
Computers & Graphics 100 (2021) 32–43

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on 3DOR 2021

Partial 3D object retrieval using local binary QUICCI descriptors and

dissimilarity tree indexing

Bart Iver van Blokland

∗, Theoharis Theoharis

Department of Computer Science, Norwegian University of Science and Technology (NTNU), Norway

a r t i c l e i n f o

Article history:

Received 20 March 2021

Revised 8 July 2021

Accepted 23 July 2021

Available online 28 July 2021

Keywords:

QUICCI Descriptor

Partial 3D object retrieval

Dissimilarity tree

a b s t r a c t

A complete pipeline is presented for accurate and efficient partial 3D object retrieval based on Quick In-

tersection Count Change Image (QUICCI) binary local descriptors and a novel indexing tree. It is shown

how a modification to the QUICCI query descriptor makes it ideal for partial retrieval. An indexing struc-

ture called Dissimilarity Tree is proposed which can significantly accelerate searching the large space of

local descriptors; this is applicable to QUICCI and other binary descriptors. The index exploits the dis-

tribution of bits within descriptors for efficient retrieval. The retrieval pipeline is tested on the artificial

part of SHREC’16 dataset with near-ideal retrieval results.

© 2021 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

t

c

i

h

p

t

i

m

t

t

b

a

s

p

j

t

p

I

(

C

m

n

p

p

m

S

a

2

h

0

(

. Introduction

There exist many circumstances in which it is desirable to de-

ermine which larger object a smaller surface patch belongs to; oc-

lusions and missing parts can result in this problem. This problem

s known as Partial 3D Object Retrieval , and a number of methods

ave been proposed to date which address it [1–3] and finds ap-

lication in areas such as archaeology [4,5] .

One successful strategy for partial 3D object retrieval is using

he descriptiveness of local shape descriptors, as local surface sim-

larity tends to be maintained when other parts of the object are

issing. A problem with retrieval using local shape descriptors is

he large number of such descriptors that are generated, poten-

ially one for every vertex. This can be somewhat counteracted

y using a salient point detector, but then the retrieval quality is

ffected by the consistency of this detector. An efficient indexing

cheme is therefore called for.

To address this issue, a complete pipeline is presented in this

aper which is capable of indexing and retrieving arbitrary 3D ob-

ects based on partial queries. Under ideal circumstances the sys-

em can achieve near perfect retrieval, even with low degrees of

artiality, within reasonable time constraints.
This article has been certified as Replicable by the Graphics Replicability Stamp

nitiative: http://www.replicabilitystamp.org
∗ Corresponding author. .

E-mail addresses: bart.van.blokland@ntnu.no (B.I.v. Blokland), theotheo@ntnu.no

T. Theoharis).

n

A

p

t

d

ttps://doi.org/10.1016/j.cag.2021.07.018

097-8493/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
The pipeline utilises the recently introduced Quick Intersection

ount Change Image (QUICCI) descriptor [6] whose binary nature

akes it storage-efficient and fast to compare.

As part of this complete partial retrieval pipeline, the following

ovelties are introduced:

1. An indexing scheme called “Dissimilarity Tree” for efficiently

retrieving binary descriptors, especially nearest neighbours

with high Hamming distance.

2. An algorithm for accelerating partial 3D object retrieval using

the aforementioned indexing scheme.

3. An adaptation of the QUICCI descriptor generation process to

greatly improve its performance in partial 3D object retrieval

applications.

The primary descriptor and distance function used in this

ipeline, along with relevant background, is given in Section 2 . The

ipeline is described at a high level in Section 3 , and the two other

ain contributions which are used in this pipeline are detailed in

ections 4 and 5 . The various methods are evaluated in Section 6 ,

nd some aspects of those are discussed in Section 7 .

. Related work

The problem of Partial Object Retrieval has to date received sig-

ificant attention, both using global and using local descriptors.

 number of binary descriptor indexing strategies have also been

roposed. This work builds upon the QUICCI local descriptor and

he Weighted Hamming distance function, which are discussed in

etail.
under the CC BY-NC-ND license

https://doi.org/10.1016/j.cag.2021.07.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.07.018&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.replicabilitystamp.org
mailto:bart.van.blokland@ntnu.no
mailto:theotheo@ntnu.no
https://doi.org/10.1016/j.cag.2021.07.018
http://creativecommons.org/licenses/by-nc-nd/4.0/

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

2

d

b

a

t

q

d

a

s

c

[

g

b

o

v

c

f

s

t

o

t

R

t

[

r

s

e

c

f

i

c

n

l

S

t

S

t

M

s

b

p

t

c

b

a

d

2

B

i

c

l

s

a

r

i

a

Fig. 1. Visualisation of a 4x4-bit QUICCI descriptor construction along with the cor-

responding generated descriptor. White pixels in the descriptor image correspond

to a bit value set to 1 (i.e. intersection counts changed), and 0 otherwise.

t

i

t

c

u

i

h

i

f

t

w

t

2

b

s

t

s

r

t

b

b

a

d

m

r

e

t

t

r

f

t

t

δ

t

c

W

t

s

.1. Partial object retrieval

Partial Object Retrieval approaches presented to date can be

ivided into three main categories; Bag of Visual Words (BoVW)

ased, View-based, and Part-based [2,3] . Other methods also exist,

ddressing particular applications such as CAD shape retrieval [7] .

BoVW based methods use local feature descriptors to exploit

hat from the perspective of a local neighbourhood, shapes in a

uery remain similar to those in the corresponding object in a

atabase. Lavou et al. [8] segment a surface into small patches,

nd compute a codebook for each patch. Object classification is

ubsequently done by matching new patches against words in the

odebook. Savelonas et al. [9] propose an extension to the FPFH

10] descriptor called dFPFH , which is used for both local and

lobal matching in their retrieval pipeline. Ohbuchi et al. [11] com-

ine the BoVW and the view-based paradigm by computing a bag

f features over range images of an object rendered from different

iewpoints, and comparing features of a query against those in a

odebook. More recently, Dimou et al. [12] used features computed

rom patches from segmented depth images.

Part-based methods use segmentation to divide a shape into

maller distinct patches, computing one feature vector for each of

hem, then match these against a database of feature vectors from

ther parts. Agathos et al. [13] used a graph of segmented parts

o locate objects with a similar structure. Tierny et al. [14] used

eeb graphs for both segmenting and encoding relationships be-

ween surface patches for partial object retrieval. Furuya et al.

15] proposed the RSVP algorithm, which partitions an object into

andom cuboid volumes, and describes each partition as a binary

tring, against which other parts can be matched. They, and oth-

rs, [16] later utilised a Siamese-like network pair to project hand-

rafted features extracted from segmented parts into a common

eature space, allowing for fast surface patch comparison.

View-based methods are able to adapt work on image match-

ng and recognition to 3D shapes. Examples of such methods in-

lude work by Axenopoulos et al. [17] , who proposed a combi-

ation of several features computed from object silhouette out-

ines to create the Compact Multi-View Descriptor (CMVD). The

IFT local feature [18] is used by several methods on images ex-

racted from 3D shapes [17,19] . One specific example is work by

fikas et al. [4] , where the Authors used the PANORAMA descrip-

or [20] for matching parts of archaeological to complete objects.

ore recently, Tashiro et al. [1] proposed a pipeline relying exten-

ively on the SURF [21] local feature descriptor.

In the SHREC’16 Partial 3D Object Retrieval track [22] , a num-

er of additional view-based methods were introduced. Aono et al.

resented three variant methods which each encoded KAZE fea-

ures [23] extracted from different object views with Vector of Lo-

ally Aggregated Descriptors (VLAD) [24] , Gaussian of Local Distri-

ution (GOLD) [25] , and Fisher Vectors (FV) [26] . Pickup et al. used

 variant of the view-based method by Lian et al. [27] , using ren-

ered views and SIFT descriptors to find matching points.

.2. The QUICCI local binary descriptor

The Quick Intersection Count Change Image, proposed by van

lokland et al. [6] , is a binary descriptor which captures changes in

ntersection counts between circles and an object’s surface. These

ircles are laid out in layers, where each layer contains circles with

inearly increasing radii. A visualisation of this structure can be

een in Fig. 1 .

As can be seen in the Figure, a grid of 4x4 circles is intersecting

 3D surface. A total of 5 circles intersect with this surface, and the

emainder do not. To its right the corresponding QUICCI descriptor

s shown, where black pixels indicate a bit value of 0, and white

 value of 1. Note that each bit has a corresponding circle, where
33
he bit in the bottom left corner of the descriptor is mapped to the

nnermost circle on the bottom layer.

Each bit in the descriptor denotes whether the number of in-

ersections between the circle corresponding to that bit, and the

ircle one step smaller on the same layer, has changed. In the Fig-

re, the bottom right 2x2 bits all have corresponding circles which

ntersect the object surface, which causes a response in the bottom

alf of column 3, but not in the bottom half of column 4, as the

ntersection counts did not change.

The resulting descriptor will commonly show outlines of sur-

aces present near the oriented point around which the descrip-

or is generated. This point lies at the centre of the grid of circles,

hich on the descriptor corresponds to the grid point closest to

he arrow’s head in Fig. 1 .

.3. Weighted hamming distance function

There exist two possible bit errors when comparing a pair of

inary descriptors (corresponding to a query shape and a target

hape from a database, respectively) using a bitwise distance func-

ion such as Hamming distance. A type A error occurs when a bit

et to 1 in the query is set to 0 in the target, and a type B error

epresents the case where a bit set to 0 in the query is set to 1 in

he target. The Hamming distance function considers both of these

it errors as equivalent in importance.

Meanwhile, the Weighted Hamming distance function proposed

y van Blokland et al. [6] observes that it may not always be desir-

ble to weigh both types of bit errors equally. In the case of QUICCI

escriptors, bits set to 1 represent surface outlines. A good match

ust also contain these bits, but may also include others due to

esponses from other geometry. For QUICCI descriptors the type A

rror is therefore more important than the type B error.

The Weighted Hamming distance function normalises the con-

ribution of each bit error type by the total number of such errors

hat can occur, thereby weighting the importance of each bit er-

or type equally as a group. Thus the Weighted Hamming distance

unction is asymmetric. In a sparse descriptor, this implies that a

ype A error is weighted much more than a type B error. The dis-

ance function is listed in Eq. 1 .

W H (D q , D t) =

∑ N
r=1

∑ N
c=1 (D q [r, c](1 − D t [r, c]))

max (
∑ N

r=1

∑ N
c=1 D q [r, c] , 1)

+

∑ N
r=1

∑ N
c=1 ((1 − D q [r, c]) D t [r, c])

max (N − ∑ N
r=1

∑ N
c=1 D q [r, c] , 1)

(1)

Where D q and D t are respectively the query and target descrip-

ors being compared, D [r, c] represents the bit at row r and column

of descriptor D , and the size of the descriptor is N xN bits.

Experiments by van Blokland et al. showed that using the

eighted Hamming distance function resulted in improved re-

rieval performance relative to Hamming distance of QUICCI de-

criptors when additive noise was applied.

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

2

a

a

L

i

S

b

t

g

p

t

w

c

o

t

l

2

g

t

s

i

R

a

i

t

n

e

s

t

c

h

b

t

r

w

b

i

m

t

3

o

o

c

c

f

o

s

l

h

t

e

t

v

T

n

t

t

o

o

p

r

c

l

s

n

e

T

o

i

t

(

t

t

o

c

r

4

s

a

w

H

t

Q

t

s

c

h

w

T

f

Q

f

w

t

r

s

b

(

t

f

t

b

n

o

t

c

t

w

.4. Indexing of binary descriptors

The need for indexing binary descriptors commonly arises in

lgorithms representing shape features as binary descriptors, but

lso in other fields such as dimensionality reduction through

ocality-Sensitive Hashing (LSH) [28] . Some popular methods util-

sing LSH include Minhash proposed by Broder et al. [29,30] and

imhash [31] by Sadowski et al.

There exist a number of methods which produce and compare

inary shape features, such as BRIEF by Calonder et al. [32] , an ex-

ension called ORB by Rublee et al. [33] , and BRISK by Leuteneg-

er et al. [34] . A binary descriptor which has specifically been pro-

osed for 3D point matching is B-SHOT by Prakhya et al. [35] , and

he aforementioned QUICCI descriptor by van Blokland et al. [6] .

Local binary descriptors are often produced in large quantities,

hich raises the need for acceleration structures capable of effi-

iently locating nearest neighbours in Hamming space. A number

f methods have been proposed for this purpose [36–39] . Unfor-

unately, these initial attempts only support short descriptors, are

imited to the retrieval of neighbours up to a Hamming distance of

, or both. This significantly limits their applicability.

More recent work includes the Multi-Index Hashing (MIH) al-

orithm proposed by Norouzi et al. [40] , which subdivides descrip-

ors into regions, building inverted hash tables for each subdivi-

ion. Chappell et al. [41] proposed a similar approach, instead us-

ng inverted lists. An improved variation of MIH was presented by

eina et al. [42] , utilising a prefix tree to store the index itself, and

 separate hash table for pruning irrelevant branches while query-

ng.

The Hamming Tree proposed by van Blokland et al. [6] exploits

he notion that descriptors with a low Hamming distance must by

ecessity have a similar number of bits set to 1. The tree first cat-

gorises descriptors by the total number of 1 bits, then divides de-

criptors into regions, categorising them by the number of bits set

o 1 within each region.

Unfortunately, the previously introduced binary indexes typi-

ally assume that the nearest neighbour to a query in the database

as a low Hamming distance, which is not a property which can

e assumed consistently. This issue is particularly significant for

he application of QUICCI descriptors on the problem of partial

etrieval. The discussed indexing strategies tend to scale poorly

ith increasing distance from a descriptor to its nearest neigh-

our, which makes their application intractable when this distance

s high.

Moreover, they cannot be adapted to use the Weighted Ham-

ing distance function, which is a highly desirable property for

he application of QUICCI descriptors.

. Partial retrieval pipeline

The proposed partial retrieval pipeline consists of an online and

ffline component, and is visualised in Fig. 2 . In the offline phase,

ne QUICCI descriptor is extracted from each vertex in a set of

omplete objects. Using these descriptors, a dissimilarity tree is

onstructed, which is described in detail in Section 4 .

The online phase takes a partial query object as input. In similar

ashion to the offline phase, one descriptor is computed for each

f the object’s vertices, albeit a modified version of the QUICCI de-

criptor is used here, see Section 5 . The voting steps outlined be-

ow are then repeated until an object match is found or all vertices

ave been exhausted.

One descriptor is first selected from the set of query descrip-

ors at random. Using the dissimilarity tree structure, the near-

st neighbour in terms of Weighted Hamming Distance is found in

he set of descriptors extracted from the complete objects. Next, a

ote is cast for the object containing the found nearest neighbour.
34
his process is repeated until an object has received a predefined

umber of votes (threshold), upon which this object is considered

he best match for the partial query. Our evaluation shows that a

hreshold of 10 votes is sufficient. Additional search results can be

btained by evaluating additional queries until the desired number

f other objects reaches the vote threshold.

The motivation for using a voting threshold to exit the counting

rocess can be seen in Fig. 3 , which shows the number of votes

eceived by different objects with respect to the number of pro-

essed query descriptors using the proposed method. As this re-

ationship is approximately linear, it is possible to terminate the

earch early by using a vote threshold.

For each randomly selected query descriptor, only the nearest

eighbour descriptor is considered. The motivation for not consid-

ring other neighbours in addition to the nearest is shown in Fig. 4 .

he Figure shows the average Weighted Hamming distance scores

f the closest 50 matches to 10 0 0 descriptor queries. For legibil-

ty, distance scores for each neighbour have been normalised rela-

ive to the Weighted Hamming distance of the nearest neighbour

search result index 0) of the same query. The Figure shows that

he average distance score to the query descriptor increases be-

ween the nearest and second nearest neighbours by over a factor

f 7, where further neighbours exhibit similar scores. We therefore

onclude only the nearest neighbour to the query is relevant to the

etrieval process.

. Dissimilarity tree for indexing binary descriptors

The Hamming Tree [6] and other binary descriptor indexing

tructures proposed in previous work (see Section 2.3) have the

bility to efficiently locate descriptors similar to a given query

hen the Hamming distance to those matches is generally low.

owever, in applications where this distance is large, the search

ime of these methods tends to increase significantly.

This problem has a high likelihood of occurring when using

UICCI descriptors for partial object retrieval. In this case, a par-

ial query descriptor will generally contain a subset of the bits

et compared to those for the correctly matching descriptor of the

omplete object.

A new tree indexing structure, the Dissimilarity Tree , is proposed

ere which is capable of efficiently retrieving nearest neighbours

hen the distance to these neighbours is high. The Dissimilarity

ree is also capable of supporting the Weighted Hamming distance

unction for querying, which has been shown to be superior for

UICCI descriptor ranking [6] . The Dissimilarity Tree can be used

or arbitrary binary descriptors, but in the remainder of this paper

ill be explained in the context of QUICCI descriptors.

The Dissimilarity Tree is a binary tree that exploits the assump-

ion that bits set to 1 in a binary descriptor are not distributed

andomly, and aims to cluster descriptors which have similar bits

et. It does so by attempting to create subtrees where patterns of

its are consistently set in all contained descriptors.

When it is known that a specific bit will have a consistent value

0 or 1) across all descriptors in a subtree, it is possible to compute

he (Weighted) Hamming distance that will be incurred for that bit

or a given query descriptor. The more effectively this can be done,

he greater the ability of the search algorithm to prune irrelevant

ranches.

For each node in the Dissimilarity Tree, two characteristic bi-

ary images are computed, one representing the bitwise sum (OR)

f all descriptors contained in both subtrees and one representing

he bitwise product (AND). These allow a minimum distance to be

omputed from the query descriptor to all descriptors contained in

hat particular node, as the sum and product descriptors denote

hich bits in a subtree are consistently set to 0 and 1, respectively.

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

Fig. 2. An overview of the proposed partial retrieval pipeline. A dissimilarity tree is constructed offline over the QUICCI descriptors of a set of complete objects. Querying

these objects with a partial object involves computing modified QUICCI descriptors for each vertex, iteratively, selecting one such query descriptor at random, determining

the closest indexed descriptor to the one randomly selected, and finally voting for the object from which the nearest neighbour originated. When an object has reached a

set number of votes, it is deemed the closest match to the partial query.

Fig. 3. A visualisation of vote counts received by objects as more query descriptors

are processed, while using the proposed pipeline to locate the nearest neighbour of

a single partial query object. Each line represents a single object from the SHREC’16

partial retrieval dataset [22] . For example, the best match (blue line) received 300

of the first 700 votes cast. The linear nature of these curves suggests that the prob-

ability that a particular object will receive a vote is approximately constant across

the voting process. (For interpretation of the references to colour in this figure leg-

end, the reader is referred to the web version of this article.)

Fig. 4. Average Weighted Hamming distance of the top 50 descriptor search results

(where the top search result has index 0) of 10 0 0 descriptor queries normalised to

the distance score of the top search result. As the average distance between the top

and second ranked search result is high, it is unlikely that any result but the best

result is relevant to the query.

r

w

r

a

p

v

t

w

c

q

4

h

s

m

s

i

a

t

0

s

n

t

t

L

s

m

r

v

e

i

a

b

c

i

c

fi

b

a

i

t

At each node, the set of descriptors is partitioned into two

oughly equal subsets. The similar subset contains descriptors

hich maximise the number of bits consistently set to 0 or 1. The

emaining descriptors form the dissimilar subset. A visualisation of

n example dissimilarity tree can be seen in Fig. 5 .
35
For descriptors which are either highly sparse or dense, the

roduct and sum images respectively do not provide meaningful

alue to the querying process when the Weighted Hamming dis-

ance function is used. Since QUICCI descriptors are highly sparse,

e omit the product image. Section 4.1 details the algorithm for

onstructing a Dissimilarity Tree while Section 4.2 describes the

uerying process.

.1. Dissimilarity tree construction

The tree construction algorithm described in this section details

ow a dissimilarity tree can be constructed from a fixed set of de-

criptors. However, it should be possible to construct a tree incre-

entally by recomputing only the affected parts of the tree, in a

imilar fashion to the heapify algorithm [43] .

The root of the tree represents the set of all descriptors in the

ndex. The tree construction algorithm divides this set into two

pproximately equally sized disjoint subsets. The similar subset of

hese contains descriptors where regions of bits set consistently to

 or 1 are created, by moving descriptors where those bits are

et otherwise to the dissimilar set. For each of these subsets a

ew node is created, and the procedure is repeated recursively un-

il the set of descriptors represented by a node is smaller than a

hreshold. Pseudocode for the construction algorithm is shown in

isting 1 .

In order to maximise the size of the region of bits set to a con-

istent value, the number of descriptors in a given set is deter-

ined for which a specific bit is set to the value 1, which will be

eferred to as the popularity of that bit. The bit popularity can be

isualised in a heatmap, an example of which, computed over the

ntirety of the SHREC’16 Partial Object Retrieval dataset, is shown

n Fig. 6 . As can be seen in the Figure, there are areas where bits

re frequently set to 1 (middle left), and others less so (top and

ottom left, middle right).

The popularity heatmap in Fig. 6 represents the occurrence

ounts for the root node of Fig. 5 . In the latter Figure, the sum

mage of the node along the similar branch shows that the less

ommon areas of the heatmap have been cut away as part of the

rst subdivision, leaving zero-valued areas in the sum image.

The division strategy starts by computing the aforementioned

it popularity heatmap. Next, bit positions within the descriptor

re sorted in order of ascending popularity, the bitOrder .

Next all descriptors of the current node are placed in a the sim-

larDescriptors set and the dissimilarDescriptors set is initalised to

he empty set. Then, for each bit position in bitOrder starting from

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

Fig. 5. Visualisation showing the four top layers of the Dissimilarity tree generated from all descriptors in the SHREC’16 dataset. Each node is represented by its sum image.

All outgoing branches from nodes directed to the left represent the similar branch of that node, and those directed to the right are those that are dissimilar. Two examples

of leaf nodes are also shown, along with a subset of the descriptors contained within each.

Listing. 1. Pseudocode of the Dissimilarity Tree construction algorithm.

t

w

o

c

h

t

b

Fig. 6. Heatmap showing occurrence counts of bits of all descriptors of complete

objects in the SHREC’16 partial retrieval dataset.

f

c

o

d

4

e

t

b

p

w

1

s

p

f

d

d

t

he least popular one, all descriptors are found in similarDescriptors

hich have that particular bit set to 1. These descriptors are moved

ver to dissimilarDescriptors . Moving all descriptors that have a spe-

ific bit set may result in a tree which is not perfectly balanced,

owever, only moving a part of the descriptors which have a par-

icular bit set to 1 does not yield the advantage of that particular

it being set to 0 in the similar node’s sum image.
36
If the node being visited contains a set of descriptors which has

ewer descriptors than a set threshold, the subdivision can stop. By

onstructing a number of indices, it was determined that the value

f 32 for this threshold yields optimal execution times for QUICCI

escriptors.

.2. Dissimilarity tree querying

As mentioned previously, the sum and product images of

ach node allow a minimum distance to be computed between

he query descriptor and all descriptors contained within both

ranches of a particular node. This is possible because the sum and

roduct images by definition represent all descriptors contained

ithin the node having a particular bit set to 0 or 1, respectively.

If for instance a particular bit in the query descriptor is set to

, and the sum image of a node has that same bit set to 0, every

ingle descriptor contained within the node will incur a distance

enalty at that bit.

By summing up all such universal distances using a distance

unction, such as Hamming or Weighted Hamming, a minimum

istance can be computed between the query descriptor and all

escriptors contained in the node being considered, thus allowing

o make decisions on culling a subtree.

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

Listing. 2. Pseudocode showing the main steps of the Dissimilarity Tree querying

algorithm. The procedure takes a query descriptor, the root of a Dissimilarity Tree,

and the desired number of closest search results to retrieve.

e

o

i

t

n

f

t

a

i

r

s

l

a

5

s

Fig. 7. A query mesh along with two pairs of hypothetical circles used during the

construction of the QUICCI descriptor. The green circles on top indicate an inter-

section count change of 2, while the blue circle pair on the bottom indicates an

intersection count change of 1. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

Fig. 8. QUICCI descriptors for a vertex from a partial query object (left side), and

its corresponding matching vertex in the complete object (right side). The top left

is an original QUICCI descriptor while the bottom left is a modified QUICCI. Both

query-match pairs are shown overlaid on top of each other in the middle, and show

a significant reduction in noise in the query descriptor when using the modified

QUICCI.

s

t

a

w

s

a

j

b

Q

m

t

c

d

i

s

a

The querying algorithm of the dissimilarity tree works in an it-

rative fashion, and is outlined in Listing 2 . A priority queue is kept

f open nodes, sorted by their minimum distance. The queue is

nitialised to the root node. During each iteration, the node with

he lowest minimum distance is removed from the queue. If the

ode is a leaf node, the list of descriptors contained is searched

or matches. If the node is not a leaf node, the minimum distance

o the similar and dissimilar branch nodes is computed, and both

re inserted into the queue.

Meanwhile, a list of fixed size is kept with the closest match-

ng descriptors found up to that point. The list is sorted by each

esult’s Weighted Hamming distance to the query. When the list of

earch results has the desired size and the worst result in the list is

ower than the minimum distance to the next unvisited open node,

ll search results have been found and the search can terminate.

. Adapting QUICCI descriptors for partial retrieval

Partial objects that constitute queries are generally not closed

urfaces. They commonly contain surface discontinuities, which we
37
hall call boundaries . Thus if the QUICCI descriptor is used on ver-

ices of such a partial object, one would get responses to bound-

ries, that have no match in the corresponding complete object.

An example of a partial query object can be seen in Fig. 7 ,

here the intersections count changes of successive circle pairs re-

ult in QUICCI descriptor responses. The green ones will result in

 response which has a match in the corresponding complete ob-

ect but the blue ones (across a boundary) will not. Ideally, these

oundary responses should be filtered out.

Fortunately, a slight modification to the computation process of

UICCI descriptors for partial query objects, effectively filters out

ost interference caused by boundaries. This is based on the fact

hat boundaries result in intersection count changes by 1, whereas

losed surfaces result in intersection count changes by 2. Thus,

uring QUICCI construction of partial query objects we only record

ntersection deltas of at least 2.

Fig. 8 shows a comparison between the existing QUICCI de-

criptor and the proposed modification for partial query objects,

long with the matching descriptor for the corresponding com-

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

p

i

b

a

6

r

i

c

t

t

i

d

p

f

a

t

m

S

w

c

R

a

[

s

1

l

o

s

6

s

l

e

r

a

S

s

r

f

o

c

s

d

m

i

t

o

o

c

l

6

e

Fig. 9. A part of two identical surfaces shown in wireframe form overlaid on top

of one another, where one of the two has been remeshed. Vertices of both meshes

have been highlighted.

Fig. 10. Histogram with bins of 0.1s showing the distribution of execution times

of 64x64 bit queries using indexed and sequential searches. All sequential search

occurrence counts have been scaled up by a factor of 10 for legibility.

a

t

s

i

r

w

a

w

T

u

s

a

e

n

s

m

m

6

d

s

q

t

j

(

b

lete object. The proposed change filters out nearly all responses

nduced by boundaries, leaving responses belonging to the shape

eing queried. Ideally, the response set of the modified query im-

ge is a subset of the corresponding set for the complete object.

. Evaluation

The proposed partial retrieval pipeline was evaluated on a set of

eal 3D object scans. The primary dataset chosen for this purpose

s the SHREC’16 Partial Object Retrieval track dataset [22] , which

onsists of a variety of historic artefacts, primarily ceramic pot-

ery. We create additional partial query objects from this dataset

o form a new augmented dataset of partial query objects, detailed

n Section 6.1 .

The three primary contributions are subsequently evaluated in-

ividually. The Dissimilarity Tree is evaluated in Section 6.2 . The

roposed QUICCI modification for partial query objects is evaluated

or its ability to filter responses to query boundaries in Section 6.3 ,

nd for its matching capabilities in Section 6.4 . The complete par-

ial retrieval pipeline is finally externally evaluated using the aug-

ented SHREC’16 dataset in Section 6.5 and on part of the original

HREC’16 query objects in Section 6.6 .

All algorithms presented were implemented in C++ and CUDA

here applicable. All implementations were executed on a ma-

hine with an AMD R9 3900X 12-core CPU and an Nvidia GeForce

TX 3090 GPU. The authors intend to make source code publicly

vailable, and apply for the Graphics Replicability Stamp (GRSI)

44] upon publication.

Unless stated otherwise, the QUICCI descriptor resolution was

et to 6 4x6 4 bits for all experiments. The support radius used was

00 units, which was found to be able to capture shapes in the

ocal area. This trend is visible in the heatmap shown in Fig. 6 . All

bjects in the SHREC’16 dataset have been scanned at the same

cale, and thus no scale alteration or correction was required.

.1. SHREC’16 Dataset augmentation

The SHREC’16 Partial Retrieval track dataset [22] has been cho-

en for the evaluation of the proposed retrieval pipeline. This al-

ows direct comparison to results from other methods which were

valuated using this benchmark. While the dataset contains a va-

iety of query objects, their quantity is limited, and is therefore

ugmented.

The used augmentation is similar to the one used in the

HREC’13 track for partial object retrieval [45] ; a first partial query

et is created by generating meshes of all triangles in view from a

andom viewpoint. We used this to create one partial query mesh

or each object in the SHREC’16 dataset, thereby creating 383 query

bjects. This query dataset is called AUGME NT E D Best .

However, while the extracted query meshes give a good indi-

ation for best case retrieval performance, a more realistic retrieval

cenario could involve subsequent scans of the same object with

ifferent triangulations. We therefore also generated a second aug-

ented dataset by remeshing all meshes in AUGME NT E D Best , creat-

ng the AUGME NT E D Rem

query dataset. In particular, we have used

he remeshing algorithm proposed by Botsch et al. [46] as it works

n non-watertight meshes, which has been made available as part

f PMP library [47] . An example of the effect of this remeshing step

an be seen in Fig. 9 .

The generated query datasets will be made available upon pub-

ication.

.2. Dissimilarity tree

The effectiveness of the dissimilarity tree index structure was

valuated by querying a tree constructed over all descriptors from
38
ll complete objects in the SHREC’16 dataset, which amounts to a

otal of 36.5M indexed descriptors. A set of 10 0,0 0 0 unique de-

criptors was randomly selected from the descriptors of all objects

n the AUGME NT E D Best set.

Each descriptor was subsequently used to query the tree. The

esulting execution time of each query was counted in a histogram

ith bins of 0.1 seconds. As a reference, the first 2500 queries were

lso used to measure the execution time of a sequential search,

hich resulted in another execution time distribution histogram.

he results are shown in Fig. 10 .

The histograms show that significant speedups are achieved

sing the proposed dissimilarity tree structure over a sequential

earch. Out of the 10 0,0 0 0 queries, only 25 took longer than the

verage sequential search.

The perf profiling tool showed that for a given query, on av-

rage 26.2% of execution time is spent on visiting intermediate

odes, and 56.1% is spent on visiting leaf nodes. The remainder is

pent on open node queue management. Visiting leaf nodes is al-

ost entirely (99.0%) spent on the computation of weighted ham-

ing distances.

.3. Modified QUICCI evaluation

We evaluate here the effect of the modification to the QUICCI

escriptor proposed in Section 5 , which removes descriptor re-

ponses to object boundaries that typically exist in the partial

uery objects only.

The AUGME NT E D Best set is used to evaluate this modifica-

ion. As each partial query object is extracted from a dataset ob-

ect, there exists an exact correspondence between their vertices

ground truth). It is subsequently possible to determine the exact

its which are set in a query descriptor, but not in the correctly

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

Fig. 11. A histogram with bins of size 0.01, computed over 12.3M 64x64 bit par-

tial query object descriptors, showing the fraction of undesirable (most boundary

response) bits remaining in a modified QUICCI descriptor over the corresponding

number of bits in the original QUICCI.

Fig. 12. A histogram with bins of size 0.01, computed over 12.3M 64x64 bit partial

query object descriptors, showing the distribution of fractional overlap of bits set to

1 in a partial query descriptor relative to the complete object from which the query

was extracted.

m

s

t

2

s

q

h

s

t

s

s

s

d

c

l

d

c

t

d

t

6

Q

e

Table 1

The fraction of correctly retrieved nearest neighbours when using combinations

of the original and modified QUICCI, measured using the AUGME NT E D Best and

AUGME NT E D Rem query object sets.

QUICCI AUGME NT E D Best AUGME NT E D Rem

Original 0.72 0.17

Modified 0.99 0.49

Fig. 13. Confusion matrices showing summed Weighted Hamming distances from

all objects in each of the augmented query object datasets to all objects in the

SHREC’16 dataset. Since one partial query object is computed from each SHREC’16

dataset object, objects with matching IDs should correspond, and therefore have a

low distance (leading diagonal). Distances of each row are normalised for legibility.

Both query object datasets contain a visible desirable leading diagonal of low dis-

tances, although this is less pronounced for the remeshed query objects, which is

also reflected in worse nearest neighbour matching performance.

A

o

s

o

i

w

a

m

m

A

c

t

c

b

c

t

b

6

t

m

e

n

A

t

t

f

n

o

v

atching descriptor of the complete object, which are thus unde-

irable .

The chart in Fig. 11 shows that in 78.0% of the tested descrip-

ors, the number of undesirable bits is reduced to under 10%. In

4.5% of all cases, the undesirable bits are removed entirely. The

hown results have been computed over a set of 12.4M partial

uery descriptors, from which a relatively small number (105,448)

ave been excluded for not containing any query boundary re-

ponses (to avoid divisions by 0) or unreliable correspondence be-

ween vertices.

However, the modification also removes some bits which are

et in both the partial and complete descriptors, and are thus de-

irable. A histogram over the fraction of bits set to 1 in both de-

criptors relative to the total number of such bits in the complete

escriptor is shown in Fig. 12 .

The Figure shows that the average of fractional overlap de-

reases from 61.5% to 42.7% when using the QUICCI modification, a

oss of 30.6%. However, while the fraction of desirable bits in query

escriptors decreased, the average number of undesirable bits de-

reased even further, from an average of 84.2 bits per descriptor

o 4.06 bits. Thus in the modified QUICCI, responses in the query

escriptor can, to a high degree, also be expected to be present in

he descriptor of the corresponding complete object.

.4. Modified QUICCI for partial object retrieval

While Section 6.3 showed the proposed modification to the

UICCI descriptor to produce more reliable query descriptors, its

ffect on matching performance must be evaluated too.
39
A distance score for each of the query objects in

UGME NT E D Best and AUGME NT E D Rem

was computed for each

f the complete objects in the SHREC’16 dataset. The distance

core of an object pair was computed by summing the distances

f each descriptor in the query object to its nearest neighbour

n the set of descriptors of the complete object. Next, all objects

ere ranked by their total distance to the query object. The results

re outlined in Table 1 . As can be seen, the nearest neighbour

atching performance improves significantly when using the

odified QUICCI descriptors, for both the AUGME NT E D Best and

UGME NT E D Rem

datasets.

Confusion matrices were also computed across the query and

omplete objects, see Fig. 13 . Each row in these matrices represents

he scores of a single query object to each complete object it was

ompared against. For each of these rows, the distance scores have

een normalised to the range [0, 1].

The confusion matrix from the AUGME NT E D Best set shows a

lear distinction between partial query and complete objects. For

he remeshed partial queries AUGME NT E D Rem

, the nearest neigh-

our distance scores naturally increase.

.5. Partial retrieval pipeline

Considering the proposed partial object retrieval pipeline, in

his section we consider the nearest neighbour retrieval perfor-

ance and the effect of the threshold parameter, as well as the

xecution times for querying objects.

Fig. 14 shows the effect of the threshold parameter on

earest object neighbour retrieval performance for objects from

UGME NT E D Best and AUGME NT E D Rem

, for three different descrip-

or resolutions. As can be seen, the method is almost resilient to

his parameter across resolutions and a low value can be used.

While there is little variation in the results of query objects

rom AUGME NT E D Best , different descriptor resolution yields a sig-

ificant variation in matching performance for the query objects

f AUGME NT E D Rem

.

The execution times of the queries are shown in Fig. 15 using a

ote count threshold of 10 and descriptor resolution of 6 4x6 4. It is

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

Fig. 14. Fraction of correct nearest neighbour object matches for several vot-

ing thresholds, using the proposed partial object retrieval pipeline, tested using

the AUGME NT E D Best (Best) and AUGME NT E D Rem (Remeshed) partial query object

datasets.

Fig. 15. Execution times of the AUGME NT E D Best and AUGME NT E D Rem query meshes

when using them in the proposed pipeline with a descriptor resolution of 64x64

and a vote threshold of 10.

a

b

d

t

o

r

6

r

w

S

d

s

s

t

p

fi

O

o

a

t

c

i

r

t

Fig. 16. Comparison of nearest neighbour retrieval performance of the Virtual

Hampson Museum collection. Query objects with 25% and 40% partiality were used.

Results for the Tran et al., RSVP, KAZE+VLAD, KAZE+FV, KAZE+GOLD, and Pickup

et al. methods are taken from [22] and dFPFH, Global Fisher, and PANORAMA were

taken from [9] . The latter does not show results for the 40% partiality queries which

are therefore missing.

Fig. 17. The relationship between the execution time of a query using the dissim-

ilarity tree, and the number of tree nodes visited during that query’s execution.

For each time slice of 0.1 second, the minimum, maximum, and average number of

nodes visited for all queries which executed within that time slice is shown.

t

[

t

7

t

v

i

f

t

b

o

q

s

t

c

t

b

i

t

lso worth noting that queries based on different descriptors can

e executed in parallel, although most of this acceleration was lost

ue to ensuring that results are reproducible. As can be seen in

he Figure, there is a significant difference in the execution times

f query objects from AUGME NT E D Best and AUGME NT E D Rem

. These

esults are discussed further in Section 7 .

.6. SHREC’16 Partial retrieval performance

The proposed partial retrieval pipeline is compared against the

esults presented in the SHREC’16 Partial Shape Query track [22] as

ell as the results for the equivalent benchmark presented by

avelonas et al. [9] , which also includes results for the PANORAMA

escriptor by Sfikas et al. [4] and Global Fisher features [48] . As the

ource code of these works was not available, we have used the re-

ults from the referenced papers. Dimou et al. [12] have also tested

heir work against this dataset, but no nearest neighbour retrieval

erformance was provided.

The majority of the SHREC’16 benchmark focuses on the classi-

cation of objects into classes rather than specific object retrieval.

nly the artificial queries , which are culled versions of the database

bjects, have matching objects in the database. Fortunately, they

lso provide Nearest Neighbour data. Because the proposed re-

rieval pipeline is intended for exact part-in-whole matching, this

omparison focuses on Nearest Neighbour. The results are shown

n Fig. 16 .

As shown in the Figure, the proposed method is able to cor-

ectly identify all partial queries in the benchmark, across mul-

iple descriptor resolutions. While Tran et al. also accomplish
40
his, their method uses the Iterative Closest Point (ICP) algorithm

49] [50] 512 times per candidate match [22] . While no execution

imes are listed, we estimate that our method is likely to run faster.

. Discussion

Fig. 17 shows that there appears to be a linear relationship be-

ween the query execution time and the number of tree nodes

isited by the algorithm. As the querying algorithm iterates until

t determines that no nodes with smaller distances than the ones

ound are present in the Dissimilarity Tree, one can conclude that

he more dissimilar a query descriptor is from its nearest neigh-

our descriptors in the tree, the longer querying will take.

Fig. 14 shows that there is a non-insignificant effect on partial

bject retrieval performance when using remeshed versions of the

uery objects. The severity of this effect varies across different de-

criptor resolutions.

The cause of this loss in matching performance is that the posi-

ions of vertices on the object surfaces are slightly shifted causing

hanges in intersection counts to occur elsewhere on the descrip-

or, which can be seen in Fig. 9 .

Because the distance between each vertex and its closest neigh-

our in the remeshed mesh is small, and based on anecdotal ev-

dence, the resulting effect is that corresponding QUICCI descrip-

ors on the unmodified and remeshed object contain portions of

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

b

W

t

o

w

t

s

s

e

s

n

c

b

s

o

c

w

s

f

t

8

b

f

a

F

o

s

D

c

i

C

w

r

s

d

t

A

h

t

p

t

d

c

R

[

[

[

[

[

[

[

[

[

[

its which have either been shifted left or right by 1 bit. As the

eighted Hamming distance function only considers bits in exactly

he same position, this incurs a distance penalty on what would

therwise have been a good match.

The probability of this distance penalty occurring is diminished

hen the descriptor resolution is lowered. As the distances be-

ween QUICCI intersection circles is increased to cover the same

upport radius, the probability of bit shifts decreases, thereby re-

ulting in the improved matching performance observed in Fig. 14 .

The distance penalty also has the downside of increasing query

xecution times. As indicated in Fig. 17 , we observed a relation-

hip between the similarity of a query descriptor and the nearest

eighbour in the set of complete object descriptors, and the exe-

ution time of that query. When the distance to the nearest neigh-

our increases, so does the execution time of the dissimilarity tree

earch algorithm. This increase is visible in Fig. 15 .

Given the extremely promising nature of the retrieval results

f the partial query objects from the AUGME NT E D Best dataset, we

onjecture that if in future work a distance function is found

hich can remedy the aforementioned distance penalty issue, it

hould be possible to both significantly increase the matching per-

ormance of remeshed queries while simultaneously reduce query

imes.

. Conclusion

A small modification to the QUICCI descriptor was shown to

e advantageous for partial retrieval tasks. An indexing scheme

or binary descriptors called Dissimilarity Tree was also proposed,

nd was shown to greatly reduce nearest neighbour retrieval time.

inally, an accurate and efficient search algorithm for partial 3D

bject retrieval using the aforementioned Dissimilarity indexing

tructure was proposed.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Bart Iver van Blokland: Conceptualization, Methodology, Soft-

are, Validation, Formal analysis, Investigation, Resources, Data cu-

ation, Writing – original draft, Writing – review & editing, Vi-

ualization. Theoharis Theoharis: Methodology, Writing – original

raft, Writing – review & editing, Supervision, Project administra-

ion.

cknowledgements

The authors would like to thank the HPC-Lab leader and PI be-

ind the "Tensor-GPU" project, Prof. Anne C. Elster, for access to

he Nvidia DGX- 2 system used in the experiments performed as

art of this paper. Additionally, the authors would like to thank

he IDUN cluster (själander, 2019) at NTNU for the provision of ad-

itional computing resources. Multiple images in this work were

aptured using [51] .

eferences

[1] Godil A, Dutagaci H, Bustos B, Choi S, Dong S, Furuya T, Li H, Link N,

Moriyama A, Meruane R, et al. Range scans based 3D shape retrieval. Proceed-

ings of the 2015 Eurographics Workshop on 3D Object Retrieval 2015:153–60.
doi: 10.2312/3dor.20151069 .

[2] Liu Z-B, Bu S-H, Zhou K, Gao S-M, Han J-W, Wu J. A survey on partial re-
trieval of 3D shapes. J Comput Sci Technol 2013;28(5):836–51. doi: 10.1007/

s11390-013-1382-9 .
41
[3] Savelonas MA, Pratikakis I, Sfikas K. An overview of partial 3D object re-
trieval methodologies. Multimed Tools Appl 2015a;74(24):11783–808. doi: 10.

1007/s11042- 014- 2267- 9 .
[4] Sfikas K, Pratikakis I, Koutsoudis A, Savelonas M, Theoharis T. Partial matching

of 3D cultural heritage objects using panoramic views. Multimed Tools Appl
2016;75(7):3693–707. doi: 10.1007/s11042- 014- 2069- 0 .

[5] Du G , Zhou M , Yin C , Zhang J , Wu Z , Shui W . An automatic positioning al-
gorithm for archaeological fragments. In: Proceedings of the 15th ACM SIG-

GRAPH Conference on Virtual-Reality Continuum and Its Applications in In-

dustry - Volume 1. New York, NY, USA: Association for Computing Ma-
chinery; 2016. p. 431–9 . ISBN 978-1-4503-4692-4, DOI: 10.1145/3013971.

3013992
[6] van Blokland BI , Theoharis T . An indexing scheme and descriptor for 3d object

retrieval based on local shape querying. Computers & Graphics 2020;92:55–66 .
[7] Bai J , Gao S , Tang W , Liu Y , Guo S . Design reuse oriented partial retrieval of

CAD models. Comput-Aided Des 2010;42(12):1069–84 .

[8] Lavoué G. Combination of bag-of-words descriptors for robust partial shape
retrieval. Vis Comput 2012;28(9):931–42. doi: 10.10 07/s0 0371- 012- 0724- x .

[9] Savelonas MA, Pratikakis I, Sfikas K. Fisher encoding of differential fast
point feature histograms for partial 3d object retrieval. Pattern Recognit

2016;55:114–24. doi: 10.1016/j.patcog.2016.02.003 . https://www.sciencedirect.
com/science/article/pii/S0031320316000595

[10] Rusu RB , Blodow N , Beetz M . Fast point feature histograms (FPFH) for 3D reg-

istration. In: 2009 IEEE international conference on robotics and automation.
IEEE; 2009. p. 3212–17 .

[11] Ohbuchi R, Osada K, Furuya T, Banno T. Salient local visual features for shape-
based 3D model retrieval. In: 2008 IEEE International Conference on Shape

Modeling and Applications; 2008. p. 93–102. doi: 10.1109/SMI.2008.4547955 .
[12] Dimou D , Moustakas K . Fast 3D scene segmentation and partial object retrieval

using local geometric surface features. In: Gavrilova ML, Tan CK, Sourin A, ed-

itors. Transactions on Computational Science XXXVI: Special Issue on Cyber-
worlds and Cybersecurity. Berlin, Heidelberg: Springer; 2020. p. 79–98 . ISBN

978-3-662-61364-1, DOI: 10.1007/978-3-662-61364-1_5
[13] Agathos A, Pratikakis I, Papadakis P, Perantonis S, Azariadis P, Sapidis NS. 3D

Articulated object retrieval using a graph-based representation. Vis Comput
2010;26(10):1301–19. doi: 10.10 07/s0 0371- 010- 0523- 1 .

[14] Tierny J, Vandeborre J-P, Daoudi M. Partial 3D shape retrieval by reeb pattern

unfolding. Comput Graphics Forum 2009;28(1):41–55. doi: 10.1111/j.1467-8659.
2008.01190.x .

[15] Furuya T , Kurabe S , Ohbuchi R . Randomized sub-volume partitioning for
part-based 3D model retrieval. 3DOR ’15 Proceedings of the 2015 Eurographics

Workshop on 3D Object Retrieval 2015:15–22 .
[16] Furuya T, Ohbuchi R. Learning part-in-whole relation of 3D shapes for part-

based 3D model retrieval. Comput Vision Image Understanding 2018;166:102–

14. doi: 10.1016/j.cviu.2017.11.007 .
[17] Dutagaci H , Godil AA , Axenopoulos A , Daras P , Furuya T , Ohbuchi R . SHREC

2009 - Shape retrieval contest of partial 3D models. Eurographics Workshop
on 3D Object Retrieval(2009) 2009 .

[18] Lowe DG . Distinctive image features from scale-invariant keypoints. Int J Com-
put Vis 2004;60(2):91–110 .

[19] Ohbuchi R, Furuya T. Scale-weighted dense bag of visual features for 3D model
retrieval from a partial view 3D model. In: 2009 IEEE 12th International Con-

ference on Computer Vision Workshops, ICCV Workshops; 2009. p. 63–70.

doi: 10.1109/ICCVW.2009.5457716 .
20] Papadakis P, Pratikakis I, Theoharis T, Perantonis S. PANORAMA: A 3D shape

descriptor based on panoramic views for unsupervised 3D object retrieval. Int
J Comput Vis 2010;89(2):177–92. doi: 10.10 07/s11263-0 09-0281-6 .

[21] Bay H , Ess A , Tuytelaars T , Gool LV . Speeded-up robust features (surf). Comput
Vision Image Understanding 2008;110(3):346–59 .

22] Pratikakis I, Savelonas MA, Arnaoutoglou F, Ioannakis G, Koutsoudis A, Theo-

haris T, Tran M-T, Nguyen V-T, Pham V-K, Nguyen H-D, et al. Shrec-16 track:
partial shape queries for 3D object retrieval. Eurographics Workshop on 3D

Object Retrieval 2016:10. doi: 10.2312/3DOR.20161091 .
23] Alcantarilla PF , Bartoli A , Davison AJ . Kaze features. In: European conference

on computer vision. Springer; 2012. p. 214–27 .
24] Jegou H , Douze M , Schmid C , Perez P . Aggregating local descriptors into a

compact image representation. In: 2010 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition; 2010. p. 3304–11 .
25] Serra G, Grana C, Manfredi M, Cucchiara R. Gold: gaussians of local descriptors

for image representation. Comput Vision Image Understanding 2015;134:22–
32. doi: 10.1016/j.cviu.2015.01.005 . Image Understanding for Real-world Dis-

tributed Video Networks
26] Perronnin F , Sánchez J , Mensink T . Improving the fisher kernel for large-scale

image classification. In: ECCV’10 Proceedings of the 11th European conference

on Computer vision: Part IV, vol. 6314; 2010. p. 143–56 .
27] Lian Z , Godil A , Sun X , Xiao J . Cm-bof: visual similarity-based 3d shape re-

trieval using clock matching and bag-of-features. In: Machine Vision and Ap-
plications archive, vol. 24; 2013. p. 1685–704 .

28] Har-Peled S, Indyk P, Motwani R. Approximate nearest neighbor: towards re-
moving the curse of dimensionality. Theory of Computing 2012;8(1):321–50.

doi: 10.4086/toc.2012.v008a014 .

29] Broder A . On the resemblance and containment of documents. In: Proceedings.
Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171); 1997.

p. 21–9 .
30] Broder AZ . Identifying and filtering near-duplicate documents. combinatorial

pattern matching 20 0 0:1–10 .

https://doi.org/10.2312/3dor.20151069
https://doi.org/10.1007/s11390-013-1382-9
https://doi.org/10.1007/s11042-014-2267-9
https://doi.org/10.1007/s11042-014-2069-0
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0006
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0007
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0007
https://doi.org/10.1007/s00371-012-0724-x
https://doi.org/10.1016/j.patcog.2016.02.003
https://www.sciencedirect.com/science/article/pii/S0031320316000595
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0010
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0010
https://doi.org/10.1109/SMI.2008.4547955
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0012
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0012
https://doi.org/10.1007/s00371-010-0523-1
https://doi.org/10.1111/j.1467-8659.2008.01190.x
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0015
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0015
https://doi.org/10.1016/j.cviu.2017.11.007
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0017
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0018
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0018
https://doi.org/10.1109/ICCVW.2009.5457716
https://doi.org/10.1007/s11263-009-0281-6
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0021
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0021
https://doi.org/10.2312/3DOR.20161091
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0023
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0024
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0024
https://doi.org/10.1016/j.cviu.2015.01.005
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0026
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0027
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0027
https://doi.org/10.4086/toc.2012.v008a014
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0029
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0030
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0030

B.I.v. Blokland and T. Theoharis Computers & Graphics 100 (2021) 32–43

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[31] Sadowski C , Levin G . Simhash: hash-based similarity detection. Technical re-
port, Google 2007 .

32] Calonder M , Lepetit V , Strecha C , Fua P . Brief: binary robust independent ele-
mentary features. In: ECCV’10 Proceedings of the 11th European conference on

Computer vision: Part IV, vol. 6314; 2010. p. 778–92 .
33] Rublee E , Rabaud V , Konolige K , Bradski G . Orb: An efficient alternative to

sift or surf. In: 2011 International Conference on Computer Vision; 2011.
p. 2564–71 .

34] Leutenegger S , Chli M , Siegwart RY . Brisk: Binary robust invariant scal-

able keypoints. In: 2011 International Conference on Computer Vision; 2011.
p. 2548–55 .

35] Prakhya SM , Liu B , Lin W . B-shot: A binary feature descriptor for fast and ef-
ficient keypoint matching on 3d point clouds. In: 2015 IEEE/RSJ international

conference on intelligent robots and systems (IROS). IEEE; 2015. p. 1929–34 .
36] Brodal GS , Gasieniec L . Approximate dictionary queries. In: CPM ’96 Proceed-

ings of the 7th Annual Symposium on Combinatorial Pattern Matching; 1996.

p. 65–74 .
37] Brin S . Near neighbor search in large metric spaces. very large data bases

1995:574–84 .
38] Arslan AN , Ömer E ̆gecio ̆glu . Dictionary look-up within small edit distance. In-

ternational Journal of Foundations of Computer Science 2004;15(1):57–71 .
39] Maaí MG , Nowak J . Text indexing with errors. J Discrete Algoritms

2007;5(4):662–81 .

40] Norouzi M , Punjani A , Fleet DJ . Fast search in hamming space with multi-in-
dex hashing. In: 2012 IEEE Conference on Computer Vision and Pattern Recog-

nition; 2012. p. 3108–15 .
[41] Chappell T , Geva S , Zuccon G . Approximate nearest-neighbour search with

inverted signature slice lists. european conference on information retrieval
2015:147–58 .

42] Reina EM , Pu KQ , Qureshi FZ . An index structure for fast range search in ham-

ming space. In: 2017 14th Conference on Computer and Robot Vision (CRV);
2017. p. 8–15 .
42
43] Cormen TT , Leiserson CE , Rivest RL , Stein C . Introduction to algorithms, third
edition. The MIT Press; 2009 .

44] Attene M., Alexa M., Mueller K., Hauser H., Jorge J., Polthier K., Shapiro
V.. Graphics replicability stamp initiative. 2021. http://www.replicabilitystamp.

org/ .
45] Sipiran I, Meruane R, Bustos B, Schreck T, Johan H, Li B, Lu Y. SHREC’13 Track:

large-scale partial shape retrieval using simulated range images. Eurograph-
ics 2013 Workshop on 3D Object Retrieval 2013:8pages. doi: 10.2312/3DOR/

3DOR13/081-088 .

46] Botsch M , Kobbelt L . A remeshing approach to multiresolution modeling. In:
Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geome-

try processing; 2004. p. 185–92 .
[47] Sieger D., Botsch M.. The polygon mesh processing library. 2020.

Http://www.pmp-library.org.
48] Savelonas MA, Pratikakis I, Sfikas K. Partial 3D object retrieval combining lo-

cal shape descriptors with global fisher vectors. 3DOR ’15 Proceedings of the

2015 Eurographics Workshop on 3D Object Retrieval 2015b. doi: 10.2312/3dor.
20151051 .

49] Chen Y, Medioni G. Object modeling by registration of multiple range images.
In: 1991 IEEE International Conference on Robotics and Automation Proceed-

ings; 1991. p. 2724–2729 vol.3. doi: 10.1109/ROBOT.1991.132043 .
50] Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern

Anal Mach Intell 1992;14(2):239–56. doi: 10.1109/34.121791 .

[51] Cignoni P , Callieri M , Corsini M , Dellepiane M , Ganovelli F , Ranzuglia G .
MeshLab: an Open-Source Mesh Processing Tool. In: Scarano V, Chiara RD,

Erra U, editors. Eurographics Italian Chapter Conference. The Eurograph-
ics Association; 2008 . ISBN 978-3-905673-68-5, DOI: 10.2312/LocalChap-

terEvents/ItalChap/ItalianChapConf2008/129-136

http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0031
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0032
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0033
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0034
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0035
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0036
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0037
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0038
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0039
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0040
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0041
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0042
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0043
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0043
http://www.replicabilitystamp.org/
https://doi.org/10.2312/3DOR/3DOR13/081-088
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0046
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0046
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0046
https://doi.org/10.2312/3dor.20151051
https://doi.org/10.1109/ROBOT.1991.132043
https://doi.org/10.1109/34.121791
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051
http://refhub.elsevier.com/S0097-8493(21)00149-7/sbref0051

	Partial 3D object retrieval using local binary QUICCI descriptors and dissimilarity tree indexing
	1 Introduction
	2 Related work
	2.1 Partial object retrieval
	2.2 The QUICCI local binary descriptor
	2.3 Weighted hamming distance function
	2.4 Indexing of binary descriptors

	3 Partial retrieval pipeline
	4 Dissimilarity tree for indexing binary descriptors
	4.1 Dissimilarity tree construction
	4.2 Dissimilarity tree querying

	5 Adapting QUICCI descriptors for partial retrieval
	6 Evaluation
	6.1 SHREC’16 Dataset augmentation
	6.2 Dissimilarity tree
	6.3 Modified QUICCI evaluation
	6.4 Modified QUICCI for partial object retrieval
	6.5 Partial retrieval pipeline
	6.6 SHREC’16 Partial retrieval performance

	7 Discussion
	8 Conclusion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgements
	References

