameters of the
network and increases the number of parameters to be learned during training. One
of the methods for constructing BNNs in this thesis is based on the method proposed
by Blundell et al. and will be described in more detail in Section 3.2.

4 Introduction

In his thesis from 2016, Yarin Gal showed that one could perform approximate
inference on the parameters of Bayesian neural networks simply by training the
network with a stochastic regularization technique known as dropout, leaving
dropout on when making predictions and perform multiple predictions for each
instance [15]. The method was shown to be mathematically equivalent to
variational inference in deep Gaussian processes and will be described in more
detail in Section 3.1.

In the following year, another interesting approach for obtaining predictive
uncertainty in deep learning was suggested. However, the method can not be seen
as approximate Bayesian inference, unlike the above-mentioned methods. The
outline of the method consists of training an ensemble of traditional neural
networks, each having a different initialization of the parameters [38]. Having
obtained an ensemble of neural networks, one can estimate the predictive
uncertainty by using the sample variance of the predictions provided by the
ensemble. Although the method consists of training multiple neural networks, the
computational complexity is typically lower than training a Bayesian neural
network using approximate inference [38].

To allow for a richer representation of the predictive uncertainty provided by
Gal and Blundell et al. methods, we will extend the methods to distinguish between
different sources of the predictive uncertainty. An explanation of the different sources
of uncertainty is explained in the following section.

5

1.3 Sources of Uncertainty

When discussing uncertainty in the context of predictive modelling, we need to define
and distinguish between two inherently different sources of such, namely aleatoric
and epistemic uncertainty [1, 12, 27, 30, 53].

Aleatoric uncertainty, also referred to as statistical uncertainty, represents the
randomness of the outcome of an experiment. This means that the data-generating
process potentially consists of a stochastic component independent of the amount
of information available. This source of uncertainty is also referred to as the
irreducible uncertainty since it is not possible to reduce this type of uncertainty by
obtaining more information [27], without changing the underlying system by which
the experiment is performed [15]. Aleatoric uncertainty is present in nearly all
data we gather due to variability in the obtained samples from the population we
are modelling or simply due to stochastic measurement errors [44]. If we change
how we collect the data, e.g. by improving the measurement precision, the
aleatoric uncertainty can be reduced. However, having collected the data, there are
no ways to reduce the uncertainty in the data. It is important to note that the
aleatoric uncertainty is an inherent property of the data-generating process and
not of the model trying to explain it. An example of aleatoric uncertainty is the
uncertainty related to dealing a deck of cards. No matter how well we can model
the experiment, there will always be some component of uncertainty involved due
to the stochastic nature of the experiment.

On the contrary, the epistemic uncertainty component refers to the lack of
knowledge in the data-generating process. This type of uncertainty is also referred
to as systematic uncertainty and can be reduced by introducing more information
about the process or system being modelled [27].

Let us look at an example of epistemic uncertainty. Say you have recently moved
to Italy, and you have no idea how to speak the italian language. The uncertainty
in the way of speaking Italian is thus very high. You attend a language course and
get better and better by the day. You become less uncertain in speaking Italian,
and you have become so by attending the language course. Here, you have used the
language course as additional information about speaking the language, and you
have reduced the uncertainty by attending the course.

The main distinction between aleatoric and epistemic uncertainty revolves
around whether one can reduce the uncertainty based on obtaining more
information. This pragmatic definition makes the distinction ambiguous and
context-dependent, and one must be careful when distinguishing between the two.

6 Introduction

1.4 Importance of Quantifying Predictive

Uncertainty

It will be evident in Section 2.1.2 that there is much uncertainty attached to the
process of training a machine learning model and making predictions. However, the
majority of machine learning techniques we see today do not provide any measure
of uncertainty.

When making predictions, we input an instance x similar to the instances we
trained the model on1, and the trained model m̂ will output a point estimate of the
target.

ŷ = m̂(x) ∈ R,

where ŷ is the predicted target, x is the instance we are predicting and m̂ the trained
model.

Having a model that outputs a point estimate without a measure of uncertainty
is problematic, particularly if the predictions from the machine learning model are
being used as decision support in a safety-critical context.

Below are two hypothetical scenarios highlighting the importance of
quantifying the predictive uncertainty in machine learning models applied in
real-world situations.

Medical diagonosis

Imagine a medical diagnosis scenario in which a doctor uses a machine learning
model to predict the presence of a cancerous tumour based on an examination.
Here the target is y ∈ {0, 1}, corresponding to the presence (1) and absence (0) of
the tumour, and the instance xpatient is based on the examination. Assume that the
model has not been sufficiently trained on instances similar to the patient, xpatient,
so the prediction will intuitively not be very confident. Since the model outputs
a point estimate based on the instance xpatient, we cannot say anything about the
predictive uncertainty of the model. Imagine now that the output of the model is
ŷ(xpatient) = 1, i.e. the model is saying that there is a presence of a cancerous tumor.
However, the prediction is a false positive. The doctor is naive and puts the patient
on chemotherapy immediately, even though the patient is perfectly healthy.

Drilling for oil

Consider now a petroleum engineer working for a company deciding whether or not
to drill for oil in an area. The engineer has a background in computer science and
relies heavily on machine learning models in his daily workflow. In the decision
process, the engineer collects relevant data in the area they are considering. Having
trained a machine learning model on the same type of data, the engineer uses the
model to predict whether they can expect oil to be present in the area. As it turns
out, the output of the model shows the presence of oil. The engineer is very confident
in his model and decides that the company will drill for oil in the area, spending
much money hoping that the profit will be even greater than the expenses related
to drilling and operating the field. Unfortunately, the model output turned out to
be a false positive, and the company wasted much money drilling the dry well.

1using the same set of explanatory variables

7

The above are two fictitious examples highlighting the importance of
quantifying the uncertainty related to machine learning, especially in scenarios
where the model output is used as decision support. In both hypothetical
scenarios, the model provided false positive predictions, resulting in erroneous
decisions.

Ideally, we would have a model that returns a measure of uncertainty associated
with each prediction. This would make it possible to decide whether one should pass
an instance to a human for a more thorough inspection or to trust the prediction
provided by the model.

1.5 Problem Statement and Motivation

This master’s thesis is a collaboration with the Norwegian E&P company Aker BP,
which provides a dataset for solving a regression problem. The company is currently
using boosted trees [14] and have not yet explored the use of deep learning for the
particular problem.

Neural network models are very flexible and have been seen to perform well in
numerous real-world scenarios [39]. However, the models fail to provide any measure
of uncertainty, and their predictions tend to be overconfident [7]. Having a neural
network model that can provide a measure of uncertainty is highly valuable, as one
can reason about how reliable the corresponding predictions are.

This thesis aims to construct Bayesian neural networks that can reason about
the uncertainty of its predictions. Furthermore, the goal is to decompose the
predictive uncertainty into the two components described in Section 1.3, namely
the aleatoric and epistemic uncertainty. The resulting uncertainty estimates will
be properly evaluated, and the importance of including both uncertainty
components will be investigated. To validate the aleatoric uncertainty estimates,
we will perform a qualitative analysis of the data, where we investigate whether
the aleatoric uncertainty responds to noise in the data. Moreover, the following
research hypotheses are empirically tested.

i. The epistemic uncertainty is inversely proportional to the amount of data

ii. The epistemic uncertainty depends on the complexity of the model

The former hypothesis has previously been stated [12, 27, 30], but we have not seen
any experimental nor theoretical justification. The latter hypothesis is concerned
with model misspecification and is based on the intuition that a bigger hypothesis
space has a greater chance of containing the optimal model. We will come back to
the notion of uncertainty due to the amount of data and model misspecification in
Section 2.1.2.

Chapter 2

Theory

This chapter provides the reader with a theoretical background in machine
learning, linear regression and neural networks relevant to this thesis. Further on,
the theoretical framework provided by Bayesian inference is presented, where we
describe a method for performing approximate inference. Bayesian inference and
deep learning are coupled together in the final section of this chapter, where we
describe Bayesian neural networks.

2.1 Machine Learning

In this section, we give a brief introduction to the field of machine learning before
pointing out the different sources of uncertainty one should be aware of when working
with such.

2.1.1 Brief Introduction

Before looking into the different sources of uncertainty in machine learning, we will
look at one of many definitions of machine learning, this one provided by Tom
Mitchell [42].

”A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.”

In the definition above, we refer to data as the experience E. The set of tasks
T represents the problem we have at hand, e.g. whether we are concerned with a
regression or classification problem. The performance task P is referred to as the
loss- or cost-function, measuring the ability of the machine learning algorithm to
perform the given task.

Machine learning algorithms are categorized based on the type of data they are
allowed to process during training. There are numerous variations of each type
of algorithm, but they are commonly categorized into supervised-, unsupervised-
and reinforcement learning [18]. In supervised learning, the algorithms are allowed
to process labelled data, thus guiding the algorithm towards correct predictions
during training. In unsupervised learning, the algorithms typically rely on some
measure of similarity to cluster input without a labelled response1. Supervised-

1Note that there are other techniques of doing unsupervised learning, but clustering is the
quintessential technique for doing so

10 Theory

and unsupervised machine learning is quite similar, with the difference being in
the ability to observe the correct prediction during training or not. Quite different
from these two classes of algorithms, we have reinforcement learning. Reinforcement
learning is concerned with finding the optimal action to take in an environment to
maximize a reward function. The algorithm iterates in a trial-and-error fashion,
finding the action that yields the best possible reward[5]. An example application
of reinforcement learning is training a computer how to play the game of go [51], a
strategic chess-like board game.

We will further on consider the task of supervised learning, where the training
consists of processing labelled data. The dataset can in this case be written as

D = {(x1, y1), (x2, y2), . . . , (xn, yn)} ∈ X × Y ,

where X is the space of possible explantory variables, Y the space of possible target
variables and n the size of the dataset.

In addition to data, the generic machine learning problem consists of three
integral parts:

1. Model class: A set of models M defined over a parameter space Θ. The
model class is typically referred to as the hypothesis space, consisting of
possible hypothesis for explaining the data. Some of the parameters are not
updated during training, and the user needs to specify these before training
the model. These parameters are referred to as hyper-parameters. The
remaining parameters are updated during training by optimizing a criterion
using a suitable optimization method.

2. Criterion: A function to be optimized. In supervised learning, this consist
of a scalar loss function that captures the discrepancy between the true and
predicted target variable. The criterion depends on the parameters of the
model.

3. Optimization method: A suitable method for optimizing the criterion and
updating the trainable parameters of the model. In supervised learning, this
would be a method to minimize the discrepancy between the true and predicted
target variable. A typical choice is the gradient descent algorithm or one of its
many varieties. The choice of optimization methods typically introduces new
hyper-parameters to the model.

11

The key problem of any machine learning application is the ability to generalize
to unseen data, i.e. data the algorithm has not processed during training.

A common practice is to split the dataset into a training set and a test set,
where the test set is kept aside when training the model. Further on, if the model
consists of hyper-parameters that can take different values, the training set is further
split into another training set and a validation set. The goal is to find the optimal
hyper-parameter configuration by optimizing a suitable performance measure on the
validation set. When the optimal configuration of hyper-parameters is found, the
model is typically re-trained on the entire training set, including the validation set.
When performing the split, it is important to avoid flow of information between the
training and test set. The test set is kapt away from the model during training,
and is used to measure model performance on unseen data. If information from the
test set is included in the training set, the performance of the resulting model is not
representative to performance on unseen data. This situation is referred to as data
leakage, and is very important to avoid.

The ability of the model to generalize to unseen data is estimated in terms of
performance on the test set and is measured using suitable performance metrics.
An important assumption about the training and test set is that the datasets are
independent and identically distributed (i.i.d), [18], i.e.

ptrain(x, y) ∼ ptest(x, y) ∼ pdata(x, y), (2.1)

where ptrain and ptest are the joint distributions representing the training- and test
set, and pdata the distribution representing the data-generating process. The i.i.d
assumption allows to reason about the ability of a trained model to generalize to
unseen data, as the data is drawn independently from identical distributions. Say,
for example, we train a forecasting model to classify whether the weather will be
sunny or cloudy tomorrow. We train our model using a training set consisting of
sunny and cloudy days only. If we then test the model on an instance representing
a rainy day, we cannot infer anything about the model’s ability to generalize in its
task of classifying whether the weather will be sunny or cloudy. We refer to this
situation as out-of-distribution (OOD) test-data. OOD test-data typically result
in inductive bias [2], where the generalization ability of the model becomes poor
because of varying distributions between the datasets or a badly chosen hypothesis
space for the model. There are however different methods for dealing with inductive
bias and relaxing the i.i.d assumption (2.1), e.g multi-task learning [9] and transfer
learning [55]. We will, however, not go through these methods.

12 Theory

The concept of over and under-fitting in machine learning is vital and directly
related to the capacity or equivalently the complexity of a machine learning model.
Allowing for too complex models will potentially make the model interpolate all the
samples in the training set, which is only a random sample of the distribution of
the data-generating process being modelled. When applying an over-fitted model to
unseen data, the performance will generally be poor. On the contrary, the concept
of under-fitting applies to situations where the machine learning model is too rigid
with respect to the data. In this setting, rigidity refers to the fact that the model
is not able to capture the variability in the data. This will generally result in poor
performance, both on the training set and unseen data. Over- and under-fitting is
closely related to the concept bias-variance trade-off seen in statistical learning [23].
The bias-variance trade-off describes a trade-off between the variance and bias of
a statistical learning model, where low bias is accompanied by high variance and
vice versa. The trade-off originates from a decomposition of the expected test error
into three fundamental components, namely the variance, the squared bias, and the
irreducible error of the predictions on the test set [29].

A depiction of the bias-variance trade-off is seen in Figure 2.1 below. The
figure shows a hypothetical scenario where the prediction error is plotted against
an increasing model complexity. The training error is seen as the blue curve, while
the red curve shows the test error, i.e. the error on unseen data. The optimal
model complexity is marked as the vertical, dotted line.

Model complexity

Er
ro

r

Training error

Test error

Over-fittingUnder-fitting

OptimalLow High

Figure 2.1: Bias-Variance trade-off. The training error is marked in blue, while
the test error is red. The optimal complexity, shown by the vertical dotted line,
minimize both the training and test error. Increasing the complexity further leads
to over-fitting, while decreasing the complexity leads to under-fitting. Adapted from
[23].

13

In the case of under-fitting, we are fitting a model that is too rigid to the data at
hand, resulting in high bias. However, the variance is low. On the other side, i.e. in
over-fitting, we are using a too complex model. This results in low bias, but the
variance of the predictions is high. In the optimal model complexity, bias is traded
off with variance to minimize the error on the unseen data. This will, in turn, result
in the best generalization ability.

The capacity of a model is readily controlled, and there are numerous different
techniques for doing so. These techniques are referred to as regularization
techniques. Applying regularization to a machine learning model typically revolves
around adding suitable penalty terms to the optimization objective, i.e. the loss
function. In this way, we can say that the model’s capacity, and thus the chance of
either over or under-fitting, is determined by the model class and the loss function
combined. There exist other types of regularization techniques as well, many of
which are restricted to specific model classes and learning algorithms.

Given a hypothesis spaceM and a loss function L : Y ×Y −→ R, the supervised
learning algorithm aims to infer a model m∗ ∈M minimizing the loss function over
the training set, i.e.

m∗ = argmin
m(θ)∈M

L(ŷ,y), (2.2)

where y are the ground-truth targets, and ŷ = m(X|θ) the predicted targets from
the instances X in the training set. The model m is defined in terms of a set of
parameters θ ∈ Θ, where Θ is the space of all the parameters defining the hypothesis
space M. The optimization in (2.2) is carried out by updating the parameters θ,
thus finding the model that minimize the loss.

14 Theory

2.1.2 Sources of Uncertainty in Machine Learning

Application of machine learning models typically consists of using the trained models
to make predictions in some context. Thus, when talking about uncertainty in
machine learning, one is typically interested in the predictive uncertainty related
to the model in the given context. This is particularly useful if the predictions are
used to make decisions in the context where the model is applied. The predictions
provided by a machine learning model constitute all the choices and approximations
related to training the model and the process of collecting the data. Depending on
the origin of the uncertainty, the total predictive uncertainty can be decomposed
into aleatoric and epistemic uncertainty, which will constitute all the errors and
uncertainties involved in the machine learning pipeline.

Let us consider a generic, supervised machine learning problem, where the goal
is to map some functional dependency between an instance space X and a target
space Y . The mapping is typically performed by setting up a hypothesis space
M(Θ) containing different models that we believe explain the variability of the
data well. Without complete knowledge of the perfect model, there will be
uncertainty attached to setting up a proper hypothesis space for the problem at
hand. However, this uncertainty can be reduced by obtaining more information
about the process, e.g. by investigating whether or not a particular model is
suitable for explaining the variability in the data. This uncertainty is referred to as
structural- or model uncertainty, and falls under the umbrella of the epistemic
component of the predictive uncertainty. In the case of a misspecified model, this
type of uncertainty will be high. On the contrary, if the model is appropriately
specified, there will be little model uncertainty. We can thus use the model
uncertainty to investigate whether we have specified our model correctly.

The machine learning pipeline continues by finding the optimal set of parameters
θ̂ ∈ Θ, specified by the hypothesis space. The parameters are typically found
by maximizing a likelihood function under some distributional assumptions of the
functional form of the data-generating process. The rationale is to find the model in
the hypothesis space that maximizes the probability of observing the data we have
at hand. It is otherwise common to formulate the problem to minimize a suitable
loss function2 (2.2). The result of the optimization is a hypothesis m̂(θ̂) ∈ M(Θ),
which is an estimate of the best hypothesis m∗(θ∗) within the hypothesis space.
This estimate strongly depends on the amount of training data [27], and there will
typically be some discrepancy between the induced hypothesis m̂(θ̂) and the best
hypothesis m∗(θ∗) within M(Θ). We will refer to the uncertainty posed by this
discrepancy as the approximation uncertainty. Due to its strong connection with
the size of available training data, we can use the approximation uncertainty to
assert whether or not it is appropriate to collect more training data. Similar to the
model uncertainty, the approximation uncertainty is subsumed under the epistemic
uncertainty component of the total predictive uncertainty.

2The loss function typically arise from the maximum likelihood formulation

15

Model uncertainty

Approximation
uncertainty

Figure 2.2: Illustration of the different components of the epistemic uncertainty seen
in machine learning. the Cartesian product X × Y represents the data, and M(Θ)
the chosen hypothesis space. The induced model is m̂, and the optimal model within
the hypothesis space is m∗. The ground-truth model is represented by f . Adapted
from [27].

Figure 2.2 shows an illustration of the different components of the epistemic
uncertainty and represents a hypothetical setting where we have induced a
hypothesis m̂ by training a machine learning model. The space X × Y represents
the joint probability distribution of the data, and the perfect model for explaining
the data is f . The hypothesis spaceM(Θ) is a subset of the space representing the
data, and the best hypothesis within the hypothesis space is m∗. We see that there
is a discrepancy between the induced hypothesis m̂ and the best hypothesis m∗

within the hypothesis space. This discrepancy represents the approximation
uncertainty. Furthermore, there is a discrepancy between the perfect model f and
the hypotheses in the hypothesis spaceM. This represents the model uncertainty.

The epistemic uncertainty can also be seen as an indicator of OOD test data.
We have already seen that in such situations, we cannot extrapolate from the
training to the test data, making it hard to reason about the ability of the
algorithm to generalize to unseen data. Moreover, such situations are affiliated
with great uncertainty. Let us consider a binary classification task, where the goal
is to classify pictures of cats and dogs. The classifier is trained using pictures of
cats and dogs only, and has thus not learned how to differentiate between other
things. If we now test the algorithm using pictures of umbrellas, the algorithm
should output a high level of uncertainty (if properly trained). On the other hand,
if we augment the training data to include pictures of umbrellas, the algorithm
learns to differentiate between cats, dogs and umbrellas, and the uncertainty is
resolved. With careful inspection of the epistemic uncertainty, we can decide
whether or not it is appropriate to augment the training data and re-train our
model to cover a broader distribution of the data.

16 Theory

The dependency between the instance space X and the target space Y is not
necessarily deterministic. That is, an element X ∈ X may give rise to a different
set of elements y ∈ Y . This is related to the inherent randomness of the
data-generating process we are modelling or random measurement errors when
collecting the data. Thus, the corresponding uncertainty is attributed to the
aleatoric uncertainty component, as it consists of the uncertainty related to the
data-generating process.

The aleatoric uncertainty component is further decomposed into two different
types, namely homoscedastic and heteroscedastic aleatoric uncertainty. The former
represents situations where the aleatoric uncertainty is constant, and the latter
varies among samples in the dataset. Modelling the aleatoric uncertainty in a
homoscedastic manner is rather restrictive, because in most cases the uncertainty
is expected to vary depending on e.g. the location of the measurement. In such
situations, it is desirable to model the aleatoric uncertainty in a heteroscedastic
manner to avoid loosing valuable information.

In Figure 2.3 we see an example where we have a linear relationship between
the response variable y and the single explanatory variable x. In the homoscedastic
case (left panel), we see that the additive noise is independent of the value of the
regressor. In the heteroscedastic case (right panel), we see that the additive noise
depends linearly on the value of the regressor, such that the level of noise increase
with the value of x.

0 20 40 60 80 100

x

0

20

40

60

80

100

y

y = x + ε, ε ∼ N (0, 1)

(a) Homoscedastic noise

0 20 40 60 80 100

x

0

20

40

60

80

100

y

y = x + ε, ε ∼ N (0, 0.1x)

(b) Heteroscedastic noise

Figure 2.3: (a) Homoscedastic and (b) heteroscedastic aleatoric uncertainty for a
linear relationship between the response y and regressor x. The data-generating
process is marked in the title of each plot.

17

In machine learning applications where the models provide uncertainty measures,
the different sources of uncertainty are typically not distinguished [27]. In fact, in
some cases, the distinction is not necessary. If a machine learning model is used in
decision support, the source of uncertainty is typically not relevant. If the level of
uncertainty is above some threshold, the instance is forwarded to a human for further
inspection, making the origin of the uncertainty irrelevant. In other situations, it
might be helpful to investigate whether the elevated uncertainty levels arise from
measurement errors, a misspecified model or simply by having little data. To reason
about such, it is necessary to decompose the total predictive uncertainty into its
aleatoric and epistemic components.

Referring back to Section 1.3, the irreducible aleatoric uncertainty represents the
inherent randomness of the process being modelled, while the epistemic uncertainty
is reducible and represents the lack of knowledge of the process. Suppose we observe
that the predictive uncertainty decrease when we observe more data, i.e. obtain
more knowledge of the process. In that case, there is evidence that we do not fully
understand the data-generating process. This can be used to decide whether or not
it is appropriate to gather more data.
If we can fit a model that has perfect knowledge of the data-generating process,
the epistemic uncertainty vanishes. The total predictive uncertainty will, in this
case, only consist of the irreducible, aleatoric uncertainty. Looking at the predictive
uncertainty in this setting allows us to investigate the inherent randomness of the
process. Having a model that can perfectly explain the data-generating process is
not really possible. To be able to reason about the inherent randomness of the
process, it is thus necessary to decompose the predictive uncertainty and extract
the aleatoric and epistemic uncertainty components. This decomposition allows
the practitioner to become aware of the process’s stochastic behaviour and assert
whether one should specify a different model or gather more data.

We have seen that the epistemic uncertainty covers the uncertainty related to
the model and its parameters and is thus an attribute of the model itself. Moreover,
we can use epistemic uncertainty to detect out-of-distribution test data. On the
other hand, aleatoric uncertainty refers to the uncertainty in the data and is thus
independent of the model.

Having a model that can reason about the uncertainty is valuable, even more so
if the model can decompose the uncertainty into its different components.

18 Theory

2.2 Linear Regression

This section presents the bare minimum of theory regarding model assumptions in
linear regression models and how one can use diagnostic plots to assert whether the
assumptions are met. The reader is referred to [13] for a more thorough description.

Linear regression is arguably the most simple method for doing supervised
learning, and is a widely used statistical method. The goal of linear regression is to
fit a linear model that explains the relationship between a set of explanatory
variables x and a target variable y. The most common definition of the model is
given by

yi = β0 +

p∑

j=1

βjxij + εi, i = 1, . . . , n

εi ∼ N (0, σ2),

(2.3)

where β = (β0, β1, . . . , βp) ∈ R(p+1) is the parameters of the model,
xi = (xi1, xi2, . . . , xip) ∈ Rp the set of explanatory variables for the ith sample and
n the number of samples. The last term in (2.3) is an additive error term, and p is
the number of explanatory variables.

Using vector notation, we can rewrite the model as

y = Xβ + ε ∈ Rn,

ε ∼ Nn(0, σ2I) ∈ Rn,

where X ∈ Rn×(p+1) is the so-called design matrix with rows corresponding to the
samples in the dataset, and columns corresponding to the explanatory variables
(including the intercept). The model definition leads to the following distribution
for the target variable

y ∼ Nn(Xβ, σ2I).

The model is fit to the data through estimation of the model parameters such
that the sum of the squared deviations between the target and the prediction is
minimized. Two common ways of obtaining the estimate of the model parameters
are Ordinary Least Squares (OLS) and Maximum Likelihood Estimation (MLE). In
fact, in the case of a normally distributed error term, these approaches are equivalent,
resulting in identical estimates [13]. In either case, the parameters are estimated as
follows.

β̂ = (XTX)−1XTy.

19

The linear regression model is concerned with a set of model assumptions, and
one must be careful to assert whether or not the assumptions are met when using
the model to explain the data at hand.

• Linearity assumption: The relationship between the explanatory variables and
the target is linear in the parameters of the model

• Normality assumption: Normally distributed error term, εi ∼ N (0, σ2) ∀i

• Homoscedasticity assumption: The error term is distributed with constant
variance σ2

• Multicollinearity assumption: The explanatory variables are not highly
correlated

The distributional assumption on the error term allows to draw probabilistic
statements about the model fit, e.g. how uncertain the model is when making
predictions on unseen data.

After fitting a linear model to the data at hand, one can use diagnostic plots to
look into the model assumptions. Three commonly used diagnostic plots are

• Residual plot

• Scale-location plot

• Normal Q-Q plot

The residuals are particularly useful for assessing the model assumptions, as they
contain the variation in the data that is not explained by the explanatory variables.
The residuals in a linear model are estimates of the unobserved error ε [13], and
are defined as the difference between the true and predicted values for the target
variable.

ε̂ = y − ŷ = (1−H)y,

ŷ = Xβ̂ = Hy,
(2.4)

where H = (XTX)−1XT is the so-called hat- or prediction matrix.
To assert whether the linearity assumption is met, one can look at the residual

plot [29], which is obtained by plotting the residuals ε̂ against the fitted values
ŷ. Suppose there is a non-linear trend in the residual plot. In that case, there is
evidence of the linear model not being capable of capturing the non-linear effects
between the explanatory variables and the target. In this case, a non-linear model
may be more suited for explaining the variation in the data at hand.

20 Theory

It is not adequate to use the residual plot for asserting the homoscedastic error
assumption. This is becasuse the residuals are inherently heteroscedastic [13, p. 183].
One can show this by calculating the covariance of the residuals in (2.4).

Cov[ε̂] = Cov[(1−H)y]

= (1−H)Cov[y](1−H)T

= (1−H)σ2I(1−H)T

= σ2(1−H),

as the matrix (1 − H) is symmetric and idempotent [13, p. 122]. For the variance
of the residuals, we then have

Var[ε̂i] = σ2(1−Hi,i)

= σ2(1− [X(XTX)−1XT]i,i),
(2.5)

where Hi,i denotes the ith diagonal element of the matrix H.
From (2.5) it is clear that the residuals are potentially varying for different

samples i, and one can thus not use the raw residuals for checking the
homoscedasticity assumption.

To fix the problem of heteroscedastic residuals, one must scale the residuals to
a common variance, thus obtaining the standardized residuals.

ri =
ε̂i

σ̂
√

1−Hi,i

, i = 1, . . . , n,

where σ̂ is the estimated standard deviation of the raw residuals. For the above
standardization to hold, it is important to note that the expected value of the
residuals is zero.

E[ε̂] = E[y]−X(XTX)−1XTE[y]

= Xβ −X(XTX)−1XTXβ

= Xβ −Xβ = 0.

Provided that the model assumptions are correct, i.e. that the error variance
is homoscedastic, the standardized residuals exhibits a constant spread. This is
examined using the scale-location plot, where the square root of the standardized
residuals are plotted against the fitted values.

To assert whether the normality assumption is met, one can look at the Normal
Q-Q plot, which is a plot of the observed quantiles of the standardized residuals
against the theoretical quantiles of the standard normal distribution. If the
standardized residuals follow a diagonal line with a unit slope, the observed
quantiles for the standardized residuals equals the theoretical quantiles of the
standard normal distribution. One can then conclude that the standardized
residuals are distributed as a standard normal distribution.

21

2.3 Neural Networks

Neural networks are a broad class of machine learning models whose goal is to map
a functional relationship between a set of input features to an output.
There exist a great number of different neural network models, and this section is
devoted to the general class of Feedforward Neural Networks (FNN), the
quintessential deep learning model [18].

A FNN model can be used to approximate a function f depending on a set
of parameters θ, and the network is trained to learn the values of the parameters
that best fit the function being approximated. The parameters of the model are
typically referred to as weights when describing neural networks. The terms weights
and parameters will be used interchangeably throughout this section.

Feedforward neural networks are constructed in a layer-wise manner, where each
layer consists of computational units typically referred to as neurons. The output
of a single neuron is simply a weighted sum of the input features, plus a bias term.
The weights are given by the parameters of the neuron. This will, however, only
allow the models to approximate linear functions between the input and output. To
allow for non-linear functional relationships, the output is coupled with a non-linear
activation function. A commonly used activation function is the ReLU activation,
an abbreviation for Rectified Linear Unit, a piecewise linear function. The activation
function is expressed as follows.

σReLU(z) = max {0, z}, (2.6)

where z is the output of a neuron, or the so-called pre-activation value. Neural
networks that are equipped with ReLU activation in their intermediate layers are
referred to as rectified networks.

A computational graph of a single neuron with input vector x = (xi, x2), bias b
and activation function σ is shown in Figure 2.4.

Figure 2.4: Computational graph of a single neuron in a neural network, with input
x = (x1, x2), weights w = (w1, w2) and bias b. The activation function is σ.

As the name suggests, feedforward neural networks are built in a feedforward
manner, where the output of a layer is fed as input to the subsequent layer. It is
important to note that the output of a single neuron in a layer is input to all the
neurons in the subsequent layer. Consequently, the layer is said to be fully connected.
The final output of a neural network with multiple layers is thus a composition of
multiple linear functions, typically coupled with non-linear activation functions to
allow for more complex functional relationships.

The intermediate layers of a FNN, i.e. the layers between the input and output
layers, are referred to as the hidden layers of the model. The term resides from the

22 Theory

fact that the training data does not specify the output of these intermediate layers
during training, unlike the input and output layers3 [18].

A FNN model is typically viewed as a directed acyclic graph (DAG), describing
how the functions corresponding to the different layers are composed to obtain the
output from the input. A simple single-layer FNN can be seen in Figure 2.5, where
an input vector x = (x1, x2) is passed through a hidden layer h = (h1, h2, h3) with
three neurons to obtain a scalar output ŷ. The network parameters, i.e. the weights
and biases for the linear combinations of the neurons, are contained in the weight
matrices W1,W2.

Following the DAG in a feedforward manner we can express the output as

ŷ = W T
2 h+ b2 = W T

2 (σ(W T
1 x+ b1)) + b2 ∈ R,

W1 ∈ R2×3, x ∈ R2, b1 ∈ R3,

W2 ∈ R3×1, h ∈ R3, b2 ∈ R,

where σ is the activation function for the hidden layer, and b1, b2 is the bias to the
hidden layer and the output, respectively.

Figure 2.5: Computational graph of a Feedforward Neural Network with a single
hidden layer h = (h1, h2, h3) for instance x = (x1, x2). The scalar output of the
FNN is ŷ, and the paramters are contained in the weight matrices W1,W2 and the
bias vectors b1, b2.

3in the case of supervised learning

23

The scalar output ŷ of a generic FNN with input x can be expressed as

ŷ(x) = f (1)(f (2)(. . . f (L)(x))),

where L is the depth of the neural network, i.e. the number of hidden layers. The
function f (i) denotes the function corresponding to layer i, including potential bias
terms and activation functions. Note that each layer has a separate weight matrix
Wi, containing all the parameters of the linear combinations given by the neurons
in the layer.

The parameters of a neural network are learned by optimizing a suitable loss
function, which is closely related to the activation function in the output layer. The
type of activation function is furthermore related to the type of problem being solved.
One can show that optimizing a specific loss function is equivalent to setting up a
conditional distribution for the output and perform maximum likelihood estimation
on the parameters. An example for a regression problem follows.

In a regression setting, where to goal is to output a scalar value, a linear
activation is used in the output layer. The linear activation function is simply a
unit transformation of its input.

ŷ(x) = σLinear(W
T
L h

(L) + b(L)) = W T
L h

(L) + b(L), (2.7)

where h(L)(x) = f (1)(f (2)(. . . f (L−1)(x))) is the feature vector of layer L−1 for input
x. The bias vector for the final layer is b(L), and WL is the corresponding weight
matrix.

We can formulate the regression problem as modelling the conditional mean of
a normal distribution with mean ŷ and variance σ2,

p(y|X) = Nn(ŷ, σ2),

with log-likelihood

log p(y|X) = −n
2

log 2πσ2 − 1

2σ2

n∑

i=1

(yi − ŷi)2,

where n is the number of samples in the dataset. In the above formulation the
conditional mean ŷ contains the predictions for all the samples in the dataset, and
the samples are gathered in the design matrix X ∈ Rn×p where p is the number of
explanatory variables.

The Maximum Likelihood Estimate (MLE) of the parameters in the network is
calculated as follows.

θMLE = argmax
θ
− 1

2σ2

n∑

i=1

(yi − ŷi)2

= argmin
θ

1

N

n∑

i=1

(yi − ŷi)2

= argmin
θ

MSE(y, ŷ),

where the parameter θ consist of all the weights and biases for all the layers in the
network.

Minimizing the Mean Squared Error (MSE) loss function4 in a regression setting
is thus equivalent to performing maximum likelihood estimation of the parameters
of a neural network with a linear activation function in the output layer.

4with respect to the parameters of the neural network

24 Theory

When an input instance x with corresponding target y is passed through the
network to produce an output ŷ, the information flows in a forward direction from
input to output. The operation is called a forward pass through the network. During
the training of the model, the forward pass continues until obtaining a scalar loss
L(y, ŷ). Then, the network parameters are updated in an iterative manner using
gradient-based learning, minimizing the loss by utilizing the gradient of the loss with
respect to the parameters. The gradients are calculated using the backpropagation
algorithm, which is based on the chain rule of calculus. The updating is done using
the gradient descent algorithm with a specified learning rate or one of its many
varieties. A commonly used optimization algorithm for training neural networks is
the Adam algorithm [31], a gradient descent like algorithm where the learning rate
is adaptively updated during training. During an iteration of the gradient descent
algorithm, the parameters θ are updated as follows.

θi+1 = θi − α∇θiL(y, ŷ),

where α is the specified learning rate. Note that in the above gradient descent step,
the gradient of the loss is computed over the entire training set. The computation
quickly becomes expensive for complex models with a lot of parameters and large
datasets, and does not scale well to such situations. In this situation, the parameters
are updated once every pass through the entire training set, otherwise known as an
epoch.

To be able to scale to larger models and datasets, it is common practice to use
mini-batch optimization, where the parameters are updated multiple times during
an epoch, on randomly sampled batches of the entire training set. It can be shown
that mini-batch gradient descent obtains an unbiased estimate of the total gradient
by computing the average gradient over the samples in the mini-batch [18]. The
number of samples in a mini-batch is specified by the batch size. A complete pass
over the training set, i.e. an epoch, consists of a number of iterations for updating
the parameters.

For mini-batch gradient descent with a batch-size of b, the updating during a
single iteration is done as follows

θi+1 = θi − α
1

b

b∑

j=1

∇θiL(yj, ŷj), i = 1, . . . ,M, (2.8)

where M is the number of iterations in an epoch, i.e the number of times the
parameters are updated during a full pass over the training set.

The non-linearity posed by the activation functions in neural network models
causes the most interesting loss functions to become non-convex, meaning that there
is no global convergence guarantee of the solution for the parameters [18].

A common problem when training neural networks is vanishing gradients,
where the gradient of the loss function with respect to the parameters in the
network becomes close to zero. This is causing the updating of the parameters to
stall, resulting in sub-optimal convergence of the optimization. A related problem
occurs when the gradients take too large values, known as the exploding gradient
problem. The problems are typically gathered under the collective term Exploding
and Vanishing Gradient Problem (EVGP) [22].

Stochastic gradient descent, such as the above mini-batch optimization (2.8),
applied to non-convex optimization objectives, is very sensitive to the initial values
of the parameters, and it is thus important to initialize the parameters appropriately.

25

The authors in [24] propose a robust initialization method for the weights and
biases in rectified neural networks, known as the He-initialization after one of the
authors. With He-initialization, the weights in the neural network are initialized
by drawing samples from a zero-mean normal distribution with standard deviation

σ =
√

2
nl

for the lth layer, where nl is the number of inputs values to the activation.

Since no ReLU activation is applied to the input signal, the weights in the first layer
are initialized by drawing samples from a zero-mean Gaussian distribution with

standard deviation σ =
√

1
nin

, where nin is the number of explanatory variables.

The biases are all initialized to zero. With this parameter initialization, a unit
variance for the post-activation values is obtained, which resolves the problem of
exploding and vanishing gradients [35]. Note that this approach only depends on
the size of the network.

During training, the distribution of the input of each layer changes as the
parameters are updated. This is causing the neural network architecture to
become even more sensitive to the initialization of the parameters and slows down
training by requiring lower learning rates [28]. The resulting phenomena is referred
to as internal covariate shift. In [28] the authors propose a method to reduce the
internal covariance shift and thus accelerate training and making the architecture
more robust to parameter initialization. The method is known as batch
normalization (BN). In batch normalization, the output of the layer is normalized
for every mini-batch and scaled and shifted by two additional parameters
introduced by the BN layer. The additional parameters are learned alongside the
network parameters. The BN algorithm for a single mini-batch is summarized in
Algorithm 1, where ε is a small constant added to the mini-batch variance to
obtain numerical stability. For more technicalities about the method, the reader is
referred to [28].

Algorithm 1: Batch normalization for a single mini-batch B. Adapted
from [28].

Inputs : Mini-batch B = {xi}mi=1

Learnable parameters γ, β
Output: Transformed output {yi = BNγ,β(xi)}mi=1

Compute mini-batch statistics
µB = 1

m

∑m
i=1 xi

σ2
B = 1

m

∑m
i=1(xi − µB)2

Normalize the input, and scale the resulting normalized values
for i← 1 to m do

zi = xi−µB√
σ2
B+ε

yi = γ · zi + β

Machine learning models based on deep neural networks have an incredibly high
capacity and are thus prone to overfitting. A central challenge in machine learning
is to generalize to unseen data, i.e. data not seen during training (see 2.1). If a
model is overfitting the training data, the training error becomes very low, while
the generalization abilities become very poor. Thus, it is necessary to include some
regularization when training the model, which controls the capacity and prevents
overfitting. Two widely used regularization techniques are L2 regularization and
dropout.

26 Theory

With L2 regularization, a regularization term is added to the loss function. L2

regularization is equivalent to ridge regression seen in statistical learning, and the
idea is to shrink the parameters by imposing a penalty on their magnitude into the
loss function [23]. The penalty parameter in L2 regularization applied to neural
network models is referred to as the weight-decay parameter. We express the loss
function for training a neural network of depth L with L2 regularization as follows.

J(ŷ,y) = L(ŷ,y) + λwTw,

where λ is the weight-decay parameter, w = (W1,W2, . . . ,WL) denotes the vector
of weight matrices in the neural network, ŷ is the predicted target variable for an
instance with corresponding groundt-truth target y and L(ŷ,y) is the loss function.
We see that the magnitude of the weights are expressed in terms of their L2-norm,
hence the name of the regularization technique.

Dropout regularization can be applied to a broad range of neural network models
and is computationally inexpensive and powerful [18]. However, the technique is
restricted to neural networks.

The idea behind dropout is to randomly drop neurons from the neural network
during training [52], thus reducing the representational capacity. By dropping a
neuron from the network, all weights and biases corresponding to the dropped
neuron are set to zero and will not contribute to the overall output. Training a
neural network with dropout introduce an additional hyper-parameter to be set
before training, namely the dropout probability. When a neural network is trained
with dropout, a single forward pass through the network is equivalent to sampling
a thinned network from a population of all thinned networks that can be formed
by removing neurons from the non-output layers of the full network [18], and
passing the input instance through the sampled network. The rationale behind the
technique is to pass each instance through the network multiple times, thus
obtaining a distribution of predictions resulting from multiple thinned networks,
and take the mean value of this distribution as the prediction to obtain a better
prediction for each instance. During test time, i.e. when using the trained model to
make predictions, the effect of averaging the predictions from the thinned networks
is approximated by using the entire network with downscaled weights [52]. Doing
so supersedes the need of doing multiple forward passes through the network for
each input instance, thus reducing the computational complexity of the method.
The downscaling of the weights are performed simply by using the dropout
probability of each layer.

It should be clear that setting up and training a feedforward neural network
leaves the practitioner with numerous choices. The choices relevant to the above
description of neural networks are summarized below. Before training the model,
the practitioner will have to specify some particular parameters that will not be
updated during training, namely the hyper-parameters.

First of all, the practitioner needs to find an appropriate loss function and output
activation for the problem at hand. Next, the user has to specify the network
architecture, referring to the model structure in terms of the number of hidden
layers and neurons in each layer. The architecture is directly related to the model’s
representational capacity, and the size and structure of the dataset need to be taken
into account at this point. A rule of thumb is that a larger dataset allows for
more complex models with more computational units, i.e. more hidden layers and
neurons, than a smaller dataset. To allow for non-linear dependencies within the
hidden layers, the user will have to specify suitable activation functions between the

27

layers. Further on, the model is typically trained using gradient-based optimization,
and the user needs to specify a suitable optimization method for doing so. An
important hyper-parameter introduced by the optimizer is the learning rate. Setting
the learning rate too high may result in unstable training or fast convergence to a
poor solution. On the other side, using a too low learning rate may result in slow
convergence or the solution being stuck in a local minimum [8]. It is thus important
to find the optimal learning rate to train the model correctly. However, when using
optimizers with adaptive learning rates, like the already mentioned Adam algorithm,
setting the learning rate to its optimal value becomes less critical.

Other important hyper-parameters that need to be set are the number of
epochs and the batch size in mini-batch optimization. These will decide the
number of iterations used for updating the model’s parameters and are related to
the model’s capacity because a model trained on fewer epochs is more prone to
under-fitting than a model being trained for more epochs. Another way to
effectively control the model’s capacity is by using regularization, which typically
requires additional hyper-parameters to be set. In the case of L2 and dropout
regularization, the additional hyper-parameters are the weight-decay parameter
and the dropout probability.

The values of the hyper-parameters are typically found in an empirical way using
trial and error. However, there exist numerous techniques for finding the optimal
values automatically, e.g. using a grid-search over the space of hyper-parameters
[18]. The idea behind grid-search is to train a model for every specification of the
hyper-parameters in the cartesian product of the set of possible values and select
the set of values for the hyper-parameters that yield the best predictive performance
a held-out validation set. When the optimal configuration of hyper-parameters is
found, the model is re-trained using the entire training set (including the validation
set). A grid-search of the space of hyper-parameters is thus concerned with training
multiple models, which quickly becomes computationally expensive for large models
with many hyper-parameters.

28 Theory

2.3.1 Preprocessing and Feature Engineering

Real-world datasets are susceptible to noisy measurements and missing data due to
measurement error. To deal with this, it is necessary to preprocess the data before
feeding it into the neural network, making it suitable for training the model.

Neural networks cannot deal with missing values, so they need to be
appropriately taken care of. There are numerous methods to deal with missing
values, and the most simple is to ignore the missing values simply by removing the
instances that contain missing values for one or more features. A more tedious
approach is to manually insert the missing values by using domain knowledge and
extrapolation. However, for large datasets, this approach becomes very
impractical. Another approach is to use a global constant to insert into the
missing values. This can e.g. be a constant that represents an unknown value that
the model can process, hoping that the model can interpret the values as missing.
In the case of many missing values, this approach may cause the model to
misinterpret the unknown constant as an interesting property of the data, which
may result in poor performance. Dealing with missing values by insertion is
referred to as missing value imputation. A commonly used variety of this constant
imputation is to use an adequately chosen statistic based on known values of the
missing feature in the dataset. This can e.g. be the mean or median value of the
missing feature over the dataset. There exist other, more sophisticated methods
for imputing missing values. An example is training a model where the missing
value is the response variable, and the other variables for the instance are the
explanatory variables.

Another critical preprocessing step in deep learning is to normalize the input
features to a common scale [21]. Normalizing the data aims at giving all features
an equal weight, such that the scale, i.e. the unit of measurement of each feature,
is irrelevant to the modelling. This is typically done in the case of neural networks,
as it speeds up convergence of the optimization [21, 40]. Normalizing the data is
performed by replacing each feature with its corresponding z-score, having zero mean
and unit variance. The z-score of a feature is calculated as follows.

zi =
xi − µ
σ

, i = 1, . . . , N, (2.9)

where x = {xi}Ni=1 is the feature that is normalized, µ the mean value and σ the
standard deviation of the feature over the dataset with N samples.

It is important to note that a preprocessing scheme is specific to the data and
problem at hand. Having a preprocessing scheme that is perfectly suitable for a
given setting does not necessarily mean that it is suitable in another setting.

Another potentially important step of the modelling pipeline is to create new
features based on the features already present in the dataset. This technique is
referred to as feature engineering. The idea is to expand the feature set by
including new features relevant to the modelling process, potentially making the
model perform better. Feature engineering is typically based on domain
knowledge, where a specialist carefully examines the original features and decides
whether e.g. the difference or a fraction of two features is relevant for the
modelling. The process is labour-intensive but may yield better predictive
performance than what the original feature set provides.

29

The field of deep learning and neural networks encompasses much more than
what is described in this section. For a more thorough and complete description,
the reader is referred to the excellent book by Goodfellow, Bengio and Courville
[18].

In general, and specifically in the context of this thesis, it is important to note
that the trained parameters of neural network models are point estimates.
Moreover, there is typically no distributional assumption on the error term like we
see in more traditional statistical methods, e.g. linear regression (see Section 2.2).
Consequently, the models are deterministic. If the same input instance is
forwarded through the network multiple times, the output will be constant. These
models are thus incapable of assessing their predictive uncertainty, and they tend
to make overly confident predictions [7].

Reasoning about the predictive uncertainty of a neural network model requires
equipping the network parameters with probability distributions, and the
calculations are performed using Bayesian inference.

30 Theory

2.4 Bayesian Inference

Bayesian inference is the process of inductive learning using Bayes rule [26], and
provides the mathematical framework for updating a prior expectation about a
hypothesis given observed evidence. The formula for Bayes rule is defined as follows

p(H|E) =
p(H)p(E|H)

p(E)
, (2.10)

where H is the hypothesis and E the observed evidence.
Bayes rule (2.10) contains the following components, and their respective names

will be used throughout this section.

• Prior distribution p(H)
Capturing the prior expectation of the hypothesis before observing any
evidence

• Posterior distribution p(H|E)
The probability of the hypothesis given the observed evidence

• Likelihood p(E|H)
The probability of observing the evidence, given a fixed hypothesis

• Marginal likelihood p(E)
The probability of observing the evidence, regardless of the hypothesis

Bayesian inference applied to modelling is often concerned with inferring the
posterior distribution of a parameter θ given observed data X, where the distribution
of X depends on the parameter θ. Hence the following formulation of Bayes rule:

p(θ|X) =
p(θ)p(X|θ)
p(X)

=
p(θ)p(X|θ)∫

Θ∗
p(X|θ∗)p(θ∗)dθ∗ . (2.11)

In the denominator of the last equality in equation (2.11), observe that the
marginalization is done over the set of all possible parameters θ∗ ∈ Θ∗. The marginal
likelihood p(X) does not depend on the parameter θ, and one can write

p(θ|X) ∝ p(θ)p(X|θ).

The posterior is thus proportional to the prior times the likelihood. This is
particularly useful when the distribution of the data-generating process is known,
and the prior and posterior are conjugate distributions, where the posterior follows
the same parametric form as the prior.

The Bayesian credible interval represents the probability of the parameter being
contained in the interval. The credible interval is defined as follows.

∫

C
p(θ∗|X)dθ∗ = 1− α,

where C is the credible interval, and 1−α is the probability of the parameter being
contained in C. The above definition is however ambigous, and one need to impose
further restrictions to obtain a single credible interval. An example of such is the
Highest Posterior Density (HPD) interpretation of the credible interval [4].

There is a clear difference in interpretation between the Bayesian credible
interval and its frequentist cousin, the confidence interval. In the frequentist

31

confidence interval, the parameter is fixed, and the interval is treated as random.
The corresponding confidence level, given by 1 − α, represents the long-term
frequency of the interval containing the parameter’s actual value. On the other
hand, in the Bayesian credible interval, the parameter is treated as a random
variable while the interval is fixed. This allows making direct probabilistic
interpretations of the credible interval.

In large-sample situations, Berger argues that the Bayesian approach is almost
always equivalent to the frequentist [4, p. 125]. However, their differences in
interpretation remain. It is possible to use this analogy to evaluate credible
intervals in terms of the confidence interval’s frequentist coverage probability. This
means that one can expect the true value of the parameter being estimated to fall
within the (1 − α) credible interval a fraction of (1 − α) times in the long run.
This is often used to evaluate the robustness of Bayesian approaches, e.g. in terms
of the choice of prior distributions.

A particularly useful tool in the field of Bayesian inference is the posterior
predictive distribution, which describes the posterior probability of new,
unobserved data conditional on the observed data. The posterior predictive
distribution is calculated by marginalizing the distribution of the new data
conditional on a fixed parameter, over the posterior distribution, thus accounting
for the uncertainty related to the parameter.

p(x̃|X) =

∫

Θ∗
p(x̃|θ∗, X)p(θ∗|X)dθ∗

=

∫

Θ∗
p(x̃|θ∗)p(θ∗|X)dθ∗,

(2.12)

where x̃ is the new, unobserved data of interest. Note that the last equality in (2.12)
assumes that the new observation x̃ is conditionally independent to the already
observed data X, given the parameter θ.

Going back to equation (2.11), we see that the marginalization in the
denominator is done over the set of all possible values for the parameter θ. The
integral can be evaluated analytically for trivial models, but the calculations
quickly become intractable when the number of parameters in the model increase.
The integration is typically over a combinatorically large space for complex
models, and it is not possible to get a closed-form expression for the posterior
distribution. For such models, approximation techniques are needed. The following
section is devoted to describing a widely used technique for doing approximate
inference, namely variational inference.

2.4.1 Variational Inference

The application of complex Bayesian models to practical problems involves
calculating the typically intractable posterior distribution p(θ|X) with no
closed-form solution. To deal with the intractability, the practitioner needs to
resort to approximate inference.

For decades, the dominant method for doing approximate inference has been
the Markov Chain Monte Carlo method (MCMC). In MCMC, an ergodic Markov
chain is constructed, whose stationary distribution is the posterior distribution of
interest. The posterior distribution is then approximated using an empirical estimate
constructed from samples of the Markov chain [6]. Although MCMC is widely used

32 Theory

in industry and academia, it is computationally expensive and hard to scale to
complex models and large datasets.

Variational inference (VI) provides a good alternative to approximate the
posterior distribution5. Rather than using sampling to approximate the posterior,
VI aims to obtain an approximate posterior using optimization. The goal is to
approximate the posterior distribution p(θ|X) with a variational distribution qρ(θ)
parametrized by ρ.

p(θ|X) ≈ qρ(θ). (2.13)

A simple schematic can be seen in Figure 2.6, where the true posterior (blue) is
approximated by the variational distribution (red).

Figure 2.6: The variational distribution qρ(θ) in red approximating the true posterior
p(θ|X) in blue.

.

The key idea of VI is to find a variational distribution (2.13) belonging to a
family Q of approximate distributions over the parameter of interest, parametrized
by a set of variational parameters ρ. The goal is then to find the optimal set of
variational parameters such that the variational distribution approximates the true
posterior well. The family Q of possible variational distributions is chosen by the
practitioner. The idea is to restrict the complexity of the variational distribution
to reduce the computational complexity related to the optimization while still
approximating the true distribution well. A widely used variational family is
chosen using the Mean-Field approximation, and the corresponding VI is often
referred to as Mean-field variational inference. Without going much further into
mean-field theory, the approximation assumes that the variational distribution can
be factorized by assuming that the parameters of interest θ ∈ Θ are mutually
independent. A generic member of the variational family then takes the following
form

qρ(θ|ρ) =
m∏

i=1

q(θi|ρi).

We want the variational distribution to be as close as possible to the true
posterior, and this is achieved by minimizing the Kullback-Leibler (KL) divergence
between the two distributions. By minimizing the KL divergence between the
variational and the true posterior distribution, we minimize the information lost by
approximating the true posterior with the variational distribution [5].

The optimization problem posed by VI applied to Bayesian modelling takes the
following form

qρ(θ)
∗ = argmin

qρ∈Q
DKL[qρ(θ)||p(θ|X)], (2.14)

5computing an approximate posterior is only a single instance of the general problem solved by
VI, namely approximation of intractable integrals

33

where the KL divergence between two generic distributions q(x) and p(x) is defined
as follows.

DKL[q(x)||p(x)] =

∫

R
q(x) log

q(x)

p(x)
dx = Eq(x)

[
log

q(x)

p(x)

]
. (2.15)

Using Bayes rule for the posterior distribution of the parameter we can rewrite
the minimization objective in (2.14).

DKL[qρ(θ)||p(θ|X)] =

∫

R
qρ(θ) log

qρ(θ)

p(θ|X)
dθ

=

∫

R
qρ(θ) log

qρ(θ)p(X)

p(θ)p(X|θ)dθ

=

∫

R
qρ(θ) log

qρ(θ)

p(θ)
dθ

−
∫

R
qρ(θ) log p(X|θ)dθ

+ log p(X)

∫

R
qρ(θ)dθ

= DKL[qρ(θ)||p(θ)]− Eqρ(θ)[log p(X|θ)] + logP (X)

= log p(X)− L(qρ(θ)),

(2.16)

where L(qρ(θ)) is the evidence lower bound (ELBO), defined as

L(qρ(θ)) = Eqρ(θ)[log p(X|θ)]−DKL[qρ(θ)||p(θ)]. (2.17)

The KL divergence in (2.16) cannot be minimized directly due to its dependency
on the log evidence, which is, due to its intractability, the reason to use approximate
inference in the first place [6]. On the other hand we see that the log evidence is
constant with respect to the variational parameters ρ that determines the variational
distribution. Minimizing (2.16) with respect to ρ is thus equivalent to maximizing
the ELBO in (2.17) with respect to ρ, and we end up with the following optimization
problem for finding the variational distribution.

qρ(θ)
∗ = argmax

qρ∈Q
L(qρ(θ)).

Note that the ELBO (2.17) only depends on the expected log-likelihood given by
the data and the KL divergence between the variational and the prior distribution
of the parameter θ. Thus, to minimize the KL divergence between the variational
distribution and the true posterior, we only need the log-likelihood and the prior.

In the next section, Bayesian inference and deep learning are united by describing
Bayesian neural networks. For a more detailed review of variational inference, the
reader is referred to [6].

34 Theory

2.5 Bayesian Neural Networks

Bayesian Neural Networks (BNNs) are similar to the deterministic feedforward
neural networks described in Section 2.3. The difference is that the parameters of
a BNN are represented by probability distribution rather than scalar values.

Introducing probability distributions to the parameters of a neural network
allows capturing the uncertainty in the estimated parameters, thus allowing us to
reason about the predictive uncertainty of the model.

Setting up a BNN requires the specification of a prior distribution of the
parameters of the network, denoted as p(w). The prior distribution is then
updated using the likelihood of the data, denoted as p(D|w), as well as the
evidence p(D), to obtain the posterior distribution p(w|D) through the use of
Bayesian inference. Every parameter in a BNN has a separate distribution to
reflect the different contributions to the output.

A computational graph of a single-layer BNN is shown in Figure 2.7. The
(posterior) distribution of the weights are shown as the red curves on the graph’s
edges. Note that the figure assumes no bias.

Figure 2.7: Computational graph of a Bayesian neural network with input x =
(x1, x2), hidden layer h = (h1, h2, h3) and output ŷ, The red curves on the edges of
the graph represent the posterior distributions of the parameters in the network.

If we consider a regression task we can formulate a mathematical model for the
target variable as follows.

y = z + ε, ε ∼ Nn(0, σ2I),

z = f(X,w),

w ∼ p(w) =
K∏

i=1

N (µi, σ
2
i),

(2.18)

where y is a measurement of the target variable being modelled by a Bayesian neural
network f(·,w) with parameters w for all instances X in the dataset with size n.
The number of parameters in the model is K, and the prior distribution for the
parameters is a mean-field normal distribution with mean µi and variance σ2

i for
i = 1, . . . , K. The measurement y is subject to additive, homoscedastic noise ε.

35

The model formulation in (2.18) allows setting up a conditional generative
model for the measurement y, given the explanatory variables X and the posterior
distribution for the parameters w.

y|X,w ∼ Nn(f(X,w), σ2I). (2.19)

When using a trained BNN to make predictions on an input instance, the input
is fed through the network in a feedforward manner, just as for a deterministic FNN.
However, the parameters are now being sampled from the posterior distributions of
the parameters in the network. The prediction ŷ for an input instance x using the
above generative model (2.19) is obtained as follows.

ŷ = f(x,w|D) + σ2,

w|D ∼ p(w|D),

where σ2 is the homoscedastic measurement noise, and p(w|D) the posterior
distribution of the parameters in the Bayesian neural network.

A forward pass through a BNN for a single input instance will result in a single
output, just as for the deterministic FNN. Each input instance is fed through the
network multiple times to obtain a posterior predictive distribution from which
inference can be made. Each time the instance is forwarded through the network, a
new set of parameters is sampled from their corresponding posterior distributions.
Having a predictive distribution for all the instances being considers allows to reason
about the model’s predictive uncertainty and is useful for assessing how trustworthy
the model is in making predictions.

The inference is based on the moments of the resulting predictive distribution,
where the prediction itself is estimated using the expected value. Moreover, the
uncertainty in the predictions is captured by the variance. The moments are
estimated using Monte Carlo sampling.

E[ŷ] ≈ 1

B

B∑

i=1

f(x,w|D),

Var[ŷ] ≈ σ2 +
1

B

B∑

i=1

f(x,w|D)2 − E[ŷ]2,

where B is the number of Monte Carlo samples, E[ŷ] the expected value and Var[ŷ]
the variance of the predictive distribution for x. The first term in the predictive
variance is the homoscedatic noise, representing the aleatoric uncertainty, whereas
the second term represents the epistemic uncertainty. Note that for every Monte
Carlo sample, a new set of parameters is sampled from their posterior distributions.

Some might argue that the major advantage of Bayesian methods is the ability to
incorporate prior beliefs about the problem into the modelling process. In the case of
Bayesian neural networks, the prior belief is incorporated into the prior distribution
of the parameters of the network. As such, the ideal prior represents the expected
model. However, due to a lack of interpretation of neural network models, it is
impossible to get insight into how the model is supposed to be without first training
the model. Setting the prior distribution for the parameters is a difficult task, as
the parameters of a neural network offer no physical interpretation6. Incorporating

6except in the trivial case of a linear regression model, where the parameter for a variable
represent the change in the output when changing the variable and keeping the remaining variables
constant

36 Theory

prior beliefs about a system modelled by a neural network is thus a non-trivial task,
and specifying meaningful prior distributions for the parameters in Bayesian neural
networks is an active field of research [20, 36, 54, 59]. Moreover, the difficulty in
specifying meaningful priors accounts for much of the criticism of Bayesian models
[43].

Doing exact inference on BNNs is intractable. Moreover, traditional
approximate inference methods such as MCMC do not scale well to the large
number of parameters typically seen in neural networks applied in practical
scenarios. Thus, most approaches to training BNNs are based on variational
inference.

Chapter 3

Methodology

In the first two sections of this chapter, the different methods for constructing
Bayesian neural networks are presented. In the subsequent section, we will
describe how the predictive uncertainty is obtained and how to decompose the
uncertainty into the different components described above. Further on, we will use
the connection between Bayesian credible intervals and frequentist confidence
intervals to numerically evaluate the resulting predictive uncertainty. In the last
remaining sections of this chapter, we will describe how we will try to answer the
research hypotheses regarding the epistemic uncertainty with respect to the
amount of data and model complexity.

3.1 Monte Carlo Dropout

Monte Carlo Dropout, abbreviated as MC Dropout, is a rather simple method for
estimating predictive uncertainty in deep neural networks. The method, as presented
in the original article [17], requires no modification to the training routine nor the
loss function and applies to any neural network architecture [61]. It can be seen
as approximate Bayesian inference and does not, unlike other such methods [7, 45],
impose additional computational cost during training [17].

The outline of the method is to turn on dropout during evaluation, i.e. when
making predictions with the neural network, and perform B stochastic forward
passes of the network using each input instance. By turning on dropout, each
forward pass is analogous to sampling a neural network from a population
containing all sub-networks that be formed by removing non-output neurons from
the entire network [18], and forwarding the input instance through the sampled
network. Sampling B neural networks and running multiple forward passes on the
instance will result in a distribution of the prediction for the considered instance.
Furthermore, the predicted value for the instance is estimated using the mean or
mode of the predictive distribution, and the uncertainty is estimated using the
sample variance. The method was first introduced in [16, 17], and further
elaborated by one of the authors in [15] as part of his PhD thesis.

In [16, 17], the authors show that a deep neural network with arbitrary depth
and non-linearities, with dropout applied before every non-output layer, is
mathematically equivalent to approximate variational inference in the probabilistic
deep Gaussian process. The deep Gaussian process was first introduced in [10] and
is a deep belief network based on Gaussian processes, a Bayesian method providing
uncertainty estimates to its predictions.

The connection between dropout in neural networks and the probabilistic deep

38 Methodology

Gaussian process allows for new, probabilistic reasoning about the previously seen
deterministic neural networks.

To obtain equivalence with the deep Gaussian process the models need to be
specified correctly. The authors show that specifying a standard normal prior on the
parameters in the network corresponds to adding a specific weight-decay parameter
λi to the loss function being optimized during training.

λi =
1− pi
2Nτ

, i = 1, . . . , L− 1, (3.1)

where pi is the dropout probability of layer i, N the number of samples and τ > 0 a
model precision parameter. Specifying a more informative prior p(w) = N (0, l−2I),
given a prior length-scale l, requires scaling (3.1) by l2 [16, p. 9].

It should now be clear that specifying a prior distribution on the parameters of
the neural network introduce three additional hyper-parameters.

Table 3.1: Hyper-parameters introduced by the prior in MC Dropout.

Hyper-parameter Description
Dropout probability pi Rate at which neurons in layer i are dropped

Model precision τ Specifying the variability of the target variable
Prior length-scale l Prior belief of the variance of the parameters

The precision parameter τ and prior length-scale l are determined by the
following model assumptions.

p(yi|xi,w) = N (ŷi, τ
−2I) i = 1, . . . , n

p(w) = N (0, l−2I),

where ŷi = f(xi,w) is the predicted target variable given input instance xi and
parameters w for i = 1, . . . , n. Note that w = {W1, . . . ,WL} is a vector containing
the weight matrices for all the weight layers in the neural network.

The above model assumptions result in a homoscedastic model, where the hyper-
parameter τ gives the constant aleatoric uncertainty. In this way, the practitioner is
choosing the measurement noise. Because the level of measurement noise is typically
unknown, it is desirable to have a model that can estimate it from data.

The original formulation of the MC Dropout model, as introduced by Gal and
Ghahramani in [15, 16, 17], is extended to allow the aleatoric uncertainty to be
estimated rather than chosen empirically by the practitioner. The idea builds upon
the equivalence between training regression models using the Mean Squared Error
(MSE) loss function and maximum likelihood (see section 2.3). We introduce a
new loss function for training the MC Dropout models to estimate the aleatoric
uncertainty, namely the negative log-likelihood (NLL).

First, the following model assumption is imposed.

p(yi|xi,w) = N (ŷi, σ
2
i), i = 1, . . . , N, (3.2)

where the aleatoric uncertainty is represented by σi.
By assuming independece between the samples in the dataset D, we can write

the likelihood function of the above model (3.2) as

p(D|X,w) =
N∏

i=1

p(yi|xi,w) =
N∏

i=1

1

σi
√

2π
e
− 1

2

(
yi−ŷi
σi

)2

.

39

Furthermore, the log-likelihood is expressed as

log p(D|X,w) =
N∑

i=1

log
1

σi
√

2π
e
− 1

2

(
yi−ŷi
σi

)2

= −N
2

log 2π −
N∑

i=1

log σi −
1

2

N∑

i=1

(yi − ŷi)2 · 1

σ2
i

.

(3.3)

The neural network is then trained by minimizing the negative log-likelihood
function (3.3). This can be seen as a modified MSE loss function, where σi represents
the aleatoric uncertainty.

For a heteroscedastic model with varying levels of uncertainty across samples,
the NLL loss function is expressed as

L(y, ŷ,σ) =
N

2
log 2π +

N∑

i=1

log σi +
1

2

N∑

i=1

(yi − ŷi)2 · 1

σ2
i

. (3.4)

To obtain estimates of the aleatoric uncertainty in the heteroscedastic setting
the neural network is made multi-headed, where for each instance xi, a forward
pass through the network result in a prediction ŷi and aleatoric uncertainty σi. The
network is trained to output log σ2

i rather than σi to avoid potential divisions by zero
in (3.4). A computational graph of the multi-headed network is shown in Figure 3.1.

Figure 3.1: Computational graph of a multi-headed network f(·,w) with parameters
w resulting in a prediction ŷi and the aleatoric log-variance log σ2

i for an instance
xi.

For a homoscedastic model with constant noise levels, i.e. where σi = σ ∀i, the
above NLL loss simplifies to

L(y, ŷ, σ) =
N

2
log 2πσ2 +

1

2σ2

N∑

i=1

(yi − ŷi)2. (3.5)

In the simplified, homoscedastic case, the constant aleatoric uncertainty is
treated as a parameter of the neural network model, rather than being predicted
by the multi-headed network seen in Figure 3.1. The parameter is optimized
alongside the weights and biases by minimizing the loss function (3.5).

In both cases, the aleatoric uncertainty is implicitly modelled using the negative
log-likelihood loss function. We see that the squared error term (yi − ŷi)

2 in the

40 Methodology

loss functions forces the predictions to be close to the true targets, while the factor
1
σ2
i

enforces high uncertainty in the case of highly erroneous predictions. The log σi
term acts as a constraint to the uncertainty, enforcing it not to grow indefinitely.

An overview of the method is described in Algorithm 2 below.

Algorithm 2: MC Dropout for a single input instance.

Inputs : Instance x,
Trained neural network f(·,w) with depth L,
Number of stochastic forward passes B

Output: Predictive distribution ŷ(x) and aleatoric uncertainty σ(x) for
instance x

for b← 1 to B do
sample Wi,b ∼ q(Wi), for i = 1, . . . , L
wb = {W1,b, . . . ,WL,b}
ŷb(x), log σ2

b (x) = f(x,wb)

σb(x) =
√
elog σb(x)

end
ŷ(x) = {ŷ1(x), . . . , ŷB(x)}
σ(x) = 1

B

∑B
i=1 σi(x)

The approximating distribution of the weight matrices for each layer, q(Wi), is
defined in terms of the following [17].

Wi = Mi ·Diag([Zi,j]
Ki−1

j=1) ∈ RKi−1×Ki)

Zi,j ∼ Bernoulli(1− pi), for i = 1, . . . , L− 1, j = 1, . . . , Ki−1,
(3.6)

where 1 − pi is the probability of retaining a hidden neuron in layer i with Ki−1

input neurons and Ki output neurons. The matrix Mi contains the weights going in
to layer i in the trained neural network. A similar calculation holds for the biases
in the model.

Going through the calculations in (3.6), it is straightforward to see that the
matrix Wi contains the weights going into layer i, with elements corresponding to
the dropped neurons being zero.

An important hyper-parameter in MC Dropout is the dropout probability,
i.e. the rate at which neurons in the non-output layers of the neural network is
being dropped. In particular, because the approximate distribution of the weight
matrices depends solely on the value of this parameter. Appropriately choosing the
value of the dropout rate is thus essential to obtain reasonable estimates of the
model uncertainty. The optimal values for hyper-parameters are typically found by
doing a grid-search over the parameter space, fitting multiple models with a
different set of parameters at each iteration, and choosing the parameters that
optimize a chosen performance measure. However, one must act carefully when
choosing the performance measure to optimize when tuning the value of the
dropout rate in MC Dropout due to its probabilistic interpretation. A specific
dropout rate found by a grid search for a given performance measure might not
yield proper estimates of the model uncertainty. Hence, the value of the dropout
rate is found empirically by trial and error in this thesis.

The variance of the predictive distribution using MC Dropout highly depends on
the dropout rate, and it is important to choose it appropriately. This is also reflected
in the approximate distribution of the weight layers (3.6). The higher the dropout

41

rate, the more likely it is to drop a neuron in a non-output layer of the neural
network. This results in greater variability in the sampled networks, which in turn
leads to greater prediction uncertainty. Furthermore, the neural networks become
more likely to underfit the data using a high dropout rate, referring to dropout as
a regularization technique.

A necessary condition for training a neural network with the MC Dropout
method is that the model contains at least a single hidden layer. It is impossible to
apply dropout to the input or the output variables without drastically changing
the model. Applying dropout to the input, i.e. the explanatory variables in the
model, may cause important variables to be dropped out in some iterations, while
less important variables are dropped in others. This can be seen as an analogy to
the variable selection provided by lasso-regularization [56], although in this case,
the variables are dropped at random, and not determined by their importance to
the regression.

If dropout is applied to the output, random parts of the output is dropped, and
it is no longer possible to calculate the loss between the output and the ground truth
value. Consequently, there is no value to propagate backwards through the neurons
in the network during training, and the parameters are not updated.

42 Methodology

3.2 Stochastic Gradient Variational Bayes

Stochastic Gradient Variational Bayes, abbreviated as SGVB and typically
referred to as Bayes by backpropagation, is an algorithm for doing probabilistic
backpropagation and thus training Bayesian Neural Networks. The algorithm was
first proposed by a team from Google DeepMind in [7].

Unlike the deterministic approach to training neural networks, where
backpropagation aims to obtain point estimates of the parameters, the
probabilistic SGVB approach learns the variational parameters of a posterior
probability distribution of the parameters. Consequently, the method requires the
specification of a prior distribution p(w) for each weight in the network. The
algorithm updates the priors during training to obtain the corresponding posterior
distributions.

Having a distribution for each parameter will, however, typically increase the
number of learnable parameters, as in the case of a normally distributed posterior
with parameters θ = (µ, σ) for every parameter of the model. Having distributions
rather than point estimates for the parameters will, on the other hand, introduce
the notion of uncertainty in the estimated parameters, which ultimately allows for
assessing how trustworthy the model is in making predictions.

The algorithm is based on variational inference to obtain an approximate
posterior distribution of the parameters in the neural network. Thus, the goal is to
approximate the true posterior of the parameters p(w|D) using a variational
distribution qθ(w), and this is achieved by minimizing the KL-divergence between
the two distributions.

As derived in section 2.4.1, the KL-divergence between the variational
distribution and the true posterior can be expressed as follows.

DKL[qθ(w)||p(w|D)] = DKL[qθ(w)||p(w)]− Eqθ(w)[log p(D|w)]

+ log p(D)

= log p(D)− L(qθ(w))

We want to minimize the KL-divergence between qθ(w) and p(w|D), and the
above expression motivates the following cost function.

J(w,θ) = DKL[qθ(w)||p(w)]− Eqθ(w)[log p(D|w)] = −L(qθ(w)), (3.7)

where w is a vector of parameters for a certain layer in the neural network, and θ
the variational parameters specifying the properties of the variational distirbution.
We can see that by minimizing the cost function J(w,θ) we are simultaneously
maximizing the ELBO function L(qθ(w)) (see section 2.4.1), which in turn minimize
the KL-divergence between qθ(w) and p(w|D).

The terms in the above cost (3.7) represents a trade-off between the complexity of
the data given by the log-likelihood log p(D|w), and the typically simple prior p(w)
[7]. By minimizing the cost, we want the resulting distribution qθ(w) to capture the
complexity of the data given by the likelihood while simultaneously being similar to
the prior. The similarity with the prior is reflected in the KL-divergence, capturing
the similarity between the two distributions.

Similar to the cost functions for the MC Dropout models (see section 3.1), the
above cost (3.7) contains a negative log-likelihood term. The difference lies in the
additional KL-divergence term acting as a regularizer in the SGVB cost. Moreover,
we calculate the expected log-likelihood over the variational distribution qθ(w).

43

Using the definition of the KL-divergence (2.15) we can expand the cost in terms
of expectations.

J(w,θ) = Eqθ(w)

[
log

qθ(w)

p(w)

]
− Eqθ(w)[log p(D|w)]

= Eqθ(w)[log qθ(w)]− Eqθ(w)[log (p(w)p(D|w))].

The expected values are estimated using Monte Carlo sampling, and the exact
cost is approximated as

J(w,θ) ≈ 1

N

N∑

i=1

log q(w(i)|θ)− log p(w(i))− log p(D|w(i))

=
1

N

N∑

i=1

j(w(i),θ),

where w(i) is the i’th Monte Carlo sample drawn from the variational distribution
qθ(w), for i = 1, . . . , N , where N denotes the number of Monte Carlo samples.

We assume that the variational distribution is normally distributed with mean
µ and standard deviation σ. Rather than sampling the parameters directly from
the variational distribution, we can sample from parameter-free noise and scale it
appropriately to obtain a sample of the parameters. Doing backpropagation
through stochastic neurons in a neural network, in which the parameters
represents in this case, is not possible. However, this reparametrization trick [33]
allows to do backpropagation through the network, as we the stochastic part is
moved outside the neuron. The reparametrization trick is carried out as follows.

w = µ+ σ � ε, ε ∼ N (0, I) (3.8)

A schematic view of the above reparametrization trick is seen in Figure 3.2.

Figure 3.2: Original (left) and reparametrized form (right) of the sampling procedure
for the paramters w in the Bayesian neural network f(·,w) for an instance x.
The white squares represent deterministic neurons, while the stochastic neurons
are shown as red circles. Adapted from [34].

In [32] the authors propose a new local reparametrization trick that is shown
to reduce the variance of the stochastic gradients in BNNs. In this thesis, we will
however stick to the above reparametrization trick (3.8) due to its simplicity.

44 Methodology

The variational parameters θ = (µ, σ) are found using gradient descent during
training. The variance is required to be non-negative by definition, and the standard
deviation is parametrized as σ(ρ) = (1 + eρ).

Algorithm 3 describes the SGVB algorithm for a single iteration of the
optimization, where the variational parameters are θ = (µ, ρ).

Algorithm 3: SGVB for a single iteration of the optimization. Adapted
from [7].

Result: θ = (µ, ρ)
Sample ε ∼ N (0, I)
Let θ = (µ, ρ)
Let w = µ+ log(1 + eρ)� ε
Let j(w,θ) = log qθ(w)− log p(w)− log p(D|w)
Calcualte gradients with respect to the variational parameters

∇µj(w,θ) =
∂j(w,θ)

∂w
+
∂j(w,θ)

∂µ

∇ρj(w,θ) =
∂j(w,θ)

∂w

ε

1 + exp(ρ)
+
∂j(w,θ)

∂ρ

Update the parameters (gradient descent step)

µ← µ− α∇µj(w,θ)

ρ← ρ− α∇ρj(w,θ)

Note that the gradient of the cost w.r.t the variational parameters depends on
the same term, namely the partial derivative of the cost w.r.t the parameters,
∂j(w,θ)
∂w

. These are the same gradients we obtain by doing standard
backpropagation on a deterministic neural network. The remarkable insight from
this result is that one can update the variational parameters, thus learning the
mean and standard deviation of the variational distribution simply by calculating
gradients using standard backpropagation and scaling them as in the above
algorithm.

Similar to the MC Dropout models, we will model the aleatoric uncertainty in
a homoscedastic and heteroscedastic manner by setting up a mathematical model
that will be specified in Section 4.4. This is done by using the following expressions
for the log-likelihood in (3.7).

log p(D|w)Homoscedastic =
N

2
log 2πσ2 +

1

2σ2

N∑

i=1

(yi − f(xi,w))2,

log p(D|w)Heteroscedastic =
N

2
log 2π +

N∑

i=1

log σi +
1

2

N∑

i=1

(yi − f(xi,w))2,

where yi is the ground truth target value for the prediction f(xi,w) for instance xi,
and σi the aleatoric uncertainty. For the homoscedastic model we have σi = σ ∀i.

45

3.3 Quantifying Predictive Uncertainty

The predictive uncertainty is estimated using a sampling approach. More
specifically by performing B stochastic forward passes through the network using
the same input instance and then repeating the process for all instances in the test
set. This will result in a posterior predictive distribution for all input instances,
and the uncertainty of the predictions are measured using the standard deviation
of the distribution. The obtained uncertainty estimates are a combination of the
aleatoric and epistemic uncertainty components, and we will see how to decompose
the predictive uncertainty into these components in section 3.3.1.

The predicted target variable is obtained using a linear activation function in
the final layer of the network. Every time an input instance is passed through the
network, the network will output a single value for the predicted target value for that
particular instance. By passing a single input instance through the network multiple
times, we obtain a predictive distribution for that instance. This is, of course, on
the premise that we are working with a probabilistic Bayesian neural network. A
deterministic neural network will output the same value for a given input instance
if forwarded through the network multiple times.

Having a predictive distribution for each input instance allows one to reason
about the uncertainty of the network predictions. By estimating the predicted
value as the mean of the predictive distribution, we can construct credible intervals
around the predicted value by calculating the standard deviation of the predictive
distribution. We can then use these credible intervals to assess the uncertainty of
the predictions, using the fact that a broader credible interval corresponds to
greater uncertainty in the estimated value the interval is constructed around.

Assuming the predicted target variable is normally distributed with mean µ and
standard deviation σ, we can construct the credible interval as

[µ− zα
2
σ, µ+ zα

2
σ], (3.9)

where zα
2

is the α
2

percentile of the standard normal distribution. In this case, setting
zα

2
= 1.96 yields a 95% credible interval.
The performance of the models are measured using the Mean Squared Error

(MSE) and Mean Absolute Error (MAE) metrics on the test set, where a lower
value corresponds to better predictive performance. The metrics are defined as

MSE =
1

N

N∑

i=1

(yi − ŷi)2

MAE =
1

N

N∑

i=1

|yi − ŷi|,
(3.10)

where N is the size of the test dataset, yi the ground truth and ŷi the predicted
target value for instance i = 1, . . . , N .

Following the same sampling approach as described above, we can obtain
distributions for the metrics (3.10). This allows to construct credible intervals for
the performance metrics, and the results are presented as follows.

µMSE ± σMSE,

µMAE ± σMAE,
(3.11)

where µMSE,MAE and σMSE,MAE are the mean and standard deviation of the
distribution of the performance metrics.

46 Methodology

3.3.1 Decomposing the Uncertainty

We have already seen that the predictive uncertainty can be decomposed into two
inherently different components, namely the aleatoric and epistemic uncertainty.

The aleatoric uncertainty is concerned with the uncertainty related to the
data-generating process, and can e.g. represent measurement noise and inherent
variability in the data. In contrast, the epistemic uncertainty is related to a lack of
knowledge about which model generated the observed data and accounts for the
uncertainty in the parameters of the model [30].

We estimate the aleatoric uncertainty in two different settings, obtaining a
homoscedastic and heteroscedastic aleatoric uncertainty. Implementing a
homoscedastic model is quite simple, but doing so may cause a loss of important
information about the total predictive uncertainty as the aleatoric uncertainty is
potentially over- and under-estimated in different intervals of the test set. On the
contrary, a heteroscedastic model provides a richer representation of the predictive
uncertainty. However, it is harder to implement.

In both situations, the aleatoric uncertainty is implicitly estimated using the
negative log-likelihood loss function. In the heteroscedastic setting, the aleatoric
uncertainty is estimated alongside the target variable using a multi-headed
network. For the homoscedastic models, the aleatoric uncertainty is treated as a
model parameter optimized alongside the parameters of the neural network by
minimizing the loss function. Each setting corresponds to a slightly different loss
function, and the two loss functions are expressed as follows.

LHeteroscedastic(y, ŷ,σ) =
N

2
log 2π +

N∑

i=1

log σi +
1

2

N∑

i=1

(yi − ŷi)2 · 1

σ2
i

LHomoscedastic(y, ŷ, σ) =
N

2
log 2πσ2 +

1

2σ2

N∑

i=1

(yi − ŷi)2,

where we see that the homoscedastic loss is a special case of the heteroscedastic loss
with σi = σ ∀i. Note however that the loss functions are slightly different for the
SGVB method, where the difference lies in an additional KL-divergence term (see
section 3.2).

The epistemic uncertainty relates to the uncertainty in the parameters of the
model and is captured by the standard deviation of the posterior predictive
distribution for each input instance. In each forward pass of the network, a set of
model parameters are sampled from their corresponding (approximate) posterior
distributions. Forwarding the same input instance multiple times is equivalent to
using multiple models to predict the target value. We can thus use the variance, or
standard deviation, of the predictive distribution for each instance as a measure of
the epistemic uncertainty [30].

Having obtained the aleatoric and epistemic uncertainty, the total predictive
variance is calculated as

σ2
Predictive = σ2

Aleatoric + σ2
Epistemic, (3.12)

where σ2
Aleatoric and σ2

Epistemic is the aleatoric and epistemic variance, respectively.
The algorithm for obtaining the predictive variance as well as the aleatoric and

epistemic components is summarized in Algorithm 4, showing the formulas for
obtaining the components of the total predictive uncertainty (3.12).

47

Algorithm 4: Calculating predictive uncertainty for a single input
instance.

Inputs : Instance x,
Trained neural network f(·,w) with depth L,
Number of stochastic forward passes B

Output: Predictive variance σ2
Predictive(x)

for b← 1 to B do
Sample Wi,b ∼ q(Wi), i = 1, . . . , L
wb = {W1,b, . . . ,WL,b}
ŷb(x), log σ2

Aleatoric,b(x) = f(x,wb)

σ2
Aleatoric,b(x) = elog σ2

Aleatoric,b(x)

end

σ2
Aleatoric = 1

B

∑B
i=1 σ

2
Aleatoric,i(x)

σ2
Epistemic(x) = Var[ŷ(x)] = 1

B

∑B
i=1 ŷi(x)2 − 1

B

∑B
i=1 ŷi(x) 1

B

∑B
i=1 ŷi(x)

σ2
Predictive(x) = σ2

Aleatoric(x) + σ2
Epistemic(x)

The uncertainty is presented as credible intervals around the predictions for all
the instances in the test set. To separate the aleatoric and epistemic uncertainty,
we construct credible intervals based on the total predictive uncertainty and the
epistemic uncertainty alone. The differences between these credible intervals will
then account for the aleatoric uncertainty in the data.

48 Methodology

3.4 Quantitatively Evaluating the Predictive

Uncertainty

If we want to use the estimated uncertainty of a probabilistic model to aid
decision-making, we want the provided uncertainty to be estimated appropriately.
Too high uncertainty estimates are evidence of an under-confident model, whereas
too low uncertainty estimates indicate that the model is over-confident. Either
case is unwanted, and we want a model that provides predictions with the right
amount of credibility. In that way, we can trust the uncertainty estimates and
safely use the model in a decision-making process.

An over-confident model may yield confident yet erroneous predictions that are
potentially harmful depending on the context given by the decision-making
process. On the other hand, an under-confident model may yield highly uncertain
yet correct predictions. A potential use case for the probabilistic models is to trust
the predictions if they have a predictive uncertainty below some threshold and
pass the prediction to human inspection if the uncertainty is above the specified
threshold. So in the case of an under-confident model, the predictions will
potentially be passed to a human for further inspection more rapidly than if the
uncertainty is appropriately estimated, even if the prediction turns out to be
correct. This will, in turn, slow down the automation process. On the contrary,
the potentially erroneous predictions of an over-confident model may have a
predictive uncertainty approved by the uncertainty threshold. In this hypothetical
case, the prediction is then passed on without human inspection, and the
consequences are potentially harmful.

To evaluate the uncertainty estimates, we use the connection between the
Bayesian credible interval and the frequentist confidence interval, as presented by
Berger and described in section 2.4. This is obtained by constructing calibration
curves [37], where the empirical coverage probability of the credible interval is
plotted against the significance level of the corresponding confidence interval. In a
regression setting, calibration refers to the expected fraction of samples that fall
inside a credible interval around the prediction for a given probability level. More
specifically, it means that we should expect 95% of the ground-truth values of the
target in the test set to be inside a 95% credible interval around the corresponding
predictions. This expected behaviour is achieved for a perfectly calibrated model
for all probability levels in the range 0− 100%.

The evaluation criteria depend on the empirical coverage probability, which is the
fraction of samples in the test set inside the credible interval for a given probability
level. We define the empirical coverage as

Ce =
1

N

N∑

i=1

1
[
L(ŷi) < yi < U(ŷi)

]
, (3.13)

where 1 [·] is the indicator function, L(ŷi) and U(ŷi) the lower and upper bound of
the credible interval for prediction ŷi at a certain probability level and yi the true
target value for sample i = 1, . . . , N in the test set.

Note that when describing a credible interval around a prediction, we are talking
about the probability that the true value is inside the interval. This probability is
referred to as the probability level of the credible interval. On the other hand, for the
frequentist confidence interval, we are talking about a significance level, representing
the long-term frequency of the confidence interval containing the true value.

49

By constructing a set of credible intervals (3.9) using different probability levels
and calculating the empirical coverage (3.13), we can construct calibration curves
by plotting the empirical coverage against the significance level for the
corresponding confidence intervals. This will result in a diagonal line with a unit
slope for a perfectly calibrated model. Furthermore, we can assess whether the
model is under or over-confident by looking at the potential discrepancy from the
diagonal line. If the empirical coverage is above the diagonal line, there are a
greater fraction of samples inside the credible interval than expected by the
significance level. The credible interval is thus broader than expected, and the
uncertainty is over-estimated. This implies that the model is under-confident, as
the uncertainty is greater than expected. On the contrary, an over-confident model
has tighter credible intervals. This will result in fewer samples falling inside the
interval than what is expected from the significance level, such that the empirical
coverage is less than optimal. As a result, the calibration curve lies below the
diagonal.

We will see in section 4.2 that the data is structured in a way that allows the
construction of multiple calibration curves for each model. To summarize the
calibration curves over the test set, we will present the results as the mean
empirical coverage for a given significance level, and provide a 95% credible
interval around this mean for all significance levels in the range 10− 100%. In this
way, we can reason about the uncertainty of the uncertainty estimates of the
models and use that in conjunction with the mean calibration to evaluate the
uncertainty estimates.

3.4.1 Effect of Modelling Aleatoric Uncertainty

To look into the effect of modelling the aleatoric uncertainty, we will construct
calibration curves based on the epistemic uncertainty estimates alone. By looking
at how the calibration curves differ from the calibration curves based on the total
predictive uncertainty, we can study the effect of modelling and including the
aleatoric uncertainty component to the total predictive uncertainty of the models.
The differences can also be used as a proxy for how well the aleatoric uncertainty
is estimated.

50 Methodology

3.5 Epistemic Uncertainty and Training Set Size

The epistemic uncertainty refers to the lack of knowledge of the process being
modelled, and can principally be reduced by collecting additional information,
e.g. data [27]. This lack of knowledge is represented in the uncertainty of the
parameters of the model.

By training several models on a set of fractions of the entire training set, we
can empirically study how the epistemic uncertainty evolves with the amount of
data the models are allowed to process during training. More specifically, the
approximation uncertainty. As stated in section 1.5, we have not seen any
experimental nor theoretical justification of this stated property of the uncertainty
component.

We consider a set of fractions from 10 − 100% of the entire training set,
meaning that for every model we consider, we will have to re-train the model
multiple times using a different training set. The training sets are constructed by
randomly sampling a fraction of the entire training set for all the fractions we
consider. Further on, we train our models for all the fractions and make
predictions on the entire test set. It is important to note that the size of the test
set is constant across all fractions of the training set.

The uncertainty is quantified and decomposed as described in section 3.3.1. For
every sample in the test set, we obtain a predictive distribution with variance
determined by the sum of the epistemic and aleatoric variances. To extract the
epistemic uncertainty, we isolate the epistemic variance and calculate the standard
deviation by taking the square root. All the samples in the test set are now
equipped with epistemic uncertainty in terms of a standard deviation. To
summarize the epistemic uncertainty over the entire test set, we report the
epistemic uncertainty as the mean standard deviation over all samples in the test
set. The procedure is summarized in Algorithm 5.

Referring back to Section 3.1, the posterior predictive distribution of the
parameters in a BNN constructed with the MC Dropout method depends strongly
on the dropout rate. Consequently, the epistemic uncertainty of the MC Dropout
models is directly related to the dropout rate. To study the effect of the dropout
rate on the epistemic uncertainty of these models, additional models using different
dropout rates are fitted. To isolate the potential effect of the dropout rate, all the
other hyper-parameters and architectural considerations remain fixed.

51

Algorithm 5: Epistemic uncertainty for a fraction of the training set.

Inputs : Training set DTrain,
Test set DTest,
Number of stochastic forward passes B,
Fraction Φ of training set

Output: Epistemic uncertainty σEpistemic for fraction f of the dataset

Sample fraction Φ of DTrain

Train neural network f(·,w) using down-sampled training set
for xj ∈ DTest, j = 1, . . . , NTest do

for b← 1 to B do
Sample Wk,b ∼ q(Wk), k = 1, . . . , L
wb = {W1,b, . . . ,WL,b}
ŷb(xj) = f(xj,wb)

end
σ2

Epistemic(xj) = Var[ŷ(xj)]

σEpistemic(xj) =
√
σ2

Epistemic(xj)

end

σEpistemic = 1
NTest

∑NTest

j=1 σEpistemic(xj)

52 Methodology

3.6 Epistemic Uncertainty and Model

Complexity

We have already seen how we can study epistemic uncertainty by training models
with training sets of different sizes. However, this approach can only tell us
something about the approximation component of the epistemic uncertainty,
i.e. the discrepancy between the fitted model and the optimal model within the
given hypothesis space.

The model uncertainty represents how suitable the chosen hypothesis space is
for explaining the data at hand and corresponds to the discrepancy between the
ground-truth and fitted model. By setting up a hypothesis space that is far away
from containing a proper model, the model uncertainty will be high. On the other
hand, setting up a proper hypothesis space will resolve this uncertainty.

We will study the model uncertainty by fitting multiple models by setting up
different hypothesis spaces and observing how well the different models can explain
the epistemic uncertainty. We will train the different models using a constant
dataset size to avoid interference with the approximation uncertainty. More
complex models require more data, and we can still expect the approximation
uncertainty to increase when increase model complexity. However, in large sample
situations, we can expect the potential differences in the epistemic uncertainty to
result from the model uncertainty when using a dataset with a constant size across
multiple model complexities.

The different hypothesis spaces are represented by the complexities of the neural
network models, and we will consider four different complexities. The different
complexities correspond to a linear model, a single-layer model, an intermediate
model with two hidden layers and a complex model with ten hidden layers. The
linear model can be formulated as a neural network with no hidden layers, i.e. a direct
connection between the input and output variables. Referring back to Section 3.1, a
model trained with the MC Dropout method needs to contain at least a single hidden
layer. Consequently, it is impossible to train a linear model with MC Dropout, and
the method is omitted from this analysis. Thus, all the considered models are
trained using the SGVB method, where the aleatoric uncertainty is modelled in a
homoscedastic and heteroscedastic setting. This accounts for fitting two models for
each model complexity, i.e. eight models in total. The architectural configuration of
the models are presented in section 4.4.

To present the epistemic uncertainty, the predictive uncertainty is quantified and
decomposed according to Algorithm 4 in section 3.3.1 for both SGVB models. The
epistemic uncertainty is aggregated into a single number by computing the mean
epistemic uncertainty for all the samples in the test set. The results are presented
as a plot of the aggregated epistemic uncertainty against model complexity.

Chapter 4

Experimental Setting

This masters thesis is a collaboration with the Norwegian Exploration and
Production (E&P) company Aker BP. The company provides a problem and a
dataset for solving a regression task, and the main objective of this thesis is to
estimate and analyze the uncertainty provided by neural network models solving
the task.

The data is gathered in boreholes while drilling the subsurface and consists of
measurements of different geophysical properties. The problem is concerned with
predicting the acoustic log for S-waves, given a set of geophysical measurements
representing subsurface properties.

This chapter aims at giving the reader a motivation behind the problem provided
by the dataset before describing the dataset in detail. Furthermore, the results of
a preliminary analysis of the dataset are presented. The remaining sections of this
chapter revolve around describing the mathematics and architectural configuration
of the models and the deep learning framework for developing the models.

54 Experimental Setting

4.1 Motivation

The acoustic logs are used for several applications, including lithology interpretation,
seismic depth conversion and direct hydrocarbon indication. Two kinds of acoustic
logs are measured, namely compressional and shear wave acoustic logs. Because
fluids lack shear strength, the shear waves will not propagate through formations
containing fluids. By looking at the difference between the measured compressional
and shear acoustic logs, one can infer whether or not the rock formations adjacent
to the measurements contain fluids. One can use this in conjunction with other logs
and analyses to check whether these fluids are hydrocarbons or water.

The acoustic measurements are costly to perform and are typically only carried
out in areas with high human confidence of containing hydrocarbons. By doing so,
one might miss out on unexpected reservoirs containing oil and gas. Hence, it is
beneficial to have a complete picture of the acoustic logs over the whole borehole,
independent of whether a human finds it likely or not to contain hydrocarbons.
By training a machine learning algorithm using the costly measurements, one can
apply this model and make predictions in the areas where one otherwise would not
perform measurements, e.g. due to low confidence in containing hydrocarbons. It is
too expensive to measure the acoustics logs along the entire borehole, so having a
model that can provide reliable measurement predictions is very useful.

Moreover, measurements may be unavailable due to drill technical reasons. It
is thus favourable to have a model that can predict the missing measurements.
Having a measure of uncertainty attached to the predictions makes the model even
more valuable, as one can choose whether or not to discard the predictions based
on the level of uncertainty. Besides, having a good model for the acoustic log can
potentially supersede the need for an instrument, which is costly to use, maintain
and repair.

4.2 Data

A description of the problem and dataset provided by Aker BP is given in this
section. The preprocessing and feature engineering schemes applied to make the
data suitable for modelling are described following the dataset’s description and an
exploratory data analysis.

The dataset is based on open wireline logs, where different geophysical properties
are measured in a borehole using different instruments attached to the borehead.
Thus, the measurements are intrusive, as one needs to bore down into the subsurface
to obtain the measurements.

The data is gathered from 34 wells from offshore Norway, and the well logs
include the depth of measurements, acoustic S-wave log and other logs measuring
physical properties of the formation. A map showing the location for a subset of
the wells are shown in Figure 4.1 below, where the wells are marked as red circles.
Existing petroleum fields are marked as green shapes, and fault lines are marked in
black.

Initially, the raw dataset contains 44 features. The majority of these features
are geophysical logs, while some are flags for imperfect measurements and corrected
versions of other logs. However, not all of these are relevant for the modelling. A
list of the variables included in the modelling, as well as a brief description, is found
in Table 4.1 below. The variables are chosen based on the same set of variables used
in human interpretation of the data.

55

Figure 4.1: Map of some of the wells (red) in the dataset. The green shapes
represents existing petroleum fields, and the black lines are fault lines. The purple
line outside the coast of Norway is the norwegian territorial border.

Table 4.1: Variables in the dataset with corresponding units and descriptions.

Variable Unit Description
ACS µs/ft S-wave travel time log (target variable)
AC µs/ft P-wave travel time log
AI MPa s/m Acoustic impedance log
BS inches Bit size log, measuring the size of the bore head
CALI inches Caliper, measuring the width of the borehole
DEN g/m3 Density log
GR gAPI Gamma ray log
NEU 1 (m3/m3) Neutron porosity log
RMED Ω m Medium depth electrical resistivity log
DEPTH m Depth of measurement

A brief description of how the different measurements are carried out follows.
The material is based on the self-learning module on open hole wireline logging by
Tracs International [58].

The sonic logs, i.e. ACS and AC, measure acoustic pulses’ travel times against
depth through formations close to the borehole. The measurements are obtained
by measuring the arrival times between the source of the acoustic pulse and two
receivers spaced at different distances from the transmitter. By subtracting the
travel times to the nearest from the farthest receiver and dividing by the distance
between the two, one obtains the acoustic velocity over the interval between the
receivers. The ACS log measures the travel times for the shear waves (S-waves),
while the AC log measures the travel times for the compressional waves (P-waves)
of the acoustic signal. In dry rocks, these logs are typically strongly correlated.
However, in the presence of fluids in the pores of the rock, e.g. water, oil and
gas, the S-wave velocity vanishes due to the lack of shear strength. The difference
between these logs is thus very useful for exploring the subsurface for oil and gas.

Acoustic impedance, AI, is simply the product of the bulk density and the seismic
velocity [48] in the rocks adjacent to the borehead. The log contains important
information about the nature of the rock and variations in lithology [3].

56 Experimental Setting

The logs BS and CALI represent the borehole’s width in terms of the diameter,
and they are both measured in inches. The bit size log is the actual width of
the borehead, while the caliper log measures the width of the resulting borehole
mechanically. These logs will typically correlate strongly. In loose rocks, the caliper
will typically be greater than the bit size. This is because loose rocks are less capable
of keeping intact after drilling, making the borehole less stable.

The bulk density of the rock formation in the subsurface is measured using a
radioactive source that emits medium-energy gamma rays. When radiating through
the formation, the gamma rays collide with electrons and are scattered. Ultimately,
the gamma rays are detected at a fixed distance from the transmitter, and the
number of detected gamma rays are counted. The count is inversely proportional to
the electron density, which is related to the bulk density of the formation.

The gamma-ray log, GR, represents the amount of natural emission of gamma
rays from the rock formation adjacent to the borehole. GR levels are measured
in gAPI, a unit of radioactive emission of gamma rays. The natural emission is a
result of decaying radioactive isotopes naturally occurring in the rock formation. In
a petroleum field, the oil and gas are contained in a reservoir rock’s pore volume,
which is typically sandstone. Naturally, because of capillary forces and pressure
gradients, the petroleum rises towards the surface, trying to escape the reservoir
rock. The petroleum is then trapped in the reservoir in the presence of a cap rock
overlying the reservoir rock, which is typically shale. Because shales and sandstones
have notably different gamma-ray signatures [49], the gamma-ray log is particularly
useful in the exploration phase of a petroleum reservoir.

The neutron porosity log NEU represents the porosity of the rock formation. It
is measured by emitting high energy neutrons into the formation and detecting the
density of neutrons at a fixed distance from the transmitter. The emitted neutrons
are slowed down and captured primarily by collisions with hydrogen atoms in the
rock formation, and the remaining neutrons are detected at the receiver. Hydrogen
atoms are predominantly present in water and hydrocarbons in the pore volume of
the rock, thus relating the neutron porosity to the porosity of the rock. The neutron
porosity is dimensionless, as it represents the fraction of pore volume to the total
volume of the rock.

The medium depth resistivity log, RMED, measures the electrical resistivity of
the rock formation at a medium distance from the borehole horizontally into the
rock. Resistivity logging in boreholes is usually concerned with three depths of
measurements, and the medium reading resistivity log considers the intermediate
invasion depth. Resistivity logs are useful because, unlike water, hydrocarbons in
the pore volume of the rock does not conduct electricity [50]. As a result, resistivity
logs will be high in the presence of hydrocarbons and low in the presence of water.
One can thus use resistivity logs to separate hydrocarbons and water present in the
rock formations.

The DEPTH log is a measurement of the length of the wellbore along its path.
This measurement will thus differ from the True Vertical Depth (TVD), measuring
the vertical displacement from the seabed surface to the depth of measurement.
However, if the path of the borehole is truly vertical, the depth log and TVD will
coincide perfectly.

The problem aims at predicting the numerical value of the acoustic log for the
S-waves in the subsurface, given a set of well-log measurements taken at 34 different
wells in the North sea. We are thus concerned with a regression-type problem. The
target variable for the regression is ACS, and the remaining variables are used as

57

explanatory variables. The distribution of the target variable is shown in Figure 4.2.
All the following distributions are shown as histograms with a kernel density estimate
for the corresponding continuous distributions.

100 200 300 400 500 600 700 800
ACS

0.000

0.001

0.002

0.003

0.004

0.005

D
en

si
ty

Distribution of target variable

Figure 4.2: Distribution of the target variable in the dataset.

The data is gathered from 34 different wells from offshore Norway, and the
different wells differ in terms of location and depths. As a result, the measurements
are likely to differ across wells as they are taken in potentially widely different
geological formations. A plot of a random subset showing four wells is shown in
Figure 4.3. The name of each well is specified in the title of each subplot.

100 110 120 130 140 150 160 170
0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

25/8− 14 ST2

150 175 200 225 250 275 300 325

25/4− 10 S

100 150 200 250 300 350 400

ACS

0.00

0.01

0.02

0.03

0.04

0.05

D
en

si
ty

25/4− 13 A

120 140 160 180 200 220

ACS

30/8− 5 T2

Figure 4.3: Distribution of the target variable for a random subset of 4 wells in the
dataset. The name of the wells are specified in the title of each subplot.

It is clear from Figure 4.3 above that the distribution of the target variable differs
across the wells in the dataset. This needs to be taken into account further down
the modelling pipeline.

A plot of the distribution of the explanatory variables in the dataset is shown in
Figure 4.4 below.

58 Experimental Setting

100 200

AC

0.000

0.005

0.010

0.015

0.020

D
en

si
ty

5 10 15 20

AI

0.0

0.1

0.2

0.3

0.4

Distribution of explanatory variables

10 20 30 40

BS

0.0

0.2

0.4

10 20 30

CALI

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

1 2 3

DEN

0

1

2

0 500 1000 1500

GR

0.000

0.005

0.010

0.0 2.5 5.0 7.5

NEU

0

1

2

D
en

si
ty

0 50000 100000

RMED

0.0000

0.0002

0.0004

0 2000 4000

DEPTH

0.0000

0.0001

0.0002

0.0003

Figure 4.4: Distribution of the explanatory variables in the dataset. The variables
are shown in the x-axis of each plot.

Again, different wells may give rise to widely different geophysical measurements,
which likely results in a different set of distributions for the explanatory variables
for each well. Figure 4.5 shows the distribution of the explanatory variables for a
single well in the dataset. Observe how the distribution of a variable differs from the
corresponding distribution over the full dataset. This can be explained by different
geological formations resulting in widely different geophysical measurement across
the wells. Moreover, this may indicate varying measurement noise and different
calibration of the instruments across the wells.

50 100 150

AC

0.00

0.01

0.02

D
en

si
ty

2.5 5.0 7.5 10.0 12.5

AI

0.0

0.2

0.4

0.6
Well : 25/5− 5

8.00 8.25 8.50 8.75 9.00

BS

0

20

40

10 15 20

CALI

0

1

2

3

D
en

si
ty

1.5 2.0 2.5

DEN

0

2

4

0 50 100

GR

0.000

0.005

0.010

0.015

0.020

0.0 0.2 0.4 0.6 0.8

NEU

0

1

2

3

4

D
en

si
ty

0 10 20 30

RMED

0.00

0.25

0.50

0.75

1.00

0 1000 2000 3000

DEPTH

0.0000

0.0001

0.0002

0.0003

0.0004

Figure 4.5: Distribution of the explanatory variables for a single well in the dataset.
The variables are shown on the x-axis of the of each plot.

The dataset consists of 689 727 samples in total. However, a lot of the samples
will be removed during preprocessing. The different preprocessing steps are
described and justified in the next section.

59

4.2.1 Preprocessing and Feature Engineering

An integral part of any machine learning application is preprocessing the data before
feeding it to the machine learning algorithm for training and testing.
The goal of preprocessing is to map the data into a form that is best suited for
the training algorithm and neural network architecture and typically to reduce the
dimensionality of the problem [5].

The first step in the preprocessing is to dispose of imperfect or missing
measurements for the target variable, i.e. ACS. The dataset is equipped with a
binary variable BADACS that represents whether the measurement of the acoustic
log for S-waves is good or bad. These are measurements flagged by petrophysicists
as being flawed, erroneous or in general not trustworthy. Having this flag makes it
trivial to filter out imperfect measurements. The number of samples in the dataset
is reduced from 689 727 to 256 014 samples after filtering out poor and missing
measurements.

The next step is to select the explanatory variables. Initially, the raw dataset
consists of 44 different logs or features for each sample. The variables in Table 4.1
are selected to reduce the dimensionality and ease interpretation of the models. The
set of variables is chosen based on the same variables used in manual interpretation
of the data.

A simple mean-imputer is applied to deal with missing values, which sets the
missing values for a feature to be the mean value of the feature over the dataset.
There exist other, more sophisticated imputing methods. However, the
mean-imputer is chosen as it previously was shown to yield good results on
statistical models deployed by Aker BP using the same dataset.

The final step of the preprocessing is to scale the features to a common scale.
This is done well-wise, such that each variable is scaled to have zero mean and unit
variance for each well. The well-wise standardization is chosen because different
wells may have instruments that are calibrated differently for the variables in the
dataset. Moreover, the different wells are located in potentially widely different
geological formations, causing the variables to have different distributions across
the wells. All variables except depth are standardized. This is because depth as a
feature does not make sense unless the values are in absolute terms. In particular, if
there are systematic differences in depths between wells, we lose valuable information
about the depth when standardizing in a well-wise manner. Another option is to
scale depth globally over the entire training set, but we choose to leave the depth
unscaled.

It is important to note that the well-wise scaling of the target variable restricts
the analysis to the standardized space. This is because we are using the values of
the target variable to standardize, which is unavailable when making predictions.
We cannot return to the original scale without using the information of the target
variable. However, this detail will not influence the analysis other than being
restricted to the standardized space. We will come back to this choice in the
discussion in Chapter 6.

60 Experimental Setting

Feature engineering is a process where the goal is to incorporate domain
knowledge and extract more information from the selected features in the dataset.
Applying feature engineering is a common practice in many machine learning
applications. The following features are engineered from the selected features for
both datasets, except for the target variable and depth.

i. Gradients

ii. Rolling window functions for the:

i) Mean value

ii) Minimum value

iii) Maximum value

Each selected feature, except for the target variable and depth, will have four
additional features in the final, preprocessed dataset. The set of engineered
features are included to exploit non-local information in the modelling,
i.e. information outside the point of measurement, for all the instances in the
dataset. The preprocessed dataset contains 42 explantory variables after including
the engineered features.

The gradient of a feature indicates how the value of the feature is changing at
all points of measurements, and is approximated using second-order central
differences in the interior, and first-order forward- and backward differences at the
boundaries1. The gradient of a feature {xi}Ni=1 is estimated as follows

x
(gradient)
i ≈ xi+1 − xi−1

2h
, i = 2, . . . , N − 1,

x
(gradient)
i=1 ≈ xi+1 − xi

h
,

x
(gradient)
i=N ≈ xi − xi−1

h
,

where the feature is assumed to be evenly spaced with distance h between
measurements. Because the measurements are taken at every depth, and depth is
uniformly distributed within each well (see Figure 4.5), this assumption is
perfectly valid for our data.

The rolling window features are calculated using a window size of 4 samples,
meaning that the new features represents the mean, minimum and maximum values
over 4 samples for each sample in the dataset. The rolling window functions for
feature {xi}Ni=1 are computed as follows.

x
(mean)
i =

{
1
4

∑4−1
j=0 xi+j, i = 1, . . . , N − (4− 1)

1
4

∑4−1
j=0 xi−j, i = N − 2, . . . , N

x
(max)
i =

{
max {xi+j}4−1

j=0, i = 1, . . . , N − (4− 1)

max {xi−j}4−1
j=0, i = N − 2, . . . , N

x
(min)
i =

{
min {xi+j}4−1

j=0, i = 1, . . . , N − (4− 1)

min {xi−j}4−1
j=0, i = N − 2, . . . , N

1Forward difference for the first sample, and backward difference for the last sample in the
dataset.

61

4.2.2 Train/Test split

The preprocessed dataset is split into a training and a test set to measure the
generalization capabilities of the models. The models are trained using the training
set, and performance is measured on the test set. The test set should be kept away
from the models until performance is measured, as the performance on the test set
serves as a proxy for how well the models generalize to unseen data.

The training set is constructed by randomly sampling a subset of the total
number of wells in the dataset, setting aside the remaining wells for the test set.
The fraction of training wells is chosen to be 75% of the total number of wells. The
training set is further split into a training and validation set to estimate the test
error during training. The validation set is constructed similarly to the test set
and consists of a random subset of 10% of the wells in the training set.

The dataset is split in a well-wise manner to avoid data leakage. Because the
standardization of features in the preprocessing scheme is done over each well, we
avoid flow of information between the training and test set by splitting the data in
a well-wise manner. Moreover, it makes sense to split the data in this fashion due
to different distributions of both target and explanatory variables across the wells
(see Figure 4.3-4.5).

In Table 4.2 we see the number of samples and wells over the different datasets.

Table 4.2: Number of samples and wells in the training-, validation- and test set, as
well as the fraction of the entire dataset.

Training set Validation set Test set Total
Samples 185 153 17 560 53 301 256 014
Wells 24 2 8 34
Fraction 67.5 % 7.5 % 25 % 100 %

In Figure 4.6 we see the distribution of the target variable across the training,
validation and test set. Note that the below distributions are over the full datasets,
i.e. independent of the wells within each dataset. Figures of the well-wise distribution
of the target variable across the different datasets are found in Appendix A.

−5 0 5
ACS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

Training

−5 0 5
ACS

Validation

−5 0 5
ACS

Test

Figure 4.6: Distribution of the target variable across the training, validation and
test set.

From the above figure we oberve that the dataset are distributed equally,
althought there are some differences between the training and test set.

62 Experimental Setting

4.3 Preliminary analysis

A preliminary analysis is carried out on the dataset to justify the model choice.
The analysis is performed using a random subset containing 10 000 samples of the
preprocessed dataset.

The preliminary analysis consists of fitting a linear model using the regression
dataset and constructing diagnostic plots to look into the model assumptions (see
section 2.2). The results of the preliminary analysis will be used to justify the model
choice for the regression model.

Figure 4.7 shows the residual plot using the linear model, and is a plot of the
residuals ε̂ against the fitted values ŷ. The residuals are estimates of the error term
in the linear model, and shows the amount of variability in the data that the model
cannot explain.

−4 −3 −2 −1 0 1 2 3

Fitted values

−3

−2

−1

0

1

2

3

R
es

id
u

al
s

Residuals vs fitted values

Figure 4.7: Residual plot for the linear model, where the raw residuals are plotted
against the fitted values provided by the model. The red curve is a local regression
line fit to the residuals to detect patterns.

It is clear that there is a non-linear relationship between the residuals and the
fitted values, shown by the red LOWESS2 curve. This suggests that a non-linear
model is better suited for explaining the variability in the dataset. One can also
see that the residuals have a non-constant variance over the range of fitted values.
However, as the raw residuals are inherently heteroscedastic (see (2.5)), one cannot
use the residual plot to assert whether the noise is heteroscedastic.

The raw residuals are standardized to yield a constant variance to fix the
problem of inherent heteroscedasticity. The scale-location plot in Figure 4.8 is a
plot of the square root of the standardized residuals against the fitted values. If
the homoscedasticity assumption of the linear model is met, the standardized
residuals should show a constant variance.

We observe that the variance of the standardized residuals is varying over the
range of fitted values. Thus, the homoscedasticity assumption of the linear model
is not met, suggesting using a heteroscedastic model for the error term.

The empirical quantiles of the standardized residuals are plotted against the
theoretical quantiles of the standard normal distribution to check for normality of
the error term in the linear model. The resulting Q-Q plot, as well as the distribution

2A local regression line fit to the residuals

63

−4 −3 −2 −1 0 1 2 3

Fitted values

0.0

0.5

1.0

1.5

2.0

2.5

3.0

√
|S

ta
n

d
ar

d
iz

ed
R

es
id

u
al

s|

Scale− Location

Figure 4.8: Scale-location plot a the linear, homoscedatic model, where the square
root of the standardized residuals are plotted against the fitted values provided by
the model. The red curve is a local regression line fit to the standardized residuals
to detect patterns.

of the standardized residuals and the standard normal distribution, are shown in
Figure 4.9.

−6 −4 −2 0 2 4 6

Theoretical quantiles

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

S
ta

n
d

ar
d

iz
ed

re
si

d
u

al
s

Normal Q− Q

(a) Empirical quantiles for the standardized
residuals (blue) and theoretical quantiles of
the standard normal distribution (red)

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
en

si
ty

Distribution of standardized residuals

Residuals

Standard normal

(b) Standardized residuals (blue) and the
standard normal distribution (red)

Figure 4.9: (a) Normal Q-Q plot and (b) distribution of the standardized residuals
and the standard normal distribution.

From Figure 4.9 we observe that the standardized residuals follow the standard
normal distribution in the interior of the domain while having slightly heavier tails.
This means that we observe more extreme values of the standardized residuals
than expected from a standard normal distribution. Since the residuals capture
the discrepancy between the true and estimated values for the target variable, this
behaviour might indicate that the linear model does not perform sufficiently well.

Based on the preliminary analysis, we will use a non-linear model for the
regression problem, with a normally distributed error term with heteroscedastic
variance. Additionally, we will consider a homoscedsatic model and compare
performance. The following section will present and describe the models in more
detail.

64 Experimental Setting

4.4 Models and Architectures

4.4.1 Mathematical model

The below model aims to model the acoustic log for shear waves yi given a set of
well-log measurements xi for sample i = 1, ..., N in the dataset. The relationship
between the explanatory variables xi and the target variable yi is assumed to be
non-linear and modelled by a feedforward neural network f(xi, φ). Furthermore,
a heteroscedastic noise model g(xi, ψ) is assumed, meaning that each sample is
assumed to be associated with an individual level of noise. These two assumptions
are drawn from the diagnostic plots in Section 4.3 above.

We consider the following mathematical model for the acoustic log.

yi = zi + εi,

zi = f(xi,φ),

εi ∼ N (0, s2
i),

si = g(xi,ψ), i = 1, . . . , N,

φj ∼ N (aj, b
2
j), j = 1, . . . , Kφ,

ψk ∼ N (ck, d
2
k), k = 1, . . . , Kψ.

∈ R, (4.1)

where yi is a measurement of the true, unobserved acoustic S-wave log zi, subject
to additive noise εi. The latent variables φ,ψ represents the parameters of the
prediction and noise models, respectively.

For a fully Bayesian treatment, we need to specify prior distributions for both
sets of parameters. The distribution of the parameters is then updated using VI
during training, approximating the corresponding posterior distributions.

Given φ,ψ and a set of explanatory variables x∗, the conditional acoustic log
for the S-wave is calculated as z = f(x∗, φ) and the measurement is represented by
the following generative model.

y|x∗,φ,ψ ∼ N (f(x∗,φ), g(x∗,ψ)2) ∈ R,
x∗ ∈ Rp, φ ∈ RLpred+1, ψ ∈ RLnoise+1,

(4.2)

where p is the number of explanatory variables and L{pred, noise} the number of hidden
layers of the predictive network and the noise model, respectively.

The measurements of the acoustic S-wave log is subject to epistemic uncertainty
through the parameters of the prediction model f(x, ψ) and aleatoric uncertainty
through the noise model g(x, ψ), aiming to capture measurement error and the
inherent randomness of the data-generating process.

The model in (4.1) is illustrated graphically as a probabilistic graphical model
(PGM) using plate notation in Figure 4.10. Each plate represents repeated
variables in the model, and the number of repetitions is marked on each plate.
Random variables, i.e. variables associated with a probability distribution, are
inscribed by circles, and the observed random variable is marked with a gray
background. Dependencies between variables are marked with arrows. The
dependency xi −→ εi shows that the noise model is input dependent,
i.e. heteroscedastic.

65

Figure 4.10: Probabilistic graphical model for the problem. Random variables
are inscribed with a circle. The observed random variable is marked with a gray
background.

The initial belief in the parameters of the models is encoded into the prior
distributions. We assume that the priors are fully factorized normal distributions,
meaning that the joint distribution of the parameters of a model can be expressed
as a product of the marginal distribution of all the parameters in the model3.
Thus, the prior distributions for the parameters in the prediction and noise model
take the following form.

p(φ) =

Kφ∏

j=1

N (φj|aj, b2
j),

p(ψ) =

Kψ∏

k=1

N (ψk|ck, d2
k).

Further on, the latent variables φ and ψ are collected into the single latent
variable θ. This allows to simplify the notation for the prior distribution of the
latent variables, by further assuming independence between the parameters of the
prediction and noise model.

p(θ) = p(φ)p(ψ) =
K∏

i=1

N (θi|µ̄i, σ̄i2),

µ̄ = (µ̄1, . . . , µ̄K) = (a1, . . . , aKφ , c1, . . . , cKψ) ∈ RK ,

σ̄ = (σ̄1, . . . , σ̄K) = (b1, . . . , bKφ , d1, . . . , dKψ) ∈ RK ,

(4.3)

where K = Kφ + Kψ is the total number of latent variables in the prediction and
noise models. The distribution of each latent variable is parametrized by a mean
and standard deviation, such that the total number of parameters is 2K.

The distribution of the latent variables is updated during training using
variational inference, approximating the true posterior distribution of the latent

3By assuming independence between the parameters

66 Experimental Setting

variables by a variational distribution. We have seen that in this case, the
inference problem reduce down to an optimization problem that yields the
variational distribution in the family Q that is most similar to the true posterior.

qλ(θ)∗ = argmin
qλ∈Q

DKL[qλ(θ)||p(θ|D)]

= argmax
qλ∈Q

L(qλ(θ))

= argmin
qλ∈Q

−L(qλ(θ)),

where L(qλ(θ)) is the ELBO loss

L(qλ(θ)) = Eqλ(θ)[log p(D|θ)]−DKL[qλ(θ)||p(θ)]. (4.4)

In the case of the above model assumptions in (4.1), (4.2) and (4.3), the ELBO
loss can be derived analytically. The derivation is found in Appendix B. Following
the derivation we end up with the following expressions for the terms in the ELBO
loss.

log p(D|θ) = −N
2

log 2π −
N∑

i=1

[
log g(xi,ψ)− 1

2

(
yi − f(xi,φ)

g(xi,ψ)

)2]
,

DKL[qλ(θ)||p(θ)] =
1

2

K∑

i=1

[
2 log

σ̄i
σi

+

(
σi
σ̄i

)2

+

(
µi − µ̄i
σ̄i

)2

− 1

]
,

where the expected log-likelihood is estimated using Monte Carlo sampling.

Eqλ(θ)[log p(D|θ)] ≈ 1

B

B∑

i=1

log p(D|θi),

where θi denotes the realization of the ith Monte Carlo sample from the variational
distribution for i = 1, . . . , B [7].

A common challenge when implementing Bayesian neural networks is setting
the prior distribution of its parameters. By imposing a prior distribution for a
parameter of interest, we are trying to encapsulate prior beliefs about the
parameter using a probability distribution. For black-box models like deep neural
networks, where the parameters offer no physical interpretation, the prior
specification becomes non-trivial. As mentioned in Section 2.5, specifying
meaningful priors for the parameters of deep neural networks is an active field of
research, and for computational simplicity we will make use of a standard normal
prior for all the parameters in the model. We are thus deploying the following
prior,

p(θ) =
K∏

i=1

N (θi|µ̄i = 0, σ̄i
2 = 1).

By using the above prior distribution for the parameters of the model, we obtain
the following simplified expression for the KL-divergence term in the ELBO-loss
(4.4).

DKL[qλ(θ)||p(θ)] =
1

2

K∑

i=1

[
2 log

1

σi
+ σ2

i + µ2
i − 1

]
,

67

where µi and σi are the parameters of the variational distribution for the ith
parameter of the model.

In the next part of this section, we will describe the architecture of the different
neural networks we consider.

4.4.2 Neural Network Architecture

The Bayesian neural network based on the two methods presented in Chapter 3
are implemented in a fully connected, feedforward manner. Both methods are
implemented using the same structure and configuration of hyper-parameters to be
able to compare performance appropriately. Furthermore, the predictive
performance of the Bayesian neural networks is compared to a deterministic neural
network with the same architecture.

We refer to the models implemented with Stochastic Gradient Variational
Bayes as SGVB models. The models implemented with Monte Carlo Dropout are
referred to as MC Dropout models. Both methods are implemented to model the
aleatoric uncertainty in a heteroscedastic and homoscedastic manner, and we are
thus concerned with four different model formulations. The models are
implemented using three fully connected layers, each consisting of 100
computational neurons. Furthermore, the dataset consists of a single target
variable with 42 explanatory variables. The number of input- and output nodes
are thus 42 and 1, respectively.

The models are built in a modular fashion. Each intermediate module consists
of a fully connected layer followed by a batch-normalization layer, a ReLU
activation function (2.6), and a dropout layer with a 10% dropout rate. The
module corresponding to the output layer consists of a fully connected layer
followed by a linear activation function (2.7).

A computational graph representing the model architecture, as well as the
different modules, are seen in Figure 4.11 below. The figure shows a homoscedastic
model where the aleatoric uncertainty is assumed constant and a heteroscedastic
model where the aleatoric uncertainty varies across samples in the dataset.

:

:

Figure 4.11: Architecture of the neural network models (top) for an input instance
xi, with modules M1−3 (bottom). The intermediate modules M1,2 consist of a fully
connected (FC) layer followed by a batch-normalization (BN) layer, ReLU activation
and a dropout (DO) layer. The output module M3 consist of a fully connected layer
followed by a linear activation function. In the homoscedastic setting (white output
node) the output of the model is ŷi, while in the heteroscedastic setting (both output
nodes) the outputs are ŷi and log σ2

i .

68 Experimental Setting

The aleatoric uncertainty is treated as a model parameter optimized alongside
the weights and biases by minimizing the loss for the homoscedastic models. In the
heteroscedastic setting, the models are made multi-headed, where the output of the
network for a single input instance is the predicted target variable as well as the
estimated aleatoric uncertainty (see Figure 4.11).

The models are trained using the Adam optimizer with an initial learning rate
of 10−4, minimizing the respective loss functions. Each model formulation is
concerned with a separate loss function depending on the method for implementing
the BNN and the nature of the aleatoric uncertainty. The SGVB models we are
trained using the ELBO loss (4.4), while the MC Dropout and deterministic
models are trained using the negative log-likelihood loss (3.5)-(3.4). Consequently,
we obtain a homoscedastic and heteroscedastic model for the deterministic
architecture. Note that by training the deterministic models with the NLL loss, we
obtain a probabilistic interpretation in terms of the aleatoric uncertainty. However,
we will not leverage the aleatoric uncertainty in the deterministic models. The
choice of loss function for the deterministic models is made to perform an
appropriate comparison with the probabilistic models. The difference between the
deterministic and probabilistic models is that the probabilistic models can reason
about the uncertainty in the parameters of the models and the uncertainty in the
data. In contrast, deterministic models are not able to do so.

To make sure the MC Dropout formulation is mathematically equivalent to
performing variational inference on the neural network parameters, we need to
train the models by adding a specific weight-decay parameter λ to the loss
function. The weight-decay parameter is calculated using the additional
hyper-parameters introduced by the prior specification of the MC Dropout models
(see Table 3.1). The models are implemented using a prior length scale l = 1.00,
corresponding to a standard normal prior distribution for the parameters of the
network. The model precision is set to τ = 1.00, which correspond to the following
weight decay parameter for the parameters in the dropout layers.

λDropout =
l2(1− p)

2Nτ
=

1.02(1− 0.10)

2 ·N · 1.0 = 2.43 · 10−6,

where N = 185 153 is the number of samples in the training set and p = 0.10
the dropout rate. Because dropout is only applied to the non-output layers of
the network, the weight-decay parameter for the parameters in the output layer
is slightly different. By not applying dropout we are setting the dropout rate to
p = 0.00, and the resulting weight-decay parameter is

λOutput =
l2(1− p)

2Nτ
=

1.02(1− 0.00)

2 ·N · 1.0 = 2.70 · 10−6.

During training, we perform mini-batch optimization in batches of 100 samples.
With 185 153 samples in the training set, we need to perform 1852 iterations every
epoch. The models are trained for ten epochs, which corresponds to 18 520 iterations
for optimizing the loss function and training each model.

The parameters of the MC Dropout models are initialized using the
He-initialization [24] to avoid the problem of exploding and vanishing gradients.
The aleatoric variance parameter in the homoscedastic models is initialized by
drawing samples from a standard normal distribution. In the heteroscedastic
models, the aleatoric variance is predicted using the multi-headed network, which
can be seen as an auxiliary model. The parameters of the auxiliary model are

69

initialized with the He-initialization, similar to the models providing the
predictions. For the SGVB models, the variational parameters representing the
mean and standard deviation of the parameters in the network are initialized with
a zero-mean normal distribution with standard deviation σ = 0.001. In both
methods, all the biases are initialized to zero4. The prior distribution for the
parameters are explicitly specified as a standard normal distribution for the SGVB
method, while implicitly specified as a standard normal by the weight-decay
parameter in the MC Dropout method.

The complete training configuration is summarized in Table 4.3 below.

Table 4.3: Hyper-parameters and training configuration for the neural networks.

Hyperparameter Value
Input nodes 43

Output nodes 1− 2
Hidden layers 3

Nodes in hidden layers 100
Non-output activation ReLU

Output activation Linear
Dropout rate 10%

Loss ELBO, NLL
Optimizer ADAM

Learning rate 10−4

Prior length scale 1.0
Precision 1.0

Weight-decay (non-output) 2.43 · 10−6

Weight-deacy (output) 2.70 · 10−6

Batch size 100
Epochs 10

Iterations 18 520

To analyze the convergence properties of the epistemic uncertainty, i.e. the
approximation uncertainty, we fit the above models using different fractions of the
training set. Referring back to section 3.5 this is done over the range of 10− 100%
of the entire training set, meaning that we need to fit 36 additional models5. To
separate the approximation uncertainty from the model uncertainty, we use the
same architecture described above for all these additional models. Moreover, to
look into the effect of the dropout rate on the epistemic uncertainty of the MC
Dropout models, we train two additional sets of models with dropout rates
p = {0.30, 0.50} for all the fractions of the training set. This is done for all the
considered models to be able to compare the results appropriately.

We fit four models with varying model complexity for the homoscedastic and
heteroscedastic SGVB models to look into the model uncertainty. One of the model
complexities is the one described above. This accounts for three additional models
for each of the two model formulations, resulting in six additional models. The MC
Dropout method is omitted because it is not possible to fit a linear model with
the method (see Section 3.1). The most simple model we consider is a Bayesian
linear regression model with no hidden layers. Additionally, we consider a Bayesian

4Also the mean and standard deviation of the biases in the SGVB method
5We need to consider nine additional models for each of the four model formulations we consider

70 Experimental Setting

neural network with a single hidden layer. For the single-layer model, the hidden
layer is equipped with batch-normalization, ReLU activation and a dropout layer,
identical to the modules M1,2 in Figure 4.11. The most complex model we consider
is a Bayesian neural network with ten hidden layers, each being identical to the
above-described modules with batch-normalization, ReLU activation and a dropout
layer. The output layer for these models is identical to the output module M3 in
Figure 4.11, with a fully connected layer coupled with a linear activation function. To
separate the model uncertainty from the approximation uncertainty, we are training
all the different model complexities using the entire training set.

4.5 Deep Learning Framework

All considered models are implemented in the Python programming language
using the PyTorch framework for deep learning [46]. Due to its simplicity, the MC
Dropout method is implemented in the standard PyTorch framework without
further extensions. However, a suitable configuration needs to be taken into
account to obtain mathematical equivalence to the Bayesian Deep Gaussian
Process. To implement the SGVB method, the deterministic feedforward layer of a
neural network is extended to a probabilistic Bayesian layer using variational
inference. The implementation of the latter method is based on the original article
introducing the method [7].

The source code for implementing the methods and performing the analyses can
be accessed in the GitHub repository for the thesis6.

6The repository is found here: https://github.com/christianlehre/thesis

https://github.com/christianlehre/thesis

Chapter 5

Results

The first two sections of this chapter present the results of the two different methods
for constructing BNNs. The presented results are shown as prediction curves, where
the predicted and true values of the acoustic log for shear waves are plotted against
depth for a single well in the test set. The prediction curves for the remaining
wells in the test set are found in Appendix C. Furthermore, the predictions are
equipped with 95% credible intervals. Doing so allows one to reason about the
uncertainty of the predictions provided by the models. The predictive performance
of the models are reported, and the performance of the two methods are compared
with a deterministic neural network with a similar architecture. The performance is
measured in a well-wise manner and over the entire test set, independent of wells.

A qualitative analysis of the aleatoric uncertainty is presented in the subsequent
section, where the explanatory variables are plotted alongside the aleatoric variance
provided by the heteroscedastic models. This is done to investigate whether the
estimated aleatoric uncertainty captures uncertainty in the data.

Next, the results regarding the quantitative evaluation of the uncertainty
estimates are presented. The presented results are aggregated calibration curves
across all the wells in the test set for each model. Separate calibration curves for
all the wells in the test set are found in Appendix D for all the considered models.

In the final sections of this chapter, we present the results regarding the analysis
of the different components of epistemic uncertainty.

It is important to note that the results are presented on a standardized scale,
meaning that we present the predictions and true values of the response in terms
of their corresponding z-scores (see Section 4.2.1). This is a result of the well-wise
scaling of the response variable, which makes it impossible to return to the original
scale without leveraging the true values of the response.

72 Results

5.1 MC Dropout

The predictions curves for well 30/8-5 T2 using the MC Dropout models are shown
in Figure 5.1. The homoscedastic model is in the left panel of the figure, while the
heteroscedastic model is in the right panel. The predictions (orange), as well as
the ground-truth values (blue), are plotted against depth, and the predictions are
equipped with 95% credible intervals based on the total predictive uncertainty
(green) and the epistemic uncertainty alone (red). The empirical coverage
probability (3.13) is marked in the title of each plot and is based on the total
predictive variance.

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 98.17%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 95.14%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure 5.1: Predictions (orange) and corresponding 95% credible intervals for the
total predictive uncertainty (green) and the epistemic uncertainty (red) for well
30/8-5 T2 in the test for the (a) homoscedastic and (b) heteroscedastic MC Dropout
models. The true values are shown in blue, and the empirical coverage probability
(3.13) is marked in the title of each plot.

We observe that the predictions from both models follow the true values well,
although there are some discrepancies. As for the uncertainty estimates provided by
the credible intervals, we see that there is very little epistemic uncertainty relative to
the total predictive uncertainty. Hence, there is a lot of aleatoric uncertainty present
in the data. For the homoscedastic model, i.e. where the aleatoric uncertainty is
assumed constant, the empirical coverage probability is 98.17%. This is greater
than what is expected by the 95% credible interval. Consequently, the provided
credible interval is too wide, and the predictions are thus under-confident. For the
heteroscedastic model, where the aleatoric uncertainty is allowed to vary among

73

samples, the empirical coverage is 95.14%, which is very close to the expected level
of the credible interval.

There is a clear distinction between the models in the credible intervals
provided by the total predictive uncertainty. However, the epistemic credible
intervals are seemingly comparable. Consequently, we say that the differences in
the total predictive credible intervals are attributed to the aleatoric uncertainty in
the data. Hence, we see that there are intervals along the depth of the well where
the heteroscedastic model estimates the aleatoric uncertainty to be greater than
the homoscedastic model and other intervals where the aleatoric uncertainty is
greater in the homoscedastic setting. In particular, for the heteroscedastic model,
we observe a spike in the aleatoric uncertainty around 3000 m, and an interval of
elevated aleatoric uncertainty from ∼ 3550 m to the end of the well. There is also
an interval around 3040−3150 m with frequently occurring spikes in the aleatoric
uncertainty, albeit the levels are not as high as the former spike at ∼ 3000 m.

Although the heteroscedastic spike in aleatoric uncertainty goes outside the range
of plotted values for the response in Figure 5.1, we added the figure to observe better
the epistemic uncertainty given by the red credible intervals. Figure 5.2 shows the
same predictions plot as in Figure 5.1, where the range of values for the response
covers the entire spike in aleatoric uncertainty.

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 98.17%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 95.14%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure 5.2: Predictions (orange) and corresponding 95% credible intervals for the
total predictive uncertainty (green) and the epistemic uncertainty (red) for well
30/8-5 T2 in the test for the (a) homoscedastic and (b) heteroscedastic MC Dropout
models. The true values are shown in blue, and the empirical coverage probability
(3.13) is marked in the title of each plot.

74 Results

From Figure 5.2, it is clear that there is an anomaly in the aleatoric uncertainty
around 3000 m for the heteroscedastic model and that the aleatoric uncertainty
provided by the homoscedastic model is much lower. We will analyze the data and
look for evidence of the increased levels of aleatoric uncertainty at particular depths
in section 5.3.

The loss curves for the models are shown in Figure 5.3. The homoscedastic model
is shown in the left panel, while the heteroscedastic model is shown in the right panel.
The training and validation loss is marked in blue and orange, respectively.

1 2 3 4 5 6 7 8 9 10
Epoch

100

200

300

400

500

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

Training
Validation

(a) Homoscedastic model

1 2 3 4 5 6 7 8 9 10
Epoch

0

100

200

300

400

500

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

Training
Validation

(b) Heteroscedastic model

Figure 5.3: Loss curves (3.5, 3.4) for the (a) homoscedastic and (b) heteroscedastic
MC Dropout models. The training loss is marked in blue, while the validation loss
is marked in orange.

We observe that both models converge properly from the above loss curves, and
there is no sign of over or under-fitting. The most notable difference between the two
models is the loss in the earlier epochs. After a single epoch, we see that the loss
is much greater for the homoscedastic than the heteroscedastic model. However,
the loss is decreasing rapidly, obtaining similar values to the heteroscedastic loss
after three epochs. In the subsequent epochs, the loss decreases steadily towards
convergence for both models.

To measure the predictive performance of the models, the MSE and MAE
performance metrics (3.10, 3.11) are calculated. The calculations are performed in
a well-wise manner as well as over the full test set. Doing so allows capturing the
difference in predictive performance that is not possible to observe with the naked
eye by looking at the prediction curves in Figures 5.1 and 5.2. The results of the
well-wise predictive performance for the MC Dropout models are shown in Table
5.1, where the better performing model for each metrics is marked in bold. The row
that corresponds to the well presented above is colored in yellow. The values are
presented as credible intervals represented by a single standard deviation around the
mean value of the distribution for each metric, obtained by the sampling approach
described in Section 3.3.

We observe that the heteroscedastic model consistently outperforms the
homoscedastic model, obtaining lower values for both performance metrics on all
wells except one. This highlights the importance of modelling the aleatoric
uncertainty in a heteroscedastic way for this problem. For well 25/4-10 S, the
homoscedastic model performs better in terms of the MSE metric.

The total predictive performance of the models are reported in Table 5.2.

75

Table 5.1: Well-wise predictive performance metrics (3.10, 3.11) for the
homoscedastic and heteroscedastic MC Dropout models. The better performing
model is marked in bold for each well and metric, and the yellow row shows the
above presented well.

Homoscedastic Heteroscedastic
Well MSE MAE MSE MAE

30/11-7 0.10529±
0.00114

0.24866±
0.00093

0.08559±
0.00075

0.21512±
0.00086

25/4-10 S 0.48009±
0.00782

0.50581±
0.00461

0.49171±
0.00711

0.49242±
0.00342

30/11-9 ST2 0.12385±
0.00188

0.25485±
0.00177

0.11505±
0.00168

0.25075±
0.00149

30/6-26 0.13192±
0.00179

0.26842±
0.00184

0.10342±
0.00148

0.24026±
0.00165

30/11-10 0.10339±
0.00084

0.25423±
0.00098

0.06603±
0.00065

0.19174±
0.00095

30/8-5 T2 0.13395±
0.00267

0.27394±
0.00180

0.12092±
0.00182

0.25919±
0.00160

25/7-6 0.10195±
0.00317

0.24914±
0.00243

0.08551±
0.00142

0.23276±
0.00221

30/11-11 S 0.11320±
0.00132

0.25360±
0.00149

0.11249±
0.00149

0.23722±
0.00137

Table 5.2: Predictive performance over the full test set for the homoscedastic and
heteroscedastic MC Dropout models. The better performing model is marked in
bold for each metric.

Homoscedastic Heteroscedastic
MSE 0.10037± 0.00045 0.09178± 0.00037
MAE 0.23539± 0.00050 0.21869± 0.00043

We see that the heteroscedastic model outperforms the homoscedastic model in
both performance metrics. This is expected by the consistently better performance
seen by the heteroscedastic model in Table 5.1.

76 Results

5.2 Stochastic Gradient Variational Bayes

The predictions curves for well 30/8-5 T2 using the SGVB models are shown in
Figure 5.4. The homoscedastic model is in the left panel of the figure, while the
heteroscedastic model is in the right panel. The predictions (orange), as well as
the ground-truth values (blue), are plotted against depth, and the predictions are
equipped with 95% credible intervals based on the total predictive uncertainty
(green) and the epistemic uncertainty alone (red). The empirical coverage
probability is marked in the title of each plot and is based on the total predictive
variance.

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 93.49%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 93.38%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure 5.4: Predictions (orange) and corresponding 95% credible intervals for the
total predictive uncertainty (green) and the epistemic uncertainty (red) for well 30/8-
5 T2 in the test for the (a) homoscedastic and (b) heteroscedastic SGVB models.
The true values are shown in blue, and the empirical coverage probability (3.13) is
marked in the title of each plot.

Similar to the MC Dropout models, the predictions provided by the SGVB
models follows the true values well, although there are some discrepancies. There
are no clear distinctions between the predictions provided by the different
methods, other than the discrepancy between the true and predicted values being
slightly greater for the SGVB models in the outer extremities of the well, in both
the homoscedastic and heteroscedastic setting.

Regarding the uncertainty provided by the credible intervals, it appears that the
epistemic uncertainty is practically negligible and even smaller compared to the MC
Dropout models. Hence, the total predictive uncertainty is mainly attributed to

77

the aleatoric uncertainty in the data. Moreover, the total predictive uncertainty is
seemingly comparable to the MC Dropout model.

The empirical coverage probabilities provided by the total predictive variance
of the models predictions are slightly lower than what we can expect from the 95%
probability level of the credible interval. Consequently, the corresponding credible
intervals are too tight, and the predictions are thus over-confident. The
homoscedastic model reports an empirical coverage probability of 93.49%, while
the heteroscedastic model gives a 93.38% coverage probability.

Similar to the heteroscedastic MC Dropout model, the corresponding SGVB
model has a spike in the aleatoric uncertainty at 3000 m depth, as well as an interval
of elevated aleatoric uncertainty from ∼ 3700 m to the end of the well. Moreover,
we observe that the credible interval is broader for the heteroscedastic SGVB model
than the MC Dropout model presented in the previous section.

In Figure 5.4 the aleatoric uncertainty spike extends beyond the plotted range of
values for the response. Figure 5.5 shows the same prediction plot, where the range
of plotted values covers the entire spike.

4 2 0 2 4 6 8 10
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 93.49%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 93.38%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure 5.5: Predictions (orange) and corresponding 95% credible intervals for the
total predictive uncertainty (green) and the epistemic uncertainty (red) for well 30/8-
5 T2 in the test for the (a) homoscedastic and (b) heteroscedastic SGVB models.
The true values are shown in blue, and the empirical coverage probability (3.13) is
marked in the title of each plot.

It is clear from Figure 5.5 that there is an anomaly in the aleatoric uncertainty at
∼ 3000 m. We will come back to this in section 5.3, where we will look for evidence
of the aleatoric uncertainty in the data.

78 Results

The loss curves for the models are shown in Figure 5.6. The left panel shows
the homoscedastic model, and the right panel shows the heteroscedastic model. The
training loss and validation loss is marked in blue and orange, respectively.

1 2 3 4 5 6 7 8 9 10
Epoch

0

25

50

75

100

125

150

175

200

EL
BO

 lo
ss

Training
Validation

(a) Homoscedastic model

1 2 3 4 5 6 7 8 9 10
Epoch

0

25

50

75

100

125

150

175

200

EL
BO

 lo
ss

Training
Validation

(b) Heteroscedastic model

Figure 5.6: Loss curves (3.7) for the (a) homoscedastic and (b) heteroscedastic SGVB
models. The training loss is marked in blue, while the validation loss is marked in
orange.

Based on the above loss curve, it looks like neither of the models has fully
converged, although the loss decreases steadily with the number of epochs.
Moreover, we observe that the loss curves are pretty noisy. However, this may be
an attribute of the stochastic optimization.

The well-wise predictive performance of the models are reported in Table 5.3,
where the row corresponding to the presented well in Figures 5.4 and 5.5 is marked
in yellow. The model that performs better in terms of each performance metric is
marked in bold for each well. Similar to the MC Dropout models, the values are
presented as credible intervals represented by a single standard deviation around the
mean value of the distribution of each metric. We observe that the heteroscedastic
SGVB model consistently outperforms the homoscedastic model in terms of both
the performance metrics we consider. Moreover, by comparing the performance with
the MC Dropout model in Table 5.2, we observe that the performance metrics for
the SGVB models are bigger than for the MC Dropout models for all the wells.
Consequently, the predictive performance is better for the MC Dropout models.

The predictive performance of the SGVB models over the full test set is
reported in Table 5.4 below. Just as for the MC Dropout models, we see that the
heteroscedastic SGVB model outperforms the homoscedastic model in terms of the
considered performance metrics over the entire test set. This is consistent with the
systematic better performance of the heteroscedastic model for all the wells shown
in Table 5.4

We report the predictive performance over the entire test set for all the models
we consider for a final comparison of predictive performance. In addition to the
probabilistic MC Dropout and SGVB models, we report the predictive performance
of a deterministic model with a similar architecture. The results are reported in
Table 5.5, where the better performing model in terms of the performance metrics
in each setting1 is marked in bold.

1referring to the nature of the aleatoric uncertainty

79

Table 5.3: Well-wise predictive performance metrics (3.10, 3.11) for the
homoscedastic and heteroscedastic SGVB models. The better performing model
is marked in bold for each well and metric. The yellow row shows the well presented
above.

Homoscedastic Heteroscedastic
Well MSE MAE MSE MAE

30/11-7 0.15315±
0.03021

0.27989±
0.02660

0.10337±
0.02499

0.23178±
0.02769

25/4-10 S 0.73720±
0.06574

0.66689±
0.03626

0.67566±
0.05298

0.62057±
0.02866

30/11-9 ST2 0.20350±
0.03487

0.28119±
0.02062

0.16109±
0.02662

0.27042±
0.01493

30/6-26 0.18307±
0.01990

0.29051±
0.01433

0.11108±
0.00783

0.24960±
0.00935

30/11-10 0.21669±
0.05689

0.34469±
0.04265

0.18715±
0.03902

0.32363±
0.03793

30/8-5 T2 0.24164±
0.02318

0.36032±
0.01994

0.16249±
0.01359

0.28349±
0.01272

25/7-6 0.06590±
0.00950

0.20124±
0.01709

0.05425±
0.00754

0.16853±
0.01178

30/11-11 S 0.20429±
0.02365

0.32203±
0.01864

0.17672±
0.02548

0.26638±
0.01548

Table 5.4: Predictive performance over the full test set for the homoscedastic and
heteroscedastic SGVB models. The better performing model is marked in bold for
each metric.

Homoscedastic Heteroscedastic
MSE 0.11659± 0.01715 0.09109± 0.00812
MAE 0.24990± 0.02137 0.21777± 0.01128

Table 5.5: Summary of predictive performance over the full test set for all considered
models. The best performing model in each setting, i.e. homoscedastic and
heteroscedastic, is marked in bold for each metric.

Homoscedastic Heteroscedastic
MSE MAE MSE MAE

MC Dropout 0.10037±
0.00045

0.23539±
0.00050

0.09178±
0.00037

0.21869±
0.00043

SGVB 0.11659±
0.01715

0.24990±
0.02137

0.09109±
0.00812

0.21777±
0.01128

Deterministic 0.11908 0.27258 0.09193 0.20618

For the Homoscedastic models, we see that the MC Dropout model outperform
the SGVB- and deterministic model in both considered performance metrics. We
observe that the SGVB model performs better than the other models in terms
of the MSE metric for the heteroscedastic models. Furthermore, we see that the
deterministic model outperforms both the probabilistic models in terms of the MAE
metric.

80 Results

5.3 Qualitative Analysis

This section will present a qualitative analysis of the aleatoric uncertainty of the
heteroscedastic models for the well presented in the above sections. By plotting
the aleatoric variance as a function of depth, alongside the explanatory variables,
we can investigate whether the estimated aleatoric uncertainty seen in Figures 5.1
and 5.4 respond to potentially occurring noise in the data. The homoscedastic
models are omitted from this analysis because the aleatoric uncertainty provided by
such models is constant. We can thus not investigate how noise in the explanatory
variables affects the aleatoric uncertainty at particular depths.

We have omitted the BS log as well as the rolling window features from the
analysis. The BS log, i.e. diameter of the borehead, is omitted because it is a
feature of the borehead rather than the rock formations in the subsurface. However,
the CALI log is strongly correlated with BS, as it is a physical measurement of the
diameter of the well. Omitting the rolling window features is done because they aim
to capture non-local information about the features. The rationale behind omitting
non-local information is that we want to look at how noise in the data translates
to the aleatoric uncertainty at particular depths. However, we can incorporate the
non-local information into the analysis simply by looking at the logs.

We will consider three different intervals of depth along the well, each associated
with different attributes of the aleatoric uncertainty described in the above sections.

The aleatoric variance in the leftmost plot in the below figures is plotted against
depth for the heteroscedastic MC Dropout model (green) and SGVB model (red).
The remaining plots show a subset of the explanatory variables against depth, where
the logs are plotted in blue and the corresponding gradients in orange.

81

In Figure 5.7 we consider an interval around the depths where we observe a distinct
spike in the aleatoric uncertainty.

0 10 20

2980

2990

3000

3010

3020

3030

3040

3050

De
pt

h
2
Aleatoric

5 0 5

AC

5 0 5

AI

5 0 5

DEN

5 0 5

NEU

5 0 5

CALI

5 0 5

GR

5 0 5

RMED
MCD
SGVB
Log
Gradient

Figure 5.7: Aleatoric variance alongside a subset of the explanatory variables against
depth for well 30/8-5 T2 around the spike in aleatoric uncertainty. In the leftmost
plot, the aleatoric variance for the MC Dropout model is marked in green, while the
SGVB model is marked in red. For the remaining figures, the logs are marked in
blue, and the corresponding gradients in orange. The different logs are marked in
the title of each plot.

We observe that both models behave similarly in terms of the provided
aleatoric uncertainty, with a spike at ∼ 3000 m. Moreover, we observe that the MC
Dropout is more affected, as the relative increase in magnitude is greater than for
the SGVB model. Furthermore, we observe that a majority of the considered logs
have missing measurement in the interval that extends over depths where the spike
occurs, namely AI, DEN, NEU and CALI. These logs are thus not affiliated with
the sudden increase in aleatoric uncertainty. Additionally, we see no change in the
aleatoric uncertainty at depths where the measurements for these logs resume.
However, we do observe that the AC log is vanishing exactly at depths where the
spike extends. The remaining logs, i.e. GR and RMED, are seemingly constant
over the interval and are thus not affiliated with the spike in aleatoric uncertainty.

82 Results

In Figure 5.8 we consider an interval of depths with frequently occurring spikes
in the aleatoric uncertainty, in particular for the MC Dropout model. We will not
consider every fluctuation of the aleatoric variance within the interval but
concentrate on the most notable changes.

0 1

3040

3060

3080

3100

3120

3140

De
pt

h

2
Aleatoric

5 0 5

AC

5 0 5

AI

5 0 5

DEN

5 0 5

NEU

5 0 5

CALI

5 0 5

GR

5 0 5

RMED
MCD
SGVB
Log
Gradient

Figure 5.8: Aleatoric variance alongside a subset of the explanatory variables against
depth for well 30/8-5 T2 over an interval with frequently occurring aleatoric spikes.
In the leftmost plot, the aleatoric variance for the MC Dropout model is marked in
green, while the SGVB model is marked in red. For the remaining figures, the logs
are marked in blue, and the corresponding gradients in orange. The different logs
are marked in the title of each plot.

We observe many depths within the considered interval where the aleatoric
uncertainty suddenly changes. Moreover, we see that the aleatoric uncertainty
provided by the MC Dropout model changes more notably than what is provided
by the SGVB model.

At the start of the considered interval, we observe a spike in the aleatoric variance
provided by the MC Dropout model, whereas the SGVB model provides no such
response. We can also observe that at the same depth, there is a spike in the DEN
log, as well as apparent noise in the AC, AI and GR logs. There are also slight
changes in the NEU and CALI logs, whereas the RMED log is seemingly constant.

A few meters deeper, roughly around 3050 m, we observe another spike in
aleatoric uncertainty provided by the MC Dorpout model. Similar to the shallower
spike, the SGVB model does not provide a response. At the same depths, we
observe a spike in the DEN log and sudden, although small, changes in the AC,
AI, NEU, CALI, and GR logs. Moreover, the RMED log is seemingly constant.

At depths slightly shallower than 3080 m we observe another sudden increase in
the aleatoric uncertainty provided by the MC Dropout model. For the SGVB model,
the provided uncertainty increases slightly, albeit not to the extent provided by the
MC Dropout model. At this depth, we observe a sudden increase in the DEN log
and a relatively big decrease in the CALI log. Moreover, we observe that the AC

83

and GR logs experience a steady increase over the interval that extends over the
spike in aleatoric uncertainty. However, this can not be seen as noise.

Slightly deeper than 3120 m we observe yet another spike in the aleatoric
uncertainty. At the same depths, we also observe a sudden increase in the DEN log
and a slight, sudden increase in AI. The remaining logs provide no interesting
features.

We observe that the DEN log is quite noisy over the entire interval we consider
and that there are depths in which the noise is more distinct than elsewhere. The
above-mentioned spikes in aleatoric variance are all situated at depths where the
noise in DEN is particularly high. For the remaining spikes in DEN, we observe an
accompanying response in the aleatoric variance. Moreover, the response is greater
for the variance provided by the MC Dropout than by the SGVB model. These
fluctuations are, however, not to the extent of the above-described spikes, but we
still observe that the aleatoric variance respond to noise in the DEN log.

In Figure 5.9 we consider an interval of depths where the aleatoric uncertainty
is notably elevated, namely at the deeper end of the well. Interestingly, the elevated
uncertainty remains high over a longer interval, unlike the above-described spikes.

0 2

3520

3525

3530

3535

3540

3545

De
pt

h

2
Aleatoric

5 0 5

AC

5 0 5

AI

5 0 5

DEN

5 0 5

NEU

5 0 5

CALI

5 0 5

GR

5 0 5

RMED
MCD
SGVB
Log
Gradient

Figure 5.9: Aleatoric variance alongside a subset of the explanatory variables against
depth for well 30/8-5 T2 in the interval of elevated aleatoric uncertainty at the end
of the well. In the leftmost plot, the aleatoric variance for the MC Dropout model
is marked in green, while the SGVB model is marked in red. For the remaining
figures, the logs are marked in blue, and the corresponding gradients in orange. The
different logs are marked in the title of each plot.

We observe that the aleatoric uncertainty provided by the models behave
similarly. However, we see that the SGVB model is more sensitive than the MC
Dropout model. We observe a slight increase in aleatoric uncertainty at ∼ 3520 m,
followed by a more notable increase. Unlike the spike above, there are no
significant features of the AC log, so the change in uncertainty is attributed to the
other logs. The same holds for the RMED log. We observe that the first increase

84 Results

occurs at the depth where the measurements of the NEU log disappears.
Moreover, we see that the subsequent increase in uncertainty occurs where the AI,
DEN and CALI logs start missing. We observe that the missing measurement
remains missing until the end of the interval, which might explain why the
elevated uncertainty levels remain high for the remaining part of the interval. We
also note an increase in the RMED log in the range 3525 − 3530 m, although not
an accompanying change in the aleatoric uncertainty. However, the observed
increase in RMED can not be seen as noise.

We have seen three intervals where the aleatoric uncertainty possesses
particular attributes and analyzed the explanatory variables to investigate whether
the estimated aleatoric uncertainty accounts for uncertainty in the data. From the
above findings, we have seen that the aleatoric uncertainty provided by both
models respond to noise in the explanatory variables, in particular, the MC
Dropout model. Furthermore, the aleatoric uncertainty increases when the logs
start missing and remains high if the logs remain missing. However, the aleatoric
uncertainty remains seemingly constant at depths where the measurements
resume, except when the AC log resume after the spike in aleatoric uncertainty
around 3000 m. Moreover, it seems as if the increase in aleatoric uncertainty
depends on the number of missing logs, where a greater number of missing logs
result in a greater increase in uncertainty.

85

5.4 Quantitatively Evaluating the Predictive

Uncertainty

A set of calibration curves are constructed for each model we consider to
quantitatively evaluate the quality of the uncertainty estimates provided by the
models. Due to the structure of the dataset, we construct a single calibration curve
for each well in the test set. To aggregate the results, we present a single
calibration curve using the empirical mean coverage probability across the test
wells and provide a 95% credible interval around the mean. This allows one to
reason about the uncertainty of the estimated uncertainty, at least to the extent of
the wells in the test set. Separate calibration curves for all the test wells are found
in Appendix D.

The aggregated calibration curves for the MC Dropout models are shown in
Figure 5.10, where the homoscedastic and heteroscedastic models are shown in the
left and right panel, respectively. The mean coverage probability is marked with a
red star for every significance level, and the corresponding credible interval is seen
as the gray, shaded area around the mean. A perfectly calibrated model coincides
with the black, dotted line.

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(a) Homoscedastic model

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(b) Heteroscedastic model

Figure 5.10: Calibration plot across wells for the (a) homoscedastic and (b)
heteroscedastic MC Dropout models. The mean empirical coverage (3.13) across
the wells are shown as red stars, and a 95% credible interval is shown in grey. The
diagonal, dotted line represents a perfectly calibrated model.

We observe that both models are well-calibrated, although not perfectly. The
mean calibration across wells are above the diagonal for almost all significance
levels for both models, showing that the uncertainty is over-estimated. There is no
clear distinction between the homoscedastic and heteroscedastic model, other than
the variability in calibration across wells is slightly greater for the heteroscedastic
model, shown by the broader credible interval across the mean coverage
probability. Moreover, we observe that the diagonal line corresponding to a
perfectly calibrated model falls inside the credible interval around the mean
calibration for both models.

The aggregated calibration curves for the SGVB models are shown in Figure 5.11,
where the homoscedastic and heteroscedastic model is shown in the left and right
panel of the figure, respectively. The mean coverage probability across the wells is
marked as a red star for every significance level, and a 95% credible interval around

86 Results

the mean is shown in gray. The black dotted line represents a perfectly calibrated
model.

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(a) Homoscedastic model

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(b) Heteroscedastic model

Figure 5.11: Calibration plot across wells for the (a) homoscedastic and (b)
heteroscedastic SGVB models. The mean empirical coverage (3.13) across the wells
are shown as red stars, and a 95% credible interval is shown in grey. The black
dotted line represents a perfectly calibrated model.

We observe that both models are well-calibrated, with a mean calibration that
fits close to the diagonal line representing a perfectly calibrated model. Moreover,
we observe that the diagonal line falls inside the credible interval for both the
homoscedastic and heteroscedastic model.
Compared to the MC Dropout models in Figure 5.10, the mean calibration of the
SGVB models is closer to the diagonal line. Consequently, the uncertainty
estimates provided by the SGVB models are more properly estimated than the
uncertainty estimates provided by the MC Dropout models. However, we observe
that the across well variability is greater for the SGVB than the MC Dropout
models, represented by the broader credible intervals. Hence, the mean calibration
across wells is more uncertain for the SGVB models.

In the next part of this section, we will investigate the effect of modelling and
including the aleatoric component to the total predictive uncertainty.

87

5.4.1 Effect of Modelling the Aleatoric Uncertainty

A set of calibration curves based on the epistemic uncertainty alone are
constructed to look into the effect of modelling the aleatoric uncertainty. The
resulting calibration curves are then aggregated, just as for the previous part of
this section. By looking at the differences in calibration based on the epistemic
and total predictive uncertainty, we can investigate the effect of modelling the
aleatoric uncertainty.

Figure 5.12 below shows the aggregated calibration curves for the MC Dropout
models based on the total predictive uncertainty (Figures 5.12a and 5.12b) and the
epistemic uncertainty alone (Figures 5.12c and 5.12d). The homoscedastic model is
shown in the left column (Figures 5.12a and 5.12c), while the heteroscedastic model
is shown in the right column (Figures 5.12b and 5.12d) of the figure.

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(a) Total predictive uncertainty

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(b) Total predictive uncertainty

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(c) Epistemic uncertainty alone

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(d) Epistemic uncertainty alone

Figure 5.12: Calibration plots for a homoscedastic (left) and heteroscedastic (right)
MC Dropout model based on (a)-(b) the total predictive uncertainty and (c)-(d) the
epistemic uncertainty alone. The mean empirical coverage (3.13) across the wells
are shown as red stars, and a 95% credible interval is shown in grey. A perfectly
calibrated model is represented by the diagonal, dotted line.

We observe that the calibration curves based on the epistemic uncertainty
alone are much different from the calibration curves based on the total predictive
uncertainty for both models, particularly in the intermediate range of significance
levels. The curves are under the diagonal line, showing that the uncertainty is
under-estimated. Moreover, we observe that the differences between total and
epistemic calibration are more notable for the heteroscedastic model.

88 Results

In Figure 5.13 below we see the aggregated calibration curves for the SGVB
models based on the total predictive uncertainty (Figures 5.13a and 5.13b) and the
epistemic uncertainty alone (Figures 5.13c and 5.13d). The left column
(Figures 5.13a and 5.13c) corresponds to the homoscedastic model, while the right
column (Figures 5.13b and 5.13d) corresponds to the heteroscedastic model.

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(a) Total predictive uncertainty

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(b) Total predictive uncertainty

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(c) Epistemic uncertainty alone

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5

0.9
9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Empirical mean
Theoretical
95% CI

(d) Epistemic uncertainty alone

Figure 5.13: Calibration plots for a homoscedastic (left) and heteroscedastic (right)
SGVB model based on (a)-(b) the total predictive uncertainty and (c)-(d) the
epistemic uncertainty alone. The mean empirical coverage (3.13) across the wells
are shown as red stars, and a 95% credible interval is shown in grey. A perfectly
calibrated model is represented by the diagonal, dotted line.

As for the MC Dropout models, we clearly see that the calibration curves based
on the epistemic uncertainty alone are very different from the calibration curves
based on the total predictive uncertainty for both SGVB models. The curves are
far below the diagonal line, showing that the uncertainty is highly under-estimated.

By including the aleatoric uncertainty, thus obtaining the total predictive
uncertainty, the uncertainty estimates yields empirical coverage probabilities that
are more similar to the significance levels of the corresponding confidence intervals.
Consequently, the uncertainty estimates provided by the total predictive
uncertainty are more suitable than the epistemic uncertainty for explaining the
predictive uncertainty of the models. This highlights the importance of including
the aleatoric uncertainty in quantifying the predictive uncertainty of the models
for the dataset we consider. Moreover, the differences in the calibration curves
imply that the aleatoric uncertainty dominates the total predictive uncertainty.

89

5.5 Epistemic Uncertainty and Training Set Size

To look into the convergence properties of the epistemic uncertainty with respect to
the amount of observed data, we train all our models on different fractions of the
entire training set. We consider evenly spaced fractions in the range 10−100%, and
the different training sets are constructed by randomly sampling the entire training
set. For each fraction of the training set, the epistemic uncertainty is aggregated by
computing the mean standard deviation of the predictive distributions for all the
samples in the entire test set. Using the same architecture, i.e. hypothesis space, for
all the models allows to study the approximation uncertainty, i.e. the component of
the epistemic uncertainty that represent the amount of observed data.

In Figure 5.14 we see the aggregated epistemic uncertainty for all the considered
models against the different fractions of the training set. The homoscedastic MC
Dropout model is shown in orange, while the heteroscedastic MC Dropout model is
shown in blue. For the SGVB models, the homoscedastic model is marked in red,
while the heteroscedastic model in marked in green.

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fraction of training set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ep
ist

em
ic

un
ce

rta
in

ty

MC Dropout Heteroscedastic
MC Dropout Homoscedastic
SGVB Heteroscedastic
SGVB Homoscedastic

Figure 5.14: Epistemic uncertainty for all the considered models trained on varying
sized training sets.

For the SGVB models, we see that the epistemic uncertainty decrease steadily
and seemingly converge at 90% of the entire training set. This in is compliance
with the stated property of the epistemic uncertainty being reducible with respect
to new information. Moreover, we observe that the epistemic uncertainty for the
heteroscedastic model is generally lower than for the homoscedastic model,
particularly before the epistemic uncertainty has converged.

Regarding the MC Dropout models, the situation is quite different. We observe
that the aggregated epistemic uncertainty is seemingly constant across fractions of
the dataset and thus independent of the size. The epistemic uncertainty is, in this
case, not reducible with respect to new information, which is not compliant with
the stated property of the epistemic uncertainty. Note that the presented results in
Figure 5.14 consider the architecture described in Section 4.4 with a 10% dropout
rate.

Referring back to section 3.1, the posterior predictive distribution of the
parameters in the MC Dropout models, and thus the epistemic uncertainty, is
directly related to the dropout rate used to train the models.

In Figure 5.15 we see the epistemic uncertainty against varying fractions of the
training set using a dropout rate of 30% (Figure 5.15a) and 50% (Figure 5.15b).

We observe that the epistemic uncertainty of the MC Dropout models highly
depends on the dropout rate, while the SGVB models are seemingly unaffected.

90 Results

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fraction of training set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ep
ist

em
ic

un
ce

rta
in

ty

MC Dropout Heteroscedastic
MC Dropout Homoscedastic
SGVB Heteroscedastic
SGVB Homoscedastic

(a) 30% dropout rate

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Fraction of training set

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ep
ist

em
ic

un
ce

rta
in

ty

MC Dropout Heteroscedastic
MC Dropout Homoscedastic
SGVB Heteroscedastic
SGVB Homoscedastic

(b) 50% dropout rate

Figure 5.15: Epistemic uncertainty provided by all the considered models for varying
sized training sets with (a) 30% and (b) 50% dropout rates.

The epistemic uncertainty of the MC Dropout models seem to increase with the
dropout rate, and it is apparent that the difference between the homoscedastic and
heteroscedastic model increase as well. Furthermore, by increasing the dropout rate,
we observe that the epistemic uncertainty starts to decrease to a greater extent when
observing greater fractions of the training set, making the epistemic uncertainty
reducible with respect to new information. It is also apparent that the epistemic
uncertainty of the heteroscedastic models is oscillating to a greater extent than for
the homoscedastic model.

For the SGVB models, we observe the same steadily decreasing trend in the
epistemic uncertainty as in Figure 5.14, where the heteroscedastic model has a lower
level of epistemic uncertainty than the homoscedastic model for all the fractions of
the entire training set. Moreover, we observe that the epistemic uncertainty of the
models converges to approximately the same level for all the considered dropout
rates, unlike the MC Dropout models.

91

5.6 Epistemic Uncertainty and Model

Complexity

To investigate the epistemic uncertainty with respect to the hypothesis space, we
consider a set of different architectures and study how the epistemic uncertainty
changes. Letting the models observe the same amount of data during training allows
studying how the model uncertainty is affected by changing the hypothesis space
because the resulting approximation uncertainty is expected to be approximately
constant2.

In Figure 5.16 the aggregated epistemic uncertainty over the full test set is
plotted against an increasingly big hypothesis space for the homoscedastic (red)
and heteroscedastic (green) SGVB models. In the left panel of the figure, we see
the full range of the resulting epistemic uncertainty, and in the right panel, the
values on the vertical axis are restricted to be able to observe the differences
between the models. The different hypothesis spaces, or equivalently, model
complexities, are described in section 4.4.2.

Linear Single layer Intermediate Complex
Model complexity

0

2

4

6

8

Ep
ist

em
ic

un
ce

rta
in

ty

SGVB Heteroscedastic
SGVB Homoscedastic

(a) Entire range of values on the vertical axis

Linear Single layer Intermediate Complex
Model complexity

0.05

0.10

0.15

0.20

0.25

0.30

Ep
ist

em
ic

un
ce

rta
in

ty

SGVB Heteroscedastic
SGVB Homoscedastic

(b) Restricted range of values on the vertical axis

Figure 5.16: Epistemic uncertainty for varying model complexities for the SGVB
models. In (a) the entire range of values are plotted, whereas a restricted range
of values are plotted in (b). The homoscedastic model is marked in red, while the
heteroscedastic model is marked in green.

From Figure 5.16a we observe that the epistemic uncertainty provided by the
linear models are far greater than the other complexities, where the heteroscedastic
model result in a greater value than the homoscedastic model. By increasing the
hypothesis space from a linear to a single layer model, the epistemic uncertainty is
explained away and is seemingly constant over the remaining model complexities.
Consequently, we can say that a single layer model is sufficient for explaining away
the model uncertainty, whereas a linear model does not suffice.

In fig. 5.16b, where the values on the vertical axis are restricted to a smaller range,
we observe that the minimum value is obtained for the single-layer model and that
the values increase slightly with increasing model complexity. Moreover, we see that
the heteroscedastic model obtain lower values of the epistemic uncertainty for these
model complexities, unlike the linear hypothesis space where the homoscedastic
model achieves a lower value. However, both the increase and differences between

2We do, however, expect the approximation uncertainty to increase when using more complex
models, as they require more training data to converge

92 Results

the models are marginally small compared to the transition from a linear to a single-
layer model.

Chapter 6

Discussion

A discussion of the results is presented in this chapter. The discussion follows the
same structure as the results, with separate sections for each part. The chapter is
concluded by discussing real-world consequences of the findings and proposals for
future work.

Referring back to Section 1.5, the goal of this thesis was first and foremost to
construct and apply Bayesian neural networks that can quantify their predictive
uncertainty in a problem setting provided by the company this thesis is written in
collaboration with. Furthermore, the predictive uncertainty of the BNNs was
decomposed into its aleatoric and epistemic components, and the aleatoric
uncertainty was modelled in a homoscedastic and heteroscedastic way. Having
decomposed the predictive uncertainty into the different components, the aleatoric
uncertainty was qualitatively validated by investigating whether it responds to
noise in the data. The uncertainty estimates were quantitatively evaluated using
calibration curves to make sure the provided uncertainty is reliable. Regarding the
epistemic uncertainty, an analysis was carried out to investigate the different
sources of such, namely the approximation and model uncertainty.

Two methods for constructing BNNs were implemented, namely Monte Carlo
Dropout and Stochastic Gradient Variational Bayes. Both methods rely on
variational inference for updating the distributions of the parameters of the neural
networks. Furthermore, the MC Dropout method was expanded from its original
formulation in [16, 17], where the aleatoric uncertainty of the data is specified as a
hyper-parameter. The novelty in the applied MC Dropout method lies in the fact
that the negative log-likelihood function was used as a loss function to model the
aleatoric uncertainty using data. This has previously been done using the SGVB
method [20] and follows directly from the probabilistic interpretation of the model
specification.

94 Discussion

6.1 Methods for Obtaining Bayesian Neural

Networks

This part of the discussion considers the presented results in Section 5.1 and 5.2.

The results from the presented prediction curves for both methods in Figures 5.1
and 5.4 show that the predictions follow the ground truth values well, although
there are some discrepancies. The differences between the methods are practically
negligible, except for a greater discrepancy between the predicted and true values in
the outer extremities of the well for the SGVB method. Regarding the uncertainty
provided by the credible intervals around the predictions, the methods seem to
behave similarly, in particular for the spike we observe at ∼ 3000 m and the interval
of elevated aleatoric uncertainty in the deeper end of the well for the heteroscedastic
models. However, we can observe that the epistemic uncertainty provided by the
SGVB models is lower than what is provided by the MC Dropout models. The
epistemic uncertainty directly follows from the posterior predictive distribution of
the parameters of the models. For the MC Dropout models, this depends solely on
the dropout rate used to train the models. On the contrary, the posterior predictive
distribution for the parameters of the SGVB models is learned by updating the
prior to obtain the posterior during training. One can thus argue that the epistemic
uncertainty provided by the SGVB model is more flexible than the MC Dropout
models, as the posterior distribution of the parameters of the latter is set as a
hyper-parameter rather than being learned from data.

There is a clear difference in the credible intervals around the predictions
provided by the homoscedastic and heteroscedastic models. The difference arises
from the fact that the homoscedastic models provide a constant aleatoric
uncertainty, while the heteroscedastic models allow the aleatoric uncertainty to
vary across samples. Hence, there will be intervals where the aleatoric uncertainty
provided by the homoscedastic model is over-estimated and other intervals where
the uncertainty is under-estimated. We observe that the empirical coverage
probability is greater than expected from the 95% credible interval for the MC
Dropout models, and the corresponding credible intervals are too wide. For the
heteroscedastic model, the empirical coverage probability is only slightly higher
than expected. This might imply that the constant aleatoric uncertainty is
over-estimated for a majority of the predictions provided by the homoscedastic
model. For the SGVB models, the empirical coverage probabilities provided by
both models are comparable, although lower than expected from the probability
level of the credible intervals.

The ground-truth values for the uncertainty of the predictions are not
available, and we have to rely on calibration curves to investigate whether the
estimated uncertainty is appropriately estimated. However, this will only apply to
the entire test set and does not allow to investigate whether the uncertainty is
properly estimated at particular depths of interest. We can, however, perform a
qualitative analysis of the aleatoric component of the predictive uncertainty to
confirm or reject potentially occurring intervals of elevated aleatoric uncertainty.

Regarding convergence of the training, we see from Figure 5.3 that both MC
Dropout models converge properly. Moreover, we observe that the magnitude of
the homoscedastic loss is notably higher than the heteroscedastic loss after the
first epoch. The difference in magnitude might be a result of poor initialization of
the parameter representing the aleatoric uncertainty in the homoscedastic model,
resulting in a high value of the loss in the first pass through the training set.

95

Referring back to Section 4.4.2 the parameter is initialized by drawing samples
from a standard normal distribution. In contrast, the parameters of the model
predicting the heteroscedastic aleatoric uncertainty are initialized with the robust
He-initialization. For the SGVB models, we see in Figure 5.6 that neither the
homoscedastic nor heteroscedastic model has converged properly after ten epochs.
Referring back to Section 3.2 we have that each parameter in the SGVB models
contains two learnable parameters, namely the variational parameters representing
the mean and standard deviation of the corresponding distributions. Consequently,
the SGVB models contain twice the number of learnable parameters than the MC
Dropout models, and the optimization requires more iterations to converge. There
are, however, no clear distinction between the homoscedastic and heteroscedastic
models, although the heteroscedastic model contains even more parameters than
the homoscedastic model1.

In terms of predictive performance across all the wells in the test set, we see
that the heteroscedastic models consistently outperform the homoscedastic models
in both performance metrics we consider. There is, however, one exception for well
25/4-10 S, where the homoscedastic MC Dropout model outperforms the
corresponding heteroscedastic model in terms of the MAE metric. This indicates
that there are greater discrepancies between the true and predicted values for the
heteroscedastic than the homoscedastic MC Dropout model for that particular
well. Looking at the prediction curve for well 25/4-10 S in Figure C.1, we do
observe a greater discrepancy for the heteroscedastic model, in particular in the
shallower end of the well. Moreover, we observe that the majority of the samples
in the well are missing, causing the corresponding performance metrics to be
exceptionally high for all the considered models.

The predictive performance over the entire test set shows that the heteroscedastic
models perform better than the homoscedastic models for both methods. This is
expected by the consistently better well-wise performance. The better performance
of the heteroscedastic models highlights the importance of allowing the aleatoric
uncertainty to vary across samples in the dataset we consider. Not only will the
heteroscedastic models provide a richer representation of the uncertainty, they also
improve the predictive performance over the homoscedastic models.

We observed that the values of the performance metrics for the SGVB models
are generally higher than the corresponding values for the MC Dropout models.
This implies that the MC Dropout models provide a better fit to the dataset than
the SGVB models and explains the greater discrepancy between the true and
predicted value of the SGVB models in the outer extremities of the presented well,
as mentioned above. Moreover, the performance metrics provided by the SGVB
models are associated with greater uncertainty. The predictive performance is thus
better for the MC Dropout models, although the performance metrics provided by
the SGVB models are more uncertain. This can be seen in conjunction with the
fact that both MC Dropout models have converged after ten epochs, while the
SGVB models are still converging (see figs. 5.3 and 5.6).

Regarding the model-wise comparison, we see that the homoscedastic MC
Dropout models outperform SGVB and the deterministic architecture in terms of
both performance metrics. For the heteroscedastic models, we have that the SGVB
model outperform the other models in terms of the MSE metric, while the
deterministic model performs better in terms of the MAE metric. However, we do
observe that both probabilistic models outperform the deterministic in terms of

1due to the auxiliary model predicting the aleatoric log-variance

96 Discussion

the MSE metric. This implies that there are greater discrepancies between the
predicted and true values for the deterministic than the probabilistic models, as
the MSE metric is more sensitive to discrepancies than MAE. This is because the
former calculates the squared error, while the latter calculates the error in absolute
terms (See (3.10)).

The ground-truth values of the predictive uncertainty are not available, and we
can thus not measure how well the uncertainty is estimated. Referring back to
Section 2.1.2, the aleatoric uncertainty aims to capture the uncertainty in the data.
By comparing the estimated aleatoric uncertainty with the explanatory variables in
the dataset, we can investigate whether the aleatoric uncertainty emerges from the
data. We performed such an analysis in Section 5.3, and the results are discussed
in the next section.

97

6.2 Qualitative Analysis

From the qualitative analysis of the aleatoric uncertainty presented in Section 5.3,
we see that the aleatoric uncertainty provided by the heteroscedastic models respond
to noise and missing values in the explanatory variables, albeit to different extents.
This is precisely what we expect from the definition of aleatoric uncertainty, which
represents uncertainty in the data. The MC Dropout model is seemingly more
sensitive than the SGVB model for sudden changes in the explanatory variables,
while the aleatoric uncertainty provided by the SGVB models is more affected when
logs are missing. Regarding missing logs, we see no particular response in the
aleatoric uncertainty when measurements resume, except from the anomaly around
3000 m (see Figure 5.7). Ideally, we would have elevated uncertainty levels where
logs are missing and a similar decrease when measurements resume. However, we
only observe elevated uncertainty levels in the transition where measurements are
vanishing and only a single case of the opposite effect in the transition from missing
to resuming measurements.

We investigated three intervals along the depths of the presented well where the
aleatoric uncertainty changes (see Figures 5.7 to 5.9). Around 3000 m depth, we
observe a spike in the aleatoric uncertainty provided by both models. A majority of
the logs are missing before and after the spike and are thus not affiliated with the
response. However, the AC log vanishes exactly at the depths in which the spike
occur. Thus, the aleatoric uncertainty is very sensitive to changes in the AC log,
and the MC Dropout model is more affected than SGVB. Note that the only logs
present around the depths at which the spike occur are GR and RMED. The great
magnitude of the spike might be a combination of all the missing logs, and that there
are only two logs present for explaining the response. This should be expected, as
the predictions have more degrees of freedom in the case of more missing explanatory
variables. Moreover, from a physical perspective, the GR and RMED logs are not
nearly enough to accurately infer the value of the response variable ACS. In this
case, we cannot say that the missing logs that extend across the anomaly do not
contribute to the increased uncertainty. However, we see that these logs are missing
before and after the spike and that the aleatoric uncertainty return to its seemingly
constant pre-spike value when the measurements of the AC log resume. From a
physical perspective, the most important variable to the regression is AC because
AC and ACS are typically strongly correlated except in the presence of pore fluids.
Consequently, the above-described sensitivity of the aleatoric uncertainty to the AC
log is expected.

In the interval around 3040−3150 m, we see that the aleatoric uncertainty is quite
noisy. This can be explained by the noise in the explanatory variables, in particular
in the DEN log. We observe that the aleatoric uncertainty spikes at depths where the
noise in DEN is abnormally high. Moreover, we see that the aleatoric uncertainty is
even more affected when the other logs experience sudden changes on top of the noisy
DEN log. In general, spikes in the DEN log are evidence of so-called stringers, short
intervals of particularly hard rocks. During drilling, an encounter with a stringer
cause problems and difficulties when taking measurements, and the resulting data
is typically noisy. The rapid spikes we observe in the DEN log in Figure 5.8 might
be a result of rapidly occurring stringers, causing the measurements to be noisy and
uncertain.

In the deeper end of the well, we observe an interval of elevated aleatoric
uncertainty, and the high levels are associated with missing logs. Moreover, we

98 Discussion

observe that the aleatoric uncertainty increase in a step-wise manner. At first, we
see a slight increase in uncertainty at depths where the NEU log vanishes.
Subsequently, there is an even greater increase in the uncertainty levels at depths
where the logs for AI, DEN and CALI disappear simultaneously. Consequently, we
can say that the amount of which the aleatoric uncertainty increase depends on
the number of missing logs. This is expected, as the predictions should be more
uncertain when more explanatory variables are missing. The missing logs remain
missing until the end of the well, and the aleatoric uncertainty responds by
remaining high. We observe that the SGVB model is more affected than the MC
Dropout model in the case of missing logs.

By performing a qualitative analysis as presented in Section 5.3, we can
validate whether the attributes of the aleatoric uncertainty originates from noise in
the data at particular depths. However, this type of analysis will not provide a
numerical value for how accurately the uncertainty is estimated. The calibration
curves presented in Section 5.4 allows to state how well the uncertainty is
estimated numerically, and a discussion of the results follows in the next section.

99

6.3 Quantitatively Evaluating the Predictive

Uncertainty

This section is a discussion of the results regarding the evaluation of the uncertainty
estimates presented in Section 5.4.

From the aggregated calibration curves in Figures 5.10 and 5.11 we see that all the
models provide uncertainty estimates that are close to a perfectly calibrated model
represented by the diagonal line. Moreover, we see that both methods yield credible
intervals with empirical coverage probabilities that are slightly above the significance
levels, meaning that the credible intervals are broader than what is expected by
the corresponding confidence intervals. Consequently, the uncertainty estimates
are over-estimated, causing the models to yield under-confident predictions. In a
practical scenario where the predictions are passed to a human for further inspection,
if the provided uncertainty is above some specified threshold, these models would
slow down the automation process as potentially correct predictions would be passed
to a human more rapidly than if the uncertainty estimates were perfectly calibrated.
This is, however, more conservative than the opposite situation, where potentially
erroneous predictions would pass through without human inspection more rapidly,
causing potential harm.

Although the uncertainty is slightly over-estimated, the perfectly calibrated
model falls within the 95% credible interval around the mean empirical coverage
probability for all the models we consider. Hence, there is a 95% probability that
the uncertainty estimates provided by the models are perfectly calibrated.

For the MC Dropout model, we observe that the cross-well variability in
empirical coverage is larger for the heteroscedastic than the homoscedastic model.
This means that the uncertainty of the uncertainty estimates are greater for the
heteroscedastic model. Regarding the SGVB models, there is no apparent
difference in the credible interval around the empirical coverage. However, we
observe that the credible intervals are notably wider for the SGVB models than
the MC Dropout models. This implies that the estimated uncertainty provided by
the SGVB models are more uncertain than the estimates provided by the MC
Dropout models, as the cross-well variability is greater for the former.

Compared to the MC Dropout models, we see that the mean empirical coverage
lies closer to the diagonal line for the SGVB models. Hence, the SGVB method
provides more trustworthy uncertainty estimates than MC Dropout. This might be
explained by the fact that the variance of the posterior distribution of the parameters
in the SGVB models are learned during training, while the variance is set as a hyper-
parameter in the MC Dropout models. Consequently, the variance of the parameters
in the SGVB models are more flexible than for the MC Dropout models.

Furthermore, we observed that the calibration curves based on the epistemic
uncertainty alone are located far below the diagonal line. Consequently, the
uncertainty is highly under-estimated, and the predictions are thus over-confident.
This highlights the importance of modelling the aleatoric uncertainty as part of
the predictive uncertainty, as uncertainty measures based on the epistemic
uncertainty alone yields over-confident predictions. In Section 1.2 we described a
non-Bayesian method for obtaining the predictive uncertainty in neural networks
by training an ensemble of such, each having a different initialization of the
parameters. The method proposed in [38] estimates the predictive uncertainty by
the sample variance of the predictions provided by the ensemble. This approach is
analogous to estimating the epistemic uncertainty in the Bayesian neural networks

100 Discussion

we consider. Consequently, the predictive uncertainty provided by the deep
ensemble on the dataset we consider is likely to under-estimate the uncertainty of
the predictions. Moreover, the authors in [38] does not provide any evaluation of
the uncertainty estimates in a regression setting2, although they state that the
deep ensemble yields high-quality uncertainty estimates.

The differences in the calibration curves based on the total predictive
uncertainty and the epistemic uncertainty alone can be explained intuitively by
using the calibration curves based on the total predictive uncertainty in
Figures 5.10 and 5.11 in conjunction with the prediction curves presented in
Figures 5.1, 5.2, 5.4 and 5.5 and the remaining prediction curves in Appendix C.
From the prediction curves, we observe that the aleatoric uncertainty constitutes
the majority of the total predictive uncertainty, as the credible interval based on
the total predictive uncertainty is far wider than the credible intervals based on
the epistemic uncertainty alone. Moreover, we observe from the calibration curves
based on the total predictive uncertainty that the uncertainty is properly
estimated. By excluding the aleatoric uncertainty, we are removing a majority of
the uncertainty, and the resulting credible intervals become much tighter. As a
result, the uncertainty estimates based on the epistemic uncertainty alone becomes
highly under-estimated, and the resulting calibration curves will lie below the
diagonal.

The fact that there is a greater uncertainty attached to estimating the
uncertainty provided by the SGVB models needs to be seen in conjunction with
how the distribution of the parameters is obtained and the distribution of the
response variable across the dataset. As mentioned above, the variance of the
parameters provided by the MC Dropout method is essentially set as a
hyper-parameter while being learned during training for the SGVB method. One
can thus argue that the variance provided by the SGVB method is more reliable
than provided by MC Dropout, even though the provided uncertainty estimates
are properly calibrated for both methods. The response variable is distributed
differently across the wells in the dataset (see Section 4.2), which might result in
inductive bias in the predictions. Using this in conjunction with the greater
cross-well variability in calibration for the SGVB models might imply that the
SGVB models are better at capturing out-of-distribution test data represented by
the different distributions across the wells and that the MC Dropout models
under-estimate the cross-well variability.

In the next section, we will discuss the result of the analysis of the epistemic
uncertainty with respect to the size of the dataset and the complexity of the models.

2they do however provide such an evaluation in a classification setting

101

6.4 Analysis of the Epistemic Uncertainty

In this section, a discussion of the analysis of the epistemic uncertainty is presented.
The results are found in Section 5.5 and 5.6. In the first subsection, we will discuss
the convergence properties of the epistemic uncertainty with respect to dataset size,
i.e. the approximation uncertainty, before we discuss the effect of model complexity
in the following subsection. The analysis performed to investigate whether the
estimated epistemic uncertainty is reducible in terms of obtaining more knowledge,
as stated in [12, 27, 30].

6.4.1 Epistemic Uncertainty and Training Set Size

In Section 2.1.2 we define the epistemic uncertainty in terms of approximation and
model uncertainty. By definition, we have that the approximation uncertainty
depends on the amount of observed data, while the model uncertainty depends on
the size of the hypothesis space, or equivalently, the complexity of the model. To
separate the approximation from the model uncertainty, we train models with
identical complexities for a varying fraction of the entire training set and estimate
the epistemic uncertainty over the entire test set.

From Figure 5.14 we observe that the epistemic uncertainty provided by the
SGVB models clearly decrease when observing a greater fraction of the dataset
during training. In contrast, the MC Dropout models provide a seemingly constant
epistemic uncertainty across all fractions. Moreover, we observe that the
heteroscedastic SGVB model decrease in a greater fashion than the corresponding
homoscedastic model until the epistemic uncertainty converge to the
approximately same value for both models after observing 90% of the entire
training set. Furthermore, we observe in Figure 5.15 that the estimated value of
the epistemic uncertainty provided by the MC Dropout models highly depends on
the dropout rate, which is excepted from the definition of the distribution of the
parameters in the network 3.6. Moreover, we observe that as the dropout rate
increase, the amount of which the epistemic uncertainty decreases when observing
more of the training data increase. This can be explained using the fact that a
greater dropout rate results in a greater variance of the posterior distribution of
the parameters of the MC Dropout models, such that there is more epistemic
uncertainty to explain away by observing more data. As expected from the
definition of the SGVB models in Section 3.2, these models are seemingly
unaffected by the dropout rate.

The notable difference in behaviour between the models can be seen in
conjunction with how the posterior distribution of the parameters of models is
obtained. As mentioned above, the variance of the parameters in the MC Dropout
models is essentially set as a hyper-parameter, which is a major drawback of the
MC Dropout method. On the contrary, the variance of the parameters is learned
during training for the SGVB method. However, we do observe from Figure 5.14
that MC Dropout yields values of the epistemic uncertainty that is comparable to
the converged values provided by the SGVB models, although the former are
slightly higher. Moreover, we observe that the total predictive uncertainty is
properly calibrated for the MC Dropout models in Figure 5.10. However, from
Figure 5.15 we observe that the MC Dropout models provide greater values for the
epistemic uncertainty when using greater dropout rates. Consequently, the
resulting estimates of the total predictive uncertainty are likely to be even more

102 Discussion

over-estimated than what is provided by the MC Dropout models using a 10%
dropout rate.

In the next part of this section, we will discuss the results regarding the analysis
of the epistemic uncertainty concerning model complexity.

6.4.2 Epistemic Uncertainty and Model Complexity

From Figure 5.16a we observe that the epistemic uncertainty is notably higher in the
case of a linear model compared to the other complexities we consider. Moreover,
we see that the epistemic uncertainty is explained away when using a model with
a single hidden layer. The values remain seemingly constant when increasing the
model complexity further. Consequently, we can say that a single layer model is
sufficient for explaining away the model uncertainty.

For the linear model, the hypothesis space is essentially restricted to the space
provided by the explanatory variables. From our findings, we see that this hypothesis
space is too small for containing the optimal model because the model uncertainty
is not explained away until we extend the hypothesis space to include non-linear
models. This is expected by the preliminary analysis presented in Section 4.3, where
we observe that a linear model is not sufficient for explaining the variability in the
dataset. By increasing the model complexity from a linear to a single layer neural
network, the capacity of the model is dramatically increased, and likewise the size
of the hypothesis space. It is apparent that the hypothesis space represented by
the single-layer model contains the optimal model, and there is thus no more model
uncertainty to resolve by further increasing the size of the hypothesis space.

Although the epistemic uncertainty is seemingly constant when increasing the
model complexity from a single layer to more complex models, there are some
differences which can be seen in Figure 5.16b where the values on the vertical axis
are restricted to a smaller range. We see that both models achieve a minimum
value for the single-layer model and that the epistemic uncertainty marginally
increase when increasing the model complexity. Fitting a more complex model
requires more data, and we can thus expect that the approximation uncertainty
will increase when increasing model complexity. Even though the model
uncertainty might be constant, we observe that the epistemic uncertainty increases
when increasing the model complexity further. We do, however, observe that the
increase is only marginal compared to the decrease when going from a linear to a
single layer model, and we can say that the model uncertainty is practically
constant for the larger models. Consequently, we say that the marginal increase in
the epistemic uncertainty is likely attributed to the approximation uncertainty.

We see that the epistemic uncertainty for the SGVB models behaves as expected.
By obtaining more information in terms of data and the size of the hypothesis space,
the epistemic uncertainty is explained away. However, it is hard to separate the
model from the approximation uncertainty as more complex models require more
data. It is impossible to obtain a linear model using the MC Dropout method. We
can thus not observe how the epistemic uncertainty provided by the MC Dropout
models respond to changes in model complexity when going from a linear to a single-
layer model. Regarding dataset size, the epistemic uncertainty provided by the MC
Dropout models is seemingly constant and highly dependent on the dropout rate.

103

It is important to note that the above-presented results and discussion are not
agnostic in terms of neither the considered models nor the dataset. The presented
results are only a single sample of such, and we have to conduct the same type of
analysis to a broad range of problems to state that the results are general and not
specific to the models and dataset used in our analysis.

The above-presented results account for the epistemic uncertainty in the model
and the aleatoric uncertainty in the data. There are, however, other sources of
uncertainty in deep learning that can be analyzed. The initialization of the
parameters of the neural networks is typically performed by drawing samples from
a probability distribution. Moreover, the optimization method used to train the
models is typically stochastic, particularly in the case of mini-batch optimization
and the above described Adam algorithm used to train our models. Consequently,
there will be uncertainty attached to the process of initializing the parameters and
training the models. This uncertainty is however not accounted for in the
presented results.

In real-world situations where deep learning is applied in a decision-making
process, rather than relying on potentially over-confident predictions provided by a
traditional neural network with no measure of uncertainty, our Bayesian models
will provide a measure of uncertainty to their predictions. Consequently, we can
leverage the uncertainty provided by our models to make decision-making based on
deep learning more trustworthy. The predictions can e.g. be passed to a human for
manual inspection if the uncertainty is above some specified, context-dependent
threshold or otherwise let the prediction pass through the automation process
without human interference. We observe that the uncertainty estimates are
appropriately estimated and can capture the epistemic and aleatoric components
in a satisfying way. This allows investigating whether the uncertainty originates
from the model or the data. However, there is a drawback in terms of how the
uncertainty is obtained. The uncertainty estimates are obtained using a sampling
approach (see Section 3.3), where we have to pass the same instance through the
models multiple times to obtain a predictive distribution for that particular
instance. For large models and datasets, this might become computationally
expensive, albeit not infeasible. If the uncertainty measures are needed in
real-time, e.g. if the models are applied in a context provided by an autonomous
vehicle, the sampling approach may turn out to be too slow to work out in
practice. If the models are applied in a context where the additional computations
are not critical, e.g. as in the above-presented case study, the sampling approach is
perfectly suitable.

This work has been very exciting and rewarding, but some things could have
been done otherwise. In particular, the well-wise scaling of the response variable
described in Section 4.2.1. Because the true value of the response variable is used in
obtaining the corresponding z-score (2.9), it is not possible to return to the original
scale of the variable without leveraging the true values. In practical situations where
the response values are needed to make decisions, the preprocessing scheme applied
in this thesis will not provide any value, as the predictions provided by the models
are the z-scores of the response. However, it is important to note that the scheme
does not affect the remaining analysis of the uncertainty. It is also important to
note that the well-wise scaling avoids the flow of information between the training
and test set because the different datasets are split well-wise. Consequently, we
avoid data leakage that would yield results that are not representative of the actual
performance of the models on unseen data. On the contrary, if we perform an inverse

104 Discussion

scaling of the z-scores of the predictions, we would need to leverage the true values
of the response variable of the instances we are predicting. The true values of the
response are only available in a test situation and will result in data leakage as the
true values are required to return to the original scale. An approach for dealing
with this drawback is only to scale the explanatory variables, leaving the response
variable in its original scale.

Moreover, the initial plan of the thesis was to carry out a similar procedure
for quantifying the predictive uncertainty in a classification setting. During our
work on the regression problem, we stumbled upon interesting things we wanted
to investigate, e.g. the analysis of the epistemic uncertainty concerning the amount
of data and model complexity. We decided that the thesis would become more
interesting if we chose to do a more thorough analysis on a single problem, rather
than simply quantifying the predictive uncertainty in two widely different problems.
The choice was made relatively late in the semester, and it would have spared much
time thinking about how to perform a similar analysis in the classification setting if
the choice of abandoning the problem was made earlier.

There are many interesting extensions to the work carried out in this thesis, and a
list with suggestions for future work follows with a brief description and motivation.

i. Uncertainty and model performance
This can be investigated by considering a range of threshold values for the
uncertainty and discard instances that yield a predictive uncertainty above
this threshold from the test set from which the performance metrics (3.10) are
calculated. From the loss functions (see eqs. (3.4), (3.5) and (3.7)) it is
expected that larger errors are accompanied with greater uncertainty.
However, we did not perform such an analysis, and it would interesting to look
into the connection between the model performance and the predictive
uncertainty.

ii. Additional sources of uncertainty in deep learning
As mentioned in the above discussion, there is likely to be uncertainty
attached to the initialization and optimization of neural networks. However,
we did not include this into the total predictive uncertainty. To look into the
uncertainty due to the optimization method, we propose to train multiple
networks with identical configurations multiple times and compute the
variance of the corresponding predictions. The uncertainty due to stochastic
initialization might be investigated by training multiple networks with
different initializations and then similarly computing the predictions’ variance.
It is necessary to train the networks using a deterministic optimization
algorithm to separate the uncertainty due to the initialization.

iii. Deep ensembles
In the above discussion, we criticized the deep ensemble approach for obtaining
predictive uncertainty by showing that the epistemic uncertainty alone yields
highly under-estimated uncertainty on our dataset. We propose to extend the
method in [38] to include the aleatoric uncertainty in the modelling process,
thus obtaining a richer representation of the uncertainty.

105

iv. Recalibration
The authors in [37] propose a method shown to provide calibrated uncertainty
estimates by training an auxiliary recalibration model that creates a dataset
for training the final prediction model. Our models provide properly
calibrated uncertainty estimates, albeit slightly over-estimated, resulting in
under-confident predictions. It would be interesting to extend the applied
methods with an auxiliary recalibration model as proposed in [37], and see if
the resulting models provide perfectly calibrated uncertainty estimates.

v. Single-pass predictive distribution
A drawback with obtaining the predictive distribution in this thesis is the
sampling approach, which may be too slow in a practical context where
uncertainty estimates are required in real-time. In such a context, it would be
very valuable to have a model that can provide uncertainty estimates by doing
a single forward pass of the network for each instance, thus superseding the
sampling. In [60] the authors propose a method for doing so, although the
method builds upon deterministic neural networks rather than Bayesian neural
networks. It might be possible to extend the Bayesian neural networks upon
the ideas in [60] to obtain a predictive distribution by a single forward pass.

vi. Multi-task learning
To improve upon the generalization abilities of the models, in particular, due to
the inductive bias posed by the different distributions of the dataset across wells,
we propose to extend the models to allow for multitask learning [9]. Multitask
learning aims to predict multiple tasks, where each task, in this case, can be
seen as the response variable in each well. We believe that this approach will
improve the generalization abilities of the models and potentially yield better
estimates of the uncertainty. A method applied to a dataset with a similar
structure is proposed in [47].

vii. Transfer learning
The idea behind transfer learning is to improve generalization abilities by
relieving the induction bias posed by dataset shift, thus relaxing the i.i.d
assumption (2.1). In network-based transfer learning, a model is pre-trained
on a general dataset before the parameters are fine-tuned to a more specific
dataset [55]. In this case, one can transfer knowledge from the general to the
specific dataset and better capture the differences. We propose to extend our
models to allow for transfer learning. In our case, we would use the entire
training set to pre-train the models and then fine-tune the parameters by
using a subset of the instances in the test set for each well. Similar to the
above proposed multitask extension, this will result in a single model for each
well. This will, however, not allow making predictions over the full extent of
the well, as some of the instances are being used to fine-tune and thus train
the models.

Chapter 7

Closing Remarks

Two methods for constructing Bayesian neural networks was applied and extended
to quantify and decompose the predictive uncertainty in a regression problem
provided by the company this thesis was written in collaboration with. The
dataset consists of borehole data gathered from 34 wells from offshore Norway, and
the problem aims to predict the acoustic log for S-waves based on geophysical
measurements. The predictive uncertainty was decomposed into the epistemic
uncertainty attached to the models, and the aleatoric uncertainty in the data.
Furthermore, the aleatoric uncertainty was modelled in a homoscedastic and
heteroscedastic way, where the uncertainty is constant and allowed to vary across
samples in the dataset, respectively. The ground-truth values of the uncertainty
were clearly not available, and we relied on calibration curves to numerically
evaluate how the uncertainty was estimated. The calibration curves only applies to
the full test set, and does not allow us to investigate if the uncertainty at
particular depths are properly estimated. By using the definition of the aleatoric
uncertainty, we did however perform a qualitative analysis which showed that the
heteroscedastic aleatoric uncertainty provided by the two methods responds to
noise and measurement errors in the explanatory variables at particular depths,
albeit to different extents. Furthermore, an analysis of the epistemic uncertainty
was carried out to investigate whether it is reducible in terms of obtaining more
information about the system being modelled. The analysis was carried out in
terms of training set size and model complexity, the latter in conjunction with a
preliminary analysis showing that a linear model is not sufficient for explaining the
variability in the data.

108 Closing Remarks

The predictions provided by all the models are shown to fit the true values
well, and the heteroscedastic models consistently outperform the corresponding
homoscedastic models for both methods. This highlights the importance of
allowing the uncertainty in the data to vary across samples. Moreover, the
performance metrics for the MC Dropout models are better than the
corresponding metrics for the SGVB models, and the latter are more uncertain.
Consequently, the MC Dropout provides a better fit to the data than SGVB.

The provided uncertainty was shown to be properly estimated for all the
considered models, although they are slightly over-estimated. Consequently, the
predictions are under-confident, and will slow down the automation process if the
models are used in a practical situation. We also observed that the uncertainty
estimates based on the epistemic uncertainty alone are highly under-estimated,
highlighting the importance of modelling the aleatoric uncertainty.

From the analysis of the epistemic uncertainty, we see that the SGVB models
behaves as expected and the epistemic uncertainty is shown to be reducible by
obtaining more information. The values of the epistemic uncertainty provided by
the homoscedastic and heteroscedastic models decrease steadily until converging to
approximately the same value when increasing the training set. On the contrary,
the MC Dropout models yield a seemingly constant epistemic uncertainty when
observing more data. This can be explained by the way in which the variance of the
parameters of the models are obtained, and henceforth the epistemic uncertainty.
For the MC Dropout method, the variance of the parameters are essentially set as an
hyper-paramer, and require proper tuning of the dropout rate to provide properly
estimated uncertainties. The dropout rate that yields proper uncertainty estimates
might not coincide with the dropout rate that yields optimal performance in terms
of a performance metric when doing a grid-search to tune the hyper-parameters,
and one have to be careful when using MC Dropout to estimate the predictive
uncertainty. This is major drawback of the MC Dropout method. The variance of
the parameters of the SGVB method are learned during training, and the epistemic
uncertainty provided by the SGVB models are thus more flexible than MC Dropout.

For the SGVB models we observe that the hypothesis space represented by a
linear model is not sufficient for explaining the variability in the data, resulting in
a high value for the epistemic uncertainty. This is compliant with the preliminary
analysis showing that a linear model is not sufficient for explaining the data. The
epistemic uncertainty is explained away by increasing the complexity to a single
layer neural network, and remains seemingly constant by further increasing the
complexity of the models. Consequently, we say that a single layer model is sufficient
for explaining away the model uncertainty, whereas a linear model do not suffice.

From our findings we conclude that the SGVB method is superior to the MC
Dropout method in terms of quantifying predictive uncertainty, although the latter
yields lower values for the considered performance metrics than the former. We state
this because the epistemic uncertainty of the SGVB method is more flexible than
MC Dropout, which needs proper tuning of the dropout rate to provide accurate
estimates of the uncertainty. This is also reflected in the expected behaviour of the
epistemic uncertainty provided by the SGVB models.

Appendix A

Well-wise distribution of target
variable

A.1 Training set

0.000

0.025

0.050

D
en

si
ty

Well : 25/2-18 ST2 Well : 25/5-9 Well : 25/5-6 Well : 25/7-4 S

0.000

0.025

0.050

D
en

si
ty

Well : 25/10-16 S Well : 25/8-14 ST2 Well : 30/9-22 Well : 25/11-24

0.000

0.025

0.050

D
en

si
ty

Well : 30/11-9 A Well : 30/5-2 Well : 25/2-18 A Well : 25/8-12 A

0.000

0.025

0.050

D
en

si
ty

Well : 25/10-16 C Well : 25/8-12 S Well : 25/4-7 Well : 25/8-8 S

0.000

0.025

0.050

D
en

si
ty

Well : 30/11-8 S Well : 25/4-9 S Well : 25/6-4 S Well : 30/11-6 S

0 250 500 750
ACS

0.000

0.025

0.050

D
en

si
ty

Well : 25/4-13 A

0 250 500 750
ACS

Well : 25/10-15 S

0 250 500 750
ACS

Well : 25/10-12 ST2

0 250 500 750
ACS

Well : 25/10-16 A

Figure A.1: Well-wise distribution of target variable in the training set. The name
of the well is marked in the title of each figure.

110 Well-wise distribution of target variable

A.2 Validation set

0 250 500 750
ACS

0.000

0.025

0.050

D
en

si
ty

Well : 25/5-5

0 250 500 750
ACS

Well : 30/11-7 A

Figure A.2: Well-wise distribution of target variable in the validation set. The name
of the well is marked in the title of each figure.

A.3 Test set

0.000

0.025

0.050

D
en

si
ty

Well : 30/11-7 Well : 30/11-9 ST2 Well : 30/11-10 Well : 25/7-6

0 250 500 750
ACS

0.000

0.025

0.050

D
en

si
ty

Well : 30/8-5 T2

0 250 500 750
ACS

Well : 30/11-11 S

0 250 500 750
ACS

Well : 25/4-10 S

0 250 500 750
ACS

Well : 30/6-26

Figure A.3: Well-wise distribution of target variable in the test set. The name of
the well is marked in the title of each figure.

Appendix B

Analytical derivation of the ELBO
loss

The ELBO loss is defined as

L(qλ(θ)) = Eqλ(θ)[log p(D|θ)]−DKL[qλ(θ)||p(θ)].

We will derive the two components of the ELBO loss separately, and start off
with the KL-divergence between the variational distribution and the prior for the
latent variables.

DKL[qλ(θ)||p(θ)] =

∫

RK
qλ(θ) log

qλ(θ)

p(θ)
dθ

= Eqλ(θ)

[
log

qλ(θ)

p(θ)

]

= Eqλ(θ)[log qλ(θ)− log p(θ)]

(B.1)

By the mean-field assumption on the variational distribution and the prior
distribution of the latent variable, we have

p(θ) =
K∏

i=1

p(θi) =
K∏

i=1

1√
2πσ̄i2

e
− 1

2

(
θi−µ̄i
σ̄i

2

)2

qλ(θ) =
K∏

i=1

qλi(θi) =
K∏

i=1

1√
2πσ2

i

e
− 1

2

(
θi−µi
σi

)2

,

where λi = (µi, ρi) and σi = log (1 + eρi).
The log-likelihood of the distributions are thus

log p(θ) =
K∑

i=1

log p(θi) =
K∑

i=1

−1

2
log 2πσ̄i

2 − 1

2

(
θi − µ̄i
σ̄i

)2

,

log qλ(θ) =
K∑

i=1

log qλi(θi) =
K∑

i=1

−1

2
log 2πσ2

i −
1

2

(
θi − µi
σi

)2

.

(B.2)

Inserting (B.2) into (B.1) we get the following expression for the KL-divergence

112 Analytical derivation of the ELBO loss

between the variational distribution and the prior for the latent variables.

DKL[qλ(θ)||p(θ)] = Eqλ(θ)

[K∑

i=1

log qλi(θi)− log p(θi)

]

=
1

2
Eqλ(θ)

[K∑

i=1

− log 2πσ2
i −

(
θi − µi
σi

)2

+ log 2πσ̄i
2 +

(
θi − µ̄i
σ̄i

)2]

=
1

2
Eqλ(θ)

[K∑

i=1

2 log
σ̄i
σi
− 1

σ2
i

(θi − µi)2 +
1

σ̄i2
(θi − µ̄i)2

]

=
1

2

K∑

i=1

[
2 log

σ̄i
σi
− 1

σ2
i

Eqλi (θi)[(θi − µi)
2] +

1

σ̄i2
Eqλi (θi)[(θi − µ̄i)

2]

]
.

(B.3)

The term Eqλi (θi)[(θi−µi)
2] is simply σ2

i , as the distribution of the latent variable
θi is distributed with mean µi and standard deviation σi. This is by definition of
the variance of a random variable.

To further simplify the expression for the KL-divergence, we need to rewrite the
last term in (B.3).

Eqi [(θi − µ̄i)2] = Eqi [θ2
i − 2θiµ̄i + µ̄i

2]

= Eqi [θ2
i]− 2µiµ̄i + µ̄i

2

= Varqi [θi] + Eqi [θi]2 − 2µiµ̄i + µ̄i
2

= σ2
i + µ2

i − 2µiµ̄i + µ̄i
2

= σ2
i + (µi − µ̄i)2,

(B.4)

where Varqi [θi] is the variance of the latent variable θi over the variational
distribution qi = qλi(θi), such that Varqi [θi] = Eqi [θ2

i] − Eqi [θi]2 by the variance
decomposition formula.

By inserting (B.4) into (B.3) we get the final expression for the KL-divergence.

DKL[qλ(θ)||p(θ)] =
1

2

K∑

i=1

[
2 log

σ̄i
σi

+

(
σi
σ̄i

)2

+

(
µi − µ̄i
σ̄i

)2

− 1

]

By assuming independent measurements, we can express the likelihood of the
data as

p(D|θ) =
N∏

i=1

p(yi|xi,θ),

where N is the number of measurements. From the generative model in (4.2) we
can express the log-likelihood of the data as follows.

log p(D|θ) =
N∑

i=1

log p(yi|xi,θ)

=
N∑

i=1

log
1√

2πg(xi,ψ)
e
− 1

2

(
yi−f(xi,φ)

g(xi,ψ)

)2

= −N
2

log 2π −
N∑

i=1

[
log g(xi,ψ)− 1

2

(
yi − f(xi,φ)

g(xi,ψ)

)2]

(B.5)

The final expression for the expected log-likelihood is thus

113

Eqλ(θ)[log p(D|θ)] = Eqλ(θ)

[
− N

2
log 2π−

N∑

i=1

[
log g(xi,ψ)− 1

2

(
yi − f(xi,φ)

g(xi,ψ)

)2]]

The log-likelihood in (B.5) is the general form that holds for input-dependent,
heteroscedastic noise, governed by g(xi,ψ). For a homoscedastic noise model, i.e
where g(xi,ψ) = σ ∀i, the log-likelihood reduce to

log p(D|θ) = −N
2

log 2πσ2 − 1

2σ2

N∑

i=1

(yi − f(xi,φ))2

Appendix C

Wellwise predictions

This part of the appendix shows the predictions curves for all the wells in the test
test. The first section considers the MC Dropout method, while the last section is
concerned witht the SGVB method. The predictions are plotted against depth, and
are equipped with 95% credibility intervals corresponding to the epistemic and total
predictive uncertainty. The differences between the credibility intervals represents
the aleatoric uncertainty.

Some of the wells contains missing values at specific depths to to poor
measurements (see 4.2.1). The missing measurements can be seen as constant
values in the below plots, where the ends of the interval of missing values are
connected by a line-plot. Do not interpret these seemingly constant values as
predictions by the model, they simply represent that the samples are missing.

116 Wellwise predictions

C.1 MC Dropout

4 2 0 2 4 6
Standardized ACS

1250

1500

1750

2000

2250

2500

2750

De
pt

h

Well: 25/4-10 S. Coverage probability 79.65%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6
Standardized ACS

1250

1500

1750

2000

2250

2500

2750

De
pt

h

Well: 25/4-10 S. Coverage probability 76.89%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.1: Predictions and corresponding 95% credible intervals for well 25/4-10
S in the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout
model. The empirical coverage probability is marked in the title of each plot.

117

4 3 2 1 0 1 2 3 4
Standardized ACS

1900

1950

2000

2050

2100

2150

2200

De
pt

h

Well: 25/7-6. Coverage probability 98.86%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 3 2 1 0 1 2 3 4
Standardized ACS

1900

1950

2000

2050

2100

2150

2200

De
pt

h

Well: 25/7-6. Coverage probability 97.44%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.2: Predictions and corresponding 95% credible intervals for well 25/7-6 in
the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout model.
The empirical coverage probability is marked in the title of each plot.

118 Wellwise predictions

4 2 0 2 4 6 8
Standardized ACS

2100

2200

2300

2400

2500

2600

2700

2800

De
pt

h

Well: 30/6-26. Coverage probability 96.88%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6 8
Standardized ACS

2100

2200

2300

2400

2500

2600

2700

2800

De
pt

h

Well: 30/6-26. Coverage probability 97.22%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.3: Predictions and corresponding 95% credible intervals for well 30/6-26 in
the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout model.
The empirical coverage probability is marked in the title of each plot.

119

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 98.17%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 95.14%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.4: Predictions and corresponding 95% credible intervals for well 30/8-5
T2 in the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout
model. The empirical coverage probability is marked in the title of each plot.

120 Wellwise predictions

6 4 2 0 2 4 6 8
Standardized ACS

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-7. Coverage probability 99.31%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6 8
Standardized ACS

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-7. Coverage probability 99.62%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.5: Predictions and corresponding 95% credible intervals for well 30/11-7 in
the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout model.
The empirical coverage probability is marked in the title of each plot.

121

4 2 0 2 4 6 8
Standardized ACS

3000

3100

3200

3300

3400

3500

3600

3700

De
pt

h

Well: 30/11-9 ST2. Coverage probability 97.75%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6 8
Standardized ACS

3000

3100

3200

3300

3400

3500

3600

3700

De
pt

h

Well: 30/11-9 ST2. Coverage probability 96.71%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.6: Predictions and corresponding 95% credible intervals for well 30/11-9
ST2 in the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout
model. The empirical coverage probability is marked in the title of each plot.

122 Wellwise predictions

6 4 2 0 2 4 6
Standardized ACS

1000

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-10. Coverage probability 99.09%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6
Standardized ACS

1000

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-10. Coverage probability 99.80%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.7: Predictions and corresponding 95% credible intervals for well 30/11-10
in the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout model.
The empirical coverage probability is marked in the title of each plot.

123

4 2 0 2 4 6 8 10
Standardized ACS

2200

2400

2600

2800

3000

3200

3400

3600

De
pt

h

Well: 30/11-11 S. Coverage probability 98.55%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6 8 10
Standardized ACS

2200

2400

2600

2800

3000

3200

3400

3600

De
pt

h

Well: 30/11-11 S. Coverage probability 98.68%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.8: Predictions and corresponding 95% credible intervals for well 30/11-11
S in the test set using a (a) homoscedastic and (b) heteroscedastic MC Dropout
model. The empirical coverage probability is marked in the title of each plot.

124 Wellwise predictions

C.2 SGVB

4 2 0 2 4 6
Standardized ACS

1250

1500

1750

2000

2250

2500

2750

De
pt

h

Well: 25/4-10 S. Coverage probability 71.09%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6
Standardized ACS

1250

1500

1750

2000

2250

2500

2750

De
pt

h

Well: 25/4-10 S. Coverage probability 73.16%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.9: Predictions and corresponding 95% credible intervals for well 25/4-10 S
in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model. The
empirical coverage probability is marked in the title of each plot.

125

4 3 2 1 0 1 2 3 4
Standardized ACS

1900

1950

2000

2050

2100

2150

2200

De
pt

h

Well: 25/7-6. Coverage probability 99.59%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 3 2 1 0 1 2 3 4
Standardized ACS

1900

1950

2000

2050

2100

2150

2200

De
pt

h

Well: 25/7-6. Coverage probability 99.50%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.10: Predictions and corresponding 95% credible intervals for well 25/7-6
in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model. The
empirical coverage probability is marked in the title of each plot.

126 Wellwise predictions

4 2 0 2 4 6 8
Standardized ACS

2100

2200

2300

2400

2500

2600

2700

2800

De
pt

h

Well: 30/6-26. Coverage probability 96.90%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6 8
Standardized ACS

2100

2200

2300

2400

2500

2600

2700

2800

De
pt

h

Well: 30/6-26. Coverage probability 97.24%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.11: Predictions and corresponding 95% credible intervals for well 30/6-26
in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model. The
empirical coverage probability is marked in the title of each plot.

127

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 93.49%

True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6
Standardized ACS

3000

3100

3200

3300

3400

3500

De
pt

h

Well: 30/8-5 T2. Coverage probability 93.38%

True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.12: Predictions and corresponding 95% credible intervals for well 30/8-5
T2 in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model.
The empirical coverage probability is marked in the title of each plot.

128 Wellwise predictions

6 4 2 0 2 4 6 8
Standardized ACS

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-7. Coverage probability 96.11%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6 8
Standardized ACS

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-7. Coverage probability 99.51%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.13: Predictions and corresponding 95% credible intervals for well 30/11-7
in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model. The
empirical coverage probability is marked in the title of each plot.

129

4 2 0 2 4 6 8
Standardized ACS

3000

3100

3200

3300

3400

3500

3600

3700

De
pt

h

Well: 30/11-9 ST2. Coverage probability 95.63%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6 8
Standardized ACS

3000

3100

3200

3300

3400

3500

3600

3700

De
pt

h

Well: 30/11-9 ST2. Coverage probability 97.00%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.14: Predictions and corresponding 95% credible intervals for well 30/11-9
ST2 in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB. The
empirical coverage probability is marked in the title of each plot.

130 Wellwise predictions

6 4 2 0 2 4 6
Standardized ACS

1000

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-10. Coverage probability 97.12%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

6 4 2 0 2 4 6
Standardized ACS

1000

1500

2000

2500

3000

3500

4000

De
pt

h

Well: 30/11-10. Coverage probability 97.50%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.15: Predictions and corresponding 95% credible intervals for well 30/11-10
in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model. The
empirical coverage probability is marked in the title of each plot.

131

4 2 0 2 4 6 8 10
Standardized ACS

2200

2400

2600

2800

3000

3200

3400

3600

De
pt

h

Well: 30/11-11 S. Coverage probability 91.22%
True
Prediction
95% CI total
95% CI epistemic

(a) Homoscedastic model

4 2 0 2 4 6 8 10
Standardized ACS

2200

2400

2600

2800

3000

3200

3400

3600

De
pt

h

Well: 30/11-11 S. Coverage probability 96.58%
True
Prediction
95% CI total
95% CI epistemic

(b) Heteroscedastic model

Figure C.16: Predictions and corresponding 95% credible intervals for well 30/11-11
S in the test set using a (a) homoscedastic and (b) heteroscedastic SGVB model.
The empirical coverage probability is marked in the title of each plot.

Appendix D

Calibration curves

In this part of the appendix the calibration curves for all wells are shown for all
the considered models. In the first part of the appendix are the calibration curves
for the MC Dropout models, while the calibration curves for the SGVB models are
shown in the final part. Each part will cover the homoscedastic and heteroscedastic
models.

134 Calibration curves

D.1 MC Dropout

D.1.1 Homoscedastic

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/4-10 S
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/7-6
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/6-26
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/8-5 T2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-7
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-9 ST2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-10
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-11 S
Empirical
Theoretical

Figure D.1: Calibration curves for all wells in the test set using the homoscedastic
MC Dropout model. The name of the well is marked in the title of each figure.

135

D.1.2 Heteroscedastic

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/4-10 S
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/7-6
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/6-26
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/8-5 T2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-7
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-9 ST2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-10
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-11 S
Empirical
Theoretical

Figure D.2: Calibration plots for all wells in the test set using the heteroscedastic
MC Dropout model. The name of the well is marked in the title of each figure.

136 Calibration curves

D.2 SGVB

D.2.1 Homoscedastic

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/4-10 S
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/7-6
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/6-26
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/8-5 T2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-7
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-9 ST2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-10
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-11 S
Empirical
Theoretical

Figure D.3: Calibration plots for all wells in the test set using the homoscedastic
SGVB model. The name of the well is marked in the title of each figure.

137

D.2.2 Heteroscedastic

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/4-10 S
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 25/7-6
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/6-26
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/8-5 T2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-7
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-9 ST2
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-10
Empirical
Theoretical

0.1
0

0.2
0

0.3
0

0.4
0

0.5
0

0.6
0

0.7
0

0.8
0

0.9
0

0.9
5
0.9

9

Coverage probability

0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.900.950.99

Si
gn

ifi
ca

nc
e

le
ve

l

Well: 30/11-11 S
Empirical
Theoretical

Figure D.4: Calibration plots for all wells in the test set using the heteroscedastic
SGVB model. The name of the well is marked in the title of each figure.

Bibliography

[1] M. Abdar, F. Pourpanah, S. Hussain, D. Rezazadegan, L. Liu,
M. Ghavamzadeh, P. Fieguth, X. Cao, A. Khosravi, U. Rajendra Acharya,
V. Makarenkov, and S. Nahavandi. A Review of Uncertainty Quantification in
Deep Learning: Techniques, Applications and Challenges. arXiv e-prints, page
arXiv:2011.06225, 2020, 2011.06225.

[2] J. Baxter. A model of inductive bias learning. Journal of artificial intelligence
research, 12:149–198, 2000.

[3] M. Becquey, M. Lavergne, and C. Willm. Acoustic impedance logs computed
from seismic traces. Geophysics, 44(9):1485–1501, 1979.

[4] J. O. Berger. Statistical decision theory and Bayesian analysis; 2nd ed. Springer
Series in Statistics. Springer, New York, 1985. doi:10.1007/978-1-4757-4286-2.

[5] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer, 2007.

[6] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A
review for statisticians. Journal of the American Statistical Association,
112(518):859–877, 2017. doi:10.1080/01621459.2017.1285773.

[7] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight
uncertainty in neural network. In International Conference on Machine
Learning, pages 1613–1622. PMLR, 2015.

[8] J. Brownlee. Understanding the impact of learning rate on neural network
performance. https://machinelearningmastery.com/understand-the-

dynamics-of-learning-rate-on-deep-learning-neural-networks/.
Accessed: 2020-30-11.

[9] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.
doi:https://doi.org/10.1023/A:1007379606734.

[10] A. C. Damianou and N. D. Lawrence. Deep Gaussian Processes. arXiv e-prints,
page arXiv:1211.0358, 2012, 1211.0358.

[11] J. S. Denker and Y. LeCun. Transforming neural-net output levels to probability
distributions. In Proceedings of the 3rd International Conference on Neural
Information Processing Systems, NIPS’90, page 853–859. Morgan Kaufmann
Publishers Inc., 1990.

[12] A. Der Kiureghian and O. Ditlevsen. Aleatory or epistemic? does it matter?
Structural safety, 31(2):105–112, 2009.

http://arxiv.org/abs/2011.06225
https://doi.org/10.1007/978-1-4757-4286-2
https://doi.org/10.1080/01621459.2017.1285773
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://machinelearningmastery.com/understand-the-dynamics-of-learning-rate-on-deep-learning-neural-networks/
https://doi.org/https://doi.org/10.1023/A:1007379606734
http://arxiv.org/abs/1211.0358

140 Bibliography

[13] L. Fahrmeir, T. Kneib, S. Lang, and B. Marx. Regression: Models, Methods
and Applications. Springer, 2013.

[14] J. H. Friedman. Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29(5):1189 – 1232, 2001. doi:10.1214/aos/1013203451.

[15] Y. Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge,
2016.

[16] Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Appendix.
arXiv e-prints, page arXiv:1506.02157, 2015, 1506.02157.

[17] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference
on machine learning, pages 1050–1059. PMLR, 2016.

[18] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
URL http://www.deeplearningbook.org.

[19] A. Graves. Practical variational inference for neural networks. In Advances in
neural information processing systems, pages 2348–2356, 2011.

[20] B. Grimstad, M. Hotvedt, A. T. Sandnes, O. Kolbjørnsen, and L. S. Imsland.
Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study.
arXiv e-prints, page arXiv:2102.01391, 2021, 2102.01391.

[21] J. Han, J. Pei, and M. Kamber. Data Mining: Concepts and Techniques. The
Morgan Kaufmann Series in Data Management Systems. Elsevier Science, 2011.

[22] B. Hanin. Which neural net architectures give rise to exploding and vanishing
gradients? arXiv preprint arXiv:1801.03744, 2018.

[23] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., 2008.

[24] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[25] G. E. Hinton and D. Van Camp. Keeping the neural networks simple by
minimizing the description length of the weights. In Proceedings of the sixth
annual conference on Computational learning theory, pages 5–13, 1993.

[26] P. D. Hoff. A First Course in Bayesian Statistical Methods. Springer, 2009.

[27] E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty
in machine learning: An introduction to concepts and methods. Machine
Learning, 110(3):457–506, 2021. doi:https://doi.org/10.1007/s10994-021-05946-
3.

[28] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In International conference on
machine learning, pages 448–456. PMLR, 2015.

https://doi.org/10.1214/aos/1013203451
http://arxiv.org/abs/1506.02157
http://www.deeplearningbook.org
http://arxiv.org/abs/2102.01391
https://doi.org/https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/https://doi.org/10.1007/s10994-021-05946-3

Bibliography 141

[29] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to
Statistical Learning: With Applications in R. Springer Publishing Company,
Incorporated, 2014.

[30] A. Kendall and Y. Gal. What Uncertainties Do We Need in Bayesian Deep
Learning for Computer Vision? arXiv e-prints, page arXiv:1703.04977, 2017,
1703.04977.

[31] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. arXiv
e-prints, page arXiv:1412.6980, 2014, 1412.6980.

[32] D. P. Kingma, T. Salimans, and M. Welling. Variational Dropout and the
Local Reparameterization Trick. arXiv e-prints, page arXiv:1506.02557, 2015,
1506.02557.

[33] D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. arXiv e-
prints, page arXiv:1312.6114, 2013, 1312.6114.

[34] D. P. Kingma and M. Welling. An Introduction to Variational Autoencoders.
arXiv e-prints, page arXiv:1906.02691, 2019, 1906.02691.

[35] S. Koturwar and S. Merchant. Weight Initialization of Deep Neural
Networks(DNNs) using Data Statistics. arXiv e-prints, page arXiv:1710.10570,
2017, 1710.10570.

[36] R. Krishnan, M. Subedar, and O. Tickoo. Specifying weight priors
in bayesian deep neural networks with empirical bayes. Proceedings of
the AAAI Conference on Artificial Intelligence, 34(04):4477–4484, 2020.
doi:10.1609/aaai.v34i04.5875.

[37] V. Kuleshov, N. Fenner, and S. Ermon. Accurate Uncertainties for Deep
Learning Using Calibrated Regression. arXiv e-prints, page arXiv:1807.00263,
2018, 1807.00263.

[38] B. Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and
scalable predictive uncertainty estimation using deep ensembles. In
Advances in Neural Information Processing Systems, volume 30,
2017. URL https://proceedings.neurips.cc/paper/2017/file/

9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf.

[39] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521:436–444,
2015. doi:https://doi.org/10.1038/nature14539.

[40] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. Neural Networks: Tricks of
the Trade: Second Edition, chapter Efficient BackProp, pages 9–48. Springer,
2012. doi:10.1007/978-3-642-35289-8 3.

[41] D. J. C. MacKay. A Practical Bayesian Framework for
Backpropagation Networks. Neural Computation, 4(3):448–472, 1992.
doi:10.1162/neco.1992.4.3.448.

[42] T. Mithcell. Machine Learning. McGraw Hill, 1997.

[43] R. M. Neal. Bayesian learning for neural networks. PhD thesis, University of
Toronto, 1995.

http://arxiv.org/abs/1703.04977
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.02557
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1906.02691
http://arxiv.org/abs/1710.10570
https://doi.org/10.1609/aaai.v34i04.5875
http://arxiv.org/abs/1807.00263
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
https://doi.org/https://doi.org/10.1038/nature14539
https://doi.org/10.1007/978-3-642-35289-8_3
https://doi.org/10.1162/neco.1992.4.3.448

142 Bibliography

[44] T. O’Hagan. Dicing with the unknown. Significance, 2004.

[45] T. Papamarkou, J. Hinkle, M. T. Young, and D. Womble. Challenges in
Bayesian inference via Markov chain Monte Carlo for neural networks. arXiv
e-prints, page arXiv:1910.06539, 2019, 1910.06539.

[46] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. arXiv e-prints, page arXiv:1912.01703, 2019, 1912.01703.

[47] A. T. Sandnes, B. Grimstad, and O. Kolbjørnsen. Multi-task learning for virtual
flow metering. arXiv e-prints, page arXiv:2103.08713, 2021, 2103.08713.

[48] Schlumberger Oilfield Glossary. Acoustic impedance log. https://www.

glossary.oilfield.slb.com/en/terms/a/acoustic_impedance. Accessed:
2021-21-04.

[49] Schlumberger Oilfield Glossary. Gamma ray log. https://www.glossary.

oilfield.slb.com/en/terms/g/gamma_ray_log. Accessed: 2021-16-03.

[50] Schlumberger Oilfield Glossary. Resistivity log. https://www.glossary.

oilfield.slb.com/en/terms/r/resistivity_log. Accessed: 2021-16-03.

[51] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre,
G. van den Driessche, T. Graepel, and D. Hassabis. Mastering the game of go
without human knowledge. Nature, 550:354–549, 2017. URL http://dx.doi.

org/10.1038/nature24270.

[52] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/

papers/v15/srivastava14a.html.

[53] T. J. Sullivan. Introduction to Uncertainty Quantification, volume 63. Springer,
2015. doi:10.1007/978-3-319-23395-6.

[54] S. Sun, G. Zhang, J. Shi, and R. Grosse. Functional Variational Bayesian Neural
Networks. arXiv e-prints, page arXiv:1903.05779, 2019, 1903.05779.

[55] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep
transfer learning. In V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis, and
I. Maglogiannis, editors, Artificial Neural Networks and Machine Learning –
ICANN 2018, pages 270–279, Cham, 2018. Springer International Publishing.

[56] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[57] Tishby, Levin, and Solla. Consistent inference of probabilities in
layered networks: predictions and generalizations. In International 1989
Joint Conference on Neural Networks, volume 2, pages 403–409, 1989.
doi:10.1109/IJCNN.1989.118274.

http://arxiv.org/abs/1910.06539
http://arxiv.org/abs/1912.01703
http://arxiv.org/abs/2103.08713
https://www.glossary.oilfield.slb.com/en/terms/a/acoustic_impedance
https://www.glossary.oilfield.slb.com/en/terms/a/acoustic_impedance
https://www.glossary.oilfield.slb.com/en/terms/g/gamma_ray_log
https://www.glossary.oilfield.slb.com/en/terms/g/gamma_ray_log
https://www.glossary.oilfield.slb.com/en/terms/r/resistivity_log
https://www.glossary.oilfield.slb.com/en/terms/r/resistivity_log
http://dx.doi.org/10.1038/nature24270
http://dx.doi.org/10.1038/nature24270
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1007/978-3-319-23395-6
http://arxiv.org/abs/1903.05779
https://doi.org/10.1109/IJCNN.1989.118274

Bibliography 143

[58] Tracs International. Open Hole Wireline Logging - Self Learning Module.

[59] B.-H. Tran, S. Rossi, D. Milios, and M. Filippone. All You Need is a
Good Functional Prior for Bayesian Deep Learning. arXiv e-prints, page
arXiv:2011.12829, 2020, 2011.12829.

[60] J. Van Amersfoort, L. Smith, Y. W. Teh, and Y. Gal. Uncertainty
estimation using a single deep deterministic neural network. In Proceedings
of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 9690–9700. PMLR,
2020. URL http://proceedings.mlr.press/v119/van-amersfoort20a/

van-amersfoort20a.pdf.

[61] L. Zhu and N. Laptev. Deep and confident prediction for time series at uber.
2017 IEEE International Conference on Data Mining Workshops (ICDMW),
2017. doi:10.1109/icdmw.2017.19.

http://arxiv.org/abs/2011.12829
http://proceedings.mlr.press/v119/van-amersfoort20a/van-amersfoort20a.pdf
http://proceedings.mlr.press/v119/van-amersfoort20a/van-amersfoort20a.pdf
https://doi.org/10.1109/icdmw.2017.19

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
sQ

uantifying Predictive U
ncertainty in Artificial N

eural N
etw

orks

Christian Nilsen Lehre

Quantifying Predictive Uncertainty in
Artificial Neural Networks

With a Case Study from the Norwegian Oil and
Gas Industry

Master’s thesis in Industrial Mathematics
Supervisor: Gunnar Taraldsen
Co-supervisor: Peder Aursand, Bjarne Andre Grimstad

June 2021

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Introduction
	Outline
	History of Bayesian Neural Networks
	Sources of Uncertainty
	Importance of Quantifying Predictive Uncertainty
	Problem Statement and Motivation

	Theory
	Machine Learning
	Brief Introduction
	Sources of Uncertainty in Machine Learning

	Linear Regression
	Neural Networks
	Preprocessing and Feature Engineering

	Bayesian Inference
	Variational Inference

	Bayesian Neural Networks

	Methodology
	Monte Carlo Dropout
	Stochastic Gradient Variational Bayes
	Quantifying Predictive Uncertainty
	Decomposing the Uncertainty

	Quantitatively Evaluating the Predictive Uncertainty
	Effect of Modelling Aleatoric Uncertainty

	Epistemic Uncertainty and Training Set Size
	Epistemic Uncertainty and Model Complexity

	Experimental Setting
	Motivation
	Data
	Preprocessing and Feature Engineering
	Train/Test split

	Preliminary analysis
	Models and Architectures
	Mathematical model
	Neural Network Architecture

	Deep Learning Framework

	Results
	MC Dropout
	Stochastic Gradient Variational Bayes
	Qualitative Analysis
	Quantitatively Evaluating the Predictive Uncertainty
	Effect of Modelling the Aleatoric Uncertainty

	Epistemic Uncertainty and Training Set Size
	Epistemic Uncertainty and Model Complexity

	Discussion
	Methods for Obtaining Bayesian Neural Networks
	Qualitative Analysis
	Quantitatively Evaluating the Predictive Uncertainty
	Analysis of the Epistemic Uncertainty
	Epistemic Uncertainty and Training Set Size
	Epistemic Uncertainty and Model Complexity

	Closing Remarks
	Well-wise distribution of target variable
	Training set
	Validation set
	Test set

	Analytical derivation of the ELBO loss
	Wellwise predictions
	MC Dropout
	SGVB

	Calibration curves
	MC Dropout
	Homoscedastic
	Heteroscedastic

	SGVB
	Homoscedastic
	Heteroscedastic

	Bibliography

