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Abstract 

 

The formation and propagation of rolling contact fatigue (RCF) induced subsurface cracks 

(SSC) in a test specimen roller have been monitored using the acoustic emission time series. 

The sampled acoustic emission (AE) waveforms were obtained from a duration test. During 

testing, phased array ultrasonic testing (PAUT) were performed on scheduled intervals to 

monitor SSC initiation and growth. After the duration test was terminated, salami cutting post 

inspection revealed three RCF induced SSCs. 

A monitoring system using a mathematically deterministic detector, capable of independent 

isolated detection of multiple RCF induced SSCs occurring simultaneously in a rotating 

machinery is proposed in this thesis. Outputs from the detector and positive detector 

decisions, are fully verifiable using a tool proposed in this thesis called the pulse integrated 

spectrogram (PIS). 

Four different defect behaviours were observed in the sampled AE waveforms. All 

behaviours were independently detected with the proposed monitoring system. The behaviour 

with the given name rollerPass, was confirmed as an SSC originated behaviour. Positive 

detector decision, defect detected, for rollerPass happened April 30, 2021. The decision was 

verified with PIS. At the time of detection, the SSC was 1 mm wide, confirmed in PAUT. 

A review of the published research on the field that is detection of RCF induced SSCs in 

rolling element bearings (REB) using AE is presented in this thesis. The review reveals that 

unverifiable results can have caused false claims of success for the solutions presented. A 

criterion of confidence is therefore proposed to prevent future publications from disrupting 

the progress in this field of research. 
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AEMON 

Novel Failure Monitoring System for Marine Applications by including 

Acoustic Emission 

 

Gearboxes represent a critical part of the rotating machinery found in maritime vessels and 

wind turbines. Due to the cyclic loading conditions gears and rolling element bearings are 

exposed to, these components are typically the first to fail due to fatigue induced failure 

mechanisms. Failure in a single component imposes an evident risk of total machine failure, 

which is costly.  

For this reason, condition monitoring systems are typically applied to alert the machine 

owner if a defect is present in the rotating machinery. However, the condition monitoring 

systems used today are mainly vibration-based and can only detect surface defects such as 

cracking and spalling. Thus, by the time the monitoring system identifies a defect in a 

component, this component might already be at risk of failure. 

The AEMON project is a collaboration between NTNU and SINTEF and the industry 

partners Kongsberg Maritime, Kongsberg Maritime CM, Equinor Energy and Island 

Offshore. In this project a condition monitoring system based on Acoustic Emission will be 

developed to identify defects in rotating machinery at an earlier stage than what is currently 

possible with vibration-based systems. The project is funded by the Research Council of 

Norway under the MAROFF-2 programme. 
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Introduction 

1.1 The current status 

In 1993, (Yoshioka, 1993) published the research paper that is considered the first 

documented identification of subsurface cracks present in acoustic emission waveform from a 

rolling element bearing. In 2005 (Price, Lees, & Friswell, 2005) published a similar study 

where physical inspection revealed the presence subsurface cracks in the test specimens. 

Since then, only a handful of papers have been published on this field of research. The results 

from these papers are unverified, and thus have not contributed to significant progress that 

can be considered useful to the path of creating the first functional subsurface crack detection 

system. By the addition of the typical black-box properties of machine learning models, the 

results are harder to verify, thus preventing the concept from reaching a level of acceptance 

and credibility as a tool for real world machine monitoring problems. As a result, subsurface 

crack detection in rolling element bearings using the acoustic emission time series remains 

today a niche topic in the condition monitoring world. 

 

1.2 The proposal 

The acoustic emission (AE) from a rotating machinery (RM) can be described as waveform 

with a continuously changing noise floor. Rolling contact fatigue (RCF) induced subsurface 

cracks (SSCs) are present in the waveform as short bursts of energy, or pulses, usually 

completely hidden in the noise. The problem is thus to find these pulses. There exists a well-

established field of science that deals with a similar problem. That is, the radar target 

detection problem. 

With this thesis, the main objective is to introduce a new way to address the problem of SSC 

detection in REB using AE, and to hopefully motivate the AE community to welcome a 

cross-disciplinary mindset. The chosen approach to the SSC detection problem takes 

advantage of detection criteria derived from the established signal processing radar literature. 

The monitoring system proposed in this thesis uses a mathematically deterministic detector 

capable of independent isolated detection of multiple RCF induced SSCs occurring 
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simultaneously in an RM. All outputs from the detector are fully verifiable, and positive 

detector decisions can be verified with confidence. 

 

1.3 Research method in brief 

The following work focus on the analysis of acoustic emission (AE) monitoring of an REB 

exposed to RCF induced SSCs. From the recorded AE waveforms, the SSCs are to be 

detected as early as possible, with a verifiable detector decision. 

 

1.4 Problem Statement 

The main objective for this work is to: 

- Analyse AE waveforms gathered from a roller bearing duration test, executed on a 

roller bearing test machine located at NTNU. 

- Present the mathematical description of a proposed detector capable of detecting RCF 

induced SSCs and other REB related defects. 

- Present the evolving trend for all defect behaviours detected during the duration test. 

Detector decisions indicating defect detected are displayed and discussed. 

 

1.5 Structure of the report 

Section 2 reviews theory and literature relevant to the problem statement in 1.4. Fatigue 

induced failure mechanisms in REBs, the AE phenomena, detection theory of noise 

contaminated signals, and literature review are presented. 

Section 3 explains the experimental setup for the duration test, AE recording systems, and the 

complete mathematical description of the proposed detector. 

Section 4 presents all defect behaviours observed during the duration test, detector decisions, 

and detector decision verifications. 

In section 5, the results are interpreted and the discussed. The performance of the proposed 

detector is evaluated and compared to the existing literature. 
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Conclusions and proposed further work are given in section 6. 

 

2 Theory and literature review 

2.1 Condition monitoring 

Condition-based maintenance (CBM), also called predictive maintenance or condition 

monitoring is a maintenance strategy that recommends maintenance procedures based on 

condition monitoring data (Y. Lei, 2016, p. 6), such as AE waveforms and vibrations. CBM 

can reduce machine downtime and ensure proper operation. The strategy can be split into 

three stages: data acquisition, data processing and decision making. Data acquisition is the 

process of collecting sampled sensor data such as AE, temperature, ambient moisture etc. At 

the data processing stage, relevant features are extracted from the raw data sampled in stage 

one. The extracted features then act as a basis for the decision-making stage. This module 

will interpret the extracted features and give a health estimate of the current machine and 

suggest maintenance actions. Decision criteria and AI models can be used for diagnosis and 

estimate the probability of present defects  (Martin-del-Campo & Sandin, 2017, p. 1). 

 

2.2 Fatigue related failure in bearings 

Rolling element bearings (REBs) are susceptible to multiple forms of damage including 

corrosion, denting, electrical erosion, fracture and spalling (Watanuki, Tsutsumi, Hidaka, 

Wada, & Matsunaga, 2021, p. 952). Under proper operation conditions, the elements of 

bearings, such as rollers and raceways, are exposed to multiaxial and non-proportional low 

and high-cycle fatigue loadings, which are usually the source of the rolling contact fatigue 

(RCF) (Romanowicz & Szybiński, 2019, p. 1). The two most dominant RCF mechanisms are 

subsurface originated spalling and surface originated pitting (Jalalahmadi, Slack, Raje, & 

Arakere, 2009, p. 2). Both of which can happen after a long period of operation. Spalling 

leads to increased vibration in the bearing, but usually not critical malfunction of the rotating 

machine (Watanuki et al., 2021, p. 952). However, at the point of spalling, debris is 

introduced to the rest of the mechanical system, thus accelerating the overall failure process 

(Fuentes, Dwyer-Joyce, Marshall, Wheals, & Cross, 2020, p. 776). Small localized stress 
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risers such as spalling can also lead to fatigue originated bearing fracture, which imposes a 

critical risk of  machine breakdown (Watanuki et al., 2021, p. 952). 

Subsurface originated spalling occurs when microcracks initiate below the surface and 

propagate toward the surface to form a surface spall. Microplastic deformation precedes 

crack initiation and typically occurs at microstructural discontinuities such as non-metallic 

inclusions and carbide clusters, often referred to as stress risers.  In these areas, the resultant 

stress exceeds the local microyield limit in a fatigue cycle. (Jalalahmadi et al., 2009, p. 2). It 

is observed that non-metallic inclusions with size larger than 13 μ𝑚 significantly decreases 

fatigue life (Romanowicz & Szybiński, 2019, p. 4). The formation of these cracks is found to 

originate in the region of maximum shear stress below the surface, which is displayed in 

Figure 1 

 

Figure 1, Typical subsurface stress distribution for rolling contact (Romanowicz & Szybiński, 2019, p. 5). 

 

Smooth surfaces, non-metallic inclusions and absence of surface shear are factors that favour 

subsurface originated spalling. In properly installed and lubricated bearings, this is the main 

form of fatigue failure (Romanowicz & Szybiński, 2019, p. 4). Surface oriented pitting, on 

the other hand, occurs where surface irregularities, typically caused by sliding between 

contacting surfaces, initiate cracks. This is typically relevant on the contact surfaces in gear 

teeth, (Jalalahmadi et al., 2009, p. 2) but bearings exposed to varying degree of surface 
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traction shear forces, and/or with lower grade of surface smoothness, can also be prone to 

surface originated fatigue failure, as will be described below. 

In most loading conditions, fatigue tends to originate at the surface of the materials. High 

stresses and imperfections due to manufacturing surface wear coalesce lead to crack 

initiation. In rolling element bearings however, Hertzian contact theory dictates that the 

highest stress present in interacting bearing rollers can be located a small distance below the 

surface (Fuentes et al., 2020, p. 776). Lundberg and Palmgren (Lundberg & Palmgren, 1947) 

were the first to provide a theoretical model for bearing life. They supposed that cracks 

initiate subsurface due to the simultaneous occurrence at a particular depth of the maximum 

orthogonal shear stress combined with the presence of a stress riser. The location of the 

maximum orthogonal shear stress is known as Palmgren-Lundberg’s points, seen in Figure 2 

(Romanowicz & Szybiński, 2019, p. 4). The stress ricers were expected to be stochastically 

distributed throughout the material. Weibull statistical fracture theory was applied to the 

stressed volume derived from pure Hertzian contact to predict the durability of the volume 

when exposed to subsurface initiated fatigue. 

 

 

Figure 2, Distribution of subsurface shear stress. Obtained by finite element method (FEM) (Romanowicz & 

Szybiński, 2019, p. 5). 

 

Since the publication, the theory has become widely accepted and today forms the basis for 

the industry bearing life standard, ISO 281. However, it completely disregards the possibility 
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of surface originated failure, and the aspect of lubrication and hence lubrication film. Load 

direction is assumed to be normal only, without surface shear traction. In practical scenarios, 

some surface traction will always be present, and thus moves the location of maximum 

orthogonal shear stress closer to the surface. Assuming pure Hertzian contact also implies 

that the contacting surfaces are perfectly smooth, which rarely the case real REBs. The stress 

field will thus deviate considerably from the pure Hertzian case (Jalalahmadi et al., 2009, p. 

3). Numerous methods have been developed to cope with these shortcomings, but they are 

outside the scope of this thesis. 

Material degradation caused by RCF in a bearing can be described as a three-stage process: 

shakedown (1), steady-state elastic response (2), and instability (3). At shakedown, material 

strength and micro yield stress are increased due to induced residual stress from work 

hardening and possibly transformation of retained austenite to martensite. Subsurface volume 

exposed to plastic deformation is reduced to nearly zero. A higher initial load applied during 

this stage results in a higher saturation level of work hardening, thus extending fatigue life by 

modifying material response in the next two stages. 

Stage 2 describes the period of operation where cyclic response is elastic and no fatigue 

damage is expected to occur. The duration of this period is a function of maximum stress, 

mechanical properties, and operating temperature, where operating temperature is highly 

relevant. Stability of finely dispersed carbides in the tempered martensite is also considered 

important for prolonging this stage. Maintaining a stage 2 operating condition is critical to 

bearing fatigue life.  

At stage 3, material softening caused by an increase in plastically deformed subsurface 

volume causes a decrease in yield stress. The softening is thought to be caused by slip 

systems induced by carbon diffusion due to temperature peaks. The development of a radial 

tensile stress and texture development promotes growth of cracks parallel to the rolling 

surface (Jalalahmadi et al., 2009, pp. 1-2). 

It is observed that spalls originated from indentations in ball bearings develop initially at the 

trailing edge of a pre-indented raceway with a typical V-shaped spall. In this location, the 

raceway material first detaches at the edge of the dent, forming a V-shaped damaged area, 

before growing at fast rate along the raceway. Roller bearings, however, follow the well-

known behaviour of slowly growing the spall directly across the raceway, before continuing 

along the rolling path (Morales-Espejel & Gabelli, 2015, p. 418). 
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2.3 Acoustic Emission Fundamentals 

ASTM, formerly American Society for Testing and Materials, proposed in 2020 an AE 

standard named ASTM E1316 20. In this standard, the definition of AE is given as: The class 

of phenomena whereby transient stress/ displacement waves are generated by the rapid 

release of energy from localized sources within a material, or the transient waves so 

generated (He et al., 2021, p. 4). Rapid release of energy, are typically caused by plastic 

deformation, crack propagation and dislocation motion during growth of flaws in solids 

(Eitzen & Wadley, 1984, pp. 75-76). 

When a component is impacted by an external drive, the concentrated energy source begin to 

release elastic mechanical waves (Meserkhani, Jafari, & Rahi, 2021, pp. 1-2). These waves 

are often referred to as AE- hits, events and pulses.  Depending on how the material is 

excited, a combination of longitudinal, transversal and surface waves propagate through the 

solid to the surface of the component. Each wave propagate at different speed and carry a 

different percentage of the total energy (Fuentes, Howard, Marshall, Cross, & Dwyer-Joyce, 

2016, p. 1371). 

 

2.3.1 Transfer Function Formalism 

To extract quantitative information from an AE event, the source of the event must be 

mathematically expressible. Scruby has shown that an AE source can be represented as a 

point source with two main assumptions (Leser, Yuan, & Newman, 2013, p. 2). The source is 

assumed to be internal and self-equilibrating, which means that every force or couple making 

up the source must be a force dipole or double couple. The second assumption is that all 

forces involved in making up the source, must occur simultaneously and thus share the same 

history (Leser et al., 2013, p. 2). If the first assumption is ignored, the displacement response 

on the body surface due to a point source can then be described as follows: 

Let the force, ℎ𝑗(ξ⃗, 𝑡) be applied to a body at position ξ⃗ in direction 𝑗 at time 𝑡. The 

displacement vector, 𝑢𝑖(𝑥⃗, 𝑡) at position 𝑥⃗ in direction 𝑖 can be calculated as the convolution 

of ℎ𝑗  and 𝐺𝑖𝑗 
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 𝑢𝑖(𝑥⃗, ξ⃗, 𝑡, ) = (ℎ ∗ 𝐺)(𝑡) = ℎ𝑗(ξ⃗, 𝑡) ∗ 𝐺𝑖𝑗(𝑥⃗, ξ⃗, 𝑡) 1 

where 𝐺𝑖𝑗(𝑥⃗, 𝜉, 𝑡) is the Green’s function defined as the displacement response at 𝑥⃗ in 

direction 𝑖 from the impulse load at 𝜉 in direction 𝑗.  (Leser et al., 2013, p. 2).  However, this 

model does not fully capture the AE phenomena. For the purpose of modelling an AE event 

to an electric voltage at the transducer output, additional assumptions and simplifications 

must be made. 

AE sources are generally considered to be sharply limited in spatial extent and are usually 

measured over some limited frequency range due to instrumentation limitations and noise. 

Complex models containing the entire static and dynamic stress history of the structure are 

therefore excessive. However, the possibility that each stress relaxation, or AE pulse, could 

have a distinct temporal behaviour, complicates the calculation of the Green’s tensor. To 

avoid this problem, two assumptions are introduced. Distributed AE sources are 

approximated by a Taylors expansion about a point centroid source at location, 𝜉0⃗⃗ ⃗⃗ . All AE 

events are considered to have identical temporal behaviour (from seismology) (Eitzen & 

Wadley, 1984, pp. 77-79). The resulting model follows: 

 𝑢𝑖(𝑥⃗, 𝜉0⃗⃗ ⃗⃗ , 𝑡) = (𝚫𝛔̇̅̅ ̅̅ ∗ 𝐺)(𝑡) = 𝚫𝛔̇̅̅ ̅̅ 𝑗𝑘̂(𝑡) ∗ 𝐺𝑖𝑗,𝑘′̂(𝑥⃗, 𝜉0
⃗⃗ ⃗⃗ , 𝑡) 2 

where 𝚫𝛔̇̅̅ ̅̅ 𝑗𝑘̂ is the space averaged stress drop, considered distributed at 𝜉0⃗⃗ ⃗⃗ , and 𝑘̂ is the 

direction of the Heaviside elastic Green’s tensor (Eitzen & Wadley, 1984, p. 78). Now the 

response of the transducer can be included. A transducer sensitive to displacement has an 

impulse response that can be expressed as  𝑇𝑃𝑖(𝑟, 𝑡),  𝑟 ϵ 𝑆𝑇, the voltage at time 𝑡 excited by a 

Dirac delta impulse in direction 𝑖 at point 𝑟 at time zero. 𝑆𝑇 is the given surface of the body 

of which the transducer is connected. In frequency domain, the transfer function formalism 

ultimately becomes: 

 𝑉(ω) = 𝑇𝑗𝑘̂(𝜔)𝚫𝛔̇̅̅ ̅̅ 𝑗𝑘̂(ω) 3 

where 𝑇𝑗𝑘̂(𝜔) is the combined transfer function of the structure and the transducer. 

𝚫𝝈̇̅̅ ̅̅ 𝑗𝑘̂(𝜔) is the stress drop tensor of the AE source (Eitzen & Wadley, 1984, pp. 77-79). By 

defining this transfer function, information about the source is considered passed in 

frequencies through the filter (transfer tensor) to the output in the manner of a linear system. 

The information is independently transmitted, frequency by frequency, and thus filtering and 

other digital signal processing tools can be used to separate the noise from the useful signals 

(Eitzen & Wadley, 1984, pp. 77-79). 
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2.3.2 The five-stage process 

The process of collecting an AE signal can be described by the five-stage process expressed 

in Figure 3. The stages include source generation, evolution, signal transduction and signal 

processing (SP). An event, or AE source, arises within or near the surface of a solid. This 

event causes a dynamic stress or force field change at the location of the event (stage 1). This 

change propagates a mechanical disturbance, or elastic wave, 𝑈(𝑥, 𝑡), through the whole 

solid (stage 2). A sensor (usually piezoelectric) located at the surface of the solid detects the 

disturbance by outputting a voltage, 𝑉(𝑡), proportional to the mechanical stress acted on the 

transducer from the disturbance (stage 3). The raw signal is then interpreted, and relevant 

features are extracted using SP (stage 4). Then the extracted results from the SP is used to 

classify the character and significance of the AE event (stage 5). (Eitzen & Wadley, 1984, pp. 

76-77).  

 

Figure 3, The causal chain of AE analysis (Eitzen & Wadley, 1984, p. 77). 

 

Extracting informative features is no easy task, and the reason lies in how mechanical elastic 

waves travels through a solid. Wave propagation through a solid structure is affected by 

interaction with material properties, inhomogeneities, geometrical configuration of free 

surfaces and loading conditions. Frequency response of the chosen sensor also alter the 

sampled waveform. Because of these variables, the characteristics and source of an AE event 

is effectively unknown (Eitzen & Wadley, 1984, pp. 76-77). 
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2.3.3 AE in RM context 

In the application to RM monitoring, AE is defined as transient elastic waves generated by 

the interaction of two media in relative motion. Sources of AE in rotating machinery include 

impacting, friction, cyclic fatigue, material loss, cavitation etc. For example a bearing roller 

passing a defect on a bearing race, will excite an AE pulse (Mba, 2006, p. 1). AE activity can 

be categorised into three different modes. That is Burst type, Continuous, and, Mixed mode, 

as seen in Figure 4. 

In RMs, exclusive burst mode activity is not seen, as there are often high levels of 

background noise. In fixed, non-rotating machines, electrical- and background noise are the 

main contributors to AE noise. Rotating machines on the other hand are noisy, and AE 

bursts/peaks can be caused by friction, roller impact, misalignments and transient loads. 

These factors will sum up to a constantly changing background noise (Fuentes et al., 2020, p. 

783). 

Consequently, normal operating RMs will typically emit AE activity continuously, with 

faults such as surface pitting appearing as pulses superimposed on the continuous signal, that 

is, mixed mode. Many researches have demonstrated the ability of AE to detect faults such as 

pitting in bearings, but the lead time to failure of these systems is highly dependent on the 

level of the background noise, and thus the signal-to-noise ratio (SNR). Bursts from early 

wear events, such as SSCs are typically buried in noisy environments. To monitor wear at an 

early stage and to better understand AE generation in RMs, requires the analysis of 

continuously sampled AE waveforms (Price et al., 2005, p. 86). 

 

Figure 4, AE waveforms categories (Price et al., 2005, p. 86) 
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A high sampling rate is needed to successfully capture an AE-signal, typically 𝑓𝑠 > 1𝑀ℎ𝑧. 

When sampling continuous AE waveforms, the recorded time-series are challenging to 

analyse because of the tremendous amounts of data. Model-based feature extraction is one 

approach used to overcome this issue by converting huge amounts of raw data into small 

feature vectors. Another challenge that affects all approaches to feature extraction from the 

AE time-series is the signature of a distinct RM. In formula 3, 𝑇𝑗𝑘̂(𝜔) can be interpreted as a 

filter, where the impulse response of the RM itself shapes the AE pulses as they propagate to 

the transducer. The impulse response of the machine will be determined by vibration paths 

(Yang, Lei, Jia, & Xing, 2019, p. 693), material-and mechanical properties (Zurita-Millán et 

al., 2016, p. 2), inhomogeneities, geometrical arrangement of free surfaces, and loading 

conditions (Eitzen & Wadley, 1984, p. 77). These factors all contribute to how the AE signal 

is altered from the AE source to the transducer (Kim & Kim, 2020, p. 2). 

 

2.3.4 CBM using AE 

Vibration analysis (VA) is the most widely used method for monitoring RMs today. 

However, the technique is limited to detecting surface defects only. That is, subsurface cracks 

(SSC) induced by RCF cannot be detected by VA until the SSCs propagate to the surface of a 

bearing element, ball/roller or raceway.  This is because changes in vibration signals occur 

mainly due to the modification of surface geometry (Nélias & Yoshioka, 1998, p. 34).  

AE is one of the non-destructive testing methods used today for CBM. One of the important 

benefits of AE compared to VA is the possibility to monitor SSC growth for identification of 

dynamic damage characteristics (Meserkhani et al., 2021, pp. 1-2). In comparison to 

established CBM systems, that focus mainly on VA, AE sensors operate over a far wider 

frequency range. The frequency band of an AE transducer is typically in the range of 20 kHz 

– 1 MHz, whereas the frequency band of traditional vibration transducers are in the range of 

0 – 50 kHz. Because of this, traditional vibration based CBM rely heavily on the increase in 

amplitude of the bearing defect frequencies as damage propagated along the raceways and 

rollers. 

With the much wider frequency range of AE sensors, research has shown that these sensors 

are able to detect the transient elastic surface waves caused by released strain energy during 

plastic deformation in materials, crack initiation and growth, and frictional sources  
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(Cockerill et al., 2016, pp. 1-2). To summarize, VA can only detect subsurface originated 

spalling and surface originated pitting, while AE technique additionally can detect early stage 

SSC initiation and growth. (Rahman, Ohba, Yoshioka, & Yamamoto, 2009, p. 807). 

 

2.4 Detection of signals in noise 

2.4.1 Hypothesis testing 

Decision theory is a branch of probability theory that describes the process of mapping noise 

contaminated input data, to a decision regarding the state of a system. Let’s consider the data 

as a random process because some elements in the data source are not describable with 

certainty. This could for example be the sampled output voltage from an AE-transducer 

connected to a rolling element bearing. At some point in time, an SSC might be present in the 

bearing, and thus might excite an AE event. The output voltage of the transducer at a given 

time will depend on the AE event being present or not (McDonough & Whalen, 1995, p. 

152). 

Now suppose that we want to determine, or classify, which kind of situation the data 

originates from. Hypotheses 𝐻𝑖, 𝑖 = {0,1,2, … ,𝑚 − 1} define 𝑚 probabilistic models that 

describe a distinct system state class. By processing the data 𝑥 at hand, we want to determine 

which of the models 𝑖 was in effect to produce the data. The outcome of the processing is 

defined as decision 𝐷𝑗 , that the data originates from hypothesis 𝐻𝑗. Given the hypothesis 𝐻𝑖, 

𝑖 = {0,1,2, … ,𝑚 − 1}, we want to determine how to arrive at decision 𝐷𝑗 , and how well that 

strategy performs on average. 

SSC detection in an RM can be considered as a binary hypothesis-testing problem, meaning 

that only two hypotheses, 𝐻0 and 𝐻1, cover all the states the machine is expected to inherit. 

The hypothesis 𝐻0 is typically used as the null hypothesis, describing the normal operational 

condition, and 𝐻1 denotes the alternative hypothesis, where a SSC is present. To determine 

which hypothesis the sampled data belongs to, the data is divided into two regions, 𝑅0 and 

𝑅1. The acceptance region, 𝑅0, is where we accept 𝐻0 as our hypothesis, and the critical 

region, 𝑅1, is where the we reject 𝐻0, and choose 𝐻1 as true. That is, a decision, 𝐷𝑖, that 

hypothesis 𝐻𝑖 is the current machine state, is made if input data x lies in region 𝑅𝑖. These 

regions must together include all points in x-space, as any input-data must be given a decision 
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𝐷. At the same time, no point in x-space can be in more than one region, as this would invoke 

an ambiguous decision (McDonough & Whalen, 1995, pp. 152-153) 

 

2.4.2 Make a decision 

To reach a decision 𝐷, a mathematical description on how to process the input data optimally 

must first be established. This can be done by defining which errors a signal detector can do. 

A binary hypothesis-testing problem can produce two errors, the false positive, and the false 

negative. The false positive, or the Type I error, happens when the detector arrives at decision 

𝐷1, when the data originates from a machine at state 𝐻0. This is also called a false alarm. The 

false negative, or the Type II error, happens when the opposite is the case. Both errors will be 

made with some probability 𝑝𝑓𝑎 = 𝑝(𝐷1|𝐻0), and  𝑝𝑓𝑛 = 𝑝(𝐷0|𝐻1) respectively. Given that 

this is a binary hypothesis problem, either decision 𝐷0 or 𝐷1 must be produced for every 

input, thus the probability of crack detection, 𝑝𝐷 becomes 

 𝑝𝐷 = 𝑝(𝐷1|𝐻1) = 1 − 𝑝𝑓𝑛 4 

 

(McDonough & Whalen, 1995, pp. 153-154). 

Suppose we are sampling the AE waveform from a rolling element bearing containing a small 

subsurface defect. Each time a rolling element passes the defect, an AE event message, 𝑚1 =

1 is excited. Between rollers, the defect does not excite any AE and the message is then, 

𝑚0 = 0. We do not know which message that is sent at a given time, and the message 𝑚, 

consisting of 𝑚0 and 𝑚1 is modelled as a random variable with probabilities 𝑃0 and 𝑃1 

respectively. In addition to this, we assume that friction, surface irregularities and other noise 

sources add a zero-mean Gaussian random noise variable 𝑛 to the waveform. The waveform 

arriving at the transducer is then the random variable 𝑥 =  𝑚 + 𝑛. If the noise variance is σ𝑛
2 , 

the two AE messages 𝑚0 and 𝑚1 now correspond to two different probability densities for 

the sampled data x, as seen in Figure 5. Depending on the original message, x is a Gaussian 

with variance σ𝑛
2  and mean of 𝑚, being ether 𝑚0 or 𝑚1. That is, 

 

𝑝𝑥(𝑥|𝑚) =
𝑒
−
(𝑥−𝑚)2

2𝜎𝑛
2

√2𝜋𝜎𝑛2
 

5 
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(McDonough & Whalen, 1995, p. 155) 

Now we must determine what the optimal decision for any given input would be. One 

strategy called MAP (maximum a posteriori criterion), dictates that the most probable m, 

given the input data x, is the optimum choice. Thus choose 𝑚1, if given the input x satisfies 

𝑝𝑚(𝑚1|𝑥) > 𝑝𝑚(𝑚0|𝑥). Given the probabilities for m, 𝑃0 and 𝑃1, Bayes’ rule yields 

𝑝𝑚(𝑚1|𝑥) =
𝑝𝑥(𝑥|𝑚1)𝑃1

𝑝𝑥(𝑥)
, and 𝑝𝑚(𝑚0|𝑥) =

𝑝𝑥(𝑥|𝑚0)𝑃0

𝑝𝑥(𝑥)
. 

The decision rule then becomes: Choose 𝑚 = 𝑚1 if the likelihood ratio  𝐿(𝑥) > 1. That is 

 
𝐿(𝑥) =

𝑝𝑚(𝑚1|𝑥)

𝑝𝑚(𝑚0|𝑥)
=
𝑝𝑥(𝑥|𝑚1)𝑃1
𝑝𝑥(𝑥|𝑚0)𝑃0

> 1 
6 

This is also called a detector (McDonough & Whalen, 1995, pp. 155-156). 

 

Figure 5, Top: Probability density functions of sample space for a binary hypothesis test, given 𝑚0 = 0, 𝑚1 =
1, and 𝜎𝑛

2 = 0.5. Bottom: Corresponding likelihood ratio 𝐿(𝑥), given 𝑃0 = 99%, and 𝑃1 = 1%. Given these 

parameters, we choose 𝑚 = 𝑚1 for 𝑥 > 2.799.  

 

2.4.3 The Neyman-Pearson Criterion 

In the previous section, the MAP criterion was introduced as our optimal decision-making 

tool for detection. This is a good criterion to demonstrate the process of decision making in 

noisy waveforms. However, it implies that we know the probabilities of each hypothesis, 𝑃0 
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and 𝑃1. In CBM, 𝑃0 and 𝑃1 are unknown. The decision-making in this thesis is therefore 

based on the Neyman-Pearson (NP) criterion, which has been acknowledged as the most 

suitable in radar and sonar problems (McDonough & Whalen, 1995, p. 159; Skolnik, 1990, p. 

8.2). When using NP, we choose the probability of false alarm, 𝑝𝑓𝑎 as large as we are willing 

to tolerate, to minimize the probability of missed detection 𝑝𝑓𝑛. Thus, maximizing the 

probability of detection, 𝑝𝐷. Effectively we decide 𝐷1 if likelihood ratio is equal or greater 

than 𝑇. That is 

 
𝐿(𝑥) =

𝑝(𝑥|𝐻1)

𝑝(𝑥|𝐻0)
≥ 𝑇 

7 

 

where 𝑇 = 𝑇(𝑝𝑓𝑎) is set constant or set given one or multiple criteria. In radar detection, 𝑇 is 

typically set according to weather conditions. Rain typically induce more uncertainty to the 

detection problem; thus, 𝑇 is increased (Skolnik, 1990, p. 8.2). 

 

2.4.4 Defining 𝑻 

So far, the presented theory describing detection of signals in noise has been relevant to both 

the radar target detection problem and the crack detection problem in RM. There is however a 

fundamental difference between the two problems, that is the time course-dependency. 

Probability of target detection, 𝑝𝐷 in Radar systems can be considered a Markov process. It 

does not depend on the past. Consider the detection of an airplane. 𝑝𝐷 does not depend on the 

time of day, nor the total runtime of the radar, if it is in normal working condition. If the 

airplane is within the radars working range, the most influential factors on 𝑝𝐷, is the distance 

to the airplane and the weather-condition the moment the radar antenna approaches the sector 

containing the airplane. However, if the airplane it out of range or the weather condition is 

bad, we do not expect to detect it. This means that the probability of detection can be 

expressed as 𝑝𝐷 = 𝑝𝐷[𝑟(𝑡), 𝑤(𝑡)], where 𝑟(𝑡) is the distance to the target, and 𝑤(𝑡) is the 

weather conditions, at the time 𝑡. 

In crack detection in RM, that is induced by RCF, time course is the most influential factor. 

We do not expect to detect any cracks in an RM that has zero working hours. Operational 

conditions such as elevated working temperature, loading and component misalignment only 
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matters if the factors have been present over a course of time. If an SSC develops in a RM, it 

does not go away over time. That is, unlike the radar target detection problem, once a crack 

has been detected in a RM, it must be detectable later. Thus, 𝑝𝐷 is expected to be correlated in 

time. Given these factors, probability of detected cracks can be expressed as 𝑝𝐷 =

𝑝𝐷[𝑓(𝑥1(𝑡)), 𝑓(𝑥2(𝑡)), … , 𝑓(𝑥𝑛(𝑡))], where 𝑥1, … 𝑥𝑛 are the operational conditions at time 𝑡, 

and 𝑓(𝑥𝑖(𝑡)) = ∫ 𝑥𝑖(𝑗)𝑑𝑗
𝑡

𝑡0
. 

Estimating the probability of crack detection in a RM given the integral of the operational 

condition history, is outside the scope of this thesis. Instead we define a baseline. We define 

𝑇 given historic sampled AE data from when the RM were in normal operational state. The 

amount of historic data used for baselining, is proportional to the expected service life of the 

RM, and the complexity of the excited AE waveform. If the RM consist of multiple 

subsystems as pumps, hydraulics etc. the complexity of the excited AE waveforms are 

expected to increase. 

 

2.4.5 Single-Pulse Detector 

So far, we have considered input data, 𝑥 as a single sampled number. To connect the 

decision-making theory to the real problem of radar target detection and crack detection in 

RM, we now consider the input data as a vector of samples 𝒙[𝑖], where 𝑖 = {1,2,3,… 𝑘} and 𝑘 

is the number of samples in 𝑥. Consider the message 𝑚 described in section 2.4.2, but now 𝑚 

consists of either a pulse, a vector of 𝑚1 = 1, with length, 𝑘, or  zeros, 𝑚0 = 0. The white 

gaussian noise, 𝑛 is added the same way as before, and we have 𝒙[𝑖] = 𝒎[𝑖] + 𝒏[𝑖], where 

each sample in 𝑥 is an uncorrelated random variable with mean either 𝑚0 or 𝑚1. Using the 

NP based detector in equation 6, we could make a decision for every entry of 𝑥, however a 

better approach is to first pre-process the data vector, 𝒙 by taking advantage of what we know 

about the event. In this case, the optimal pre-processing is to estimate the mean. We know 

that 𝒙 has a mean of either 𝑚0 or 𝑚1, thus the estimated mean,  μ𝑥̂ =
1

𝑘
∑ 𝒙[𝑖]𝑘
𝑖=1  is the 

optimal pre-processing for 𝒙 (McDonough & Whalen, 1995, pp. 173-174). 
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2.4.6 Multiple-Pulse Detector 

Pulsed radars transmit and receive a train of equal pulses to determine the range and velocity 

of a target (Mahafza, 2016, p. 9). The shape and time of excitation of the pulses are known to 

the radar processing unit. By measuring the time duration from the pulses leaving the antenna 

to the pulse echoes reach the receiver, the distance to the target can be calculated (Mahafza, 

2016, p. 10). The pulses are zero mean; thus, estimating the mean would not work in this 

case. Instead we take advantage of the fact that the transmitted pulse is known, and we can 

utilize a fully matched filter. 

The matched filter output for the input signal 𝒙[𝑖], is 𝒚[𝑖], which achieves the maximum 

obtainable SNR for the target echo. The radar transmits 𝑁 pulses while the rotating antenna 

illuminates the target, and 𝑁 signal vectors 𝒙 are received. Thus, the total matched-filtered 

signal from a target in the antenna beam is 𝒚[𝑖, 𝑘] where 𝑖 is the range index and 𝑘 is the 

pulse number. Usually some 1000 range samples are collected per pulse while the number of 

pulses are below 100. For every range 𝑖 we now have a multiple pulse detection problem. The 

NP solution is based on the likelihood ratio and we decide 𝐷1 if it is equal or greater than 𝑇. 

That is 

 
𝐿(𝒚[𝑖, 1], … , 𝒚[𝑖, 𝑛]) =

𝑝(𝒚[𝑖, 1], … , 𝒚[𝑖, 𝑁]|𝐻1)

𝑝(𝒚[𝑖, 1], … , 𝒚[𝑖, 𝑁]|𝐻0)
≥ 𝑇 

8 

 

(Blake, 1986, p. 36). 

2.4.7 Pulse Integration 

In systems where multiple pulses from a process can be expected to occur, pulse integration 

can be utilized. When the period from one pulse to the next is predictable, several pulses can 

be integrated to achieve improved detectability of the pulses. That is, a smaller SNR per 

pulse is required for detection (Blake, 1986, pp. 41-42). For the NP-based detector, the pulse 

integrating detector is reduced to the square-law detector, where 𝐷1 is decided if the 

likelihood ratio is equal or greater than 𝑇. That is 

 

𝐿(𝑦[𝑖]) = ∑𝒚2[𝑖, 𝑘]

𝑁

𝑘=1

≥ 𝑇 

9 
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(Skolnik, 1990, p. 8.3) The improved detectability from pulse integration is understood by the 

fact that integration is a variance reducing process. If 𝑁 independent noise samples are 

averaged, the standard-deviation-to-mean ratio of 𝐿 is reduced by √𝑁 relative to the variation 

of the 𝑦𝑗-s. Thus, the improved detectability from pulse integration primarily dependent on 

reduced noise, rather than the on the signal enhancement. With the smoothened pulse-noise, 

the threshold-to-mean ratio can now be reduced while still sustaining the same 𝑝𝑓𝑎 (Blake, 

1986, pp. 41-42). In radar, this process is also called a video integrator (Skolnik, 1990, p. 

287). 

 

2.4.8 Pulse detection in AE 

As described in section 2.3.3, AE-events originated from cracks and crack growth, take form 

of pulses, or short bursts of energy. Combined with the constantly changing noise of a RM, 

the result is an AE-waveform with potential crack-originated pulses, hidden in noise. Given 

the combined transfer function 𝑇𝑗𝑘̂(𝜔) in equation 3, we know little about the shape-

characteristics of a crack originated pulse, and therefore cannot base a detector on a fully 

matched filter. That is, a fully matched filter will only work, if its impulse response is 

precisely matched to the crack originated AE pulse. According to the radar literature, the 

alternative solution is the Envelope Detector. This detector consists of a bandpass amplifier, a 

rectifying element, and a lowpass video amplifier (Skolnik, 1990, p. 287). For digital signal 

processing this is simply: band-pass filter, rectifier, and low-pass filter. 

Additionally, AE pulses are expected to occur periodically in an RM. This means that when 

the rotation frequency is known, pulse integration can also be utilized. We also know that the 

pulses are short, and broad-banded in the frequency domain. Given this knowledge, the 

proposed detector for detecting SSC originated AE pulses in an RM is given in section 3.6.1. 

 

2.5 Literature review 

2.5.1 Fault diagnosis 

Lei et al., (Yaguo Lei et al., 2020), made a thorough review on the past, present and future 

developments on artificially intelligent fault diagnosis (IFD) in machines. The main areas of 
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IFD can be divided into three categories: Traditional machine learning (TML)-based IFD, 

Deep learning (DL)-based IFD, and Transfer learning (TL)-based IFD. In the past (1970s-mid 

2000s), TML was the focus in IFD. The methods used, typically incorporated data collection, 

manual feature extraction and health state recognition (classification). These procedures are 

typically computationally inexpensive and effective, however they rely heavily on expert 

knowledge and labeled data (Yaguo Lei et al., 2020, p. 29). 

 

Figure 6, The development of intelligent fault diagnosis (Yaguo Lei et al., 2020, p. 3) 

 

The introduction of DL aimed to mitigate the demand for expert knowledge, by bridging the 

relationship between the raw monitoring data and the health state of machines. Instead of 

manually choosing which features to extract from raw data, deep hierarchical architectures 

represent abstract features automatically, and further establish relationship between the 

learned features and the target output directly. Although DL models has proved highly 
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successful in for example computer vision, and to some degree in IFD, they typically rely on 

sufficient supply of labeled data and complete information about the health state of machines. 

The final and future solution to this problem, according to Lei et al., is TL. The concept of TL 

is to reuse knowledge from deep diagnostics models trained on related machines. Diagnostics 

knowledge gathered from MLBs could for example be used for fault diagnosis in MRBs if the 

diagnosis knowledge could be reused (Yaguo Lei et al., 2020, pp. 13-26, 29). 

Out of the 15 research papers based on TL, reviewed by Lei et at., none of them base their 

research on AE data. Four out of the 443 papers reviewed in the report by Lei et al. base their 

research on AE. The rest is mainly VA. 

 

2.5.2 AE 

The first major study of the AE phenomena was conducted by Kaiser in 1953 (Eitzen & 

Wadley, 1984, p. 75). 11 years later, the first documented application of the AE technique to 

an engineering structure was published. During the 1970s, commercial pressure and 

enthusiasm over the new non-destructive testing alternative led to invalid claims on the 

underlying workings of the process. The knowledge and understanding of the physical 

process were still in the early stage and many of the tests conducted were invalid which led to 

uncritical interpretation of data. However, the method did successfully solve some problems 

related to leak detection and acceptance testing of fiberglass structures. Being cost-effective, 

the technique proved to be valuable in monitoring oil and gas pipelines and nuclear power 

plant components (Eitzen & Wadley, 1984). 

 

2.5.3 Application of AE for RCF induced SSCs in REBs 

As mentioned in section 1.1, the published work of (Yoshioka, 1993) is considered the first 

documented application of AE to detect RCF induced SSCs in REBs. This paper is not 

reviewed in this thesis, as it could not be obtained before the delivery deadline. 

Since the publication from Yoshioka, only a handful of research papers have been published 

on this topic. There are numerous papers that investigate the use of AE as a fault detection 

tool, but these papers analyse the presence of surface defects only. The following sections 
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review most of the published papers that base their research mainly on the detection of RCF 

induced SSCs using AE. First, the only paper that successfully used AE to identify the 

presence of RCF induced SSCs in roller bearings, is reviewed. The next sections review 

papers that tackle the same problem but lack confirmation of present SSCs. These papers will 

be referred to as unverified. The papers are reviewed in chronological order. 

 

In 2005, (Price et al., 2005) conducted a series loading fatigue tests using a four-ball 

machine. The first tests lasted about 10-12 minutes before they were stopped when noise 

from pitting defects could be detected audibly. During testing, continuous recording of AE 

waveforms were done at an interval of 2.5𝑠. The length of the recorded segments was 

equivalent to one ball rotation (40 𝑚𝑠 at 1500 𝑅𝑃𝑀). Realtime time-frequency analysis 

using STFT (Short Time Fourier Transform) was used to manually monitor the sampled AE 

waveforms during testing. Test 2 and test 3 displayed a distinct change in time-frequency 

domain after about 7 minutes. In test 2, periodic pulses suddenly appeared, and in test 3, the 

main frequency energy band suddenly dropped, as seen in Figure 7. 

 

Figure 7, Sudden changes in time-frequency spectrum (Price et al., 2005, p. 94) 

 

In post inspection, the balls were mounted in conductive resin and sectioned through their 

respective pit defect. The sectioned balls were examined using a scanning electron 
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microscope that revealed SSCs. No additional material change in the area around the SSCs 

was observed. 

 

Figure 8, Four-ball machine used in Price’ fatigue tests (Price et al., 2005, p. 87) 

 

Two additional tests, Test 4 and Test 5, were then conducted. When similar behaviour change 

in time-frequency domain was observed, the tests were immediately stopped. Post inspection 

revealed SSCs in the sectioned balls, but no surface defects, as shown in Figure 9. (Price et 

al., 2005, p. 95) concludes that if these tests could continue, pitting would initiate in the area 

of the SSCs. Then, the paper suggests that an automated pattern recognition system based on 

AE time-frequency data could be used for on-line detection of SSCs formation. The paper 

does not specify applied contact stress, or fatigue cycle count. Inspection of SSC presence is 

only done post-testing. 



 

23 

 

 

Figure 9, SSCs discovered after Test 4 and Test 5 were stopped due to sudden change in time-frequency AE 

behaviour (Price et al., 2005, p. 96). 

 

2.5.3.1 Unverified 

(Elforjani & Mba, 2010) investigated accelerated natural degradation of a bearing race. To 

decrease the fatigue life of the bearing, one bearing race of a thrust ball bearing was replaced 

by a bearing race of a thrust roller bearing, thus achieving higher contact stresses. Visual 

inspections of the test specimen bearings are done periodically. Data analysis is done through 

time-domain analysis, frequency-analysis, and time-frequency analysis. The paper concludes 

that there is a clear correlation between increasing AE energy levels and the natural 

propagation and formation of bearing defects. However, the paper express that the method 

presented for identification of onset crack propagation cannot be used on real operational 

bearings, but possibly be used as a quality control tool for manufacturers. No subsurface 

inspection is done to verify the presence of SSCs. 

 

(Quiney, Lees, Ganji, & Murray, 2012) investigated in 2012 the potential advantages AE 

represent in early fault detection, compared to VA. Fatigue tests were conducted using a four-

ball machine. The tests lasted from 7 to 116 hours and were stopped when a vibration 

triggered alarm indicated spall defects in the fatigued components. Maximum contact stress 

during testing was kept constant at 6.31𝐺𝑃𝑎 and the rotation frequency on the top ball was 

fixed at 1500𝑅𝑃𝑀. AE waveforms were continuously recorded at 𝑓𝑠 = 5𝑀𝐻𝑧 with length of 

0.64 s at 3 𝑠 intervals, or 1.6 s at 5 𝑠 intervals. For signal processing they used the Hilbert 

transform to decompose the sampled AE waveforms. The components corresponding to the 
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distinct failure frequencies of the 4-ball machine were then converted to frequency power 

spectrums. From the power spectrums, they could detect sudden changes in amplitude 

approximately 30 𝑠 before the machine stopped due to spall induced vibration. The paper 

concludes that the cause of the sudden increase in AE activity -clearly indicate the presence 

of a subsurface fault (Quiney et al., 2012, p. 135). The paper does not specify the total 

number of fatigue cycles accumulated for each test. No subsurface inspection is done to 

verify the presence of SSCs. 

 

(Esmaeili, Zuercher, Wang, Harvey, & Holweger, 2017) researched the formation of white 

etching cracks (WECs) on the subsurface of bearings. Electrical and mechanical (axial) load 

is applied during testing. Time-frequency (STFT) analysis is used to monitor the fatigue 

development during roller testing. Results are interpreted directly from the time-frequency 

recorded data, and no feature extraction is done. The paper concludes that AE can be used to 

detect the signatures of WECs in the frequency band 0 − 20 𝑘𝐻𝑧. No subsurface inspection 

is done to verify the presence of subsurface WECs. 

 

(Fuentes et al., 2020) presented a method for identifying seeded subsurface- and early-stage 

surface defects in ball bearings using AE. Surface defects was made using either using spark 

erosion or scratching with Cubic Boron Nitride. The subsurface defects where artificially 

made by applying load to compress the outside surface of a bearing raceway with a rolling 

element. Hertzian contact mechanics dictated that subsurface yield would occur at 1000 𝑘𝑁, 

and the raceway was subjected to loads of maximum 2000 𝑘𝑁. The presence of subsurface 

cracks was observed with AE-hit monitoring during compression. To detect the defects 

present in the AE waveforms, TML is used. Features are extracted manually from time-

domain only. Data selection is hit-based, meaning that only bursts/pulses in the recorded 

waveforms are stored for feature extraction. To identify the hits from the constantly changing 

noise floor of a rotating machine, a moving RMS hit identification function is used. For 

classification Gaussian mixture models is used. Sampling frequency is 𝑓𝑠 = 1𝑀𝐻𝑧. Testing 

parameters such as fatigue cycle count, contact stress, and test duration are not described. No 

subsurface inspection is done to verify the presence of SSCs. 
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3 Methodology, materials, and experimental setup 

 

3.1 Duration test 

The data used for analysis in this thesis is gathered from one duration test, completed during 

the master’s period. A purpose-built test machine located at Materialteknisk (MTI), NTNU 

was used for the entire test. The objective of the test was to generate RCF induced SSCs in a 

test specimen roller. This is achieved by replicating the loading conditions typically present 

to rolling elements inside a REB during operation. The test was completed in stages. During 

each stage, contact stress on the test specimen, and rotation frequency, 𝑓𝑟 were kept constant.  

Between each stage, a PAUT (Phased Array Ultrasonic Test) was conducted to monitor SSC 

development and propagation. The PAUT equipment used was an Olympus OMNISCAN sx 

(Appendix K). All relevant information collected during the test was logged in a spreadsheet. 

This spreadsheet will be referred to as the “test-log.” A compressed version of the test-log is 

presented in Table 2. 

From the test start 2021 Mar 16, 𝐹𝐴 (specified in formula 10) was kept constant at 𝐹𝐴 =

364 𝑅𝑃𝑀. April 19, 2021, due to excessive vibration in the machine, 𝐹𝐴 was reduced to 𝐹𝐴 =

256 𝑅𝑃𝑀. 

 

3.2 Test machine 

  

Figure 10, Left: Cad drawing of the test machine. Right: Arrangement of support rollers and test specimen. 
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The general layout of the test machine is displayed in Figure 10. A 22 𝑘𝑊 SEW electric 

motor drives the whole arrangement. It is connected to a 375:128 reduction gearbox which is 

directly coupled to the test specimen with a flexible shaft coupler. Three rollers support the 

test specimen, and each roller is supported by two needle bearings as seen in Figure 11. The 

specification for the needle bearings can be found in Appendix C. Support roller dimensions 

can be found in Appendix A. A load cell controlling the contact stress between the rollers and 

test specimen acts on the top support roller. The contact stress distributed between the three 

contact points are assumed equal due to the symmetrical 120° angle between the centre of 

each support roller and the centre of the test specimen. 

Due to the arrangement of the test specimen and the support rollers, one point on the 

perimeter of the test specimen passes three contact points (support rollers) per rotation. Thus, 

three fatigue cycles occur per axle rotation. The corresponding “test frequency,” is thus 

defined as 

 𝑓𝑡𝑒𝑠𝑡 = 3𝑓𝑟, 

where 𝑓𝑟 =
𝐹𝐴

60
, 

and 𝐹𝐴 is the axle rotation frequency in RPM. 

10 
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Figure 11, Support rollers and needle bearings. 

3.3 Recording systems and sensors 

 

Figure 12, Test machine sensor location layout. SPx refers to sensor position x. 

 

There are two separate systems recording the AE-waveforms during testing, the NTNU 

(MISTRAS) system, and the Kongsberg Maritime (KM) system. MISTRAS records AE 

waveforms from the sensor at SP1, and KM records AE waveforms from the sensors at SP2-

SP5. The sensor at SP6 and the Vib sensor were not used for analysis in this thesis. 

An axle pin is bolted to the test specimen on the opposite side from the shaft coupler, as seen 

in Figure 13. SP1 and SP2 are on a linear bearing mounted to the axle pin. Specifications of 

the linear bearing can be found in Appendix . SP3-SP5 are on the front needle bearing 

housings, as seen in Figure 14. The linear bearing, needle bearings, and the contact points 

between the test specimen and support rollers are all lubricated with gear oil supplied from 

the oil management system seen in Figure 14. The contact medium used between the sensors 

and the contact surface is a high temperature paste from FUCHS, named GLEITMO 591 

(Appendix M).  

The AE sensor in SP1-SP2, is the WD sensor by PHYSICAL ACOUSTICS. 

WD is a true differential wideband sensor with a very high sensitivity and bandwidth. 

It has a very good frequency response over the range of 100-900 kHz. Differential 
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sensors differ from their general purpose counterparts by employing two sensing 

elements with opposite polarization directions. The two signal leads feed into a 

differential pre-amplifier which eliminates common-mode noise resulting in a lower 

noise output from the pre-amplifier (Appendix ). 

The AE sensor in SP3-SP5 is the Micro30D by Physical Acoustics. 

MICRO30D is a differential sensor designed to isolate the sensing terminals 

electrically from the cavity. This electrical isolation makes the sensor particularly 

useful for applications where high background electrical noise is a major concern. It 

has a very good sensitivity and frequency response over the range of 150 – 400 kHz. 

The two signal leads from the sensing element feed into a differential pre-amplifier 

which eliminates common mode noise resulting in a lower noise output from the pre-

amplifier (Appendix ). 

  

 

 

Figure 13, Layout for the test specimen, SP1 and SP2. 
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Figure 14, Test machine components 1: Test specimen, 2: Right support roller, 3: Left support roller, 4: Left oil-

splash, 5: Right oil-splash, 6: Oil supply, front right needle-bearing, 7: Oil supply, back right needle-bearing, 8: 

SP1, WD-sensor (MISTRAS), 9: SP2, WD-sensor (KM), 10: Vib (KM), 11: SP4, Micro30D-sensor (KM), 12: 

Linear bearing, 13: Axle pin. 

3.4 Test specimen 

Only one test specimen was used through the entire duration test. It is made from case 

hardened gear steel with a surface hardness of approximately 700 Vickers. Case hardening 

means that only the outer perimeter is fully hardened, and the core is not. Given the theory on 

RCF induced SSCs in section 2.2, the intention of the case hardening is to increase the 

probability of SSCs to be the first occurring failure mode. Dimensions and tolerance for the 

test specimen can be found in Appendix B. 

 

3.5 Signal Equipment used 

3.5.1 Mistras (NTNU) 

A low-noise wide band preamplifier, PAC 2/4/6 by PHYSICAL ACOUSTICS (MISTRAS) 

was used to amplify the signal from the WD sensor by 40 𝑑𝐵, and bandpass filtered in the 

frequency band 50 𝑘𝐻𝑧 –  1300 𝑘𝐻𝑧. Information about the PAC 2/4/6 can be found in 

Appendix . The signal was then passed on to a 2-channel PC-controlled AE-recording system 

based on the PCI-2 data acquisition board by PHYSICAL ACOUSTICS (MISTRAS) with 
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continuous data streaming capability. Information about the PCI-2 can be found in Appendix 

. 

During testing, continuous AE waveform segments of 10 seconds length were recorded at an 

interval of 10 minutes. After the first SSC was confirmed in PAUT, the interval was reduced 

to 5 minutes. The AE recording was performed continuously, with a sampling frequency,  

𝑓𝑠 = 2𝑀𝐻𝑧 and a bit depth of 16 bits per sample. 

Software used for recording is AEwin by PHYSICAL ACOUSTICS (MISTRAS). 

Information about AEwin can be found in Appendix . Recorded AE segments were saved in 

.wfs format. These .wfs-files cannot be easily opened outside the AEwin environment. A wfs-

reader MATLAB-script was provided by the supervisor to open the AE waveforms in the 

MATLAB-workspace. Further analysis on the waveforms could then be performed. 

The files names were on the format RT8-QyyyyMMdd-HHmmss-000.wfs. yyyy is year, MM is 

month, dd is day, HH is hour, mm is minute, ss is second and Q is a counter. To avoid any 

confusion regarding which SPx the file originates from the file was renamed to RT8-

QyyyyMMdd-HHmmss-00x.wfs, where x refers to SPx. 

A total 360𝐺𝐵 of raw data, gathered by the Mistras system, is used for further analysis. 

3.5.2 KM (Kongsberg Maritime) 

The same preamplifier, PAC 2/4/6, is used in the KM system with 40 𝑑𝑏 gain, and bandpass 

filtered in the frequency band 20𝑘𝐻𝑧 – 1200𝑘𝐻𝑧. The signal was the passed on to 12 

channel high-speed acquisition board that is, Kongsberg HSIO-100-A (Appendix ). 

During testing, continuous AE waveform segments of 2 seconds were recorded at an interval 

of 60 minutes. After PAUT confirmed the first SSC, the interval was reduced to 20 minutes. 

The AE recording was performed continuously, with a sampling frequency, 𝑓𝑠 = 2𝑀𝐻𝑧, and 

a bit depth of 24 bits per sample. Recording is automatically started when the 𝐹𝐴 is greater 

than a threshold. 2021 Apr 19, when the 𝐹𝐴 was lowered due to vibrations (as mentioned in 

3.1), it was lower than the threshold, and no recording was done until the threshold was 

lowered  22 April, 2021. 

Recorded AE segments were provided in .csv format, which can be opened directly in the 

MATLAB workspace. The csv files contained either data from SP2 only, or SP3-SP5. The 

files names were on the format dd.MM.yyyy-HH.mm.ss.csv. dd is date, MM is month, yyyy is 
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year, HH is hour, mm is minute, and ss is second. As the data from MISTRAS was the first 

data used for analysis, the csv-files containing sensor-data from SP2 only were renamed to 

match the MISTRAS filename-syntax.  Csv-files containing sensor-data from SP3-SP5 were 

first opened in MATLAB, then the data corresponding to each SPx was saved in separate 

.mat-files with filenames corresponding to MISTRAS filename-syntax. This was done to 

reduce file-loading time, as the three .mat files corresponding to one .csv file use 1/16 the 

space on the SSD (Solid State Drive). 

A total 292𝐺𝐵 of raw data, gathered by the KM system, is used for further analysis. For both 

systems put together, a grand total of 652𝐺𝐵 of raw data is used for further analysis. The 

total number of files used for analysis from each SPx is listed in Table 1. 

 

Sensor position Number of files 

SP1 (MISTRAS) 9324 

SP2 (KM) 2350 

SP3 (KM) 442 

SP4 (KM) 442 

SP5 (KM) 442 

 

Table 1, Number of files used for analysis. 

 

3.6 Procedures and algorithms 

3.6.1 Proposed Detector 

A method for detecting SSC originated AE pulses in RM is introduced in this thesis. The core 

principle of the detector is derived from established theory used to solve the radar target 

detection problem. This is reviewed in section 2.4. The main advantage to the detector lies in 

the use of pulse integration. Pulses are first extracted from the sampled AE waveform at 

precise intervals, defined by a window function. The extracted pulses are then integrated. If 

the result of the pulse integration contain defect originated pulses, it will have a higher value 

than if the data only contains noise. The detector is developed in the MATLAB environment, 

thus all sets and matrices describing the computational procedures are one-base-indexed. 
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3.6.1.1 The Sampled AE Waveform 

Let 𝒙[𝑛] be the sampled AE waveform of length 𝑙𝑠𝑖𝑔𝑛𝑎𝑙, where 𝑛 = {1,2,3, … , 𝑙𝑠𝑖𝑔𝑛𝑎𝑙}. Figure 

15 displays an example of what the raw sampled waveform 𝒙[𝑛] can look like. The 

waveform is recorded on MISTRAS, 2021 May 18, 17:43:30, and will be used for 

demonstration purposes throughout this section. The recording contains AE pulses repeating 

at 𝑓𝑓𝑎𝑢𝑙𝑡 = 3/𝑟𝑒𝑣 and 𝑓𝑓𝑎𝑢𝑙𝑡 = 1/𝑟𝑒𝑣, where 𝑓𝑓𝑎𝑢𝑙𝑡 denote the number of times per axle 

rotation a defect originated AE pulse is expected to occur. 

 

Figure 15, An example of 𝒙[𝑛], sampled at 𝑓𝑠  =  2 𝑀ℎ𝑧 for a period of 𝑙𝑠𝑖𝑔𝑛𝑎𝑙 = 10𝑠𝑓𝑠. Pulses repeating at 

𝑓𝑓𝑎𝑢𝑙𝑡 = 1/𝑟𝑒𝑣 are visible as peaks in 𝒙[𝑛]. 

 

 

3.6.1.2 Determine starting position of all recorded axle rotations 

The first step is to estimate all window positions. These can be calculated using the rotation 

frequency, 𝑓𝑟 at the time of the recorded waveform 𝒙, and is the chosen method for this 

thesis. For now, it is assumed that the exact rotation frequency, 𝑓𝑟 of the RM during a 

recording, is known. To calculate the position of all windows, an estimated relative starting 

position for every axle rotation is needed. However, this implies that the 𝑓𝑟 is kept constant 

through the entire recording, which is unlikely. The ideal way to calculate window positions, 

would be to use axle position data sampled simultaneously with the AE sampling. This was 

unavailable during the development of the detector. Thus 𝑓𝑟 is estimated from 𝒙 instead. 

The following sections describe the general, ideal detector solution, which accounts for an 

unstable rotation frequency, 𝑓𝑟 during an AE recording. This solution choice will be 

discussed further in 6.1.6. 
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Let 𝑟𝑚 denote the starting positions of the recorded axle rotations, and 𝑓𝑓𝑎𝑢𝑙𝑡 denote the 

number of times between 𝑟𝑚 and 𝑟𝑚+1 a defect originated AE pulse is expected to occur. 

To correctly detect every defect behavior in an RM, a generalization of 𝑓𝑓𝑎𝑢𝑙𝑡 is needed. That 

is 

 

𝑓𝑓𝑎𝑢𝑙𝑡 = {
𝑘/𝑟𝑒𝑣, 𝑘 ∈ ℕ , 𝑐𝑎𝑠𝑒1
𝑘/𝑟𝑒𝑣, 𝑘 ∉ ℕ , 𝑐𝑎𝑠𝑒2
𝑘 𝐻𝑧, 𝑘 ∈ ℝ , 𝑐𝑎𝑠𝑒3
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Where case: 

1- A defect excites an AE pulse an integer number of times per axle revolution. 

2- A defect excites an AE pulse a fraction number of times per axle revolution. 

3- A defect excites an AE pulses with a rate unrelated to 𝑓𝑟. 

 

For 𝑓𝑓𝑎𝑢𝑙𝑡 = 𝑘/𝑟𝑒𝑣, 𝑘 ∈ ℕ , 𝑟𝑚 becomes 

 𝑟𝑚 = {0,1,2, … ,𝑚 − 1} ⌊
𝑓𝑠

𝑓𝑟
⌋ + 1, where 𝑚 = {1,2,3, … , ⌊

𝑙𝑠𝑖𝑔𝑛𝑎𝑙𝑓𝑟

𝑓𝑠
⌋} 
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For 𝑓𝑓𝑎𝑢𝑙𝑡 =  𝑘/𝑟𝑒𝑣, 𝑘 ∉ ℕ, then the AE pulses will not occur at one distinct axle position 

from one axle rotation to the next. Instead of denoting 𝑟𝑚 as the axle starting position, 𝑟𝑚 now 

denotes every 𝑔-th AE pulse. Given 𝑔 =  10, 10 pulses are expected to occur between 𝑟𝑚 

and 𝑟𝑚+1. 

 𝑟𝑚 = {0,1,2, … ,𝑚 − 1} ⌊
𝑓𝑠𝑔

𝑓𝑟𝑓𝑓𝑎𝑢𝑙𝑡
⌋ + 1, 

where 𝑚 = {1,2,3… , ⌊
𝑙𝑠𝑖𝑔𝑛𝑎𝑙𝑓𝑟𝑓𝑓𝑎𝑢𝑙𝑡

𝑓𝑠𝑔
⌋}, and 𝑔 ∈ ℕ > 1 
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𝑔 is an integer that must be more than one to in order to prevent round-off error. For PIS 

verification (ref section 3.6.2) 𝑔 is it kept at 𝑔 =  4. 

For 𝑓𝑓𝑎𝑢𝑙𝑡 =  𝑘 𝐻𝑧, 𝑘 ∈ ℝ, where the AE pulses repeat with a rate unrelated to 𝑓𝑟, 𝑟𝑚 becomes 

 𝑟𝑚 = {0,1,2, … ,𝑚 − 1} ⌊
𝑓𝑠𝑔

𝑓𝑓𝑎𝑢𝑙𝑡
⌋ + 1, 

where 𝑚 = {1,2,3… , ⌊
𝑙𝑠𝑖𝑔𝑛𝑎𝑙𝑓𝑓𝑎𝑢𝑙𝑡

𝑓𝑠𝑔
⌋}, and 𝑔 ∈ ℕ > 1 
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The length of each rotation in samples, 𝑑𝑠 is 

 𝑑𝑠 = 𝑟𝑠+1 − 𝑟𝑠, where 𝑟𝑠 = {𝑟1, 𝑟2, … , 𝑟𝑚−1}, 

and 𝑠 = {1,2,3, … ,𝑚 − 1} 
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When defining the set, 𝑑𝑠 from a constant 𝑓𝑟, every entry in 𝑑𝑠 are equal. Thus, the general 

solution is excessive in this case and 𝑑𝑠 could be replaced by the constant 𝑑. However, 𝑑𝑠 is 

used to give a more complete representation of the detector. 

 

 

Figure 16, 𝒙[𝑛] with calculated rotation start positions 𝑟𝑚, and rotation durations 𝑑𝑠. 

 

3.6.1.3 Define windows 

Given 𝑟𝑠, and 𝑑𝑠, the window function is defined as a window of sub-windows. That is 

 
𝑤𝑗,𝑠
𝑖 [𝑛, 𝑙𝑤, 𝑜𝑤] = {

1 𝑝𝑗,𝑠
𝑖 [𝑙𝑤, 𝑜𝑤] ≤ 𝑛 ≤ 𝑝𝑗,𝑠

𝑖 [𝑙𝑤, 𝑜𝑤] + 𝑙𝑤
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 

where position, 𝑝𝑗,𝑠
𝑖 [𝑙𝑤, 𝑜𝑤] = 𝑟𝑠 + (𝑙𝑤 − 𝑜𝑤)𝑖 +

𝑑𝑠

𝑓𝑓𝑎𝑢𝑙𝑡
𝑗, 

𝑖 = {0,1,2, … ⌊
𝑑𝑠

𝑓𝑓𝑎𝑢𝑙𝑡
⌋ − 1}, 𝑗 = {0,1,2, … 𝑓𝑓𝑎𝑢𝑙𝑡 − 1}, 

𝑙𝑤 is the window length, and 𝑜𝑤 is the window overlap. 
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Figure 17, 𝒙[𝑛] with illustrated windows. The green rectangles illustrate the sub-windows of the first window, 

that is 𝑤𝑗,𝑠
0 [𝑛, 𝑙𝑤 , 𝑜𝑤], and the purple rectangles illustrate the sub-windows of last the window, that is 

𝑤𝑗,𝑠
𝑚𝑎𝑥(𝑖)[𝑛, 𝑙𝑤 , 𝑜𝑤], with a failure rate, 𝑓𝑓𝑎𝑢𝑙𝑡 = 1. 

 

To clarify how the sub-windows of a window are distributed in n-space, consider this 

example: 

A sampled waveform 𝒙1[𝑛] has a recorded 11 axle start-positions. That means that 

there are 10 full axle rotations recorded in 𝒙1[𝑛]. We want to detect a defect that 

excites AE pulses at 𝑓𝑓𝑎𝑢𝑙𝑡 = 3/𝑟𝑒𝑣. That means a total 30 AE pulses are recorded in 

𝒙1[𝑛]. The corresponding window function thus consist of windows with 

𝑚𝑎𝑥(𝑠)(𝑚𝑎𝑥(𝑗) + 1) = 30 sub-windows, where 𝑚𝑎𝑥(𝑠) = 10, and 𝑚𝑎𝑥(𝑗) = 2. 

 

3.6.1.4 Pulse Extraction-and Integration 

With the window positions calculated, the pulses in each window 𝑦0,1
0 , … , 𝑦𝑗,𝑠

𝑖  can now be 

extracted. As described in section 2.4.8, 𝒙[𝑛] cannot be matched-filtered to maximize the 

SNR for the AE pulses, because the AE pulse shape is unknown. Instead, the pulses are 

extracted using an envelope detector. As further described in section 2.4.8, the envelope 

detector consists of a band-pass filter, a rectifier, and a low-pass filter. 

The bandpass filter is used for rejecting noise outside the AE pulse frequency band. In RM 

AE monitoring it can be necessary to attenuate the lower part of the frequency band due to 
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high noise level. The test machine used to generate AE waveforms in this thesis, had a 

constant noise frequency band between 0 − 500 𝑘𝐻𝑧. Therefore, 𝒙[𝑛] is filtered using a 

high-pass filter with cut-off frequency at 500 𝑘𝐻𝑧 to attenuate most of the RM originated 

noise. 𝒙𝐻𝑃[𝑛] denotes the high-pass filtered 𝒙[𝑛]. The built in MATLAB function highpass 

(MATLAB, 2021d) was the chosen filtering-function. In Figure 18, the spectrograms of 𝒙[𝑛] 

and 𝒙𝐻𝑃[𝑛] are presented. The spectrograms are generated using the built in MATLAB 

function pspectrum (MATLAB, 2021f). 

 

Figure 18, The spectrogram of 𝒙[𝑛] and 𝒙𝐻𝑃[𝑛], plotted between 𝑛 = 𝑟1, , , 𝑟2, given 𝑓𝑓𝑎𝑢𝑙𝑡 = 3/𝑟𝑒𝑣. The black 

arrows indicate the AE pulses repeating at 𝑓𝑓𝑎𝑢𝑙𝑡 = 3/𝑟𝑒𝑣, and the white arrows indicate the AE pulses 

repeating at 𝑓𝑓𝑎𝑢𝑙𝑡 = 1/𝑟𝑒𝑣. NB, this is an ordinary spectrogram and must not be confused with the PIS (ref 

section 3.6.2). 
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The chosen rectifying element for the envelope detector is to square 𝒙𝐻𝑃[𝑛], that is, 𝒙𝐻𝑃
2 [𝑛]. 

This is the rectifier that produced the best results. 

The low-pass filter is to sum all the squared samples inside the window. This summation is 

effectively a low pass operation. The extracted pulses are thus calculated 

 

𝑦𝑗,𝑠
𝑖 [𝑙𝑤, 𝑜𝑤] = ∑ 𝑤𝑗,𝑠

𝑖 [𝑙𝑤, 𝑜𝑤, 𝑛]𝒙𝐻𝑃
2 [𝑛]

𝑙𝑠𝑖𝑔𝑛𝑎𝑙

𝑛=1
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Equation 17 can be simplified by describing 𝑦𝑗,𝑠
𝑖 [𝑙𝑤, 𝑜𝑤] as a matrix, 𝑴𝑖,𝑟, where the entries 

of each row is the extracted pulse from each sub-window in window 𝑖. By referring to Figure 

17: The green rectangles would correspond to the first row, 𝑴0,𝑟, and the purple rectangles 

would correspond to the last row, 𝑴𝑚𝑎𝑥(𝑖),𝑟. That is 

 

𝑴𝑖,𝑟 =

(

 
 
 

𝑦0,1
0 𝑦1,1

0 … 𝑦𝑗−1,1
0 𝑦𝑗,1

0 𝑦0,2
0 … 𝑦𝑗−1,𝑠

0 𝑦𝑗,𝑠
0

𝑦0,1
1 … … … … … … … 𝑦𝑗,𝑠

1

⋮ … … … … … … … ⋮
𝑦0,1
𝑖−1 … … … … … … … 𝑦𝑗,𝑠

𝑖−1

𝑦0,1
𝑖 … … … … … … … 𝑦𝑗,𝑠

𝑖
)

 
 
 

, 

where 𝑟 = {0,1,2, … , 𝑠(𝑗 + 1) − 1}. 
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3.6.1.5 Outlier removal 

All entries in one row are expected to be close in value. Either the window is in position of 

the pulse, and is detected in most sub-windows, or it is not.  If only a small number of sub-

windows give a higher value than the rest, that means that these sub-windows detect other AE 

pulses than what we are looking for. These are outliers and must be removed before 

proceeding.  

Let the row vector 𝑁𝑖 with length r, be the i-th row in 𝑴i,r. The entries in 𝑁𝑖 considered 

outliers are set to the mean of the entries in 𝑁𝑖 not considered outliers. This is done for all i’s. 

In MATLAB notation this becomes 

 𝑁𝑖[𝑖𝑠𝑜𝑢𝑡𝑙𝑖𝑒𝑟{𝑁𝑖}] = 𝑚𝑒𝑎𝑛{𝑁𝑖[∼ 𝑖𝑠𝑜𝑢𝑡𝑙𝑖𝑒𝑟{𝑁𝑖}]} 
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Where isoutlier(A) is a built-in function in MATLAB that returns the indices of the entries in 

vector A that is more than three scaled median absolute deviations (MAD) away from the 

median(A). mad(A) is defined as 𝑐 ⋅ 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑎𝑏𝑠(𝐴 −𝑚𝑒𝑑𝑖𝑎𝑛(𝐴))), where 𝑐 =

−
1

√2
𝑒𝑟𝑓𝑐𝑖𝑛𝑣 (

3

2
) (MATLAB, 2021e), and 𝑒𝑟𝑓𝑐𝑖𝑛𝑣 is the inverse complementary error 

function (MATLAB, 2021b). Now, 𝑴̃𝑖,𝑟 is denoted as the row-outlier-free matrix. 

 

Figure 19, Top: The 124-th row of 𝑴 (before outliers are removed) plotted with respect to 𝑟. At 𝑟 = 9, there is 

a clear outlier. Bottom: The same row is plotted, but now the outliers are removed. 

With the row outliers removed, pulse integration is done by summing the squares of each row 

in 𝑀̃𝑖,𝑟, that is 

 

𝐾𝑖 = ∑ (𝑴̃𝑖,𝑟)
2

𝑠(𝑗+1)−1

𝑟=0
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Figure 20, 𝑲𝒊 plotted with respect to 𝑖. This will be referred to as the K-spectrum. Defect related AE-pulses will 

be present in the K-spectrum as peaks. The peak corresponding to the SSC is at 𝑖 =  270. Windows used are: 

𝑙𝑤 = 1000, 𝑜𝑤 = 500. 

 

3.6.1.6 Anti-Aliasing 

Suppose that there exist AE-pulses in the sampled waveform 𝒙[𝑛] that originate from 

multiple bearing defects. If the detector is set to capture a defect with failure rate, 𝑓𝑓𝑎𝑢𝑙𝑡 = 1, 

how could we know if the integrated pulses does not correspond to a bearing defect with a 

failure rate, 𝑓𝑓𝑎𝑢𝑙𝑡 = 1𝑘, where 𝑘 ∈ ℕ > 1? This can be recognised as an undersampling 

issue. Nyquist sampling theorem states that in order to not have aliases in a recorded signal, 

the sample rate must be equal to, or greater than the highest frequency component in the raw 

signal (Weik, 2001).  At the pulse extraction stage (equation 17), 𝒙[𝑛] is essentially sampled  

in sections of width, 𝑙𝑤 with a sample rate of 𝑓𝑓𝑎𝑢𝑙𝑡 per axle rotation. If there exists an AE 

defect in the bearing that excite pulses at for example 𝑓𝑓𝑎𝑢𝑙𝑡 = 3 these pulses would show up 

in 𝐾𝑖 as three aliases. This scenario can be seen in Figure 23. 
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Figure 21, Alias problem. The green rectangles illustrate the sub-windows of window, 𝑤𝑗,𝑠
1 [𝑙𝑤 , 𝑜𝑤 , 𝑛]. Notice 

that the spacing between the sub-windows indicate a sought defect repeating at 𝑓𝑓𝑎𝑢𝑙𝑡 = 1. However, the present 

AE pulses occur at a failure rate of 𝑓𝑓𝑎𝑢𝑙𝑡 = 3. 

 

Given Nyquist’s theorem and the scenario from Figure 21, we must extract pulses from 𝒙[𝑛] 

at a failure rate of 𝑓𝑓𝑎𝑢𝑙𝑡 ≥ 6 to prevent aliases in the K-spectrum. This is illustrated in Figure 

22. 

 

Figure 22,  The detector extracts pulses at 𝑓𝑓𝑎𝑢𝑙𝑡 = 6. 

 

However, by doing this, additional noise is introduced to the pulse extraction. This can be 

seen in Figure 22. Notice that every other sub-window (green rectangle) is located at a 

position where there is no AE pulse. This is always the case. Extracted pulses from these sub-

windows using equation 17 will only add noise. What this means is that whenever there exists 

a bearing defect originated pulse in 𝒙[𝑛] that repeats at a multiple of the defect sought to 

detect, the aliases must be removed, rather than sampling at the Nyquist rate. 
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Figure 23, K-spectrum generated using 𝑓𝑓𝑎𝑢𝑙𝑡 = 1, 𝑙𝑤 = 1000 and 𝑜𝑤 = 500. Notice that the three protruding 

peaks are aliases of the AE pulses with 𝑓𝑓𝑎𝑢𝑙𝑡 = 3 shown in Figure 20. The spacing between the aliases is 

𝑚𝑎𝑥(𝑖)/3. 

Additional information: As described in Figure 15, the file used to generate this K-spectrum contains a 

behaviour repeating at 𝑓𝑓𝑎𝑢𝑙𝑡 = 1. However, no significant peak from this behaviour is present in this K-

spectrum. The reason for this is explained in section 5.1.3. 

 

The chosen way to remove aliases starts with finding the local maxima in the K-spectrum. 

This is done using the built in MATLAB function, findpeaks (MATLAB, 2021c). That is 

 [𝒑𝑚𝑎𝑥, 𝒑𝑙𝑜𝑐 , 𝒑𝑤𝑖𝑑𝑡ℎ, ∼] = 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝐾𝑖) 21 

 

where 𝒑𝑚𝑎𝑥 is the peak tops, 𝒑𝑙𝑜𝑐 is the i-locations, and 𝒑𝑤𝑖𝑑𝑡ℎ is the peak widths. Only 

peaks with prominence more than 0.01𝑚𝑎𝑥(𝐾𝑖) are included. The three 𝒑-vectors are then 

sorted according to the 𝒑𝑚𝑎𝑥 vector, as the alias peaks are assumed to be similar in height. 

Given the sorted location vector 𝒑̂𝑙𝑜𝑐 the peaks that are considered aliases are set to the mean 

of 𝐾𝑖. Two peaks are considered aliases if the distance between them (in i-space) is equal to 

the length of the i-space, divided by 
𝑓𝑎𝑙𝑖𝑎𝑠

𝑘
, where 𝑓𝑎𝑙𝑖𝑎𝑠 is the failure rate of the alias, and 𝑘 =

{1,2,3, … 𝑓𝑎𝑙𝑖𝑎𝑠 − 1}. The expression becomes 

 

𝑲𝑚 =

{
 
 

 
 
𝑚𝑒𝑎𝑛(𝐾𝑖), 𝑚𝑖𝑛(𝑑𝑖𝑓𝑓𝑝𝑙𝑜𝑐[𝑛] −

𝑚𝑎𝑥(𝑖)

[
𝑓𝑎𝑙𝑖𝑎𝑠
1 ,

𝑓𝑎𝑙𝑖𝑎𝑠
2 ,… ,

𝑓𝑎𝑙𝑖𝑎𝑠
𝑓𝑎𝑙𝑖𝑎𝑠 − 1

]
) < 𝑞

𝐾𝑚, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where 𝑑𝑖𝑓𝑓𝒑̂𝒍𝒐𝒄[ℎ] = 𝒑̂𝑙𝑜𝑐[ℎ + 1] − 𝒑̂𝑙𝑜𝑐[ℎ], 
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 𝑚 = {𝑝̂𝑙𝑜𝑐[ℎ] − 𝑝̂𝑤𝑖𝑑𝑡ℎ[ℎ], … , 𝑝̂𝑙𝑜𝑐[ℎ] + 𝑝̂𝑤𝑖𝑑𝑡ℎ[ℎ]}, ℎ = {1,2,3, … 𝑙𝑒𝑛𝑔𝑡ℎ(𝒑) − 1}, and 𝑞 is 

a threshold that allows the peaks locations to be slightly shifted in i-space. It is typically set to 

0.01𝑚𝑎𝑥(𝑖). 

 

Figure 24, This is the same K-spectrum as in Figure 23, but now the aliases are removed. 

 

3.6.1.7 Peak extraction 

With the aliases removed, there is only one peak in K-spectrum that corresponds to the 

sought defect. This is the peak with the highest peakPower. The value, 𝑝𝑒𝑎𝑘𝑃𝑜𝑤𝑒𝑟 =

𝑝𝑒𝑎𝑘𝑃𝑟𝑜𝑚𝑖𝑛𝑐𝑒

𝑝𝑒𝑎𝑘𝑊𝑖𝑑𝑡ℎ
, captures two distinct parameters of a peak. The peak prominence, which must 

not be confused with peak height (or 𝒑𝑚𝑎𝑥), denotes the distance from the root of the peak to 

the top. The reason why this parameter is used is simply because the peak with the largest 

peak height in the K-spectrum is not necessarily the peak corresponding to the sought defect. 

This scenario can be seen in Figure 25. 
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Figure 25, K-spectrum given 𝑓𝑓𝑎𝑢𝑙𝑡 = 3, 𝑙𝑤 = 1000, 𝑜𝑤 = 500. The most significant/prominent peak is located 

at 𝑖 =  77, however the peak with the maximum value is located at 𝑖 = 245. This K-spectrum corresponds to a 

sampled waveform from the KM-system, recorded 2021 Apr 30, 13:32:46. 

 

The peak width is an indicator of how stably the AE pulses repeat. If the peak is narrow, only 

a few windows capture the AE pulses, which is a good indicator. Peak width also corresponds 

to how accurate the axle position is estimated. The equation describing peakPower is best 

described in MATLAB notation using logical indexing. That is 

[~, ~, 𝒑𝑤𝑖𝑑𝑡ℎ , 𝒑𝑝𝑟𝑜𝑚] = 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝐾𝑖) 

and, 

𝑝𝑒𝑎𝑘𝑃𝑜𝑤𝑒𝑟 =  
𝑷𝑝𝑟𝑜𝑚 [

𝑷𝑝𝑟𝑜𝑚
𝑷𝑤𝑖𝑑𝑡ℎ

== 𝑚𝑎𝑥 (
𝑷𝑝𝑟𝑜𝑚
𝑷𝑤𝑖𝑑𝑡ℎ

)]

𝑷𝑤𝑖𝑑𝑡ℎ [
𝑷𝑝𝑟𝑜𝑚
𝑷𝑤𝑖𝑑𝑡ℎ

== 𝑚𝑎𝑥 (
𝑷𝑝𝑟𝑜𝑚
𝑷𝑤𝑖𝑑𝑡ℎ

)]
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Edge case: The peak with the highest peakPower can be located between the first and last 

entries in i-space (or the first and last windows). This is solved by performing the peak 

extraction step (equation 23) twice. The first is performed with the original K-spectrum 

directly. The second is performed with the K-spectrum shifted circularly with a shift length of 

𝑚𝑎𝑥(𝑖)/4. The extracted peak with the highest peakPower from either the K-spectrum or the 

circularly shifted K-spectrum is chosen. An example of this edge case can be seen in Figure 

53. 
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3.6.1.8 Noise 

Friction-and electrically generated noise can alter the AE waveform drastically. Figure 26, 

displays the spectrograms from friction originated AE waveforms at different load levels.  

 

Figure 26, The observations from a friction and wear characterizing study, done by (Geng, Puhan, & Reddyhoff, 

2019). Notice the dramatic increase in AE activity from 400𝑘𝐻𝑧 to 1𝑀𝐻𝑧 when the applied load is increased. 

 

When an RM excite AE waveforms containing these levels of noise, the SNR is simply too 

small to detect any sub-surface cracks. However, the K-spectrums generated from these 

waveforms can potentially contain significant peaks, as seen in Figure 27. 
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Figure 27, K-spectrum given 𝑓𝑓𝑎𝑢𝑙𝑡 = 3, 𝑙𝑤 = 1000, 𝑜𝑤 = 500. This is generated from a sampled AE 

waveform recorded 2021 Apr 7, 15:31:33 on MISTRAS, with high noise content. Compared to the K-spectrum 

in Figure 20, the lowest value here is more than 16 times larger than the peak in Figure 20. 

 

These peaks must not be mistaken for crack related peaks, as this would increase 𝑝𝑓𝑎 

(probability of false alarm). However, another consequence of high noise AE waveforms is 

that the corresponding K-spectrums are higher valued. That is 

 ∫ 𝑲𝑡
𝑆𝑁𝑅>𝑘

𝑖
𝑑𝑡 < ∫ 𝑲𝑡

𝑆𝑁𝑅<𝑘
𝑖

𝑑𝑡, for some real number 𝑘. 24 

 

Thus, the integral of 𝑲𝑖 is inversely proportional to the confidence of the peakPower. 

 

3.6.1.9 K-spectrum length 

The window length, 𝑙𝑤, and window overlap, 𝑜𝑤, are always kept constant. Given equations 

13-20, the number of windows, which is equal to the length of the K-spectrum, are 

determined by the rotation frequency, 𝑓𝑟, 𝑙𝑤, and 𝑜𝑤. If 𝑓𝑟 is reduced, the K-spectrum length 

is increased, and vice versa. Since the integral of 𝐾𝑖 is proportional to the length of the K-

spectrum (length of the i-space), this must also be compensated for when normalizing 

peakPower. 

 

3.6.1.10 Normalizing 

Given the statements in section 3.6.1.8 and 3.6.1.9, the final likelihood ratio for crack related 

AE pulses at a particular failure rate is the normalized peakPower. That is 
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𝐿 =

𝑝𝑒𝑎𝑘𝑃𝑜𝑤𝑒𝑟

𝑚𝑎𝑥(𝑖) ∫ 𝐾𝑡𝑖
𝑑𝑡

 
25 

 

3.6.1.11 Threshold T 

A simple model for the threshold, 𝑇, given by the NP-criteria, is used as basis for decision 

making. It is inspired by the built in function in MATLAB isoutlier (MATLAB, 2021e), and 

establishes an upper threshold for 𝐿, given the baseline of historic 𝐿-s, discussed in section 

2.4.4. The chosen definition for 𝑇 is 

 𝑇 = 3𝑚𝑎𝑑(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) + 𝑚𝑒𝑑𝑖𝑎𝑛(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒) 26 

where 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = [𝐿0, 𝐿1, … , 𝐿𝑙𝑏], and 𝑙𝑏 is the chosen length of the baseline. The 

definitions for functions mad and median are given in equation 19. 

3.6.1.12 The final detector 

Although measures have been taken to prevent noise and unrelated AE activity to interfere 

with the detector decision making, abnormal AE activity will still cause detections, 𝐿 ≥ 𝑇, 

unrelated to the sought bearing defect. The chosen solution to this problem is to use a 

confidence parameter, 𝑐. Abnormal AE behaviour are typically bursts/pulses of unknown 

character that does not repeat consistently. Detections, 𝑳 ≥ 𝑻, originated from these 

behaviours will therefore not represent a change in trend. Given the confidence parameter, 𝑐, 

the only detection, 𝑳 ≥ 𝑻 that will cause the detector to decide 𝐷1, is the detection 𝑳 ≥ 𝑻 

preceding 𝑐 previous consecutive detections. That is, 𝑐 consecutive detections are needed for 

the detector to decide 𝐷1, defect detected. Thus, the final expression for the detector is, 

 
𝐷(𝐿, 𝑇, 𝑐) = {

𝐷1 [𝐿−𝑐, 𝐿−𝑐+1, 𝐿−𝑐+2, … , 𝐿] ≥ 𝑇
𝐷0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
27 

 

A flowchart of the detector, Figure 28, is displayed on the next page. As discussed in 2.4.4, a 

bearing defect does not disappear over time. Consequently, once the detector reaches the 

decision 𝐷 = 𝐷1, this decision stays until the system is restarted. An alternative would be to 

include a discard defect option that is operated manually by a machine operator. This is not 

included in this work, as the goal is to determine a bearing defect early. 
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Figure 28, Flowchart for the proposed detector. 
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3.6.2 Pulse Integrated Spectrogram 

As described in section 2.5.3, (Price et al., 2005) suggested than an automatic pattern 

recognition system could be based on the time-frequency representation of the AE waveform 

for identifying the presence of SSCs. In this work, the identification is done by the proposed 

detector. However, how can we verify that the detector detects the sought defects? The 

chosen solution was to develop a visual verification tool based on the time-frequency 

representation of the AE waveform, as suggested by (Price et al., 2005). 

The tool is based on the spectrogram, which is one way to visualize the waveform in time-

frequency domain. The built in MATLAB function pspectrum (MATLAB, 2021f) was the 

chosen function used to generate it. Now, recall that the proposed detector only reacts to AE 

pulses repeating at a fixed rate, that is 𝑓𝑓𝑎𝑢𝑙𝑡. Without the pulse integration step, these pulses 

can be so weak that they do not register in a spectrogram. The solution is to pulse integrate 

the high-pass filtered waveform 𝒙𝐻𝑃[𝑛] before generating the spectrogram. To verify that the 

pulses indeed occur at 𝑓𝑓𝑎𝑢𝑙𝑡 from 𝑟𝑠 to 𝑟𝑠+1 each 

𝒙𝐻𝑃[𝑟𝑠, 𝑟𝑠 + 1,… , 𝑟𝑠 + 𝑑𝑠] is envelope detected. The envelope detector used is the same as 

described in 3.6.1.7.  Then, the envelope detected rotations segments are pulse integrated. 

The output is a signal vector 𝒚[𝑛], where AE pulses repeating consistently between every 𝑟𝑠, 

is amplified. As this is based on the general solution, where the distance between axle start-

positions can vary, the expression is simplified by using the average rotation distance 

𝑚𝑒𝑎𝑛(𝑑𝑠). 

 𝒚[𝑛] = ∑ (𝑎𝑔𝑎𝑖𝑛𝑥𝐻𝑃[𝑟𝑠, 𝑟𝑠 + 1,… , 𝑟𝑠 + 𝑑])
2𝑚−1

𝑠=1 , 

𝑃𝐼𝑆 = 𝑝𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚{𝒚[𝑛]}, where 𝑑 = 𝑚𝑒𝑎𝑛(𝑑𝑠), and 𝑎𝑔𝑎𝑖𝑛 is a gain constant 

that is tuned manually for best contrast in the PIS. 

28 

 

The chosen peak in the K-spectrum corresponding a specific detection can now be visually 

verified from the pulse integrated spectrogram (PIS). An example is shown in Figure 29. 
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Figure 29, Top: PIS. Bottom: corresponding K-spectrum  for the file specified in section 3.6.1.1. The detector 

for this K-spectrum, seeks a defect with 𝑓𝑓𝑎𝑢𝑙𝑡 = 3. 

 

The confirmation that is made from the PIS verification displayed in Figure 29, is performed 

this way: 

There are four red vertical lines in this PIS. The three segments limited by the red lines 

should all contain one AE pulse that corresponds to a single peak in the K-spectrum. That is, 

an AE pulse should occur at the same position in all three segments. The peak with the 

highest peakPower should be in the same relative position in the K-spectrum. Thus, the three 

AE pulses marked with green arrows in the PIS corresponds to the peak in K-spectrum 

marked with a green arrow. We now know if the detector reacted to the correct AE behaviour. 

Additionally, notice that the much stronger AE pulse marked with a pink arrow does not 

generate any substantial peaks in the K-spectrum. As this pulse only appears in once in the 

PIS, that means that it corresponds to an 𝑓𝑓𝑎𝑢𝑙𝑡 = 1. Due to the outlier removal step 

expressed in section 3.6.1.5, this behaviour does not interfere when we try to detect defects 

with 𝑓𝑓𝑎𝑢𝑙𝑡 = 3. The “Power (dB)” scale in Figure 29 is influenced by the gain parameter 
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𝑎𝑔𝑎𝑖𝑛 in equation 28, and thus not provide any useful information to the PIS. In the PIS 

verifications in section 4.2, this scale is therefore hidden to not cause any confusion. 

3.6.3 Estimating 𝒇𝒓 

In 3.6.1.2, 𝑓𝑟 was assumed to be known. Referencing the test log to the timing marks in the 

filename of each AE-recording, the correct 𝑓𝑟 can then be mapped to each file. However, for 

pulse integration to work optimally, the accuracy of 𝑓𝑟 must be precise. The solution chosen, 

was to run the detector on a specific AE-recording, with a known defect present in the 

waveform. The file chosen from the MISTRAS system was recorded 2021 May 18, 17:43:30, 

and contained the AE pulses originated from a subsurface defect, repeating at 𝑓𝑓𝑎𝑢𝑙𝑡 = 3. At 

this time, the approximate 𝑓𝑟 given in the test log was 𝑓𝑟 =
𝐹𝐴=256𝑟𝑝𝑚

60
= 4.267𝐻𝑧. 

Monitoring which i-positions in the K-spectrum the defect was present, the detector was run 

repeatedly on the same file, incrementing the 𝑓𝑟 from one run to the next. The best estimate 

for 𝑓𝑟 was achieved when the i-position in K-spectrum reached the maximum value. This 

process was repeated until the maximum value in the K-spectrum stabilized, at which the 𝑓𝑟 

increment was in range of 𝑛𝐻𝑧. Window parameters were kept constant at 𝑙𝑤 = 1000 and 

𝑜𝑤 = 500 for the whole process. After the optimum 𝑓𝑟 was determined, the detector was tried 

on other files recorded at the same 𝐹𝐴 to verify rpm consistency. The result concluded that the 

rpm was stable enough that the optimum 𝑓𝑟 could be used for all files recorded at 𝐹𝐴 =

256𝑟𝑝𝑚. The same process was done to estimate 𝑓𝑟 for files recorded at 𝐹𝐴 = 364𝑅𝑃𝑀.  

 

Figure 30, 𝑓𝑟 accuracy. Left: The K-spectrum calculated with the best estimate of 𝑓𝑟 = 4.2660𝐻𝑧. The sampled 

AE waveform is from the file stated in section 3.6.2. Right: The same K_spectrum, but here 𝑓𝑟 = 4.2670𝐻𝑧, 

which illustrates the importance of accurate rotation frequency. Notice that the peak height corresponding to the 

bearing defect is half the value of the peak in the left K-spectrum. 
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The same procedure was done for the KM-system. However, the optimum 𝑓𝑟 for the KM 

system was slightly lower than the optimum 𝑓𝑟 for the MISRAS system. The difference is 

believed to be caused by a slight difference in 𝑓𝑠 between the two systems. 

Ultimately, the optimum estimated frequencies are 

 𝑓𝑟
𝐾𝑀,256 = 4.266013 𝐻𝑧, 

𝑓𝑟
𝐾𝑀,364 = 6.055189 𝐻𝑧, 

𝑓𝑟
𝑀𝐼𝑆𝑇𝑅𝐴𝑆,256 = 4.266019 𝐻𝑧, 

𝑓𝑟
𝑀𝐼𝑆𝑇𝑅𝐴𝑆,364 = 6.0552034 𝐻𝑧. 
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3.6.4 System architecture and data handling 

Working on 652𝐺𝐵 of raw data requires a data processing architecture that is robust and built 

with efficiency and traceability as main quality requirements. Another challenge to be solved 

was the fact that the system was built during the duration test, which means that it also had to 

be modular. MATLAB was the chosen system developing environment for this work. Time is 

an important dimension in this work. Information about 𝑓𝑟 and contact stress at a particular 

time can only be found in the test-log. The files recorded on the Mistras system only provided 

the time of recording in the filename. The MATLAB built-in datetime (MATLAB, 2021a) 

array function was therefore used extensively to ensure time consistency. 

The following list describes the workflow. 

- Data location 

Three SSD-s where used in this work, that is the C-drive (500GB), SSD-A(1TB) and 

SSD-B (500GB). All code was stored on the C-drive, MISTRAS-data was stored in 

SSD-A, and KM-data was stored in SSD-B. 

 

- Generate K-spectrums 

During system development, the first important step is to reduce raw data to data 

features that occupy little space on the SSD. This is the most time-consuming step and 

should be done as few times as possible during system development. This implies that 
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only the necessary steps required to generate the data features are done. System 

implementations such as normalizing, and anti-aliasing are not developed here. 

In this case, the first processing stage is to generate K-spectrums from the raw files. 

This is done for one system at the time. For each file, a datetime-object is created 

from the filename. This is cross-referenced with datetime-objects gathered from the 

test-log, to establish the contact stress and 𝑓𝑟 at the time of the recording. Correct 

sensor position, SPx is also collected from the filename. One K-spectrum is then 

calculated for each of the defect behaviours sought to detect (ref 4.2). When finished, 

all K-spectrums, 𝑓𝑟 , defect-description, SPx, datetime-object, and RMS (ref 5.2.3) of 

the entire recording and are combined in a cell-array and stored in one .mat-file. The 

.mat-file filename is equal to the input-file filename. 

This process takes approximately five hours to complete for the SP1 (MISTRAS) 

data, and approximately 2 hours for SP2 (KM) data, using an Intel i9-9900K CPU. It 

is therefore typically performed overnight. When finished, all the .mat-files from the 

MISTRAS system require approximately 90𝑀𝐵 combined, and the -mat-files from 

the KM-system require approximately 20𝑀𝐵 combined. The most important 

advantage in storing one .mat-file per raw data-file, is that when new files are 

gathered from the ongoing duration test, the old files do not need to be recalculated. 

 

- Calculate 𝐿 

The next step is to calculate 𝐿. Given the K-spectrums saved in the .mat-files, anti-

aliasing, peak extraction and normalizing are performed. Finally, the calculated L-s, 

𝑓𝑟, and defect-description are stored in a result-table. One result-table per system is 

stored as a .csv-file. The whole process takes approximately one minute for the 

MISTRAS system. 

 

- Plotting 

Given the result-table: Baseline, and 𝑇 are calculated. Then all 𝐿-s are plotted with 

respect to defect behaviour (𝑓𝑓𝑎𝑢𝑙𝑡), and system. Positive detector decisions 𝐷1 (defect 

detected), are visualized in the 𝐿-plots as x-markers. 
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4 Results 

 

4.1 Test log and PAUT results 

 

Multiple SSCs were developed in the test specimen during the duration test. Only one of 

them were identified in PAUT. The rest were identified in post inspection done by SINTEF. 

This was performed using a salami cutting procedure. The first SSC identified in PAUT was 

first discovered after 29,095,504 fatigue cycles, that is (16,466,958 + 10,891,798 + 

1,736,748) fatigue cycles at (1800 MPa, 1900 MPa and 2000 MPa) contact stress 

respectively. The width of the SSC was at this point 0.5 mm. At 66,585,266 fatigue cycles, 

the duration test was terminated. The SSC had now grown to a 2 mm width and 10 mm 

length, extending in the transverse direction. No surface spalling, pitting or roughness was 

identified on the test specimen contact surface in neither PAUTs nor salami-inspection. 

A compressed version of the test-log is presented in Table 2. Results from PAUT and post 

inspection is presented in Figure 31, Figure 32 and Figure 33. 
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Date Contact 

stress 

𝐹𝐴 SSC-width 

[mm] 

Fatigue 

cycle count 

Description 

16-03-21 1800 MPa 364 RPM 0 0 Test started. 

12-04-21 1900 MPa 364 RPM 0 16,466,958 Increased contact stress. 

19-04-21 2000 MPa 364 RPM 0 27,358,756 Increased contact stress. 

19-04-21 2000 MPa  0 27,831,079 Machine stopped due to 

vibration alarm. The loading 

(contact stress) is active 

overnight. 

20-04-21 2000 MPa 256 RPM 0 27,831,079 𝐹𝐴 is reduced and the machine 

is functioning correctly. 

21-04-21 2000 MPa 256 RPM 0.5 29,095,504 One SSC discovered, 

extending in the transverse 

direction (TD). 

27-04-21 2000 MPa 256 RPM 0.5 35,920,018 Machine stopped due to 

vibration alarm. 

29-04-21 2000 MPA 256 RPM 1.0 37,086,115 Crack growth. Direction TD. 

11-05-21 2000 MPa 256 RPM 1.5 50,248,116 Crack growth. 

Direction TD. 

13-05-21 2000 MPa 256 RPM 1.5 52,708,597 1.5 mm wide crack. Direction 

TD. 5-10 mm long. 

18-05-21 2000 MPa 256 RPM 1.5 52,708,597 Starting continuous testing 

without PAUT. 

27-05-21 1900 MPa 256 RPM (No PAUT) 62,578,177 Reduced contact stress. 

27-05-21 1900 MPa 256 RPM (No PAUT) 62,753,322 Machine stopped due to 

power loss. 

01-06-21 1900 MPa 364 RPM (No PAUT) 63,759,638 Increased 𝐹𝐴. 

02-06-21 2000 MPa 256 RPM (No PAUT) 65,370,773 Increased contact stress, 

reduced 𝐹𝐴. 

03-06-21 2000 MPa 256 RPM 2 66,585,266 Test finished. 10 mm long 

crack. Direction TD. 2 mm 

wide. 

 

Table 2, Compressed test-log. 
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Figure 31, The first PAUT identifying the presence of an SSC. This photo is provided by Hans Lange from 

SINTEF. 

 

 

Figure 32, The final PAUT after the test was terminated. This photo is provided by Hans Lange from SINTEF.  
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Figure 33, Results from post inspection (salami). 
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4.2 Observed defect behaviours 

 

Given name 𝑓𝑓𝑎𝑢𝑙𝑡 

rollerPass 3/𝑟𝑒𝑣 

rotationPass 1/𝑟𝑒𝑣 

BPFO 13.0209/𝑟𝑒𝑣 

100 Hz 100 𝐻𝑧 

 

Table 3, Observed repeating AE behaviours from the duration test. 

 

A total of 4 different consistently repeating AE behaviours were observed during the duration 

test. An overview of the behaviours is presented in Table 3. 4 detector-instanced were used to 

track each behaviour for all SPx. All available files are used as input, including the files used 

for baselining (to determine 𝑇). Each behaviour will be explained in detail in the following 

sections. L-time plots are presented for each sensor. Detector decisions 𝐷1 (defect detected), 

will be presented for SP1 and SP2 only. This is because the number of files available from 

SP3-SP5 are not sufficient to establish a proper baseline. The purpose of presenting the L-

time plots for these sensors is to provide a more complete overview of how the overserved 

behaviours were observed from different locations. 

Parameters for the detector is given in Table 4. These parameters apply to all plots in the 

following section. 

Detector parameters 

𝑙𝑤 1000 

𝑜𝑤 500 

𝑐 10 

𝑙𝐵 All recordings from test start to 2021 Apr 17, 00:00:00. That is, 

SP1(MISTRAS): 𝑙𝐵 = 2064, and SP2(KM): 𝑙𝐵 = 300 

 

Table 4, Chosen detector parameters. 
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4.2.1 Behaviour 1, rollerPass 

4.2.1.1 SP1 and SP2 

The observed behaviour corresponding to  𝑓𝑓𝑎𝑢𝑙𝑡 = 3/𝑟𝑒𝑣, is denoted rollerPass. That is – 

the only place in the test machine that will cause this behaviour, is a point on the test 

specimen perimeter passing the support rollers. L-time plots and detector decisions 𝐷1 for 

SP1 and SP2 are presented in Figure 34. PIS verification of detector decision 𝐷1 for both 

sensors are displayed in Figure 35. 
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Figure 34, L-time plots for SP1 and SP2, rollerPass. Colour coding refers to SSC presence – and magnitude. The 

black vertical lines indicate PAUTs. Change in contact stress throughout the test is indicated in the white 

rectangles. 𝐷1, for both sensors happen at a 𝑆𝑆𝐶𝑤𝑖𝑑𝑡ℎ = 1𝑚𝑚. 
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Figure 35, PIS verification, SP1 and SP2, rollerPass. 
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4.2.1.2 SP3 – SP5 

 

For the rollerPass behaviour, the AE pulse propagation to SP3-SP5 is considered equal. The 

PIS verification is therefore chosen according to the first significant peak in the L-time plot. 

Shown in Figure 36, the earliest significant peak corresponds to the file recorded 2021 May 

23, 20:24:38, from SP3. The PIS confirmation is displayed in Figure 37. 

 

Figure 36, L vs time plots for SP3-SP5, rollerPass. 
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Figure 37, PIS verification, SP3, rollerPass. No confirmation can be made. No distinct behaviour appears once 

between the red lines. The strong visible behaviour can originate from something else. 

 

4.2.2 Behaviour 2, rotationPass 

4.2.2.1 SP1 and SP2 

The observed behaviour corresponding to  𝑓𝑓𝑎𝑢𝑙𝑡 = 1/𝑟𝑒𝑣, is denoted rotationPass, as it 

repeats once every axle rotation. There are three places in the test machine where this 

behaviour can originate from: 

1- A point on the perimeter of a support roller, passing the test specimen. 

2- A defect on either the inner or outer raceway of the linear bearing (Appendix E) 

3- A defect on the axle or the axle coupling. 

The behaviour does not repeat stably. In order to detect it, the outlier removal step (explained 

in section 3.6.1.5) had to be turned off. As this is the only behaviour that could potentially be 

influenced by aliasing (from the rollerPass behaviour), anti-aliasing is only performed on this 

behaviour. More will be discussed in section 5.1.3. 
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L-time plots and corresponding detector decision, 𝐷1 for SP1 and SP2 are presented in Figure 

38. PIS verification of detector decisions 𝐷1 for both sensors are displayed in Figure 39. 

 

 

Figure 38, L-time plots for SP1 and SP2, rotationPass. 
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Figure 39, PIS verification, SP1 and SP2, rotationPass. These plots indicate that the rollerPass behaviour does 

not repeat stably. In the K-spectrum_SP1-plot, the peak “forest” from window position 270 to 390 indicate that 

the behaviour was observed in all these windows. This is explained more thoroughly in discussion section 5.1.3. 
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4.2.2.2 SP3 – SP5 

As explained in section 4.2.1.1, this behaviour can originate from three places in the test 

machine. If the behaviour originates from a support roller, the pulse propagation to SP3-SP5 

would not be equal. The PIS verification is therefore done according to the first significant 

peak in the L-time for each sensor. Shown in Figure 40, the chosen files are marked with 

black arrows. The PIS confirmations is displayed in Figure 41, Figure 42 and Figure 43. 

 

Figure 40, L vs datetime plots for SP3-SP5, rotationPass. 
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Figure 41, PIS verification, rotationPass, SP3. 
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Figure 42, PIS verification, SP4, rotatonPass. 
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Figure 43, PIS verification, SP5, rotationPass. As the other pulses in the PIS do not show up in the K-spectrum 

as aliases, this behaviour is confirmed. 

 

4.2.3 Behaviour 3, BPFO 

4.2.3.1 SP1 and SP2 

The observed behaviour corresponding to  𝑓𝑓𝑎𝑢𝑙𝑡 = 13.0209/𝑟𝑒𝑣, is denoted BPFO (Ball 

Pass Frequency Outer), as it is suspected to originate from an outer race defect on the needle 

bearings. This will be explained further in section 5.1.4. The frequency estimation for 𝑓𝑓𝑎𝑢𝑙𝑡 

was done same way as described in 3.6.3. Notice that, 𝑓𝑓𝑎𝑢𝑙𝑡 is not an integer. As expressed 

in section 3.6.1.2, the AE pulses corresponding to the BPFO will not be in the same axle 

position for each axle rotation. Recall that when 𝑓𝑓𝑎𝑢𝑙𝑡 is an integer, 𝑟𝑚 is defined as the set of 

each starting position for every axle rotation recorded. When 𝑓𝑓𝑎𝑢𝑙𝑡 is not an integer, 𝑟𝑚 is 

defined as the relative starting position for every 𝑔-th pulse. 𝑑𝑠 = 𝑟𝑠+1 − 𝑟𝑠, thus 𝑚𝑒𝑎𝑛(𝑑𝑠)  

is a duration (in samples, 𝑛) containing 𝑔 pulses. For the following PIS verifications, 𝑔 is 

chosen to 𝑔 =  4. That is, we will confirm that the 4 segments in the PIS contain one pulse 

each, at the same location. 
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L-time plots and detector decisions 𝐷1 for SP1 and SP2 are presented in Figure 44. PIS 

verification of detector decisions 𝐷1 for both sensors are displayed in Figure 45. 

 

Figure 44, L-time plots for SP1 and SP2, BPFO. 
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Figure 45, PIS verification, SP1 and SP2, BPFO. This verification is a bit harder to do. The integrated pulses 

vary in strength, but they appear consistently in the correct location. 

 

4.2.3.2 SP3-SP5 

The BPFO behaviour is the defect with the shortest distance to the SPx located on the given 

bearing housing. L-time plots are presented in Figure 46. In the figure, notice that all L-time 

plots are similar. However, SP4 is the sensor with the highest L-values. The first significant 
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peaks from all three sensors are chosen for PIS verification. They are marked with a data-tip-

marker in Figure 46. PIS verifications are presented in Figure 47, Figure 48 and Figure 49. 

 

Figure 46, L vs time plots for SP3- SP5, BPFO. 
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Figure 47, PIS verification for SP3, BPFO. The behaviour is consistent in all segments, but it is not a sharp 

pulse, as seen in previous PIS verification plots. 

 

 

Figure 48, PIS verification for SP4, BPFO. The same, wide AE behaviour also happens here. 
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Figure 49, PIS verification for SP4, BPFO. The same, wide AE behaviour also happens here. 

 

4.2.4 Behaviour 4, 100 Hz 

4.2.4.1 SP1 and SP2 

The observed behaviour corresponding to  𝑓𝑓𝑎𝑢𝑙𝑡 = 100 𝐻𝑧, is denoted 100 Hz. Here, 𝑓𝑓𝑎𝑢𝑙𝑡 

does not depend on 𝑓𝑟.  For the following PIS verifications, the approach is the same as 

described in section 4.2.3. Here, 𝑔 is also chosen to 𝑔 =  4. That is, we will confirm that the 

4 segments in the PIS contain one pulse each, at the same location. 

L-time plots and detector decisions 𝐷1 for SP1 and SP2 are presented in Figure 50. Notice 

that the L-time plot from SP1 displays an almost “on-off” process. This behaviour is not seen 

from SP2. For this reason, PIS verifications for SP1 is done for the first significant L. PIS for 

SP2 is done for the maximum L. These L-s are marked with black arrows in Figure 50. PIS 

verifications are presented in Figure 51. 
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Figure 50, L-time plots for SP1 and SP2, 100 Hz. No defect was detected. 
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Figure 51, PIS verification for SP1 and SP2, 100 Hz. For SP2, no significant peak is discovered in the K-

spectrum. The PIS does not provide a verification either. For SP1, the significant peak corresponds to a low spot 

in the PIS. This is the opposite of what to be expected from a defect originated AE pulse. Still, the pattern is 

consistent, and the defect is considered verified. 

 

4.2.4.2 SP3-SP5 

L-time plots from SP3-SP5 for the 100 Hz behaviour are presented in Figure 52. Notice that 

SP3 produced high L-s around March 24. The first significant L will be used for PIS 
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verification. This is marked with a black arrow in Figure 52. PIS verification for SP3 is 

displayed in Figure 53. 

 

 

Figure 52, L-time plots for SP3- SP5, 100 Hz. 
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Figure 53, PIS verification for SP3, 100 Hz. The AE pattern does repeat stably in all segments, and the 

behaviour is confirmed. Notice that the peak with highest peakPower starts in 𝑖 = 36 and ends at 𝑖 = 9. This is 

an example of the edge case described in 3.6.1.7. 

 

4.2.5 Behaviour overview, SP1 and SP2 

To give a better overview of how observed behaviours have progressed during the duration 

test, two figures containing all observed behaviours for both SP1 and SP2 are presented in 

Figure 54 and Figure 55. RMS for every file (not high-pass filtered) are also plotted. This 

feature will be discussed in section 5.2.3. Notice that between May 18 and June 01, the 

rollerPass, rotationPass and BPFO behaviour all have high L-values from both SP1 and SP2. 

A PIS verification from SP2 is presented for all three behaviours in Figure 56, Figure 57, 

Figure 58. 
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Figure 54, Overview of all observed behaviours, SP1. RMS is also included. 
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Figure 55, Overview of all observed behaviours, SP2. RMS is also included. 
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Figure 56, PIS verification, SP2, rotationPass. 

Figure 57, 

PIS verification for SP2, BPFO. In the second segment from the left, a pulse from the rotationPass behaviour 

has landed in the same location as the BPFO behaviour. 

                           

                                                                  

      
 
 

 

   

   

   

   

 

 
  

 
 

 
 

 
 
  

 
 

  

    

    

    

    

    

    

   

 
 

 
 

  
  

 
 

                           

                                          

      
 
 

 

   

   

   

   

 

 
  

 
 

 
 

 
 
  

 
 

  

    

    

    

   

 
 

 
 

  
  

 
 



 

81 

 

 

Figure 58, PIS verification, SP2, rollerPass. In the middle section, a pulse from the BPFO behaviour has landed 

in the same position as the rollerPass behaviour. 

 

5 Discussion 

 

5.1 Behaviour origins 

5.1.1 rollerPass 

AS described in section 4.2.1, the only place in the test machine where this behaviour can 

occur, is from a defect on the surface, or subsurface of the test specimen. To identify the 

origin of this behaviour, the only criteria needed are the results from the PAUT and salami-

inspection described in 4.1. As described, no surface defects were found on the test specimen 

contact surface. Thus, one of the subsurface cracks observed in the PAUTs and the salami-

inspection is the confirmed origin of the rollerPass behaviour. 
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5.1.2 100 Hz 

This behaviour always repeats at 𝑓𝑓𝑎𝑢𝑙𝑡 = 100𝐻𝑧. It did not change when the 𝐹𝐴 was reduced 

from 𝐹𝐴 = 364𝑅𝑃𝑀 to 𝐹𝐴 = 256𝑅𝑃𝑀, 20 April 2021. Thus, this behaviour does not depend 

of 𝐹𝐴 (and thus 𝑓𝑟). The only origin that can cause this behaviour is a full wave rectified 

alternating current (AC) source. In Europe, the AC current has a frequency of 50 Hz. This 

behaviour was most dominant in SP1. However, it was also present in SP3, but not SP2. This 

means that the source cannot be something that would affect all SPx, such as the motor 

controller. It is not something that would only affect one system either. The PAC 2/4/6 

preamplifier (Appendix F) is used for on all SPx. It requires a supply voltage between 18-

28V DC. The power supply used to deliver the DC current to the PAC 2/4/6 preamplifier, is 

built into the PCI-2. This built in power supply rectifies the AC current. If this power supply 

is defective, the output DC voltage could be contaminated with 100 Hz noise. Given these 

facts, the suspected source of the 100 Hz behaviour is a defective power supply built into the 

PCI-2 board. At the time this thesis was delivered, this had not been confirmed. 

 

5.1.3 rotationPass 

This was the most unpredictable behaviour observed during the duration test. Additionally, it 

seemed like it was turned on and off. The variation in pulse-to-pulse distance was so large 

that in order to detect it, the outlier removal step (ref 3.6.1.5) had to be turned off. This of 

course increases the probability of unrelated AE pulses influencing the decision making. 

However, the pulses originating from the rotationPass were so dominant, that the influence of 

unrelated pulses was assumed insignificant. An example of this can be seen in Figure 23. The 

file used for presentation contains the rotationPass behaviour, and the detector seeks for a 

behaviour with 𝑓𝑓𝑎𝑢𝑙𝑡 = 1/𝑟𝑒𝑣. However, there is no peak in the K-spectrum from the 

rotationPass. The reason is that the outlier-removal step was turned on. This made the 

aliasing problem easier to visualize. An example of how this K-spectrum looks without 

outlier-removal is presented in Figure 59.  
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Figure 59, This K-spectrum illustrates the extreme character of the rotationPass behaviour. The aliases from the 

rollerPass behaviour are marked with blue arrows. 

 

In Figure 59, the rotationPass peaks are multiple times higher than the rollerPass peak aliases. 

It has also been recognized in 150 windows. Given the chosen 𝑙𝑤 = 1000 and 𝑜𝑤 = 500, 

this means that relative peak position in each recorded axle revolution varied (1000 − 500) ∗

150 =  75000 samples. That is 37.5 ms. Given that each axle rotation takes 234 ms at 𝐹𝐴 =

256𝑅𝑃𝑀, this variation is substantial. 

This behaviour does not originate from a weak signal, hidden in noise. Thus, the proposed 

detector is not made to detect signals like this. However, it demonstrates how robust the 

proposed detector is, and the importance of the outlier-removal to distinguish different 

behaviours occurring simultaneously in the AE waveform. 

No confirmation about the origin of this behaviour was available by the time this thesis was 

delivered. The fact that it had maximum L-values three completely separate places during the 

duration test for SP3-SP5 (Figure 40) might even imply that there are more than one cause to 

this behaviour. 

 

5.1.4 BPFO 

The ball pass frequency outer, BPFO is the frequency of which a rolling element passes a 

defect on the outer race in an REB. It can be calculated as, 

 𝐵𝑃𝐹𝑂 =
𝑁𝐵

2
(1 −

𝐵𝐷

𝑃𝐷
), 30 
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where 𝑃𝐷 =
𝐷1+𝐷2

2
, 𝑁𝐵 is the number of rolling elements, 𝐷1 is the outer race 

diameter, 𝐷2 is the inner race diameter, and 𝐵𝐷 is the rolling element 

diameter. 

 

For the needle bearings (Appendix C and Appendix D) used in the test machine, the BPFO is 

13.1765/rev. The reason the measured BPFO is 𝑓𝑓𝑎𝑢𝑙𝑡 = 13.0209/𝑟𝑒𝑣, is believed to be 

caused by a slightly larger circumference of the test specimen, compared to the support 

rollers. 

Recall the first time the machine stopped due to excessive vibration. This happened April 19, 

2021 (ref Table 2). The only observed behaviour that increased significantly that day was the 

BPFO. This behaviour change was visible in SP3-SP5 only (see Figure 47, Figure 48 and 

Figure 49) The behaviour visible in these PIS verifications is not crack related activity. It 

could be friction. Ultimately, it is believed that a defect was made to the outer race of one or 

several needle bearings that day. No confirmation about the origin of this behaviour was 

available by the time this thesis was delivered 

 

5.2 Overview 

5.2.1 SP2 

From Figure 55, some properties can be identified. The rollerpass behaviour is the only 

behaviour that correlates with recorded SSC width. As this behaviour is confirmed as an SSC, 

this is a good result. rollerPass and rotationPass, might look like that they are correlated, but 

they are not. An example can be seen June 01, 2021, where the rotationPass suddenly drops 

in L-value, while the rollerPass continues at an increasing rate seemingly proportional to the 

SSC width. 

Also, notice how unaffected the BPFO are to all recorded behaviours. This is a good indicator 

that the detector indeed manages to isolate distinct behaviours. 
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5.2.2 SP1 

The most important fact to note about Figure 54, is that all observed behaviours were 

correlated with the 100 Hz noise behaviour. For the rotationPass, the normalizing-step (ref 

3.6.1.10) works as intended. Notice that every time the 100 Hz noise turns on, the L-values 

for the rotationPass drops to nearly zero. This goes to show that, whenever there are noisy 

components of this magnitude in the AE waveform, we simply cannot trust the detector 

results (unless they are verified in the PIS). For the rollerPass, this step also works as 

intended, after the defect was declared detected. Notice that on May 04, 2021, the noise 

suddenly went off for a few hours, and the SSC was detected. Between May 04 and June 01, 

whenever the noise is on, the L-values for the rollerPass drops, which it should. Between 

March 23 and May 04, the opposite happens. The reason for this is unknown, and neither the 

contact pressure, or 𝐹𝐴 seems to be the cause. 

In case it was not clear from the discussion, the reason SP2 detected the SSC before SP1 was 

because SP1 were influenced by noise. One last important point to note is that the L-time 

plots for all observed behaviours are unaffected by the process involving PAUT. The only 

parameter that is influenced by PAUT, is the RMS. 

 

5.2.3 RMS 

The RMS (Root-mean-square) of the non-high-pass filtered waveform, 𝒙[𝑛], is included for 

both systems to prove a point. This is a parameter typically used for feature extraction in 

various machine learning based problem solutions. Notice that here, it does not correlate with 

any of the L-time plots. What this means is that if a classification model was to be based on 

the RMS feature, given the data from this duration test, it would not classify any of the 

observed behaviors correctly. Would RMS be able to classify a behavior that has not yet been 

identified in the duration test? Maybe, but if so, we would have no way of verifying the 

classification results.  
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5.3 Confirmation 

5.3.1 The 3-stage confidence process 

The process of confirming the output from a CBM system targeting early SSC activity in the 

AE waveform, can be described as a 3-stage process. That is 

(1) Detection: The detector returns decision 𝐷1, a defect is detected. 

(2) Verification: The 𝐿 that caused the decision is inspected (manually or automatically) 

to verify that the sought defect behaviour triggered the detector decision. 

(3) Confirmation: The RM component is physically inspected to confirm that the 

detected defect is physically present. 

In the paper by (Price et al., 2005), the confirmation can be considered a stage-1+3 

confirmation. The detector, in this case a human monitoring the real-time time-frequency 

representation of the AE waveform, noticed a sudden change in the waveform during testing. 

This change was not verified any further, and thus stage-2 was skipped. Stage-3 was then 

confirmed by a physical inspection of the defected component. 

The rest of the reviewed literature in this thesis can be considered as stage-1 confirmation 

only. It is thus hard to extract information about the reliability of the presented methods used 

to detect SSCs in REBs. All reviewed papers conclude that they have detected the presence of 

an SSC in the AE waveform. However, due to their stage-1 result confirmation, some of the 

methods used, directly contradict one another. As described in section 2.3.3, (Price et al., 

2005) stated that in order to monitor wear at an early stage, analysis of continuously sampled 

AE waveforms are needed. (Fuentes et al., 2020) however, concluded that they had 

successfully detected SSCs in REBs using AE hit-based feature extraction only. If the 

detector proposed in this thesis had utilized hit-based feature extraction, instead of pulse 

integration, the only detected behaviour would be the rotationPass. All the other behaviours 

would have been hidden, especially the rollerPass, due to the high amplitude pulses from the 

rotationPass behaviour. In other words, the statement by (Price et al., 2005) is correct. The 

detector suggested by (Fuentes et al., 2020) would not work for the data used in this thesis. 

This is a consequence of non-verifiable results. 
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5.4 Detectors and classifiers 

There is a good reason why most radars to this day do not rely on machine learning to detect 

targets. In the 1950s and 1960s the theoretical effort was made to solve the radar target 

detection problem. Fundamental performance limits were found. The theory describing how 

to effectively detect weak pulses in noisy waveforms is still used today. 

 

5.4.1 The verification dilemma 

One problem using machine learning to detect SSC related activity in the AE waveform, lies 

in stage-2, verification. Machine learning models, and especially deep learning models, 

typically represent a “black box” type system. A typical machine learning model takes an 

input 𝑥 and maps it to some output 𝑦, and the system developer has hardly any insight to 

what the system does. The only thing the system developer knows, is the correct answer. To 

ensure that the system does what it is supposed to do, the system developer must verify that 

the output 𝑦 is the correct answer. This process is called supervised learning. Fully connected 

neural networks (FCNNs), residual networks (ResNets) and convolutional neural networks 

(CNNs) are all known supervised learning models. 

If the system developer does not know the answer, the only valuable option machine learning 

offers is the process called unsupervised learning. Here, the system developer has a 

collection of data 𝒙 that is believed to be normal. The machine learning model can then train 

to replicate these data. After the training has finished, the model should be able to recognise 

familiar input data. If the input data is unfamiliar, the model will output some error 

proportional to how unfamiliar the data is. The system developer then has a tool that can 

recognise abnormal data from a dataset that neither the system developer nor the model 

knows anything about. An example of this type of machine learning model is the 

autoencoder. This can be based on both FCNNs and CNNs. 

A great application to machine learning is the field of computer vision. Consider a machine 

learning model, a CNN for example. We want to make a classifier, able to recognize images 

of cats and dogs. The model is trained on images of dogs and cats taken at different angles, 

environments, lighting conditions, and distances. After the training is finished, the model can 

receive input images that it has never seen before, and predict whether a cat or dog is present, 
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with a certain success-rate. This model has now derived the mathematical description of what 

an image of a cat and a dog is. This is an extremely complex task that may be close to 

impossible to do manually. 

However, the most important part of this process is that the system developer still knows 

more about the input data than the classifier. We know what images of dogs and cats look 

like. If the model guesses wrong, we would be able to tell immediately. This is not the case 

with AE waveforms recorded from an RM containing SSCs. We generally know close to 

nothing about what information is hidden beneath the noise in this sample vector. If we train 

a machine learning classifier to recognize SSCs in an AE waveform we are unable to verify 

that the model output is correct, by simple means. 

The analysis of the duration test has shown that complicating processes such as noise, 

friction, multiple occurring defects with different magnitude, and aliasing problems all 

contribute to an AE waveform that is complex. So complex, that even if a subsurface defect is 

known to be present, the detector decisions must still be verified. For a machine owner, a 

CBM system that outputs: “Something might have happened in your RM” is hardly valuable 

information. If this problem continues to be solved with non-verifiable machine learning, it 

will most likely remain a lab experiment. 

 

6 Conclusion and Further Work 

6.1 Suggestions for future improvements 

6.1.1 Learnable peak characteristics 

The intention of the proposed detector in this thesis is not to indicate that all use of machine 

learning is insufficient. If it does not compromise with verifiability, it can be a useful tool. 

One suggested way to implement a machine learning part in the detector is to replace the 

peakPower with some learnable parameter that can have a better opinion about a peaks 

character than just the width and the prominence. Because the peaks are in the K-spectrum, a 

parameter space where we can tell what is going on (like a picture of a cat), verifiability can 

still be preserved using PIS verification. 
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An important observation to note about an SSC originated behaviour in the AE waveform is 

that the corresponding peaks in the K-spectrums are extremely sharp. This confirms that the 

𝑓𝑟 was properly estimated, but it also confirms that the pulses are short. So short that they 

only register in 4-6 consecutive windows (with 50% overlap). Peaks that originate from 

electrical noise are wide. There are probably more qualities to the K-spectrum peaks that are 

worth investigating. Perhaps the origin of an observed behaviour, being a surface or a 

subsurface defect, can be classified from learned peak characteristics. 

 

6.1.2 Frequency scanner 

The proposed detector relies on extremely narrow tolerances for 𝑓𝑓𝑎𝑢𝑙𝑡 (the BPFO for 

example). The tool used to achieve this (ref section 3.6.3) could be further developed to a 

frequency scanner. Machine owners wanting to invest in the system proposed in this thesis 

might not know the exact 𝑓𝑓𝑎𝑢𝑙𝑡 for every failure related frequency in their RMs. An onsite 

estimation of the failure frequencies would be a desirable solution to this problem. 

 

6.1.3 Real-time applications 

The proposed detector is intended as a real-time condition monitoring system. This is not a 

thesis in computer science and thus the computational complexity of the proposed detector 

will not be described. However, some indicating measurements of performance are described 

below: 

- The execution time for 100 consecutive detector executions including a high-pass 

filtering of the entire input signal for every execution, given: 

𝑙𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑓𝑠10𝑠, 𝑓𝑓𝑎𝑢𝑙𝑡 = 3, 𝑙𝑤 = 1000, 𝑜𝑤 = 500, and 𝑥𝐻𝑃 = ℎ𝑖𝑔ℎ𝑝𝑎𝑠𝑠{𝑥[𝑛]}. 

Is measured to 𝒕𝑫 = 33.44𝒔. The average time duration for each execution is thus 𝑡𝑑 =

𝟎. 𝟑𝟑𝟒𝑠 

 

- The execution time for 1000 consecutive detector executions, given 

𝑙𝑠𝑖𝑔𝑛𝑎𝑙 = 𝑓𝑠10𝑠, 𝑓𝑓𝑎𝑢𝑙𝑡 = 3, 𝑙𝑤 = 1000, 𝑜𝑤 = 500. 
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Is measured to 𝒕𝑫 = 65.02𝒔. The average time duration for each execution is thus 𝑡𝑑 =

𝟎. 𝟎𝟔𝟓𝟎𝑠 

 

6.1.4 The most significant failure 

As of now, the detector only extracts the peak in the K-spectrum with the highest peakPower. 

What this means is that if there exist multiple instances of the same defect in an REB, only 

the most developed defect is chosen by the detector. This is not necessarily a bad but could be 

addressed as a potential for improvement. 

 

6.1.5 Assumptions 

A lot of assumptions have been made in this work for the parameters window length, window 

overlap, definition of 𝑇 and confidence 𝑐. These parameters where chosen through trial and 

error and the parameters that produced the best results are presented in this thesis. There are 

lots of room for improvement here, and several of the parameters, for example window length 

𝑙𝑤 can be investigated to improve probability of detection 𝑝𝐷. 

 

6.1.6 Rotation frequency 

The fact that a fixed estimated 𝑓𝑟 proved sufficient for pulse integration with 𝑙𝑤 = 1000 on a 

signal that is 20,000,000 samples long is almost unbelievable. This means that for the entire 

duration test, the machine operated with an 𝑓𝑟 that deviated less than 0.001 Hz  (ref 3.6.3) 

during every single axle rotation of the total 22.195.088 axle rotations completed. This is 

nothing less than remarkable and is a big compliment to SINTEF who built the machine. If 

the estimated 𝑓𝑟 deviates more than 0.001 Hz from the true 𝑓𝑟, given a 𝑙𝑤 = 1000 the 

detector will be useless. If this had happened in the results presented in section 4.2, it would 

have been clearly visible. 

Luckily it did not, but in order to use this detector in a real machine, which can operate at 

varying rotation frequencies, the axle positions 𝑟𝑚 must be based on sampled axle position 

data. The bare minimum way to a to do this is to use a rotation counter synchronously 
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sampled with continuous AE sampling. A better solution is to use a precision rotary encoder. 

With sampled axle position data, the full potential of the general encoder described in 3.6.1 

can be utilized. This is the reason why the general solution for the detector, including 𝑑𝑠, is 

described in this thesis. It is the only solution that would work in a real machine outside the 

lab. Thus, this is the future improvement that should be implemented first. 

 

6.2 Conclusion 

As a laboratory test with the intention to solely generate AE waveforms containing RCF 

induced SSC pulses, the duration test might be described as a flawed test. All the observed 

behaviours and the unintended machine stops should, in a lab context, not have been present. 

However, as an acid test for a proposed detector with real world ambitions, the duration test 

was appropriate for the purpose. 

This master thesis was written during the duration test. As more data became available and 

more behaviours were observed, the algorithms used were constantly developed to cope with 

the new findings. The result is a proposed detector with a bigger picture in mind. It is by no 

means a finished prototype, but it is built on well-established theory derived from radar 

technology. The main quality attributes are robustness and verifiability, which are vitally 

important for a system that potentially is used to monitor heavy expensive rotating 

machinery. 

These quality attributes have not been prioritized by previous research aiming to solve the 

problem of SSC detection using AE. This is the main reason why this field of research has 

hardly progressed in 16 years. It is therefore time to establish a criterion of confidence that 

ensures that future research publications do not claim success based on unverifiable results. 

That is, The 3-stage confidence process. 
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96 
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11 Appendix D 

 

 

https://medias.schaeffler.no/en/product/rotary/rolling-and-plain-bearings/roller-

bearings/needle-roller-bearings/machined-needle-roller-bearings/na6914-zw-xl/p/382768 

 

The number of rolling elements is 28. 

  

https://medias.schaeffler.no/en/product/rotary/rolling-and-plain-bearings/roller-bearings/needle-roller-bearings/machined-needle-roller-bearings/na6914-zw-xl/p/382768
https://medias.schaeffler.no/en/product/rotary/rolling-and-plain-bearings/roller-bearings/needle-roller-bearings/machined-needle-roller-bearings/na6914-zw-xl/p/382768
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