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A complete pipeline is presented for accurate and efficient partial 3D object retrieval based on Quick In- 

tersection Count Change Image (QUICCI) binary local descriptors and a novel indexing tree. It is shown 

how a modification to the QUICCI query descriptor makes it ideal for partial retrieval. An indexing struc- 

ture called Dissimilarity Tree is proposed which can significantly accelerate searching the large space of 

local descriptors; this is applicable to QUICCI and other binary descriptors. The index exploits the dis- 

tribution of bits within descriptors for efficient retrieval. The retrieval pipeline is tested on the artificial 

part of SHREC’16 dataset with near-ideal retrieval results. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1

t

c

i

h

p

t

i

m

t

t

b

a

s

p

j

t

p

I

(

C

m

n

p

p  

m

S  

a

2

h

0

(

. Introduction 

There exist many circumstances in which it is desirable to de- 

ermine which larger object a smaller surface patch belongs to; oc- 

lusions and missing parts can result in this problem. This problem 

s known as Partial 3D Object Retrieval , and a number of methods 

ave been proposed to date which address it [1–3] and finds ap- 

lication in areas such as archaeology [4,5] . 

One successful strategy for partial 3D object retrieval is using 

he descriptiveness of local shape descriptors, as local surface sim- 

larity tends to be maintained when other parts of the object are 

issing. A problem with retrieval using local shape descriptors is 

he large number of such descriptors that are generated, poten- 

ially one for every vertex. This can be somewhat counteracted 

y using a salient point detector, but then the retrieval quality is 

ffected by the consistency of this detector. An efficient indexing 

cheme is therefore called for. 

To address this issue, a complete pipeline is presented in this 

aper which is capable of indexing and retrieving arbitrary 3D ob- 

ects based on partial queries. Under ideal circumstances the sys- 

em can achieve near perfect retrieval, even with low degrees of 

artiality, within reasonable time constraints. 
This article has been certified as Replicable by the Graphics Replicability Stamp 
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The pipeline utilises the recently introduced Quick Intersection 

ount Change Image (QUICCI) descriptor [6] whose binary nature 

akes it storage-efficient and fast to compare. 

As part of this complete partial retrieval pipeline, the following 

ovelties are introduced: 

1. An indexing scheme called “Dissimilarity Tree” for efficiently 

retrieving binary descriptors, especially nearest neighbours 

with high Hamming distance. 

2. An algorithm for accelerating partial 3D object retrieval using 

the aforementioned indexing scheme. 

3. An adaptation of the QUICCI descriptor generation process to 

greatly improve its performance in partial 3D object retrieval 

applications. 

The primary descriptor and distance function used in this 

ipeline, along with relevant background, is given in Section 2 . The 

ipeline is described at a high level in Section 3 , and the two other

ain contributions which are used in this pipeline are detailed in 

ections 4 and 5 . The various methods are evaluated in Section 6 ,

nd some aspects of those are discussed in Section 7 . 

. Related work 

The problem of Partial Object Retrieval has to date received sig- 

ificant attention, both using global and using local descriptors. 

 number of binary descriptor indexing strategies have also been 

roposed. This work builds upon the QUICCI local descriptor and 

he Weighted Hamming distance function, which are discussed in 

etail. 
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Fig. 1. Visualisation of a 4x4-bit QUICCI descriptor construction along with the cor- 

responding generated descriptor. White pixels in the descriptor image correspond 

to a bit value set to 1 (i.e. intersection counts changed), and 0 otherwise. 
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.1. Partial object retrieval 

Partial Object Retrieval approaches presented to date can be 

ivided into three main categories; Bag of Visual Words (BoVW) 

ased, View-based, and Part-based [2,3] . Other methods also exist, 

ddressing particular applications such as CAD shape retrieval [7] . 

BoVW based methods use local feature descriptors to exploit 

hat from the perspective of a local neighbourhood, shapes in a 

uery remain similar to those in the corresponding object in a 

atabase. Lavou et al. [8] segment a surface into small patches, 

nd compute a codebook for each patch. Object classification is 

ubsequently done by matching new patches against words in the 

odebook. Savelonas et al. [9] propose an extension to the FPFH 

10] descriptor called dFPFH , which is used for both local and 

lobal matching in their retrieval pipeline. Ohbuchi et al. [11] com- 

ine the BoVW and the view-based paradigm by computing a bag 

f features over range images of an object rendered from different 

iewpoints, and comparing features of a query against those in a 

odebook. More recently, Dimou et al. [12] used features computed 

rom patches from segmented depth images. 

Part-based methods use segmentation to divide a shape into 

maller distinct patches, computing one feature vector for each of 

hem, then match these against a database of feature vectors from 

ther parts. Agathos et al. [13] used a graph of segmented parts 

o locate objects with a similar structure. Tierny et al. [14] used 

eeb graphs for both segmenting and encoding relationships be- 

ween surface patches for partial object retrieval. Furuya et al. 

15] proposed the RSVP algorithm, which partitions an object into 

andom cuboid volumes, and describes each partition as a binary 

tring, against which other parts can be matched. They, and oth- 

rs, [16] later utilised a Siamese-like network pair to project hand- 

rafted features extracted from segmented parts into a common 

eature space, allowing for fast surface patch comparison. 

View-based methods are able to adapt work on image match- 

ng and recognition to 3D shapes. Examples of such methods in- 

lude work by Axenopoulos et al. [17] , who proposed a combi- 

ation of several features computed from object silhouette out- 

ines to create the Compact Multi-View Descriptor (CMVD). The 

IFT local feature [18] is used by several methods on images ex- 

racted from 3D shapes [17,19] . One specific example is work by 

fikas et al. [4] , where the Authors used the PANORAMA descrip- 

or [20] for matching parts of archaeological to complete objects. 

ore recently, Tashiro et al. [1] proposed a pipeline relying exten- 

ively on the SURF [21] local feature descriptor. 

In the SHREC’16 Partial 3D Object Retrieval track [22] , a num- 

er of additional view-based methods were introduced. Aono et al. 

resented three variant methods which each encoded KAZE fea- 

ures [23] extracted from different object views with Vector of Lo- 

ally Aggregated Descriptors (VLAD) [24] , Gaussian of Local Distri- 

ution (GOLD) [25] , and Fisher Vectors (FV) [26] . Pickup et al. used

 variant of the view-based method by Lian et al. [27] , using ren-

ered views and SIFT descriptors to find matching points. 

.2. The QUICCI local binary descriptor 

The Quick Intersection Count Change Image, proposed by van 

lokland et al. [6] , is a binary descriptor which captures changes in 

ntersection counts between circles and an object’s surface. These 

ircles are laid out in layers, where each layer contains circles with 

inearly increasing radii. A visualisation of this structure can be 

een in Fig. 1 . 

As can be seen in the Figure, a grid of 4x4 circles is intersecting 

 3D surface. A total of 5 circles intersect with this surface, and the 

emainder do not. To its right the corresponding QUICCI descriptor 

s shown, where black pixels indicate a bit value of 0, and white 

 value of 1. Note that each bit has a corresponding circle, where 
33 
he bit in the bottom left corner of the descriptor is mapped to the 

nnermost circle on the bottom layer. 

Each bit in the descriptor denotes whether the number of in- 

ersections between the circle corresponding to that bit, and the 

ircle one step smaller on the same layer, has changed. In the Fig- 

re, the bottom right 2x2 bits all have corresponding circles which 

ntersect the object surface, which causes a response in the bottom 

alf of column 3, but not in the bottom half of column 4, as the

ntersection counts did not change. 

The resulting descriptor will commonly show outlines of sur- 

aces present near the oriented point around which the descrip- 

or is generated. This point lies at the centre of the grid of circles, 

hich on the descriptor corresponds to the grid point closest to 

he arrow’s head in Fig. 1 . 

.3. Weighted hamming distance function 

There exist two possible bit errors when comparing a pair of 

inary descriptors (corresponding to a query shape and a target 

hape from a database, respectively) using a bitwise distance func- 

ion such as Hamming distance. A type A error occurs when a bit 

et to 1 in the query is set to 0 in the target, and a type B error

epresents the case where a bit set to 0 in the query is set to 1 in

he target. The Hamming distance function considers both of these 

it errors as equivalent in importance. 

Meanwhile, the Weighted Hamming distance function proposed 

y van Blokland et al. [6] observes that it may not always be desir-

ble to weigh both types of bit errors equally. In the case of QUICCI 

escriptors, bits set to 1 represent surface outlines. A good match 

ust also contain these bits, but may also include others due to 

esponses from other geometry. For QUICCI descriptors the type A 

rror is therefore more important than the type B error. 

The Weighted Hamming distance function normalises the con- 

ribution of each bit error type by the total number of such errors 

hat can occur, thereby weighting the importance of each bit er- 

or type equally as a group. Thus the Weighted Hamming distance 

unction is asymmetric. In a sparse descriptor, this implies that a 

ype A error is weighted much more than a type B error. The dis- 

ance function is listed in Eq. 1 . 

W H (D q , D t ) = 

∑ N 
r=1 

∑ N 
c=1 (D q [ r, c](1 − D t [ r, c])) 

max ( 
∑ N 

r=1 

∑ N 
c=1 D q [ r, c] , 1) 

+ 

∑ N 
r=1 

∑ N 
c=1 ((1 − D q [ r, c]) D t [ r, c]) 

max (N − ∑ N 
r=1 

∑ N 
c=1 D q [ r, c] , 1) 

(1) 

Where D q and D t are respectively the query and target descrip- 

ors being compared, D [ r, c] represents the bit at row r and column 

of descriptor D , and the size of the descriptor is N xN bits. 

Experiments by van Blokland et al. showed that using the 

eighted Hamming distance function resulted in improved re- 

rieval performance relative to Hamming distance of QUICCI de- 

criptors when additive noise was applied. 
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.4. Indexing of binary descriptors 

The need for indexing binary descriptors commonly arises in 

lgorithms representing shape features as binary descriptors, but 

lso in other fields such as dimensionality reduction through 

ocality-Sensitive Hashing (LSH) [28] . Some popular methods util- 

sing LSH include Minhash proposed by Broder et al. [29,30] and 

imhash [31] by Sadowski et al. 

There exist a number of methods which produce and compare 

inary shape features, such as BRIEF by Calonder et al. [32] , an ex-

ension called ORB by Rublee et al. [33] , and BRISK by Leuteneg- 

er et al. [34] . A binary descriptor which has specifically been pro- 

osed for 3D point matching is B-SHOT by Prakhya et al. [35] , and

he aforementioned QUICCI descriptor by van Blokland et al. [6] . 

Local binary descriptors are often produced in large quantities, 

hich raises the need for acceleration structures capable of effi- 

iently locating nearest neighbours in Hamming space. A number 

f methods have been proposed for this purpose [36–39] . Unfor- 

unately, these initial attempts only support short descriptors, are 

imited to the retrieval of neighbours up to a Hamming distance of 

, or both. This significantly limits their applicability. 

More recent work includes the Multi-Index Hashing (MIH) al- 

orithm proposed by Norouzi et al. [40] , which subdivides descrip- 

ors into regions, building inverted hash tables for each subdivi- 

ion. Chappell et al. [41] proposed a similar approach, instead us- 

ng inverted lists. An improved variation of MIH was presented by 

eina et al. [42] , utilising a prefix tree to store the index itself, and

 separate hash table for pruning irrelevant branches while query- 

ng. 

The Hamming Tree proposed by van Blokland et al. [6] exploits 

he notion that descriptors with a low Hamming distance must by 

ecessity have a similar number of bits set to 1. The tree first cat- 

gorises descriptors by the total number of 1 bits, then divides de- 

criptors into regions, categorising them by the number of bits set 

o 1 within each region. 

Unfortunately, the previously introduced binary indexes typi- 

ally assume that the nearest neighbour to a query in the database 

as a low Hamming distance, which is not a property which can 

e assumed consistently. This issue is particularly significant for 

he application of QUICCI descriptors on the problem of partial 

etrieval. The discussed indexing strategies tend to scale poorly 

ith increasing distance from a descriptor to its nearest neigh- 

our, which makes their application intractable when this distance 

s high. 

Moreover, they cannot be adapted to use the Weighted Ham- 

ing distance function, which is a highly desirable property for 

he application of QUICCI descriptors. 

. Partial retrieval pipeline 

The proposed partial retrieval pipeline consists of an online and 

ffline component, and is visualised in Fig. 2 . In the offline phase, 

ne QUICCI descriptor is extracted from each vertex in a set of 

omplete objects. Using these descriptors, a dissimilarity tree is 

onstructed, which is described in detail in Section 4 . 

The online phase takes a partial query object as input. In similar 

ashion to the offline phase, one descriptor is computed for each 

f the object’s vertices, albeit a modified version of the QUICCI de- 

criptor is used here, see Section 5 . The voting steps outlined be- 

ow are then repeated until an object match is found or all vertices 

ave been exhausted. 

One descriptor is first selected from the set of query descrip- 

ors at random. Using the dissimilarity tree structure, the near- 

st neighbour in terms of Weighted Hamming Distance is found in 

he set of descriptors extracted from the complete objects. Next, a 

ote is cast for the object containing the found nearest neighbour. 
34 
his process is repeated until an object has received a predefined 

umber of votes (threshold), upon which this object is considered 

he best match for the partial query. Our evaluation shows that a 

hreshold of 10 votes is sufficient. Additional search results can be 

btained by evaluating additional queries until the desired number 

f other objects reaches the vote threshold. 

The motivation for using a voting threshold to exit the counting 

rocess can be seen in Fig. 3 , which shows the number of votes 

eceived by different objects with respect to the number of pro- 

essed query descriptors using the proposed method. As this re- 

ationship is approximately linear, it is possible to terminate the 

earch early by using a vote threshold. 

For each randomly selected query descriptor, only the nearest 

eighbour descriptor is considered. The motivation for not consid- 

ring other neighbours in addition to the nearest is shown in Fig. 4 .

he Figure shows the average Weighted Hamming distance scores 

f the closest 50 matches to 10 0 0 descriptor queries. For legibil- 

ty, distance scores for each neighbour have been normalised rela- 

ive to the Weighted Hamming distance of the nearest neighbour 

search result index 0) of the same query. The Figure shows that 

he average distance score to the query descriptor increases be- 

ween the nearest and second nearest neighbours by over a factor 

f 7, where further neighbours exhibit similar scores. We therefore 

onclude only the nearest neighbour to the query is relevant to the 

etrieval process. 

. Dissimilarity tree for indexing binary descriptors 

The Hamming Tree [6] and other binary descriptor indexing 

tructures proposed in previous work (see Section 2.3 ) have the 

bility to efficiently locate descriptors similar to a given query 

hen the Hamming distance to those matches is generally low. 

owever, in applications where this distance is large, the search 

ime of these methods tends to increase significantly. 

This problem has a high likelihood of occurring when using 

UICCI descriptors for partial object retrieval. In this case, a par- 

ial query descriptor will generally contain a subset of the bits 

et compared to those for the correctly matching descriptor of the 

omplete object. 

A new tree indexing structure, the Dissimilarity Tree , is proposed 

ere which is capable of efficiently retrieving nearest neighbours 

hen the distance to these neighbours is high. The Dissimilarity 

ree is also capable of supporting the Weighted Hamming distance 

unction for querying, which has been shown to be superior for 

UICCI descriptor ranking [6] . The Dissimilarity Tree can be used 

or arbitrary binary descriptors, but in the remainder of this paper 

ill be explained in the context of QUICCI descriptors. 

The Dissimilarity Tree is a binary tree that exploits the assump- 

ion that bits set to 1 in a binary descriptor are not distributed 

andomly, and aims to cluster descriptors which have similar bits 

et. It does so by attempting to create subtrees where patterns of 

its are consistently set in all contained descriptors. 

When it is known that a specific bit will have a consistent value 

0 or 1) across all descriptors in a subtree, it is possible to compute 

he (Weighted) Hamming distance that will be incurred for that bit 

or a given query descriptor. The more effectively this can be done, 

he greater the ability of the search algorithm to prune irrelevant 

ranches. 

For each node in the Dissimilarity Tree, two characteristic bi- 

ary images are computed, one representing the bitwise sum (OR) 

f all descriptors contained in both subtrees and one representing 

he bitwise product (AND). These allow a minimum distance to be 

omputed from the query descriptor to all descriptors contained in 

hat particular node, as the sum and product descriptors denote 

hich bits in a subtree are consistently set to 0 and 1, respectively. 
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Fig. 2. An overview of the proposed partial retrieval pipeline. A dissimilarity tree is constructed offline over the QUICCI descriptors of a set of complete objects. Querying 

these objects with a partial object involves computing modified QUICCI descriptors for each vertex, iteratively, selecting one such query descriptor at random, determining 

the closest indexed descriptor to the one randomly selected, and finally voting for the object from which the nearest neighbour originated. When an object has reached a 

set number of votes, it is deemed the closest match to the partial query. 

Fig. 3. A visualisation of vote counts received by objects as more query descriptors 

are processed, while using the proposed pipeline to locate the nearest neighbour of 

a single partial query object. Each line represents a single object from the SHREC’16 

partial retrieval dataset [22] . For example, the best match (blue line) received 300 

of the first 700 votes cast. The linear nature of these curves suggests that the prob- 

ability that a particular object will receive a vote is approximately constant across 

the voting process. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 

Fig. 4. Average Weighted Hamming distance of the top 50 descriptor search results 

(where the top search result has index 0) of 10 0 0 descriptor queries normalised to 

the distance score of the top search result. As the average distance between the top 

and second ranked search result is high, it is unlikely that any result but the best 

result is relevant to the query. 
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At each node, the set of descriptors is partitioned into two 

oughly equal subsets. The similar subset contains descriptors 

hich maximise the number of bits consistently set to 0 or 1. The 

emaining descriptors form the dissimilar subset. A visualisation of 

n example dissimilarity tree can be seen in Fig. 5 . 
35 
For descriptors which are either highly sparse or dense, the 

roduct and sum images respectively do not provide meaningful 

alue to the querying process when the Weighted Hamming dis- 

ance function is used. Since QUICCI descriptors are highly sparse, 

e omit the product image. Section 4.1 details the algorithm for 

onstructing a Dissimilarity Tree while Section 4.2 describes the 

uerying process. 

.1. Dissimilarity tree construction 

The tree construction algorithm described in this section details 

ow a dissimilarity tree can be constructed from a fixed set of de- 

criptors. However, it should be possible to construct a tree incre- 

entally by recomputing only the affected parts of the tree, in a 

imilar fashion to the heapify algorithm [43] . 

The root of the tree represents the set of all descriptors in the 

ndex. The tree construction algorithm divides this set into two 

pproximately equally sized disjoint subsets. The similar subset of 

hese contains descriptors where regions of bits set consistently to 

 or 1 are created, by moving descriptors where those bits are 

et otherwise to the dissimilar set. For each of these subsets a 

ew node is created, and the procedure is repeated recursively un- 

il the set of descriptors represented by a node is smaller than a 

hreshold. Pseudocode for the construction algorithm is shown in 

isting 1 . 

In order to maximise the size of the region of bits set to a con-

istent value, the number of descriptors in a given set is deter- 

ined for which a specific bit is set to the value 1, which will be

eferred to as the popularity of that bit. The bit popularity can be 

isualised in a heatmap, an example of which, computed over the 

ntirety of the SHREC’16 Partial Object Retrieval dataset, is shown 

n Fig. 6 . As can be seen in the Figure, there are areas where bits

re frequently set to 1 (middle left), and others less so (top and 

ottom left, middle right). 

The popularity heatmap in Fig. 6 represents the occurrence 

ounts for the root node of Fig. 5 . In the latter Figure, the sum

mage of the node along the similar branch shows that the less 

ommon areas of the heatmap have been cut away as part of the 

rst subdivision, leaving zero-valued areas in the sum image. 

The division strategy starts by computing the aforementioned 

it popularity heatmap. Next, bit positions within the descriptor 

re sorted in order of ascending popularity, the bitOrder . 

Next all descriptors of the current node are placed in a the sim- 

larDescriptors set and the dissimilarDescriptors set is initalised to 

he empty set. Then, for each bit position in bitOrder starting from 
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Fig. 5. Visualisation showing the four top layers of the Dissimilarity tree generated from all descriptors in the SHREC’16 dataset. Each node is represented by its sum image. 

All outgoing branches from nodes directed to the left represent the similar branch of that node, and those directed to the right are those that are dissimilar. Two examples 

of leaf nodes are also shown, along with a subset of the descriptors contained within each. 

Listing. 1. Pseudocode of the Dissimilarity Tree construction algorithm. 
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Fig. 6. Heatmap showing occurrence counts of bits of all descriptors of complete 

objects in the SHREC’16 partial retrieval dataset. 
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he least popular one, all descriptors are found in similarDescriptors 

hich have that particular bit set to 1. These descriptors are moved 

ver to dissimilarDescriptors . Moving all descriptors that have a spe- 

ific bit set may result in a tree which is not perfectly balanced, 

owever, only moving a part of the descriptors which have a par- 

icular bit set to 1 does not yield the advantage of that particular 

it being set to 0 in the similar node’s sum image. 
36 
If the node being visited contains a set of descriptors which has 

ewer descriptors than a set threshold, the subdivision can stop. By 

onstructing a number of indices, it was determined that the value 

f 32 for this threshold yields optimal execution times for QUICCI 

escriptors. 

.2. Dissimilarity tree querying 

As mentioned previously, the sum and product images of 

ach node allow a minimum distance to be computed between 

he query descriptor and all descriptors contained within both 

ranches of a particular node. This is possible because the sum and 

roduct images by definition represent all descriptors contained 

ithin the node having a particular bit set to 0 or 1, respectively. 

If for instance a particular bit in the query descriptor is set to 

, and the sum image of a node has that same bit set to 0, every

ingle descriptor contained within the node will incur a distance 

enalty at that bit. 

By summing up all such universal distances using a distance 

unction, such as Hamming or Weighted Hamming, a minimum 

istance can be computed between the query descriptor and all 

escriptors contained in the node being considered, thus allowing 

o make decisions on culling a subtree. 
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Listing. 2. Pseudocode showing the main steps of the Dissimilarity Tree querying 

algorithm. The procedure takes a query descriptor, the root of a Dissimilarity Tree, 

and the desired number of closest search results to retrieve. 
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Fig. 7. A query mesh along with two pairs of hypothetical circles used during the 

construction of the QUICCI descriptor. The green circles on top indicate an inter- 

section count change of 2, while the blue circle pair on the bottom indicates an 

intersection count change of 1. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. QUICCI descriptors for a vertex from a partial query object (left side), and 

its corresponding matching vertex in the complete object (right side). The top left 

is an original QUICCI descriptor while the bottom left is a modified QUICCI. Both 

query-match pairs are shown overlaid on top of each other in the middle, and show 

a significant reduction in noise in the query descriptor when using the modified 

QUICCI. 
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The querying algorithm of the dissimilarity tree works in an it- 

rative fashion, and is outlined in Listing 2 . A priority queue is kept

f open nodes, sorted by their minimum distance. The queue is 

nitialised to the root node. During each iteration, the node with 

he lowest minimum distance is removed from the queue. If the 

ode is a leaf node, the list of descriptors contained is searched 

or matches. If the node is not a leaf node, the minimum distance 

o the similar and dissimilar branch nodes is computed, and both 

re inserted into the queue. 

Meanwhile, a list of fixed size is kept with the closest match- 

ng descriptors found up to that point. The list is sorted by each 

esult’s Weighted Hamming distance to the query. When the list of 

earch results has the desired size and the worst result in the list is 

ower than the minimum distance to the next unvisited open node, 

ll search results have been found and the search can terminate. 

. Adapting QUICCI descriptors for partial retrieval 

Partial objects that constitute queries are generally not closed 

urfaces. They commonly contain surface discontinuities, which we 
37 
hall call boundaries . Thus if the QUICCI descriptor is used on ver- 

ices of such a partial object, one would get responses to bound- 

ries, that have no match in the corresponding complete object. 

An example of a partial query object can be seen in Fig. 7 ,

here the intersections count changes of successive circle pairs re- 

ult in QUICCI descriptor responses. The green ones will result in 

 response which has a match in the corresponding complete ob- 

ect but the blue ones (across a boundary) will not. Ideally, these 

oundary responses should be filtered out. 

Fortunately, a slight modification to the computation process of 

UICCI descriptors for partial query objects, effectively filters out 

ost interference caused by boundaries. This is based on the fact 

hat boundaries result in intersection count changes by 1, whereas 

losed surfaces result in intersection count changes by 2. Thus, 

uring QUICCI construction of partial query objects we only record 

ntersection deltas of at least 2. 

Fig. 8 shows a comparison between the existing QUICCI de- 

criptor and the proposed modification for partial query objects, 

long with the matching descriptor for the corresponding com- 
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Fig. 9. A part of two identical surfaces shown in wireframe form overlaid on top 

of one another, where one of the two has been remeshed. Vertices of both meshes 

have been highlighted. 

Fig. 10. Histogram with bins of 0.1s showing the distribution of execution times 

of 64x64 bit queries using indexed and sequential searches. All sequential search 

occurrence counts have been scaled up by a factor of 10 for legibility. 
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lete object. The proposed change filters out nearly all responses 

nduced by boundaries, leaving responses belonging to the shape 

eing queried. Ideally, the response set of the modified query im- 

ge is a subset of the corresponding set for the complete object. 

. Evaluation 

The proposed partial retrieval pipeline was evaluated on a set of 

eal 3D object scans. The primary dataset chosen for this purpose 

s the SHREC’16 Partial Object Retrieval track dataset [22] , which 

onsists of a variety of historic artefacts, primarily ceramic pot- 

ery. We create additional partial query objects from this dataset 

o form a new augmented dataset of partial query objects, detailed 

n Section 6.1 . 

The three primary contributions are subsequently evaluated in- 

ividually. The Dissimilarity Tree is evaluated in Section 6.2 . The 

roposed QUICCI modification for partial query objects is evaluated 

or its ability to filter responses to query boundaries in Section 6.3 , 

nd for its matching capabilities in Section 6.4 . The complete par- 

ial retrieval pipeline is finally externally evaluated using the aug- 

ented SHREC’16 dataset in Section 6.5 and on part of the original 

HREC’16 query objects in Section 6.6 . 

All algorithms presented were implemented in C++ and CUDA 

here applicable. All implementations were executed on a ma- 

hine with an AMD R9 3900X 12-core CPU and an Nvidia GeForce 

TX 3090 GPU. The authors intend to make source code publicly 

vailable, and apply for the Graphics Replicability Stamp (GRSI) 

44] upon publication. 

Unless stated otherwise, the QUICCI descriptor resolution was 

et to 6 4x6 4 bits for all experiments. The support radius used was

00 units, which was found to be able to capture shapes in the 

ocal area. This trend is visible in the heatmap shown in Fig. 6 . All

bjects in the SHREC’16 dataset have been scanned at the same 

cale, and thus no scale alteration or correction was required. 

.1. SHREC’16 Dataset augmentation 

The SHREC’16 Partial Retrieval track dataset [22] has been cho- 

en for the evaluation of the proposed retrieval pipeline. This al- 

ows direct comparison to results from other methods which were 

valuated using this benchmark. While the dataset contains a va- 

iety of query objects, their quantity is limited, and is therefore 

ugmented. 

The used augmentation is similar to the one used in the 

HREC’13 track for partial object retrieval [45] ; a first partial query 

et is created by generating meshes of all triangles in view from a 

andom viewpoint. We used this to create one partial query mesh 

or each object in the SHREC’16 dataset, thereby creating 383 query 

bjects. This query dataset is called AUGME NT E D Best . 

However, while the extracted query meshes give a good indi- 

ation for best case retrieval performance, a more realistic retrieval 

cenario could involve subsequent scans of the same object with 

ifferent triangulations. We therefore also generated a second aug- 

ented dataset by remeshing all meshes in AUGME NT E D Best , creat- 

ng the AUGME NT E D Rem 

query dataset. In particular, we have used 

he remeshing algorithm proposed by Botsch et al. [46] as it works 

n non-watertight meshes, which has been made available as part 

f PMP library [47] . An example of the effect of this remeshing step

an be seen in Fig. 9 . 

The generated query datasets will be made available upon pub- 

ication. 

.2. Dissimilarity tree 

The effectiveness of the dissimilarity tree index structure was 

valuated by querying a tree constructed over all descriptors from 
38 
ll complete objects in the SHREC’16 dataset, which amounts to a 

otal of 36.5M indexed descriptors. A set of 10 0,0 0 0 unique de- 

criptors was randomly selected from the descriptors of all objects 

n the AUGME NT E D Best set. 

Each descriptor was subsequently used to query the tree. The 

esulting execution time of each query was counted in a histogram 

ith bins of 0.1 seconds. As a reference, the first 2500 queries were 

lso used to measure the execution time of a sequential search, 

hich resulted in another execution time distribution histogram. 

he results are shown in Fig. 10 . 

The histograms show that significant speedups are achieved 

sing the proposed dissimilarity tree structure over a sequential 

earch. Out of the 10 0,0 0 0 queries, only 25 took longer than the

verage sequential search. 

The perf profiling tool showed that for a given query, on av- 

rage 26.2% of execution time is spent on visiting intermediate 

odes, and 56.1% is spent on visiting leaf nodes. The remainder is 

pent on open node queue management. Visiting leaf nodes is al- 

ost entirely (99.0%) spent on the computation of weighted ham- 

ing distances. 

.3. Modified QUICCI evaluation 

We evaluate here the effect of the modification to the QUICCI 

escriptor proposed in Section 5 , which removes descriptor re- 

ponses to object boundaries that typically exist in the partial 

uery objects only. 

The AUGME NT E D Best set is used to evaluate this modifica- 

ion. As each partial query object is extracted from a dataset ob- 

ect, there exists an exact correspondence between their vertices 

ground truth). It is subsequently possible to determine the exact 

its which are set in a query descriptor, but not in the correctly 
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Fig. 11. A histogram with bins of size 0.01, computed over 12.3M 64x64 bit par- 

tial query object descriptors, showing the fraction of undesirable (most boundary 

response) bits remaining in a modified QUICCI descriptor over the corresponding 

number of bits in the original QUICCI. 

Fig. 12. A histogram with bins of size 0.01, computed over 12.3M 64x64 bit partial 

query object descriptors, showing the distribution of fractional overlap of bits set to 

1 in a partial query descriptor relative to the complete object from which the query 

was extracted. 
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Table 1 

The fraction of correctly retrieved nearest neighbours when using combinations 

of the original and modified QUICCI, measured using the AUGME NT E D Best and 

AUGME NT E D Rem query object sets. 

QUICCI AUGME NT E D Best AUGME NT E D Rem 

Original 0.72 0.17 

Modified 0.99 0.49 

Fig. 13. Confusion matrices showing summed Weighted Hamming distances from 

all objects in each of the augmented query object datasets to all objects in the 

SHREC’16 dataset. Since one partial query object is computed from each SHREC’16 

dataset object, objects with matching IDs should correspond, and therefore have a 

low distance (leading diagonal). Distances of each row are normalised for legibility. 

Both query object datasets contain a visible desirable leading diagonal of low dis- 

tances, although this is less pronounced for the remeshed query objects, which is 

also reflected in worse nearest neighbour matching performance. 
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atching descriptor of the complete object, which are thus unde- 

irable . 

The chart in Fig. 11 shows that in 78.0% of the tested descrip- 

ors, the number of undesirable bits is reduced to under 10%. In 

4.5% of all cases, the undesirable bits are removed entirely. The 

hown results have been computed over a set of 12.4M partial 

uery descriptors, from which a relatively small number (105,448) 

ave been excluded for not containing any query boundary re- 

ponses (to avoid divisions by 0) or unreliable correspondence be- 

ween vertices. 

However, the modification also removes some bits which are 

et in both the partial and complete descriptors, and are thus de- 

irable. A histogram over the fraction of bits set to 1 in both de- 

criptors relative to the total number of such bits in the complete 

escriptor is shown in Fig. 12 . 

The Figure shows that the average of fractional overlap de- 

reases from 61.5% to 42.7% when using the QUICCI modification, a 

oss of 30.6%. However, while the fraction of desirable bits in query 

escriptors decreased, the average number of undesirable bits de- 

reased even further, from an average of 84.2 bits per descriptor 

o 4.06 bits. Thus in the modified QUICCI, responses in the query 

escriptor can, to a high degree, also be expected to be present in 

he descriptor of the corresponding complete object. 

.4. Modified QUICCI for partial object retrieval 

While Section 6.3 showed the proposed modification to the 

UICCI descriptor to produce more reliable query descriptors, its 

ffect on matching performance must be evaluated too. 
39 
A distance score for each of the query objects in 

UGME NT E D Best and AUGME NT E D Rem 

was computed for each 

f the complete objects in the SHREC’16 dataset. The distance 

core of an object pair was computed by summing the distances 

f each descriptor in the query object to its nearest neighbour 

n the set of descriptors of the complete object. Next, all objects 

ere ranked by their total distance to the query object. The results 

re outlined in Table 1 . As can be seen, the nearest neighbour 

atching performance improves significantly when using the 

odified QUICCI descriptors, for both the AUGME NT E D Best and 

UGME NT E D Rem 

datasets. 

Confusion matrices were also computed across the query and 

omplete objects, see Fig. 13 . Each row in these matrices represents 

he scores of a single query object to each complete object it was 

ompared against. For each of these rows, the distance scores have 

een normalised to the range [0, 1]. 

The confusion matrix from the AUGME NT E D Best set shows a 

lear distinction between partial query and complete objects. For 

he remeshed partial queries AUGME NT E D Rem 

, the nearest neigh- 

our distance scores naturally increase. 

.5. Partial retrieval pipeline 

Considering the proposed partial object retrieval pipeline, in 

his section we consider the nearest neighbour retrieval perfor- 

ance and the effect of the threshold parameter, as well as the 

xecution times for querying objects. 

Fig. 14 shows the effect of the threshold parameter on 

earest object neighbour retrieval performance for objects from 

UGME NT E D Best and AUGME NT E D Rem 

, for three different descrip-

or resolutions. As can be seen, the method is almost resilient to 

his parameter across resolutions and a low value can be used. 

While there is little variation in the results of query objects 

rom AUGME NT E D Best , different descriptor resolution yields a sig- 

ificant variation in matching performance for the query objects 

f AUGME NT E D Rem 

. 

The execution times of the queries are shown in Fig. 15 using a 

ote count threshold of 10 and descriptor resolution of 6 4x6 4. It is 
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Fig. 14. Fraction of correct nearest neighbour object matches for several vot- 

ing thresholds, using the proposed partial object retrieval pipeline, tested using 

the AUGME NT E D Best (Best) and AUGME NT E D Rem (Remeshed) partial query object 

datasets. 

Fig. 15. Execution times of the AUGME NT E D Best and AUGME NT E D Rem query meshes 

when using them in the proposed pipeline with a descriptor resolution of 64x64 

and a vote threshold of 10. 
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Fig. 16. Comparison of nearest neighbour retrieval performance of the Virtual 

Hampson Museum collection. Query objects with 25% and 40% partiality were used. 

Results for the Tran et al., RSVP, KAZE+VLAD, KAZE+FV, KAZE+GOLD, and Pickup 

et al. methods are taken from [22] and dFPFH, Global Fisher, and PANORAMA were 

taken from [9] . The latter does not show results for the 40% partiality queries which 

are therefore missing. 

Fig. 17. The relationship between the execution time of a query using the dissim- 

ilarity tree, and the number of tree nodes visited during that query’s execution. 

For each time slice of 0.1 second, the minimum, maximum, and average number of 

nodes visited for all queries which executed within that time slice is shown. 
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lso worth noting that queries based on different descriptors can 

e executed in parallel, although most of this acceleration was lost 

ue to ensuring that results are reproducible. As can be seen in 

he Figure, there is a significant difference in the execution times 

f query objects from AUGME NT E D Best and AUGME NT E D Rem 

. These

esults are discussed further in Section 7 . 

.6. SHREC’16 Partial retrieval performance 

The proposed partial retrieval pipeline is compared against the 

esults presented in the SHREC’16 Partial Shape Query track [22] as 

ell as the results for the equivalent benchmark presented by 

avelonas et al. [9] , which also includes results for the PANORAMA 

escriptor by Sfikas et al. [4] and Global Fisher features [48] . As the

ource code of these works was not available, we have used the re- 

ults from the referenced papers. Dimou et al. [12] have also tested 

heir work against this dataset, but no nearest neighbour retrieval 

erformance was provided. 

The majority of the SHREC’16 benchmark focuses on the classi- 

cation of objects into classes rather than specific object retrieval. 

nly the artificial queries , which are culled versions of the database 

bjects, have matching objects in the database. Fortunately, they 

lso provide Nearest Neighbour data. Because the proposed re- 

rieval pipeline is intended for exact part-in-whole matching, this 

omparison focuses on Nearest Neighbour. The results are shown 

n Fig. 16 . 

As shown in the Figure, the proposed method is able to cor- 

ectly identify all partial queries in the benchmark, across mul- 

iple descriptor resolutions. While Tran et al. also accomplish 
40 
his, their method uses the Iterative Closest Point (ICP) algorithm 

49] [50] 512 times per candidate match [22] . While no execution 

imes are listed, we estimate that our method is likely to run faster. 

. Discussion 

Fig. 17 shows that there appears to be a linear relationship be- 

ween the query execution time and the number of tree nodes 

isited by the algorithm. As the querying algorithm iterates until 

t determines that no nodes with smaller distances than the ones 

ound are present in the Dissimilarity Tree, one can conclude that 

he more dissimilar a query descriptor is from its nearest neigh- 

our descriptors in the tree, the longer querying will take. 

Fig. 14 shows that there is a non-insignificant effect on partial 

bject retrieval performance when using remeshed versions of the 

uery objects. The severity of this effect varies across different de- 

criptor resolutions. 

The cause of this loss in matching performance is that the posi- 

ions of vertices on the object surfaces are slightly shifted causing 

hanges in intersection counts to occur elsewhere on the descrip- 

or, which can be seen in Fig. 9 . 

Because the distance between each vertex and its closest neigh- 

our in the remeshed mesh is small, and based on anecdotal ev- 

dence, the resulting effect is that corresponding QUICCI descrip- 

ors on the unmodified and remeshed object contain portions of 
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its which have either been shifted left or right by 1 bit. As the 

eighted Hamming distance function only considers bits in exactly 

he same position, this incurs a distance penalty on what would 

therwise have been a good match. 

The probability of this distance penalty occurring is diminished 

hen the descriptor resolution is lowered. As the distances be- 

ween QUICCI intersection circles is increased to cover the same 

upport radius, the probability of bit shifts decreases, thereby re- 

ulting in the improved matching performance observed in Fig. 14 . 

The distance penalty also has the downside of increasing query 

xecution times. As indicated in Fig. 17 , we observed a relation- 

hip between the similarity of a query descriptor and the nearest 

eighbour in the set of complete object descriptors, and the exe- 

ution time of that query. When the distance to the nearest neigh- 

our increases, so does the execution time of the dissimilarity tree 

earch algorithm. This increase is visible in Fig. 15 . 

Given the extremely promising nature of the retrieval results 

f the partial query objects from the AUGME NT E D Best dataset, we 

onjecture that if in future work a distance function is found 

hich can remedy the aforementioned distance penalty issue, it 

hould be possible to both significantly increase the matching per- 

ormance of remeshed queries while simultaneously reduce query 

imes. 

. Conclusion 

A small modification to the QUICCI descriptor was shown to 

e advantageous for partial retrieval tasks. An indexing scheme 

or binary descriptors called Dissimilarity Tree was also proposed, 

nd was shown to greatly reduce nearest neighbour retrieval time. 

inally, an accurate and efficient search algorithm for partial 3D 

bject retrieval using the aforementioned Dissimilarity indexing 

tructure was proposed. 
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