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Abstract. The stationarity of a texture can be considered a fundamental property of images,
although the property of stationarity is difficult to define precisely. We propose a stationarity test
based on multiscale, locally stationary, 2D wavelets. Three separate experiments were performed
to evaluate the capabilities and the limitations of this test. The experiments comprised a chess-
board stationarity analysis, two classification tasks, and a psychophysical experiment. The clas-
sification tasks were performed on 110 texture images from a texture database. In one subtask,
five texture feature vectors were extracted from each image and the classification accuracy of
two classical methods compared, whereas in the second subtask, the classification accuracy of
several methods was compared to the descriptors defined for each image within the database. In
the psychophysical experiment, the correlation between the classification results and observer
judgements of texture similarity were determined. It was found that a combination of wavelet
shrinkage and rotation-invariant local binary pattern best predicted the observer response. The
results show that the proposed stationarity test is able to provide relevant information for texture
analysis. © 2021 SPIE and IS&T [DOI: 10.1117/1.JEI.30.4.043001]
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1 Introduction

A one-dimensional temporal signal is said to be stationary if its local statistical properties are
constant in time.1 The same concept can be extended to the field of texture analysis, where it is
widely used. It is, in fact, a fundamental assumption of global texture models, such as Markov
random fields, autocorrelation functions, and the well-known Tamura features.2 Consequently,
if the texture is not stationary, these techniques give a flawed representation of the signal. In fact,
this fails to depict the actual mathematical properties of the texture, because it extracts an average
behavior that neglects any change of local features in the image. For such a case, a texture can be
divided into stationary subregions with a segmentation algorithm that autonomously partitions
an image into multiple homogeneous areas.2 However, this increases the computational com-
plexity of the analysis and, as discussed in Ref. 3, prior knowledge of the stationarity of the
sample would still be needed.

Currently, the stationarity property of a texture image has a dual meaning. From a mathemati-
cal point of view, the term “stationarity” means that the average of the data generating process,
which gives rise to the image observed, is the same everywhere in the image,3 and that its dis-
tribution is essentially regular, i.e., its variance is finite and its covariance is dependent only on the
distance between pixels. We use the term “data stationarity” to refer to this definition. On the other
hand (in Ref. 4, pg. 80), Petrou and Sevilla stated that “a stationary texture image is an imagewhich
contains a single type of texture.” This suggests an interpretation of stationarity that is more related
to the human visual system. We name this second definition “visual stationarity.” This interpre-
tation is more complex than the first one, as it touches the border of linguistics, i.e., the under-
standing of the concept of “a single type of texture,” which would probably depend on the context
of analysis. This situation is not uncommon, for example, even the similar but more widely used
term “homogeneous” has a fuzzy meaning in the research of human perception of texture.5
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An example that shows the practical need for a shared definition of data and visual statio-
narity is suggested by Bello-Cerezo et al.6 In this paper, the authors classified a wide variety of
existing texture databases according to certain characteristics. Among these characteristics is
texture stationarity, with explicit mention to the definition given in Ref. 3. In Appendix C,
we show that this partition is inconsistent with the results of the stationarity test employed
in this paper (see Sec. 2). This mismatch clearly highlights the discrepancy between data and
visual stationarity.

In a previous study,7 we analyzed the concept of data stationarity and we expanded a frame-
work developed to evaluate image stationarity8 to account for multiple scales. The choice of scale
has proven to be of great importance for texture analysis.9 The link between this mathematical
approach and visual stationarity is discussed in Ref. 8, in which the stationarity test was applied
to images of pilled fabric, and the results subsequently compared to the authors’ evaluation of the
visual stationarity of the images. This, however, provides limited experimental psychophysical
data on which to base firm conclusions. In this work, we wish to remedy this gap in the literature.
To this end, we provide an investigation of the relationship between visual and data stationarity,
using images of our own dataset as well as from a subset of the describable texture dataset
(DTD).10 The choice of DTD is based on its texture categorization and annotation by human
observers, thus incorporating the complexity of human perception of texture. Additionally, data
stationarity analyses of an alternative texture database can be found in Appendix C.

2 Texture Stationarity

In the field of visual texture analysis, the conjecture proposed by Julesz, stating that “whereas
textures that differ in their first- and second-order statistics can be discriminated from each other,
those that differ in their third- or higher-order statistics usually cannot,”11 is a good approxima-
tion of how human perception works. Many texture feature extraction techniques, therefore,
assume that their image targets are second-order stationary,3,12 i.e., the process generating these
images has a constant mean, a finite variance, and a covariance that is a function of pixel distance
covðXr1 ; Xr2Þ ¼ γðr1 − r2Þ. Taylor et al.8 employed these premises to develop an image statio-
narity test for a single realization of a generating statistical process. The test interprets each
image as a locally stationary two-dimensional wavelet (LS2W) process, and it evaluates the
constancy of its power spectrum to estimate its stationarity. We introduce and describe it in
Sec. 2.1, and we propose a variation to it in Sec. 2.2. Frequently used mathematical notations
are also summarized in Table 1.

2.1 LS2W Stationarity Test

Amother wavelet ψðxÞ is a compact support function with oscillatory characteristics,13–15 x ∈ R,
which, together with an auxiliary function ϕðxÞ called a father wavelet, can be used to form a
complete functional basis on L2ðRÞ. This functional basis fψ j;k;ϕj;kgj;k∈Z is achieved by scaling

and shifting ψðxÞ and ϕðxÞ, with j and k indicating the scaling and shifting indices, respectively.
On the one hand, the shifting gives the possibility of representing local segments of the signal,
whereas on the other hand, the scaling allows it to represent the fine or coarse structures con-
tained therein. As discussed in Ref. 16, a discrete version of such a basis function can be obtained
by associating two compactly supported mother and father wavelets ψ and ϕ with a suitable pair
of low-pass and high-pass filters fhkgk∈Z and fgkgk∈Z. In this case, a discrete wavelet at scale j is
a vector ψ j ¼ ðψ j;0; : : : ;ψ j;Nj−1Þ, where Nj ¼ ð2j − 1ÞðNh − 1Þ þ 1, Nh ≠ 0, ψ−1;n ¼ gn, and

ψ j−1;n ¼
P

khn−2kψ j;k ∀ n ∈ ½0; : : : ; Nj−1 − 1�. Such a basis can be easily expanded in two
dimensions and applied to images. This is achieved by substituting kwith k ¼ ðk1; k2Þ and intro-
ducing a direction index l ∈ fH;V;Dg. l is employed to mix both father and mother wavelets,
to ensure the completeness of the basis. Its values are H for horizontal, V for vertical, and
D for diagonal. The corresponding 2D fundamental wavelets are defined as ψH

j;k ¼ ϕj;k1ψ j;k2 ,

ψV
j;k ¼ ψ j;k1ϕj;k2 , and ψD

j;k ¼ ψ j;k1ψ j;k2 . A generic discrete wavelet at scale j in a given decom-
position direction l can then be expressed as in Eq. (1):
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Table 1 Frequently used mathematical notations.

ψðxÞ, ϕðxÞ Mother and father wavelets, respectively

γ Covariance function γ∶Z2 → R of a stationary image

ri Location or coordinate of arbitrary pixel i , with r ∈ Z2

j Wavelet scaling index, where j ∈ Zþ

k , k Wavelet shifting index and vector, respectively, k ∈ Z and k ¼ ðk1; k2Þ, k i ∈ Z

u Image coordinates after wavelet shifting, u ¼ rþ k

l Wavelet direction index, where l ∈ fH;V ;Dg

h, g Discrete low- and high-pass filters, respectively

Nh Number of non-zero elements in h, Nh ¼ #ðhÞ ≠ 0

Nj Number of elements of the discrete wavelet ψ j at scale j

R, C Number of rows and columns in an image, respectively, expressed in
terms of a power of 2, R ¼ 2m , C ¼ 2n , n, m ∈ Nþ

R Dimension of a grayscale image, R ¼ ðR;CÞ

wl
j;u Coefficient of the wavelet transform

ξlj ;u Zero-mean random orthonormal increment sequence

J Lowest significant scale, JðR;CÞ ¼ log2fminðR;CÞg

X r;R Generic LS2W process with dimension R

z Normalized spatial coordinate, z ¼ u∕R :¼ ðu∕R; v∕CÞ, z ∈ ð0;1Þ2

Sl
j Local wavelet spectrum

dl
j ;u Empirical mother wavelet coefficients

IðuÞ LWP as an estimator for Sl
j

AJ LWP correction matrix

ŜðuÞ Estimator for LWP, ŜðuÞ ¼ A−1
J IðuÞ, composed by the elements Ŝl

j ðuÞ

T ave Departure from constancy of an estimated LWP ŜðuÞ

B Number of repetitions of the bootstrap loop

p p value of the stationarity test for Ŝ

ηðj ; lÞ Index of scale-direction pair, η ∈ f1; : : : ;3Jg

pηðj ;lÞ p value of the stationarity test for Ŝl
j

p Vector of pηðj ;lÞ at various dyadic scales and directions, p ¼ ðpη¼1; : : : ; pη¼3 J Þ

pj p value of the stationarity test for Ŝj

pj Vector of pj at various dyadic scales, pj ¼ ðpj¼1; : : : ; pj¼J Þ

XwnðrÞ Bidimensional white-noise process

Nðμ; σÞ Normal distribution with mean μ and standard deviation σ
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EQ-TARGET;temp:intralink-;e001;116;735

ψ l
j ¼

2
6664

ψ l
j;ð0;0Þ : : : ψ l

j;ð0;Nj−1Þ

..

. . .
. ..

.

ψ l
j;ðNj−1;0Þ : : : ψ l

j;ðNj−1;Nj−1Þ

3
7775: (1)

The family of wavelets fψ l
jg derived from the definition of Eq. (1) was used in Ref. 17 to

define a random field modeling framework, called the LS2W field. The idea is to apply the
complete set of 2D discrete wavelet matrices as filters on an image to calculate its wavelet
coefficients in various pixel positions, determined by the shift k. The approach proposed in
Ref. 17 exploits only dyadic scales, whereas the filters are applied on every possible position
of the image. Mathematically, a generic image of dimensions R ¼ ðR;CÞ can be generated with
an LS2W process as in Eq. (2), where fwl

j;ug are the wavelet coefficients and fψ l
j;uðrÞ ¼ ψ l

j;u−rg
are 2D discrete non-decimated wavelets with orientation l, scale j, and shifted coordinate u.
Each coefficient wl

j;u quantifies how large the contribution of the corresponding wavelet

ψ l
j;uðrÞ is in defining the process. fξlj;ug is a zero-mean random orthonormal increment

sequence, which allows stochastic structure to be encapsulated in the model. The dependence
on the image dimension R is included to make the link with the lowest significant scale
JðR;CÞ ¼ log2fminðR;CÞg explicit. Further on, it will be considered as implicit.

EQ-TARGET;temp:intralink-;e002;116;501Xr;R ¼
X
l

X∞
j¼1

X
u

wl
j;u;Rψ

l
j;uðrÞξlj;u: (2)

The local wavelet spectrum (LWS) of an LS2W process Xr can be considered as a power
spectral density for the stationary wavelet transform SljðzÞ ≈ wl

jðu∕RÞ2. Here z ∈ ð0;1Þ2 is

a normalized spatial coordinate z ¼ u∕R ≔ ðu∕R; v∕CÞ and, for a stationary process, SljðzÞ is
a constant function of z ∀ j; l.17 Therefore, an estimate of the LWS can be used to assess the
stationarity of an image.8

Eckley et al.17 proposed the local wavelet periodogram (LWP) as an estimator for SljðzÞ. It is
expressed as in Eq. (3), where dlj;u are the empirical mother wavelet coefficients of the image.
This fact that the father wavelet coefficients are not included in Eq. (3) implies the independence
of the LWP from the mean value of the process under study. This estimator is biased, but it can be
corrected by multiplying it with the inverse of the two-dimensional discrete autocorrelation

wavelet matrix AJ, obtaining ŜðuÞ ¼ A−1
J IðuÞ.18 Prior to the correction, wavelet shrinkage has

also been applied to each level of LWP to increase the consistency of the estimator.17 ŜðuÞ is an
array with four dimensions, i.e., two for the spatial coordinates u, one for scale j, and one for
direction l, to reach a total of R × C × J × 3 elements.

EQ-TARGET;temp:intralink-;e003;116;271IðuÞ ¼ fIlj;ug ¼ fjdlj;uj2g ¼
��X

r
Xrψ

l
j;uðrÞ

�
2
�
: (3)

The stationarity test introduced in Ref. 8 employs as test statistic a departure from constancy

TavefŜg in Eq. (4), which is the variance of the values of ŜðuÞ, averaged over scales j and direc-
tions l:

EQ-TARGET;temp:intralink-;e004;116;190TavefŜg ¼ ð3JÞ−1
X
l

XJ
j¼1

varuðŜðuÞÞ: (4)

Since the original distribution is unknown a priori, i.e., the algorithm operates on a single
realization of the LS2W process Xr, it is simulated with a bootstrap operation to infer its character-
istics from the input image. Then the p value of the stationarity test is calculated by comparing the
Tave of the various bootstrap iterations with that of the original image. Mathematically, this can be

expressed as p ¼ 1þ#fTobs
ave≤T

ðiÞ
aveg

Bþ1
, where obs is indicating the observed image, index i is specifying

the various bootstrap instantiations, and B is the total number of repetitions of the bootstrap loop.
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2.2 Proposed Approach to Texture Stationarity

As discussed in Ref. 8, it is also possible to test each scale-direction spectral plane for constancy.
This is achieved by defining a test statistic Tηðj;lÞ as shown in the following equation:

EQ-TARGET;temp:intralink-;e005;116;691Tηðj;lÞfŜg ≔ TfŜljg ¼ varuðŜljðuÞÞ: (5)

With these test statistics, it is possible to perform a stationarity test at every scale j and direc-

tion l. For each of these tests, a p value pηðj;lÞ ¼
1þ#fTobs

ηðj;lÞ≤T
ðiÞ
ηðj;lÞg

Bþ1
can be defined. The pηðj;lÞ’s can

be grouped into a vector p to understand the degree of stationarity of an image at dyadic scales
2j ∀ j ∈ Zþ, j < JðR;CÞ and for direction l ∈ fH;V;Dg. Note that the calculation of p is non-
linear in Tave, which means that the average value of the vector p is different from the p value of
the image (pηðj;lÞ ≠ p). Given that the family of wavelets fψ l

jg is composed by orthogonal filters,
each test is independent from the others. Such an approach is similar to the Bootstatmh

LS2W

framework introduced in Ref. 8, which, however, is used to probe the stationarity of the whole
image and not scale by scale. To achieve that, the Bootstatmh

LS2W applies a multiple hypothesis
testing scenario discussed in Ref. 19. In our case, it is not necessary to resort to this correction
method since we define 3J distinct hypothesis tests, one for each η.

Finally, we can define a set of p values under the null hypothesis of stationarity of scale j.

We can define these as pj ¼ 1þ#fTobs
j ≤TðiÞ

j g
Bþ1

, TjfŜg ≔ Tηðj;HÞfŜgþTηðj;VÞfŜgþTηðj;DÞfŜg
3

. This corresponds
to Eq. (8) of Ref. 8, averaged only over the wavelet directions. We gather these values in the
vector pj.

p, p and pj are all results of statistical tests, under the null hypothesis of stationarity.
Therefore, a threshold α of the test significance level can be chosen. In this paper, we used
Haar wavelets and we set B ¼ 100 and α ¼ 5%, where not stated otherwise.

3 Chessboard Stationarity

The relevance of LS2Wand the related stationarity test in computer vision applications has been
discussed in various papers.8,17,20,21 However, to our knowledge, its relationship to the human
perception process and appearance analysis has not been previously addressed. A simple way to
obtain some initial insights is by extracting the values p and p from images that have a regular
structure. Our goal is, therefore, to investigate whether the tests introduced in the previous
section define these images as data stationary.

We applied the stationarity test on an 8-bit 128 × 128 chessboard image [Fig. 1(a)] with
binary values (0 on black patches and 255 on white ones). Following the classification discussed
in Ref. 3, this is a regular periodic pattern with a black square primitive, which thus can be
analyzed with a shape grammar. According to the definition in chapter four of the same refer-
ence, the image can be perceived as filled with a single texture, i.e., it is visually stationary. Since
the LS2W model assumes that the image analyzed has a stochastic structure, we added a degree
of random noise to the pixels of the chessboard picture: a two-dimensional white Gaussian noise
process XwnðrÞ ∼ Nð0; σwnÞ, where σwn ¼ 10 · n ∀ n ∈ ½0;10�. Only moments of order two
and higher of the original checkerboard picture are influenced by the procedure because the
distribution has an average value of zero. Given that for all of these images the p value of
the LS2W test is p ¼ 1, they are data stationary according to the test. In this case, the scale
analysis does not add any additional information, because p is constant and unitary
p ¼ fpηðj;lÞ ¼ 1 ∀ j ∈ Zþ ∀ l ∈ fH;V;Dgg. Interestingly, the results of the stationarity tests
are the same for both the stochastic (σwn ≠ 0) and the deterministic (σwn ¼ 0) patterns that were
analyzed. This is probably due to the fact that the added noise is second-order stationary and thus
does not influence the result of the calculation, which is mainly dictated by the deterministic
base. The zero mean of the overall image, which is assumed by the LS2W methodology, is, as
discussed, independent on the noise distribution. This property is further ensured by the defi-
nition of the LWP itself [see Eq. (3)], which is an estimator of the LWS of an image. In fact, as
mentioned in Sec. 2.1, the LWP neglects the constant component of the image contained in the
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father wavelet coefficients. Based on these results, we avoid adding a stochastic structure to
deterministic images in the following analysis.

The stationarity analysis has also been repeated on modified versions of the chessboard
image in order to understand how various types of distortions affect p. First, the image is
stretched in the horizontal and vertical directions [see Figs. 1(b)–1(i)]. Their p values appear
to be always 1 and thus unaffected by the stretching. The corresponding p is also mainly unitary.
The only exceptions are the repeatable drops at scales 21 [Fig. 1(c)] and 22 [Fig. 1(g)] shown in

Fig. 2. These effects arise from TavefŜg having a peak in the diagonal direction, which is
stronger than in any other image. This peak is present in every image, at scale 22 in the horizontal
and vertical directions and 23 in the diagonal one. However, in the case of Figs. 1(c) and 1(g),
it is particularly strong in respect with the values at other scales. In fact, in these levels and with
these images, the trade-off between spatial distance and frequency of the changes in intensity is
the highest. Given that the stretched images appear visually stationary, this unexpected effect
highlights a limitation of the mathematical method.

Next, we rotated the chessboard image to confirm the independence of the test from the
direction of the texture. This should be ensured by the completeness of the family of filters
fψ l

jg considered, as they probe all the relationships between pixels at the scale j. We used the
function imutils.rotate from Python,22 based on bilinear interpolation, with rotation
angles [0 deg, 90 deg), in an interval of 10 deg. Bigger angles of rotation are not necessary,
given that the original chessboard image is symmetric by rotation of π and the horizontal and

Fig. 1 (a) Original chessboard image and (b)–(e) horizontally and (f)–(i) vertically stretched
versions.

Fig. 2 (a) p’s for Fig. 1(c) and (b) Fig. 1(g) (H for horizontal, V for vertical, and D for diagonal).
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vertical wavelets probe perpendicular directions. As expected, all these images appeared to be
data stationary at every scale considered for each rotation angle.

Finally, we varied the sizes of the white and black patches in the chessboard. To maintain the
original image dimension (128 × 128), the sides of the patches were enlarged by powers of 2,
as shown in Fig. 3. Again, all the images appear to be stationary with α ¼ 5%. However, it is
interesting to notice that the p is not unitary for all the images, as shown in Fig. 4. Visually, this
can be linked to a reduction of homogeneity of the whole image associated with the scaling. In
parallel, an analysis of the vector p of the images, shown in Fig. 5, displays an average decrease
of values with the zoom, especially in the finer scales. This could be due to the different cone of
influence (COI) of the wavelet at each scale: the finer wavelets, whose COIs are the smallest

Fig. 3 Original image and resized variants.

Fig. 4 Dependence of chessboard image p value on the size of its patches.

Fig. 5 Vectors p for 2×, 4×, and 8× resized chessboards showed in Fig. 3. Note that the y axes are
identical and the labels over each graph indicate the direction of the wavelet (H for horizontal, V for
vertical, and D for diagonal).
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considered, are affected by the edges of the pattern more abruptly than the other scales, which
could lead to a smaller stationarity.

4 Texture Classification

To further probe how the stationarity information can be linked to the perception of texture, we
ran a classification experiment. We used the DTD,10,23 whose purpose is to describe textures “in
the wild” with semantic attributes chosen by human observers. We selected 100 texture images
among the ones in the database, extracting them from 10 different classes derived from Ref. 5.
These have been then supplemented with an eleventh class, consisting of 10 pictures of fabric
samples, which we acquired ourselves, for a total of 110 images. The limited number of images
considered is bounded by the necessity of submitting them to the observers of the psychophys-
ical experiment discussed in Sec. 5. The classes are: chequered, dotted, fabric, flecked, grid,
knitted, lacelike, scaly, stratified, striped, and waffled. Although the original images are in color,
in this experiment, they have been converted to greyscale images, in order to account only for
their spatial variation. This conversion has been performed by loading each image with the
cv2.imread function of the OpenCV library, which derives the intensity information Y as
Y ¼ 0.299 · Rþ 0.587 · Gþ 0.114 · B.24 Every picture has also been cropped into squares of
128 × 128 pixels, as required by the current implementation of the algorithm. Examples of the
selected and processed images from all 11 classes are shown in Fig. 6.

We ran two classification tasks on these data. For the first task, we divided each image input
into subimages. To comply with the requirements of the dyadic implementation of LS2W, each
image target was split into 16 subimages, each of dimension 32 × 32 pixels (for additional
insight on the choice of dimension, see Appendix D). Then we classify these subimages and
evaluate whether according to the algorithm they belong to their original image. Details on the
experiment setup for the first task can be seen in Fig. 7. As for the second task, all the 110 images
were classified using more varied texture features and the previously mentioned DTD groups as
ground truth classes. Details for this experiment are given in Sec. 4.3.

4.1 Texture Feature Extraction

Before presenting the results of the classification tasks, we introduce the texture features used for
them. Five texture feature vectors are extracted from each image, each considered at the seven
dyadic scales (five for the subimages) used to extract its corresponding p. Feature extraction
methods have been selected from the collection of techniques considered in Ref. 6. We neglected
the non-scalable approaches and the learning-based ones. We did not consider the latter
because, without additional training, the off-the-shelf learning models are also non-scalable,
and also because they have not been discussed by Ref. 3 when defining stationary textures.

Fig. 6 Examples of images used in the experiment, coming from all 11 classes or categories of
images. 10 classes originate from DTD10 and one comes from our own dataset of white fabrics.
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However, we tested as reference the capabilities of off-the-shelf models in Sec. 4.3. Details of the
feature extraction approaches used and their parameters are as follows.

Rotation-invariant local binary pattern (LBP)25 vectors are obtained at dyadic radii of 2n,
n ∈ ½0;7� and eight angles (k · π∕4) with interpolation. For each scale and image, an
LBP histogram of 36 elements is then used as its feature vector.

Gray-level co-occurrences matrix (GLCM)26 vectors are obtained. They are composed of five
global statistical parameters (contrast, correlation, energy, entropy, and homogeneity) at
four angles (0, π∕4, π∕2, and 3∕4π). The feature vector is, therefore, 20 elements long for
each scale.

Histogram of oriented gradients (HOG)27 is computed at nine orientations, normalized
according to the hysteresis L2-norm, with 2n pixels per cell and one cell per block.
The HOG vectors thus obtained have a total of nine elements per scale.

Gabor filters-based features28 with central filter frequencies f ¼ 1∕2n, n ∈ ½0;7�, eight ori-
entations, and deviation parameters γ and η assumed to be equal to 3 lnð2Þ∕2π. γ and η are
chosen such that half-peak magnitude iso-ellipses of the various filters would not overlap
(see Appendix C of Ref. 29 for more details). Input images are filtered with these and their
mean and variance has been calculated, resulting in a 16-element vector for each scale.

Wavelet vectors generated with Haar and Daubechies filters at dyadic scales. These features
correspond to methods I and III used in Ref. 17. As in the Gabor-based ones above, the
mean and variance energy of the filtered images have been used. Note that the variance of
the energy has some degree of correlation with the LWP [Eq. (3)] and with the test statistics
adopted [Eqs. (4) and (5)]. However, the two have some substantial differences: while the
regular wavelets used to extract the features are placed at dyadic locations in the image,
the LS2W model used by the test is based on non-decimated discrete wavelets. Moreover,
the estimator ŜðuÞ is corrected with the discrete autocorrelation wavelet matrix AJ.
Horizontal, vertical, and diagonal wavelets have been considered, such that each feature
vector has a length of 12.

According to Refs. 3 and 6, within this list, GLCM and HOG are texture features better suited
for stationary texture images, whereas the others are better at characterizing non-stationary ones.
This suggests that it could be possible to evaluate the stationarity of an image based on the other
features. This, however, could be achieved only by defining a proper testing procedure for each
methodology.

4.2 Classification Task 1: Mixed Subimage Classification

The vector p by itself reflects the stationarity (or lack of it) of an image. Therefore, it is not able
to wholly represent the peculiar characteristics of a texture by itself, which is what is required by
the features used for classification. Nonetheless, it is possible to use the stationarity information
to optimize the process of texture feature extraction. In fact, some feature extraction techniques
are claimed to be more appropriate for non-stationary images than others,3,6 although such a

Fig. 7 Experimental setup for the mixed subimage classification task in Sec. 4.2. In this, each
input image is split into subimages, and the latter is classified and evaluated as whether they
belong to their original or source image.
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claim has not been proven experimentally. According to this idea, the stationarity information
contained in the p could suggest a selection of features at different scales, which is optimal to
describe the texture. In the context of classification, this translates into an increase in the accu-
racy of the process. In this section, we set out to provide experimental proof for this hypothesis.

The experiment setup for this classification task can be seen in Fig. 7. The choice of features
for stationary and non-stationary texture is based on Ref. 3. Both GLCM and wavelet-based
approaches were used to extract features at dyadic scales, allowing us to classify the subimages
using each individual feature vector. We also combine GLCM and wavelet-based features based
on the p of each image. One of the methods, indicated with fs, is applied to stationary scales and
the other, referred to with fns, to non-stationary ones. The j’th element of the mixed feature
vector fmix is then obtained as

EQ-TARGET;temp:intralink-;e006;116;604fmix;jðfs; fnsÞ ¼
�

padðfs;jÞ if pj > α
padðfns;jÞ if pj < α

; (6)

where fs ≠ fns and pj ∈ pj. The hypothesis behind the calculation of fmix is that the only fea-
tures affected by the non-stationarity of a certain scale would be the ones at that same scale. In
the present case, fs ¼ GLCM and fns ¼ wavelet. The threshold α, which in the current work is
set to 5%, is applied to the values pj to estimate whether each scale is stationary. If the p value at
a certain scale is bigger than α, the image is considered stationary at that scale and the GLCM
feature vector is inserted in the mixed vector. Otherwise, the image at that scale is considered
non-stationary and the wavelet-based feature is used. In this way, the space of the mixed vector
can be divided into a stationary subspace and a non-stationary one, each one orthogonal to the
other. As a note, fmix;j is padded with zeros to the right in the stationary case and to the left in the
non-stationary one so that the length of the mixed vector is equal to the sum of the lengths of
the other two vectors.

As shown in Fig. 7, we chose to use a random forest classifier with a 67% to 33% training-test
set subdivision. The forest has 100 trees and the algorithm selects their depth so that the nodes
are expanded until all the leaves are pure. At each split of the tree, the square root of the initial
number of features is considered. For every process, the classification has been repeated 1000
times and the average value of the accuracy was extracted. The results of using GLCM and
wavelet-based features individually as well as in a mixed feature vector are shown in Table 2.
Combining the two techniques appears to worsen the classification accuracy. The use of wavelet
as fs and GLCM as fns is discussed in Appendix B. Appendix B also shows how the use of
wavelet shrinkage in the extraction of the p, discussed in Sec. 2.1, leads the accuracy to drop to
61.81%. Additional analyses of alternative classification experiments are also reported in
Appendices A and E.

4.3 Classification Task 2: Mixed DTD Classification

As a second task, we classified the unabridged images on the basis of the classes defined by the
DTD authors.5 In this case, we used all the features extraction techniques described in Sec. 4.1,
so to probe a wider range of possible approaches. As in the previous section, we derived the
accuracy obtained both by classifying the dataset with the original features and with all the
possible combinations of mixed vectors fmix [see Eq. (6)]. The results for the classification
without shrinkage are reported in Table 3, where, according to the practice adopted in Eq. (6),
fs indicates the feature extraction method considered as stationary, whereas fns indicates
the non-stationary one. On the diagonal of the tables, we show as reference the results for the

Table 2 Classification accuracy corresponding to the classification
task 1 shown in Fig. 7.

Method GLCM Wavelet fmix

Average accuracy (in %) 68.05 65.33 64.62
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classification without mixing. The results of applying shrinkage to the same set of experiments
are also shown in Table 4.

These results are compatible with those obtained by local descriptors for the whole DTD.10

Between the unmixed features of Tables 3 and 4, the LBPs are the most successful. On the other
hand, HOG and Gabor features appear to perform quite poorly. The mix that provides the best
classification accuracy is fs ¼ wavelet and fns ¼ LBP. In general, the mixing appears to
improve the performance of the classification with every technique. In this case, applying the
wavelet shrinkage when calculating pj seems to be the best choice.

The accuracy depends more on the stationary technique (fs) than on the non-stationary one
(fns). This is due to the fact that the images chosen are mainly stationary: the 88% of the pj’s are
bigger than the 5% test threshold without wavelet shrinkage, whereas the percentage drops to
77% with wavelet shrinkage. The whole-image p values have a similar statistic, with 90% for the
rough and 92% for the smooth. This could be related to the fact that the test used is conservative.8

As an additional reference, we performed the same experiment with the following seven
convolutional neural networks (CNNs):

• ResNet-50,30

• VGG-16 and VGG-19,31

• Inception v3,32

• DenseNet-121, DenseNet-161, and DenseNet-201.33

We extracted the features from off-the-shelf models, which were trained for object recog-
nition. Each network was employed as a generic feature extractor, and the resulting features
were then passed on to the random forest classifier. Every individual network extracts 1000
features per image. Given that the CNNs required the input array to have certain dimensions
and to have three channels, we resized them accordingly using cubic interpolation and we tripled

Table 3 Classification accuracy corresponding to the classification task 2 without wavelet
shrinkage.

f ns

LBP (%) GLCM (%) HOG (%) Gabor (%) Wavelet (%)

f s LBP 32.7 32.4 31.6 32.8 32.3

GLCM 32.5 31.7 31.3 31.4 31.9

HOG 27.5 26.2 23.4 25.9 25.9

Gabor 27.4 27.3 27.6 26.2 27.3

Wavelet 33.8 32.0 31.4 32.5 29.9

Table 4 Classification accuracy corresponding to the classification task 2 with wavelet shrinkage.

f ns

LBP (%) GLCM (%) HOG (%) Gabor (%) Wavelet (%)

f s LBP 32.7 34.0 30.3 30.2 33.6

GLCM 33.8 31.7 31.6 29.2 33.3

HOG 33.7 33.2 23.4 26.4 33.1

Gabor 34.7 32.7 33.9 26.2 32.4

Wavelet 36.6 34.4 31.1 33.9 29.9
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the gray channel. The results are shown in Table 5, where one can see that this assignment is
challenging even for learning-based techniques.

5 Psychovisual Experiment Design

As final step of our investigation of the link between perceptual and data stationarity, we per-
formed a psychophysical experiment. We used the psychovisual software PsychoPy234 to set up
the experiment and uploaded it to the Pavlovia web platform.35 The images used in the experi-
ment are the same 110, which were classified in the previous section, grayscaled and cropped.
The experiment was performed by 93 observers, who carried it out on their personal computer
and screen. Therefore, the viewing environment of each observer was uncontrolled, which could
pose some challenges, mainly related to the resolution of the image, which will vary with the
type of display and the distance of the observer from the screen. However, this effect is limited by
the fact that Pavlovia automatically activates the full-screen view when the experiment starts. As
the images were grayscale, a color calibration of the screen was not necessary. The display set-
tings of each observer could have had an impact, although as discussed in Ref. 36, many studies
have compared online behavioral experiments with lab-based ones, and they found that their data
quality is usually equivalent.

The experiment was divided into 30 rounds. At each of them, an observer was presented a
texture reference and 25 samples and was asked to select all the images that looked similar to the
reference. No information other than this was provided to the observers and no definition of the
words “similar” and “texture” was given before the experiment. The 26 textures, samples and
reference, were selected randomly from the database, and therefore, rounds without instances of
the reference image class in the 25 samples were possible. An example of an experiment round is
shown in Fig. 8. Based on the results of this experiment, it is possible to evaluate how similar
two texture images A and B are by defining a similarity coefficient SIMA;B [Eq. (7)]. Here
ngroupðA; BÞ indicates the number of times that A and B have been grouped together, whereas
nappearðA; BÞ indicates the number of times they appeared together in the same screen, given that
A is a reference image. Note that SIMA;B ∈ ½0;1�:

EQ-TARGET;temp:intralink-;e007;116;181SIMA;B ¼ ngroupðA; BÞ
nappearðA; BÞ

: (7)

The results of this similarity evaluation process can be used to fill a matrix, as shown in
Fig. 9. In this figure, we highlighted the boundaries between images belonging to different
DTD classes. From this figure, it can be seen which classes are confused with each other, such
as the “chequered” with the “grid,” the “flecked” with the “dotted” and the “knitted,” and the
“scaly” with the “stratified”.

Table 5 Classification accuracy with CNNs corresponding to
the classification task 2.

Network Average accuracy (%)

ResNet-50 44.0

VGG-16 39.7

VGG-19 47.4

Inception v3 40.5

DenseNet-121 43.3

DenseNet-169 42.0

DenseNet-201 42.7
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If averaged over each class, this similarity coefficient matrix can be compared to the corre-
lation matrix of the classification task 2, in Sec. 4.3. This is justified by the observation that, if the
images belonging to a certain class are generally similar to those belonging to another according
to the average human observer, it is more likely that the classification algorithm will confuse
them. Therefore, we calculated the average confusion matrix of 1000 classification repetitions
for the feature extraction techniques used in Sec. 4.3, and we then calculated the Spearman’s
rank correlation coefficient ρ between the two matrices after having collapsed them to one-
dimensional vectors. We chose to use this measure because we want to evaluate the relationship

Fig. 8 A screenshot of the psychophysical experiment performed.

Fig. 9 The SIMA;B matrix for the experiment performed.
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between the two elements, without assumptions about its linearity or the type of distributions the
data is obtained from. The results are shown in Table 6. The values of the ρ’s show a moderate
correlation and they seem to reflect the accuracies obtained in the second classification task. The
only exception to this rule is the wavelet features, which show relatively low ρ but give a rel-
atively high classification accuracy in the group. The same analysis can be performed with the
mixed features. Without wavelet shrinkage, we obtain the results shown in Table 7. We have also
conducted the experiment with wavelet shrinkage, resulting in ρ’s on average 0.08 smaller than
the ones without it. Interestingly, this shows how, while the best solution to classify images
seems to be a mix of wavelet and LBP features vector, the results that better fit with the human
observation are obtained by mixing wavelets with GLCM.

Another way to link this psychovisual similarity to the inspected features is by comparing
the difference between the feature vectors of each pair of images with their similarity. This, too,
can be gauged with the Spearman’s ρ. First, we extracted the feature vectors as described in
Sec. 4.1, calculated the distance between each of them, and compared the output with the sim-
ilarity values. The results are provided in Table 8. Notice that they are all negative and quite
small.

If we do the same for the mixed features, without wavelet shrinkage, we get results shown in
Table 9. If we add wavelet shrinkage, the correlation coefficients are on average the same. The
best possible choice of feature mixing is, in this case, the pure co-occurrence matrix features. On
the other hand, wavelets appear to perform extremely poorly as stationary features. However,
overall, the Spearman’s ρ indicates that the correlation between the techniques used and the
results of the psychovisual experiment performed is very weak. This is in line with the results
of Sec. 4.3, which shows how demanding the DTD classification’s task is.

Table 6 Spearman’s rank correlation coefficients between confusion matrix of the classification
with different feature extraction methods and the SIMA;B matrix (Fig. 9).

Method LBP GLCM HOG Gabor Wavelet

Spearman’s ρ 0.51 0.49 0.47 0.48 0.38

Table 7 Spearman’s rank correlation coefficients between confusion matrix of the classification
with different stationarity-based mixed methods and the SIMA;B matrix (Fig. 9).

Non-stationary

LBP GLCM HOG Gabor Wavelet

Stationary LBP 0.51 0.47 0.45 0.46 0.49

GLCM 0.53 0.49 0.52 0.51 0.53

HOG 0.46 0.46 0.47 0.43 0.47

Gabor 0.49 0.49 0.5 0.48 0.48

Wavelet 0.38 0.34 0.34 0.35 0.38

Table 8 Spearman’s rank correlation coefficients between feature
vector distances and the SIMA;B matrix (Fig. 9).

Method LBP GLCM HOG Gabor Wavelet

Spearman’s ρ −0.15 −0.18 −0.1 −0.15 −0.11
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6 Discussion and Conclusion

The results obtained in this work provide clues on how data stationarity is linked to human
perception. First of all, the analysis of the chessboard images in Sec. 3 demonstrated its funda-
mental properties in relation to the simple case of a regular texture. According to the test used,
the original chessboard image is data stationary, as are its stretched variations (Fig. 2). On the
other hand, an increase of the chessboard patches dimension reduces the stationarity, particularly
at lower scales and higher spatial frequencies (Fig. 5).

The classification experiments, described in Sec. 4, provide us with additional insights in
relation to irregular textures. In the first task, discussed in Sec. 4.2, the pj’s, i.e., the p values
resulting from testing a texture for stationarity at different scales, are used to mix the elements of
GLCM and wavelet vectors. This, however, does not improve the classification accuracy.
Additional analyses are reported in the Appendices. The results of this classification task suggest
that Petrou and Sevilla’s claim that while model-based texture features like GLCM are more
suited for stationary images, frequency-based descriptors such as wavelet are preferred for
non-stationary ones3 has a limited validity in a classification framework. On the other hand,
the second task, reported in Sec. 4.3, shows that using the stationarity information does improve
the classification of the DTD images in their texture macrogroups. Compared to task 1, this
assignment is more related to high-level texture perception.

Finally, the psychophysical experiment (Sec. 5) directly probes the link between perception
and math. In its first part, it addresses the correlation between the confusion matrices of Sec. 4.3
and the similarity results, revealing how a mix of wavelet and LBP best replicates the average
observer’s response. It also demonstrates that the traditional texture features are very weakly
correlated with the results of the visual experiment. Even in this context, despite the small size
of the Spearman’s ρ’s, the p-based mixing of features increases it.

In general, it is not clear if using wavelet shrinkage during the p calculation improves or
reduces the relationship between visual and data stationarity. In some cases applying the wavelet
shrinkage to p has a disruptive effect, whereas in some others, the effect is negligible. For exam-
ple, in the chessboard experiment of Sec. 3, the shrinkage filters high-frequency artifacts, which
degrade some pηðj;lÞ’s of the p, and it is, therefore, convenient. In the experiment of Appendix B,
its application reduces the accuracy of the algorithm, whereas it increases it in Appendix E.
Finally, it has a negative effect on the psychovisual analysis between mixed features and exper-
imental similarity.

To conclude, this paper shows how stationarity information can be linked to the psychophys-
ical attributes of a texture image and how evaluating it with LS2W processes can be used to
improve a texture classification pipeline. There are various possible future steps that could better
clarify the role of stationarity in texture. First, one can examine a wider variety of spatial sta-
tionarity metrics.37–39 Even if the disadvantages of most of these have been highlighted in Ref. 8,
their relationship with the perception of texture has yet to be assessed. The LS2W method itself
can be improved. The scale analysis is currently performed at dyadic scales,20 which allows fast
extraction of the p of an image, but obtaining p on a continuous range of scales would provide

Table 9 Spearman’s rank correlation coefficients between distances of feature vectors obtained
with different stationarity-based mixed methods and the SIMA;B matrix (Fig. 9).

Non-stationary

LBP GLCM HOG Gabor Wavelet

Stationary LBP −0.15 −0.12 −0.15 −0.12 −0.13

GLCM −0.11 −0.18 −0.11 −0.15 −0.15

HOG −0.13 −0.11 −0.1 −0.11 −0.12

Gabor −0.16 −0.17 −0.16 −0.15 −0.13

Wavelet −0.11 −0.11 −0.11 −0.11 −0.11
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more insight on its behavior. Another possible improvement to this approach is to expand it to
color and spectral images and to find the best way to mix the various image channels. It has,
in fact, been demonstrated that taking them into account increases the performance of texture
analysis.40 This has been already done for p in Ref. 21 but not for scale-dependent p. Finally,
p, p, and pj can be used to detect which image in a database has to go through a texture
segmentation process.

7 Appendix A: Subimage Classification Using GLCM and
Wavelet-Based Features at All Scales

In Sec. 4.2, we calculated the accuracy obtained by classifying images with fmix, a feature vector
obtained by mixing GLCM and wavelet elements. In this appendix, we compare the results of
that experiment, shown in Table 2, to what can be achieved by simply combining the GLCM and
wavelet vectors as in Eq. (8). Here c is an operation concatenating the vector fns;j to fs;j. With
this, we achieve an accuracy of 72.3%, which is the best accuracy reached for this experiment
(see Table 2):

EQ-TARGET;temp:intralink-;e008;116;534fcomb;jðfs; fnsÞ ¼ cðfs;j; fns;jÞ: (8)

8 Appendix B: Subimage Classification Using Variations of fmix

For the classification based on fmix (see Sec. 4.2), we also considered the cases in which p is
calculated without wavelet shrinkage-based smoothing. Eckley et al.17 demonstrated that
the results of the stationarity test are more reproducible if smoothing is applied, but this
could be counterproductive for the classification. Moreover, we assessed the case in which
fs ¼ wavelet and fns ¼ GLCM [see Eq. (6)] since this would provide us with experimental
proof for the considerations proposed in Ref. 3, i.e., that the some techniques, like GLCM, are
more suited to stationary images than others, such as wavelets.

The results obtained by calculating the pj’s of each subimage are shown in Table 10. We can
see that the “rough” pj that is obtained without applying wavelet shrinkage perform better. These
outputs are partially in line with Petrou and Sevilla’s3 hypothesis discussed in Sec. 4.1, as using
wavelet as stationary technique is worse than using GLCM. However, the accuracies reported in
Table 10 are all smaller than those obtained with pure GLCM and wavelet features (see Table 2)
and with a combination of the two (see Appendix A).

9 Appendix C: ALOT Analysis

As discussed in Sec. 1, we chose to use the DTD images in our analysis because of their vision-
based arrangement. To provide an alternative, we also considered the Amsterdam Library of
Textures (ALOT).41 In particular, we studied the ALOT pictures mentioned in Ref. 6. In this
paper, the authors classified a wide variety of existing texture databases according to certain

Table 10 Classification accuracy corresponding to the classification task 1 shown
in Fig. 7, with various choices of stationary features and with wavelet shrinkage.

Shrinkage Stationary Non-stationary Accuracy (%)

No GLCM Wavelet 64.62

No Wavelet GLCM 61.18

Yes GLCM Wavelet 61.81

Yes Wavelet GLCM 57.04
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characteristics, among which is texture stationarity, with explicit mention to the definition given
in Ref. 3. Therefore, we applied the LS2W stationarity test (Sec. 2) to two datasets defined in this
paper and extracted from the ALOT: one stationary ALOT-95-S-N and the non-stationary
ALOT-40-NS-N. Setting the significance level α to 0.1 and the number of bootstrap iterations
B to 10, only 40% of the ALOT-95-S-N images are classified as stationary by the test, whereas
for the ALOT-40-NS-N group, this percentage is increased to 67.5%. This demonstrates the need
for a common definition of data and visual stationarity.

Subsequently, we expanded the results reported in Sec. 4.2 by applying the first classification
task to the ALOT. In particular, we merged the two classes ALOT-95-S-N and ALOT-40-NS-N.
We adopted the same approach as Sec. 4.2, dividing each sample in 16 subimages of shape
256 × 256. The results of the classification are shown in Table 11, where fmix;ws indicates the
mixed features obtained without wavelet shrinkage and fmix;s the ones with it. These results are
similar to those attained in Sec. 4.2.

10 Appendix D: Dimension Dependence

In Sec. 4, we divided each image in subimages of dimension 32 × 32. This is in contrast with the
results discussed in Ref. 8, whose experiment on the power assessment of the LS2W test shows
that an image size of at least 128 pixels side is required to achieve good statistical power.
However, this conclusion has been obtained based on artificial non-stationary models whose
visual non-stationarity is extremely low [e.g., see Fig. 3d in Ref. 8]. Moreover, the chosen sub-
images’ size is limited by the dimension of the images selected from the DTD.

In this appendix, we analyze how the size of the subimages can influence the results of
Sec. 4.2. First, we divided the DTD images selected into bigger subimages. This has the draw-
back of reducing the total number of images available for the classification. We then repeated
task 1 of the classification section. With subimages of size 64 × 64, which correspond to dividing
the original picture into four squared sections, we obtain Table 12, and with subimages of size
42 × 42, we obtained Table 13.

As in Sec. 4.2, we reported the numbers obtained by mixing the features using the pj’s
obtained without wavelet shrinkage, as applying it would slightly reduce the classification per-
formance. One can see that the results obtained in Sec. 4.2 correspond, with minor variations,
to the ones showed here.

Table 11 Classification accuracy of task 1 performed on the ALOT images.

Method GLCM Wavelet fmix;ws fmix;s

Average accuracy without shrinking (%) 72.18 65.99 70.46 71.92

Table 12 Classification accuracy of task 1 performed on images
with size 64 × 64.

Method GLCM Wavelet fmix

Average accuracy (%) 63.55 58.84 57.62

Table 13 Classification accuracy of task 1 performed on images
with size 42 × 42.

Method GLCM Wavelet fmix

Average accuracy (%) 68.77 67.15 62.32
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As mentioned, Taylor et al.8 suggested using square images with sides of at least 128 pixels.
To satisfy this requirement without reducing the number of samples for the classification, we
randomly extracted subpictures of size 128 × 128 from the selected DTD images. For each
image, we derived 16 subpictures so that the number would correspond to the batch used in
the calculation of Table 2, for a total of 1760 samples. The output of this experiment is shown
in Table 14. In this case, the accuracy is strongly enhanced, probably due to the fact that it is
likely that some of the classified pictures overlap. Nonetheless, the conclusions of Sec. 4.2 are
still unaffected by the change of dimension of the images. In this case, mixing with wavelet
shrinkage is the best performing method, and thus it is the number reported in Table 14.

11 Appendix E: Subimage Classification Using Image Source p

In Sec. 4.2, we extracted the mixed features vector fmix using a different set of pj ’s for each
subimage. If we repeat the experiment with a common pj for all subimages belonging to the
same original image, we get the results shown in Table 15. Here we can see a clear improvement
with respect to the case discussed in Appendix B, due to the fact that subimages with common
origin have the same null terms. Nonetheless, the improvement is quite significant and it is inter-
esting how the wavelet shrinkage further boosts it. In this case, the classification accuracy is
actually improved in respect with the output obtained using pure features.
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Yes Wavelet GLCM 75.24

Conni et al.: Visual and data stationarity of texture images

Journal of Electronic Imaging 043001-18 Jul∕Aug 2021 • Vol. 30(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 28 Oct 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1109/TSMC.1978.4309999


5. N. Bhushan, A. R. Rao, and G. L. Lohse, “The texture lexicon: Understanding the categori-
zation of visual texture terms and their relationship to texture images,” Cogn. Sci. 21, 219–
246 (1997).

6. R. Bello-Cerezo et al., “Comparative evaluation of hand-crafted image descriptors vs.
off-the-shelf CNN-based features for colour texture classification under ideal and realistic
conditions,” Appl. Sci. 9, 738 (2019).

7. M. Conni and H. Deborah, “Texture stationarity evaluation with local wavelet spectrum,” in
London Imaging Meeting, pp. 24–27 (2020).

8. S. L. Taylor, I. A. Eckley, and M. A. Nunes, “A test of stationarity for textured images,”
Technometrics 56, 291–301 (2014).

9. E. V. Kurmyshev, M. Poterasu, and J. T. Guillen-Bonilla, “Image scale determination for
optimal texture classification using coordinated clusters representation,” Appl. Opt. 46,
1467–1476 (2007).

10. M. Cimpoi et al., “Describing textures in the wild,” in IEEE Conf. Comput. Vision and
Pattern Recognit., pp. 3606–3613 (2014).

11. B. Julesz, “Experiments in the visual perception of texture,” Sci. Am. 232, 34–43 (1975).
12. E. V. Kurmyshev and M. A. Cervantes, “A quasi-statistical approach to digital binary image

representation,” Rev. Mex. Fis. 42, 104–116 (1996).
13. B. Vidakovic, Statistical Modeling by Wavelets, John Wiley & Sons, New York (2009).
14. C. K. Chui, An Introduction to Wavelets, Academic Press, San Diego, CA (1992).
15. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA (1999).
16. G. P. Nason, R. V. Sachs, and G. Kroisandt, “Wavelet processes and adaptive estimation of

the evolutionary wavelet spectrum,” J. R. Stat. Soc. Ser. B 62, 271–292 (2000).
17. I. A. Eckley, G. P. Nason, and R. L. Treloar, “Locally stationary wavelet fields with appli-

cation to the modelling and analysis of image texture,” J. R. Stat. Soc. Ser. C 59, 595–616
(2010).

18. I. A. Eckley and G. P. Nason, “Efficient computation of the discrete autocorrelation wavelet
inner product matrix,” Stat. Comput. 15, 83–92 (2005).

19. A. C. Davison and D. V. Hinkley, Bootstrap Methods and their Application, Cambridge
University Press, Cambridge, UK (1997).

20. M. A. Nunes, S. L. Taylor, and I. A. Eckley, “A multiscale test of spatial stationarity for
textured images in R,” R J. 6, 20–30 (2014).

21. S. L. Taylor, I. A. Eckley, and M. A. Nunes, “Multivariate locally stationary 2D wavelet
processes with application to colour texture analysis,” Stat. Comput. 27, 1129–1143 (2017).

22. “Source of the imutils Python library,” https://github.com/jrosebr1/imutils (accessed
November 2020).

23. “Describable textures dataset (DTD) website,” http://www.robots.ox.ac.uk/vgg/data/dtd/
(accessed September 2020).

24. “Documentation of the imread function in the OpenCV library,” https://docs.opencv.org/4.5
.1/d4/da8/group__imgcodecs.html#imread (accessed March 2021).

25. F. Bianconi, R. Bello-Cerezo, and P. Napoletano, “Improved opponent color local binary
patterns: an effective local image descriptor for color texture classification,” J. Electron.
Imaging 27, 011002 (2017).

26. R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural features for image classifi-
cation,” IEEE Trans. Syst. Man Cybern. SMC-3, 610–621 (1973).

27. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recognit., Vol. 1, pp. 886–893
(2005).

28. T. Randen and J. H. Husøy, “Filtering for texture classification: a comparative study,” IEEE
Trans. Pattern Anal. Mach. Intell. 21, 291–310 (1999).

29. F. Bianconi and A. Fernández, “Evaluation of the effects of Gabor filter parameters on
texture classification,” Pattern Recognit. 40, 3325–3335 (2007).

30. K. He et al., “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recognit., pp. 770–778 (2016).

31. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv:1409.1556 (2014).

Conni et al.: Visual and data stationarity of texture images

Journal of Electronic Imaging 043001-19 Jul∕Aug 2021 • Vol. 30(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 28 Oct 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1207/s15516709cog2102_4
https://doi.org/10.3390/app9040738
https://doi.org/10.1080/00401706.2013.823890
https://doi.org/10.1364/AO.46.001467
https://doi.org/10.1109/CVPR.2014.461
https://doi.org/10.1109/CVPR.2014.461
https://doi.org/10.1038/scientificamerican0475-34
https://doi.org/10.1111/1467-9868.00231
https://doi.org/10.1111/j.1467-9876.2009.00721.x
https://doi.org/10.1007/s11222-005-6200-y
https://doi.org/10.32614/RJ-2014-002
https://doi.org/10.1007/s11222-016-9675-9
https://github.com/jrosebr1/imutils
https://github.com/jrosebr1/imutils
http://www.robots.ox.ac.uk/vgg/data/dtd/
http://www.robots.ox.ac.uk/vgg/data/dtd/
http://www.robots.ox.ac.uk/vgg/data/dtd/
http://www.robots.ox.ac.uk/vgg/data/dtd/
http://www.robots.ox.ac.uk/vgg/data/dtd/
https://docs.opencv.org/4.5.1/d4/da8/group__imgcodecs.html#imread
https://docs.opencv.org/4.5.1/d4/da8/group__imgcodecs.html#imread
https://docs.opencv.org/4.5.1/d4/da8/group__imgcodecs.html#imread
https://docs.opencv.org/4.5.1/d4/da8/group__imgcodecs.html#imread
https://docs.opencv.org/4.5.1/d4/da8/group__imgcodecs.html#imread
https://docs.opencv.org/4.5.1/d4/da8/group__imgcodecs.html#imread
https://doi.org/10.1117/1.JEI.27.1.011002
https://doi.org/10.1117/1.JEI.27.1.011002
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/34.761261
https://doi.org/10.1109/34.761261
https://doi.org/10.1016/j.patcog.2007.04.023
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90


32. C. Szegedy et al., “Rethinking the inception architecture for computer vision,” in Proc.
IEEE Conf. Comput. Vision and Pattern Recognit., pp. 2818–2826 (2016).

33. G. Huang et al., “Densely connected convolutional networks,” in Proc. IEEE Conf. Comput.
Vision and Pattern Recognit., pp. 4700–4708 (2017).

34. J. Peirce et al., “Psychopy2: experiments in behavior made easy,” Behav. Res. Methods
51, 195–203 (2019).

35. “Pavlovia platform homepage,” https://pavlovia.org/ (accessed June 2021).
36. M. Sauter, D. Draschkow, and W. Mack, “Building, hosting and recruiting: a brief intro-

duction to running behavioral experiments online,” Brain Sci 10, 251 (2020).
37. A. Ephraty, J. Tabrikian, and H. Messer, “A test for spatial stationarity and applications,” in

Proc. 8th Workshop Stat. Signal and Array Process., pp. 412–415 (1996).
38. S. Bose and A. Steinhardt, “Invariant tests for spatial stationarity using covariance struc-

ture,” IEEE Trans. Signal Process. 44, 1523–1533 (1996).
39. M. Fuentes, “A formal test for nonstationarity of spatial stochastic processes,”

J. Multivariate Anal. 96, 30–54 (2005).
40. E. Cernadas et al., “Influence of normalization and color space to color texture classifica-

tion,” Pattern Recognit. 61, 120–138 (2017).
41. G. J. Burghouts and J.-M. Geusebroek, “Material-specific adaptation of color invariant

features,” Pattern Recognit. Lett. 30, 306–313 (2009).

Michele Conni received his BS and MS degrees in engineering physics from the Polytechnic
University of Milan in 2015 with specialization in optics and photonics. He is currently studying
for his PhD in computer science at Norwegian University of Science and Technology (NTNU),
in collaboration with Barbieri Electronic, where he works in the research and development
group.

Hilda Deborah received her BSc degree in computer science from the University of Indonesia in
2010, her MSc degree from Erasmus Mundus Color in Informatics and Media Technology in
2013, and her PhD in computer science from NTNU and the University of Poitiers in 2016. She
is a researcher at NTNU. Her current research interests are hyperspectral imaging and texture
analysis.

Peter Nussbaum received his MSc degree from the Colour and Imaging Institute, University of
Derby, Derby, UK, in 2002 and his PhD in imaging science from the University of Oslo, Oslo,
Norway, in 2011. He is an associate professor of color imaging at the Colour and Visual
Computing Laboratory, NTNU, Gjøvik, Norway.

Phil Green received his MSc degree from the University of Surrey in 1995 and his PhD from the
former Colour and Imaging Institute, University of Derby, Derby, UK, in 2003. He is a professor
of color imaging at the Colour and Visual Computing Laboratory of NTNU. He is also a tech-
nical secretary of the International Color Consortium, the body that standardizes the ICC profile
format and promotes color management internationally.

Conni et al.: Visual and data stationarity of texture images

Journal of Electronic Imaging 043001-20 Jul∕Aug 2021 • Vol. 30(4)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 28 Oct 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.3758/s13428-018-01193-y
https://pavlovia.org/
https://pavlovia.org/
https://doi.org/10.3390/brainsci10040251
https://doi.org/10.1109/SSAP.1996.534903
https://doi.org/10.1109/78.506617
https://doi.org/10.1016/j.jmva.2004.09.003
https://doi.org/10.1016/j.patcog.2016.07.002
https://doi.org/10.1016/j.patrec.2008.10.005

