
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353592487

Optimal Model-Based Trajectory Planning With Static Polygonal Constraints

Article in IEEE Transactions on Control Systems Technology · July 2021

DOI: 10.1109/TCST.2021.3094617

CITATIONS

0
READS

41

3 authors:

Some of the authors of this publication are also working on these related projects:

Automatic and autonomous docking for marine vessels View project

Assurance of Reinforcement Learning View project

Andreas Bell Martinsen

Norwegian University of Science and Technology

16 PUBLICATIONS 62 CITATIONS

SEE PROFILE

Anastasios M. Lekkas

Norwegian University of Science and Technology

45 PUBLICATIONS 806 CITATIONS

SEE PROFILE

Sebastien Gros

Norwegian University of Science and Technology

173 PUBLICATIONS 1,630 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andreas Bell Martinsen on 05 August 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353592487_Optimal_Model-Based_Trajectory_Planning_With_Static_Polygonal_Constraints?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353592487_Optimal_Model-Based_Trajectory_Planning_With_Static_Polygonal_Constraints?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Automatic-and-autonomous-docking-for-marine-vessels?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Assurance-of-Reinforcement-Learning?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Bell-Martinsen?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Bell-Martinsen?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Norwegian-University-of-Science-and-Technology2?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Bell-Martinsen?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anastasios-Lekkas?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anastasios-Lekkas?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Norwegian-University-of-Science-and-Technology2?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Anastasios-Lekkas?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastien-Gros-2?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastien-Gros-2?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Norwegian-University-of-Science-and-Technology2?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastien-Gros-2?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andreas-Bell-Martinsen?enrichId=rgreq-aa0b381fa4ad27848ecafd9318c59f55-XXX&enrichSource=Y292ZXJQYWdlOzM1MzU5MjQ4NztBUzoxMDUzMzg1Njc5NzA4MTYwQDE2MjgxNTgxMjUwNDQ%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617 1

Optimal model-based trajectory planning with
static polygonal constraints

Andreas B. Martinsen, Anastasios M. Lekkas, and Sébastien Gros

Abstract— The main contribution of this paper is a novel
method for planning globally optimal trajectories for dy-
namical systems subject to polygonal constraints. The pro-
posed method is a hybrid trajectory planning approach,
which combines graph search, i.e. a discrete roadmap
method, with convex optimization, i.e. a complete path
method. Contrary to past approaches, which have focused
on using simple obstacle approximations, or sub-optimal
spatial discretizations, our approach is able to use the
exact geometry of polygonal constraints in order to plan
optimal trajectories. The performance and flexibility of the
proposed method is evaluated via simulations by planning
distance-optimal trajectories for a Dubins car model, as
well as time-, distance- and energy-optimal trajectories for
a marine vehicle.

Index Terms— Autonomous vehicles, Marine vehicles,
Mobile robots, Motion planning, Optimal control, Path plan-
ning, Trajectory optimization

I. INTRODUCTION

In robotics, motion planning is the process of finding a
sequence of valid configurations, which move the robot safely
from some initial configuration to a goal configuration. To
be successful in the real world, the motion planner must be
able to consider a variety of constraints such as environment
constraints, including static and dynamic obstacles, and dif-
ferential constraints, which arise from the system kinematics
and dynamics and are modeled with differential equations. Due
to a potentially large number of obstacles, actuators, as well
as complex kinematics and dynamics, motion planning is in
general a difficult problem that has led to a wide range of
methods and a vast literature.

Trajectory planning pertains to finding a time-parametric
continuous sequence of configurations, called a trajectory,
which is obstacle-free and satisfies the differential constraints
(i.e. a feasible trajectory). Optimal trajectory planning has
the additional task of finding the ”best” feasible trajectory
with respect to some performance measure, such as minimum
energy, distance or time. The requirement of optimality is in
general very demanding computationally since it requires an

A. B. Martinsen is with the Department of Engineering Cybernetics,
Norwegian University of Science and Technology, NO-7491, Trondheim,
Norway (e-mail: andreas.b.martinsen@ntnu.no).

A. M. Lekkas is with the Centre for Autonomous Marine Operations
and Systems, Norwegian University of Science and Technology, NO-
7491, Trondheim, Norway (e-mail: anastasios.lekkas@ntnu.no).

S. Gros is with the Department of Engineering Cybernetics, Nor-
wegian University of Science and Technology, NO-7491, Trondheim,
Norway (e-mail: sebastien.gros@ntnu.no).

exhaustive search over the state space. One of many ways to
categorize motion planning methods is to distinguish between
roadmap methods and complete path methods [1]–[3].

The main goal of roadmap methods is to find a sequence
of waypoints, which, when connected, result in an obstacle-
free piecewise-linear path. The path can then be smoothed
and turned into a feasible trajectory that complies with the
vehicle dynamics. Roadmap methods can be further split
into two distinct categories, namely, combinatorial methods
and sampling-based methods. Combinatorial methods, divide
the continuous space into structures that capture all spatial
information needed to solve the motion planning using sim-
ple graph search algorithms. For many complex problems
however, combinatorial methods may not be computationally
feasible. For these problems, sampling based methods are
often used instead. Sampling based methods, rely on using
randomly sampled subset of states or actions. This creates
a randomly sampled discretization of the continuous search
space, and hence limits the computational complexity at the
cost of accuracy and completeness of the discretization. Some
notable combinatorial methods include coarse planning with
path smoothing, in where a mesh, grid or potential field is used
to plan a course path [4]–[7], and then a method using curve
segments, splines or motion primitives is used to refine the
trajectory [8]–[14]. Notable sampling based methods include
probabilistic roadmap (PRM) [15], rapidly-exploring random
tree (RRT) [16]–[18], and Random-walk planners [19], [20]

Complete path methods on the other hand, produce a
continuous parameterized trajectory by explicitly taking into
account the motion equations of the robot and the full con-
tinuous search space. As a result, these methods generate
a trajectory that is both obstable-free and feasible, without
further need of refinement/smoothing. Most complete path
methods rely on some form of mathematical optimization. For
some simple problems an analytical solution exists, as is the
case for Dubins paths [21] and Reeds-Shepp [22]. In general,
however, researchers must resort to numerical optimization,
where handling complex constraints is challenging and getting
stuck in local optima is not uncommon. Notable numerical
methods include dynamic programming [23], particle swarm
optimization (PSO) [24], [25], shooting methods [26], which
are based on simulation, collocation methods [27], which are
based on function approximation of low-level polynomials,
and pseudospectral methods [28], which are based on function
approximation of high-level polynomials.

In this paper we consider the problem of optimal motion

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617

planning for a particle-like vehicle, moving on a 2D surface
with polygonal obstacles. To this end, we introduce a hybrid
method, which combines graph search on a pre-computed
mesh, with convex optimization for path refinement. The pro-
posed method allows for planning a globally optimal trajectory
for a dynamical system subject to static polygonal constraints.
The main contributions is this paper is how we combine
hybrid planning with polygonal constraints and triangulation
based spatial discretization. With hybrid planning, we combine
both roadmap and complete path methods. Contrary to other
hybrid methods such as [29]–[31], where initial trajectories are
planned using motion primitives and state space discretiza-
tions, and refined using numerical optimization, our method
employs an iterative approach of planning and refinement.
Polygonal constraints allow for complex constraints to be
used in the planning algorithm. Very few optimization-based
planning methods exist that are able to handle these types of
constraints. Existing methods often lead to computationally
expensive mixed integer optimization problems [32], rely on
using inner approximations of the free space [33], [34], or
non-convex elliptical approximations [2]. Our method relies
on using a triangulation of the environment, similar to [4],
[35] but instead of straight-line paths, it plans the path as
a polynomial spline, similar to [36]. Combining the above
concepts, our proposed method is able to efficiently plan
globally optimal trajectories for a dynamical system subject
to static polygonal constraints.

The rest of the paper is organized as follows: Section II
outlines the method. Section III shows examples of distance-
optimal paths for a simple kinematic car, as well as time-,
distance- and energy-optimal paths for an unmanned surface
vehicle. Finally Section IV concludes the paper.

II. METHOD

The problem that we aim to solve in this paper, is that
of planning optimal trajectories for dynamical systems in
environments with static polygonal constraints. The proposed
method is able to compute optimal time parameterized state
trajectories:

x(t), t ∈ [t0, tf],

which connect some initial state x0 and final goal state xf

such that:
x(t0) = x0, x(tf) = xf .

The trajectory is generated such that it satisfies the continuous
time dynamics and kinematics of a given dynamical system on
the form:

ẋ = f(x,u),

which in general may be nonlinear and have additional con-
straints on the states and actions. The optimized trajectory,
is found such that it avoids polygonal spatial constraints that
are present in the environment. This is ensured by having the
path travel through a sequence of neighbouring triangles Ti,
with the sequence denoted [T0, T1, . . . TN], where the interior
of each triangle is collision free. The proposed method for
solving this problem can be divided into three distinct stages.

(a) Obstacles (b) Triangulation

A

B

C

D

E
F

G

H

I

J

K
L

(c) Adjacency
graph

(d) Triangle se-
lection

(e) Optimized
trajectory

(f) Final trajec-
tory

Fig. 1: Given polygonal obstacles (a), the proposed algo-
rithm finds the trajectory by creating a triangulation (b) and
adjacency graph (c). Iteratively exploring different triangle
sequences (d) where the refined trajectory is optimized as
a spline (e). The exploration is performed until the goal is
reached (f).

1) Triangulation and adjacency graph is the first stage,
where a triangulation of the environment is generated
based on the polygonal constraints (Figure 1b), and an
adjacency graph is calculated based on neighbouring
triangles (Figure 1c).

2) Graph search is the second phase, where a graph
search algorithm is used to explore possible sequences
of triangles in the triangulation (Figure 1c).

3) Trajectory refinement is the third phase, where a
continuous trajectory is generated and optimized within
the confinement of a sequence of triangles (Figure 1d
and 1e).

A. Triangulation and adjacency graph

In this step, the objective is to generate a triangulation of the
environment, given polygonal spatial constraints. The resulting
triangulation must include the edges of the polygons, which
is referred to as constrained triangulation. The reason for
segmenting the environment into triangles in this way, is that
any triangle in this type of triangulation, is either fully inside
of the polygonal constraint, or fully outside of the polygonal
constraint. This results in an exact, and efficient decomposition
of the environment. We can then use the triangles that are
fully outside of the polygonal constraints in order to plan a
sequence of triangles for the trajectory to pass through, which
is guaranteed to be collision free.

In this work, the triangulation that we use, is a Constrained
Delaunay Triangulation (CDT) [37]. A regular Delaunay tri-
angulation (DT) [38] will maximize the minimum angle of
all the angles of the triangles in the triangulation, and hence
tend to avoid sliver triangles. With CDT, certain segments are
forced into the triangulation. This is necessary in order to
ensure that the triangles of the triangulation are either fully
inside the polygonal spatial constraints, or fully outside the

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617

MARTINSEN et al.: OPTIMAL MODEL-BASED TRAJECTORY PLANNING WITH STATIC POLYGONAL CONSTRAINTS 3

spatial constraints. For the spatial constraints in Figure 1a, a
constraint triangulation is given in Figure 1b.

After the triangulation is created, an adjacency graph is
computed by connecting neighbouring triangles of the triangu-
lation, where two triangles are considered neighbours if they
share an edge. An illustration is shown in Figure 1c. The
triangulation and adjacency graph are then used in the next
phase for exploring and planning sequences of neighbouring
triangles.

B. Graph search
Graph search can in general only be used for planning in

discrete environments. In order to extend it to the continuous
domain, we propose using a trajectory refinement strategy,
where the graph search is performed by planning a sequence of
neighbouring triangles [T0, T1, . . . TN], and a continuous time
parameterized trajectory x(t), is planned within the constraints
of the sequence of triangles.

Given a CTD, we can construct a graph, where each node
represents a triangle, and edges are given by neighbouring
triangles, this is illustrated in Figure 1c. The goal of the graph
search is to plan a sequence of triangles [T0, . . . TN], which
optimizes a desired performance measure. In our case the goal
is to optimize a time parameterized path integral on the form:∫ tf

t0

J(·)dτ, (1)

where J(·) is a non-negative instantaneous cost. Given an
initial starting point x0, the proposed graph search method,
works by staring with the initial triangle sequence [T0], such
that x0 ∈ T0. It then iteratively extending the sequence of
triangles [T0, . . . TN−1], by adding new neighbouring triangels
TN . This is performed until a feasible sequence of triangles
[T0, . . . TN], connecting the initial state x0 and final goal state
xf , is found, and a termination condition is met. The order
in which potential sequences are extended, is determined by a
heuristics based lower bound on the path integral. This ensures
that the potentially best paths are explored first, and hence
reducing the number of triangle sequences that need to be
explored.

C. Trajectory refinement
In order to plan a continuous trajectory in an area divided

into triangles, we can observe that the trajectory is constrained
by the edge through which it enters, and the edge through
which it leaves any given triangle. The point at which it leaves
and enters a triangle is also the point at which the trajectory
enters and leaves its neighbours respectively. It is therefore
possible to plan a refined trajectory through each triangle, with
a given entrance and exit point along the triangle boundary
(see Figure 2). This means that the final optimal trajectory,
which may travel through a non-convex polygon, consists of
trajectory segments constrained to lie within individual convex
triangles.

Given a dynamical system on the form:

ẋ = f(x,u), (2)

A

B

C

Fig. 2: The trajectory (A → C) through two triangles can
be planned as the trajectory through each individual triangle
(A → B and B → C), constrained to meeting somewhere
along the neighbouring edge.

where x is the state vector, and u is the control vector. The
optimal trajectory through a sequence of neighbouring trian-
gles, denoted [T0, T1, . . . TN], can be written as the following
optimization problem.

V (x0, [T0, T1, . . . TN]) = min
x,u,t

N∑
i=0

∫ ti+1

ti

J(x,u, τ)dτ

(3a)
s.t. ẋ = f(x,u), (3b)

x(t) ∈ Ti ∀t ∈ [ti, ti+1]
(3c)

x(t0) = x0. (3d)

In the above optimization problem, (3b) ensures the trajectory
is feasible with respect to the model, (3c) ensures each
trajectory segment lies within its respective triangle, and (3d)
gives the initial conditions for the optimization problem. Using
the above formulation, we note that in the graph-search phase,
the optimization problem is built by iteratively adding triangles
to the triangle sequence [T0, T1, . . . TN], and hence extending
the horizon N . It should be noted that (3) can be extended to
include additional state and input constraints. However, adding
additional constraints may make the problem more difficult
and time consuming to solve, and may lead to feasibility issues
if the constraints are not chosen with care.

D. Complete method

Given a trajectory x(t), starting at x0, and ending at xf ,
and going through a sequence of triangles [T0, T1, . . . TN], we
can define the value function of the sequence as the value that
minimizes the cost along the optimal trajectory through the

4 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617

sequence of triangles, with fixed start and endpoint:

Q(x0, [T0, T1, . . . TN],xf) = min
x,u,t

N∑
i=0

∫ ti+1

ti

J(x,u, τ)dτ

(4a)
s.t. ẋ = f(x,u), (4b)

x(t) ∈ Ti ∀t ∈ [ti, ti+1]
(4c)

x(t0) = x0 (4d)
x(tN+1) = xf . (4e)

Note, that this is the same optimization problem as in (3), but
with the addition of the terminal constraint in (4e). Using this,
we can get the result in Lemma 1.

Lemma 1: The fixed endpoint value function Q(·) will
always be lower bounded by the free endpoint value function
V (·):

Q(x0, [T0, . . . TN],xf) ≥ V (x0, [T0, . . . TN]) (5)

Proof: The free endpoint value function V (·) where xf

is free can be expressed in terms of minimizing the fixed
endpoint value function Q(·) as follows:

V (x0, [T0, . . . TN]) = min
xf∈TN

Q(x0, [T0, . . . TN],xf)

≤ Q(x0, [T0, . . . TN],xf) ∀xf ∈ TN
(6)

In order to determine the optimality of a sequence of
triangles, we need to show that extending the sequence will
not lower the cost of the trajectory. Using the value function
definitions in (3) and (4), and the following assumption, we
get the result in Lemma 2.

Assumption 1: The cost function J(·) ≥ 0 is a non-negative
function. Meaning the integral of the cost can not decrease
along the path.

Lemma 2: Given Assumption 1, the value function
V (x0, [T0, . . . TN]) is monotonically increasing with respect
to the length of the sequence of triangles.

Proof:

V (x0, [T0, . . . TN]) = Q(x0, [T0, . . . TN−1],xN) + V (xN , [TN])

≥ V (x0, [T0, . . . TN−1]) + V (xN , [TN])

≥ V (x0, [T0, . . . TN−1])

Definition 1 (Triangle sequence completeness): We say
that a sequence of triangles [T0, . . . TN] is complete if the
initial state is within the initial triangle x0 ∈ T0, and the
final goal state is in the final triangle xf ∈ TN . Similarly,
a sequence is incomplete if the initial state is within initial
triangle x0 ∈ T0, and the final goal state is not within the
last triangle xf /∈ TN .

When searching sequences of triangles, it is useful to be able
to approximate bounds on the cost to go, if the sequence is
incomplete. In order to do this, we are using an admissible
heuristic function h(x,xf) together with the optimization
problem in (3) to estimate the cost to go from some state

x to the terminal goal state xf . Using the heuristic, we can
define the following function:

Q(x0, [T0, . . . TM−1],xf) = V (x0, [T0, . . . TM−1])
+ h(xM ,xf), xM = x(tM)

(7)

which is a lower bound on possible complete sequences of
triangles, that extend from an incomplete sequence. This result
is summed up in Lemma 3.

Assumption 2: The heuristic function h(xM ,xf) is ad-
missible. Hence the the heuristic will always underestimate
the true cost or value function for any feasible sequence of
triangles [TM , . . . TN].

h(xM ,xf) ≤ Q(xM , [TM , . . . TN],xf),
Lemma 3: Given Assumption 2 and a triangle sequence

[T0, . . . TM , . . . TN], we have the following lower bound on
the trajectory cost:

Q(x0, [T0, . . . TN],xf) ≥ V (x0, [T0, . . . TM−1]) + h(xM ,xf)︸ ︷︷ ︸
:= Q(x0,[T0,...TM−1],xf)

(8)
where xM = x(tM) is the end of the optimal free endpoint
trajectory given by V (x0, [T0, . . . TM−1].

Proof:

Q(x0, [T0, . . . TN],xf) = Q(x0, [T0, . . . TM−1],xM)

+Q(xM , [TM , . . . TN],xf)

≥ V (x0, [T0, . . . TM−1])
+Q(xM , [TM , . . . TN],xf)

≥ V (x0, [T0, . . . TM−1])
+ h(xM ,xf)

= Q(x0, [T0, . . . TM−1],xf)

Given the result from Lemma 3, where we have a lower
bound Q(·) for completing an incomplete sequence of trian-
gles, we can use this to determine if completing an incomplete
path will result in a complete sequence with a lower value
Q(·), then some other completes sequence. This is summed
up in Theorem 1.

Theorem 1: Given a complete sequence of triangles S∗ =
[T0, . . . TN], and an incomplete sequence S ′ satisfying:

Q(x0,S∗,xf) ≤ Q(x0,S ′,xf), (9)

Then completing the incomplete sequence S ′ can not result in
a trajectory with a lower value Q(·) then the sequence S∗.

Proof: From Lemma 3, we have that extending any
incomplete sequence S ′ to a complete sequence S will result
in a higher cost, i.e:

Q(x0,S ′,xf) ≤ Q(x0,S,xf).

Given the condition in (9), we get the following result:

Q(x0,S∗,xf) ≤ Q(x0,S ′,xf) ⇒
Q(x0,S∗,xf) ≤ Q(x0,S,xf).

This means that all sequences S that can result from the
incomplete sequences S ′ will have higher cost then the optimal
sequence S∗ if (9) holds.

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617

MARTINSEN et al.: OPTIMAL MODEL-BASED TRAJECTORY PLANNING WITH STATIC POLYGONAL CONSTRAINTS 5

Using the refined trajectory cost V (·), heuristic admissible
cost h(·) and the search termination conditions given Theorem
1, we can derive the complete trajectory planning Algorithm
1. Where at each iteration, the trajectory is expanded into the
triangle that minimizes the cost lower bound Q(·). Until a
complete sequence of triangles S∗ is found, for which the
termination condition in (9) is true for all sequences S ′, in
the list of sequences to be searched (open list). By ordering
the (open list) by the cost lower bound Q(·), this reduces
the termination to checking the termination condition (9)
on only the first element in the (open list). From Theorem
2 we can show that the proposed algorithm will find the
optimal sequence of triangles, and hence the globally optimal
trajectory, under the assumption that the resulting optimization
problem is convex. This is the case if the dynamical system
results in convex constraints, as the spatial constraints will be
convex due to the triangulation.

Lemma 4: In Algorithm 1, the list of sequences to be
searched (open list) will always contain a sub-sequence S ′
of any possible complete path S

Proof: Algorithm 1, changes the open list by itera-
tive removing incomplete sequences, and adding all feasible
sequences that can be extended by one triangle from the
sequence that is removed. Since any possible complete path
must be extended from the sequence only containing the
initial triangle T0. Then the list of sequences to be searched
(open list) will always contain a sub-sequence of any possible
complete path.

Theorem 2: Algorithm 1 will find the optimal sequence of
triangles S∗, and hence the globally optimal trajectory.

Proof: Given that Algorithm 1 terminates with the
optimal sequence S∗. If we assume there exists a better
sequence S̃∗. such that:

Q(x0, S̃∗,xf) < Q(x0,S∗,xf)

Then from Lemma 4, a sub-sequence S̃ ′ of S̃∗ must exist
in the list of possible sequences to be extended (open list).
Given the result in Lemma 3 we get that:

Q(x0, S̃ ′,xf) ≤ Q(x0, S̃∗,xf) < Q(x0,S∗,xf).

This contradicts the termination condition in (9), and hence
no sequence S̃∗ that is better then S∗ can exist.

E. Implementation considerations
In order to implement the optimization problem given in

(3) and (4), we need to formulate the constraint in (3c) and
(4c) as a linear inequality constraint. The most straightforward
way of doing this is to use the half-space representation of the
triangle. Given a 2D triangle Ti with vertices vi,1,vi,2,vi,3,
as illustrated in Figure 3, the half-space representation of a
triangle gives a set of linear inequality constraints on the form:

Aip ≤ bi.
Where Ai ∈ R3×2 and bi ∈ R3×1 is the matrix and vector
making up the halfspace, and p = [x, y]> is a position. Using
this, we can check if a position p lies within the triangle Ti,
as follows:

Aip ≤ bi ⇔ p ∈ Ti. (10)

Algorithm 1 Optimal trajectory planning. Note that evaluating
Q(·) and Q(·) involves solving the optimization problem in (3)
and (4) using numerical optimization.

Require: Adjacency graph of triangulation, initial state x0,
and goal state xf .
S∗ = []
S = [T0] where x0 ∈ T0
open list = {S}
while open list is not empty do
S = pop sequence from open list with smallest
Q(x0,S,xf)
if S∗ is not empty, and Q(x0,S,xf) ≥ Q(x0,S∗,xf)
then

return Optimal triangle sequence S∗
end if
for Triangle Tn in neighbours(S) do
Sn = extend(S, Tn)
if xf ∈ Tn then

if Q(x0,Sn,xf) < Q(x0,S∗,xf) then
S∗ = Sn

end if
else

append Sn to open list
end if

end for
end while

x

y

vi,1 vi,2

vi,3

Fig. 3: Triangle Ti, with vertices vi,1, vi,2, vi,3

The matrix Ai, and vector bi can be computed using the
triangle vertices vi,1,vi,2,vi,3 as follows:

Ai =

(vi,2 − vi,1)>R>(vi,3 − vi,2)>R>
(vi,1 − vi,3)>R>

bi =

(vi,2 − vi,1)>R>vi,1(vi,3 − vi,2)>R>vi,2
(vi,1 − vi,3)>R>vi,3

(11)

Where the matrix R is given as the ±90◦ rotation matrix,
when the triangle vertices are given in a in a clockwise/counter
clockwise direction. In the example in Figure 3, the vertices
are given in a counter clockwise direction, giving the following

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617

rotation matrix:

R =

[
0 1
−1 0

]
.

While the above linear inequality can be used to ensure
the different path segments stay within the desired triangle,
we propose a slight modification to this approach. The mod-
ification involves using a local triangle-centered coordinate
system instead of a global coordinate system for optimizing
the position within the triangle. Defining the following objects:

Ci = [vi,2 − vi,1,vi,3 − vi,2]
di = vi,1,

(12)

we define the transformation between the position p = [x, y]>

in the global coordinate system, and the position p′ =
[p′1, p

′
2]
> in the local triangle coordinate system as follows:

p = Cip
′ + di. (13)

Using the triangle transformation in (13), the position p is
constrained within the triangle when the following inequality
constraints are satisfied:

0 ≤ p′ ≤ 1

p′1 − p′2 ≤ 0,
(14)

which can be implemented directly into the optimization
problem as the triangle constraints in equation (3c) and (4c).
The reason for using this coordinate transformation is to help
normalize the variables in the optimization problem as well
as simplify the triangle constraints. This helps improve the
conditioning of the optimization problem, and gives better
performance when solving the problem.

Another consideration when solving (3) and (4), is how to
perform the integration of the cost function (3a) and (4a), and
system dynamics (3b) and (4b). In order to do this we propose
using a multiple shooting collocation based scheme [39], for
which the trajectory in each triangle is approximated by a
polynomial of degree d. This results in an optimization prob-
lem, where the objective is to find a spline where each triangle
contains a polynomial representing the trajectory through the
triangle (Figure 1d), the trajectories are then constrained to
being connected between neighbouring triangles (Figure 1e),
while at the same time satisfy the system dynamics. It is worth
noting that the trajectory within each triangle will differ in
length due to the size and shape of the triangle. This means
the a free time variable must be used for each triangle in order
to ensure the trajectory is constrained within the triangle.

In the graph search phase, some additional assumptions
were made, in order to prune and reduce the search space.

Assumption 3: The optimal path will only pass through any
given triangle T once.

Assumption 3, allows us to not extend a sequence of
triangles into a given triangle if it already appears in the
sequence. This results in a significantly smaller search space,
when searching for the optimal triangle sequence. It should
be noted that Assumption 3 is not strictly necessary, as the
proposed method will in theory work without it. It does
however significantly reduce the search space, and helps make
the method computationally feasible. The downside of this

assumption, is that the proposed planner will not allow for
maneuvers which reenter triangles, which may be optimal for
certain classes of problems.

Assumption 4: If two initial starting points x1,x2 ∈ T are
sufficiently close:

||x1 − x2||2 ≤ ε.
Then the optimal sequences of triangles S∗ to the goal will
be the same for both trajectories, and the difference between
values of the trajectories is bounded.

||Q(x1,S∗,xf)−Q(x2,S∗,xf)|| ≤ δ
Given two different triangle sequences S1 and S2, that both

end in the same triangle T , and the same endpoints x1 =
x2, x1,x2 ∈ T , where:

V (x0,S1) ≤ V (x0,S2),
we only need to continue the search from the sequence S1,
and hence can prune the sequence S2. Using Assumption 4,
we can extend the above argument to say that we can prune
sequences if the states are sufficiently close. Unfortunately,
computing the exact bounds would require completing the
trajectory, which defeats the purpose of pruning. In stead we
use the following heuristic for evaluating if two endpoints x1

and x2 are sufficiently close:

(x1 − x2)
>W (x1 − x2) ≤ ε, x1,x2 ∈ T

where W is a positive definite weighting matrix, and ε is a
sufficiently small threshold. This is a relaxation of the exact
condition for pruning, where x1 = x2, x1,x2 ∈ T , and
where the conditions are exactly the same in the limit as
ε→ 0. It should be noted that pruning potential sequences is
not strictly necessary. It is however added in order to further
reduce the search space, and hence improve the computational
complexity.

When running Algorithm 1, there may be certain triangle
sequences for which no feasible trajectory can be found due to
the constraints imposed by the vehicle dynamics, as well as ad-
ditional state and input constraints. When an infeasible triangle
sequence is found, no feasible path through the given sequence
exists, and the sequence is discarded. In practise, numerical
optimization tools are used to find the optimal trajectories and
detect infeasible solutions. In certain situations, the numerical
optimization tools may not return a feasible solution even
though a feasible solution theoretically does exist. This can
typically be mitigated using good initial guesses for the
trajectory. For the proposed planner, the optimal trajectory
from the previous triangle sequence can be used as one such
initial guess. In addition to improving feasibility, using such
an initial guess will typically also improve the computation
time, as a good initial guess will result in fewer iterations
when solving the optimization problem in (3) and (4).

Given algorithm 1, we can note that it is possible to
paralellize the exploration of new triangle sequences. This
is possible, as the exploration of possible sequences is not
dependant on other sequences, however it requires some extra
considerations in the termination criteria. For our implemen-
tation, this property was exploited in order to explore multiple

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617

MARTINSEN et al.: OPTIMAL MODEL-BASED TRAJECTORY PLANNING WITH STATIC POLYGONAL CONSTRAINTS 7

0 2 4 6 8

1

2

3

4

5

6

(a) Constraints, without tri-
angulation.

0 2 4 6 8
0

1

2

3

4

5

6

7

(b) Constraints, with trian-
gulation.

Fig. 4: Polygonal spatial constraints, and the resulting CDT

sequences in parallel. It should be noted that if an exact
heuristic function is known, the paralellization will not give a
speedup, as the optimal sequence of triangles will always be
the first to be explored. If however a poor heuristic function is
used, parallelization will typically give a speedup, as it allows
for multiple triangle sequences to be explored simultaneously.

III. EXAMPLES

In order to validate the method, we test it on a simple
kinematic car model in in a confined environment, and com-
pare to a Rapidly-exploring Random Tree based approach. To
further prove the versatility of the method we also show it on
a test scenario in trajectory planning for marine vessels in the
Trondheim fjord, for which we use it to plan trajectories that
minimize time, distance as well as energy.

A. Trajectory planning for a simple kinematic car model

1) Simple kinematic car model: In order to verify the
proposed method we will in this section show how it can
be applied to planning distance optimal paths for a simple
kinematic car model on the form:ẋẏ

ψ̇

︸︷︷︸

ẋ

=

cos(ψ)vsin(ψ)v
r

︸ ︷︷ ︸

f(x,u)

(15)

where x, y is the position, ψ is the heading, v is the velocity,
and r is the turning rate. Using the constant speed v = 1,
we are left with an under actuated system where the turning
rate is the control variable u = r. This type of model is
often used robotics and control theory when planning paths
for wheeled robots, airplanes and underwater vehicles. As
the model offers a simple geometric approximation of the
maneuvering capabilities of these types vehicles.

2) Spatial constraints: In order to validate the proposed
method, the simple set of spatial constraints, seen in Figure
4a, were devised. Given the polygonal representation, the CDT
was computed, giving the triangulation in Figure 4b

3) Optimization objective: The objective for the optimization
problem, is to find the shortest path between two points. The

instantaneous is then given by the path integral as follows:

J(x,u, t) =

√(
dx

dt

)2

+

(
dy

dt

)2

=

√
(cos(ψ)v)

2
+ (sin(ψ)v)

2

= |v|
= 1.

(16)

It should be noted, that given a maximum turning rate, and the
vehicle traveling at constant speed, the distance optimal path
from one point to an other can be shown to be a Dubins path
[21], which consists of straight lines and circles segments of
maximum curvature.

4) Results: As the optimal path is known to be a Dubins
path, a Dubins based RRT method [40] is used for compar-
ison, as RRT based methods are the most commonly used
approaches for motion planning for robotic applications when
faced with spatial constraint. Given the spatial constraint in
Figure 4, we get the resulting planned path in Figure 5. From
the results we see that one of the major flaws of the Dubins
based RRT method is that it performance is highly dependant
on the randomly sampled nodes, which are used to select way
points. For RRT, finding a feasible path is fairly quick, and
it is possible to continue to optimize the path by generating
new nodes. Further optimizing the path can often be very time
consuming, as the RRT path can only guarantee converge to
the optimal path as the number of sampled nodes approaches
infinity [41]. For our proposed approach however, if a feasible
path is found it is guaranteed to be optimal. This is verified in
the results, where we can observe that our approach generates
a path which is very similar to a Dubins path, and finds the
shortest path that gets close to, but does not intersect the spatial
constraints. In real time planning, where finding a feasible
path in a short period of time is important, sampling based
methods such as RRT will still be the better choice. However,
if the goal is to find the optimal path in a finite amount of
time, our proposed approach will be the better option, with
our implementation of the optimization based planner using
an average of 3.24 seconds for planning the optimal trajectory
in Figure 5a.

B. Trajectory planning for an autonomous surface vessel
In the field of marine robotics, motion planning is an

important problem, which has seen a lot of interest. Given
the complex vessel dynamics, as well as complex non-convex
spatial constraints, the motion planning problem becomes very
difficult. Because of this, most existing solutions heavily rely
on simplifying the problem, this however results in loss of
accuracy and optimality of the final solution. In this example
we will show how our proposed planning algorithm can
be used for optimal trajectory planning for an Autonomous
Surface Vessel (ASV) in the Trondheim harbour.

1) Vessel model: As a model for the trajectory optimization,
we will use a vessel model, where we assume the vessel moves
on the ocean surface in a relatively large range of possible
velocities. In addition to this, we assume that the effects of the
roll and pitch motions of the vessel are negligible, and hence

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617

0 2 4 6 8

1

2

3

4

5

6

(a) Our approach. The red
dashed line shows the fi-
nal optimized path, while
the arrows show the direc-
tion of travel, when mov-
ing between the start and
end point marked with blue
dots.

0 2 4 6 8
0

1

2

3

4

5

6

7

(b) Dubins based RRT. The
red dashed line is the fi-
nal path, yellow dots show
sampled nodes, while the
blue lines show explored
dubins paths between the
sampled nodes.

Fig. 5: Results for path generated by our proposed approach
and Dubins based RRT.

(x, y)

E

N

u

v

ψ

Fig. 6: 3-DOF vessel centered at (x, y), with surge velocity
u, sway velocity v, heading ψ in a North-East-Down (NED)
reference frame.

have little impact on the surge, sway, and yaw of the vessel.
The mathematical model used to describe the system can then
be kept reasonably simple by limiting it to the planar position
and orientation of the vessel. The motion of a surface vessel
can be represented by the pose vector η = [x, y, zr, zi]

> ∈ R4,
and the velocity vector ν = [u, v, r]> ∈ R3. Here, (x, y)
describe the Cartesian position in the earth-fixed reference
frame, (zr, zi) is a complex number of unit length |z| =
|zr + i · zi| = 1 describing the vessel orientation, where
ψ = atan2(zi, zr) is yaw angle, (u, v) is the body fixed linear
velocities, and r is the yaw rate, an illustration is given in
Figure 6. Using the notation in [42] we can describe a 3-DOF
vessel model as follows

η̇ = J(η)ν, (17)
Mν̇ +C(ν)ν +D(ν)ν = τ , (18)

where M ,C(ν),D(ν) ∈ R3×3, τ ∈ R3 and J(η) are the
inertia matrix, coriolis matrix, dampening matrix, control input
vector, and transformation matrix respectively. The transfor-
mation matrix J(η) is given by

J(η) =

zr −zi 0
zi zr 0
0 0 −zi
0 0 zr

 , (19)

(a) Map, without triangula-
tion. (b) Map, with triangulation.

Fig. 7: Map of the Trondheim fjord, based on polygons
representing land masses.

and is the transformation from the body frame to the earth-
fixed reference frame. Using the unit complex numbers in
stead of a heading angle allows the the dynamics to avoid the
angle wraparound problem, which avoids local optima when
performing trajectory optimization. For the model dynamics
M ,C(ν),D(ν), parameters for a simplified model of the
milliAmpere experimental platform was used, where:

M =

2138 0 0
0 2528 0
0 0 3942

 (20)

C(ν)ν +D(ν)ν =

10.3u+ 114.6|u|u− 2528vr
13.0v + 200.8|v|v + 2138ur
201.0r + 424.1|r|r + 390uv

 . (21)

For the thrust configuration, one rotatable azimuth thruster is
assumed, giving the following thrust vector:

τ =

 u1 cos(u2)
u1 sin(u2)
−2u1 sin(u2)

 , (22)

Where 0 ≤ u1 ≤ 400 is the thruster force, and −45◦ ≤ u2 ≤
45◦ the thruster angle.

2) Spatial constraints: Using a map where landmasses are
represented by polygons, a CDT is created, where all edges of
the polygons are treated as constraints. Doing this ensures that
the resulting triangulation has triangles that do not intersect
land. The resulting triangulation mesh is shown in Figure 7.
While the whole map of the Trondheim fjord is used, for the
example, only a small portion of the map was relevant as the
start and goal positions were selected within the Trondheim
harbour.

3) Optimization objective: Depending on the use-case, any
optimization objective satisfying Assumption 1 can be se-
lected. In this paper we will show three commonly used
objectives, namely time minimization, distance minimization,
and energy minimization.

Minimum time: In terms of instantaneous cost, the time
minimization is the simplest optimization objective. where:

J(x,u, t) = 1. (23)

This gives the path integral optimization problem as follows:∫ tN

t0

1 dt. (24)

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617

MARTINSEN et al.: OPTIMAL MODEL-BASED TRAJECTORY PLANNING WITH STATIC POLYGONAL CONSTRAINTS 9

Minimizing the above expression then equates to minimizing
the total time, tN − t0, of the the trajectory, with boundary
conditions given by the initial and final state.

For the heuristic function of the minimum time, we chose
the time taken traveling in a straight line from the given state
xN to the desired terminal state xf , at the maximum vessel
speed Umax. Giving the following heuristic function:

h(xN ,xf) =

√
(xN − xf)2 + (yN − yf)2

Umax
. (25)

Intuitively, we can see that this is an admissible heuristic, as
it represents the time of traveling the shortest possible path, at
the highest speed possible, hence it will always underestimate
the time of a feasible trajectory.

Minimum distance: In terms of minimizing distance, we can
observe that the instantaneous cost of a trajectory given by the
north, and east coordinates x(t) and y(t) respectively, is given
as the instantaneous arc length:√(

dx

dt

)2

+

(
dy

dt

)2

. (26)

From the kinematics we note that the square of the instanta-
neous cost can be rewritten as:

ẋ2 + ẏ2 =cos(ψ)2u2 + sin(ψ)2v2 − cos(ψ) sin(ψ)uv

+sin(ψ)2u2 + cos(ψ)2v2 + cos(ψ) sin(ψ)uv

=(cos(ψ)2 + sin(ψ)2)(u2 + v2)

=u2 + v2,

(27)

giving the following instantaneous cost.

J(x,u, t) =
√
u2 + v2 (28)

This gives the path integral optimization problem as follows:∫ tN

t0

√
u2 + v2 dt. (29)

Theoretically optimizing the above problem should give the
shortest path, however for most optimization algorithms, the
objective must be smooth and continuously differentiable,
which is not the case when the square root is used. In order
to ensure the function is continuously differentiable, a small
positive number ε > 0 is added, giving the following smooth
approximation of the path integral:∫ tN

t0

√
u2 + v2 + ε dt. (30)

For the heuristic function of the minimum distance, we
simply chose the euclidean distance from the given state xN

to the desired terminal state xf .

h(xN ,xf) =
√

(xN − xf)2 + (yN − yf)2 (31)

Intuitively, we can see that this is an admissible heuristic, as
represents the straight line path, which is the shortest possible
path between two points. This means that it will always
underestimate the length of a feasible trajectory.

1000 800 600 400 200 0 200 400 600
800

600

400

200

0

200

400

600

800

300

400

500

600

700

800

(a) Space of searched
triangles (colored by the
value function lower bound
Q(·)), with time optimal
trajectories to the fringes
given as solid lines.

400 200 0 200 400

600

400

200

0

200

0

100

200

300

400

500

600

700

800

(b) Sequence of triangles
(colored by the free end-
point value function V (·))
for the minimum time tra-
jectory, within which the
trajectory refinement is per-
formed.

Fig. 8: Search space and triangulation for minimum time
trajectory.

Minimum energy: In many problems, it is often useful to
minimize the energy usage. In the case of marine vessels,
minimizing energy usage, equates to better fuel efficiency, and
less pollution. For moving objects, the quantity of work over
time (power) is integrated along the trajectory of the point of
application of the force. This gives the instantaneous power
as the scalar product of the force/torque and the linear/angular
velocity.

τ>ν (32)

In general, power regeneration and recapture is not possible
for marine vessels, In order to account for this we in stead
use the absolute instantaneous power, giving the following
instantaneous cost:

J(x,u, t) = |X · u|+ |Y · v|+ |N · r|, (33)

where the thrust vector is given as τ = [X,Y,N]>, and
velocity vector is given as ν = [u, v, r]. This gives the path
integral optimization problem as follows:∫ tN

t0

|X · u|+ |Y · v|+ |N · r| dt. (34)

Similarly to the minimum distance formulation, the absolute
value is none smooth and the derivative not defined at 0, in
order to avoid this problem, we again use an approximation
of the absolute value giving the following path integral to be
optimized.∫ tN

t0

√
(X · u)2 + ε+

√
(Y · v)2 + ε+

√
(N · r)2 + ε dt.

(35)
For the heuristic function of the minimum energy, it is

difficult to find a good estimate for the cost to go from a
given state xN to the desired terminal state xf . Hence the
heuristic:

h(xN ,xf) = 0 (36)

is chosen. This is in general a poor estimate of the cost to go,
and will result in a larger number of triangles being explored,
but it is an admissible heuristic and hence satisfies Assumption
2.

10 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617

400 200 0 200 400
500

400

300

200

100

0

100

200

0 200 400 600 800

0

0.5

1

1.5

Su
rg

e
[m
/s
]

0 200 400 600 800

-0.1

0.0

0.1

0.2

0.3

Sw
ay

[m
/s
]

0 200 400 600 800

−100

0

100

H
ea

di
ng

[d
eg
]

0 200 400 600 800
−3

−2

−1

0

Y
aw

[d
eg
/s
]

Fig. 9: Minimum time path

400 200 0 200 400
500

400

300

200

100

0

100

200

0 200 400 600 800 1,000

0

0.5

1

1.5

Su
rg

e
[m
/s
]

0 200 400 600 800 1,000

-0.2

0.0

0.2

0.4

Sw
ay

[m
/
s]

0 200 400 600 800 1,000

−100

0

100

H
ea

di
ng

[d
eg
]

0 200 400 600 800 1,000

−2

0

2

Y
aw

[d
eg
/
s]

Fig. 10: Minimum distance path

4) Results: To visualize the proposed algorithm during the
search phase, the value functions are shown in Figure 8.
For the three different optimization objectives, the resulting
trajectories from the trajectory planner are given in Figures
9, 10 and 11 for the time, distance and energy minimization
problems respectively. For the energy minimization problem,
it is important to note that the any actuation of the control
surfaces will result in energy being used, hence the optimal
action would be to not move. In order to fix this, a terminal
constraint was added on the time, in order to ensure the
trajectory would be complete within 1200 seconds.

From the performance measure comparison in Table I, we
can see that the different optimization objectives perform as
expected, as they each minimize their respective objectives.
For the minimum time objective, we can see that the speed in
the surge direction is close to the maximum for most of the
duration of the trajectory, this is what results in the minimum
time trajectory, but comes at the cost of a slightly longer
trajectory in terms of distance, and a significantly larger energy
consumption. For the minimum distance trajectory we see a
more erratic behaviour, especially in the surge direction. This
pattern of speeding up and slowing down, is what allows the
vessel to take tight corners, and hence minimize the distance,
however due to the trajectory dynamics, the resulting distance
is only slightly shorter than that of the other two optimization
objectives. For the minimum energy trajectory, the behaviour
is similar to that of the minimum time objective, with the main
difference being a lower surge speed. This behaviour is due
to the nonlinear drag, which makes lower speeds more energy
efficient.

400 200 0 200 400
500

400

300

200

100

0

100

200

0 200 400 600 800 1,000 1,200

0

0.5

1

Su
rg

e
[m
/s
]

0 200 400 600 800 1,000 1,200
-0.1

0.0

0.1

0.2

0.3

Sw
ay

[m
/s
]

0 200 400 600 800 1,000 1,200

−100

0

100

H
ea

di
ng

[d
eg
]

0 200 400 600 800 1,000 1,200

−2

−1

0

Y
aw

[d
eg
/s
]

Fig. 11: Minimum energy path

0 200 400 600 800
−0.1

0

0.1

κ
[1
/
m
] Minimum time

0 200 400 600 800 1,000
−0.1

0

0.1

κ
[1
/
m
] Minimum distance

0 200 400 600 800 1,000 1,200
−0.1

0

0.1

κ
[1
/
m
] Minimum energy

Fig. 12: Trajectory curvature resulting from the different
optimization objectives.

A useful tool for evaluating a the feasibility of a trajectory,
is the trajectory curvature κ.

κ =
ẋ · ÿ − ẏ · ẍ
(ẋ2 + ẏ2)

3
2

(37)

One of the reasons for the curvature being used as a way of
evaluating trajectory feasibility, is that most vessels have a
limit on the maximum possible path curvature. This has lead
to the widespread use of Dubins paths [21] which consist of
straight line segments and circle arcs with maximum curvature,
giving path with piecewise constant curvature. These paths
have been shown to be the shortest path for a vehicle that only
travels forward, and has a constraint on max curvature. The
Dubins path however does not consider the underlying system
dynamics, hence a dubins path is no longer optimal once the
dynamics are considered. This is illustrated in Figure 12 where
the curavature is continuous, similar to [8]. From the curvature
results it is worth noting the difference in curvature between
the different optimization objectives. For the minimum time
objective a higher speed is desired, hence the curvature is
small allowing for taking turns at higher speeds. For the
minimum distance trajectory, we can observe spikes of very
high curvature, which is what we expect as the shortest path
will consist only of straight line segments. For the minimum
energy trajectory, we see similar results to that of the minimum
time path, however the peak curvature is slightly higher, as a
result of the velocities being lower.

For the implementation of Algorithm 1 used to solve the
trajectory planning problem, we achieved the algorithm run-
ning time given in Table II. The timing shows the results for
running the algorithm sequentially, as well as the performance
when running the algorithm with 4 and 8 parallel workers. In
theory, increasing the number of workers, should not lead to
slower running times. In practise however, there is a overhead
associated with each additional worker. This is reflected in
the results for the minimum time and minimum distance ob-
jectives, where the sequential approach outperforms multiple
workers. For the minimum energy approach however, we see

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617

MARTINSEN et al.: OPTIMAL MODEL-BASED TRAJECTORY PLANNING WITH STATIC POLYGONAL CONSTRAINTS 11

Trajectory Time [s] Distance [m] Energy [kJ]
Minimum Time 811.81 1460.97 584.82
Minimum Distance 1025.82 1450.58 484.70
Minimum Energy 1200.00 1456.20 269.96

TABLE I: Performance measure

Sequential 4 workers 8 workers
Minimum Time 4min 28s 6min 1s 7min 19s
Minimum Distance 6min 40s 6min 49s 8min 36s
Minimum Energy 18min 36s 15min 4s 13min 5s

TABLE II: Time required for solving the different problems
using the sequential approach, as well as 4 and 8 parallel
workers.

that increasing the number of workers improves the solution
time. This is due to the poor choice of heuristic function,
resulting in having to search a larger part of the search
space, and hence the ability to evaluate multiple sequences
simultaneously, outweighs the overhead of having multiple
workers. It should be noted that the timing result in Table
II, will vary greatly with implementation and hardware, and
a more optimized implementation is likely to significantly
improve the running time.

IV. CONCLUSION

In this paper, we have proposed a method for planning and
optimizing trajectories in an environment with static polygonal
obstacles, and where the trajectories must be feasible with
respect to model dynamics. Under some mild assumptions, we
show that the method is able to plan globally optimal trajecto-
ries, even when faced with highly non-convex obstacles. The
proposed method does however have some drawbacks. The
main drawback being computational requirements, which is
due to each iteration of the search phase requiring the solution
of a numerical optimization problem. As well as the number
of decision variables for the optimization problems increasing
linearly with the number of triangles the trajectory passes
through. Another important limitation of the proposed method
is that the dynamics of the system is approximated by a single
polynomial within each triangle, this can cause problems for
large triangles and complex dynamical models, where the
polynomial is not sufficiently rich to accurately capture the
dynamics. Despite these limitations, the proposed method
shows great promise based on simulation results. Offering
great flexibility both in terms of environment complexity,
model complexity, as well as optimization objective.

For future work, one of the main concerns would be to
improve the computational efficiency. Some potential methods
for doing so, include fixing the trajectory after a certain
number of triangles in order to reduce the number of decision
variables at later stages, or developing better heuristics to
reduce or limit the search space. Work can also be done on how
to best select a numerical integration scheme to better balance
accuracy, flexibility, and computational efficiency. Similarly,
methods for further decomposing the triangulation may also be
used to improve accuracy, especially in large triangles, or when
performing complex maneuvers. It may also be interesting to
add additional environmental disturbances to the problems.

This would be especially useful in the case of vessel motion
planning, where wind and current may greatly impact the
performance.

REFERENCES

[1] A. Wolek and C. A. Woolsey, “Model-based path planning,” in Sensing
and Control for Autonomous Vehicles. Springer, 2017, pp. 183–206.

[2] G. Bitar, M. Breivik, and A. M. Lekkas, “Energy-optimized path
planning for autonomous ferries,” IFAC-PapersOnLine, vol. 51, no. 29,
pp. 389–394, 2018.

[3] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[4] M. Kallmann, “Path planning in triangulations,” in Proceedings of the

IJCAI workshop on reasoning, representation, and learning in computer
games, 2005, pp. 49–54.

[5] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[6] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, “A voronoi-diagram-
based dynamic path-planning system for underactuated marine vessels,”
Control Engineering Practice, vol. 61, pp. 41–54, 2017.

[7] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential
field techniques for robot path planning,” IEEE transactions on systems,
man, and cybernetics, vol. 22, no. 2, pp. 224–241, 1992.

[8] A. M. Lekkas, A. R. Dahl, M. Breivik, and T. I. Fossen, “Continuous-
curvature path generation using fermat’s spiral,” Modeling, Identification
and Control, vol. 34, no. 4, p. 183, 2013.

[9] P. Jacobs and J. Canny, “Planning smooth paths for mobile robots,” in
Nonholonomic Motion Planning. Springer, 1993, pp. 271–342.

[10] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for
smoothing mobile robot trajectories,” IEEE transactions on robotics and
automation, vol. 11, no. 3, pp. 441–448, 1995.

[11] K. Judd and T. McLain, “Spline based path planning for unmanned air
vehicles,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, 2001, p. 4238.

[12] J. Pan, L. Zhang, D. Manocha, and U. Hill, “Collision-free
and curvature-continuous path smoothing in cluttered environments,”
Robotics: Science and Systems VII, vol. 17, p. 233, 2012.

[13] A. M. Lekkas and T. I. Fossen, “Integral los path following for curved
paths based on a monotone cubic hermite spline parametrization,” IEEE
Transactions on Control Systems Technology, vol. 22, no. 6, pp. 2287–
2301, 2014.

[14] C. L. Bottasso, D. Leonello, and B. Savini, “Path planning for au-
tonomous vehicles by trajectory smoothing using motion primitives,”
IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp.
1152–1168, 2008.

[15] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[16] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

[17] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378–
400, 2001.

[18] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Robotics Science and Systems VI, vol.
104, no. 2, 2010.

[19] S. Carpin and G. Pillonetto, “Motion planning using adaptive random
walks,” IEEE Transactions on Robotics, vol. 21, no. 1, pp. 129–136,
2005.

[20] ——, “Merging the adaptive random walks planner with the random-
ized potential field planner,” in Proceedings of the Fifth International
Workshop on Robot Motion and Control, 2005. RoMoCo’05. IEEE,
2005, pp. 151–156.

[21] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents,” American Journal of mathematics, vol. 79, no. 3, pp. 497–516,
1957.

[22] J. Reeds and L. Shepp, “Optimal paths for a car that goes both forwards
and backwards,” Pacific journal of mathematics, vol. 145, no. 2, pp.
367–393, 1990.

[23] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp.
34–37, 1966.

12 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, DOI: 10.1109/TCST.2021.3094617

[24] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proceed-
ings of the IEEE international conference on neural networks, vol. 4.
Citeseer, 1995, pp. 1942–1948.

[25] J. Kennedy and R. C. Eberhart, “A discrete binary version of the particle
swarm algorithm,” in 1997 IEEE International conference on systems,
man, and cybernetics. Computational cybernetics and simulation, vol. 5.
IEEE, 1997, pp. 4104–4108.

[26] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct
solution of optimal control problems,” IFAC Proceedings Volumes,
vol. 17, no. 2, pp. 1603–1608, 1984.

[27] C. R. Hargraves and S. W. Paris, “Direct trajectory optimization using
nonlinear programming and collocation,” Journal of guidance, control,
and dynamics, vol. 10, no. 4, pp. 338–342, 1987.

[28] F. Fahroo and I. M. Ross, “Direct trajectory optimization by a chebyshev
pseudospectral method,” Journal of Guidance, Control, and Dynamics,
vol. 25, no. 1, pp. 160–166, 2002.

[29] O. Ljungqvist, N. Evestedt, M. Cirillo, D. Axehill, and O. Holmer,
“Lattice-based motion planning for a general 2-trailer system,” in 2017
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 819–824.

[30] K. Bergman, O. Ljungqvist, J. Linder, and D. Axehill, “An optimization-
based motion planner for autonomous maneuvering of marine vessels in
complex environments,” in 2020 59th IEEE Conference on Decision and
Control (CDC). IEEE, 2020, pp. 5283–5290.

[31] G. Bitar, V. N. Vestad, A. M. Lekkas, and M. Breivik, “Warm-started
optimized trajectory planning for asvs,” IFAC-PapersOnLine, vol. 52,
no. 21, pp. 308–314, 2019.

[32] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained
optimal path planning with obstacles,” IEEE Transactions on Robotics,
vol. 27, no. 6, pp. 1080–1094, 2011.

[33] T. Schoels, P. Rutquist, L. Palmieri, A. Zanelli, K. O. Arras, and
M. Diehl, “CIAO∗: Mpc-based safe motion planning in predictable
dynamic environments,” IFAC-PapersOnLine, vol. 53, no. 2, pp. 6555–
6562, 2020.

[34] A. B. Martinsen, A. M. Lekkas, and S. Gros, “Autonomous docking
using direct optimal control,” IFAC-PapersOnLine, vol. 52, no. 21, pp.
97–102, 2019.

[35] H. Yan, H. Wang, Y. Chen, and G. Dai, “Path planning based on
constrained delaunay triangulation,” in 2008 7th World Congress on
Intelligent Control and Automation. IEEE, 2008, pp. 5168–5173.

[36] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-based motion planning
for autonomous guided vehicles in a dynamic environment,” IEEE
Transactions on Control Systems Technology, vol. 26, no. 6, pp. 2182–
2189, 2017.

[37] L. P. Chew, “Constrained delaunay triangulations,” Algorithmica, vol. 4,
no. 1-4, pp. 97–108, 1989.

[38] F. P. Preparata and M. I. Shamos, Computational geometry: an intro-
duction. Springer-Verlag, 1985.

[39] T. Tsang, D. Himmelblau, and T. F. Edgar, “Optimal control via collo-
cation and non-linear programming,” International Journal of Control,
vol. 21, no. 5, pp. 763–768, 1975.

[40] D. Živojević and J. Velagić, “Path planning for mobile robot using
dubins-curve based rrt algorithm with differential constraints,” in 2019
International Symposium ELMAR. IEEE, 2019, pp. 139–142.

[41] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846–894, 2011.

[42] T. I. Fossen, Handbook of marine craft hydrodynamics and motion
control. John Wiley & Sons, 2011.

View publication statsView publication stats

HTTPS://DOI.ORG/10.1109/TCST.2021.3094617
https://www.researchgate.net/publication/353592487

	Introduction
	Method
	Triangulation and adjacency graph
	Graph search
	Trajectory refinement
	Complete method
	Implementation considerations

	Examples
	Trajectory planning for a simple kinematic car model
	Simple kinematic car model
	Spatial constraints
	Optimization objective
	Results

	Trajectory planning for an autonomous surface vessel
	Vessel model
	Spatial constraints
	Optimization objective
	Results

	Conclusion
	References

