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ABSTRACT

A metrological extension of morphological granulometry for
the hyperspectral domain is introduced in this work. This de-
velopment is enabled by the latest study of a suitable ordering
relation for hyperspectral images. With granulometry as a
texture descriptor, a suitable similarity measure for it is also
introduced. In addition to providing validation experiments to
the extension, a preliminary result in a texture discrimination
task can also be found in this work.

Index Terms— Texture, mathematical morphology, pat-
tern spectrum, hyperspectral

1. INTRODUCTION

Mathematical morphology (MM) offers a framework of the-
ory and tools for the analysis of spatial structures in an image.
It has been widely known mostly for its elementary operators,
e.g., erosion-dilation and opening-closing pairs, or segmenta-
tion tools, e.g., watershed and skeletonization. While they are
useful and can be found at the core of many image process-
ing and analysis solutions [1} 2| 3], MM also provides a set of
tools capable of dealing with textures such as granulometry
or, its derivative form, pattern spectrum [4].

Granulometry provides information on the distributions of
object size and distance in an image. The important advantage
of granulometry is that it requires no segmentation step, mak-
ing the processing an efficient one. Finally, pattern spectrum
can be used as a descriptor for texture images.

This article is organized as follows. The extension of mor-
phological granulometry to the hyperspectral domain is intro-
duced in Sec. [2] In Sec. [3] a validation experiment is pro-
vided, showing also how a pattern spectrum is interpreted.
Then, in Sec. [] a demonstration of its use in a texture dis-
crimination task is given. A suitable texture similarity mea-
sure for pattern spectrum is also introduced. Finally, the work
is concluded in Sec. [5] Table[I]is provided for easy access to
frequently used mathematical notations.
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2. MORPHOLOGICAL GRANULOMETRY

In material science, granulometry is the measurement of the
distribution of size in a collection of grains. In mining, the
measurement can be carried out by the sieving of grains or
particles with increasing mesh size. At each increment, the
mass of grains retained in the sieve will be then recorded.

2.1. Definition

The physical process of sieving grains with increasing mesh
size is analogous to successively applying morphological
opening (or, its dual, closing) operations with increasing
structuring element size [4]. After each opening, the volume
of the resulting image is computed as follows:

v(1. (1)) = / v (1), i € [L,7] 0

A granulometric curve can therefore be obtained as a function
of structuring element size. Pattern spectrum (PS) is a deriva-
tive of the granulometric curve where, instead of recording
volume evolution, it is the loss of volume at each succession
that is calculated:

V(’sz(I)) - V(ryBi,71 (I))7 (RS [1,7‘] (2)

Compared to the granulometric curve, PS can be regarded as
more intuitive since the location of its peak directly refers to
the dominant or prevalent size occurring in the image.

2.2. Theoretical requirements

Since granulometry is obtained through a series of opening,
the theoretical properties of an opening is also obtained, i.e.,
anti-extensivity, increasingness, and idempotence. Addition-
ally, granulometry also posseses a property that is stronger
than idempotence, i.e., absorption [4]. Idempotence ex-
presses that multiple openings applied to an image will not
modify the image further, given that the structuring element
size remains the same:

vB(I) = vp(yB(I)).



Table 1: Frequently used mathematical notations.

S A spectrum as a function of wavelength

A Wavelength, A\ € [Amin, Amax]

I,I" Grayscale and n-dimensional image functions,
respectively

=, = Logical ordering relation “less than or equal
to” and “’greater than or equal to”, respectively

d(S1,S52) Distance between S7 and So

S, Spectral references associated to minimum

Stee and maximum rank extraction, respectively

Y, @ Opening and closing operations, respectively

B; Structuring element of arbitrary size ¢

v Image volume

With the absorption property, applying a series of opening
with increasing structuring element size is equal to applying
only the opening with the largest size:

vB, (8, (1))

As a note, the absorption property is not automatically ob-
tained. It is also dependent upon the choice of the structuring
element shape, i.e., only satisfiable through periodic lines and
disks [4]. However, there are more issues to address due to the
digital approximation of disks [5}16]]. In this work, we decide
to work only with square and diamond structuring elements to
avoid bias that is caused by the digital reconstruction of disks.

= 7B, (’YB7 (I)) = Ymax(B;,B;) (I)

2.3. Extension to the hyperspectral domain

The initial formulation of granulometry is developed for bi-
nary and gray level images, where the distinction between
object and background is straightforward. Its extension to the
hyperspectral domain requires a suitable ordering function.

2.3.1. Ordering relation

The first and most fundamental challenge in the extension of
MM to any multivariate domain is the ordering relation. This
is because, at the center of its processing, MM requires deter-
mining the minimum and maximum values of a set of pixel
values contained by the structuring element. In this work, we
will use the conditional ratio and angular (CRA) ordering re-
lation, which has been shown to be the most suitable for hy-
perspectral image processing in a previous study, respecting,
in addition, the expected metrological properties [[7].

CRA, as given in (3), is an ordering relation developed
based on the ratio of distances relative to two spectral refer-
ences S~ and ST°°. The first and second conditions are
ratios of distances proportional to magnitude and shape dif-
ferences between two spectra, respectively. Distance function
d used throughout this work is the Kullback-Leibler pseudo-
divergence (KLPD) function [8], whose performance has
been evaluated and compared in Ref. [9].

S <8 e { Ro(5) = (o) st Baoy < Ra(5a)
S1 =8 e {Rl(Sl) :]1%?,11((%2)) zngllgfg‘sr> Ry (S2) 3)
where Ry = ma = m’ and

2.3.2. Image volume

The next challenge to tackle lies in adapting (IJ) to the hyper-
spectral domain. For a grayscale image, the use of a single
integral is sufficient and appropriate since the image can be
regarded as topology. The volume is essentially the gray area
bounded by the image plane I and the spatial support of the
image (or, the plane at zero value), see Fig. [Ia
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Fig. 1: Illustration of the computation image volume in the
(a) grayscale domain and (b) spectral difference space.

In the hyperspectral domain, the pixel values are n-
dimensional. Thus, the image function is not describable
as a plane but rather in an (n+1)-dimensional space, with n
equals the numbers of spectral bands. To reduce the problem
into a two-dimensional space, in this work, the image volume
is considered in a spectral difference space:

I’rl / / I'IL

where ¢ € [1,7], and « and y are the axes of the spatial sup-
port. Essentially, given a reference spectrum S—°° with the
same spectral dimension as the opening result vg, (I™), we
can obtain a spectral difference plane relative to S~°°. In this
way, we are also defining the plane at zero distance values,
i.e., where S™° is located. See illustration in Fig.

“)dx dy,  (4)

3. VALIDATION EXPERIMENT

Based on the knowledge that a PS provides information of
the distribution of shape and size in an image, a set of hyper-
spectral images as shown in Fig. [2]are generated. Each image
consists of a background and 16 square objects as foreground.



3.1. Binary pseudo-artificial test case

The first dataset (Fig. [2) is composed of binary spectral im-
ages. They are constructed using only two spectra, associated
with each pixel location using a binary mask. Their PS are
expected to be identical to the theory for binary images.

PS obtained for the set of varying pattern size and distance
can be seen in Fig. [3] The left side of each plot is obtained by
opening and corresponds to the distance between the square
patterns. Obtained by closing, the right side provides comple-
mentary information regarding the size of the patterns. The
peak locations are directly related to the pattern size or dis-
tance n through the function n + 2.

The magnitude of the peaks in a PS is partly related to

(a) Varying square widths (5, 10, 15, 20, 25) and fixed distance of 20 pixels

(b) Fixed square width of 15 pixels and varying distance (4, 8, 12, 16, 20)

Fig. 2: Binary test set with varying pattern size and distance.
The same two spectra are used to create the background and
foreground parts for all images.
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Fig. 3: Pattern spectra obtained for binary test sets with vari-
ations in (top) pattern size and (bottom) pattern distance.

the contrast between the pattern and the background. In this
second experiment, we are assessing the performance of PS
in a more realistic case. The same binary mask is used, but
the background and pattern content are extracted from hyper-
spectral images of real physical objects, see Fig. @]

3.2. Textured pseudo-artificial dataset

Fig. [5] shows the obtained PS for the second dataset. Peak
locations in these plots are related to the pattern size and dis-
tance. It can also be observed that aside from the peaks, the
spectra are mostly related to that of the background (BG). PS
content of the foreground patterns is also present albeit not
visible since its statistical representation area is weak.

(b) Fixed square width of 15 pixels and varying distance (4, 8, 12, 16, 20)

Fig. 4: Textured test set with varying pattern size and dis-
tance. Background and foreground contents are extracted
from hyperspectral images of real objects.
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Fig. 5: Pattern spectra obtained for textured test sets in Fig.
El, with variations in (top) pattern size and (bottom) distance.



4. SIMILARITY ASSESSMENT BETWEEN
PATTERN SPECTRA

The initial writing of granulometry was defined for binary
images [11]]. In this context, PS can be transformed into a
probability density function (PDF) of the coverage of a sur-
face by objects, each a product of its frequency and size. The
extension of granulometry to the grayscale and multivariate
domains loses this direct metrological relationship. It is be-
cause the product of object coverage and contrast to the back-
ground is computed together in a single integral as in ().
Consequently, a PS is not a PDF and must rather be consid-
ered as a sampled function of a complex granulometry due to
its absorption property. Considering it as a texture descrip-
tor, a texture similarity measure is required to carry out tex-
ture discrimination tasks. Since a PS is not a PDF, similar-
ity functions defined for PDFs are therefore not suitable [12]).
Based on these considerations, KLPD function [§]] is selected
to measure the difference between two PS.

To demonstrate the use of PS descriptor and KLPD func-
tion in a texture discrimination task, 10 images shown in Fig.
[6] are employed as experiment target. Their obtained PS are
provided in Fig. []] Through visual observation, the texture
of chili and milkcoffee images are quite similar. Their cor-
responding PS are also similar in terms of shape, but quite
different in magnitudes. But this is as expected since the mag-
nitude of a PS is also linked to the image contrast. Note that
in the spectral domain, the discussion around image contrast
becomes a question of spectral variations within an image.
Among all PS, one that corresponds to the rice image has a
very different trend compared to the rest, with a significant
opening-peak at a large structuring element radius. This re-
flects the prominent object size in the image. If we look at the

chili coffee

rice tea-01

milkcoffee

tea-02-biloba

PS of tea-02-biloba, it also has a peak at a similar location.
However, since the image consists of objects of various sizes,
this peak is not as significant as that of the rice.

The difference between each pair of these texture images
is also computed and shown as a heatmap in Fig. [§] In ad-
dition to confirming the previous observations, this heatmap
allows us to observe the granulometric variations within this
dataset. The image rice can be said as quite different from
most of the other images. The highest differences can be seen
for the pairs of chili-tea-04, chili-oregan, and pepper-rice.
We also need to note that PS is relative to the local variations
and does not embed the first-order statistics, i.e., the distribu-
tion of spectra. Therefore, the difference map is not relative to
the average color differences but rather is restricted to texture
variations.

5. CONCLUSION

In this work, we have introduced a metrological extension of
morphological granulometry to the spectral domain. This ex-
tension is possible due to the latest development of the condi-
tional ratio and angular ordering relation for hyperspectral
images. Considering granulometry as a texture descriptor,
we paired it with a suitable similarity measure, i.e., Kullback
Leibler pseudo-divergence. A demonstration of their perfor-
mance in a texture discrimination task was also provided, us-
ing a texture database available for the hyperspectral domain.

6. SUPPLEMENTARY MATERIALS

Images from the binary and textured test sets are available via
doi.org/10.5281/zenodo.3709776.
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tea-03-tension tea-04-cola

Fig. 6: Subsets (512x512 pixels) of Hytexila image database of food category [10].
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Fig. 7: Pattern spectra of hytexila-food shown in Fig. @ Note
that x-axes of both plots are identical.
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