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Abstract: This paper presents a novel weld groove parametrization algorithm, which is developed
specifically for weld grooves in typical stub and butt joints between large tubular elements. The
procedure is based on random sample consensus (RANSAC) with additionally proposed correction
steps, including a corner correction step for grooves with narrow root weld, and an iterative error
elimination step for improving the initially obtained data fit. The problem of curved groove sides
(due to the pipe geometry) is attributed and solved. In addition, the procedure detects and eliminates
several types of data noise due to laser line reflections. The performance of the procedure is studied
experimentally using small-scale test objects, which have been ground using typical industrial power
tools to achieve a realistic level of reflections. The execution times and data fit errors of the proposed
procedure are compared to a procedure based on a more conventional RANSAC approach for line
segment detection.

Keywords: structured light sensor; weld groove; parametrization; feature extraction

1. Introduction

Welding is an important manufacturing process for steel components and structures.
Welding is often done by manual labor, especially for complex welding processes, complex
interface geometries, and welds with high quality requirements. Alternatively, welding
automation using robotic arms (i.e., robotic welding) can be used for products welded
at factories. Robotic welding is relatively easy to implement for production lines with
standard products with known geometry and small welds with few beads in the weld cross-
section. However, robotic welding becomes more challenging when large components have
to be welded together. This is due to larger geometrical deviations of components and large
welds required to connect them. In such applications, scanning and parametrization of
weld grooves is a vital step before welding can start. In this work, we propose an algorithm
for precise parametrization of weld grooves at interfaces between large tubular joints when
a 2-dimensional (2D) laser scanner is used.

Various types of sensors can be used in robotic welding. The common application areas
are seam tracking, weld pool monitoring, quality inspection, weld position identification,
and groove geometry extraction. When the set of parameters in the extracted features is
sufficient to describe a weld groove section uniquely, then the process of feature extraction
can also be referred to as weld groove parametrization. Typical sensor technologies are
ultrasound sensors [1], infrared sensors [2], arc-sensing [3], magneto-optical sensors [4],
and computer vision sensors [5,6].

Computer vision sensors are often used for weld groove (or weld seam) tracking,
feature extraction, or groove geometry parametrization. Although, in some applications,
analysis of global 3-dimensional (3D) point clouds [7–9] or passive light systems [10] can be
used for global weld seam detection, most of the research in weld seam tracking and groove
feature extraction is done using local structured light sensors. That is, sensors projecting
structured light into the region of interest (ROI). Structured light sensors are especially

Sensors 2021, 21, 4791. https://doi.org/10.3390/s21144791 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5139-4076
https://doi.org/10.3390/s21144791
https://doi.org/10.3390/s21144791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144791
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144791?type=check_update&version=2


Sensors 2021, 21, 4791 2 of 23

efficient when high-precision groove parametrization is required [11]. The reader can find
more information on the application of different structured light sensors to robotic welding
in the recently published review article [5].

Line laser triangulation sensors are a type of structured light sensors where the
projected light is a line. Such sensors can scan one weld groove section at a time. The
groove parametrization task can then be defined as a replacement of all scanned data points
with a small set of parameters. One reasonable set of such parameters are the coordinates
of corner points in the groove section [12]. A simple way to detect the corners is to identify
points where the direction of the profile changes by using the gradient. This was done
in [13], where the authors applied the technique to V-grooves (or U-grooves). A similar
feature extraction technique for V-grooves using averaged slope between four consequent
points was presented in [14], where the least-square method was additionally used to
improve the location of corner points. Another corner detection algorithm based on the
first and second derivatives with the Gaussian filter was suggested in [15]. Alternatively, a
template matching method can be used for groove geometry parametrization. The method
allows for missing data recovery, which is especially important for missing corners of a
V-groove [16]. Parametrization of weld grooves can also be done using random sample
consensus (RANSAC) [10,17,18]. The groove corner detection based on RANSAC consists
of the following steps. First, a point pair is randomly selected from the entire dataset, then
the points close to the line (inliers) through the point pair are identified. These two steps
are repeated for several iterations until the fit with the most inliers is found, then a line
segment is defined using the best inlier set. Once all line segments are found, then groove
corners are found as intersections between the line segments.

When weld grooves in large tubular joints are scanned and parametrized, two main
joint types should be taken into consideration. These are butt joints with a typical V-groove
and stub joints (or T-joints) with an asymmetric weld groove with one side being curved
(due to the pipe geometry) [19]. The online weld seam tracking technique was proposed
and tested for large tubular joints in [20], where the pipes were interfaced and welded with
a fillet weld (i.e., without a pre-machined weld groove). A similar work for the intersection
between a pipe and a sphere was presented in [21], where the problem of curved groove
sides was discussed. In the case of multi-pass welding, the groove around the whole joint
should be first scanned and parametrized offline before the welding can start. This is due
to non-uniform welding grooves with a varying number of beads required in each scanned
groove section [22–24].

Commonly, weld grooves are ground before welding, which means that the groove
steel surface can be very reflective, and the groove parametrization algorithms have to
be able to handle some data noise. When laser triangulation sensors are used, noise can
be handled at two levels: the camera image level and the point cloud level [25]. If there
is access to raw image data, noise filtering at the image level is possible [14,16,26,27];
alternatively, noise can be removed at the level of the final dataset (the triangulated 2D
point cloud level) [13,28]. The latter case is more practical when the commercial sensors
with partially closed interfaces are used.

Although a lot of research has been done on weld groove (or weld seam) parametriza-
tion (i.e., feature extraction), most of the research has dealt with V or U-grooves. In addition,
little attention had been paid to the cases with strong surface reflections and high levels
of data noise. In this paper, we propose a novel procedure for parametrization of weld
grooves commonly used in stub or butt joints of large tubular elements. The algorithm
takes a triangulated 2D point cloud from a commercial line laser sensor as an input and
returns the corners points of a groove. The proposed procedure is based on a RANSAC
search, where we propose several additional correction steps to obtain a better data fit
and enable effective performance for grooves with narrow root welds. The procedure can
also detect some forms of data noise caused by laser line reflections on the ground steel
surface. The advantage of the procedure is that it does not require prior knowledge about
the groove geometry, and it is faster than the conventional RANSAC approaches for groove
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parametrization. The procedure is directly applicable to commercial laser triangulation
sensors (where raw image data might not be available), which facilitates easier industrial
implementation.

The rest of this paper is organized as follows. Section 2 presents the system under
consideration, as well as the equipment and material used. Section 3 gives detailed
derivations of the proposed method. Section 4 shows the experimental results, while the
discussion on their significance and comparison of the proposed procedure and a more
conventional RANSAC approach for line segment detection is given in Section 5. The
conclusion and future work considerations are given in Section 6.

2. Materials and System Description

The system under consideration is a commercial line laser triangulation sensor and
several different steel test objects with a weld groove between the plates, see Figure 1.

x0

y0

pj

(1)

(2)

Figure 1. A commercial laser triangulation sensor (1) pointing at the weld groove of a test object (2). A local sensor fixed
frame is denoted Frame 0 and all data points pj are obtained in the coordinates of Frame 0.

The sensor used in the tests is the Micro-epsilon scanCONTROL 2610-100 (produced
by MICRO-EPSILON MESSTECHNIK). The sensor has a 658 nm red laser with 8 mW
power output. The default settings are used without the pre-programmed cross-section
templates. The output of the sensor is an array of 640 points in R2, formatted as an array of
640 × 2 floating-point numbers.

The test objects are steel plates (flat and cylindrical) welded together with different
widths of the root welds and two different plate arrangements. The thickness of the flat
plates is 22 mm and the thickness of the cylindrical plates is 20 mm, while the radius of
the cylindrical plates is 600 mm. The material of the plates is S420G2+M according to EN
10225:2009. This is a typical material of tubular elements used for production of offshore
jacket structures. The test objects are made to represent typical sections of tubular stub and
butt joints. The first arrangement is typical for stub joints (a), (b) (where the leg plates are
cylindrical) and the second arrangement is typical for butt joints (c) between large pipes,
see Figure 2.

The test objects are ground similarly as they are in industrial situations, using the
same type of power tools. The weld groove in the test objects (a) and (b) have different
root conditions: from no root weld to step-wise increasing root weld. The test object (c)
covers the cases with no root weld and a small (one weld pass) root weld. The scope of
this work is limited to the cases with a ready-made root weld or with a backing weld, i.e.,
without a gap between plates. In practice, the root weld for very large pipes is expected to
be welded manually due to large deviations in the pipe fit. Such root welds are preferred
to be as small as possible (preferably one weld pass), but due to the larger gaps, they can
require several weld passes, leading to wider root welds. Therefore, weld grooves with
several different root weld widths are tested in this work.
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a b c a b c

Figure 2. Three test objects used in the tests. The objects (a) and (b) represent a typical stub–joint groove, while the object (c)
represents a typical butt-joint groove. The objects are welded with root welds of different widths. Schematic arrangement of
the plates and the weld root pass in the test objects is shown to the right.

In a typical industrial setup, such a sensor is fixed to a robot end-effector to perform
scanning tasks. In this work, however, we propose the analysis algorithm for the obtained
data, and, therefore, the sensor is hand-held for simplicity. The sensor obtains data points
given in the coordinates of the sensor fixed frame, which is denoted Frame 0. This frame is
oriented such that the xy-plane lies in the projected laser plane.

The goal of this work is to process the obtained data points and parameterize the weld
groove. The parametrization is done in terms of the corner points of the weld groove.

3. Theoretical Basis of the Method
3.1. Geometrical Definitions

In this section, we present the geometrical objects which are used in the proposed
algorithm. The main properties of those objects are also presented.

The first object we define in this section is a set of points (or a point set). The examples
of point sets are given in Figure 3, where different colors are used to distinguish between
them. A point set i given in the coordinates of Frame k is defined as

Sk
i =

[
pk

i1 pk
i2 . . . pk

ini

]
∈ R2×ni (1)

where pk
ij is the j-th point in the set i given in the coordinates of Frame k and ni is the

number of points in the set.

mi

Si

xk

yk

Li

Lj
mj

Sj

Figure 3. Two examples of point sets Si and Sj. Each of the point sets has the center of mass mi or
mj and the line fit Li or Lj. The point sets are marked with different color and the line fit is shown
using the same colors.

The set (1) can be expressed in the coordinates of Frame l as

Sl
i = Rl

kSk
i (2)
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where Rl
k ∈ SO(2) is a rotation matrix from Frame l to Frame k [29]. The set Sk

i has a center
of mass point (CoM), which, when given in the coordinates of Frame k, is defined as

mk
i =

∑ni
j=1 pk

ij

ni
. (3)

The point set Sk
i is also equipped with a line fit obtained by linear regression, such a

line fit is denoted Lk
i . The line fit can be represented as a typical line equation y = aix + bi,

where ai is the first-order coefficient, and bi is the zero-order coefficient.
The main object used in the RANSAC search (presented in Section 3.2) is a 2-dimensional

(2D) line segment. A line segment i (see Figure 4) is defined by the start point psi and the
end point pei, while the center point is defined as pci = 0.5(psi + pei).

pei
d1i

p1

y0

x0

p2

d2i

psi
pci

xli

vi

yli

d3i p3

Figure 4. A line segment i is shown in blue color, with three different cases of point-to-segment
distances dji for j = 1, 2, 3.

A line segment has the unit direction vector vi, the length li, and the local coordinate
Frame li. Frame li is located such that the x-axis is along with vi, and psi is the origin. An
important property used in the RANSAC search is a point-to-segment distance used to
identify inliers. The distance from the point pj to the segment i is defined as follows

dji =


|pli

j,y|, if pli
j,x ≥ 0 and pli

j,x ≤ li
‖pli

j ‖, if pli
j,x < 0

‖pli
j − pli

ei‖, if pli
j,x > li

(4)

where pli
j is a point in the coordinates of li, pli

j = [pli
j,x, pli

j,y]
T, ‖ · ‖ is the Euclidean norm

and | · | is the absolute value operator. In addition to the point-to-segment error, we will
also use point-to-line errors attributed to segment i. This means that a line is defined
using psi and pei, and the shortest distance from a point to that line is used as an error. A
point-to-line error for a segment i is defined as

dl,ji = |pli
j,y|, ∀ pli

j,x. (5)

The points located close to the line segment are classified as inliers if the distance to
the segment din is less or equal to the inlier tolerance d̄in, see Figure 5.

Figure 5. Inliers for a line segment with the inlier tolerance d̄in. The gap between points along the x0

axis is denoted dg,in.
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In this work, we use the point-to-line error metrics (5) in the initial RANSAC search
(Section 3.2.1), and point-to-segment error metrics (4) in the iterative error elimination step
(Section 3.2.4).

Another object used in this work is a T-joint (or a stub joint) 2D groove profile and a
V-groove profile from a butt joint. A typical model describing a groove profile with a root
weld is shown in Figure 6.

(a)
v4

pg5,i

pg3,iv3

v1

pg4,i

pg1,ipg2,i

v2

(b)

pg1,ipg2,i

pg3,ipg4,i

pg5,ipg6,i
v1

v2

v3

v4

v5

Figure 6. Two models for groove profiles: (a) a T-joint (i.e., stub joint) groove and (b) a butt joint
groove (a V-groove) with a root weld. A stub groove and a butt groove consist of five or six
corner points, respectively, which can also be represented as four or five sequentially connected line
segments. The vectors vi show the directions of the segments.

A weld groove i consists of the corner points pgj,i, which can also be represented by
the sequentially connected line segments. For a stub joint groove it leads to the following
definition of segment start and end points

ps1 = pg1,i,

pej = psj+1 = pgj+1,i for j = 1, 2, 3,

pe4 = pg5,i.

(6)

The segment points for a butt joint groove are defined similarly.

3.2. Detection of Weld Groove Corners from Noise-Free Data

The corner detection method presented in this section is a three-step algorithm. In
the first step, the sequential RANSAC procedure for finding line segments is implemented.
This gives a roughly good fit, which has varying quality due to the random nature of
RANSAC. In the second step, after each completed RANSAC search, it is checked if a
found segment has assigned corner points belonging to the next segment; if so, those points
are removed, and the segment is updated. An assigned point is a point defined as an inlier
of the current segment and is removed from the remaining points of the dataset. In the
third step, an iterative error elimination algorithm is implemented for the entire groove
profile model. This step provides the final correction of the RANSAC fit.

3.2.1. Sequential RANSAC

The sequential RANSAC for detecting line segments from the sensor data is imple-
mented utilizing the expected data structure. Specifically, we use the fact that all line
segments should be sequentially connected and each point from the dataset has a unique
x0 coordinate. The line segments are searched in the direction from negative to positive x0.

The procedure starts by assigning a start point for the first segment ps1, which is the
point with the smallest x0 coordinate. Then a random point pr, chosen through several
iterations until the line fit with the most inliers, is found, see Figure 7.
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Figure 7. Procedure of searching the two first line segments using RANSAC. Inliers of segment 1 are
shown in blue. These inliers, excluding the inliers separated by the gap dg,in > d̄g,in, are used for
defining the segment. After segment 1 is defined, the best inlier set for segment 2 is found, which is
shown in green, and segment 2 is defined.

The segment is then defined by the first and the last points in the inlier set, where the
inliers after the first detected gap along the x0 axis dg,in (see Figure 5) larger than the gap
tolerance d̄g,in are not included in the segment definition. Then, the next point after pe1 is
assigned to be ps2, all inliers of segment 1 are removed from the dataset, and the RANSAC
search is done for segment 2. This loop is repeated until the condition for the minimum
number of remaining points in the dataset is met.

3.2.2. Merging and Intersecting Segments

The direction vector vi of every newly found segment i is compared to the direction
vector vi−1 of segment i− 1. Segments i and i− 1 are merged if the angle between the di-
rection vectors αi,i−1 is small (i.e., within the defined tolerance ᾱi,i−1). This is demonstrated
for segments 1 and 2 in Figure 8.

(a)
ps1

v1
pe1ps2v2

pe2

dg,in

(b) ps1
v1pe1

Figure 8. (a) Two segments 1 and 2 are found. The segments are divided since the gap dg,in > d̄g,in.
(b) If the angle between v1 and v2 is less than the defined angle tolerance ᾱ12, then the two segments
are merged.

If the angle αi,i−1 is outside the tolerance ᾱi,i−1, then the point of intersection between
segments i and i− 1, pint,i,i−1, is found and the start point of i is reset as psi = pint,i,i−1, see
Figure 9.

Figure 9. (a) Two segments 1 and 2 are found. (b) If the angle α12 ≥ ᾱ12, then the start point ps2 is
moved to the intersection between the segments 1 and 2.
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3.2.3. Correction of Assigned Corners

All points in the set of inliers attributed to a certain line segment can be referred to
as points assigned to that line segment. The assigned points are removed from the overall
dataset and will not be used in the further segment search.

Consider a line segment i is being found. Then there are some points belonging to
segment i + 1 that will be assigned to segment i due to the inlier tolerance d̄in. Those
points are referred to as assigned corner points or just an assigned corner. If segment
i + 1 is relatively short, then a corner assigned to segment i can cause problems searching
segment i + 1. This, for example, is a common situation for grooves with a narrow root
weld. To avoid the above-described problem, we propose an intermediate step in the search
algorithm, where the corner points assigned to segment i are returned to the overall dataset.
The procedure is graphically demonstrated in Figure 10.

(a) xli

yli

psi

pei

(b)
xli

yli

psi

pei

Lli
in,i

xli

yli

ain,i

(c)
xli

yli

psi

pei

Lli
in,i

xli

yli

ain,i

(d) xli

yli

psi

ps,i+1

pei

Figure 10. (a) Segment i and its local Frame li are defined over the inlier set, (b) A line fit Lli
in,i for

the inliers is found and the ain,i coefficient of the line equation is evaluated, (c) several points are
removed from the inlier set and a line fit is evaluated again, (d) when ain,i is within the tolerance,
segment i is defined over the rest of the inliers.

First, the line segment i is found (Figure 10a). Then the inlier coordinates are converted
to the local coordinate system of the segment, the coordinates of the points are normalized
along the x axis, and a line model fit is found (Figure 10b). If a corner of the next element is
assigned, then the absolute value of the first-order coefficient of the line model is |ain,i| > 0.
Then the inliers are removed from the end of the array until the acceptable limit of ain,i
is reached (Figure 10c). In the final step, the line segment is reformulated using the
newly defined last assigned point (Figure 10d), and the RANSAC search of the next line
segment starts.

3.2.4. Iterative Error Elimination

In the previous data analysis steps, line segments and groove corner points were
defined sequentially by analysing only one segment at a time. It is, however, possible to
improve the groove profile fit when the entire profile model is analyzed together with the
dataset taking into consideration the relative geometric connections between segments.
Therefore, we propose an iterative corner error elimination step for the entire groove model.
The schematic representation of the input data with rounded corners and the groove profile
fit before and after the iterative error elimination is shown in Figure 11.
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(a) v1

v2

v3

v4

(b) v1

v2

v3

v4

Figure 11. Input data (a) and the output (b) of the iterative error elimination algorithm. The different
point colors indicate point sets associated with different segments, initial point association is shown
in (a) and after the final iteration—in (b).

First, the points are divided into point sets depending on the segment that is the
closest, i.e., the point j belongs to the point set i when

pj ∈ Si if dji = min(dji)∀i (7)

where dji is given in (4) and min(dji)∀i is the operator which returns minimum dji for all i.
For each point set i the CoM m0

i and the line fit L0
i are obtained, both in the coordinates of

Frame 0, see Figure 12.

⇒mi vi

psi

pei

Li

⇒
vi

pei

psi

Figure 12. Alignment of segment i to the point set Si. First the segment is translated to the mass
center mi of Si, then it is rotated to match the direction of Li.

Then segment i moved by the vector

e0
i = R0

li
[
NyRli

0 (m
0
i − p0

ci)
]

(8)

where p0
ci is given in Figure 4 and

Ny =

[
0 0
0 1

]
. (9)

After the translation (8) the segment is rotated about p0
ci such that vi is aligned with Li.

Consider a case with only three segments and two corners for simplicity, then two
iterations of the above shown alignment are graphically shown in Figure 13.

Initial Final

Iter. 1 v1

v2
v3

pg1pg2

pg3

pg4

v1
v2

v3

pg1pg2

pg3
pg4

Iter. 2 v1

v2
v3

pg1pg2

pg3pg4

v1
v2

v3

pg1
pg2

pg3pg4

Figure 13. Schematic representation of the iterative corner error elimination algorithm. Two iterations
are shown with the initial and final groove profile arrangements.
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The first iteration starts. The points are divided into point sets using (7), which is
shown in three different colors. Then, the translation (8) (for i = 1) and the rotation to the
line fit L1 is applied for segment 1. The start point of line segment 2 ps2 is aligned with the
new position of pe1, and the translation (8) (for i = 2) and the rotation to the line fit L2 is
applied for segment 2. The same operation is done for segment 3. The second iteration
starts. The points are divided into point sets again, considering the new locations of the
segments and the alignment is done for all three segments again. The procedure normally
gives reasonable results after 4–5 iterations. Alternatively, a loop exit condition can be
defined based on the convergence threshold for the position of the segment end points.

3.3. Detection of Weld Groove Corners from Noisy Data

This section further develops the procedure presented in Section 3.2. In this section,
the data noise due to reflections in the polished steel surfaces is taken into account.

After each line segment is found, the algorithm performs a check if there is reflection
noise after the line segment. If no noise is detected, the RANSAC search of the next line
segment starts. If the noise is detected, then the first non-noisy point is sought, and the
RANSAC search of the next line segment starts from that point. The details of the procedure
are given in the following subsections.

3.3.1. Noise Detection

In Section 3.2.1, it was described that the end of a line segment is determined by the
gap between inliers being larger than the defined gap tolerance. This can happen due
to partly missing data or when the data point deviates outside the inlier tolerance. This
deviation can be just due to the shape of the point cloud (see Figure 8), and it can be
caused by noise in the data. Therefore, after each line segment is found, a check for noise
is performed.

When a laser is pointed at shiny reflective surfaces, the projected laser line is reflected
(sometimes several times), producing light pollution around the true laser line projection,
see Figure 14.

Figure 14. Reflections from laser projection onto shiny metal surface and the corresponding data
noise in the graph.

This light pollution causes difficulties for the sensor algorithm to identify the true
laser line projection, and, therefore, such line pollution is referred to as noise in this work.
The noise causes the data points to deviate from their true locations in the final 2D data
output of the sensor. Such noise is rather difficult to predict, since it varies depending on
the scanned surface finish and the geometry of the groove. However, arrays of consequent
noisy points in most of the cases have different geometrical structures, comparing to the
noise-free points. In this subsection we propose several metrics M : R2×... → R which can
be used to identify noisy points from the noise-free points.

The first noise detection check is based on the maximum relative y0-distance be-
tween the two neighboring points. Consider that any point of S0

i has the coordinates
p0

ij = [xij yij]
T, then

∆p0
ij =

yij − yi,j−1

xij − xi,j−1
(10)
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is the relative y-gap between the points, and the condition is given as

max(‖∆p0
ij‖) ∀j\1 > d̄n1 (11)

where d̄n1 is the relative gap condition tolerance. Another condition on the relative y-gap
size inconsistency is defined as

∑ni−1
j=2 ‖∆p0

ij − ∆p0
i,j−1‖

ni − 2
> d̄n2. (12)

The noise detection checks are performed over a set of consequent points
Si = [pi1 . . . pini ], where the number of points in the set is a parameter, see Figure 15a.

(a)
v1

Si

ps1
pe1

⇒
Si+2

Si+1

(b)

(c) v1v2 ps1

pe1ps2

pe2

Figure 15. Schematic representation of the noise detection procedure. When segment 1 is found, the
algorithm detects noise in the set of the following points Sj (a), then the following point sets Sj+1

and Sj+2 are checked for noise (b), segment 2 is defined once a noise free set is found (c).

If the noise is detected in the set Si, then a new set Si+1 is checked for noise, see
Figure 15b. The first point in the set Si+1 is selected to be pi+1,1 = pini . This process
continues until a noise-free set is found. When the first noise-free point set is found, then
the first point of the set is used for the RANSAC search of the next line segment, see
Figure 15c. The flow diagram of the procedure is shown in Figure 16.

Figure 16. Flow diagram the proposed procedure for groove parametrization with noisy data points.
The diagram does not include the iterative error elimination step.

3.3.2. Iterative Error Elimination for Noisy Data

The iterative error elimination procedure for noisy data is essentially the same as
described in Section 3.2.4. However, the difference is that all the points from the noisy
point sets S0

i are removed from the original dataset. Then the iterative error elimination
procedure is initiated.

It is worth noting that if the data contains a lot of noise, then the iterative error
elimination procedure can result in divergence from the best-fit groove corner position.
This happens due to a lack of data points, which gives a poor line fit. This means that the
procedure should be avoided when very noisy data are analyzed.
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4. Experimental Results

In this section, the performance and precision of the weld groove parametrization
algorithm are studied using the data obtained experimentally by scanning the test objects
shown in Figure 2. The performance of the proposed algorithm is evaluated using two
parameters. The first one is the execution time tex (wall-clock time is used). The second one
is the average relative distance de,i of the points in Si to the found segment i, where Si is a
set of points with the shortest distance (4) to segment i compared to the other segments (7).
Both the execution time and the fit error were calculated for 10 consequent runs of the
algorithm to simulate scanning multiple sections along the weld groove. The algorithm is
implemented in Python and is run on a notebook computer with the Ubuntu operating
system, 2-core Intel Core i7 CPU, and 16 GB of RAM.

The data were sampled by a hand-held sensor. The orientation of the sensor was
selected and altered such that it was possible to capture various types of noise, as well as
collect the data without noise. First, the scanned data without noise is analyzed and the
discussion on different functionality of the proposed groove parametrization procedure
is presented. Then, the data with various typical types of noise caused by reflections are
analyzed. Three main noise groups are defined in this work: N1—noise on the outer
surfaces, N2—noise in the corners, and N3—noise inside the groove. The datasets analyzed
are summed up in Table 1.

Table 1. Datasets from the scanned weld grooves

No. Type Root, Noise No. Type Root, Noise No. Type Root, Noise[mm] [mm] [mm]

1 Stub 0 No 6 Stub 3 Low N1 11 Stub 0 Medium N3
2 Stub 11 No 7 Stub 3 High N1 12 Butt 7 Medium N1
3 Stub 3 No 8 Stub 3 Medium N2 13 Butt 7 Medium N2
4 Butt 0 No 9 Stub 3 High N2 14 Butt 7 Medium N3
5 Butt 7 No 10 Stub 0 Low N3 15 Butt 7 Low N3

4.1. Results Using Noise-Free Data
4.1.1. Stub Joints

The scope of this part of the experimental program was to demonstrate the perfor-
mance and speed of execution of the proposed groove parametrization algorithm when
applied to stub joint grooves. The root widths of 0, 3, and 11 mm were considered.

First, the performance of the groove parametrization algorithm was studied using the
case of a groove without a root weld (i.e., 0 mm root weld), which was a relatively simple
case. The scanned data were denoted as dataset 1. The dataset was of good quality with
distinct sharp corners, which gave good groove parametrization results, see Figure 17.
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Figure 17. Parametrization results with groove corner points for dataset 1. The blue dots show the
result before the iterative error elimination procedure and the red dots show after. A close-up of the
graph is shown to the right.
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The blue corner dots in the graph show the result before the iterative error elimination
procedure (see Section 3.2.4) and the red dots show after. The last segment of the section
was shortened to 30 mm, and then the iterative error elimination step was applied. This
was necessary since the last side of the groove was curved (due to the geometry of stub
joints), and the best line fit was obtained locally in the groove. The quantitative evaluation
of the parametrization results is given in Table 2, which shows maximum, minimum, and
mean execution times and segment fit errors for 10 consequent algorithm runs for the
same dataset.

Table 2. Segment fit errors and execution times for 10 sequential runs using the datasets 1, 2, and 3. Results for dataset 2 are
given with and without iterative error elimination step (IEES). The fit error definition is given in the beginning of Section 4.

Dataset 1 2 with IEES 2 without IEES 3

Max Min Mean Max Min Mean Max Min Mean Max Min Mean

Time, [s] 0.076 0.043 0.061 0.125 0.056 0.092 - - - 0.145 0.058 0.126

de,1, [mm] 0.034 0.034 0.034 0.064 0.061 0.062 0.062 0.062 0.062 0.056 0.056 0.056
de,2, [mm] 0.070 0.070 0.070 0.114 0.095 0.109 1.058 0.040 0.192 0.041 0.041 0.041
de,3, [mm] 0.050 0.050 0.050 0.123 0.115 0.118 1.152 0.122 0.740 0.095 0.095 0.095
de,4, [mm] - - - 0.046 0.044 0.044 0.659 0.400 0.618 0.074 0.074 0.074

The mean execution time was measured to be 0.061 s, which gives above 16 scans
per second. Provided that the entire weld needs to be scanned discretely every 20–30 mm
along its length, such execution speed would allow for an approximate scanning capacity
of 400 mm/s. Such scanning speed is several times above the practical scanning speed
in the industry. The average point-to-segment error among all segments was within
0.034 to 0.070 mm, which was a very good segment-to-data fit. It is also notable that the
maximum, minimum, and mean results were consistent over 10 algorithm runs due to the
good quality of the scanned data.

The next analyzed dataset (dataset 2) was obtained by scanning the groove with a
10 mm root, see Figure 18.
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Figure 18. Parametrization results with groove corner points for dataset 2. The blue dots show the
result before the iterative error elimination procedure and the red dots show after. A close-up of the
graph is shown to the right.

The results showed a clear improvement of the groove parametrization after the
iterative error elimination step, which is also reflected in Table 2. The mean execution time
was 0.092 s, which was slightly higher than in the previous case. This was due to one extra
segment compared to the case without a root weld. The average point-to-segment error
after the iterative error elimination step was relatively consistent over 10 algorithm runs.
However, the average point-to-segment error before the error elimination procedure was
significantly higher and was inconsistent from run to run. This demonstrates the benefit of
using the iterative error elimination procedure.
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The next test was performed for the groove with a 3 mm wide root weld (the dataset 3).
Parametrization of grooves with a narrow root weld is a more complex task, since the
algorithm can neglect the root by assigning its point as inliers to the neighboring groove
sides. Therefore, the correction of assigned corners procedure (see Section 3.2.3) was
introduced in the algorithm. This correction prevents the points of the next segment from
being assigned as inliers of the current segment. The results of the parametrization are
shown in Figure 19 and the quantitative results are given in Table 2.
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Figure 19. Parametrization results with groove corner points for dataset 3. The blue dots show the
result before the iterative error elimination procedure and the red dots show after. A close-up of the
graph is shown to the right.

The mean execution time was 0.126 s, which roughly corresponded to 200 mm/s
available scanning speed. The point-to-segment errors were similarly low compared to
the previous tests. To demonstrate the importance of the correction of assigned corners
procedure, the results for datasets 2 and 3 without the correction step are presented in
Figure 20.
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Figure 20. Parametrization results with groove corner points for dataset 2 (to the left) and 3 (to the
right), when the correction of assigned corners step is omitted. The blue dots show the result before
the iterative error elimination procedure and the red dots show after.

For the case with a 10 mm root, it is seen that the blue dots are located well after the
corners. In that case, the iterative error elimination step corrected that error, moving the
corner points to their realistic positions (the red dots). In the case with a 3 mm root (to
the right), it is seen that the root segment was not detected at all, and the iterative error
elimination procedure is not designed to correct such errors.

4.1.2. Butt Joints

The weld groove parametrization procedure presented in this work was originally
developed for stub joints. In fact, the procedure is independent of the groove configuration.
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In this subsection we demonstrate that it can also be efficiently applied for the weld grooves
in butt joints.

The tests with a butt joint groove were performed for the case without root weld (i.e.,
0 mm root) and the case with 7 mm root weld, using datasets 4 and 5 (see Table 1). The
results are given in Figure 21.
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Figure 21. Parametrization results with groove corner points for datasets 4 (to the left) and 5 (to the
right). The blue dots show the result before the iterative error elimination procedure and the red dots
show after.

The execution times and average point-to-segment errors for 10 sequential runs are
given in Table 3. The execution times were in accordance with the results obtained from
scanning stub joint grooves, taking the number of segment into consideration. The average
point-to-segment error was of a similar magnitude comparing to previous results, as well as
the error was relatively consistent over the 10 algorithm runs. The slightly higher average
error of 0.160 mm was observed for segment 3 (dataset 5) in Table 3 due to the convex shape
of the root weld. The slightly higher inconsistency between the maximum and minimum
values is also attributed to the same reason.

Table 3. Segment fit errors and execution times for 10 sequential runs using datasets 4 and 5. The fit
error definition is given in the beginning of Section 4.

Dataset 4 5

Max Min Mean Max Min Mean

Time, [s] 0.138 0.062 0.091 0.233 0.093 0.142

de,1, [mm] 0.030 0.028 0.030 0.062 0.030 0.046
de,2, [mm] 0.074 0.074 0.074 0.077 0.026 0.052
de,3, [mm] 0.036 0.035 0.036 0.161 0.160 0.160
de,4, [mm] 0.032 0.032 0.032 0.042 0.041 0.041
de,5, [mm] - - - 0.019 0.019 0.019

4.2. Results Using Noisy Data

In this subsection, we study the performance of the algorithm using datasets with
noise caused by reflections. The data noise caused by reflections can be different in structure
and intensity, and can be located in different places. This depends on the surface treatment
and laser pointing angle. In this work, we used test objects with surfaces machined using
the same type of power tools as used in the industry, and the laser pointing angle was
selected freely to obtain datasets with various types of noise. Data noise was classified
into 3 different groups (N1, N2, and N3) depending on the noise location. The groups are
described in the introduction to Section 4. Two datasets from each noise group were tested
in this part of the experimental program. The quantitative evaluation of the algorithm
performance was given in terms of the maximum and mean values. Only root weld widths
of 0 and 3 mm were considered, as the primary focus of this subsection is studying the
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performance of the algorithm with different types of noise. Only tests with stub joint
grooves were considered here. The test results with butt joint grooves along with the
comparison to a more conventional RANSAC groove parametrization algorithm will be
presented in the next section.

First, datasets 6 and 7 were analyzed, see Table 1. The data contained noise on the
outer plate surfaces, i.e., the noise of type N1. The parametrization results are shown
graphically in Figure 22, and the quantitative results are given in Table 4.
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Figure 22. Parametrization results with groove corner points for datasets 6 (to the left) and 7 (to the
right). The blue dots show the result before the iterative error elimination procedure and the red dots
show after. The grey points have been identified as noise by the noise detection algorithm.

The grey color in the graphs indicates the points identified as noise by the noise
detection algorithm. The mean execution time was within 0.126 to 0.139 s, which was
similar to the results using the noise-free dataset 3. The average point-to-segment error
among all segments was within 0.039 to 0.258 mm, which was higher than the errors using
the noise-free datasets. This could be explained by the minor noise, which was within the
segment inlier tolerances and was not identified as noise by the noise detection algorithm.
Such minor noise caused larger distances from the points to the found segment, which led
to larger point-to-segment errors. It is also notable that the maximum and mean results
were relatively consistent over 10 algorithm runs.

Table 4. Segment fit errors and running times for 10 sequential runs using the datasets 6–11. The fit error definition is given
in the beginning of Section 4.

Dataset 6 7 8 9 10 11

Max Mean Max Mean Max Mean Max Mean Max Mean Max Mean

Time, [s] 0.133 0.126 0.262 0.139 0.089 0.061 0.133 0.108 0.162 0.125 0.066 0.046

de,1, [mm] 0.258 0.258 0.178 0.115 0.086 0.086 0.106 0.105 0.077 0.077 0.070 0.070
de,2, [mm] 0.144 0.141 0.040 0.040 0.078 0.076 0.050 0.047 0.122 0.120 0.086 0.086
de,3, [mm] 0.229 0.220 0.108 0.11 0.062 0.044 0.160 0.160 0.102 0.102 0.120 0.120
de,4, [mm] 0.077 0.077 0.039 0.039 0.049 0.048 0.157 0.157 - - - -

The next datasets analyzed (datasets 8 and 9) were selected based upon their contain-
ing corner noise (i.e., type N2). The results showed that it was possible to identify the
corner noise and locate the missing groove corner, see Figure 23 and Table 4. The noise
did not affect the mean execution times, which were within 0.061 to 0.108 s. The average
point-to-segment errors were within 0.044 to 0.160 mm, which were of the same magnitude
as in the previous cases.
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Figure 23. Parametrization results with groove corner points for datasets 8 (to the left) and 9 (to the
right). The blue dots show the result before the iterative error elimination procedure and the red dots
show after. The grey points have been identified as noise by the noise detection algorithm.

The two last noisy datasets (datasets 10 and 11) were selected to include the N3 noise,
which is the noise inside the groove. The results are plotted in Figure 24. The weld groove,
in this case, was without a root, which was selected based on groove grinding conditions
in the available test objects giving the best examples of the N3 noise.
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Figure 24. Parametrization results with groove corner points for datasets 10 (to the left) and 11 (to
the right). The blue dots show the result before the iterative error elimination procedure and the red
dots show after. The grey points have been identified as noise by the noise detection algorithm

The N3 noise is different from the N1 and N2 types since it is mostly caused by the
dominant part of spread reflections towards the other wall of the groove. This means that
the noisy points are not necessarily located chaotically in the y0 direction (see, for example,
Figure 22). The noisy points can, alternatively, form rather well-structured line segments in
the false locations, see the graph to the right in Figure 24. In this case, the only effective
noise detection condition is (11). Regardless of the more complex noise detection problem,
the execution times and the average point-to-segment errors were similar to all other cases
considered in this subsection, see Table 4.

5. Discussion and Comparison to the Conventional RANSAC Algorithm

In this section a discussion on the advantages and disadvantages of the proposed
procedure compared to the recently published methods is given. In addition, the proposed
procedure is compared to a groove parametrization procedure based on the conventional
RANSAC approach for line segment search.

Recently, several methods have been proposed for weld seam tracking, where weld
seam or weld groove parametrization (feature extraction) was a part of the procedure. In
most of the proposed methods groove parametrization was done at the camera image level,
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i.e., using camera image points or pixels [14,16,26,27]. Image points can be seen as raw
data, which gives more flexibility in choosing filtering, processing and parametrization
techniques. In our work the proposed procedure used triangulated sensor points for
analysis, i.e., 2D points given in the coordinates of local sensor coordinate frame. This
can be advantageous if access to raw image data is not possible, when commercial line
laser sensors are used. Some methods using triangulated points have been also previously
reported (e.g., [13]), however the methods did not include strong data noise caused by the
reflections of a laser.

Processing noisy data has been an important part of the recent developments. It is,
however, worth noting that the recent methods have mostly been made for online seam
tracking where arc and splashing noise was a central problem. It is beneficial for robotic
welding when scanning and welding can be done simultaneously. In the case of a stub joint,
it is more reasonable to scan and parameterize the entire weld groove and then generate
motion paths for a welding robot. This is justified by the fact that the interface between
elements in a stub joint is rather complex, which leads to the groove with variable number
of weld layers and beads along the weld. In such cases, it is more reasonable to plan the
entire multi-pass weld before the welding of the first bead starts. At the same time a groove
has to be ground just before welding to remove rust and dust. Then the noise caused by
laser reflections is a dominant noise problem, while results in Section 4 revealed that the
noise can be quite severe.

As in our work, a set of groove corner points is often selected as a parametrization basis
in the previously reported methods. The dominant approaches for groove parametrization
are the methods based on gradients, which can be both of the first-order or the second-order,
or various combination of both [13–15]. These approaches proved to be fast enough to
be used in real-time weld seam tracking. The results reported in Section 4 suggest that
the proposed method is running at approximately 10 Hz, which can be too slow for some
real-time seam tracking. On the other hand, due to the nature of data gradient functions,
the obtained parametrization results might be poor for triangulated points with a lot of
data noise.

The parametrization methods which are the closest to the proposed procedure are the
more conventional RANSAC approaches for line segment detection [10,17]. RANSAC uses
model fitting, and can be effective even with very noisy data. Therefore, RANSAC was
selected as a basis for the proposed method. When used with noise-free data, RANSAC
can effectively detect lines and line segments without prior knowledge of the weld groove
geometry [17]. In the presence of strong data noise, RANSAC would also detect line
segments from noisy points or line segments deviated by noise. Then, pre-knowledge
of the groove geometry is required to filter out the line segments from noisy points. In
this work we propose a procedure for the precise parametrization of weld grooves from
triangulated points with strong data noise, and, therefore, we suggest that comparing our
approach with the conventional RANSAC line segment detector is a relevant addition to
our experimental investigation. The comparison is presented in the rest if this section.

Summing up, the advantages of the proposed procedure are:

• Can be used with commercial sensors where only triangulated data points are available;
• Can be used with strong data noise, cause by laser reflections;
• Can be used for grooves in both stub and butt joints;
• Does not require pre-knowledge of the weld groove geometry,

while the disadvantages compared to the recent works are:

• Might be too slow for some real-time robot path generators;
• Does not account for a gap between plates;
• Is not developed to filter out arc and splash noise.

Given the advantages and disadvantages above, the proposed procedure is relevant
in terms of the industrial implementation as a part of the robotic welding system for large
tubular joints.
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5.1. Conventional RANSAC Algorithm

This method is based on the conventional RANSAC approach for searching line
segments. Therefore, a term conventional was adopted. The algorithm used here is similar
to that implemented in [17], with some more logic implemented for analyzing grooves
with narrow root welds and filtering out the line segment found from noisy points. The
procedure consists of the following steps. First, a point pair is randomly selected from
the entire dataset, then a line is defined through the selected points. Next, the points
within the defined margin to the line (inliers) are identified, and the largest line segment
on the line is found. These steps are repeated for a number of iterations until the segment
with the most inliers is found, then a line segment is defined using linear regression for
the best inlier set. Once all line segments are found (i.e., the condition for min number
of the remaining points is met), groove corners are found as intersections between the
line segments, which correspond to the pre-defined groove opening angle. Additional
logic is implemented to search for a root weld in a groove before the groove side walls,
This way, it is ensured that narrow root welds will not be neglected. It is noted that
the conventional RANSAC algorithm does not need pre-knowledge of groove geometry
to detect line segments. That knowledge is, however, required for filtering out the line
segments detected from noisy points.

5.2. Comparison of Experimental Results

Comparison of experimental results from the proposed and conventional RANSAC
procedures was made using an example of a V-groove, which is typical for butt joints,
which means that the test object c) was used (see Figure 2). The results are compared in
terms of the execution time and average point-to-segment errors.

Comparison of the results for dataset 5 was made using the mean dataset 5 values
only from Table 3 and the mean results using the conventional RANSAC approach, which
is summed up in Table 5.

Table 5. Comparison of the results using dataset 5. The fit error definition is given in the beginning
of Section 4.

Mean Values Proposed Conventional

Time, [s] 0.142 1.886

de,1, [mm] 0.046 0.037
de,2, [mm] 0.052 0.062
de,3, [mm] 0.160 0.164
de,4, [mm] 0.041 0.042
de,5, [mm] 0.019 0.036

It is noted that for the other datasets used for the comparison, we will not provide
the explicit results with the maximum, minimum, and mean values, but rather give a
similar summary table with mean values only. The results given in Table 5 showed a
clear advantage of the proposed method in terms of the execution time, which was 0.142 s
compared to 1.886 s from the conventional approach. The execution time was the average
value per run over 10 consequent runs. The precision of the parametrization in terms
of the average point-to-segment error was rather similar. The proposed method gave a
better precision for segments 2 to 5, while the conventional method gave a better precision
for segment 1. It is, however, noted that both methods had high precision in the results,
and minor numerical variations did not have practical importance for the results. It was
concluded that the proposed method had the same precision as the conventional method
for the tested noise-free dataset, while the execution time was more than 10 times faster.

Next, the performance of the proposed and conventional RANSAC algorithms was
compared using the noisy datasets 12 and 13 (see Table 1), which covered noise cases N1
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and N2 (outer surface and corner noise). The graphical comparison of the results is given
in Figure 25 and the numerical comparison of the results is given in Table 6.
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Figure 25. Parametrization results with groove corner points for datasets 12 (to the left) and 13
(to the right). The red dots show the result from the proposed procedure and the black dots show
results from the conventional RANSAC. The grey points have been identified as noise by the noise
detection algorithm.

Table 6. Comparison of the results using datasets 12–15. The fit error definition is given in the
beginning of Section 4.

Dataset 12 13 14 15

Mean
Values Prop. Conv. Prop. Conv. Prop. Conv. Prop. Conv.

Time, [s] 0.095 1.858 0.082 1.258 0.087 1.205 0.087 1.665

de,1, [mm] 0.106 0.155 0.077 0.068 0.025 0.080 0.082 0.146
de,2, [mm] 0.105 0.092 0.133 0.057 0.060 0.095 0.154 0.256
de,3, [mm] 0.151 0.241 0.061 0.072 0.152 0.153 0.135 0.277
de,4, [mm] 0.078 0.100 0.030 0.117 0.044 0.078 0.303 0.151
de,5, [mm] 0.035 0.115 0.069 0.394 0.021 0.060 0.090 0.103

The mean execution time over 10 consequent runs for the proposed method was
within 0.082 to 0.095 s, while for the conventional RANSAC method, the execution time
was within 1.258 to 1.858 s. The presence of data noise led to a larger variation in average
point-to-segment errors. It is, however, again highlighted that both methods could be
regarded as similarly precise since the errors were small in both cases.

The last comparison study was performed using datasets 14 and 15, where typical N3
noise was present. The results of the comparison are given in Figure 26 and Table 6.

A similar difference, as for the previous cases, in the execution times was also observed
for the current study. The mean execution time for the proposed method was 0.087 s
compared to 1.205–1.665 s from the conventional RANSAC method. The average point-to-
segment error was of the same magnitude as in the previously studied cases. It is noted
that the average errors below 0.5 mm can be considered as a good fit, which is well satisfied
by both methods seeing from the results in Table 6.
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Figure 26. Parametrization results with groove corner points for datasets 14 (to the left) and 15
(to the right). The red dots show the result from the proposed procedure and the black dots show
results from the conventional RANSAC. The grey points have been identified as noise by the noise
detection algorithm.

The comparison study can be summed up with the following conclusions. Both
the proposed and conventional RANSAC approaches gave similarly high precision for
the noise-free and noisy datasets. The average execution time was, however, more than
10 times faster for the proposed method. The difference can be explained by the fact that
the proposed method uses less iterations to find the segments, since the first point of the
segment is defined. In addition, the conventional RANSAC approach uses many iterations
for searching the root segment first. The root segment has relatively few points, and the
algorithm does not proceed to search the other segments before the root is found, which
leads to longer execution times. It is also noted that the conventional RANSAC approach
needs the approximate groove geometry as an input, while the proposed method can do
parametrization without any knowledge of the groove geometry.

6. Conclusions and Future Work

We have presented a novel weld groove parametrization procedure for typical grooves
in large tubular butt and stub joints. The procedure was specifically developed to be used
with industrial 2D laser scanners where raw image data might not be available, facilitating
easier industrial implementation. The procedure consisted of a combination of a sequential
RANSAC search and the two additional correction steps for increasing the precision of
parametrization. In addition, the data noise detection steps were introduced to enable
processing of noisy data, where the noise is caused by reflections between the groove
surfaces. The performance of the procedure was studied experimentally using three test
objects with grooves machined similarly as in the industrial applications. Two objects
represented a stub joint groove, and one object represented a butt joint groove. The
procedure proved to be efficient for both types of weld grooves using noise-free data.
The mean execution time was within 0.061 to 0.142 s, corresponding to 170 to 400 mm/s
available scanning capacity (25 mm between scans). In the cases with data noise, the
parametrization results for both grooves were still of sufficient quality, while the mean
execution time was within 0.046 to 0.139 s, which was similar to the noise-free cases. The
performance of the proposed procedure was also compared to the conventional RANSAC
approach for line segment search. The proposed method was as precise as the conventional
RANSAC. However, the mean execution time was more than 10 times faster for the
proposed method. Additionally, the proposed method did not require any prior knowledge
of the groove geometry. The contribution of this work is a step towards robotic scanning
and weld path planning for large tubular joints. Therefore, a natural topic for future
work is studying the performance of the proposed procedure using a robot-fixed sensor
and a full-scale tubular joint. In addition, scanning strategies facilitating the reduction in
reflections and data noise should be investigated.
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