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Abstract

The formation and propagation of rolling contact fatigue (RCF) induced subsurface cracks
(SSC) in a test specimen roller have been monitored using the acoustic emission time series.
The sampled acoustic emission (AE) waveforms were obtained from a duration test. During
testing, phased array ultrasonic testing (PAUT) were performed on scheduled intervals to
monitor SSC initiation and growth. After the duration test was terminated, salami cutting post

inspection revealed three RCF induced SSCs.

A monitoring system using a mathematically deterministic detector, capable of independent
isolated detection of multiple RCF induced SSCs occurring simultaneously in a rotating
machinery is proposed in this thesis. Outputs from the detector and positive detector
decisions, are fully verifiable using a tool proposed in this thesis called the pulse integrated

spectrogram (P1S).

Four different defect behaviours were observed in the sampled AE waveforms. All
behaviours were independently detected with the proposed monitoring system. The behaviour
with the given name rollerPass, was confirmed as an SSC originated behaviour. Positive
detector decision, defect detected, for rollerPass happened April 30, 2021. The decision was
verified with PIS. At the time of detection, the SSC was 1 mm wide, confirmed in PAUT.

A review of the published research on the field that is detection of RCF induced SSCs in
rolling element bearings (REB) using AE is presented in this thesis. The review reveals that
unverifiable results can have caused false claims of success for the solutions presented. A
criterion of confidence is therefore proposed to prevent future publications from disrupting

the progress in this field of research.
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AEMON

Novel Failure Monitoring System for Marine Applications by including

Acoustic Emission

Gearboxes represent a critical part of the rotating machinery found in maritime vessels and
wind turbines. Due to the cyclic loading conditions gears and rolling element bearings are
exposed to, these components are typically the first to fail due to fatigue induced failure
mechanisms. Failure in a single component imposes an evident risk of total machine failure,

which is costly.

For this reason, condition monitoring systems are typically applied to alert the machine
owner if a defect is present in the rotating machinery. However, the condition monitoring
systems used today are mainly vibration-based and can only detect surface defects such as
cracking and spalling. Thus, by the time the monitoring system identifies a defect in a
component, this component might already be at risk of failure.

The AEMON project is a collaboration between NTNU and SINTEF and the industry
partners Kongsberg Maritime, Kongsberg Maritime CM, Equinor Energy and Island
Offshore. In this project a condition monitoring system based on Acoustic Emission will be
developed to identify defects in rotating machinery at an earlier stage than what is currently
possible with vibration-based systems. The project is funded by the Research Council of

Norway under the MAROFF-2 programme.
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Introduction

1.1 The current status

In 1993, (Yoshioka, 1993) published the research paper that is considered the first
documented identification of subsurface cracks present in acoustic emission waveform from a
rolling element bearing. In 2005 (Price, Lees, & Friswell, 2005) published a similar study
where physical inspection revealed the presence subsurface cracks in the test specimens.
Since then, only a handful of papers have been published on this field of research. The results
from these papers are unverified, and thus have not contributed to significant progress that
can be considered useful to the path of creating the first functional subsurface crack detection
system. By the addition of the typical black-box properties of machine learning models, the
results are harder to verify, thus preventing the concept from reaching a level of acceptance
and credibility as a tool for real world machine monitoring problems. As a result, subsurface
crack detection in rolling element bearings using the acoustic emission time series remains

today a niche topic in the condition monitoring world.

1.2 The proposal

The acoustic emission (AE) from a rotating machinery (RM) can be described as waveform
with a continuously changing noise floor. Rolling contact fatigue (RCF) induced subsurface
cracks (SSCs) are present in the waveform as short bursts of energy, or pulses, usually
completely hidden in the noise. The problem is thus to find these pulses. There exists a well-
established field of science that deals with a similar problem. That is, the radar target

detection problem.

With this thesis, the main objective is to introduce a new way to address the problem of SSC
detection in REB using AE, and to hopefully motivate the AE community to welcome a
cross-disciplinary mindset. The chosen approach to the SSC detection problem takes
advantage of detection criteria derived from the established signal processing radar literature.
The monitoring system proposed in this thesis uses a mathematically deterministic detector

capable of independent isolated detection of multiple RCF induced SSCs occurring



simultaneously in an RM. All outputs from the detector are fully verifiable, and positive

detector decisions can be verified with confidence.

1.3 Research method in brief

The following work focus on the analysis of acoustic emission (AE) monitoring of an REB
exposed to RCF induced SSCs. From the recorded AE waveforms, the SSCs are to be

detected as early as possible, with a verifiable detector decision.

1.4 Problem Statement

The main objective for this work is to:

- Analyse AE waveforms gathered from a roller bearing duration test, executed on a
roller bearing test machine located at NTNU.

- Present the mathematical description of a proposed detector capable of detecting RCF
induced SSCs and other REB related defects.

- Present the evolving trend for all defect behaviours detected during the duration test.

Detector decisions indicating defect detected are displayed and discussed.

1.5 Structure of the report

Section 2 reviews theory and literature relevant to the problem statement in 1.4. Fatigue
induced failure mechanisms in REBs, the AE phenomena, detection theory of noise

contaminated signals, and literature review are presented.

Section 3 explains the experimental setup for the duration test, AE recording systems, and the

complete mathematical description of the proposed detector.

Section 4 presents all defect behaviours observed during the duration test, detector decisions,

and detector decision verifications.

In section 5, the results are interpreted and the discussed. The performance of the proposed

detector is evaluated and compared to the existing literature.

2



Conclusions and proposed further work are given in section 6.

2 Theory and literature review

2.1 Condition monitoring

Condition-based maintenance (CBM), also called predictive maintenance or condition
monitoring is a maintenance strategy that recommends maintenance procedures based on
condition monitoring data (Y. Lei, 2016, p. 6), such as AE waveforms and vibrations. CBM
can reduce machine downtime and ensure proper operation. The strategy can be split into
three stages: data acquisition, data processing and decision making. Data acquisition is the
process of collecting sampled sensor data such as AE, temperature, ambient moisture etc. At
the data processing stage, relevant features are extracted from the raw data sampled in stage
one. The extracted features then act as a basis for the decision-making stage. This module
will interpret the extracted features and give a health estimate of the current machine and
suggest maintenance actions. Decision criteria and Al models can be used for diagnosis and

estimate the probability of present defects (Martin-del-Campo & Sandin, 2017, p. 1).

2.2 Fatigue related failure in bearings

Rolling element bearings (REBSs) are susceptible to multiple forms of damage including
corrosion, denting, electrical erosion, fracture and spalling (Watanuki, Tsutsumi, Hidaka,
Wada, & Matsunaga, 2021, p. 952). Under proper operation conditions, the elements of
bearings, such as rollers and raceways, are exposed to multiaxial and non-proportional low
and high-cycle fatigue loadings, which are usually the source of the rolling contact fatigue
(RCF) (Romanowicz & Szybinski, 2019, p. 1). The two most dominant RCF mechanisms are
subsurface originated spalling and surface originated pitting (Jalalahmadi, Slack, Raje, &
Arakere, 2009, p. 2). Both of which can happen after a long period of operation. Spalling
leads to increased vibration in the bearing, but usually not critical malfunction of the rotating
machine (Watanuki et al., 2021, p. 952). However, at the point of spalling, debris is
introduced to the rest of the mechanical system, thus accelerating the overall failure process
(Fuentes, Dwyer-Joyce, Marshall, Wheals, & Cross, 2020, p. 776). Small localized stress



risers such as spalling can also lead to fatigue originated bearing fracture, which imposes a

critical risk of machine breakdown (Watanuki et al., 2021, p. 952).

Subsurface originated spalling occurs when microcracks initiate below the surface and
propagate toward the surface to form a surface spall. Microplastic deformation precedes
crack initiation and typically occurs at microstructural discontinuities such as non-metallic
inclusions and carbide clusters, often referred to as stress risers. In these areas, the resultant
stress exceeds the local microyield limit in a fatigue cycle. (Jalalahmadi et al., 2009, p. 2). It
is observed that non-metallic inclusions with size larger than 13 um significantly decreases
fatigue life (Romanowicz & Szybinski, 2019, p. 4). The formation of these cracks is found to

originate in the region of maximum shear stress below the surface, which is displayed in

Figure 1
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Figure 1, Typical subsurface stress distribution for rolling contact (Romanowicz & Szybinski, 2019, p. 5).

Smooth surfaces, non-metallic inclusions and absence of surface shear are factors that favour
subsurface originated spalling. In properly installed and lubricated bearings, this is the main
form of fatigue failure (Romanowicz & Szybinski, 2019, p. 4). Surface oriented pitting, on
the other hand, occurs where surface irregularities, typically caused by sliding between
contacting surfaces, initiate cracks. This is typically relevant on the contact surfaces in gear

teeth, (Jalalahmadi et al., 2009, p. 2) but bearings exposed to varying degree of surface



traction shear forces, and/or with lower grade of surface smoothness, can also be prone to
surface originated fatigue failure, as will be described below.

In most loading conditions, fatigue tends to originate at the surface of the materials. High
stresses and imperfections due to manufacturing surface wear coalesce lead to crack
initiation. In rolling element bearings however, Hertzian contact theory dictates that the
highest stress present in interacting bearing rollers can be located a small distance below the
surface (Fuentes et al., 2020, p. 776). Lundberg and Palmgren (Lundberg & Palmgren, 1947)
were the first to provide a theoretical model for bearing life. They supposed that cracks
initiate subsurface due to the simultaneous occurrence at a particular depth of the maximum
orthogonal shear stress combined with the presence of a stress riser. The location of the
maximum orthogonal shear stress is known as Palmgren-Lundberg’s points, seen in Figure 2
(Romanowicz & Szybinski, 2019, p. 4). The stress ricers were expected to be stochastically
distributed throughout the material. Weibull statistical fracture theory was applied to the
stressed volume derived from pure Hertzian contact to predict the durability of the volume
when exposed to subsurface initiated fatigue.

Figure 2, Distribution of subsurface shear stress. Obtained by finite element method (FEM) (Romanowicz &
Szybinski, 2019, p. 5).

Since the publication, the theory has become widely accepted and today forms the basis for
the industry bearing life standard, 1ISO 281. However, it completely disregards the possibility



of surface originated failure, and the aspect of lubrication and hence lubrication film. Load
direction is assumed to be normal only, without surface shear traction. In practical scenarios,
some surface traction will always be present, and thus moves the location of maximum
orthogonal shear stress closer to the surface. Assuming pure Hertzian contact also implies
that the contacting surfaces are perfectly smooth, which rarely the case real REBs. The stress
field will thus deviate considerably from the pure Hertzian case (Jalalahmadi et al., 2009, p.
3). Numerous methods have been developed to cope with these shortcomings, but they are
outside the scope of this thesis.

Material degradation caused by RCF in a bearing can be described as a three-stage process:
shakedown (1), steady-state elastic response (2), and instability (3). At shakedown, material
strength and micro yield stress are increased due to induced residual stress from work
hardening and possibly transformation of retained austenite to martensite. Subsurface volume
exposed to plastic deformation is reduced to nearly zero. A higher initial load applied during
this stage results in a higher saturation level of work hardening, thus extending fatigue life by
modifying material response in the next two stages.

Stage 2 describes the period of operation where cyclic response is elastic and no fatigue
damage is expected to occur. The duration of this period is a function of maximum stress,
mechanical properties, and operating temperature, where operating temperature is highly
relevant. Stability of finely dispersed carbides in the tempered martensite is also considered
important for prolonging this stage. Maintaining a stage 2 operating condition is critical to
bearing fatigue life.

At stage 3, material softening caused by an increase in plastically deformed subsurface
volume causes a decrease in yield stress. The softening is thought to be caused by slip
systems induced by carbon diffusion due to temperature peaks. The development of a radial
tensile stress and texture development promotes growth of cracks parallel to the rolling
surface (Jalalahmadi et al., 2009, pp. 1-2).

It is observed that spalls originated from indentations in ball bearings develop initially at the
trailing edge of a pre-indented raceway with a typical V-shaped spall. In this location, the
raceway material first detaches at the edge of the dent, forming a V-shaped damaged area,
before growing at fast rate along the raceway. Roller bearings, however, follow the well-
known behaviour of slowly growing the spall directly across the raceway, before continuing
along the rolling path (Morales-Espejel & Gabelli, 2015, p. 418).



2.3 Acoustic Emission Fundamentals

ASTM, formerly American Society for Testing and Materials, proposed in 2020 an AE
standard named ASTM E1316 20. In this standard, the definition of AE is given as: The class
of phenomena whereby transient stress/ displacement waves are generated by the rapid
release of energy from localized sources within a material, or the transient waves so
generated (He et al., 2021, p. 4). Rapid release of energy, are typically caused by plastic
deformation, crack propagation and dislocation motion during growth of flaws in solids
(Eitzen & Wadley, 1984, pp. 75-76).

When a component is impacted by an external drive, the concentrated energy source begin to
release elastic mechanical waves (Meserkhani, Jafari, & Rahi, 2021, pp. 1-2). These waves
are often referred to as AE- hits, events and pulses. Depending on how the material is
excited, a combination of longitudinal, transversal and surface waves propagate through the
solid to the surface of the component. Each wave propagate at different speed and carry a
different percentage of the total energy (Fuentes, Howard, Marshall, Cross, & Dwyer-Joyce,
2016, p. 1371).

2.3.1 Transfer Function Formalism

To extract quantitative information from an AE event, the source of the event must be
mathematically expressible. Scruby has shown that an AE source can be represented as a
point source with two main assumptions (Leser, Yuan, & Newman, 2013, p. 2). The source is
assumed to be internal and self-equilibrating, which means that every force or couple making
up the source must be a force dipole or double couple. The second assumption is that all
forces involved in making up the source, must occur simultaneously and thus share the same
history (Leser et al., 2013, p. 2). If the first assumption is ignored, the displacement response

on the body surface due to a point source can then be described as follows:

Let the force, h; (E t) be applied to a body at position f in direction j at time t. The
displacement vector, u; (X, t) at position X in direction i can be calculated as the convolution

of h] and Gl]



ul-(f,g,t,)= (h*G)(t) =hj(€,t)*GU(3_C),€,t) 1
where G;; (55, 5 , t) is the Green’s function defined as the displacement response at X in

direction i from the impulse load at 5 in direction j. (Leser et al., 2013, p. 2). However, this
model does not fully capture the AE phenomena. For the purpose of modelling an AE event
to an electric voltage at the transducer output, additional assumptions and simplifications

must be made.

AE sources are generally considered to be sharply limited in spatial extent and are usually
measured over some limited frequency range due to instrumentation limitations and noise.
Complex models containing the entire static and dynamic stress history of the structure are
therefore excessive. However, the possibility that each stress relaxation, or AE pulse, could
have a distinct temporal behaviour, complicates the calculation of the Green’s tensor. To

avoid this problem, two assumptions are introduced. Distributed AE sources are

approximated by a Taylors expansion about a point centroid source at location, f_(; All AE
events are considered to have identical temporal behaviour (from seismology) (Eitzen &
Wadley, 1984, pp. 77-79). The resulting model follows:

ui(%,8,t) = (A6 * 6)(t) = B () * G, (%, 80, 1) 2
where Rjk is the space averaged stress drop, considered distributed at ET{ and k is the
direction of the Heaviside elastic Green’s tensor (Eitzen & Wadley, 1984, p. 78). Now the
response of the transducer can be included. A transducer sensitive to displacement has an
impulse response that can be expressed as TP;(#,t), 7 € Sy, the voltage at time t excited by a
Dirac delta impulse in direction i at point 7 at time zero. Sy is the given surface of the body
of which the transducer is connected. In frequency domain, the transfer function formalism

ultimately becomes:

V(w) = Tj(0)A63(w) 3
where Tz (w) is the combined transfer function of the structure and the transducer.
A7 (w) is the stress drop tensor of the AE source (Eitzen & Wadley, 1984, pp. 77-79). By
defining this transfer function, information about the source is considered passed in
frequencies through the filter (transfer tensor) to the output in the manner of a linear system.
The information is independently transmitted, frequency by frequency, and thus filtering and
other digital signal processing tools can be used to separate the noise from the useful signals
(Eitzen & Wadley, 1984, pp. 77-79).



2.3.2 The five-stage process

The process of collecting an AE signal can be described by the five-stage process expressed
in Figure 3. The stages include source generation, evolution, signal transduction and signal
processing (SP). An event, or AE source, arises within or near the surface of a solid. This
event causes a dynamic stress or force field change at the location of the event (stage 1). This
change propagates a mechanical disturbance, or elastic wave, U(x, t), through the whole
solid (stage 2). A sensor (usually piezoelectric) located at the surface of the solid detects the
disturbance by outputting a voltage, V (t), proportional to the mechanical stress acted on the
transducer from the disturbance (stage 3). The raw signal is then interpreted, and relevant
features are extracted using SP (stage 4). Then the extracted results from the SP is used to
classify the character and significance of the AE event (stage 5). (Eitzen & Wadley, 1984, pp.
76-77).

AE SOURCE WAVE SENSOR
CHARACTERIZATION PROPAGAION IN (TRANSDUCER)
___ THESTRUCTURE  CHARACTERIZATION
_____ " DYNAMIC ™.,
/ FORCE /"~ MECHANICAL ™
; AE 1 FIELD V' 2/  DISTUBANCE > | TRANSDUCER
| — — I —
. EVENT \ CHANGEAT \ AT SENSOR i OUTPUT, V(t)
. THE ‘. SITE, U(x,t) ./
“._SOURCE _.~
4  SIGNAL
| PROCESSING
5 DISPLAY OF
PROCESSED
DATA INTERPRETATION SIGNAL

Figure 3, The causal chain of AE analysis (Eitzen & Wadley, 1984, p. 77).

Extracting informative features is no easy task, and the reason lies in how mechanical elastic
waves travels through a solid. Wave propagation through a solid structure is affected by
interaction with material properties, inhomogeneities, geometrical configuration of free
surfaces and loading conditions. Frequency response of the chosen sensor also alter the
sampled waveform. Because of these variables, the characteristics and source of an AE event
is effectively unknown (Eitzen & Wadley, 1984, pp. 76-77).
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2.3.3 AE in RM context

In the application to RM monitoring, AE is defined as transient elastic waves generated by
the interaction of two media in relative motion. Sources of AE in rotating machinery include
impacting, friction, cyclic fatigue, material loss, cavitation etc. For example a bearing roller
passing a defect on a bearing race, will excite an AE pulse (Mba, 2006, p. 1). AE activity can
be categorised into three different modes. That is Burst type, Continuous, and, Mixed mode,

as seen in Figure 4.

In RMs, exclusive burst mode activity is not seen, as there are often high levels of
background noise. In fixed, non-rotating machines, electrical- and background noise are the
main contributors to AE noise. Rotating machines on the other hand are noisy, and AE
bursts/peaks can be caused by friction, roller impact, misalignments and transient loads.
These factors will sum up to a constantly changing background noise (Fuentes et al., 2020, p.
783).

Consequently, normal operating RMs will typically emit AE activity continuously, with
faults such as surface pitting appearing as pulses superimposed on the continuous signal, that
is, mixed mode. Many researches have demonstrated the ability of AE to detect faults such as
pitting in bearings, but the lead time to failure of these systems is highly dependent on the
level of the background noise, and thus the signal-to-noise ratio (SNR). Bursts from early
wear events, such as SSCs are typically buried in noisy environments. To monitor wear at an
early stage and to better understand AE generation in RMs, requires the analysis of

continuously sampled AE waveforms (Price et al., 2005, p. 86).

A
a) Burst type v —-F—’——-——*—

b) Continuous IRV

¢) Mixed mode Mm

Time

v

Figure 4, AE waveforms categories (Price et al., 2005, p. 86)
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A high sampling rate is needed to successfully capture an AE-signal, typically f; > 1Mhz.
When sampling continuous AE waveforms, the recorded time-series are challenging to
analyse because of the tremendous amounts of data. Model-based feature extraction is one
approach used to overcome this issue by converting huge amounts of raw data into small
feature vectors. Another challenge that affects all approaches to feature extraction from the

AE time-series is the signature of a distinct RM. In formula 3, T}z (w) can be interpreted as a

filter, where the impulse response of the RM itself shapes the AE pulses as they propagate to
the transducer. The impulse response of the machine will be determined by vibration paths
(Yang, Lei, Jia, & Xing, 2019, p. 693), material-and mechanical properties (Zurita-Millan et
al., 2016, p. 2), inhomogeneities, geometrical arrangement of free surfaces, and loading
conditions (Eitzen & Wadley, 1984, p. 77). These factors all contribute to how the AE signal
is altered from the AE source to the transducer (Kim & Kim, 2020, p. 2).

2.3.4 CBM using AE

Vibration analysis (VA) is the most widely used method for monitoring RMs today.
However, the technique is limited to detecting surface defects only. That is, subsurface cracks
(SSC) induced by RCF cannot be detected by VA until the SSCs propagate to the surface of a
bearing element, ball/roller or raceway. This is because changes in vibration signals occur

mainly due to the modification of surface geometry (Nélias & Yoshioka, 1998, p. 34).

AE is one of the non-destructive testing methods used today for CBM. One of the important
benefits of AE compared to VA is the possibility to monitor SSC growth for identification of
dynamic damage characteristics (Meserkhani et al., 2021, pp. 1-2). In comparison to
established CBM systems, that focus mainly on VA, AE sensors operate over a far wider
frequency range. The frequency band of an AE transducer is typically in the range of 20 kHz
— 1 MHz, whereas the frequency band of traditional vibration transducers are in the range of
0 — 50 kHz. Because of this, traditional vibration based CBM rely heavily on the increase in
amplitude of the bearing defect frequencies as damage propagated along the raceways and

rollers.

With the much wider frequency range of AE sensors, research has shown that these sensors
are able to detect the transient elastic surface waves caused by released strain energy during

plastic deformation in materials, crack initiation and growth, and frictional sources
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(Cockerill et al., 2016, pp. 1-2). To summarize, VA can only detect subsurface originated
spalling and surface originated pitting, while AE technique additionally can detect early stage
SSC initiation and growth. (Rahman, Ohba, Yoshioka, & Yamamoto, 2009, p. 807).

2.4 Detection of signals in noise

2.4.1 Hypothesis testing

Decision theory is a branch of probability theory that describes the process of mapping noise
contaminated input data, to a decision regarding the state of a system. Let’s consider the data
as a random process because some elements in the data source are not describable with
certainty. This could for example be the sampled output voltage from an AE-transducer
connected to a rolling element bearing. At some point in time, an SSC might be present in the
bearing, and thus might excite an AE event. The output voltage of the transducer at a given
time will depend on the AE event being present or not (McDonough & Whalen, 1995, p.
152).

Now suppose that we want to determine, or classify, which kind of situation the data
originates from. Hypotheses H;, i = {0,1,2, ..., m — 1} define m probabilistic models that
describe a distinct system state class. By processing the data x at hand, we want to determine
which of the models i was in effect to produce the data. The outcome of the processing is
defined as decision D;, that the data originates from hypothesis H;. Given the hypothesis H;,
i ={0,1,2,...,m — 1}, we want to determine how to arrive at decision D;, and how well that

strategy performs on average.

SSC detection in an RM can be considered as a binary hypothesis-testing problem, meaning
that only two hypotheses, H, and H,, cover all the states the machine is expected to inherit.
The hypothesis H,, is typically used as the null hypothesis, describing the normal operational
condition, and H; denotes the alternative hypothesis, where a SSC is present. To determine
which hypothesis the sampled data belongs to, the data is divided into two regions, R, and
R;. The acceptance region, R, is where we accept H, as our hypothesis, and the critical
region, Ry, is where the we reject H,, and choose H; as true. That is, a decision, D;, that
hypothesis H; is the current machine state, is made if input data x lies in region R;. These

regions must together include all points in x-space, as any input-data must be given a decision
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D. At the same time, no point in x-space can be in more than one region, as this would invoke
an ambiguous decision (McDonough & Whalen, 1995, pp. 152-153)

2.4.2 Make a decision

To reach a decision D, a mathematical description on how to process the input data optimally
must first be established. This can be done by defining which errors a signal detector can do.
A binary hypothesis-testing problem can produce two errors, the false positive, and the false
negative. The false positive, or the Type I error, happens when the detector arrives at decision
D,, when the data originates from a machine at state H,. This is also called a false alarm. The
false negative, or the Type Il error, happens when the opposite is the case. Both errors will be
made with some probability p;, = p(D;|H,), and pg, = p(Dy|H;) respectively. Given that
this is a binary hypothesis problem, either decision D, or D, must be produced for every

input, thus the probability of crack detection, p, becomes

pp =p(D1|H) =1— Prn 4

(McDonough & Whalen, 1995, pp. 153-154).

Suppose we are sampling the AE waveform from a rolling element bearing containing a small
subsurface defect. Each time a rolling element passes the defect, an AE event message, m,; =
1 is excited. Between rollers, the defect does not excite any AE and the message is then,

m, = 0. We do not know which message that is sent at a given time, and the message m,
consisting of m, and m, is modelled as a random variable with probabilities P, and P,
respectively. In addition to this, we assume that friction, surface irregularities and other noise
sources add a zero-mean Gaussian random noise variable n to the waveform. The waveform
arriving at the transducer is then the random variable x = m + n. If the noise variance is 02,
the two AE messages m, and m,; now correspond to two different probability densities for
the sampled data X, as seen in Figure 5. Depending on the original message, x is a Gaussian

with variance o2 and mean of m, being ether m, or m,. That is,

_(x-m)? 5

e 204

Px(xIm) = ——
\ 2mo}
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(McDonough & Whalen, 1995, p. 155)

Now we must determine what the optimal decision for any given input would be. One
strategy called MAP (maximum a posteriori criterion), dictates that the most probable m,
given the input data x, is the optimum choice. Thus choose m;, if given the input x satisfies
Pm(mq|x) > p,(mglx). Given the probabilities for m, P, and P;, Bayes’ rule yields

Px(xlml)Pl
px(x)

Px(xlmO)Po

pm(mllx) =
The decision rule then becomes: Choose m = m, if the likelihood ratio L(x) > 1. Thatis

_ Pm(mylx)  py(x|my)Py 6
L0 = o)~ pexlmo)P

This is also called a detector (McDonough & Whalen, 1995, pp. 155-156).

041
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Figure 5, Top: Probability density functions of sample space for a binary hypothesis test, given my = 0, m; =
1, and g2 = 0.5. Bottom: Corresponding likelihood ratio L(x), given P, = 99%, and P, = 1%. Given these
parameters, we choose m = m, for x > 2.799.

2.4.3 The Neyman-Pearson Criterion

In the previous section, the MAP criterion was introduced as our optimal decision-making
tool for detection. This is a good criterion to demonstrate the process of decision making in

noisy waveforms. However, it implies that we know the probabilities of each hypothesis, P,
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and P,. In CBM, P, and P, are unknown. The decision-making in this thesis is therefore
based on the Neyman-Pearson (NP) criterion, which has been acknowledged as the most
suitable in radar and sonar problems (McDonough & Whalen, 1995, p. 159; Skolnik, 1990, p.
8.2). When using NP, we choose the probability of false alarm, pf, as large as we are willing
to tolerate, to minimize the probability of missed detection py,,. Thus, maximizing the
probability of detection, p,. Effectively we decide D, if likelihood ratio is equal or greater
than T. That is

H
_pGelHy) 7

B p(x|Hy) —

L(x)

where T = T(py, ) is set constant or set given one or multiple criteria. In radar detection, T is
typically set according to weather conditions. Rain typically induce more uncertainty to the
detection problem; thus, T is increased (Skolnik, 1990, p. 8.2).

2.4.4 DefiningT

So far, the presented theory describing detection of signals in noise has been relevant to both
the radar target detection problem and the crack detection problem in RM. There is however a
fundamental difference between the two problems, that is the time course-dependency.
Probability of target detection, pj, in Radar systems can be considered a Markov process. It
does not depend on the past. Consider the detection of an airplane. p,, does not depend on the
time of day, nor the total runtime of the radar, if it is in normal working condition. If the
airplane is within the radars working range, the most influential factors on pp, is the distance
to the airplane and the weather-condition the moment the radar antenna approaches the sector
containing the airplane. However, if the airplane it out of range or the weather condition is
bad, we do not expect to detect it. This means that the probability of detection can be
expressed as pp, = pp[r(t), w(t)], where r(t) is the distance to the target, and w(t) is the

weather conditions, at the time ¢.

In crack detection in RM, that is induced by RCF, time course is the most influential factor.
We do not expect to detect any cracks in an RM that has zero working hours. Operational

conditions such as elevated working temperature, loading and component misalignment only
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matters if the factors have been present over a course of time. If an SSC develops in a RM, it
does not go away over time. That is, unlike the radar target detection problem, once a crack
has been detected in a RM, it must be detectable later. Thus, pj, is expected to be correlated in

time. Given these factors, probability of detected cracks can be expressed as pp, =

po[f (1 (@), f(32(6)), .., f (% (6))], where x4, ... x,, are the operational conditions at time ¢,
and f(x;(0) = [ x:()dj.

Estimating the probability of crack detection in a RM given the integral of the operational
condition history, is outside the scope of this thesis. Instead we define a baseline. We define
T given historic sampled AE data from when the RM were in normal operational state. The
amount of historic data used for baselining, is proportional to the expected service life of the
RM, and the complexity of the excited AE waveform. If the RM consist of multiple
subsystems as pumps, hydraulics etc. the complexity of the excited AE waveforms are

expected to increase.

2.4.5 Single-Pulse Detector

So far, we have considered input data, x as a single sampled number. To connect the
decision-making theory to the real problem of radar target detection and crack detection in
RM, we now consider the input data as a vector of samples x[i], where i = {1,2,3, ...k} and k
is the number of samples in x. Consider the message m described in section 2.4.2, but now m
consists of either a pulse, a vector of m; = 1, with length, k, or zeros, my, = 0. The white
gaussian noise, n is added the same way as before, and we have x[i] = m[i] + n[i], where
each sample in x is an uncorrelated random variable with mean either m, or m,. Using the
NP based detector in equation 6, we could make a decision for every entry of x, however a
better approach is to first pre-process the data vector, x by taking advantage of what we know

about the event. In this case, the optimal pre-processing is to estimate the mean. We know
that x has a mean of either m, or m, thus the estimated mean, [, = 2 K x[i]is the
k

optimal pre-processing for x (McDonough & Whalen, 1995, pp. 173-174).
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2.4.6 Multiple-Pulse Detector

Pulsed radars transmit and receive a train of equal pulses to determine the range and velocity
of a target (Mahafza, 2016, p. 9). The shape and time of excitation of the pulses are known to
the radar processing unit. By measuring the time duration from the pulses leaving the antenna
to the pulse echoes reach the receiver, the distance to the target can be calculated (Mahafza,
2016, p. 10). The pulses are zero mean; thus, estimating the mean would not work in this
case. Instead we take advantage of the fact that the transmitted pulse is known, and we can
utilize a fully matched filter.

The matched filter output for the input signal x[i], is y[i], which achieves the maximum
obtainable SNR for the target echo. The radar transmits N pulses while the rotating antenna
illuminates the target, and N signal vectors x are received. Thus, the total matched-filtered
signal from a target in the antenna beam is y[i, k] where i is the range index and k is the
pulse number. Usually some 1000 range samples are collected per pulse while the number of
pulses are below 100. For every range i we now have a multiple pulse detection problem. The
NP solution is based on the likelihood ratio and we decide D, if it is equal or greater than T
That is

p(y[l' 1]' 'y[l: N] |HO) N

L(y[i, 1], ...,yli,n])

(Blake, 1986, p. 36).

2.4.7 Pulse Integration

In systems where multiple pulses from a process can be expected to occur, pulse integration
can be utilized. When the period from one pulse to the next is predictable, several pulses can
be integrated to achieve improved detectability of the pulses. That is, a smaller SNR per
pulse is required for detection (Blake, 1986, pp. 41-42). For the NP-based detector, the pulse
integrating detector is reduced to the square-law detector, where D, is decided if the

likelihood ratio is equal or greater than T. That is

N
LOLD = ) Y2kl =T

k=1
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(Skolnik, 1990, p. 8.3) The improved detectability from pulse integration is understood by the

fact that integration is a variance reducing process. If N independent noise samples are
averaged, the standard-deviation-to-mean ratio of L is reduced by VN relative to the variation
of the y;-s. Thus, the improved detectability from pulse integration primarily dependent on
reduced noise, rather than the on the signal enhancement. With the smoothened pulse-noise,
the threshold-to-mean ratio can now be reduced while still sustaining the same py, (Blake,
1986, pp. 41-42). In radar, this process is also called a video integrator (Skolnik, 1990, p.
287).

2.4.8 Pulse detection in AE

As described in section 2.3.3, AE-events originated from cracks and crack growth, take form
of pulses, or short bursts of energy. Combined with the constantly changing noise of a RM,
the result is an AE-waveform with potential crack-originated pulses, hidden in noise. Given
the combined transfer function T (w) in equation 3, we know little about the shape-
characteristics of a crack originated pulse, and therefore cannot base a detector on a fully
matched filter. That is, a fully matched filter will only work, if its impulse response is
precisely matched to the crack originated AE pulse. According to the radar literature, the
alternative solution is the Envelope Detector. This detector consists of a bandpass amplifier, a
rectifying element, and a lowpass video amplifier (Skolnik, 1990, p. 287). For digital signal
processing this is simply: band-pass filter, rectifier, and low-pass filter.

Additionally, AE pulses are expected to occur periodically in an RM. This means that when
the rotation frequency is known, pulse integration can also be utilized. We also know that the
pulses are short, and broad-banded in the frequency domain. Given this knowledge, the

proposed detector for detecting SSC originated AE pulses in an RM is given in section 3.6.1.

2.5 Literature review

2.5.1 Fault diagnosis

Lei etal., (Yaguo Lei et al., 2020), made a thorough review on the past, present and future

developments on artificially intelligent fault diagnosis (IFD) in machines. The main areas of
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IFD can be divided into three categories: Traditional machine learning (TML)-based IFD,
Deep learning (DL)-based IFD, and Transfer learning (TL)-based IFD. In the past (1970s-mid
2000s), TML was the focus in IFD. The methods used, typically incorporated data collection,
manual feature extraction and health state recognition (classification). These procedures are

typically computationally inexpensive and effective, however they rely heavily on expert
knowledge and labeled data (Yaguo Lei et al., 2020, p. 29).
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Figure 6, The development of intelligent fault diagnosis (Yaguo Lei et al., 2020, p. 3)

The introduction of DL aimed to mitigate the demand for expert knowledge, by bridging the
relationship between the raw monitoring data and the health state of machines. Instead of
manually choosing which features to extract from raw data, deep hierarchical architectures
represent abstract features automatically, and further establish relationship between the

learned features and the target output directly. Although DL models has proved highly
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successful in for example computer vision, and to some degree in IFD, they typically rely on

sufficient supply of labeled data and complete information about the health state of machines.
The final and future solution to this problem, according to Lei et al., is TL. The concept of TL
is to reuse knowledge from deep diagnostics models trained on related machines. Diagnostics
knowledge gathered from MLBs could for example be used for fault diagnosis in MRBs if the

diagnosis knowledge could be reused (Yaguo Lei et al., 2020, pp. 13-26, 29).

Out of the 15 research papers based on TL, reviewed by Lei et at., none of them base their
research on AE data. Four out of the 443 papers reviewed in the report by Lei et al. base their

research on AE. The rest is mainly VA.

252 AE

The first major study of the AE phenomena was conducted by Kaiser in 1953 (Eitzen &
Wadley, 1984, p. 75). 11 years later, the first documented application of the AE technique to
an engineering structure was published. During the 1970s, commercial pressure and
enthusiasm over the new non-destructive testing alternative led to invalid claims on the
underlying workings of the process. The knowledge and understanding of the physical
process were still in the early stage and many of the tests conducted were invalid which led to
uncritical interpretation of data. However, the method did successfully solve some problems
related to leak detection and acceptance testing of fiberglass structures. Being cost-effective,
the technique proved to be valuable in monitoring oil and gas pipelines and nuclear power
plant components (Eitzen & Wadley, 1984).

2.5.3 Application of AE for RCF induced SSCs in REBs

As mentioned in section 1.1, the published work of (Yoshioka, 1993) is considered the first
documented application of AE to detect RCF induced SSCs in REBs. This paper is not
reviewed in this thesis, as it could not be obtained before the delivery deadline.

Since the publication from Yoshioka, only a handful of research papers have been published
on this topic. There are numerous papers that investigate the use of AE as a fault detection

tool, but these papers analyse the presence of surface defects only. The following sections

20



review most of the published papers that base their research mainly on the detection of RCF
induced SSCs using AE. First, the only paper that successfully used AE to identify the
presence of RCF induced SSCs in roller bearings, is reviewed. The next sections review
papers that tackle the same problem but lack confirmation of present SSCs. These papers will

be referred to as unverified. The papers are reviewed in chronological order.

In 2005, (Price et al., 2005) conducted a series loading fatigue tests using a four-ball
machine. The first tests lasted about 10-12 minutes before they were stopped when noise
from pitting defects could be detected audibly. During testing, continuous recording of AE
waveforms were done at an interval of 2.5s. The length of the recorded segments was
equivalent to one ball rotation (40 ms at 1500 RPM). Realtime time-frequency analysis
using STFT (Short Time Fourier Transform) was used to manually monitor the sampled AE
waveforms during testing. Test 2 and test 3 displayed a distinct change in time-frequency
domain after about 7 minutes. In test 2, periodic pulses suddenly appeared, and in test 3, the

main frequency energy band suddenly dropped, as seen in Figure 7.

2.00 150000 - -2.00

M

N L.

FRbA e

-0.00

i
!

i
o

RERIREREFIEIREE

© 10 150 200 20 N0 WO 40 40 SO S0 60 0 0 O S 10 15 W X W0 W 0 0 W W @0 0 N0 7D
Tme Tooe

Rolling test FFT results, Test 2, 150-250 kHz Rolling test FFT results, Test 3, 50-150 kHz

Figure 7, Sudden changes in time-frequency spectrum (Price et al., 2005, p. 94)

In post inspection, the balls were mounted in conductive resin and sectioned through their

respective pit defect. The sectioned balls were examined using a scanning electron
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microscope that revealed SSCs. No additional material change in the area around the SSCs

was observed.

Figure 8, Four-ball machine used in Price’ fatigue tests (Price et al., 2005, p. 87)

Two additional tests, Test 4 and Test 5, were then conducted. When similar behaviour change
in time-frequency domain was observed, the tests were immediately stopped. Post inspection
revealed SSCs in the sectioned balls, but no surface defects, as shown in Figure 9. (Price et
al., 2005, p. 95) concludes that if these tests could continue, pitting would initiate in the area
of the SSCs. Then, the paper suggests that an automated pattern recognition system based on
AE time-frequency data could be used for on-line detection of SSCs formation. The paper
does not specify applied contact stress, or fatigue cycle count. Inspection of SSC presence is

only done post-testing.
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Subsurface crack from Test 5

Siibsfirf‘ac‘é‘ éréck from Test 4

Figure 9, SSCs discovered after Test 4 and Test 5 were stopped due to sudden change in time-frequency AE
behaviour (Price et al., 2005, p. 96).

2.5.3.1 Unverified

(Elforjani & Mba, 2010) investigated accelerated natural degradation of a bearing race. To
decrease the fatigue life of the bearing, one bearing race of a thrust ball bearing was replaced
by a bearing race of a thrust roller bearing, thus achieving higher contact stresses. Visual
inspections of the test specimen bearings are done periodically. Data analysis is done through
time-domain analysis, frequency-analysis, and time-frequency analysis. The paper concludes
that there is a clear correlation between increasing AE energy levels and the natural
propagation and formation of bearing defects. However, the paper express that the method
presented for identification of onset crack propagation cannot be used on real operational
bearings, but possibly be used as a quality control tool for manufacturers. No subsurface

inspection is done to verify the presence of SSCs.

(Quiney, Lees, Ganji, & Murray, 2012) investigated in 2012 the potential advantages AE
represent in early fault detection, compared to VA. Fatigue tests were conducted using a four-
ball machine. The tests lasted from 7 to 116 hours and were stopped when a vibration
triggered alarm indicated spall defects in the fatigued components. Maximum contact stress
during testing was kept constant at 6.31GPa and the rotation frequency on the top ball was
fixed at 1500RPM. AE waveforms were continuously recorded at f; = 5MHz with length of
0.64 s at 3 s intervals, or 1.6 s at 5 s intervals. For signal processing they used the Hilbert

transform to decompose the sampled AE waveforms. The components corresponding to the
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distinct failure frequencies of the 4-ball machine were then converted to frequency power
spectrums. From the power spectrums, they could detect sudden changes in amplitude
approximately 30 s before the machine stopped due to spall induced vibration. The paper
concludes that the cause of the sudden increase in AE activity -clearly indicate the presence
of a subsurface fault (Quiney et al., 2012, p. 135). The paper does not specify the total
number of fatigue cycles accumulated for each test. No subsurface inspection is done to

verify the presence of SSCs.

(Esmaeili, Zuercher, Wang, Harvey, & Holweger, 2017) researched the formation of white
etching cracks (WECS) on the subsurface of bearings. Electrical and mechanical (axial) load
is applied during testing. Time-frequency (STFT) analysis is used to monitor the fatigue
development during roller testing. Results are interpreted directly from the time-frequency
recorded data, and no feature extraction is done. The paper concludes that AE can be used to
detect the signatures of WECs in the frequency band 0 — 20 kHz. No subsurface inspection

is done to verify the presence of subsurface WECs.

(Fuentes et al., 2020) presented a method for identifying seeded subsurface- and early-stage
surface defects in ball bearings using AE. Surface defects was made using either using spark
erosion or scratching with Cubic Boron Nitride. The subsurface defects where artificially
made by applying load to compress the outside surface of a bearing raceway with a rolling
element. Hertzian contact mechanics dictated that subsurface yield would occur at 1000 kN,
and the raceway was subjected to loads of maximum 2000 kN. The presence of subsurface
cracks was observed with AE-hit monitoring during compression. To detect the defects
present in the AE waveforms, TML is used. Features are extracted manually from time-
domain only. Data selection is hit-based, meaning that only bursts/pulses in the recorded
waveforms are stored for feature extraction. To identify the hits from the constantly changing
noise floor of a rotating machine, a moving RMS hit identification function is used. For
classification Gaussian mixture models is used. Sampling frequency is f; = 1MHz. Testing
parameters such as fatigue cycle count, contact stress, and test duration are not described. No

subsurface inspection is done to verify the presence of SSCs.
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3 Methodology, materials, and experimental setup

3.1 Duration test

The data used for analysis in this thesis is gathered from one duration test, completed during
the master’s period. A purpose-built test machine located at Materialteknisk (MTI1), NTNU
was used for the entire test. The objective of the test was to generate RCF induced SSCs in a
test specimen roller. This is achieved by replicating the loading conditions typically present
to rolling elements inside a REB during operation. The test was completed in stages. During

each stage, contact stress on the test specimen, and rotation frequency, f,- were kept constant.

Between each stage, a PAUT (Phased Array Ultrasonic Test) was conducted to monitor SSC
development and propagation. The PAUT equipment used was an Olympus OMNISCAN sx
(Appendix K). All relevant information collected during the test was logged in a spreadsheet.
This spreadsheet will be referred to as the “test-log.” A compressed version of the test-log is
presented in Table 2.

From the test start 2021 Mar 16, F, (specified in formula 10) was kept constant at F, =
364 RPM. April 19, 2021, due to excessive vibration in the machine, F, was reduced to F, =
256 RPM.

3.2 Test machine

Load cell Testspecimen

Electric motor
Rollers

Gearbox

ement

Test
specimen

Figure 10, Left: Cad drawing of the test machine. Right: Arrangement of support rollers and test specimen.
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The general layout of the test machine is displayed in Figure 10. A 22 kW SEW electric
motor drives the whole arrangement. It is connected to a 375:128 reduction gearbox which is
directly coupled to the test specimen with a flexible shaft coupler. Three rollers support the
test specimen, and each roller is supported by two needle bearings as seen in Figure 11. The
specification for the needle bearings can be found in Appendix C. Support roller dimensions
can be found in Appendix A. A load cell controlling the contact stress between the rollers and
test specimen acts on the top support roller. The contact stress distributed between the three
contact points are assumed equal due to the symmetrical 120° angle between the centre of

each support roller and the centre of the test specimen.

Due to the arrangement of the test specimen and the support rollers, one point on the
perimeter of the test specimen passes three contact points (support rollers) per rotation. Thus,

three fatigue cycles occur per axle rotation. The corresponding “test frequency,” is thus

defined as
ftest = 3ﬁ‘l 10
where f,. = fa

60

and F, is the axle rotation frequency in RPM.
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Figure 11, Support rollers and needle bearings.

3.3 Recording systems and sensors

SP6
Vib
SP5
SP4

SP3

Figure 12, Test machine sensor location layout. SPx refers to sensor position Xx.

There are two separate systems recording the AE-waveforms during testing, the NTNU
(MISTRAS) system, and the Kongsberg Maritime (KM) system. MISTRAS records AE
waveforms from the sensor at SP1, and KM records AE waveforms from the sensors at SP2-

SP5. The sensor at SP6 and the Vib sensor were not used for analysis in this thesis.

An axle pin is bolted to the test specimen on the opposite side from the shaft coupler, as seen
in Figure 13. SP1 and SP2 are on a linear bearing mounted to the axle pin. Specifications of
the linear bearing can be found in Appendix . SP3-SP5 are on the front needle bearing
housings, as seen in Figure 14. The linear bearing, needle bearings, and the contact points
between the test specimen and support rollers are all lubricated with gear oil supplied from
the oil management system seen in Figure 14. The contact medium used between the sensors
and the contact surface is a high temperature paste from FUCHS, named GLEITMO 591
(Appendix M).

The AE sensor in SP1-SP2, is the WD sensor by PHYSICAL ACOUSTICS.

WD is a true differential wideband sensor with a very high sensitivity and bandwidth.
It has a very good frequency response over the range of 100-900 kHz. Differential
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sensors differ from their general purpose counterparts by employing two sensing
elements with opposite polarization directions. The two signal leads feed into a
differential pre-amplifier which eliminates common-mode noise resulting in a lower

noise output from the pre-amplifier (Appendix ).
The AE sensor in SP3-SP5 is the Micro30D by Physical Acoustics.

MICRO30D is a differential sensor designed to isolate the sensing terminals
electrically from the cavity. This electrical isolation makes the sensor particularly
useful for applications where high background electrical noise is a major concern. It
has a very good sensitivity and frequency response over the range of 150 — 400 kHz.
The two signal leads from the sensing element feed into a differential pre-amplifier
which eliminates common mode noise resulting in a lower noise output from the pre-

amplifier (Appendix ).

AE sensor

|

Linear

- Bearing

Axle pi
Xie pin Oil supply

Figure 13, Layout for the test specimen, SP1 and SP2.
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Figure 14, Test machine components 1: Test specimen, 2: Right support roller, 3: Left support roller, 4: Left oil-
splash, 5: Right oil-splash, 6: Oil supply, front right needle-bearing, 7: Oil supply, back right needle-bearing, 8:
SP1, WD-sensor (MISTRAS), 9: SP2, WD-sensor (KM), 10: Vib (KM), 11: SP4, Micro30D-sensor (KM), 12:
Linear bearing, 13: Axle pin.

3.4 Test specimen

Only one test specimen was used through the entire duration test. It is made from case
hardened gear steel with a surface hardness of approximately 700 Vickers. Case hardening
means that only the outer perimeter is fully hardened, and the core is not. Given the theory on
RCF induced SSCs in section 2.2, the intention of the case hardening is to increase the
probability of SSCs to be the first occurring failure mode. Dimensions and tolerance for the

test specimen can be found in Appendix B.

3.5 Signal Equipment used

3.5.1 Mistras (NTNU)

A low-noise wide band preamplifier, PAC 2/4/6 by PHYSICAL ACOUSTICS (MISTRAS)
was used to amplify the signal from the WD sensor by 40 dB, and bandpass filtered in the
frequency band 50 kHz - 1300 kHz. Information about the PAC 2/4/6 can be found in
Appendix . The signal was then passed on to a 2-channel PC-controlled AE-recording system
based on the PCI-2 data acquisition board by PHYSICAL ACOUSTICS (MISTRAS) with
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continuous data streaming capability. Information about the PCI-2 can be found in Appendix

During testing, continuous AE waveform segments of 10 seconds length were recorded at an
interval of 10 minutes. After the first SSC was confirmed in PAUT, the interval was reduced
to 5 minutes. The AE recording was performed continuously, with a sampling frequency,

fs = 2MHz and a bit depth of 16 bits per sample.

Software used for recording is AEwin by PHYSICAL ACOUSTICS (MISTRAS).
Information about AEwin can be found in Appendix . Recorded AE segments were saved in
.wfs format. These .wfs-files cannot be easily opened outside the AEwin environment. A wfs-
reader MATLAB-script was provided by the supervisor to open the AE waveforms in the

MATLAB-workspace. Further analysis on the waveforms could then be performed.

The files names were on the format RT8-QyyyyMMdd-HHmmss-000.wfs. yyyy is year, MM is
month, dd is day, HH is hour, mm is minute, ss is second and Q is a counter. To avoid any
confusion regarding which SPx the file originates from the file was renamed to RT8-

QyyyyMMdd-HHmMmss-00x.wfs, where x refers to SPx.

A total 360GB of raw data, gathered by the Mistras system, is used for further analysis.

3.5.2 KM (Kongsberg Maritime)

The same preamplifier, PAC 2/4/6, is used in the KM system with 40 db gain, and bandpass
filtered in the frequency band 20kHz — 1200kHz. The signal was the passed on to 12
channel high-speed acquisition board that is, Kongsberg HS10-100-A (Appendix ).

During testing, continuous AE waveform segments of 2 seconds were recorded at an interval
of 60 minutes. After PAUT confirmed the first SSC, the interval was reduced to 20 minutes.
The AE recording was performed continuously, with a sampling frequency, f; = 2MHz, and
a bit depth of 24 bits per sample. Recording is automatically started when the F, is greater
than a threshold. 2021 Apr 19, when the F, was lowered due to vibrations (as mentioned in
3.1), it was lower than the threshold, and no recording was done until the threshold was
lowered 22 April, 2021.

Recorded AE segments were provided in .csv format, which can be opened directly in the
MATLAB workspace. The csv files contained either data from SP2 only, or SP3-SP5. The
files names were on the format dd.MM.yyyy-HH.mm.ss.csv. dd is date, MM is month, yyyy is
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year, HH is hour, mm is minute, and ss is second. As the data from MISTRAS was the first
data used for analysis, the csv-files containing sensor-data from SP2 only were renamed to
match the MISTRAS filename-syntax. Csv-files containing sensor-data from SP3-SP5 were
first opened in MATLAB, then the data corresponding to each SPx was saved in separate
.mat-files with filenames corresponding to MISTRAS filename-syntax. This was done to
reduce file-loading time, as the three .mat files corresponding to one .csv file use 1/16 the
space on the SSD (Solid State Drive).

A total 292GB of raw data, gathered by the KM system, is used for further analysis. For both
systems put together, a grand total of 652G B of raw data is used for further analysis. The

total number of files used for analysis from each SPx is listed in Table 1.

Sensor position Number of files
SP1 (MISTRAS) 9324

SP2 (KM) 2350

SP3 (KM) 442

SP4 (KM) 442

SP5 (KM) 442

Table 1, Number of files used for analysis.

3.6 Procedures and algorithms

3.6.1 Proposed Detector

A method for detecting SSC originated AE pulses in RM is introduced in this thesis. The core
principle of the detector is derived from established theory used to solve the radar target
detection problem. This is reviewed in section 2.4. The main advantage to the detector lies in
the use of pulse integration. Pulses are first extracted from the sampled AE waveform at
precise intervals, defined by a window function. The extracted pulses are then integrated. If
the result of the pulse integration contain defect originated pulses, it will have a higher value
than if the data only contains noise. The detector is developed in the MATLAB environment,

thus all sets and matrices describing the computational procedures are one-base-indexed.
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3.6.1.1 The Sampled AE Waveform
Let x[n] be the sampled AE waveform of length lg;;pq;, Where n = {1,2,3, ...,lsignal}. Figure

15 displays an example of what the raw sampled waveform x[n] can look like. The
waveform is recorded on MISTRAS, 2021 May 18, 17:43:30, and will be used for
demonstration purposes throughout this section. The recording contains AE pulses repeating
at fraue = 3/rev and frqyr = 1/rev, where frq,, denote the number of times per axle

rotation a defect originated AE pulse is expected to occur.

x10™

5F -

Figure 15, An example of x[n], sampled at f; = 2 Mhz for a period of Ly; 4,4 = 10sf;. Pulses repeating at
frawe = 1/rev are visible as peaks in x[n].

3.6.1.2 Determine starting position of all recorded axle rotations

The first step is to estimate all window positions. These can be calculated using the rotation
frequency, f, at the time of the recorded waveform x, and is the chosen method for this
thesis. For now, it is assumed that the exact rotation frequency, f, of the RM during a
recording, is known. To calculate the position of all windows, an estimated relative starting
position for every axle rotation is needed. However, this implies that the £, is kept constant
through the entire recording, which is unlikely. The ideal way to calculate window positions,
would be to use axle position data sampled simultaneously with the AE sampling. This was

unavailable during the development of the detector. Thus f; is estimated from x instead.

The following sections describe the general, ideal detector solution, which accounts for an
unstable rotation frequency, f,- during an AE recording. This solution choice will be

discussed further in 6.1.6.
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Let 3, denote the starting positions of the recorded axle rotations, and fz4,,;; denote the

number of times between ;,, and r,,,,; a defect originated AE pulse is expected to occur.

To correctly detect every defect behavior in an RM, a generalization of f;4,, is needed. That

is
k/rev,k €N ,casel 11
fraue =3k/rev,k € N, case2
kHz,keR ,case3
Where case:

1- A defect excites an AE pulse an integer number of times per axle revolution.
2- A defect excites an AE pulse a fraction number of times per axle revolution.

3- A defect excites an AE pulses with a rate unrelated to f,.

For frauit = k/rev, k € N, r,,, becomes
_ _ E _ Lsignatfr 12
- ={0,1,2,..,m—1} [fJ +1,wherem = {1,2,3, ., [—fs |}
For frauir = k/rev, k & N, then the AE pulses will not occur at one distinct axle position

from one axle rotation to the next. Instead of denoting r,, as the axle starting position, 7,, now

denotes every g-th AE pulse. Given g = 10, 10 pulses are expected to occur between 1,

and 7,44.
_ fsg 13
m = {0,1,2, v 1} IfrffaultJ 1,
_ signalfrffault
where m = {1,2,3 l—fsg J} andgeN>1

g is an integer that must be more than one to in order to prevent round-off error. For PIS

verification (ref section 3.6.2) g isitkeptatg = 4.

For frawir = k Hz, k € R, where the AE pulses repeat with a rate unrelated to f;., r,,, becomes

3 14
. ={012,..,m—1} lf:aiuj

where m = {1,2,3 [%{;’r“u”l} andg € N> 1
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The length of each rotation in samples, d; is

dg = 1541 — T, Where rg = {ry, 75, .o, i1 15

ands = {1,2,3,...,m — 1}

When defining the set, d; from a constant f,., every entry in d are equal. Thus, the general
solution is excessive in this case and d could be replaced by the constant d. However, d; is

used to give a more complete representation of the detector.

n T2 r3 Ty Ts m-1 "m

Figure 16, x[n] with calculated rotation start positions ,,,, and rotation durations d;.

3.6.1.3 Define windows

Given 7y, and dg, the window function is defined as a window of sub-windows. That is

wisln by, 0,] = {1 Pallun Owl < 1 = Djslbu 0wl b, 0
' 0 otherwise
where position, p]i-‘s[lw, oyl =1+, —o,)i+ ffdsl J,
ault

. ds .
i = {0,1,2, lffaou — 1}, j={012, .. fraue — 1},

l,, is the window length, and o,, is the window overlap.

34



dq d, ds dy ds_4 ds

Figure 17, x[n] with illustrated windows. The green rectangles illustrate the sub-windows of the first window,
that is Wj(,)s [n,1,,0,], and the purple rectangles illustrate the sub-windows of last the window, that is

Wmax(i)

/is [n, L, 0, ], with a failure rate, frq,,;c = 1.

To clarify how the sub-windows of a window are distributed in n-space, consider this

example:

A sampled waveform x; [n] has a recorded 11 axle start-positions. That means that
there are 10 full axle rotations recorded in x, [n]. We want to detect a defect that
excites AE pulses at ffq,; = 3/rev. That means a total 30 AE pulses are recorded in
x,[n]. The corresponding window function thus consist of windows with

max(s)(max(j) + 1) = 30 sub-windows, where max(s) = 10, and max(j) = 2.

3.6.1.4 Pulse Extraction-and Integration

With the window positions calculated, the pulses in each window yg,, ..., y}"s can now be
extracted. As described in section 2.4.8, x[n] cannot be matched-filtered to maximize the
SNR for the AE pulses, because the AE pulse shape is unknown. Instead, the pulses are
extracted using an envelope detector. As further described in section 2.4.8, the envelope

detector consists of a band-pass filter, a rectifier, and a low-pass filter.

The bandpass filter is used for rejecting noise outside the AE pulse frequency band. In RM

AE monitoring it can be necessary to attenuate the lower part of the frequency band due to
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high noise level. The test machine used to generate AE waveforms in this thesis, had a
constant noise frequency band between 0 — 500 kHz. Therefore, x[n] is filtered using a
high-pass filter with cut-off frequency at 500 kHz to attenuate most of the RM originated
noise. xyp[n] denotes the high-pass filtered x[n]. The built in MATLAB function highpass
(MATLAB, 2021d) was the chosen filtering-function. In Figure 18, the spectrograms of x[n]
and xyp[n] are presented. The spectrograms are generated using the built in MATLAB
function pspectrum (MATLAB, 2021f).
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Figure 18, The spectrogram of x[n] and xp[n], plotted between n = ry,,, 75, given frq,;c = 3/rev. The black
arrows indicate the AE pulses repeating at f4,,;,c = 3/rev, and the white arrows indicate the AE pulses

repeating at 74, = 1/rev. NB, this is an ordinary spectrogram and must not be confused with the PIS (ref
section 3.6.2).
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The chosen rectifying element for the envelope detector is to square xyp[n], that is, x%p[n].

This is the rectifier that produced the best results.

The low-pass filter is to sum all the squared samples inside the window. This summation is

effectively a low pass operation. The extracted pulses are thus calculated

lsignal 17
y]s W'OW z W W'OW' ]xHP[ ]

Equation 17 can be simplified by describing yji,s[lW' o,,] as a matrix, M; ,., where the entries
of each row is the extracted pulse from each sub-window in window i. By referring to Figure
17: The green rectangles would correspond to the first row, M, ,., and the purple rectangles

would correspond to the last row, M., ;.- That is

/3’84 3’1?,1 yjp—l,l y]91 3’8,2 y]p—1,s yjp,S\ 18
Vo1 e e o
Miy=| F 0 e e e

Vo e e e

yé'l yji's

where r = {0,1,2, ...,s(j + 1) — 1}.

3.6.1.5 Outlier removal

All entries in one row are expected to be close in value. Either the window is in position of
the pulse, and is detected in most sub-windows, or it is not. If only a small number of sub-
windows give a higher value than the rest, that means that these sub-windows detect other AE
pulses than what we are looking for. These are outliers and must be removed before

proceeding.

Let the row vector N; with length r, be the i-th row in M; .. The entries in N; considered

outliers are set to the mean of the entries in N; not considered outliers. This is done for all i’s.
In MATLAB notation this becomes

N;[isoutlier{N;}] = mean{N;[~ isoutlier{N;}]} 19
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Where isoutlier(A) is a built-in function in MATLAB that returns the indices of the entries in

vector A that is more than three scaled median absolute deviations (MAD) away from the

median(A). mad(A) is defined as ¢ - median (abs(A — median(A))), where ¢ =

1

V2
function (MATLAB, 2021b). Now, Mi,r is denoted as the row-outlier-free matrix.

erfcinv G) (MATLAB, 2021e), and erfcinv is the inverse complementary error

%1078

0 20 40 60 80 100 120 140

Figure 19, Top: The 124-th row of M (before outliers are removed) plotted with respect to r. At r = 9, there is
a clear outlier. Bottom: The same row is plotted, but now the outliers are removed.

With the row outliers removed, pulse integration is done by summing the squares of each row
in M; ., that is

s(+1)-1 20

K; = Z (Mi,r)z
r=0

38



25 X 270 ——K |4
Y 2.17267e-10

Figure 20, K; plotted with respect to i. This will be referred to as the K-spectrum. Defect related AE-pulses will
be present in the K-spectrum as peaks. The peak corresponding to the SSCisati = 270. Windows used are:
[, = 1000, o,, = 500.

3.6.1.6 Anti-Aliasing
Suppose that there exist AE-pulses in the sampled waveform x[n] that originate from
multiple bearing defects. If the detector is set to capture a defect with failure rate, frq, = 1,

how could we know if the integrated pulses does not correspond to a bearing defect with a

failure rate, frq.c = 1k, where k € N > 1? This can be recognised as an undersampling
issue. Nyquist sampling theorem states that in order to not have aliases in a recorded signal,
the sample rate must be equal to, or greater than the highest frequency component in the raw
signal (Weik, 2001). At the pulse extraction stage (equation 17), x[n] is essentially sampled
in sections of width, 1, with a sample rate of f,,,;. per axle rotation. If there exists an AE

defect in the bearing that excite pulses at for example f;4,,; = 3 these pulses would show up

in K; as three aliases. This scenario can be seen in Figure 23.
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Figure 21, Alias problem. The green rectangles illustrate the sub-windows of window, w/[l,,, 0,,, n]. Notice
that the spacing between the sub-windows indicate a sought defect repeating at f7,,; = 1. However, the present
AE pulses occur at a failure rate of frq,,; = 3.

Given Nyquist’s theorem and the scenario from Figure 21, we must extract pulses from x[n]
at a failure rate of f;4,;; = 6 to prevent aliases in the K-spectrum. This is illustrated in Figure
22.

AE pulse

X[n]

Figure 22, The detector extracts pulses at frqy = 6.

However, by doing this, additional noise is introduced to the pulse extraction. This can be
seen in Figure 22. Notice that every other sub-window (green rectangle) is located at a
position where there is no AE pulse. This is always the case. Extracted pulses from these sub-
windows using equation 17 will only add noise. What this means is that whenever there exists
a bearing defect originated pulse in x[n] that repeats at a multiple of the defect sought to

detect, the aliases must be removed, rather than sampling at the Nyquist rate.

40



14 | | | | | | | | I
—K,
12 X 895 |
Y 1.00264¢-10
10 - -
X 583
Y 5.56868e-11 1
6 L -
4 — —
2 — —
| | | | | | | | | | I
0 100 200 300 400 500 600 700 800 900 1000

Figure 23, K-spectrum generated using ffq, = 1, I, = 1000 and o,, = 500. Notice that the three protruding
peaks are aliases of the AE pulses with f,,,; = 3 shown in Figure 20. The spacing between the aliases is
max(i)/3.

Additional information: As described in Figure 15, the file used to generate this K-spectrum contains a
behaviour repeating at f74,,;c = 1. However, no significant peak from this behaviour is present in this K-
spectrum. The reason for this is explained in section 5.1.3.

The chosen way to remove aliases starts with finding the local maxima in the K-spectrum.
This is done using the built in MATLAB function, findpeaks (MATLAB, 2021c). That is

[pmaxf Pioc) Pwidth, ~] = findpeakS(Ki) 21

where p,,.qx 1S the peak tops, p;,. is the i-locations, and p,,;4:n 1S the peak widths. Only
peaks with prominence more than 0.01max(K;) are included. The three p-vectors are then
sorted according to the p,,4, Vector, as the alias peaks are assumed to be similar in height.
Given the sorted location vector p,,. the peaks that are considered aliases are set to the mean

of K;. Two peaks are considered aliases if the distance between them (in i-space) is equal to
the length of the i-space, divided by % where f,;i4s 1S the failure rate of the alias, and k =

{1,2,3, ... fuiias — 1}. The expression becomes

22
max (i)
mean(K;), min| dif f5, [n] — <
Km = ( l) ffploc[ ] [falias falias falias ] 1
1 7 2 """ faias —
K., otherwise

Where dif f3,,.[h] = Bioc[h + 1] — Bioc[hl,
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m = {p’\loc [h] - ﬁwidth[h]» ""ﬁloc[h] + ijwidth [h]}’ h = {1'2'3' length(p) - 1}! and q is
a threshold that allows the peaks locations to be slightly shifted in i-space. It is typically set to
0.01max(i).

%107

0 100 200 300 400 500 600 700 800 900 1000
i

Figure 24, This is the same K-spectrum as in Figure 23, but now the aliases are removed.

3.6.1.7 Peak extraction
With the aliases removed, there is only one peak in K-spectrum that corresponds to the

sought defect. This is the peak with the highest peakPower. The value, peakPower =

peakPromince

, , captures two distinct parameters of a peak. The peak prominence, which must
peakWidth

not be confused with peak height (or p,,.x), denotes the distance from the root of the peak to
the top. The reason why this parameter is used is simply because the peak with the largest
peak height in the K-spectrum is not necessarily the peak corresponding to the sought defect.

This scenario can be seen in Figure 25.
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Figure 25, K-spectrum given f;q.: = 3, 1, = 1000, 0,, = 500. The most significant/prominent peak is located
ati = 77, however the peak with the maximum value is located at i = 245. This K-spectrum corresponds to a
sampled waveform from the KM-system, recorded 2021 Apr 30, 13:32:46.

The peak width is an indicator of how stably the AE pulses repeat. If the peak is narrow, only
a few windows capture the AE pulses, which is a good indicator. Peak width also corresponds
to how accurate the axle position is estimated. The equation describing peakPower is best

described in MATLAB notation using logical indexing. That is

[Nf ~, Pwidth» pprom] = findpeakS(Ki)

and, [ brom == max (Ppr'om)] 23
peakPower — P width Pwidth
prom Pprom
Pwiacn [P an (Pwidth>]

Edge case: The peak with the highest peakPower can be located between the first and last
entries in i-space (or the first and last windows). This is solved by performing the peak
extraction step (equation 23) twice. The first is performed with the original K-spectrum
directly. The second is performed with the K-spectrum shifted circularly with a shift length of
max (i) /4. The extracted peak with the highest peakPower from either the K-spectrum or the
circularly shifted K-spectrum is chosen. An example of this edge case can be seen in Figure
53.
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3.6.1.8 Noise
Friction-and electrically generated noise can alter the AE waveform drastically. Figure 26,

displays the spectrograms from friction originated AE waveforms at different load levels.
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Figure 26, The observations from a friction and wear characterizing study, done by (Geng, Puhan, & Reddyhoff,
2019). Notice the dramatic increase in AE activity from 400kHz to 1M Hz when the applied load is increased.

When an RM excite AE waveforms containing these levels of noise, the SNR is simply too
small to detect any sub-surface cracks. However, the K-spectrums generated from these
waveforms can potentially contain significant peaks, as seen in Figure 27.
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Figure 27, K-spectrum given frq,;e = 3, I, = 1000, o,, = 500. This is generated from a sampled AE
waveform recorded 2021 Apr 7, 15:31:33 on MISTRAS, with high noise content. Compared to the K-spectrum
in Figure 20, the lowest value here is more than 16 times larger than the peak in Figure 20.

These peaks must not be mistaken for crack related peaks, as this would increase p¢,

(probability of false alarm). However, another consequence of high noise AE waveforms is
that the corresponding K-spectrums are higher valued. That is

J,KEVRPR dt < [ KEVR<K dt, for some real number k. 24

Thus, the integral of K; is inversely proportional to the confidence of the peakPower.

3.6.1.9 K-spectrum length

The window length, [,,, and window overlap, o,,, are always kept constant. Given equations
13-20, the number of windows, which is equal to the length of the K-spectrum, are
determined by the rotation frequency, f, L., and o,,. If f, is reduced, the K-spectrum length
is increased, and vice versa. Since the integral of K; is proportional to the length of the K-
spectrum (length of the i-space), this must also be compensated for when normalizing

peakPower.

3.6.1.10 Normalizing
Given the statements in section 3.6.1.8 and 3.6.1.9, the final likelihood ratio for crack related

AE pulses at a particular failure rate is the normalized peakPower. That is
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_ peakPower 25
"~ max(i) J K dt

3.6.1.11 Threshold T

A simple model for the threshold, T, given by the NP-criteria, is used as basis for decision
making. It is inspired by the built in function in MATLAB isoutlier (MATLAB, 2021e), and
establishes an upper threshold for L, given the baseline of historic L-s, discussed in section

2.4.4. The chosen definition for T is

T = 3mad(Baseline) + median(Baseline) 26
where Baseline = [Lg, Ly, ..., Ly, |, and I, is the chosen length of the baseline. The

definitions for functions mad and median are given in equation 19.

3.6.1.12 The final detector

Although measures have been taken to prevent noise and unrelated AE activity to interfere
with the detector decision making, abnormal AE activity will still cause detections, L > T,
unrelated to the sought bearing defect. The chosen solution to this problem is to use a
confidence parameter, c. Abnormal AE behaviour are typically bursts/pulses of unknown
character that does not repeat consistently. Detections, L > T, originated from these
behaviours will therefore not represent a change in trend. Given the confidence parameter, c,
the only detection, L > T that will cause the detector to decide D;, is the detection L > T
preceding c previous consecutive detections. That is, ¢ consecutive detections are needed for
the detector to decide D,, defect detected. Thus, the final expression for the detector is,

Dy [LegLl-psi,Lgyg ) L1 =T 27

D(L,T,c) = {Do otherwise

A flowchart of the detector, Figure 28, is displayed on the next page. As discussed in 2.4.4, a
bearing defect does not disappear over time. Consequently, once the detector reaches the
decision D = D,, this decision stays until the system is restarted. An alternative would be to
include a discard defect option that is operated manually by a machine operator. This is not
included in this work, as the goal is to determine a bearing defect early.
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Figure 28, Flowchart for the proposed detector.
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3.6.2 Pulse Integrated Spectrogram

As described in section 2.5.3, (Price et al., 2005) suggested than an automatic pattern
recognition system could be based on the time-frequency representation of the AE waveform
for identifying the presence of SSCs. In this work, the identification is done by the proposed
detector. However, how can we verify that the detector detects the sought defects? The
chosen solution was to develop a visual verification tool based on the time-frequency

representation of the AE waveform, as suggested by (Price et al., 2005).

The tool is based on the spectrogram, which is one way to visualize the waveform in time-
frequency domain. The built in MATLAB function pspectrum (MATLAB, 2021f) was the
chosen function used to generate it. Now, recall that the proposed detector only reacts to AE
pulses repeating at a fixed rate, that is f;4,,¢. Without the pulse integration step, these pulses
can be so weak that they do not register in a spectrogram. The solution is to pulse integrate
the high-pass filtered waveform x,,,[n] before generating the spectrogram. To verify that the

pulses indeed occur at frqq,;; from 7, to 75,4 each

Xyplrse, s + 1, ..., 15 + d] is envelope detected. The envelope detector used is the same as
described in 3.6.1.7. Then, the envelope detected rotations segments are pulse integrated.
The output is a signal vector y[n], where AE pulses repeating consistently between every r,
is amplified. As this is based on the general solution, where the distance between axle start-
positions can vary, the expression is simplified by using the average rotation distance

mean(dy).

— 2
yinl = T (againxuplre s + 1, ., 15 + d1)”, 28
PIS = pspectrum{y[n]}, where d = mean(dy), and agq;, is @ gain constant

that is tuned manually for best contrast in the PIS.

The chosen peak in the K-spectrum corresponding a specific detection can now be visually

verified from the pulse integrated spectrogram (P1S). An example is shown in Figure 29.
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Figure 29, Top: PIS. Bottom: corresponding K-spectrum for the file specified in section 3.6.1.1. The detector
for this K-spectrum, seeks a defect with f74,,r = 3.

The confirmation that is made from the PIS verification displayed in Figure 29, is performed

this way:

There are four red vertical lines in this PIS. The three segments limited by the red lines
should all contain one AE pulse that corresponds to a single peak in the K-spectrum. That is,
an AE pulse should occur at the same position in all three segments. The peak with the
highest peakPower should be in the same relative position in the K-spectrum. Thus, the three
AE pulses marked with green arrows in the PIS corresponds to the peak in K-spectrum
marked with a green arrow. We now know if the detector reacted to the correct AE behaviour.
Additionally, notice that the much stronger AE pulse marked with a pink arrow does not
generate any substantial peaks in the K-spectrum. As this pulse only appears in once in the
PIS, that means that it corresponds to an fr4,,;; = 1. Due to the outlier removal step

expressed in section 3.6.1.5, this behaviour does not interfere when we try to detect defects

With frq,: = 3. The “Power (dB)” scale in Figure 29 is influenced by the gain parameter
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agqin iN equation 28, and thus not provide any useful information to the PIS. In the PIS

verifications in section 4.2, this scale is therefore hidden to not cause any confusion.
3.6.3 Estimating f,

In 3.6.1.2, f,- was assumed to be known. Referencing the test log to the timing marks in the
filename of each AE-recording, the correct f,. can then be mapped to each file. However, for
pulse integration to work optimally, the accuracy of f,, must be precise. The solution chosen,
was to run the detector on a specific AE-recording, with a known defect present in the
waveform. The file chosen from the MISTRAS system was recorded 2021 May 18, 17:43:30,

and contained the AE pulses originated from a subsurface defect, repeating at f74,,c = 3. At

F=256Trpm

this time, the approximate f,- given in the test log was f, = "

=4.267Hz.

Monitoring which i-positions in the K-spectrum the defect was present, the detector was run
repeatedly on the same file, incrementing the £, from one run to the next. The best estimate
for £, was achieved when the i-position in K-spectrum reached the maximum value. This
process was repeated until the maximum value in the K-spectrum stabilized, at which the f,
increment was in range of nHz. Window parameters were kept constant at [,, = 1000 and

o,, = 500 for the whole process. After the optimum £, was determined, the detector was tried
on other files recorded at the same F, to verify rpm consistency. The result concluded that the
rpm was stable enough that the optimum f,. could be used for all files recorded at F;, =

256rpm. The same process was done to estimate f, for files recorded at F, = 364RPM.
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Figure 30, f, accuracy. Left: The K-spectrum calculated with the best estimate of f, = 4.2660Hz. The sampled
AE waveform is from the file stated in section 3.6.2. Right: The same K_spectrum, but here f,, = 4.2670Hz,
which illustrates the importance of accurate rotation frequency. Notice that the peak height corresponding to the
bearing defect is half the value of the peak in the left K-spectrum.

50



The same procedure was done for the KM-system. However, the optimum f,. for the KM
system was slightly lower than the optimum f,. for the MISRAS system. The difference is

believed to be caused by a slight difference in f; between the two systems.

Ultimately, the optimum estimated frequencies are

fKM256 = 4266013 Hz, 29
fEM36% — 6055189 Hz,

ﬂMISTRAS,ZSﬁ = 4.266019 HZ,

fMISTRAS36% — 60552034 Hz.

3.6.4 System architecture and data handling

Working on 652GB of raw data requires a data processing architecture that is robust and built
with efficiency and traceability as main quality requirements. Another challenge to be solved
was the fact that the system was built during the duration test, which means that it also had to
be modular. MATLAB was the chosen system developing environment for this work. Time is
an important dimension in this work. Information about f,. and contact stress at a particular
time can only be found in the test-log. The files recorded on the Mistras system only provided
the time of recording in the filename. The MATLAB built-in datetime (MATLAB, 2021a)

array function was therefore used extensively to ensure time consistency.
The following list describes the workflow.

- Data location
Three SSD-s where used in this work, that is the C-drive (500GB), SSD-A(1TB) and
SSD-B (500GB). All code was stored on the C-drive, MISTRAS-data was stored in
SSD-A, and KM-data was stored in SSD-B.

- Generate K-spectrums
During system development, the first important step is to reduce raw data to data
features that occupy little space on the SSD. This is the most time-consuming step and

should be done as few times as possible during system development. This implies that
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only the necessary steps required to generate the data features are done. System

implementations such as normalizing, and anti-aliasing are not developed here.

In this case, the first processing stage is to generate K-spectrums from the raw files.
This is done for one system at the time. For each file, a datetime-object is created
from the filename. This is cross-referenced with datetime-objects gathered from the
test-log, to establish the contact stress and £, at the time of the recording. Correct
sensor position, SPx is also collected from the filename. One K-spectrum is then
calculated for each of the defect behaviours sought to detect (ref 4.2). When finished,
all K-spectrums, f, , defect-description, SPx, datetime-object, and RMS (ref 5.2.3) of
the entire recording and are combined in a cell-array and stored in one .mat-file. The

.mat-file filename is equal to the input-file filename.

This process takes approximately five hours to complete for the SP1 (MISTRAS)
data, and approximately 2 hours for SP2 (KM) data, using an Intel i9-9900K CPU. It
is therefore typically performed overnight. When finished, all the .mat-files from the
MISTRAS system require approximately 90MB combined, and the -mat-files from
the KM-system require approximately 20M B combined. The most important
advantage in storing one .mat-file per raw data-file, is that when new files are

gathered from the ongoing duration test, the old files do not need to be recalculated.

Calculate L

The next step is to calculate L. Given the K-spectrums saved in the .mat-files, anti-
aliasing, peak extraction and normalizing are performed. Finally, the calculated L-s,
fr» and defect-description are stored in a result-table. One result-table per system is
stored as a .csv-file. The whole process takes approximately one minute for the
MISTRAS system.

Plotting
Given the result-table: Baseline, and T are calculated. Then all L-s are plotted with

respect to defect behaviour (ffq.,¢), and system. Positive detector decisions D; (defect

detected), are visualized in the L-plots as x-markers.
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4 Results

4.1 Testlog and PAUT results

Multiple SSCs were developed in the test specimen during the duration test. Only one of
them were identified in PAUT. The rest were identified in post inspection done by SINTEF.
This was performed using a salami cutting procedure. The first SSC identified in PAUT was
first discovered after 29,095,504 fatigue cycles, that is (16,466,958 + 10,891,798 +
1,736,748) fatigue cycles at (1800 MPa, 1900 MPa and 2000 MPa) contact stress
respectively. The width of the SSC was at this point 0.5 mm. At 66,585,266 fatigue cycles,
the duration test was terminated. The SSC had now grown to a 2 mm width and 10 mm
length, extending in the transverse direction. No surface spalling, pitting or roughness was
identified on the test specimen contact surface in neither PAUTS nor salami-inspection.

A compressed version of the test-log is presented in Table 2. Results from PAUT and post
inspection is presented in Figure 31, Figure 32 and Figure 33.
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Date Contact F, SSC-width | Fatigue Description
stress [mm] cycle count

16-03-21 | 1800 MPa | 364 RPM | O 0 Test started.

12-04-21 | 1900 MPa | 364 RPM | 0 16,466,958 | Increased contact stress.

19-04-21 | 2000 MPa | 364 RPM | 0 27,358,756 | Increased contact stress.

19-04-21 | 2000 MPa 0 27,831,079 | Machine stopped due to
vibration alarm. The loading
(contact stress) is active
overnight.

20-04-21 | 2000 MPa | 256 RPM | 0 27,831,079 | F, is reduced and the machine
is functioning correctly.

21-04-21 | 2000 MPa | 256 RPM | 0.5 29,095,504 | One SSC discovered,
extending in the transverse
direction (TD).

27-04-21 | 2000 MPa | 256 RPM | 0.5 35,920,018 | Machine stopped due to
vibration alarm.

29-04-21 | 2000 MPA | 256 RPM | 1.0 37,086,115 | Crack growth. Direction TD.

11-05-21 | 2000 MPa | 256 RPM | 1.5 50,248,116 | Crack growth.
Direction TD.

13-05-21 | 2000 MPa | 256 RPM | 1.5 52,708,597 | 1.5 mm wide crack. Direction
TD. 5-10 mm long.

18-05-21 | 2000 MPa | 256 RPM | 1.5 52,708,597 | Starting continuous testing
without PAUT.

27-05-21 | 1900 MPa | 256 RPM | (No PAUT) | 62,578,177 | Reduced contact stress.

27-05-21 | 1900 MPa | 256 RPM | (No PAUT) | 62,753,322 | Machine stopped due to
power loss.

01-06-21 | 1900 MPa | 364 RPM | (No PAUT) | 63,759,638 | Increased F,.

02-06-21 | 2000 MPa | 256 RPM | (No PAUT) | 65,370,773 Increased contact stress,
reduced Fy.

03-06-21 | 2000 MPa | 256 RPM | 2 66,585,266 | Test finished. 10 mm long
crack. Direction TD. 2 mm
wide.

Table 2, Compressed test-log.
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Figure 31, The first PAUT identifying the presence of an SSC. This photo is provided by Hans Lange from
SINTEF.

DLA MX2PA1_3el_1-13mm depth SINTEF_01.0ps * Acq Rate: 60 Hz (1800 Hz) MXU - 4.4RS

9.4 %T(A/1) ND nd ML ND %| A/l ND

Scani6223.0 s VPAI19 Options

Figure 32, The final PAUT after the test was terminated. This photo is provided by Hans Lange from SINTEF.

55



Rolling
contact
surface

Figure 33, Results from post inspection (salami).
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4.2 Observed defect behaviours

Given name frauit
rollerPass 3/rev
rotationPass 1/rev
BPFO 13.0209/rev
100 Hz 100 Hz

Table 3, Observed repeating AE behaviours from the duration test.

A total of 4 different consistently repeating AE behaviours were observed during the duration
test. An overview of the behaviours is presented in Table 3. 4 detector-instanced were used to
track each behaviour for all SPx. All available files are used as input, including the files used
for baselining (to determine T'). Each behaviour will be explained in detail in the following
sections. L-time plots are presented for each sensor. Detector decisions D; (defect detected),
will be presented for SP1 and SP2 only. This is because the number of files available from
SP3-SP5 are not sufficient to establish a proper baseline. The purpose of presenting the L-
time plots for these sensors is to provide a more complete overview of how the overserved

behaviours were observed from different locations.

Parameters for the detector is given in Table 4. These parameters apply to all plots in the

following section.

Detector parameters

L, 1000
Ow 500
c 10

lg All recordings from test start to 2021 Apr 17, 00:00:00. That is,
SP1(MISTRAS): Iz = 2064, and SP2(KM): I = 300

Table 4, Chosen detector parameters.
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421 Behaviour 1, rollerPass

4.2.1.1 SP1and SP2

The observed behaviour corresponding to fr4,c = 3/rev, is denoted rollerPass. That is —
the only place in the test machine that will cause this behaviour, is a point on the test
specimen perimeter passing the support rollers. L-time plots and detector decisions D, for
SP1 and SP2 are presented in Figure 34. PIS verification of detector decision D, for both

sensors are displayed in Figure 35.
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Figure 34, L-time plots for SP1 and SP2, rollerPass. Colour coding refers to SSC presence — and magnitude. The
black vertical lines indicate PAUTSs. Change in contact stress throughout the test is indicated in the white
rectangles. D, for both sensors happen at a SSCpq:n = 1mm.
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Figure 35, PIS verification, SP1 and SP2, rollerPass.
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4.2.1.2 SP3-SP5

For the rollerPass behaviour, the AE pulse propagation to SP3-SP5 is considered equal. The
PIS verification is therefore chosen according to the first significant peak in the L-time plot.
Shown in Figure 36, the earliest significant peak corresponds to the file recorded 2021 May
23, 20:24:38, from SP3. The PIS confirmation is displayed in Figure 37.
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Figure 36, L vs time plots for SP3-SP5, rollerPass.
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Figure 37, PIS verification, SP3, rollerPass. No confirmation can be made. No distinct behaviour appears once
between the red lines. The strong visible behaviour can originate from something else.

4.2.2 Behaviour 2, rotationPass

4.2.2.1 SP1and SP2

The observed behaviour corresponding to fr4,,c = 1/rev, is denoted rotationPass, as it

repeats once every axle rotation. There are three places in the test machine where this
behaviour can originate from:

1- A point on the perimeter of a support roller, passing the test specimen.

2- A defect on either the inner or outer raceway of the linear bearing (Appendix E)
3- A defect on the axle or the axle coupling.

The behaviour does not repeat stably. In order to detect it, the outlier removal step (explained
in section 3.6.1.5) had to be turned off. As this is the only behaviour that could potentially be
influenced by aliasing (from the rollerPass behaviour), anti-aliasing is only performed on this
behaviour. More will be discussed in section 5.1.3.
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L-time plots and corresponding detector decision, D, for SP1 and SP2 are presented in Figure

38. PIS verification of detector decisions D, for both sensors are displayed in Figure 39.
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L-time plots for SP1 and SP2, rotationPass.
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Figure 39, PIS verification, SP1 and SP2, rotationPass. These plots indicate that the rollerPass behaviour does
not repeat stably. In the K-spectrum_SP1-plot, the peak “forest” from window position 270 to 390 indicate that
the behaviour was observed in all these windows. This is explained more thoroughly in discussion section 5.1.3.
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4222 SP3-SP5

As explained in section 4.2.1.1, this behaviour can originate from three places in the test

machine. If the behaviour originates from a support roller, the pulse propagation to SP3-SP5

would not be equal. The PIS verification is therefore done according to the first significant

peak in the L-time for each sensor. Shown in Figure 40, the chosen files are marked with

black arrows. The PIS confirmations is displayed in Figure 41, Figure 42 and Figure 43.
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Figure 40, L vs datetime plots for SP3-SP5, rotationPass.
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Figure 41, PIS verification, rotationPass, SP3.
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Figure 42, PIS verification, SP4, rotatonPass.
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Figure 43, PIS verification, SP5, rotationPass. As the other pulses in the PIS do not show up in the K-spectrum
as aliases, this behaviour is confirmed.

4.2.3 Behaviour 3, BPFO

4.2.3.1 SP1and SP2
The observed behaviour corresponding to f74,c = 13.0209/rev, is denoted BPFO (Ball

Pass Frequency Outer), as it is suspected to originate from an outer race defect on the needle
bearings. This will be explained further in section 5.1.4. The frequency estimation for ff,,,;;
was done same way as described in 3.6.3. Notice that, f;4,, is not an integer. As expressed

in section 3.6.1.2, the AE pulses corresponding to the BPFO will not be in the same axle
position for each axle rotation. Recall that when f;4,,¢ is an integer, 7, is defined as the set of
each starting position for every axle rotation recorded. When fz,,;, is not an integer, 7, is
defined as the relative starting position for every g-th pulse. dg = rg,; — 15, thus mean(dy)
is a duration (in samples, n) containing g pulses. For the following PIS verifications, g is

chosento g = 4. That is, we will confirm that the 4 segments in the PIS contain one pulse
each, at the same location.
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L-time plots and detector decisions D, for SP1 and SP2 are presented in Figure 44. PIS

verification of detector decisions D, for both sensors are displayed in Figure 45.
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Figure 44, L-time plots for SP1 and SP2, BPFO.
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Figure 45, PIS verification, SP1 and SP2, BPFO. This verification is a bit harder to do. The integrated pulses
vary in strength, but they appear consistently in the correct location.

4.2.3.2 SP3-SP5
The BPFO behaviour is the defect with the shortest distance to the SPx located on the given
bearing housing. L-time plots are presented in Figure 46. In the figure, notice that all L-time

plots are similar. However, SP4 is the sensor with the highest L-values. The first significant
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peaks from all three sensors are chosen for PIS verification. They are marked with a data-tip-

marker in Figure 46. PIS verifications are presented in Figure 47, Figure 48 and Figure 49.

0.15

0.1

0.05

0.2

0.15

0.05

0.02

0.015

0.01

0.005

|:| machine_paused

[ TJ1mm _ssc [EE2mm_SSC

Figure 46, L vs time plots for SP3- SP5, BPFO.
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Figure 47, PIS verification for SP3, BPFO. The behaviour is consistent in all segments, but it is not a sharp
pulse, as seen in previous PIS verification plots.
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Figure 48, PIS verification for SP4, BPFO. The same, wide AE behaviour also happens here.
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Figure 49, PIS verification for SP4, BPFO. The same, wide AE behaviour also happens here.

4.2.4 Behaviour 4, 100 Hz

4.2.4.1 SP1and SP2

The observed behaviour corresponding to fr4.;c = 100 Hz, is denoted 100 Hz. Here, frqu¢
does not depend on f,.. For the following PIS verifications, the approach is the same as
described in section 4.2.3. Here, g is also chosento g = 4. That is, we will confirm that the

4 segments in the PIS contain one pulse each, at the same location.

L-time plots and detector decisions D; for SP1 and SP2 are presented in Figure 50. Notice
that the L-time plot from SP1 displays an almost “on-off” process. This behaviour is not seen
from SP2. For this reason, PIS verifications for SP1 is done for the first significant L. PIS for

SP2 is done for the maximum L. These L-s are marked with black arrows in Figure 50. PIS
verifications are presented in Figure 51.
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Figure 50, L-time plots for SP1 and SP2, 100 Hz. No defect was detected.
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Figure 51, PIS verification for SP1 and SP2, 100 Hz. For SP2, no significant peak is discovered in the K-
spectrum. The PIS does not provide a verification either. For SP1, the significant peak corresponds to a low spot

in the PIS. This is the opposite of what to be expected from a defect originated AE pulse. Still, the pattern is
consistent, and the defect is considered verified.

4.24.2 SP3-SP5

L-time plots from SP3-SP5 for the 100 Hz behaviour are presented in Figure 52. Notice that
SP3 produced high L-s around March 24. The first significant L will be used for PIS
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verification. This is marked with a black arrow in Figure 52. PIS verification for SP3 is

displayed in Figure 53.
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Figure 52, L-time plots for SP3- SP5, 100 Hz.
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Figure 53, PIS verification for SP3, 100 Hz. The AE pattern does repeat stably in all segments, and the

behaviour is confirmed. Notice that the peak with highest peakPower starts in i = 36 and ends at i = 9. This is
an example of the edge case described in 3.6.1.7.

4.25 Behaviour overview, SP1 and SP2

To give a better overview of how observed behaviours have progressed during the duration
test, two figures containing all observed behaviours for both SP1 and SP2 are presented in
Figure 54 and Figure 55. RMS for every file (not high-pass filtered) are also plotted. This
feature will be discussed in section 5.2.3. Notice that between May 18 and June 01, the
rollerPass, rotationPass and BPFO behaviour all have high L-values from both SP1 and SP2.

A PIS verification from SP2 is presented for all three behaviours in Figure 56, Figure 57,
Figure 58.
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Figure 54, Overview of all observed behaviours, SP1. RMS is also included.
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79



PIS_SP2_2021-05-24 08:24:39

-

—~ 0.8
¥
=
=06
(8]
@
> 04
o
o
" 0.2
40000 80000 120000 160000 200000 240000 280000 320000 360000 400000 440000
mean(ds)
%1073 K-spectrum_SP2
5 T T T T T T T T T
e
4 - -
3 - -
2 - -
1L 4
0 ] u 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900

Figure 56, PIS verification, SP2, rotationPass.
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PIS verification for SP2, BPFO. In the second segment from the left, a pulse from the rotationPass behaviour

has landed in the same location as the BPFO behaviour.
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Figure 58, PIS verification, SP2, rollerPass. In the middle section, a pulse from the BPFO behaviour has landed
in the same position as the rollerPass behaviour.

5 Discussion

5.1 Behaviour origins

5.1.1 rollerPass

AS described in section 4.2.1, the only place in the test machine where this behaviour can
occur, is from a defect on the surface, or subsurface of the test specimen. To identify the
origin of this behaviour, the only criteria needed are the results from the PAUT and salami-
inspection described in 4.1. As described, no surface defects were found on the test specimen
contact surface. Thus, one of the subsurface cracks observed in the PAUTSs and the salami-
inspection is the confirmed origin of the rollerPass behaviour.
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5.1.2 100 Hz

This behaviour always repeats at ff4,,;; = 100Hz. It did not change when the F, was reduced

from F, = 364RPM to F, = 256RPM, 20 April 2021. Thus, this behaviour does not depend
of F, (and thus £,.). The only origin that can cause this behaviour is a full wave rectified
alternating current (AC) source. In Europe, the AC current has a frequency of 50 Hz. This
behaviour was most dominant in SP1. However, it was also present in SP3, but not SP2. This
means that the source cannot be something that would affect all SPx, such as the motor
controller. It is not something that would only affect one system either. The PAC 2/4/6
preamplifier (Appendix F) is used for on all SPx. It requires a supply voltage between 18-
28V DC. The power supply used to deliver the DC current to the PAC 2/4/6 preamplifier, is
built into the PCI-2. This built in power supply rectifies the AC current. If this power supply
is defective, the output DC voltage could be contaminated with 100 Hz noise. Given these
facts, the suspected source of the 100 Hz behaviour is a defective power supply built into the

PCI-2 board. At the time this thesis was delivered, this had not been confirmed.

5.1.3 rotationPass

This was the most unpredictable behaviour observed during the duration test. Additionally, it
seemed like it was turned on and off. The variation in pulse-to-pulse distance was so large
that in order to detect it, the outlier removal step (ref 3.6.1.5) had to be turned off. This of
course increases the probability of unrelated AE pulses influencing the decision making.
However, the pulses originating from the rotationPass were so dominant, that the influence of
unrelated pulses was assumed insignificant. An example of this can be seen in Figure 23. The
file used for presentation contains the rotationPass behaviour, and the detector seeks for a
behaviour with ff4,,;; = 1/rev. However, there is no peak in the K-spectrum from the
rotationPass. The reason is that the outlier-removal step was turned on. This made the
aliasing problem easier to visualize. An example of how this K-spectrum looks without

outlier-removal is presented in Figure 59.
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Figure 59, This K-spectrum illustrates the extreme character of the rotationPass behaviour. The aliases from the
rollerPass behaviour are marked with blue arrows.

In Figure 59, the rotationPass peaks are multiple times higher than the rollerPass peak aliases.
It has also been recognized in 150 windows. Given the chosen [,, = 1000 and o,, = 500,
this means that relative peak position in each recorded axle revolution varied (1000 — 500)
150 = 75000 samples. That is 37.5 ms. Given that each axle rotation takes 234 ms at F, =
256RPM, this variation is substantial.

This behaviour does not originate from a weak signal, hidden in noise. Thus, the proposed
detector is not made to detect signals like this. However, it demonstrates how robust the
proposed detector is, and the importance of the outlier-removal to distinguish different

behaviours occurring simultaneously in the AE waveform.

No confirmation about the origin of this behaviour was available by the time this thesis was
delivered. The fact that it had maximum L-values three completely separate places during the
duration test for SP3-SP5 (Figure 40) might even imply that there are more than one cause to

this behaviour.

514 BPFO

The ball pass frequency outer, BPFO is the frequency of which a rolling element passes a

defect on the outer race in an REB. It can be calculated as,

BPFO = %(1 - B—D), 30

Pp
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D.1+D . . .
where P, = 12 2, Ng is the number of rolling elements, D, is the outer race

diameter, D, is the inner race diameter, and By, is the rolling element

diameter.

For the needle bearings (Appendix C and Appendix D) used in the test machine, the BPFO is
13.1765/rev. The reason the measured BPFO is ff4,,;; = 13.0209/rev, is believed to be
caused by a slightly larger circumference of the test specimen, compared to the support

rollers.

Recall the first time the machine stopped due to excessive vibration. This happened April 19,
2021 (ref Table 2). The only observed behaviour that increased significantly that day was the
BPFO. This behaviour change was visible in SP3-SP5 only (see Figure 47, Figure 48 and
Figure 49) The behaviour visible in these PIS verifications is not crack related activity. It
could be friction. Ultimately, it is believed that a defect was made to the outer race of one or
several needle bearings that day. No confirmation about the origin of this behaviour was

available by the time this thesis was delivered

5.2 Overview

5.21 SP2

From Figure 55, some properties can be identified. The rollerpass behaviour is the only
behaviour that correlates with recorded SSC width. As this behaviour is confirmed as an SSC,
this is a good result. rollerPass and rotationPass, might look like that they are correlated, but
they are not. An example can be seen June 01, 2021, where the rotationPass suddenly drops
in L-value, while the rollerPass continues at an increasing rate seemingly proportional to the
SSC width.

Also, notice how unaffected the BPFO are to all recorded behaviours. This is a good indicator

that the detector indeed manages to isolate distinct behaviours.
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522 SP1

The most important fact to note about Figure 54, is that all observed behaviours were
correlated with the 100 Hz noise behaviour. For the rotationPass, the normalizing-step (ref
3.6.1.10) works as intended. Notice that every time the 100 Hz noise turns on, the L-values
for the rotationPass drops to nearly zero. This goes to show that, whenever there are noisy
components of this magnitude in the AE waveform, we simply cannot trust the detector
results (unless they are verified in the PIS). For the rollerPass, this step also works as
intended, after the defect was declared detected. Notice that on May 04, 2021, the noise
suddenly went off for a few hours, and the SSC was detected. Between May 04 and June 01,
whenever the noise is on, the L-values for the rollerPass drops, which it should. Between
March 23 and May 04, the opposite happens. The reason for this is unknown, and neither the

contact pressure, or F, seems to be the cause.

In case it was not clear from the discussion, the reason SP2 detected the SSC before SP1 was
because SP1 were influenced by noise. One last important point to note is that the L-time
plots for all observed behaviours are unaffected by the process involving PAUT. The only
parameter that is influenced by PAUT, is the RMS.

5.23 RMS

The RMS (Root-mean-square) of the non-high-pass filtered waveform, x[n], is included for
both systems to prove a point. This is a parameter typically used for feature extraction in
various machine learning based problem solutions. Notice that here, it does not correlate with
any of the L-time plots. What this means is that if a classification model was to be based on
the RMS feature, given the data from this duration test, it would not classify any of the
observed behaviors correctly. Would RMS be able to classify a behavior that has not yet been
identified in the duration test? Maybe, but if so, we would have no way of verifying the

classification results.
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5.3 Confirmation

5.3.1 The 3-stage confidence process

The process of confirming the output from a CBM system targeting early SSC activity in the

AE waveform, can be described as a 3-stage process. That is

(1) Detection: The detector returns decision D,, a defect is detected.

(2) Verification: The L that caused the decision is inspected (manually or automatically)
to verify that the sought defect behaviour triggered the detector decision.

(3) Confirmation: The RM component is physically inspected to confirm that the

detected defect is physically present.

In the paper by (Price et al., 2005), the confirmation can be considered a stage-1+3
confirmation. The detector, in this case a human monitoring the real-time time-frequency
representation of the AE waveform, noticed a sudden change in the waveform during testing.
This change was not verified any further, and thus stage-2 was skipped. Stage-3 was then

confirmed by a physical inspection of the defected component.

The rest of the reviewed literature in this thesis can be considered as stage-1 confirmation
only. It is thus hard to extract information about the reliability of the presented methods used
to detect SSCs in REBs. All reviewed papers conclude that they have detected the presence of
an SSC in the AE waveform. However, due to their stage-1 result confirmation, some of the
methods used, directly contradict one another. As described in section 2.3.3, (Price et al.,
2005) stated that in order to monitor wear at an early stage, analysis of continuously sampled
AE waveforms are needed. (Fuentes et al., 2020) however, concluded that they had
successfully detected SSCs in REBs using AE hit-based feature extraction only. If the
detector proposed in this thesis had utilized hit-based feature extraction, instead of pulse
integration, the only detected behaviour would be the rotationPass. All the other behaviours
would have been hidden, especially the rollerPass, due to the high amplitude pulses from the
rotationPass behaviour. In other words, the statement by (Price et al., 2005) is correct. The
detector suggested by (Fuentes et al., 2020) would not work for the data used in this thesis.

This is a consequence of non-verifiable results.
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5.4 Detectors and classifiers

There is a good reason why most radars to this day do not rely on machine learning to detect
targets. In the 1950s and 1960s the theoretical effort was made to solve the radar target
detection problem. Fundamental performance limits were found. The theory describing how

to effectively detect weak pulses in noisy waveforms is still used today.

5.4.1 The verification dilemma

One problem using machine learning to detect SSC related activity in the AE waveform, lies
in stage-2, verification. Machine learning models, and especially deep learning models,
typically represent a “black box” type system. A typical machine learning model takes an
input x and maps it to some output y, and the system developer has hardly any insight to
what the system does. The only thing the system developer knows, is the correct answer. To
ensure that the system does what it is supposed to do, the system developer must verify that
the output y is the correct answer. This process is called supervised learning. Fully connected
neural networks (FCNNS), residual networks (ResNets) and convolutional neural networks

(CNNSs) are all known supervised learning models.

If the system developer does not know the answer, the only valuable option machine learning
offers is the process called unsupervised learning. Here, the system developer has a
collection of data x that is believed to be normal. The machine learning model can then train
to replicate these data. After the training has finished, the model should be able to recognise
familiar input data. If the input data is unfamiliar, the model will output some error
proportional to how unfamiliar the data is. The system developer then has a tool that can
recognise abnormal data from a dataset that neither the system developer nor the model
knows anything about. An example of this type of machine learning model is the
autoencoder. This can be based on both FCNNs and CNNs.

A great application to machine learning is the field of computer vision. Consider a machine
learning model, a CNN for example. We want to make a classifier, able to recognize images
of cats and dogs. The model is trained on images of dogs and cats taken at different angles,
environments, lighting conditions, and distances. After the training is finished, the model can

receive input images that it has never seen before, and predict whether a cat or dog is present,
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with a certain success-rate. This model has now derived the mathematical description of what
an image of a cat and a dog is. This is an extremely complex task that may be close to

impossible to do manually.

However, the most important part of this process is that the system developer still knows
more about the input data than the classifier. We know what images of dogs and cats look
like. If the model guesses wrong, we would be able to tell immediately. This is not the case
with AE waveforms recorded from an RM containing SSCs. We generally know close to
nothing about what information is hidden beneath the noise in this sample vector. If we train
a machine learning classifier to recognize SSCs in an AE waveform we are unable to verify

that the model output is correct, by simple means.

The analysis of the duration test has shown that complicating processes such as noise,
friction, multiple occurring defects with different magnitude, and aliasing problems all
contribute to an AE waveform that is complex. So complex, that even if a subsurface defect is
known to be present, the detector decisions must still be verified. For a machine owner, a
CBM system that outputs: “Something might have happened in your RM” is hardly valuable
information. If this problem continues to be solved with non-verifiable machine learning, it

will most likely remain a lab experiment.

6 Conclusion and Further Work

6.1 Suggestions for future improvements

6.1.1 Learnable peak characteristics

The intention of the proposed detector in this thesis is not to indicate that all use of machine
learning is insufficient. If it does not compromise with verifiability, it can be a useful tool.
One suggested way to implement a machine learning part in the detector is to replace the
peakPower with some learnable parameter that can have a better opinion about a peaks
character than just the width and the prominence. Because the peaks are in the K-spectrum, a
parameter space where we can tell what is going on (like a picture of a cat), verifiability can

still be preserved using PIS verification.
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An important observation to note about an SSC originated behaviour in the AE waveform is
that the corresponding peaks in the K-spectrums are extremely sharp. This confirms that the
fr was properly estimated, but it also confirms that the pulses are short. So short that they
only register in 4-6 consecutive windows (with 50% overlap). Peaks that originate from
electrical noise are wide. There are probably more qualities to the K-spectrum peaks that are
worth investigating. Perhaps the origin of an observed behaviour, being a surface or a

subsurface defect, can be classified from learned peak characteristics.

6.1.2 Frequency scanner

The proposed detector relies on extremely narrow tolerances for ff,,;. (the BPFO for
example). The tool used to achieve this (ref section 3.6.3) could be further developed to a
frequency scanner. Machine owners wanting to invest in the system proposed in this thesis
might not know the exact f;4,,, for every failure related frequency in their RMs. An onsite

estimation of the failure frequencies would be a desirable solution to this problem.

6.1.3 Real-time applications

The proposed detector is intended as a real-time condition monitoring system. This is not a
thesis in computer science and thus the computational complexity of the proposed detector
will not be described. However, some indicating measurements of performance are described

below:

- The execution time for 100 consecutive detector executions including a high-pass
filtering of the entire input signal for every execution, given:
lsignat = fs10s, fraur = 3, 1, = 1000, 0, = 500, and xyp = highpass{x[n]}.

Is measured to t, = 33.44s. The average time duration for each execution is thus t; =
0.334s

- The execution time for 1000 consecutive detector executions, given
Lsignar = f510s, fraue = 3, I, = 1000, 0, = 500.
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Is measured to t, = 65.02s. The average time duration for each execution is thus t; =
0.0650s

6.1.4 The most significant failure

As of now, the detector only extracts the peak in the K-spectrum with the highest peakPower.
What this means is that if there exist multiple instances of the same defect in an REB, only
the most developed defect is chosen by the detector. This is not necessarily a bad but could be
addressed as a potential for improvement.

6.1.5 Assumptions

A lot of assumptions have been made in this work for the parameters window length, window
overlap, definition of T and confidence c. These parameters where chosen through trial and
error and the parameters that produced the best results are presented in this thesis. There are
lots of room for improvement here, and several of the parameters, for example window length

l,, can be investigated to improve probability of detection pp,.

6.1.6 Rotation frequency

The fact that a fixed estimated f,. proved sufficient for pulse integration with [,, = 1000 on a
signal that is 20,000,000 samples long is almost unbelievable. This means that for the entire
duration test, the machine operated with an f,. that deviated less than 0.001 Hz (ref 3.6.3)
during every single axle rotation of the total 22.195.088 axle rotations completed. This is
nothing less than remarkable and is a big compliment to SINTEF who built the machine. If
the estimated f,. deviates more than 0.001 Hz from the true f,., given a l,, = 1000 the
detector will be useless. If this had happened in the results presented in section 4.2, it would

have been clearly visible.

Luckily it did not, but in order to use this detector in a real machine, which can operate at
varying rotation frequencies, the axle positions r,,, must be based on sampled axle position

data. The bare minimum way to a to do this is to use a rotation counter synchronously
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sampled with continuous AE sampling. A better solution is to use a precision rotary encoder.
With sampled axle position data, the full potential of the general encoder described in 3.6.1
can be utilized. This is the reason why the general solution for the detector, including d;, is
described in this thesis. It is the only solution that would work in a real machine outside the
lab. Thus, this is the future improvement that should be implemented first.

6.2 Conclusion

As a laboratory test with the intention to solely generate AE waveforms containing RCF
induced SSC pulses, the duration test might be described as a flawed test. All the observed
behaviours and the unintended machine stops should, in a lab context, not have been present.
However, as an acid test for a proposed detector with real world ambitions, the duration test

was appropriate for the purpose.

This master thesis was written during the duration test. As more data became available and
more behaviours were observed, the algorithms used were constantly developed to cope with
the new findings. The result is a proposed detector with a bigger picture in mind. It is by no
means a finished prototype, but it is built on well-established theory derived from radar
technology. The main quality attributes are robustness and verifiability, which are vitally
important for a system that potentially is used to monitor heavy expensive rotating

machinery.

These quality attributes have not been prioritized by previous research aiming to solve the
problem of SSC detection using AE. This is the main reason why this field of research has
hardly progressed in 16 years. It is therefore time to establish a criterion of confidence that
ensures that future research publications do not claim success based on unverifiable results.

That is, The 3-stage confidence process.
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ground to avoid cutting sharpness.
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9 Appendix B
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10 Appendix C

26-06-2021, 23:04:10 (GMT+08:00) SCHAEFFLER
@ NA6914-ZW-XL
Needle roller bearing
Schaeffler ID Needle roller bearings NA69..-ZW,
0507442670000 Dimension series 69, double row

X-life
Technical information
Main Dimensions & Performance Data
B
d 70 mm Bore diameter
‘/ & ] r D 100 mm Outside diameter
r B 54 mm Width
C, 145.000 N Basic dynamic load rating, radial
p| 4 —— ———— L |d |F
Cor 265.000 N Basic static load rating, radial
Cu 48.000 N Fatigue load limit, radial
] E n 5.700 1/min Limiting speed
77 G ng spe
ngr 3.300 1/min Reference speed
1,34 kg Weight
s . .
Dimensions

F 80 mm Raceway diameter inner ring

s 1 mm Axial displacement

@
M T min 1 mm Minimum chamfer dimension

Temperature range
§I J
2 /\j T min -30 °C Operating temperature min.
T max 120 °C Operating temperature max.

The datasheet is only an overview of dimensions and basic load ratings of the selected product. Please always observe all further information and guidelines
for this product. For further information you can use the contact form on our website.
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11 Appendix D

 Ares 26295131 mm? B & i Area 1413717 mm® B
‘ Perimeter 319.9433 mm B & i Perimeter 51.7080 mm 5 &
© Radius ¥ 45.0000 mm B = 2:5000 mm B & E
i Centroid Point( 40.7000, -28.6479,0.0) mm B & Point(40.7000, 15915, 42.5000) mm [ &
Min Radius of Curvature 45.0000 mm ) i Min Radius of Curvature 2.5000 mm K

https://medias.schaeffler.no/en/product/rotary/rolling-and-plain-bearings/roller-
bearings/needle-roller-bearings/machined-needle-roller-bearings/na6914-zw-xl/p/382768

The number of rolling elements is 28.
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12 Appendix E

GE20-PB

Radial spherical plain bearings

dimension series K. requiring maintenance, to DIN ISO 12 240-1

Mismn

25 mn

Da| : + |da

20 mm

40 mm

25 mm

0,006-0,035 mm

18 mm
31,5 mm
243 mm
34925 mm
03 mm

0.6 mm

0,15 kg
31400 N

78600 N

98

.!. Send to shopping basket

Bore tolerance: H7 (arithmetic mean value)
Tolerance: +0,021/0
Tolerance: 0/-0,011

Tolerance: 0/-0,12

Radial internal clearance
Deviation from DIN 12240-1, dimension series K

Tolerance: 0/-0,24

Chamfer dimension

Chamfer dimension

Mass
Basic dynamic load rating, radial

Basic static load rating, radial
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MISTRAS ,.casem

A World of NDT Selutions | Divisien

2/4/6 Preamplifier

Description: 5
The 2/4/6 preamplifier was designed to be used with all SINGLE ﬂwou@ﬂcgm ﬂﬁNAé-

available AE systems that have power supplied via the
output signal BNC. It is supplied with 20/40/60 dB gain
(switch selectable) and operates with either a single
ended or differential sensor. Plug in filters provide the
user with flexibility to optimize sensor selectivity and
noise rejection. These filters are provided in the Low Pass
(LP), High Pass (HP), and Band Pass (BP) configurations,
and offers constant insertion loss for easy filter swapping
without the need for recalibration. Automatic Sensor Test
(AST) is standard. This option provides the sensor with the
ability to characterize its own condition as well as send out

INPUT

2/4/6
SELECT PREAMPLIFIER

DIFFERENTIAL

Electrical Specifications:
= Gain Selectable: 20/40/60 dB + 0.5% dB

a simulated acoustic emission wave that other sensors can * Input Imped.a nee: 10K /7 15pF
detect = Power Required: 18-28V DC
) « Operating Current: 30mA (With AST Installed)
. . 28mA (Without AST Installed)
Features: _ « Dynamic Range: 80dB (Utilizing an R15 Sensor)
« 20/40/60 Selectable Gain 90dB (500 Input

+ Wide Dynamic Range > 90dB Standard

+ Low Noise < 2aV (With Standard* Filter & Input Shorted)

« Large Output Signal 20Vpp into 500

« Single Power/Signal BNC or Optional Separate Power/
Signal BNC

« Plug-in Filters (Utilizes the same filter as the SPARTAN
2000)

« High Input Impedance

« Standard Auto Sensor Test

+ Input Protection

Environmental Specifications:
= Temperature: -40 C to +65 C

Gain Selection 20dB 40dB 60dB
« Bandwidth (-3dB): 10kHz-2.5MHz 10kHz-2.0MHz 10kHz-900kHz
« OQutput Voltage (500 Load): 6Vpp 20Vpp 20Vpp
+ CMRR (500kHz): 42dB 42dB 42dB
« Noise (RMS rti):
Filter Frequency 20dB 40dB 60dB 20dB 40dB 60dB
Response With R15 With R15 With R15 Input Input Input
Hz Sensor Sensor Sensor Shorted Shorted Shorted
135k-185k 3Iuv 1.4 wv 1.5 pv 2.0 pv 0.6 pv 0.42 pv
100k- 300Kk* 3V 1.8 pv 1.8 aV 2.3 pv 1 pv 0.8 uv
10k-2.0M 5uv 4 v 3uv 4V Jpv 2.5pv
*Standard filter
195 Clarksville Road, Princeton Junction, NJ 08550 USA
Phone: (609) 716-4000 « Fax: (609) 716-0706
Email: sales.systems@mistrasgroup.com * www.mistrasgroup.com
Copyright © 2011 MISTRAS Group, Inc.. All Rights Reserved. Specifications subject to change without notice. #34-11
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PCI-2
Product Bulletin

PAC 18-bit AID, 1kHz - 3MHz PCI-2: The New AE Research Tool
2 Channels of Acoustic Emission for Simultaneous Waveforms and Feature Processing

BREAKTHROUGH!

In 1995, PAC introduced 16-bit 20 MHz A/D for AE.
Now with the PCI-2, we are introducing our 18-bit
40 MSamples/sec A/D for Lower Noise and Higher
Speed.

Standard PCI

Pioneering a new 18-bit A/D architecture, the
PCI-2 is a low cost, 2-channels of simultaneous
Acoustic Emission (AE) waveforms and features

digital signal processing (DSP) system on a single
full-size 32-bit PCI-Card, ready for operation in your PC
or one of PAC's hardened PCs (for multiple channel
operation).

Superior Noise Performance and Speed
...ideal for Research/Universities

Superior low noise and low threshold performance have
been achieved with this revolutionary AE system design,
through the use of an innovative 18-bit A/D conversion
scheme, with up to 40 MSample/second acquisition and
real time sample averaging. Via the system'’s pipelined,
real-time architecture, this performance is attained without
sacrificing AE throughput speed.

With these features and its very low cost, the PCI-2 is
ideal for laboratories, universities and industrial turnkey
systems, and any application where low noise, low
channel count and low cost are required, as well as where
the use of an existing PC is desired.

B 1 e ha b ok B o

% Multiple graphs ocmm. |
user-abeled tabs = |5

Waveforms and FFT
plots intermixed on

Multiple gnph

ch-nnoh

>
::ill pllum..,.... hacla |

Figure 2. Simultaneous display of AE features and waveforms

Figure 1. PCI-2 AE System on a card

Through the high-performance PCI (Peripheral Component
Interconnect) bus and Direct Memory Access (DMA)
architecture, significant AE data transfer speeds can be
attained, assuring a wide bandwidth bus for multichannel
AE data acquisition and waveform transfer. In addition to
two AE channels, the system also has eight (8) parametric
channels for other transducers, such as strain gage,
pressure, temperature, load, and more.

Data Streaming. . .Choice of AE Systems

Waveform data streaming capability is built within the board,
allowing waveforms to be continuously transferred to the
hard disk. The 32-bit PCI bus is the de-facto standard in all
PC computers being shipped today. PCI-2 AE System cards
can be implemented inside most standard PC computers

or inside one of PAC's rugged, multichannel PAC system
chassis, including the 8-channel benchtop chassis, the 12-
channel portable AE system or a 4-channel notebook based
chassis (u-series).

Applications:

¢ Composite materials
¢ Aerospace structures
¢ Guided lamb wave

¢ Ceramics high-resolution
ultrasonic imaging

¢ On-line monitoring

systems systems for bridges,
S Civilstrichires composite structures,
; process control

concrete, steel

¢ Advanced materials
testing

# Machine Monitoring,
Tool touch and wear

¢ Acousto/Ultrasonic
systems

¢ Tensile testing of samples
and coupons
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PCI-2 Acoustic Emission System on a Card
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Figure 3. PCI-2 AE System block diagram.
Advanced Manufacturing. . .ISO Environment User Friendly .. .by Design
Due to advances in surface mount technology and high + Software available for the PCI-2 includes the state-of-
density ASIC (high density Programmable Gate Arrays) the-art PACwin™ Software Suite. With 30 years of
devices, PAC has been able to provide this single AE Acoustic Emission application experience behind it, this
System on a board with 2 complete high-speed AE Suite is comprised of three individual software packages
channels of real time AE data acquisition, with real time (purchased separately); these are: AEwin™ real-time
feature extraction, waveform processing and transfer, eight Windows acquisition, replay and analysis software,
(8) analog parametric input channels and 8 digital input AEwinPost™ post analysis software and NOESIS™,
and output control signals. the most complete Pattern Recognition (supervised or

unsupervised) and Neural Networks software in the AE and

. .breakthrough A/D, speed, noise, quality and price. . .
NDT market today.

Key Features . .. of the PCI-2 include

+Very low noise, low cost, 2 channel complete, AE + 4 High Pass and 6 Low Pass filter selections for each
system on a card, with waveform and hit processing built channel, totally under software control.
in, on one full size, industry standard, 32-bit PCI card. +AE Data Streaming is also built into the PCI-2 board
+Intemal 18-bit A/D conversion and processing for better allowing continuous recording of AE waveforms to the
resolution (less than 1 dB) at very low signal amplitudes, hard disk at up to 10 MSamples/sec rate (on one channel,
and low threshold settings, providing superior low noise 5 MSamples/second on 2 AE channels).
performance. +Up to 8 parametrics on each PCI-2 board with 16-bit
+40 MHz, 18-bit A/D conversion with real time sample AID converter and update rates up to 10,000 readings/
averaging (2x or 4x) to provide enhanced accuracy second. The first parametric is a full Instrumentation
beyond any existing AE system on the market. conditioning channel providing signal conditioning
+Built-in, real time AE feature extraction and DMA including gain control, offset control and filtering options

transfer on each channel for high speed transient data for direct sensor input. The second provides a straight +/-
analysis at high hit rates directly to the Hard Disk (HD). 10 volt input for conditioned sensor cutputs.

4 Built-in waveform processing with independent DMA #+Hit LED, and Audio drivers are built wit!1in the PCI-2
transfer on each channel for high speed waveform board, so that LEDs can be attached directly and sound

transfer and processing. can be processed via the PAC PCI-Audio Card (option).

+Designed with extremely high density FPGAs and ASIC +Digital signal processing circuitry virtually eliminates drift,
ICs, to provide extreme high performance and minimize thereby achieving high accuracy and reliability.
components and cost.
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Figure 4. Many graphs per screen can be viewed in real time or replay. This

screen shows some of the flexibility of AEwin™. In this overview, 2D and 3D

graphs, waveforms, FFT's, line graphs, histograms, multi-plot graphs, etc.

are shown.

» Front Panel activity lights are totally under the control of your
PC to provide status on AE data as well as to give you
indication of any malfunctioning of your system.

 Audio drives ready for high fidelity listening with your PAC
PCl-Audio Card.

» Auto Sensor testing standard with all PAC systems for easy
system/sensor self calibration and interface coupling efficiency
monitoring.

System Flexibility. .. by Design

Standard 32-bit PCI hardware and 32-bit Windows AEwin™
software allows the customer maximum flexibility of using a
PC or notebook computer. No need to change home made
PCs, but ability to take advantage of today's PC speeds
readily available with high performance PCI busses. Multiple
AE channels (up to 20) are easily synchronized for multiple
location algorithms.

ieieinale)

Figure 5. Noesis™ Software for the PCI-2 is sophisticated, yet user
friendly and operates under Windows 2000

Software. .. supported by PAC’s AE multichannel
systems experience since the early 70’s

PCI-2 is supported by PACwin™ Software Suite, a PAC
Windows Platform consisting of AEwin™, AEwinPost™

and Noesis™ (individually purchased). All software runs in
Windows 2000 and XP, thus taking advantage of standard
features such as multi-tasking, graphic user interfaces, etc.
and providing the ability to change AE parameters during
test operation.

Multiple location algorithms are available including zohal,
linear, planar, tank bottom, cylindrical, spherical (with
ASME weld zones), conical, 3-D, advanced Non-Linear
Regression (NLR) location, anisotropic 2-D, anisotropic
cylinder and over-determined planar location for exceptional
accuracy. All location algorithms utilize attenuation tables/
curves, auto-sensor placement, and source corrected
amplitude for more accurate location and AE intensity
calculation.

PCI-2 Specifications:

Physical:

* Size: 13415"Lx43"Hx0.7"T
* Weight: 1.1 Ibs.

* Power Consumption: 12 Watts

* DC Power: +12.0 volts, 1.0 amps

-12.0 volts, 0.05 amps
+5.0 volts, 1.5 amp
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Figure 6. AEwin™ Software can use an attenuation profile of the AE
response on the structure. This information is important in determining
the source amplitude of an AE event. Attenuation profiles can easily be
constructed and displayed in tabular and graphical form. They can be
saved and recalled. AEwin™ automatically determines the amplitude

at the source (Source Amplitude) and provides this as a graphable AE
feature.
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PCI-2 Acoustic Emission System on a Card
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Figure 7. AEwinPost™ offers a number of ways to filter data including: Sefect
— Delete operation. Simply select the data to be filtered and press delete;
filtering via graphical filters; and dedicated channel filters.

PCI-2 Specifications (continued):

Environmental:

* Operating Temperature:
* Storage Temperature:
Electrical:

* AE Inputs:

* Input Impedance:

* Preamplifier Power:

* Sensor Testing:
* Frequency Response:

Signal Processing:
* AE Signal Gain:

* Filters:

* Noise: Min. Threshold:

41° - 115°F (5° - 45° C)
-4° —140° F (-20° - 60° C)

2 channels

50 ohm or 1000 ohm, jumper selectable
Jumper selectable 0 volt or 28 VDC,
100 ma current limited (on BNC center
conductor for phantom powering of
external preamplifiers)

AST built-in

1 kHz = 3 MHz (at -3 dB points)

0dB, 6 dB computer selectable input
signal scaling

4 High Pass - computer selectable filters
1 kHz, 20 kHz, 100 kHz, 200 kHz,

4" order Butterworth

6 Low Pass - computer selectable filters
100 kHz, 200 kHz, 400 kHz, 1 MHz,

2 MHz, 3 MHz, 6th order Butterworth

17 dB without AE Sensor, 22 dB with

(1 kHz - 3 MHz bandwidth) R15AE
Sensor and 2/4/6 preamplifier,

24 dB with R15l Integral Preamp sensor

Note: Lower noise will be achieved using narrow band filtering

* ASL Noise:
* Max. Signal Amplitude:

* ADC Type:

4 dB maximum, (with no input)

100 dB AE
ASL99 dB

18 bit 40 MSPS per channel maximum

* Dynamic Range:

* Sample Rate:

* Sample Averaging:

* Extracted AE Features:

Analog Parametrics:
* Parametric Channels:

* Parametric A/D
Resolution:

* Parametric Sample Rate:

* Time Driven Data Rate:
* Time Parametrics:

* Parametric #1,3,5,7
Functions:

* Parametric #2,4,6,8
Functions:

Digital I/O:

AE Out and Audio
Monitor Interface:

LED Activity Monitor:

> 85 dB, 2kS/s, 5kS/s, 10 kS/s,

20 kS/s, 50 kS/s

Computer selectable 100 kS/s, 200kS/s,
500kS/s, TM-Samples/sec, 2 MSPS,

5 MSPS, 10 MSPS, 20 MSPS, 40 MSPS
40 MSPS with 2x averaging, for a

20 MSPS effective sample rate

Time of 1*' Threshold Crossing, Counts
to Peak, Peak Amplitude, Signal
Strength, Duration, Rise Time, Counts,
True Energy, RMS, ASL, Parametric 1 &
2;

8 Channels

16 bits

10 kHz sample rate for each analog
parametric

Controlled by software 10 msec. to 1800
seconds

All 8 parametrics are available in time
data set

Computer selectable Input Range +
10.0v, 1.0 v, #0.10v, £0.01v
Computer selectable 30 Hz Low Pass
filter or none

5.0 V software programmable offset
control with 12 bit DAC

0 - 10 volt programmable excitation
voltage for strain gage bridges

Parametric Input Range + 10.0 v fixed,
no filter

8 Digital Inputs, 8 Digital Outputs (5 v
tolerant), TTL level compatible)

Analog switch and buffer to select
desired AE channel to be routed to
standard PAC audio monitor board or AE
output signal

On board LED driver to directly drive
LED's on front panel. LED minimum on-
time is 0.05 seconds.

For more information:
Call (609) 716-4000
or Email us at sales.systems@mistrasgroup.com

Visit our website at:
www.mistrasgroup.com

€@

195 Clarksville Road, Princeton Junction, NJ 08550 USA
Phone: (609) 716-4000 « Fax: (609) 716-0706
Email: sales.systems@mistrasgroup.com * www.mistrasgroup.com.com

Copyright © 2009 MISTRAS Group Inc. All Rights Reserved.

Specifications subject to change without notice. PAC #102803
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PHYSICAL
ACOUSTICS

SOFTWARE BULLETIN

AEwin™ | Comprehensive, Versatile & Friendly AE Software

AEWIN™ FEATURES OVERVIEW

AEwin™ is a Windows™ compatible (XP,
Windows 8, and Windows 7) software for real-
time “simultaneous” Acoustic Emission (AE)
feature and waveform processing, display,
fast storage and replay. Used for true, real-
time operation and control with your MISTRAS
AE Systems (Express-8, PCI2, SAMOS, SH II,
SH Ill, AE USB Node, Wireless AE Node).

AEwin™ also features complete compatibility
with MISTRAS’ standard data file format
(DTA), allowing you to replay and analyze your
previously collected AE files and framework for
easily adding graphsand additional graph screens
and user controllable tool bars including: setup
icons, acquisition control, line listing, status and
statistics. Includes realtime connectivity with
Industrial Control Systems (Modbus, OPC)

GRAPHIC CAPABILITIES
* Exceptional 2-D and 3-D graphing
capabilities that allow the setup of multiple
graphs on a screen, limited only by the
screen resolution
* Toggling between multiple screens by
selecting a user-labeled tab

WORLDWIDE HEADQUARTERS:

195 Clarksville Rd «

Princeton Jet, NJ 08550 » USA

T: +1.609.716.4000 +F: +1.609.716.0706
E-MAIL: sales@mistrasgroup.com

Mouse-driven “Data Selection” features that
allows designation of hits,waveforms and
events from graphs for detailed analysis and
filtered export

Ability to set up and individually size (on
screen) many different types of graphs
including; 2-D line graphs, histograms, point
plots, waveforms, FFTs, overlays, multiple
plots on a single graph and color options
Arrange multiple graphs on a screen
Expandable to full screen with zooming and
panning for close-up analysis

Full cursor readout capability

Alarms triggered by graph data

.

LOCATION & CLUSTERING OPTION

1, 2 and 3 dimensional location modes
Allows setup of multiple location groups
Provides mouse-oriented sensor placement
and editing features

Allows selection of type of structure (plate,
vessel, etc.) for setup, viewing & location
Incorporates attenuation profiling into
location software (to view a sensor coverage
map and provide source amplitude info)

.

Visit our website for an office near you
www. mistrasgroup.com

Loy ey yy e Ve )

il“qllul‘uwmql.t

EUESS
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Above: AEwin’s 3-D graphing capability allows
the graph to be rotatedfreely, using the mouse.
Below: A typical activity screen with both AE
features and waveforms, processed with a
simple mouse clickz for any specific hit.
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16 Appendix

M lST RAS Products & Systems

A World of NDT Solutions

Division

PHYSICAL
ACOUSTICS

CORPORATION

WD Sensor

Wideband Differential Sensor

DESCRIPTION AND FEATURES

WD is a true differential wideband sensor with a very
high sensitivity and bandwidth. It has a very good
frequency response over the range of 100—- 900 kHz.
Differential sensors differ from their general purpose
counterparts by employing two sensing elements with
opposite polarization directions, The two signal leads
feed intoa differential pre-amplifier which eliminates
common-mode noise resulting in a lower noise cutput
from the pre-amplifier. Noise improvements to the
tuneof 2 dBcan be achieved using differential sensors
over a single ended sensor. This sensor features a
rugged steel construction with an integrated twin
axial cable exiting on the side.

440 APPLICATIONS
'. 013 This sensor is well suited for structural health
‘ l monitoring of large structures like storage tanks,
.__! 8B pipelines etc. This sensor is an ideal candidate for
applications requiring high bandwidth for frequency
analysis of the AE signals for noise discrimination
and source identification. Wideband sensors are
particularly well suited for research applications
where a high fidelity AE response is required. It can
be easily mounted using epoxy.
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WORLDWIDE HEADQUARTERS: CANADA T: +1.403.556.1350 HOLLAND
195 Clarksville Rd « CHINA T: +86.10.5877.3631 INDIA
Princeton Jet, NJ 08550 - USA FRANCE T: +331 48826040 JAPAN
T, +1.808.716.4000 « F; +1,609,716,0706 GERMANY T, +49,040 20004025 MALAYSIA
E-MAIL: sales. group.com GREECE T: #30.210.2646.801-4

Specifications subject to change without notice. Copyright © 2011 MISTRAS Group, Inc. All Rights Reserved.
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T: +60,9,517 3788 UK
MIDDLE EAST T +873.17.720.356

#210D-11-133-01

OPERATING SPECIFICATIONS

Dynamic

Peak Sensitivity, Ref V/(m/s).
Peak Sensitivity, Ref Viubar..
Operating Frequency Range ...

Resonant Frequency, Ref W/{m/s). el 25 kH2
Resonant Frequency, Ref W/Ubar ......cuu v isnecesenennn 850 kHZ
Directionality +{-15 dB
Environmental
Temperature Range ..o e e ceececenen. <65 10 1772C
Shock Limit 5008
Completely enclosed crystal for RFI/EMI immunity
Physical
Di ion. 0.7"0D X 0.65"H
17.8 mm OD X 16.5 mm H
Weight 20 grams
Case Material Stainless Steel
Face Material Ceramic
Connector BNC
Connector Locations Side

ORDERING INFORMATION AND ACCESSORIES
WD WD

Cable (specify length in ‘-XX' m at end of PN . N
Magnetic Hold-Down . MHSTD
Pre-Amplifier 0/2/4,2/4/6
Preamp to System Cable (specify lengthin ‘m’)......... 1234-X
Amplifier Subsy AE2A or AESA

Sensors include

NIST Calibration Certificate & Warranty

@

T:+31.010.245.0325 RUSSIA T: 47495 789.4549
T: +91.22.2586.2444 SCANDINAVIA T: +48(0)31.252040
T. +81 33 488 3570 5. AMERICA T. +55.11.3082.5111

T. +44(0)1954,231 812

PRODUCT DATA SHEET

www.mistrasgroup.com
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CDMISTRAS Vot

ProDUCT DATA SHEET

Micro30D Sensor

P - . OPERATING SPECIFICATIONS
Miniature Differential Sensor

Dynamic
Peak Sensitivity, Ref V/(m/s) ... 65 B
DESCRIPTION AND FEATURES Peak Sensitivity, Ref Vi/ubar..
Operating Frequency Range .
Resonant Frequency, Ref V/(m/s)
Resonant Frequency, Ref V/ubar .

MICRO30D is a differential sensor designed to isolate

the sensing terminals electrically from the cavity.

Thiselectrical isolation makes the sensor particularly Directionality
useful for applications where high background PR
electrical noise is a major concern. It hasa very good TemMpPerature RANEE «...c....ccccvece e eeecere e cecvee . 05 10 1772C
sensitivity and frequency response over the range of Shock Limit 500g
150 = 400 kHz. The twosignal leads from the sensing Completely enclosed crystal for RFI/EMI immunity
element feed into a differential pre-amplifier which Physical
eliminates common-mode noise resulting in a lower Di ion: 0.375"0D X 0.435"H
noise output from the pre-amplifier. This sensor : 18.4 mmOD X 11 mm H
. Weight 23grams
featur r teel constr n an | BNC
eatures a rugged steel construction and a dua Case Material P —
connector with an integrated twin axial cable exiting Face Material e
= 725 - v on the side. Connector Dual BNC
i Connector Locations Side
APPLICATIONS
435 i
' 125 This sensor is well suited for structural health
‘- ars - |k monitoring of large structures like storage tanks,
EH
pipelines etc. Wideband sensors are well suited ORDERING INFORMATION AND ACCESSORIES
MICRO30D MICRO30D
for research applications where a high fidelity AE
. m.) . € W_ Cable (specify length “XX' m at end of PN) ccocvervcrrrnn 1 M
response is required. It can be easily mounted using Amplifier Sub AE2A. AESA
€poxy. Pre-amplifier. .0/2/a,2/a/6,1LD40
Sensors include
NIST Calibration Certificate & Warranty
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WORLDWIDE HEADQUARTERS: CANADA T: +1.403.556.1350 HOLLAND T: +31.010.245.0325 SCANDINAVIA T: +48(0)31.252040
195 Clarksville Rd - CHINA T: +85.10.5677.3672 INDIA T:+91.22.2508.2444 S.AMERICA T +55.11.3082.5111
Princaton Jet, NJ 08550 « USA FRANCE T: +331,498.26040 JAPAN T:+81,33,498,3570 UK T: +44(0)1954,231 612
T. 16097164000 - F, +1,609,716.0706 GERMANY T. +49,040 2000,4025 MIDDLE EAST T +44(0)1954.231.612
E-MAIL: sales systems@mistrasgroup.com GREECE T: +30.210.2846.801 RUSSIA T: +7495.789.4549
Specifications subject to change without notice. Copyright @ 2013 MISTRAS Group, Inc. All Rights Reserved. #2100-11-103-02 www.mistrasgroup.com
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17.6.2021 OmniScan SX Ultrasonic Phased Array Flaw Detector
OLYMPUS

Industrial Solutions

Thickness and Flaw Inspection Solutions

OmniScan SX

Overview

Olympus is proud to introduce the OmniScan® SX, a flaw detector that benefits from more than 20 years of
phased array experience and shares the OmniScan DNA. For improved ease of use, the OmniScan SX features a
new streamlined software interface displayed on an 8.4 in. (21.3 cm) touch screen. A single-group and non-
modular instrument, the OmniScan SX is easy to operate and cost-effective for less demanding applications.

360° View

The OmniScan SX comes in two models: the SX PA and SXUT. The SX PA is a 16:64PR phased array unit,
which, like the UT-only SX UT, is equipped with a conventional UT channel for pulse-echo, pitch-catch or TOFD
inspection. Compared to the OmniScan MX2, the SX is 33% lighter and 50% smaller, offering an unprecedented
level of portability for an OmniScan.

The OmniScan SX touch screen offers a full-screen mode option that maximizes visibility, essentially converting
many menu functions into easy touch-screen operations. The intuitive interface provides smooth menu selection,
zooming, gate adjustments, cursor movements, and text and value input. These, along with other premium
integrated features, including easy-to-follow setup and calibration Wizards, a rapid refresh rate for both the S-scan
and A-scan displays, and a fast pulse repetition frequency (PRF), make the OmniScan SX a highly efficient
inspection tool.

hitps://mww.olympus-ims.com/en/omniscan-sx/
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HSIO-100-A

e Fay 0o 255 »

. L2

HIGH-SPEED 1/0 MODULE FOR CONDITION MONITORING

The Kongsberg HSIO-100-A high-speed acquisition module has outstanding signal processing and
measurement capability making it highly appropriate for Condition Monitoring. The high-speed acquisition
module is suitable for acoustic emission sensors. The module has 8 analog inputs and 4 digital /0O and can
easily be extended to multiple synchronous channels via the high-speed internal bus. High accuracy and
dynamic range over a wide temperature area gives high quality data. Raw data can be sent to databases
for storage, trending and pre-processing. Hit count and other feature extraction parameters, together

with signal analysis, help to identify status or faults of critical parameters of the machinery. Based on

this information the user can plan the maintenance tasks of the equipment such as replacing worn-out
components before they fail. This has the potential to save the owner significant amounts of work and
money.

Principle of operation Features & Benefits

The module is based upon an Altera Cyclon V processor with Compact 12 channel module
FPGA (Field Programmable Gate Array) technology. The FPGA Up to 2 MS/s sampling rate
enables parallel and high-speed data analysis of the raw data 24 bits ADC

on several channels simultaneously. The module provides high- High dynamic range

speed communication via Ethernet to analysis software. Supports channel extension

2 speed inputs

Synchronous sampling

Rated from - 40°C to +70°C
Approved for Marine certification standards
Ethernet/IP communication

FPGA for real time data processing
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TECHNICAL SPECIFICATIONS

Electrical and general:
Power supply

Max power consumption
Operating temperature
Enclosure

Memory
Communication

Module mounting

I/O connectors

Removable front screw
connection

Weight

Dynamic inputs:
Number of channels
Input range

Frequency range
Dynamic range
Crosstalk

Total accuracy
Repeatability

Sensor and preamplifier
power

Input impedance
Overvoltage protection

Digital inputs:
Number of channels
Input type

Input range

Input frequency
Max power

Input impedance

Digital outputs:
Number of channels
Output

Complies with:

Approvals:
Marine Class approvals

" FRO = Full Range Output

24 VDC (18 - 32 VDC)

20 W

-40 °Cto +70 °C

IP 21

SDRAM 8 Gb, MicroSDHC
Ethernet (100 Mbit/s)

DIN 35 mm rail

16-pin female x 1

3-pin female x 2

2-pin female x 3

SMAx 8

Nominal cross section 2.5 mm?

895 ¢

8
Selectable up to maximum
20.9

0.5 Hz - 900 kHz
>90dB

- 112dB (f, =300 kHz)
1.0% FRO'
<0.1%FRO*

20 VvDC

>10kQ
230V

2

3-wire
0-24VDC
Up to 1 MHz
25W
>15kQ

2
0/24 V (open collector)

EN 60945:2002

IACS E10:2014

IEC 60533:2015

EN 61000-6-1:2007

EN 61000-6-2:2005

EN 61000-6-3:2007 + A1:2011
EN 61000-6-4:2007 + A1:2011
EN 61326-1:2013

ABS, DNV-GL, LRS

Specifications subject to change without any further notice.

KONGSBERG MARITIME
Switchboard: +47 815 73 700

Customer support: +47 815 35 355
E-mail sales: km.sales@km.kongsberg.com
E-mail support: km.support@kongsberg.com

k
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HSIO TYPE
A: Acoustic
B: Vibration
C: Engine performance

PRODUCTION TYPE
0: Standard

SPARE FIELD
A: Default

SPARE FIELD
0: Default

Ordering key: HSI0-100-(-

Figure 1: Ordering Key

Figure 2: Dimensions
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Figure 3: Available pin assignment on HSIO0-100-A
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18.6.2021 GLEITMO 591 | FUCHS LUBRITECH

GLEITMO 591

High-temperature paste, resistant to chemicals, for high-speed bearings

Performance Features

temperature range: -25/ +260 °C, short-term up to +280 °C
resistant to many chemicals and solvents

allows long lubrication intervals due to low evaporation losses
protects against corrosion

extremely pressure-resistant

resistant to oxidation

Description
GLEITMO 591 is an extraordinary special paste based on a synthetic oil of high stability and

white solid lubricants. It is resistant to many aggressive chemicals and offers an excellent
compatibility with a lot of elastomer and plastic materials.

Field of application

Due to its high thermal stability GLEITMO 591 is particularly well-suited for the lubrication
of high-speed, high-temperature plain and roller bearings, for permanent lubrication of
areas subjected to high temperatures and aggressive media, such as high-speed bearings

at high temperatures, fans, electric motors, conveyor chains, centrifuge bearings, and
stenter frame bearings in the textile industry.

Method of application

Bearings and sliding surfaces should be carefully cleaned with METABLANC PFPE. Please
consider our Technical Information sheet concerning the lubrication with PFPE pastes.

Note

hittps /www fuchs. com/lubritech/en/product/product/8665-gleitmo-591/
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