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Abstract

This thesis proposes methods for modeling and learning over graphs. In the scope

of graph modeling, we first address the construction of graphs suitable for com-

pressing images that share strong redundancy — in particular, light-field images.

For compression, we leverage the energy concentration in the graph-frequency

domain provided by the graph Fourier transform (GFT). We propose methods to

construct a sparse adjacency matrix optimized jointly for sets of pixel blocks, con-

siderably reducing the amount of data required for graph representation. A second

proposal for graph modeling is the extended adjacency obtained by introducing

new edges to an initial sparse adjacency matrix. This methodology uses diffusion

distances to measure relations between unconnected nodes. Using the extended

adjacency, we define the scale-dependent GFT, which reveals additional spectral

information of graph signals. We show that graph signal processing tools benefit

from the additional spectral information.

In the scope of learning over graphs, this thesis introduces nonlinear graph fil-

ters. The proposed nonlinear graph filtering consists of a nonlinearity applied to

a combination of graph-shifted versions of the input graph signal. To identify

the parameters of the nonlinear graph filter, we first propose the centralized graph

kernel least mean squares (GKLMS) algorithm. We develop implementations of

the GKLMS using coherence-check and random Fourier features (RFF) to reduce

the dictionary size. Using the graph structure, we propose the fully distributed

graph-diffusion kernel least mean squares (GDKLMS) algorithm using RFF. Ad-

ditionally, we propose a second methodology for learning over graphs based on

kernel regression. This methodology considers the case where the input signal is

not a graph signal. We propose both batch-based and online algorithms with re-

duced computational-complexity and competitive performance when compared to

state-of-the-art methodologies. Moreover, we provide first- and second-order the-

oretical convergence analysis for all the proposed online algorithms for learning

over graphs.
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Ā(t) Extended-adjacency matrix

L̄(t) Laplacian matrix at diffusion scale t

0K Length-K vector with all entries equal to zero

∩ Set-intersection operator

C Cyclic-shift matrix

Δ Continuous Laplace operator

ΔG Graph-based Laplace operator

IM M ×M identity matrix

C Set of complex numbers

R Set of real numbers

A Adjacency matrix

h Function representation in the random Fourier features space



ABBREVIATIONS AND SYMBOLS xxi

L Laplacian matrix

rn Shifted-input vector

xn Generic graph signal

zn Shifted-input vector in random Fourier features space

E Set of edges

G Graph

N Neighborhood

T Unit-shift operator

V Set of vertices

μ Step size of online algorithms

⊕ Direct-sum operator

⊗ Kronecker-product operator

σRBF Parameter of the radial-basis function kernel

‖ · ‖ Euclidean norm

‖ · ‖F Frobenius norm

|V| Cardinality of the set V

D2
t (vi, vj) Diffusion distance between vi and vj

ei,j Graph edge from vj to vi

vi Graph node indexed by i

E[·] Expectation operator

mat(·) Vector-to-matrix operator

TV(·) Total variation

TVG(·) Total variation over the graph

vec(·) Matrix-to-vector operator



xxii ABBREVIATIONS AND SYMBOLS



Chapter 1

Introduction

Data from multidimensional variables, defined over networked structures, are con-

tinually generated, stored, and processed in systems related to several technology

areas. In the current stage of the information era, the necessity of dealing with data

from enormous networks, such as social networks, sensor networks, transport net-

works, among many others, presents a challenging task. Digital signal processing

(DSP) is a broad area of engineering dedicated to processing data, usually assum-

ing that these data are defined over well-structured and regular domains. Many

of the conventional DSP techniques available today are tailored for processing

and analyzing one-dimensional signals in time or frequency1 — the extension to

higher-dimensional domains deals with signals defined over regular grids, such as

images. One fundamental characteristic of conventional DSP is that there is an

ordering in the observed data that is inherent to the domain, such that one can

infer if a sample comes before or after another. The regularity of DSP domains

facilitates the development of signal processing tools. However, regular domains

cannot capture more sophisticated relations between data samples, which limits

the applicability of conventional DSP tools.

Consider, for example, the case of analyzing how many mail orders a subdistrict

receives in a month, assuming the supply chain company wants to improve the

allocation of delivery operators across the city. This problem can be regarded as a

prediction problem, where the company needs to predict the number of orders in a

given month to allocate the operators properly. One may define a monthly-sampled

time series am, with m ∈ {1, 2, . . . , 12}, where am indicates how many mail or-

1We refer to conventional DSP as the study of signals in time domain (one-dimensional signals),

space domain (possibly multidimensional signals), and their corresponding frequency- and other

transform-domain representations.
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2 Introduction

ders that subdistrict received in month m. Conventional DSP tools are perfectly fit

for the manipulation of this type of data. Consider that the same data type is avail-

able for other subdistricts. One can then jointly analyze the different subdistrict

time series with multidimensional DSP, which allows inferring characteristics of

the data directly from the time series. Nonetheless, suppose the company can ac-

cess other information about the subdistricts, such as the number of packages sent

between two subdistricts over a time interval. In that case, this information could

also improve the data analysis and the prediction process. The relations between

subdistricts confer an aspect of a connected network. Conventional DSP tech-

niques are not adequate to naturally deal with this information, and graphs emerge

as an alternative domain where network-related information can be included in the

data processing. The fact that conventional DSP cannot properly handle networked

data composes one of the motivations for the field of research referred to as digital

signal processing on graphs (DSPG) [1] or graph signal processing (GSP) [2–4].

GSP is a relatively new field, with most of its framework being developed over the

past decade. Its growing importance is due to its applicability to networked data

processing, as connectivity between real-world elements progressively increases

with the advent of the internet-of-things, sensor networks, and better communic-

ation technologies [5–7]. GSP employs graph-structural information to model,

process, and analyze signals defined over graph nodes [1–4]. By associating real-

world network elements with graph nodes and encoding their interrelations through

graph edges, GSP leverages the graph structure to process or analyze the network

data, modeled as a graph signal. However, in contrast to conventional DSP, GSP

deals with irregular and more complex domains that can vary drastically according

to the application. Real networks and their corresponding data come in vastly dif-

ferent shapes and applications, ranging from genetic interaction networks [8] and

the human brain [9] to sensor networks and smart cities [6]. The variety in shapes

and applications demands additional attention when generating models and devel-

oping tools for processing networked data. Hence, a significant amount of research

is still dedicated to defining the fundamentals of the emerging field of GSP [4, 7].

Similar to traditional DSP techniques, the basic building block in GSP is the

graph-shift operation. This operation shifts a graph signal in the graph domain

according to a graph-shift operator (GSO) matrix, which captures node intercon-

nections [1, 4, 7]. For instance, the graph Fourier transform (GFT) is defined as

the signal expansion in terms of the eigenbasis of the GSO. In contrast to con-

ventional DSP, where the regular and ordered domain induces a straightforward

definition of the shift operation, the GSP literature contains several GSO defini-

tions that suit different applications [1, 2, 4, 6, 7, 9–23]. The two most commonly

used GSOs are the adjacency matrix of the graph [1] and the graph Laplacian [2].
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The diversity of applications and the fact that GSP is a field still in its early stages

call for research on how the translation from real networks into graphs affects the

performance of GSP tools. In this regard, part of the contribution of this thesis is

the investigation of techniques to improve the modeling of real-world problems as

GSP applications.

Another key research area in GSP is modeling unknown relations between a refer-

ence signal and a target signal, usually referred to as an input-output pair [24–

33]. In conventional DSP, this modeling can be achieved using digital filters,

which operate on shifted versions of the input signals. In the particular case of

linear networks, using the aforementioned GSO definitions, the graph-shifted sig-

nal on a given node is a linear combination of adjacent node signals, where the

weights relate to the edge values. This resemblance to DSP has sparked the de-

velopment of a vast amount of GSP counterparts of methods related to spectral

analysis [11, 14, 34–38] and traditional time-series analysis [39, 40]. Several

works deal with adaptive learning of graph filters, e.g., [24–28]. These meth-

ods were later extended to multitask graphs [29, 30]. These previous works adopt

the ideas of linear adaptive networks [41, 42] to estimate the graph filter through

in-network processing. However, linear models cannot accurately represent many

real-world systems that exhibit more sophisticated input-output relations. Promin-

ent examples include the relations between air pressure and temperature [43], and

wind speed and generated power in wind turbines [44].

Different approaches for nonlinear system modeling can be found in the literat-

ure [45–53]. In particular, approaches based on kernel methods [51, 52] have

gained popularity due to their efficacy and mathematical simplicity [31–33, 53–

65]. There is extensive literature on function estimation using kernel methods

for both single- and multi-node networks, e.g., [31–33, 54–69]. However, most

of the previous approaches inherit the well-known scaling issue of kernel meth-

ods [63, 64], since the model dimension increases with the number of training

samples, which increases with the network size and with time.

This thesis contributes to the development of GSP methods by investigating ap-

proaches for learning nonlinear input-output relations over graphs that overcome

the complexity issues associated with kernel methods. In particular, we introduce

the concept of nonlinear graph filters that operate on graph-shifted versions of the

input signal, along with adaptive methods based on reproducing kernel Hilbert

spaces (RKHS) [33, 52, 70] for identifying nonlinear graph filters. These methods

explore the graph structure to learn the graph filter distributively. Additionally, a

methodology for kernel regression over graphs (KRG) is developed for learning

input-output relations over graphs, acknowledging cases where the input signal is

not a graph signal.
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1.1 Objectives
The present research addresses the applications and tools for the digital signal

processing of signals defined over graphs. In particular, we identify the follow-

ing needs regarding the GSP framework: (i) The need to improve the translation

of real-world problems into graph models suitable for GSP tools. Specifically,

developing methods that can better leverage the available information on the net-

work structure. (ii) The need to develop methods that learn sophisticated relations

between signals defined over graphs, given that most available approaches are lim-

ited to linear models. (iii) The need to investigate real-world scenarios where GSP

tools can be effectively applied, identifying structured data that can be defined

over a suitable graph and whose relations between elements can be explored. In

summary, this thesis focus on the following research objectives:

T1: Proposing an augmentation method for the GSO model to improve the per-

formance of GSP tools;

T2: Developing efficient tools for learning nonlinear input-output relations over

graphs based on graph filtering and regression methods.

T3: Investigating different applications that can benefit from the proposed GSP-

based methodologies.

1.2 Methodology
This thesis investigates theoretical techniques to contribute to the GSP framework

and addresses the research topics presented in Section 1.1. The methods proposed

here build upon the fundamentals of GSP and improve over these with theoretical

proposals for GSP modeling and for learning over graphs. We present motiva-

tions in line with the needs of the GSP literature, and the methods proposed in this

thesis are compared to other state-of-the-art approaches. Theoretical analyses are

provided to support the proposed concepts. The validation of the proposed meth-

odology is conducted through numerical experiments using both synthesized and

real datasets, with applications in different scenarios.

1.3 Thesis Contributions
First, we study the specific application of GSP to compress light-field images, ad-

dressing both T1 and T3. The purpose is to showcase the basic concepts of GSP

and motivate the need for research dedicated to modeling real-world problems into

the GSP scope. Light-field imaging is a technology for capturing images, build-

ing upon conventional digital photography, that presents challenging tasks related
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to the amount of data generated. This work proposes methods for modeling the

blocks of pixels from a light-field as graphs and uses the GFT to compress the im-

ages, leveraging the energy-concentration provided by the Fourier analysis of the

corresponding graph signals. A second work that directly addresses T1 is the pro-

posal of an augmentation methodology for the adjacency of networks. The prob-

lem tackled in this research starts with the assumption that no information other

than an initial adjacency matrix is known about the network. The proposed idea is

that, by finding hidden pairwise node relations not shown in the initial adjacency

matrix, the spectral analysis of the graph signal is modified, and the performance

of GFT-based tools can be improved. The adjacency of graph nodes is augmented

with the addition of new edges following a criterion based on a Markov relation

imposed between nodes, such that it is possible to attribute relation between pairs

of nodes that are not connected initially. This augmentation of the adjacency mat-

rix directly affects the GFT, and we show that this effect can be explored to im-

prove the performance of GSP tools that utilize graph-spectral information. The

proposed methodology is tested for anomaly detection in networked data in both

synthesized and real networks.

To address T2, two distinct research lines are pursued. In the first one, we gen-

eralize the theory of conventional nonlinear filtering and linear graph filtering to

propose nonlinear graph filters. Nonlinear graph filters consist of a nonlinear-

ity applied to a combination of graph-shifted versions of the input signal. The

nonlinearity is modeled in reproducing kernel Hilbert spaces. For learning the

nonlinear graph-filter parameters, we derive GSP-based kernel least mean squares

algorithms. In addition to a centralized implementation for the nonlinear graph

filters, we also explore diffusion over networks to derive distributed nonlinear

graph filters. The proposed methods enjoy reduced computational complexity

when compared to conventional algorithms based on kernel methods, and scale

well for large networks and datasets. We conduct a detailed performance study of

the proposed algorithms, and we derive the convergence conditions in the mean

and mean-square senses.

The second research line to address T2 is efficient batch-based and online strategies

for kernel regression over graphs (KRG). In contrast to the previously proposed

nonlinear graph filters, the proposed KRG algorithms do not require the input sig-

nal to be a graph signal. Similar to the previous approach, we proposed scalable

algorithms with reduced computational complexity. The proposed batch-based im-

plementation greatly reduces the complexity when compared to previous state-of-

the-art KRG implementations. Additionally, we derive two online strategies: the

mini-batch gradient KRG (MGKRG) and the recursive least squares KRG (RL-

SKRG). The stochastic-gradient KRG (SGKRG) is introduced as a particular case
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of the MGKRG. We provide a detailed stability analysis of the online algorithms

and a discussion on complexity.

The research topic T3 is addressed in all the works above. We first investigate

the application of GSP methods for compressing light-field images. The proposed

extended-adjacency methodology is employed for anomaly detection using graph-

spectrum information. We investigate the modeling and estimation of humidity

data from temperature data collected by a sensor network inside a working labor-

atory environment. Using the proposed KRG methodology, we tackle various ap-

plications, including predicting temperatures in a network of weather stations, es-

timating brain-activity intensity in different regions of the brain, and reconstructing

images with corrupted pixels.

1.3.1 List of Publications

The following works were conducted by the author of the dissertation in line with

the research objectives presented in Section 1.1. These works are documented in

papers P1 to P8 and comprise the contributions listed in Section 1.3. The list is

composed by eight papers, of which seven were published or accepted for public-

ation, and one was submitted during the course of the Ph.D.

• P1: [71] V. R. M. Elias and W. A. Martins, “Graph Fourier transform for

light field compression,” in Simpósio Brasileiro de Telecomunicações e Pro-
cessamento de Sinais, pp. 881–885, Sept. 2017.

• P2: [72] V. R. M. Elias and W. A. Martins, “On the use of graph Fourier

transform for light-field compression,” Journal of Communication and In-
formation Systems, vol. 33, pp. 92–103, May 2018.

• P3: [73] V. R. M. Elias, W. A. Martins, and S. Werner, “Diffusion-based

virtual graph adjacency for Fourier analysis of network signals,” in Simpósio
Brasileiro de Telecomunicações e Processamento de Sinais, pp. 1–5, Dec.

2020.2

• P4: [74] V. R. M. Elias, W. A. Martins, and S. Werner, “Extended adjacency

and scale-dependent graph Fourier transform via diffusion distances,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 6,

pp. 592–604, Aug. 2020.

• P5: [75] V. C. Gogineni, V. R. M. Elias, W. A. Martins, and S. Werner,

“Graph diffusion kernel LMS using random Fourier features,” in Asilomar
Conference on Signals, Systems, and Computers, pp. 1–5, Nov. 2020.

2Paper awarded with the Best Paper Award.
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• P6: [76] V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner,

“Adaptive graph filters in reproducing kernel Hilbert spaces: Design and

performance analysis,” IEEE Transactions on Signal and Information Pro-
cessing over Networks, vol. 7, pp. 62–74, 2021.

• P7: [77] V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, “Ker-

nel regression on graphs in random Fourier features space,” in International
Conference on Acoustics, Speech, and Signal Processing, pp. 5235–5239,

2021.

• P8: [78] V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner,

“Kernel regression over graphs using random Fourier features,” Submitted

to IEEE Transactions on Signal Processing, pp. 1–12, 2021.

1.3.2 Other Contributions

In addition to the papers listed in Section 1.3.1, the following short course and

book chapter were produced covering fundamentals of GSP and its applications,

in line with the research objectives of this thesis:

• Book chapter: J. B. Lima, G. B. Ribeiro, W. A. Martins and V. R. M. Elias,

“Processamento de sinais em grafos: Fundamentos e aplicações,” Chapter

2 in Livro de Minicursos SBRT 2018 (P. R. L. Júnior, E. C. Gurjão, R. D.

Gomes and J. S. Rocha, eds.), Editora IFPB, 2018.

• Short course: J. B. Lima, G. B. Ribeiro, W. A. Martins and V. R. M.

Elias, Graph signal processing: Fundamentals and applications (original
title: Processamento de sinais em grafos: Fundamentos e aplicações). Brazilian

Symposium on Telecommunications and Signal Processing, 2018. (dura-

tion: 4h)

The codes of the simulations presented in this thesis, corresponding to the numer-

ical experiments conducted in papers P1-P8, are available at https://github.

com/vitor-elias/thesis_codes.

1.4 Thesis Organization
This thesis begins by providing the fundamentals of GSP and the background

necessary for the research developed presented here. Chapter 2 introduces the

fundamentals of graphs, graph theory, and GSP. Chapter 3 applies these funda-

mentals of GSP, specifically the graph Fourier transform, for light-field compres-

sion. Chapter 4 proposes a methodology for augmenting the adjacency matrix and
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presents a scale-dependent graph-frequency analysis, which can be explored by

GSP tools that use the graph spectrum. Strategies for learning over graphs are

presented in Chapters 5 and 6. Chapter 5 introduces nonlinear graph filters and

presents an adaptive distributed methodology for learning the filter parameters.

In Chapter 6, an alternative methodology for learning over graphs is presented,

based on kernel regression, suitable for scenarios where the reference signal is not

defined over the graph. Finally, 7 presents the conclusions and final remarks, and

future works for the topics discussed in the thesis.



Chapter 2

Graph Signal Processing and its
Approaches

This chapter reviews essential concepts and definitions of graphs and graph theory

used throughout the thesis. We introduce the fundamentals of GSP and discuss

topics related to our research objectives. In Sections 2.1 to 2.3, we formalize the

concepts of graphs, graph signals, and graph structures. In Section 2.4, the graph-

shift operator is presented. Sections 2.5 and 2.6 present two of the main approaches

for GSP in the literature. In Section 2.7, we discuss the frequency interpretations

for the different GSP approaches. Finally, Section 2.8 presents the final remarks

for this chapter.

2.1 Introduction to Graphs
A graph is a mathematical structure used to model a set of elements and their pair-

wise relations. Here, a graph is denoted by G = {V, E}, where V = {v1, . . . , vK}
is the set of vertices or nodes that represent the elements or objects that compose

the network structure.1 The set E = {e1,1, . . . , eK,K} is the set of edges, with

|E| = K2. Edges indicate (possibly complex) node interconnections, in the sense

that an edge ei,j �= 0 indicates that vertex vj influences vertex vi. When ei,j = 0,

one can consider that there is no edge connecting nodes vi and vj . Usually, edges

are binary, i.e., ei,j ∈ {0, 1}. If there is a non-binary value associated with an

edge by a mapping w : E → C, the graph is said to be a weighted graph. For

simplicity, we assume that edges in weighted graphs may present non-binary val-

ues, omitting the mapping w. In order to facilitate the manipulation and study of

1Throughout the text, the terms vertex (vertices) and node (nodes) will be employed interchange-

ably with each other

9
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graphs, it is often convenient to represent the set of edges as a square adjacency

matrix A ∈ C
K×K , for which the value of element Ai,j is equal to that of edge

ei,j . Hence, a graph may also be represented as the pair G = {V,A}. Both nota-

tions will be used throughout the remainder of this text. In this work, unless stated

otherwise, we consider only graphs for which no multiple edges connecting two

vertices nor self-loops, such that ei,i �= 0, are allowed.

Graphs may be classified as directed or undirected graphs. If ei,j = ej,i, ∀i, j, i.e.,

if the influence of vertex vj over vi is equal to the influence of i over j for every

pair (i, j), the graph is undirected, since the direction of the edge is not relevant.

In this case, the adjacency matrix A is symmetric. Otherwise, if the direction of

the edge matters to the connection between some (at least one) pair of nodes in

the graph, such that ei,j �= ej,i, the graph is said to be a directed graph or digraph.

Directed graphs may be further classified as oriented if only one directed edge

exists for any connected pair of vertices in the graph, that is, if there is only one

way between any two connected vertices. An example of undirected and directed

graphs is shown in Figure 2.1, with K = 5 vertices.

Figure 2.1: Example of undirected (left) and directed (right) graphs, for a set with K = 5
vertices.

Paths between any two vertices in a graph are sets of edges connecting the two

vertices. The size of the shortest path between two vertices is often used to denote

the distance between them. The maximum distance between two nodes in a graph

is the diameter of the graph. The distance may also be weighted by the values of

the edges in the case of weighted graphs. If two vertices vi and vj are adjacent,

there is a path with a single edge between them, i.e., ei,j �= 0 or ej,i �= 0. If there

exists a path between any two vertices of V , the graph is said to be connected.

For the undirected case, if every vertex is adjacent to all others, such that ei,j =
ej,i �= 0, ∀i, j the graph is a complete graph. Analogously, for the directed case,

if there is a pair of non-zero directed edges between every two vertices, the graph

is referred to as a complete digraph. Figure 2.2 shows an example of complete

and incomplete graphs; in fact, this example also illustrates a disconnected graph,

since there are unreachable vertices depending on the starting vertex.
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Figure 2.2: Example of complete (left) and incomplete and disconnected (right) graphs,

for a set with K = 5 vertices.

The neighborhood Nk of a vertex k is the set of all vertices in V that are adjacent

to k. For an unweighted and undirected graph, the degree deg(k) of a node vk is

the number of edges connected to k, which is equal to the number of vertices in

Nk. Equivalently,

deg(k) =

K∑
i=1

ei,k =

K∑
i=1

ek,i. (2.1)

Note that one can also consider the weighted degree resulting from the non-binary

edge values.

A discrete Laplace operator, analogous to the continuous Laplace operator, is

defined for graphs [79]. For a function f(x) in an m-dimensional Euclidean space,

the continuous Laplace operator, denoted by Δ, is a second-order differential op-

erator given by

Δf(t) �
m∑
i=1

∂2f

∂x2i
. (2.2)

The discrete graph Laplacian may be defined in several forms [79]. For a function

γ(vn) defined on the vertices of an unweighted graph, such that γ : V → R, the

traditional definition of the graph Laplacian ΔG is given by

(ΔGγ)(vi) =
∑

vj∈Ni

(γ(vi)− γ(vj)). (2.3)

If the graph is weighted, the graph Laplacian is such that

(ΔGγ)(vi) =
∑

vj∈Ni

Ai,j(γ(vi)− γ(vj)). (2.4)

Then, for an undirected graph G = {V,A}, we can define the symmetric Laplacian

matrix L as

L = D−A, (2.5)
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and the symmetric normalized Laplacian matrix, given by

Lsym = D− 1
2LD− 1

2 = I−D− 1
2AD− 1

2 . (2.6)

2.2 Signals on Graphs
For a graph G = {V, E}, a finite-duration complex-valued signal on a graph is

given by the mapping s : V → C. That is, a signal is a function whose discrete

domain is given by the set of vertices {v1, . . . , vK} of the graph, equivalently

to DSP cases where a signal is a function of time instants n of a discrete-time

sequence {0, . . . , N−1}. This equivalence is depicted in Figure 2.3. It is practical

to represent a signal on a graph as a vector s ∈ C
K , such that the kth entry of the

vector is given by s(vk).

Figure 2.3: The definition of a signal on a graph is similar to that of signals in time, if the

set of vertices of the graph is taken as the signal domain.

The discrete-time domain with corresponding elements n ∈ {0, . . . , N − 1} is a

well-structured and regular domain with straightforward relation between its ele-

ments. In fact, any two points n1, n2 ∈ {0, . . . , N − 1} can be compared, as

n1 > n2, or n1 < n2, or n1 = n2, and there is an order associated with the do-

main, since for any n ∈ {0, . . . , N − 1}, the inequalities 0 ≤ n ≤ N − 1 hold. In

contrast, the structure of a graph depends on its edges, and, thus, the definition of

a signal over a graph allows for a more generic domain. In fact, for several applic-

ations, the representation of a signal over a domain such as time is not practical,

and alternatives are required.

2.3 Typical Graph Structures and the Adjacency Matrix
A key feature of GSP is that graphs are suitable for modeling a range of different

networks, since the graph domain can be tailored for each network. Indeed, dif-

ferent graph topologies are better suited for different networks and applications.

Figure 2.4 presents different graph types that are commonly found in GSP applic-

ations.
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(a) Example of sensors distributed across

Brazil.

(b) Grid-like nearest-neighbor graph that can

be used to represent images.

(c) Directed cyclic graph that generalizes

time domain.

(d) Example of tree graph.

Figure 2.4: Illustrations of some common graph types.

Figure 2.4a shows a nearest-neighbor (NN) graph. NN graphs are based on the dis-

tance between nodes, such that nodes closer to each other are related by edges with

larger weights. In contrast, small-valued edges indicate nodes that are far from

one another. A classical application of NN graphs is modeling wireless sensor net-

works (WSNs). Sensor networks, also referred to as sensor graphs, are naturally

conducive to graph representation. We associate the sensors with the graph nodes.

A sensor network consists of a set of physically distributed sensors that measure

local signals, as depicted in Figure 2.4a, where sensors are distributed across the

territory of Brazil. Given power constraints, sensor-communication capabilities

usually decay with distance, such that the NN graph is a suitable model. A com-

mon way of computing edge values in NN graphs is using a Gaussian or radial-

basis function (RBF) kernel [1, 2]. Letting pvi denote the position of the ith node,

the adjacency matrix is constructed as

Ai,j = exp

(
−‖pvi − pvj‖2

2σ2
RBF

)
, (2.7)

where ‖pvi − pvj‖ is the Euclidean distance between nodes vi and vj , and σRBF

is an adjustment parameter that depends on the application. This parameter avoids

that networks where all distances are relatively large make all edges close to zero.

From sensor graphs, another typical graph structure is defined to confer sparsity

to the matrix A generated with (2.7). One can consider that edges with small
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values (when compared to the values of other edges in the same graph) are forced

to zero, defining a threshold γ such that if Ai,j < γ, then Ai,j := 0. Alternatively,

to construct a more regular structure, one can limit the size of the neighborhood

of a sensor. The κ-nearest-neighbor (κNN) model defines a structure where each

sensor is connected to the κ sensors in its neighborhood with largest edge values

according to (2.7). For an undirected graph, a node can be connected to more than

κ nodes after all nodes are connected to their nearest-neighbors. For example, if

node v1 is connected to its κ = 3 nearest-neighbors, v2, v3, v4, and it is also a

κ-nearest-neighbor of v5, node v1 is connected to four nodes. The graph structure

on Figure 2.4a consists of a κNN graph for κ = 5.

Based on the κNN model, the nearest-neighbor (NN) image model [80] is a graph

representation for images, presented in Figure 2.4b. Assuming an image as a reg-

ular grid of pixels, this model considers that each pixel in an image is associated

with a vertex in a graph. Each pixel is connected to other pixels at minimal dis-

tance. A pixel in the diagonal direction, for instance, is not in the neighborhood of

a given pixel.

Given the NN image model, one can observe that graphs are not only useful for

modeling irregular structures. In fact, graphs can generalize traditional regular

domains such as the finite-duration discrete-time domain, as shown in Figure 2.4c.

This is achieved by directly associating vertices vk ∈ {v1, . . . , vK} with time

instants n ∈ {0, . . . , N − 1}, using directed edges to express the ordering of

time, and connecting vK to v1 to express the cyclic property of the domain. The

adjacency matrix associated with this graph is equal to the K × K cyclic-shift
matrix

A = C �

⎡⎢⎢⎢⎣
1

1
. . .

1

⎤⎥⎥⎥⎦ . (2.8)

Figure 2.4d shows another relevant class of graphs, called tree graphs, or simply

trees. A tree is an undirected connected graph with no loops, i.e., there is only one

path between two vertices.

2.4 The Shift Operator
The unit-shift operator, also known as the unit-delay operator, is fundamental in

conventional DSP [81] and, thus, its translation to the GSP framework is of great

relevance. As shown in the next sections, the definition of the graph-shift operator

determines the essential differences among the approaches developed for GSP. For

conventional DSP, consider a length-N discrete-time signal sn. Applying the unit-
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shift operator, denoted here by T {·}, to sn results in

s̃n = T {sn} = s(n−1)modN , (2.9)

which is the time-shifted version of sn considering its periodic extension. Note that

the operation in (2.9) is a linear transformation of sn and, thus, can be represented

by a matrix. Considering the length-N vector representation for signals sn and s̃n,

it is possible to rewrite the operation from (2.9) as⎡⎢⎢⎢⎣
s̃0
s̃1
...

s̃N−1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
1

1
. . .

1

⎤⎥⎥⎥⎦ .

︸ ︷︷ ︸
=C

⎡⎢⎢⎢⎣
s0
s1
...

sN−1

⎤⎥⎥⎥⎦ , (2.10)

where the shift-operator is represented by the cyclic-shift matrix C, which coin-

cides with the adjacency matrix of the cyclic graph in Section 2.3.

2.5 GSP from Algebraic Signal Processing
Using concepts of algebraic signal processing [82, 83] and the connection between

the representations for the shift operation (2.9) and (2.10), [1] proposes the frame-

work of digital signal processing on graphs. This framework will be referred here

as algebraic graph signal processing (AGSP). The foundation of AGSP lies in the

definition of the graph shift in a way that it generalizes the shift operator presen-

ted in Section 2.4. As shown in Section 2.4, the shift operator for time domain

coincides with the adjacency matrix A = C of the cyclic graph, presented in

Section 2.3. Leveraging this relation, [1] proposes the unit-delay operation in the

graph domain for the corresponding graph-signal s given by

s̃ = Cs. (2.11)

The relation between the adjacency matrix A and the shift operation, as given

in (2.11), is extended to any generic graph G = {V,A} as

s̃ = As, (2.12)

where each sample s̃i of the graph-shifted signal at node vi is, thus, given by a

linear combination of the original-signal samples on Ni — the neighborhood of vi.
In other words, in AGSP, the graph-shift operator [7, 84] for a graph G = {V,A}
is equal to the adjacency matrix A. Thus, any graph, directed or undirected, has a

corresponding graph-shift operator, with no restrictions imposed on its adjacency

matrix.
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2.5.1 Graph Filtering

The natural step towards constructing a signal processing framework, given that the

shift operator is formally defined, is the development of filters. From conventional

DSP, the output of a finite-duration impulse response (FIR) filter with length P , at

a given time instant n, is given by a linear combination of recent signal samples at

the input of the filter, as follows:

s̄n = h0sn + h1sn−1 + · · ·+ hP−1sn−P+1,

=

P−1∑
p=0

hpT p {sn} , (2.13)

where the time-invariant coefficients h0, . . . , hP−1 define the FIR filter impulse

response. Note that the terms associated with past-time inputs are given by powers

of the unit-shift operator T applied to the input signal sn. Consider the vector

representation of a length-N discrete-time signal as [s0, s1, . . . , sN−1]
T. For a

causal filter (hp = 0 for p < 0) with length P ≤ N (hp = 0 for p ≥ P ) the

operation in (2.13) can be written as a circular convolution, which, in contrast to

the linear convolution, considers that the filter response is periodic, as⎡⎢⎢⎢⎣
s̄0
s̄1
...

s̄N−1

⎤⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

h0 hN−1 · · · h1

h1
. . .

. . .
...

...
. . .

. . . hN−1

hN−1 · · · h1 h0

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

s0
s1
...

sN−1

⎤⎥⎥⎥⎦ , (2.14)

which means that applying a causal length-P filter to a length-N discrete-time

signal is equivalent to pre-multiplying this signal by a matrix H(C) constructed as

a polynomial over the cyclic-shift matrix C as

H(C) =

⎡⎢⎢⎢⎢⎣
h0 hN−1 · · · h1

h1
. . .

. . .
...

...
. . .

. . . hN−1

hN−1 · · · h1 h0

⎤⎥⎥⎥⎥⎦ =
P−1∑
p=0

hpC
p. (2.15)

In AGSP, for a graph G = {V,A} with K vertices, a linear graph-filter is repres-

ented by a matrix H ∈ C
K×K , such that the filtering operation of a graph signal s

is given by the matrix-vector multiplication Hs. Analogously to the conventional

DSP case, a length-P linear shift-invariant (LSI) graph filter [11] in the AGSP

framework is defined as a polynomial over the graph-shift operator A as

H(A) =

P−1∑
p=0

hpA
p. (2.16)
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The shift-invariance property for a graph filter H means that H(As) = A(Hs).
The sufficient and necessary condition of the graph-filter being shift-invariant as a

polynomial on A is proved in [11].

2.5.2 Graph Fourier Transform based on AGSP

Similar to graph shift and graph filtering, the Fourier transform is also translated

from conventional DSP to the graph domain [10]. First, we present the definition

for the spectral decomposition of a signal space S , which consists of the iden-

tification of W filtering-invariant subspaces S0, . . . , SW−1 of S . The filtering-

invariance property for a subspace Sw means that the filtering of a signal sw ∈ Sw

by a filter H(A) results in a signal s̄w ∈ Sw. The spectral decomposition is

uniquely determined for a signal space S if, and only if [10]:

• Sw ∩ Sr = {0}, w �= r;

• dim (S0) + · · ·+ dim (SW−1) = dim (S) = K;

• Each Sw is irreducible to smaller subspaces,

where dim(·) denotes the dimension of the subspace. If all three conditions are

satisfied, one can write S as the direct sum of the W subspaces, i.e.,

S = S0 ⊕ S1 ⊕ · · · ⊕ SW−1, (2.17)

such that any signal s ∈ S is univocally represented by

s = s0 + . . . + sW−1, (2.18)

where each sw is a component of the decomposition of s associated with subspace

Sw.

Since linear shift-invariant filters are defined as polynomials H(A) of the adja-

cency matrix, the diagonalization of A leads to a decomposition of the signal

space S into filtering-invariant subspaces. As AGSP is defined for any graph, with

no restrictions imposed on the adjacency matrix, A is not always diagonalizable.

Hence, as stated in [11], one can consider the Jordan decomposition A = VJV−1

to conduct the spectral decomposition, where J is an almost diagonal matrix rep-

resenting the Jordan normal form of A and V is a matrix whose columns are the

generalized eigenvectors of A. Hence, V represents the basis for the spectral de-

composition of the signal space S and (2.18) can be written as

s = Vŝ, (2.19)
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where ŝ is the vector composed by the coefficients of the projections of signal

s onto the subspaces of the spectral decomposition of S . The union of the sub-

spaces of S associated with the generalized eigenvectors of A composes the graph

Fourier basis [11]. Finally, the graph Fourier transform (GFT) matrix is given by

FA = V−1 such that the coefficients of the GFT are obtained by the matrix-vector

multiplication

ŝ = FAs = V−1s, (2.20)

and the inverse graph Fourier transform (IGFT) matrix is given by F−1
A = V, such

that the signal is recovered from its GFT coefficients as

s = F−1
A ŝ = Vŝ, (2.21)

as indicated by the spectral decomposition in (2.19). Note that, for an undirected

graph, the symmetric matrix A is diagonalizable and, thus, the simpler decompos-

ition into eigenvalues and eigenvectors A = VΓV−1 can be used instead of the

Jordan decomposition. Moreover, in this case, the eigenvectors are orthonormal,

i.e. V−1 = VT, which reduces the complexity of computing the GFT matrix FA.

Finally, we note that the GFT, as defined for the AGSP framework, generalizes

the conventional discrete-Fourier transform (DFT) when the discrete-time domain

is modeled as the cyclic graph represented by the cyclic-shift matrix C. The

eigenvectors of C are equal to the columns of the DFT matrix FDFT given by

FDFTn,k = exp
(
−j2πnN k

)
, where j =

√
−1.

2.6 GSP from Spectral Graph Theory
The second GSP approach was first introduced by Shuman et al. [2] and is based

on the graph spectral theory [85], building its framework upon the graph Laplacian

(presented in Section 2.1), thus being initially restricted to undirected graphs.2 As

a reference to the graph Laplacian, this graph signal processing approach will be

denoted in this text by LGSP.

2.6.1 Graph Fourier Transform based on LGSP

In [2], the graph Fourier transform is presented as a generalization of the conven-

tional Fourier transform, which is given by the expansion of a function f(t) in

terms of complex exponentials, as

f̂(ξ) � 〈f(t), e2πjξt〉 =
∫
R

f(t)e−2πjξtdt, (2.22)

2Recently, research that aims to extend the framework to directed graphs can be found in the

literature [86, 87]
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where the complex exponentials e2πjξt are the eigenfunctions of the one-dimensional

Laplace operator Δ, defined in Section (2.1) as

Δf(t) � ∂2

∂t2
f(t). (2.23)

Indeed, one has

Δe2πjξt =
∂2

∂t2
e2πjξt = −(2πξ)2e2πjξt. (2.24)

Consider now an undirected representation of the discrete-time domain via an in-

finite undirected graph, where each time instant is connected to the time instants

immediately before and after it. We may represent this graph with an abstraction

of the adjacency matrix given by

A =

⎡⎢⎢⎢⎢⎣
. . . 1
1 1

1 1

1
. . .

⎤⎥⎥⎥⎥⎦ . (2.25)

The discrete Laplacian can be interpreted as a finite approximation to the con-

tinuous Laplacian operator, as a symmetric second-order difference operator given

by [88]

L{xi} = −xi−1 + 2xi − xi+1

=
∑
j∈Ni

Ai,j(xi − xj), (2.26)

which coincides with the operation induced on graph-signals by the graph Lapla-

cian L = D −A. Analogously to the classic Fourier transform, the GFT for the

LGSP framework is, thus, defined as the expansion of a graph signal s in terms

of the eigenvectors of the graph Laplacian L ∈ R
K×K . Let L be diagonalizable

as L = UΛU−1, with eigenvectors given by ul ∈ R
K and eigenvalues λl ∈ R,

l ∈ {1, . . . , K}. Since L is symmetric, the eigenvectors are orthonormal, i.e.,

U−1 = UT. The projection of s into an eigenvector ul provides the GFT coeffi-

cient associated with graph frequency λl:

ŝl � 〈s,ul〉 =
K∑
k=1

skul,k. (2.27)

For the entire graph signal s, one can write the GFT for LGSP as

ŝ = FLs = UTs, (2.28)
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where FL = UT is the GFT matrix. The IGFT for LGSP is given by

s = F−1
L ŝ = Uŝ. (2.29)

2.6.2 Convolution and Filtering

To define the filtering operation, it is convenient to begin with the definition of

convolution as given in [2]. In DSP, the convolution operation applied to two func-

tions f(t) and g(t) is equivalent to the multiplication of their frequency domain

representations, i.e.,

f ∗ g = F−1 {F{f} · F{g}} , (2.30)

where F and F−1 denote the Fourier transform and the inverse Fourier transform,

respectively. Analogously, the convolution operation for graphs is defined in terms

of the GFT and IGFT, such that, for graph signals s and h,

[s ∗ h]i �
K∑
l=1

ŝlĥlul,i. (2.31)

The development of the filtering operation considers that conventional filtering is

given by the attenuation or amplification of the complex exponentials that represent

a signal in the Fourier domain. Consider a graph signal s with representation on

the graph Fourier domain given by ŝ, and a graph filter whose frequency response

is given by ĥl = ĥ(λl). Analogous to DSP, the output of graph filtering in the

frequency domain is
ˆ̄sl = ŝlĥl, (2.32)

and, in the vertex domain,

s̄i = [s ∗ h]i (2.33)

Considering the diagonalization of the graph Laplacian as L = UΛU−1, where

Λ is a diagonal matrix composed by the eigenvalues λ1, . . . , λK in its diagonal,

we can define a graph filter H(L) for LGSP as

H(L) � U

⎡⎢⎣ĥ(λ1)
. . .

ĥ(λK)

⎤⎥⎦U−1. (2.34)

The graph filtering operation is given by

s̄ = H(L)s. (2.35)
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That is, the graph filtering is equivalent to taking the graph signal into the graph-

frequency domain, using the GFT ŝ = U−1s, operating on the GFT coefficients,

and returning the filtered signal to the vertex domain using the IGFT.

From (2.35), one can see that the graph Laplacian constitutes the basic building

block of graph filters in LGSP, since the graph filter may be represented as a poly-

nomial on matrix L. Thus, we will refer to L as the GSO for the LGSP framework.

If the frequency response of the graph filter is given by a length-P polynomial

on frequencies λl, i.e., ĥl =
∑P−1

p=0 apλ
p
l , for constant scalars ap ∈ R, p ∈

{0, . . . , P − 1}, the graph filtering operation can be writen as

s̄i =

K∑
l=1

ŝlĥlul,i

=

K∑
j=1

sj

P−1∑
p=0

ap

K∑
l=1

λp
l ul,jul,i

=

K∑
j=1

sj

P−1∑
p=0

ap[L
p]i,j , (2.36)

which shows that the output of the filtering operation on a vertex vi is given by

a linear combination of signals on vertices inside a (P − 1)-hop neighborhood

of vn, i.e., vertices that are reachable, from vi, via paths with (P − 1) or fewer

edges. This can be deduced by the fact that the graph Laplacian L is a matrix that

indicates the relations between a vertex and its immediate neighborhood. The pth

power of the Laplacian matrix, Lp, indicates the relations between a vertex vi and

the set of vertices p edges away from vi, denoted the p-hop neighborhood of vi.
Any element [Lp]i,j not in the p-hop neighborhood of vi is equal to zero and is not

added in the summation of (2.36).

2.7 Graph-frequency Interpretation
In both AGSP and LGSP, under analogy with the conventional Fourier transform,

the eigenvectors of the graph-shift operator are the frequency components of the

Fourier decomposition in the graph setting. Here, we discuss how the choice of

the shift operator affects the interpretation of graph frequency and spectrum, given

by the set of the eigenvalues associated with the graph-frequency components.
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|λmax| = |λ1|

Low frequency

High frequency

λ1

λ2
λ3

λi

λ∗
i

λK
−|λmax|

Figure 2.5: Illustration of graph-frequency ordering associated with complex eigenvalues.

2.7.1 Graph Frequency using the Adjacency Matrix as GSO

We begin by defining the concept of total variation (TV) for graphs, based on the

TV(x) for discrete signals x from conventional DSP, given by [10]

TV(x) =
∑
n

|xn − xn−1|, (2.37)

which measures the total variation of the signal based on the differences between

consecutive samples. Thus, it assumes larger values for high-frequency signals.

For a finite-duration signal, the total variation is defined as

TV(s) =

N−1∑
n=0

|xn − x(n−1)modN |, (2.38)

which can be written in terms of the cyclic-shift matrix as

TV(s) = ‖x−Cx‖1, (2.39)

where ‖ · ‖1 denotes the norm-p for p = 1, such that ‖x‖1 =
∑
i
(|xi|p)

1
p

∣∣∣
p=1

.

From (2.39), the concept of total variation is extended to the AGSP framework

by considering the similarity between a graph signal s and its shifted version, as

follows:

TVG(s) = ‖s−Anorms‖1, (2.40)

where Anorm = A/|λmax| is the normalized version of the adjacency matrix used

to guarantee proper comparison between original and shifted signals [10]. Con-

sider an eigenvector vl of A, with corresponding eigenvalue given by λl. The total
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variation associated with vl is given by

TVG(vl) =

∥∥∥∥vl −
Avl

|λmax|

∥∥∥∥
1

=

∥∥∥∥vl −
λl

|λmax|
vl

∥∥∥∥
1

=

∣∣∣∣1− λl

|λmax|

∣∣∣∣ ‖vl‖1

= (|λmax| − λl)
‖vl‖1
|λmax|

. (2.41)

Equation (2.41) shows that, since we can scale all eigenvectors to have the same

norm-1, the total variation associated with frequency components given by the

eigenvectors is determined by the proximity of the corresponding eigenvalue to

the point |λmax|. In fact, consider an adjacency matrix A with real eigenvalues

λ1 < λ2 < · · · < λK � λmax and corresponding eigenvectors vl, with l ∈
{1, . . . , K}, such that ‖vl‖1 = 1, ∀n.3 Given two eigenvectors vi and vj , with

i, j ∈ {1, . . . , K} and i �= j, such that λi < λj , we have that

TVG(vi)− TVG(vj) =
λmax − λi

λmax
− λmax − λj

λmax
> 0, (2.42)

meaning that the total variation associated with smaller real eigenvalues is greater

than that associated with larger eigenvalues. Thus, as total variation can be intuit-

ively related to frequency, an ordering for graph-frequencies in the AGSP frame-

work can be defined when eigenvalues are real, such that larger eigenvalues cor-

respond to lower frequencies. If eigenvalues are complex, we have that∣∣∣λi − |λmax|
∣∣∣ ≤ ∣∣∣λj − |λmax|

∣∣∣ ⇐⇒ TVG(vi) ≤ TVG(vj), (2.43)

i.e., the total variation and, thus, the frequency decrease as the eigenvalue gets

closer to the real point |λmax|. This is illustrated in Figure 2.5 for the case of

|λmax| = |λ1|.

2.7.2 Graph Frequency using the Laplacian as GSO

For a similar analysis for the LGSP framework, consider the Rayleigh quotient of

the Laplacian L, given by

R(L,x) =
xTLx

xTx
, (2.44)

which is bounded below and above by the extreme eigenvalues of L. In fact, we

have

λl = uT
l Lul. (2.45)

3For instance, the case of undirected graphs with real edges.
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The quadratic form (2.45) induces a variation metric, in the sense that

uT
l Lul = uT

l (D−A)ul

=
1

2

∑
i �=j

Ai,j

(
ul,i − ul,j

)2
, (2.46)

such that the Laplacian eigenvectors with more variations between its elements,

weighted by the edge values, are associated with larger eigenvalues. We highlight

the function of the graph structure in the graph-frequency interpretation. If two

nodes vi and vj are not connected, then Ai,j = 0 and their contribution to the

variation metric is zero. On the other hand, if two nodes are highly related, then

the difference between their corresponding elements in the Laplacian eigenvectors

has great contribution to the variation metric. Considering the expansion of graph

signals over the basis composed by the Laplacian eigenvectors, it is intuitive to

conclude that smaller eigenvalues are associated with smooth graph signals. That

is, Laplacian eigenvalues are a direct representation of graph frequency.

2.8 Summary
This chapter presented the fundamental tools that comprise the GSP framework,

employed to analyze and manipulate signals defined over graph nodes, as presen-

ted in Section 2.2. Two of the main approaches of GSP were described, namely

the AGSP, whose tools are based on the adjacency matrix A as the graph-shift

operator, and the LGSP, based on spectral graph theory, which uses the graph

Laplacian matrix L as the graph-shift operator. Filtering operation and the graph-

Fourier domain and transform were presented for both approaches. We highlight

the following remarks to be further considered in the subsequent chapters:

• Graph signals are snapshots of the network state at a given time. This implies

that the fundamental operations and tools presented in this chapter, such as

shift, filtering, and Fourier analysis, operate only in the graph domain. Time

dimension is not contemplated in the fundamentals of GSP.

• Although the two GSP approaches were presented separately based on their

distinct motivations, most recent literature on GSP does not differentiate

between these approaches. Commonly, a generic GSO S is adopted that

satisfies the constraints of the application at hand. The dependence of the

GSO on the application serves as a motivation for our research topic T1 on

the translation of real-world problems into graph models suitable for GSP.

Chapters 3 and 4 build upon the second remark and propose methods for modeling

the GSO for different applications. In Chapter 3, the AGSP approach is adop-
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ted, and we investigate methods to construct adjacency matrices suitable for data

compression. In Chapter 4, we propose a methodology for augmenting an initial

adjacency matrix considering that no other network information is available.

Chapter 5 expands the concept of graph filters presented in Sections 2.5.1 and 2.6.2,

and proposes nonlinear graph filters along with adaptive methods for learning the

filter parameters. The time evolution of the graph signals is embedded in the fil-

ter model by assuming that the signal’s spatio-temporal dynamics depend on the

graph structure.

Chapter 6 uses the concepts of variation and smoothness discussed in Section 2.7

to propose methods for learning relations between input and output signals when

the output is a graph signal, but the input is not defined over a graph.
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Chapter 3

GFT for Light-Field
Compression

This chapter describes an application of the GFT and graph models presented in

the previous chapter in the context of light-field data compression. This work was

published in P1 [71] and in the extension paper P2 [72]. In this work, we adopted

the AGSP framework, which is based on the use of the adjacency matrix A as the

GSO and defines the Fourier basis as the union of the subspaces spanned by the

eigenvectors of A, as described in Section 2.5.2. This research showcases basic

GSP concepts and some fundamental challenges of modeling real-world problems

as GSP applications.

Section 3.1 introduces light fields and presents the challenges of manipulating

light-field data. A brief review of recent works using GSP for light-field applica-

tions is presented in Section 3.2. Section 3.3 presents the proposed methodology

for compressing light fields using the GFT. In Section 3.4, we present simulations

using the proposed compression methodology. Finally, Section 3.5 presents the

conclusions and final remarks for this chapter.

3.1 Introduction to Light Field
A light field is a scalar field, called the plenoptic function, that represents the light

information that travels in all directions through all points in space for a given

region (referred to as “scene,” in practical applications) in space [89, 90].

27
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3.1.1 Light Field in Practice

Light-field imaging is a promising technology that opens new horizons for en-

tertainment industries as cinema and photography. Applications in other areas

include: microscopy [91]; medical imaging, such as monitoring of neuronal activ-

ity [92]; material recognition [69]; rendering [93]; among several others.

In practice, the plenoptic function is not available or obtainable in a feasible way

and alternative representations are needed. A common way of reducing the dimen-

sionality of the plenoptic function is via parametrization by two planes st and uv,

as shown in Figure 3.1. The uv plane represents the observer viewpoint and the st
plane represents the observed scene, such that the set of rays traveling from the st
plane and hitting a single point (ui, vj) in uv consists of a view of the scene on st
from the viewpoint (ui, vj).

(a) Planes uv (camera plane) and st (focal plane). (b) Example of a discrete set of observation

points in plane uv and a scene on plane st.

Figure 3.1: 4D parametrization of the plenoptic function. On the camera plane, each

observation point is irradiated by the light rays coming from all points on the focal plane

that point toward the observation point. This generates different views of the focal plane

corresponding to each viewpoint.

This parametrization leads to practical implementations of light field imaging setups,

such as arrays of cameras, a single moving camera, or arrays of microlenses. These

parametrizations represent discrete versions of the camera plane.

Synthetic light fields can also be generated by simulating any of the above imple-

mentations. In Figure 3.2, we show two examples of light-field-imaging views.

Figure 3.2(a) shows 16 views of the real Humvee light field, captured by a mov-

ing camera, and Figure 3.2(b) shows 25 views of the synthetic dragon light field

generated by a 3D rendering software.

Light-field applications are relatively data-intensive. For instance, while tradi-
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(a) Light field Humvee – Real.

(b) Light field Dragon – Synthetic.

Figure 3.2: Examples of light fields.
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tional photography captures a single image of the scene, light-field-based pho-

tography may capture hundreds or even thousands of views for a single scene.

Hence, the manipulation of light-field data is a challenging task that has received

considerable attention from research groups across the world [94–100].

3.2 GSP in Light-field Literature
More recent works available in the literature have explored GSP concepts for light-

field applications. In [101, 102], graph-based regularization methods are proposed

for light-field super-resolution. Compression methods for different configurations

of light-field data are also available in the literature. In [103], a graph-based lifting

transform is proposed for compressing light-field data obtained by a single camera

before any pre-processing is conducted and before light-field views are available.

In [104, 105], graphs are constructed using super-pixels, i.e., groups of pixels with

similar color values, and different Laplacian-based transforms are proposed for

light-field compression. In [106], compression is achieved by using a graph learn-

ing approach to reconstruct the entire light field from an arbitrary subset of views.

In [107], graph reduction and spectral clustering are used to overcome the high

complexity inherent to graph-based approaches and optimize light-field compres-

sion in a rate-distortion sense.

3.3 Compression Methodology

Figure 3.3: Block diagram for the simplified compression scheme adopted in P1 and P2.

We propose and analyze the viability of using the GFT as an alternative to the

discrete-cosine transform (DCT) employed in the transformation process of light-

field encoders based on high-efficiency video coding (HEVC) while also exploiting

the fact that light-field views are similar to each other. The GFT can concentrate
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Figure 3.4: Relation edges according to the NN image model. Edges connect only pixels

at minimum distance among all pixels.

information in few transform coefficients in a competitive manner compared to

other transforms [108–110]. However, the transform and its inverse depend on the

graph structure, which, in turn, depends on application and data. Thus, the impact

of storing or transmitting A or the transform matrix F must be considered during

compression. The method proposed in this work aims at deriving a graph model to

reduce the impact of the extra data related to the graph structure by exploring the

redundancy that exists among views that are situated close to each other in a set of

light field views.

In order to assess the performance of using GFT for light-field compression, a sim-

plified HEVC-based compression process was adopted in P1 and P2, as presented

in Figure 3.3. A database composed of seven light fields is used. Three of them,

namely Humvee, Knights, and Tarot, are obtained from the Stanford Light Field
Archive [111]. The other four light fields (namely Boxes, Cotton, Dino, and Side-
board) are generated synthetically, obtained from the HCI 4D Light Field Data-
set [112, 113].

First, each image/view is divided into T blocks. We obtain a residual block in the

prediction stage by computing the difference between blocks in a reference image

and blocks in other light field views. Residual blocks should have less entropy than

raw blocks, which makes compression stages more efficient. The transformation

is then applied to the residual block, which is modeled as a graph following the

NN image model presented in Section 2.3.

Let Bn,t, n ∈ {1, . . . , N}, t ∈ {1, . . . , T} denote the M1 × M2 residual block

from the nth residual image Rn (in a prediction-group with N − 1 residual im-

ages). The graph signal associated with this block is sn,t. The corresponding



32 GFT for Light-Field Compression

adjacency matrix is denoted by An,t and the GFT matrix by Fn,t. The first con-

sideration adopted in this work to reduce the impact of transmitting the transform

matrix is to build a sparse adjacency matrix and transmit An,t instead of Fn,t.

The adjacency matrix An,t is built according to the NN image model, presented

in Section 2.3, which grants sparsity. The model also assumes that an image is

a 2D NN graph constructed as a Cartesian product of two 1D NN graphs. A 1D

NN graph is a possibly-directed graph where vertices are connected in a line. This

model generates a structure where multiple edges assume the same value, indic-

ated by coefficients a0, . . . , aM1−2 and b0, . . . , bM2−2 in Figure 3.4. As a result,

considering an M1 ×M2 residual block Bn,t, the corresponding adjacency matrix

An,t ∈ R
K×K , K = M1M2, has at most (M1 − 1) + (M2 − 1) unique non-zero

coefficients. For blocks of size 32×32, this means 62 unique non-zero coefficients

out of 1024 entries of An,t. The coefficients a0, . . . , aM1−2 and b0, . . . , bM2−2 are

defined so as to minimize the 	2 distortion introduced by the shift operation, i.e.,

‖An,tsn,t− sn,t‖2. As described in [80], this minimization is solved as an overde-

termined least-squares problem.

n

N − 1

t0

t0

t0

t0

Figure 3.5: Representation of a block position t0 for residual images from a prediction

group.

The second procedure employed to reduce the impact of An,t, besides forcing

sparsity and the fixed structure via the NN image model, is to exploit the redund-

ancy among the many views of the light field to avoid transmitting An,t with every

single block. Considering that every view is equally divided into T blocks, only

one At0 is transmitted for a given block position t0 across the entire prediction

group. Figure 3.5 shows an example of block position t0 across views from a pre-

diction group. The computation of the single adjacency matrix can be optimized



3.3. Compression Methodology 33

Algorithm 1: LF-compression simulation

Input: LF images, prediction method, adjacency construction strategy,

distortion metric, QDCT

for each prediction group n do
Prediction
Compute residual images according to Section IV.A of P2;

Divide each residual image into T blocks of 32× 32 pixels;

for each block in each residual image do
Transform
Compute the DCT;

Construct adjacency matrix At according to Section IV.B of P2;

Compute the GFT;

Coefficient selection
Set QDCT coefficients to zero and measure DCT distortion;

Set Q = QDCT coefficients to zero and measure GFT distortion;

if GFT distortion < DCT distortion then
increase Q while GFT distortion < DCT distortion;

else if GFT distortion > DCT distortion then
decrease Q while GFT distortion > DCT distortion;

end
end

using a single (central) residual image or optimized jointly over a group of images.

Using a single adjacency matrix that is not explicitly computed for a given block

may degrade the efficiency of the GFT. However, the impact of transmitting the

matrix is significantly reduced.

Once the adjacency matrix is computed, the GFT matrix for each block position

is given by Ft, whose columns are the eigenvectors of At — the reader should

keep in mind that the index n can now be dropped from An,t and Fn,t since it

is assumed that adjacency and transform matrices do not depend on the residual

image, given that only one matrix is considered for a given block position across

the entire prediction group. The transform coefficients for each block from residual

images in the prediction group are computed as ŝn,t = Ftsn,t, where sn,t is the

graph signal corresponding to each block.

3.3.1 Coefficient Selection

A heuristic technique is adopted to assess the performance of GFT against DCT

for light-field compression when employed in an HEVC-based compression sys-



34 GFT for Light-Field Compression

tem. The IGFT is given by the transpose of Ft, since eigenvectors from At are

orthonormal. If IGFT is applied to transform coefficients ŝn,t, the signal sn,t is

perfectly recovered. In practical applications, compression occurs when transform

coefficients are quantized, resulting also in loss of information. In this work, the

Q smallest GFT coefficients are set to zero. The value of Q is adjusted so that us-

ing the GFT yields less distortion than a specific DCT compression. We consider

both the mean squared error and the structural similarity index as distortion met-

rics. The number of compressed DCT coefficients is fixed at QDCT = 924, i.e.,

only the 100 largest out of the 1024 coefficients are kept with approximately 10:1

compression ratio. The vectors with compressed GFT coefficients are denoted by

ŝQn,t. No coding is employed. When the IGFT is applied to these coefficients, the

signal sQn,t, which is recovered by inverse transform, is an approximation of the

original signal sn,t. A compressed version BGFT
n,t of the original block Bn,t can be

constructed from the signal recovered. For the case of DCT, the 2D DCT is applied

directly to block Bn,t and by setting the smallest coefficients from the transform

block to zero, a compressed block BDCT
n,t is recovered via inverse discrete-cosine

transform (IDCT). The compression process adopted in the simulations is sum-

marized in Algorithm 1.

3.4 Simulation and Results
Simulations were conducted in order to compare GFT against DCT when em-

ployed in the proposed compression system. Different simulation setups were

considered, using different configurations in the prediction and transformation

stages, besides different performance-assessment metrics. Some results consid-

ering different methodologies for constructing the adjacency matrix are presented

in Table 3.1. Reduction values for the total number of coefficients (#) for each

light field are computed as

Reduction =
# DCT coefficients − # GFT coefficients

# DCT coefficients
. (3.1)

It is worth highlighting that the number of coefficients associated with the adja-

cency matrices is included in # GFT coefficients, and, thus, the impact of trans-

mitting At is considered. GFT shows improvement over DCT for most cases,

yielding up to 21.92% of reduction in the number of coefficients. The analysis

shows that using multiple residual images when building At improved the results

for all cases when compared to results obtained using only one residual image

as a reference. A relevant analysis given different transform setups is to observe

the standard deviation of the number of coefficients used by the GFT across the

residual images. The standard deviation is estimated for each light field, using
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Table 3.1: Simulation results for transform-setup analysis

Central residual Part of group Entire group
Light field Reduction [%] Std(Q)† Reduction [%] Std(Q)† Reduction [%] Std(Q)†

Humvee 8.97 6.97 9.65 4.63 8.63 1.82

Knights 13.40 11.04 16.67 8.57 17.53 1.93

Tarot -3.91 3.50 -0.65 1.96 -0.29 0.83

Boxes 0.22 4.56 6.57 2.45 7.76 1.42

Cotton 5.90 3.05 6.28 1.94 6.07 1.00

Dino 21.22 5.14 21.92 3.61 21.18 1.92

Sideboard -3.89 2.67 -2.29 1.23 -2.04 0.86
†Std(Q) denotes the standard deviation of Q

the number of compressed GFT coefficients QGFT from each residual image as

a sample for the standard deviation estimator. Table 3.1 shows that using the en-

tire prediction group reduces the standard deviation of QGFT. This reflects that

when the GFT is constructed using only the central residual image, its efficiency is

high for the central residual image but decays as residual images get further apart

from the central reference. This result is expected since correlation is reduced and

the impact of using a single transform matrix is increased, thus requiring more

coefficients.

3.5 Summary
This chapter investigated the applicability of GSP for light-field compression,

highlighted the challenges related to the modeling of real-world problems into

the GSP framework, and proposed ideas to overcome these challenges. The GFT

is used to map blocks of pixels into the graph-frequency domain, which provides

energy concentration and allows for compression. The first challenge is the com-

plexity associated with the dimensions of the graph. The nearest-neighbor image

model is used to guarantee sparsity to the adjacency matrix, and we leverage the

similarities between light-field views to generate a single matrix that can be used

for a group of images. Once the graph structure is defined, the second challenge is

defining the edge weights suitable for the application at hand. Several methods for

computing the weights were investigated and tested with numerical simulations,

yielding relevant performance changes. This reflects the model dependency of the

GSP framework.
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Chapter 4

Extended Adjacency and
Diffusion-Dependent GFT using
Diffusion Distances

In Chapter 3, we observed the application dependence of the GSO when crafting

an adjacency matrix suitable for LF compression. This dependency is related to

the more fundamental problem of modeling the original network by a graph; dif-

ferent models have different properties that can be explored by GSP tools [7, 15–

23]. For a given network and application, it is desirable to define a GSO that best

describes node relations so that the corresponding network signals can be better

analyzed/processed. A particular case that is relevant to this topic is the frequency

analysis yielded by the GFT. The spectrum of a graph is directly related to the

eigenvalues of the GSO. Consequently, changes in the GSO entries are reflected

in the graph spectrum, possibly allowing the discrimination of different frequency

contents of the same network signal.

In this chapter, we propose the augmentation of the adjacency model of networks

for graph signal processing. This research is aligned with research objective T1
and is documented in papers P3 [73] and P4 [74]. We assume here that adjacency

matrices are initially sparse, rendering GSOs with a reduced number of edges.

This is a common assumption due to sparsity constraints commonly imposed upon

adjacency matrices or due to application limitations, e.g., sensors identifying their

neighbors. Moreover, we consider that only the adjacency information is available

and accurate network information is unknown, such that updating or deriving a

new GSO becomes challenging.

37
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Section 4.1 presents the proposed methodology. The methodology is applied to

detect anomalies in numerical experiments presented in Section 4.2. Finally, a

summary of the chapter is presented in Section 4.3.

4.1 Adjacency-Augmentation Methodology
In the proposed model, additional edges are created according to a virtual Markov

relation imposed between nodes. The Markov property is incorporated into the

GSO as a function of diffusion distances (DDs) between network elements. Markov

relations occur naturally in some applications, such as in consensus [114–116] and

random-walk-driven networks [117, 118]. For generic networks, we propose a de-

rivation of the Markov matrix based on the consensus algorithm [114]. DDs are

part of the diffusion-maps (DMs) framework [119–121]. DMs are applicable to

datasets composed of states of high-dimensional data points, which graph nodes

can represent. Note that each graph node is associated with an entire data state

of the network, such that edges define transition relations between these high-

dimensional data states. This view is in contrast with that of GSP, where edges

associate individual network elements. Using eigenvectors of the corresponding

Markov matrix, DMs uncover descriptions of the underlying geometry of the data-

set [122–124]. In this framework, DDs provide a metric for relating two data states

according to the random walk.

4.1.1 Background on Diffusion Maps

Let X = [x1, . . . ,xN ] ∈ R
L×N be a data matrix with N data points, also called

states, each of dimension L. For example, matrix X can describe the evolution of

the state xn of a network with L elements for time instants n ∈ {1, . . . , N}. It is

assumed that there is an underlying (hidden) process that relates the different data

points, possibly driving the way data is generated. However, note that there is no

underlying graph initially associated with X. The objective of the DM framework

is to make this underlying process explicit [119, 120, 124].

In DMs, a graph is generated using the data points as nodes according to a sym-

metric kernel κ. For instance, using the RBF kernel, we have

κ(xi,xj) = exp

(
−‖xi − xj‖22

2σ2
RBF

)
, (4.1)

where σRBF > 0 is a free parameter that controls the bandwidth of the ker-

nel. Now, an adjacency matrix A ∈ R
N×N can be defined with entries Aij =

κ(xi,xj). The corresponding degree matrix is D ∈ R
N×N such that Dii =∑

j∈Ni
κ(xi,xj).
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Normalizing the relation between two data points as [119]

p(xj |xi) =
k(xi,xj)∑
j
k(xi,xj)

=
Aij

Dii
, (4.2)

p(xj |xi) can be interpreted as the transition probability from xi to xj , which estab-

lishes a Markov chain. Using matrix notation, the Markov chain can be described

in terms of a right-stochastic matrix M = D−1A, commonly referred to as a

Markov matrix, with entries Mij = p(xj |xi). Taking t steps of the random walk

is captured by Mt, i.e., the (i, j)th entry of Mt gives the transition probability,

denoted by pt(xj |xi), from xi to xj in t steps. The probability pt(xj |xi) considers

all possible paths composed of t edges that connect xi to xj , including self-loops.

The probability in (4.2) is the same as pt(xj |xi) for t = 1.

The diffusion distance (DD) at a certain diffusion, or time, scale t [119] is a met-

ric for the (inverse) affinity between two data points as a function of transition

probabilities, and is defined as

D2
t (xi,xj) =

N∑
n=1

(pt(xn|xi)− pt(xn|xj))
2

φ1,n
, (4.3)

where φ1,j is the jth entry of the first left eigenvector of M, φ1, normalized as

‖φ1‖1 = 1.

In terms of adjacency and direct similarity between nodes, the DD extends local

relations into a global metric by assimilating probabilities of diffusion paths [122].

That is, if there are high-probability paths between two data points, they are con-

sidered to be close in terms of diffusion distance, even if not adjacent. Conversely,

the diffusion distance between xi and xj is large when the probability of reaching

xj from xi is small even by considering non-direct paths through xn. A funda-

mental feature for the methodology proposed here is that the DD depends on t,
which serves as a diffusion-scale parameter. An increased t equals more steps of

the random walk, which corresponds to a larger-scale diffusion over the network.

4.1.2 GSP for Markov Networks

The networks considered here are initially constrained by adjacency rules of the

network topology. For example, the connections between nodes in a wireless

sensor network depend on their communication capabilities, usually dictated by

physical distance. However, nodes that are not initially connected can be related

to each other through collaboration. In other words, network adjacency can be

associated with one step of a collaboration process, such that the network operates
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on the data through iterative multiplications of a stochastic matrix. In this work,

similarly to the conventional adjacency, which depends on the physical distance

between nodes, we develop the extended adjacency based on diffusion distances.

The DM framework in [119] treats the entire network signal as a state of a Markov

chain and generates a Markov-based graph over these states. In contrast, we adapt

the diffusion distances to develop a comprehensive network model by treating the

original network itself as the Markov-based graph.

Let the network be represented by a connected graph G = {V,B} with a sym-

metric, irreducible, and stochastic adjacency matrix B with positive real edges.

In analogy with DM theory, this matrix is equivalent to M and the states of the

Markov chain are the network nodes. The DD between nodes vi and vj of the

graph is given by

D2
t (vi, vj) =

K∑
k=1

(
B

(t)
ik −B

(t)
jk

)2

(1/K)
, (4.4)

where (1/K) corresponds to the elements of the first left eigenvector q1 of B, as

in (4.3), and B
(t)
ij denotes the (i, j)th entry of Bt. The metric in (4.4) expresses dis-

tances between nodes, including nodes that are not neighbors as defined by B. We

derive similarity from diffusion distances in a similar manner as conventional ad-

jacency matrices are derived from geographic distances. The extended-adjacency

matrix Ā(t) is such that

Āij(t) =

{
Bij + exp

(
−D2

t (vi,vj)
ρK

)
i �= j

0 i = j,
(4.5)

where ρ > 0 is a free parameter and K is the size of the network. The term Bij

in (4.5) guarantees that original edges are maintained, whereas the RBF term is

responsible for extending the adjacency. The term ρK makes the argument of the

RBF kernel independent of the network size (cf. (4.4)). The range of the kernel

output can be adjusted for different applications according to the free parameter

ρ. Moreover, although the extended adjacency is defined for ρ > 0, it is possible

to obtain Bij , with i �= j, through (4.5) by making ρ → 0+. That is, the original

adjacency is a particular case of the extended adjacency.

Although traditional GSOs are local with respect to network connections, we note

that this property is not present in the proposed adjacency model. A local GSO

offers a straightforward visualization of the physical structure of the graph and

facilitates the implementation of distributed GSP algorithms. However, in many

applications, the definition of locality is unknown, or a local GSO fails to model
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Original [Average degree: 2.6] t = 1 [Average degree: 4.2] t = 3 [Average degree: 8.5] t = 500 [Average degree: 19.5]

Figure 4.1: Connectivity versus diffusion scale. Only edges of Ā(t) that exceed 30% of

the highest edge value are shown.

implicit node relations. In this work, we aim to derive a model that is not restricted

by locality assumptions and is useful for networks where non-adjacent nodes inter-

act. Hence, we propose a non-local model that offers a trade-off between locality

and representation of node interactions.

For the proposed extended adjacency, the following results hold, with proofs provided

in P4:

Corollary 1. Edge weights are non-decreasing with t according to (4.5). Assum-
ing that an edge exists only if its weight exceeds a given threshold, the number of
edges is also non-decreasing with increasing t. In other words, increasing t for a
fixed ρ possibly creates new edges, given the reduction in the DD.

Lemma 1. The asymptotic extended-adjacency matrix Ā = limt→∞ Ā(t) is such
that

Āij =

{
Bij + 1 i �= j

0 i = j,
(4.6)

which composes a complete graph without self-loops. That is, each node vi is
connected to every node vj in the graph, with i �= j, by an edge of value 1 +Bij .

The behavior described in Corollary 1 and Lemma 1 is illustrated in Figure 4.1 for

a network with K = 20 nodes.

4.1.3 Scale-dependent Graph Fourier Transform

For the extended-adjacency matrix Ā(t), the corresponding graph Fourier trans-

form also depends on the scale t. For each diffusion scale, there is a corresponding

Laplacian matrix defined as

L̄(t) = D̄(t)− Ā(t), (4.7)
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where D̄(t) is the diagonal degree matrix associated with Ā(t). Let L̄(t) =
Ū(t)Λ̄(t)ŪT(t). The scale-dependent graph Fourier analysis (sGFT) of signal

x as

x̂(t) = ŪT(t)x, (4.8)

where, in contrast to the conventional GFT, the coefficients x̂(t) depend on the

diffusion-scale t.

Let θ2 denote the smallest non-zero eigenvalue of LB, the Laplacian of B, and θK
denote the maximum eigenvalue of LB. The following proposition holds for the

sGFT:

Proposition 1. For a graph with K nodes, if t is increased, the range of graph-
frequencies discriminated by the sGFT shifts into higher frequencies. Asymptot-
ically, the sGFT discriminates graph-frequency ranges up to the interval [K +
θ2,K + θK ].

The sGFT is a frequency-analysis tool tailored for each stage of the Markov chain.

From a node-collaboration perspective, the effect of node collaboration on the

graph spectrum can be interpreted intuitively: if more steps of collaboration are

taken, more edges are introduced. Consequently, variations in graph signals are

observed by additional node pairs and are perceived as larger frequencies. Hence,

by incorporating node collaboration into the graph model, we provide a frequency-

analysis tool that reveals more information on the network signal than that offered

by the conventional GFT.

Numerical experiments to verify the behavior described in Proposition 1 were con-

ducted for a network with K = 100 nodes. Figure 4.2 shows histograms of the

eigenvalues of the graph Laplacian L̄(t) versus diffusion scale. An increase in the

diffusion scale yields an increase in the spectral gap1, from around 14 for t = 1
up to around 55 for t = 6, and in the spectral radius2, from around 34 up to over

74. At each scale, the sGFT yields a different spectrum according to the number

of steps of node collaboration. In contrast, the conventional GFT yields a fixed

spectrum. The additional information provided by the sGFT can benefit applic-

ations that make decisions based on spectrum-related features, such as classifiers

and detectors.

4.2 Application for Anomaly Detection
We study how the sGFT can be used for anomaly detection in synthetic and real

networks. The application is motivated by the increasing connectedness of real-

1Smallest nonzero Laplacian eigenvalue
2Largest Laplacian eigenvalue
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Figure 4.2: Histogram of eigenvalues of diffusion Laplacian matrices L̄(t), for t ∈
{1, . . . , 6}.
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Figure 4.3: Experiment 1 – setup and results: (a) spatial distribution of the sensors and

their interconnections plotted over a snapshot of the observed signal; and (b) f1-scores

achieved by each of the GSO-construction approaches.

world elements [125–128], which demands security and reliability in networks [129–

135]. We construct classifiers based on the graph-spectral information gener-

ated by the sGFT and the conventional GFT along with other GSO-construction

methods. The approach for constructing the anomaly detector is similar to those

in [10, 136, 137]. More specifically, assuming that smoothness is expected in the

healthy signal, we apply a high-pass filter and conduct the classification based on

the filtered coefficients. If one of the coefficients exceeds a given threshold, the

signal is classified as anomalous. The metric adopted to assess the performance of

the classifiers is the f1 score, which measures the classifiers’ accuracy considering

both precision and recall [138]. The best possible f1 score is 1 and small increases

in the score can be relevant to certain applications that require better classification

accuracy.

4.2.1 Experiment 1: Spatially-spread Anomaly

We consider first K = 100 sensors randomly distributed in the square space

[0, 1]× [0, 1]. A network is constructed by connecting each sensor to its 4 nearest-

neighbors, and the corresponding adjacency matrix A is known. The sensors

measure a spatially-smooth wave signal given by s(δx, δy) = cos(2πδx + θx) +
cos(2π2δy+θy), where δx, δy ∈ [0, 1] are, respectively, the horizontal and vertical

spatial coordinates and θx and θy are varying phase values uniformly and inde-

pendently sampled from [0, 2π]. The graph structure and a snapshot of the signal

s are depicted in Figure 4.3a.

We consider the problem of detecting an additive (space-wise) high-frequency in-



4.2. Application for Anomaly Detection 45

��)�7 �'�)�� �'�)�� �6�3�� �6�3�� �0�5�

��6�2���D�S�S�U�R�D�F�

����������

����������

����������

���������

����������

����������

����������

���������

�)
��
���V
�F�R
�U�H

Figure 4.4: F1 scores achieved for Experiment 2.

terference signal given by si(δx, δy) = 0.1 (cos(2π5δx + θx) + cos(2π6δy + θy)).
Training and test datasets have 150 healthy samples and 150 anomalous samples

each. Results for the f1 score achieved over the 50 independent runs are presented

in Figure 4.3b. The classifiers based on sGFT are denoted by “DF1” and “DF2”,

using diffusion scale t = 1 and t = 2, respectively. For comparison, classifi-

ers denoted by “SP2” and “SP3” are based on shortest-paths, and “MRK” uses

a Markov matrix as adjacency matrix following the method proposed in [120].

These classifiers are described in P4. Results show that the detector based on

the spectral information provided by the extended-adjacency matrices outperform

detectors based on other GSO approaches, and greatly outperforms the classifier

based on the GFT using the original adjacency matrix. This showcases the benefits

of considering the extended-adjacency model and the additional graph-frequency

information in GSP applications.

4.2.2 Experiment 2: Global Surface Summary of the Day (GSOD) -
Sensor Malfunction

The database [139] consists of measurements from weather stations distributed

across the United States of America. We use temperature measurements, conver-

ted from degrees Fahrenheit to degrees Celsius, obtained during 2010 by 150 ran-

domly selected stations from the conterminous United States (excluding Alaska,

Hawaii, and other off-shore insular areas) in order to keep the graph connected.

The network structure is derived from available stations’ latitudes and longitudes.

Figure 4.4 shows that the proposed approach outperforms the other approaches

for both scales t = 1 and t = 2, while the latter offers the best result. Here,

the Markov-matrix-based approach outperforms the ones using the conventional

Laplacian and the shortest-path-based GSOs.
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4.3 Summary
The proposed method for augmenting the adjacency matrix incorporates relations

between non-adjacent nodes in a certain diffusion scale or time. Building upon the

extended adjacency, we also presented the scale-dependent graph Fourier trans-

form for data defined over these networks. The proposed transform results from

the conventional GFT used together with the proposed scale-dependent model. A

theoretical analysis shows that increasing the diffusion scale results in increased

connectivity in the network; each scale yields a different perspective of graph fre-

quency. Hence, tools that operate on the graph spectrum can leverage the addi-

tional information. For instance, we employed the sGFT for anomaly detection in

synthetic and real networks. We used the free parameters of the sGFT to conduct

a frequency analysis tailored for the available networks, and results showed that

anomaly detectors based on the sGFT outperform other approaches.

This chapter addressed modeling over graphs, in line with research topic T1 (Sec-

tion 1.1). In the following chapters, we turn to T2 and the development of efficient

tools to learn nonlinear input-output relations over graphs.



Chapter 5

LMS-based Strategies for
Learning over Graphs

In Chapter 1, we presented some of the learning methods in the GSP literature.

This chapter addresses T2 (Section 1.1) by proposing a least mean squares strategy

for learning the relation between reference and target graph signals. We treat the

case of streaming data where both signals are defined over the graph, such that

the relation between these signals can be modeled as a graph filter. In particu-

lar, we propose nonlinear graph filters that generalize the graph filters presented

in Chapter 2. This research is documented in papers P5 [75] and P6 [76] (Sec-

tion 1.3.1).

Section 5.1 reviews state-of-the-art methodologies for adaptive learning of graph

filters available in the literature. Sections 5.2 and 5.3 propose nonlinear graph fil-

ters and the methodology for learning the graph-filter parameters. In Section 5.4,

we present convergence conditions for the proposed learning algorithms. Numer-

ical experiments are presented in Section 5.6 and final remarks for this chapter are

presented in Section 5.7.

5.1 Graph Diffusion LMS
Consider a graph G = {V,A} with K nodes, and a set of streaming signals

{xn,yn}N−1
n=0 , where xn, or yn, or both are graph signals. That is, at time n, a

pair of signals given by xn and yn is available and at least one of them is defined

over the graph. Under the assumption that there is an unknown relation between

xn and yn, learning over graphs addresses the identification of a set of parameters

that models such relation, taking into consideration the graph structure.

47
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In this section, we briefly present the research developed in [27, 28], which motiv-

ates the work conducted in papers P5 and P6. In [28], the authors explore concepts

of adaptive learning over networks together with fundamentals of GSP and propose

distributed diffusion-based adaptive learning of graph filters.

From Sections 2.5.1 and 2.6.2, recall that an LSI graph filter of size L×1 combines

shifted graph signals and is given by

H =

L−1∑
i=0

hiS
i, (5.1)

where [h0 h1 . . . hL−1]
T is the linear graph filter coefficient vector. For a graph

signal xn, which is a snapshot of the graph state at time n, a model for the graph-

filtered vector is given by

yn =

L−1∑
i=0

hiS
ixn + υn, (5.2)

where υn = [υ1,n υ2,n . . . υK,n]
T is a zero-mean wide-sense stationary (WSS)

noise with covariance matrix Rυ = diag{σ2
υ,1, σ

2
υ,2, . . . , σ

2
υ,K}. When stream-

ing data is available, a two-dimensional graph-time filter [35] that embeds time-

evolution into the model can be employed, with output given by

yn =
L−1∑
i=0

M−1∑
j=0

hi,jS
ixn−j + υn, (5.3)

where M−1 is the filter memory in temporal domain. The model (5.3) uses walks

of up to length L − 1 in the graph. Thus, it requires multihop communication in

distributed implementations, which limits its usage in real-time applications.

A simplified model that avoids multihop communications can be constructed by

combining time and graph domains into one, as

yn =

L−1∑
i=0

hiS
ixn−i + υn. (5.4)

In (5.4), samples {xk,n, [Sxn−1]k, . . . , [S
L−1xn−L+1]k} are available locally at

node k. Thus, only one graph-shift operation is needed at each time instant. An im-

portant difference between this GSP approach and conventional single- and multi-

variate DSP approaches lies in the assumption that the signals’ spatio-temporal

dynamics depend on the graph structure.



5.1. Graph Diffusion LMS 49

Assume that the graph signal xn is a zero-mean wide-sense stationary (WSS) pro-

cess with auto-correlation Rx. The algorithms proposed in [28] aim at learning

the relation between xn and yn by solving the optimization problem

min
h

E
[
‖yn −XS,nh‖2

]
, (5.5)

where XS,n =
[
xn Sxn−1 . . . SL−1xn−L+1

]
∈ R

K×L. That is, the learning

problem is the identification of the parameters of the LSI filter that minimizes the

mean square error between the filtered input in XS,nh and the target signal yn,

according to the model (5.4).

Setting the gradient of the cost function in (5.5) to zero, the optimal parameter

vector hopt is given by the solution of

E[XT
S,nXS,n]hopt = E[XT

S,nyn]. (5.6)

Since these second order moments are not commonly available in practice, the

authors in [28] adopt the instantaneous approximations E[XT
S,nXS,n] ≈ XT

S,nXS,n

and E[XT
S,nyn] ≈ XT

S,nyn and derive the stochastic-gradient (SG) algorithm

hcent
n+1 = hcent

i + μXT
S,n

(
yn −XS,nh

cent
n

)
, (5.7)

where μ > 0 is the step size. The algorithm (5.7) is called the centralized graph-

LMS algorithm. This solution assumes that the values of the graph signals on all

nodes {xk,n, yk,n}Kk=1 are known by a centralized processing unit.

5.1.1 Distributed Graph-Diffusion LMS

From (5.4), the sample at node k of the target signal yn can be written as

yk,n =
L−1∑
i=0

hi[S
ixn−i]k + υk,n. (5.8)

By defining rk,n =
[
xk,n [Sxn−1]k . . . [SL−1xn−L+1]k

]T
, i.e., the column vec-

tor with entries equal to those of the kth row of XS,n, (5.8) can be rewritten as

yk,n = rTk,nh+ υk,n. (5.9)

Now, the minimization problem can be written in the equivalent form

min
h

K∑
k=1

|yk,n − rTk,nh|2. (5.10)
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Problem (5.10) can be solved separately at each node k in a decentralized man-

ner, that is, each node performs only local computations and communications with

neighboring nodes, without the need of a centralized processing unit. The pro-

posed methodology in [28] is to leverage the graph structure and use adaptive

diffusion strategies [41, 42] to derive a fully distributed minimization of (5.10).

The adaptive diffusion strategies used are the adapt-then-combine (ATC) and the

combine-than-adapt (CTA) [42]. Let hk,n denote the estimate of hopt at node k at

time n. The ATC strategy first updates the estimate locally at node k, generating

an intermediate estimate ψk,n+1, then shares its intermediate estimate with neigh-

boring nodes. Then, each node adjusts its own estimate by combining it with the

values received from its neighbors. The ATC diffusion LMS performed by the kth

node is given by⎧⎪⎪⎨⎪⎪⎩
ψk,n+1 = hk,n + μkrk,n(yk,n − rTk,nhk,n), (5.11a)

hk,n+1 =
∑
l∈Nk

alk ψl,n+1, (5.11b)

where μk > 0 is a local step size and alk ≥ 0 are combination coefficients that

satisfy
∑K

l=1 alk = 1 and alk = 0 iff l /∈ Nk.

The CTA strategy follows similar reasoning, only inverting the order of the steps.

First, a node combines the estimates of its neighbors to obtain the intermediate

estimate ψk,n. Then, it updates the intermediate estimate locally using its own

data. The CTA diffusion LMS at the kth node is given by⎧⎪⎪⎨⎪⎪⎩
ψk,n =

∑
l∈Nk

alk hl,n, (5.12a)

hk,n+1 = ψk,n + μkrk,n(yk,n − rTk,nψk,n), (5.12b)

5.1.2 Discussion and Remarks

The methodology proposed in [28] offers diffusion strategies for adaptive learning

of graph signals that can handle dynamic scenarios by blending concepts of GSP

and adaptation over networks. The concepts discussed in this section are strongly

related to the fundamentals of GSP discussed in Chapter 2. The graph filter is used

as the model for the relation between graph signals, and it captures the temporal

evolution of the signals. Additionally, the graph structure is used as a basis for the

diffusion-based algorithms.

In many real-world applications, linear models such as the one presented in this

section cannot fully capture more sophisticated input-output relations that induce

nonlinearities in the model.
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5.2 Introduction to Graph Kernel LMS
In Section 5.1, we presented the fundamentals of learning over graphs and state-of-

the-art LMS-based techniques for learning linear graph filters that model relations

between graph signals. As discussed, linear models cannot model more sophistic-

ated input-output relations that often appear in real-world applications. Here, we

introduce nonlinear graph filters and present two adaptive methods for function

estimation over graphs, namely the centralized graph kernel least mean squares

(GKLMS) and the graph diffusion kernel least mean squares (GDKLMS). The

proposed nonlinear graph filters generalize conventional linear graph filters and

consist of a nonlinearity applied to a combination of graph-shifted versions of the

input signal.

For the estimation methods, we consider two approaches for model reduction,

namely coherence check (CC) [55, 63] that sparsifies the original dictionary of the

GKLMS, and random Fourier features (RFF) [140] that approximate kernel evalu-

ations with inner products in a fixed-dimensional space. One of the main features

of the CC-based implementation is the automatic tuning of the model order by

selecting regressors based on a coherence measure [63]. On the other hand, RFF-

based implementations use a data-independent mapping into a space where kernel

evaluations can be approximated as inner-products, making them resilient to model

changes. Building upon ideas of network diffusion [41, 42], the proposed RFF-

based graph diffusion KLMS (GDKLMS) avoids the centralized processing and

updates local estimates at each node through collaboration with neighbors. One

of the main features of the RFF-based GDKLMS is its data-independent mapping

that avoids using a pre-trained dictionary. This makes the GDKLMS more robust

to changes in the underlying system since there is no need to retrain dictionaries

associated with distributed CC-based solutions [63]. We analyze the performance

of the GDKLMS and establish the convergence conditions in both mean and mean-

squared senses.

5.3 Graph Kernel Adaptive Filters
As defined in Section 5.1, the shifted-input vector observed at the kth node at time

n is given by

rk,n =
[
xk,n [Sxn−1]k . . . [SL−1xn−L+1]k

]T
, (5.13)

such that the linear filter operates as a linear combination of the entries of rk,n. In

contrast to the linear approach, we assume a nonlinear relation between input and

output, at node k, given by

yk,n = f(rk,n) + υk,n, (5.14)
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where f : RL → R is a continuous nonlinear function on R
L, υk,n is the observa-

tion noise at node k. The objective here is to identify f(·) at each node k given a

set of data pairs {rk,i, yk,i}, i ∈ {1, 2, . . . , n}.

In order to estimate the nonlinear function f(·) in (5.14), kernel methods first map

the input regressors {rk,i}n,Ki=1,k=1 into a higher dimensional feature space where

f(·) takes a linear form [52, 61]. This mapping is denoted by κ(·, rk,i), in which

κ(·, ·) : RL × R
L → R is a reproducing kernel [52, 62, 63].

5.3.1 Graph Kernel LMS

In the GSP context, K new data samples are available at each time instant. Then,

given a set of regressors {rk,i}n,Ki=1,k=1, the graph function f(·) can be expressed as

a kernel expansion in terms of the mapped data as

f(·) =
n∑

i=1

K∑
k=1

αik κ(·, rk,i), (5.15)

such that the corresponding estimate of yl,n, at node l, is given by

ŷl,n = f(rl,n) =

n∑
i=1

K∑
k=1

αik κ(rl,n, rk,i). (5.16)

The coefficients of the expansion in (5.16) are obtained through the following min-

imization problem:

min
αik∈R

K∑
l=1

E

[(
yl,n −

n∑
i=1

K∑
k=1

αik κ(rl,n, rk,i)
)2
]

= min
ᾱn∈RnK

E
[
‖yn −Kn ᾱn‖22

]
, (5.17)

where E[·] denotes the expected value of the argument, ᾱT
n = [αT

1 αT
2 . . . αT

n ],
with αT

i = [αi1 αi2 . . . αiK ], and the matrix

Kn = [K1,nK2,n . . . Kn,n] ∈ R
K×nK (5.18)

is a Gram matrix with [Ki,n]l,k = κ(rl,n, rk,i) for k, l ∈ V . Using a stochastic-

gradient approach, the update equation for the graph KLMS (GKLMS) is

ᾱn+1 =

[
ᾱn

0K

]
+ μ KT

n

(
yn −Kn

[
ᾱn

0K

])
, (5.19)

where μ > 0 is the step size. Note that the number of coefficients increases by K
for every time instant n, so K zeros must be appended at the end of the coefficient

vector. The proposed GKLMS is summarized in Algorithm 2.



5.3. Graph Kernel Adaptive Filters 53

Algorithm 2: GKLMS

Input: step size μ
Initialization: α0 = empty vector;

for each time instant n do
Input: yn, {rk,n}Kk=1

compute Kn = [K1,nK2,n . . . Kn,n];

update ᾱn+1 =

[
ᾱn

0K

]
+ μ KT

n

(
yn −Kn

[
ᾱn

0K

])
;

store regressors {rk,n}Kk=1;

end

5.3.2 Graph Kernel LMS using Coherence-check

As follows from (5.16), the model order grows with both time, n, and network size,

K. This increase makes this model unsuitable for real-time applications and large-

scale networks. The growing dimensionality of the dictionary is a well-known

issue in single-node kernel methods [55, 56, 61–65].

Several solutions have been proposed that learn a sparse, or fixed-size diction-

ary. Of these, the coherence-based sparsification schemes use a coherence met-

ric [55, 63] between a candidate regressor and the current dictionary to decide

whether to include the candidate in the dictionary. The coherence metric for each

regressor rl,n is given by δl,n = maxrj∈Dn |κ(rl,n, rj)|, where Dn denotes the

dictionary obtained before testing regressor rl,n; the dictionary starts empty before

running the algorithm. Given a predefined threshold, δCC > 0, if δl,n < δCC, the

regressor is added to the dictionary. Using the coherence check criterion [55, 63],

ŷl,n in (5.16) can be rewritten as

ŷl,n =
∑
i∈Mn

∑
k∈Ki

α̃ik κ(rl,n, rk,i), (5.20)

where Mn is a set of time instants (up to time instant n) in which at least one

input regressor is added to the dictionary, with |Mn| ≤ n, and Ki is a set of node

indices of the regressors that passed the coherence check at time index i, with

|Ki| ≤ K. Under the CC criterion, at time index n, the dictionary Dn contains

|Dn| =
∑

i∈Mn
|Ki| regressors. It can be shown that the maximum number of

regressors in the dictionary is finite under a set of conditions [63].

Using the stochastic-gradient approach, we obtain the following update rule of the
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Algorithm 3: GKLMS using coherence check

Input: training data {r̃l,i, ỹl,i}K,t
l=1,i=1, dictionary size |D|, CC parameters,

and step size μ
Initialization: D = ∅, α0 = empty vector;

for each time instant n do
Input: yn, {rk,n}Kk=1

for k = 1, . . . ,K do
if |D| < D then

compute δk,n = maxrj∈D |κ(rk,n, rj)|;
if δk,n < δ then

add rk,n to D;

add k to Kn;

end
end

end
if |Kn| �= 0 then

add n to Mn;

end
compute K̃n = [K̃1,n K̃2,n . . . K̃|Mn|,n];

update ¯̃αn+1 =

[ ¯̃αn

0|Kn|

]
+ μ K̃T

n

(
yn − K̃n

[ ¯̃αn

0|Kn|

])
;

end

centralized GKLMS using coherence check:

¯̃αn+1 =

[ ¯̃αn

0|Kn|

]
+ μ K̃T

n

(
yn − K̃n

[ ¯̃αn

0|Kn|

])
, (5.21)

where ¯̃α
T
n = [α̃T

1 α̃T
2 . . . α̃T

|Mn|], with α̃T
i = [α̃i1 α̃i2 . . . α̃i|Ki|] ∈ R

|Ki|, and

K̃n = [K̃1,n K̃2,n . . . K̃|Mn|,n] ∈ R
K×|Dn|, with [K̃i,n]l,k = κ(rl,n, rk,i), for

l ∈ V and k ∈ Ki. Steps for the GKLMS using CC are summarized in Algorithm 3.

A CC-based distributed implementation requires a pre-trained dictionary available

at each node [55]. The dictionary can be pre-trained in a centralized way and

broadcasted to the entire network, or by a single node that shares its dictionary

with all nodes. More importantly, the dictionary depends on available training

data, and must be retrained whenever there are changes in the underlying model.

In the next section, we propose RFF-based algorithms more suitable for distributed

implementations and robust to changes in model and data statistics.
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5.3.3 Graph Kernel LMS using Random Fourier Features

Random Fourier features is a widely used technique to circumvent the scaling

problems of kernel methods [140]. The RFF methodology presumes that the eval-

uation of a shift-invariant kernel, which satisfies κ(xm,xn) = κ(xm − xn, 0),
can be approximated as an inner product in the D-dimensional RFF space. This

turns the problem into a finite-dimension linear filtering problem while avoiding

the evaluation of kernel functions. The mapping of an input vector xn into the RFF

space R
D is denoted by zn, and is given by

zn = (D/2)−
1
2
[
cos(vT

1 xn + b1) . . . cos(v
T
Dxn + bD)

]T
, (5.22)

where the phase terms {bi}Di=1 are drawn from a uniform distribution on the inter-

val [0, 2π]. Vectors {vi}Di=1 are realizations of a random variable with probability

density function (pdf) p(v) such that

κ(xm,xn) =

∫
p(v) exp

(
jvT(xm − xn)

)
dv. (5.23)

In other words, the Fourier transform of κ(xm,xn) is given by p(v). From (5.22)

and (5.23), it can be verified that E[zTnzm] = κ(xm,xn) [140]. Then, the kernel

evaluation can be approximated as κ(xm,xn) ≈ zTnzm.

The Gaussian kernel given by κ(xm,xn) = exp
(
−‖xm − xn‖22/(2σ2)

)
is com-

monly used in the literature [31, 110]. In this case, the pdf p(v) is given in closed

form as a normal distribution. Other closed-form representations of p(v) corres-

ponding to other kernel functions can be found in [140].

Let zl,n be the mapping of rl,n into the RFF space R
D. The estimate ŷl,n in (5.16)

can be approximated by

ŷl,n ≈
( n∑

i=1

K∑
k=1

αik zk,i

)T
zl,n = hTzl,n, (5.24)

where h ∈ R
D is the representation of the function f(·) in the RFF space.

The linear representation of f(·) in the RFF space, h, can be estimated by solving

the following optimization problem:

min
h∈RD

E
[
‖yn − ZT

nh‖22
]

, (5.25)

where Zn = [z1,n z2,n . . . zK,n] represents the RFF mapping of all input vectors at

time n. Approximating the solution through stochastic-gradient descent iterations

yields the RFF-based centralized graph kernel LMS (GKLMS) update rule

hn+1 = hn + μZnen, (5.26)
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Algorithm 4: GKLMS using RFF

Input: RFF-space dimension D, pdf p(v), step size μ
Initialization:
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
h0 = 0D;

%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

compute {zl,n}Kl=1;

construct matrix Zn = [z1,n z2,n . . . zK,n];
update hn+1 = hn + μZnen;

end

where en = yn −ZT
nhn. The RFF-based GKLMS is summarized in Algorithm 4.

5.3.4 Graph Diffusion Kernel LMS using RFF

In order to derive a distributed implementation, the global optimization prob-

lem (5.25) is expressed alternatively in the following separable form:

argmin
ψ1,...,ψK∈RD

K∑
k=1

E
[
(yk,n − zTk,nψk)

2
]
, (5.27)

where ψk is the local estimate of h at node k.

We use the ATC strategy, presented in Section 5.1, to solve (5.27) in a fully dis-

tributed fashion, i.e., nodes operate only with information from their local neigh-

borhoods. The update rule for the GDKLMS using RFF is given by

⎧⎪⎨⎪⎩
ψk,n+1 = hk,n + μ ek,nzk,n, (5.28a)

hk,n+1 =
∑
l∈Nk

alk ψl,n+1, (5.28b)

where ek,n = yk,n−zTk,nψk, and the combination coefficients alk are non-negative

and satisfy the condition
∑

l∈Nk
alk = 1 [41]. The similar combine-then-adapt

(CTA) strategy [141] can also be derived for the GDKLMS. Algorithm 5 summar-

izes the steps for the proposed GDKLMS implementation using RFF.
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Algorithm 5: GDKLMS using RFF

Input: RFF-space dimension D, pdf p(v), step size μ, combination

coefficients alk
Initialization:
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
hk,0 = 0D, ∀k ∈ {1, 2, . . . ,K};

ψk,0 = 0D, ∀k ∈ {1, 2, . . . ,K};

%Learning
for each time instant n do

for k = 1, . . . ,K do
compute zk,n;

update ψk,n+1 = hk,n + μ ek,nzk,n;

end
for k = 1, . . . ,K do

update hk,n+1 =
∑

l∈Nk

alk ψl,n+1;

end
end

5.4 Convergence Analysis
Given a node k ∈ N , let the RFF-mapped data signal zk,n be drawn from a WSS

multivariate random sequence with correlation matrix Rz,k = E[zk,nz
T
k,n]. Under

a set of reasonable assumptions [76], it is possible to show that

Theorem 5.1. A sufficient condition for the proposed RFF-based GDKLMS to

converge in mean is given by

0 < μ <
2

max
1≤k≤K

{
max
1≤i≤D

{λi( Rz,k)}
} , (5.29)

and

Theorem 5.2. Assuming that the step size μ is sufficiently small, the proposed

RFF-based GDKLMS converges in mean-squared sense under

0 < μ <
1

max
1≤k≤K

{
max
1≤i≤D

{λi(Rz,k)}
} . (5.30)

Remark 5.1. The bounds established for μ are inversely proportional to the spec-

tral radius of the covariance matrix of vectors zk. Hence, similar to conventional
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Table 5.1: Computational cost of the proposed algorithms

Algorithm\Operation Kernel Evaluation/
RFF mapping Multiplication Addition Training

(kernel evaluation) Communication

GKLMS nK2 2nK2 + nK 2nK2 – –

CC-based GKLMS K|D| |D|(2K + 1) 2K|D| lowerbound |D|(|D| − 1)/2
upperbound t|D| –

RFF-based GKLMS KD D(2K + 1) 2KD – –

RFF-based GDKLMS KD KD(|N |+ 3) KD(|N |+ 1) – KD|N |

stochastic gradient algorithms, μ requires tuning according to the largest eigen-

mode.

5.4.1 Steady-State Mean-Squared Error

Let Zn = blockdiag {z1,n, z2,n, . . . , zK,n}, with Rz = E[ZnZT
n ], and A =

AT ⊗ ID, with Al,k = alk. We assume that the observation noise is a zero-mean

WSS multivariate random sequence, with diagonal correlation matrix Rυ. For

μ under (5.30), it is possible to show that the network-level steady-state mean-

squared error (SMSE) of the proposed RFF-based GDKLMS is given by

SMSE =
1

K
lim
n→∞E[eTnen]

=
1

K

[
μ2γT(ID2K2 −FT)−1bvec(Rz) + tr(Rυ)

]
, (5.31)

where

F = E
[(A(

IDK − μZnZT
n

))
⊗
(A(

IDK − μZnZT
n

))]
(5.32)

γ = (A⊗A)bvec{E[ZnRυZT
n ]}. (5.33)

5.5 Complexity Analysis
The computational costs of the proposed algorithms are summarized in Table 5.1.

The complexity of kernel evaluations is treated separately, as we do not consider

a specific kernel function. Results for the GKLMS reveal that kernel methods

without dimensionality control not scale well with time and network size. Con-

sidering the case where the dictionary size, |D|, and the RFF-space dimension,

D, are the same for the CC- and RFF-based implementations, their complexities

per iteration are also the same.1 The CC-based approach, however, has the added

1The assumption of |D| = D is reasonable as we show in the next section. The accuracies of

both algorithms are comparable for similar values of |D| and D.
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Figure 5.1: Learning curves (network-level MSE vs iteration index) for the proposed

algorithms with large dictionary size and RFF-space dimension.

complexity of training the dictionary. For the GDKLMS using RFF, each node

requires D(|N |+3) multiplications and D(|N |+1) additions, with |N | denoting

neighborhood cardinality. Results are scaled for the entire network.

5.6 Numerical Results
This section demonstrates the performance of the proposed algorithms through

extensive numerical experiments under synthetic and real network data.

5.6.1 Nonlinear Graph Filter Identification

First, we consider a connected Erdös-Renyi graph comprising K = 20 nodes with

edge probability equal to 0.2. For a filter of length L = 4, we aim at estimating

the time-invariant nonlinear function given by

f(rk,n) =
√

r2k,n,1 + sin2(rk,n,4π) + (0.8− 0.5 exp(−r2k,n,2))rk,n,3. (5.34)

The network-level instantaneous MSE, given by MSEn = 1
K

∑K
k=1 e

2
k,n, is con-

sidered as the performance metric and results are displayed by plotting MSEn

versus the iteration index n, averaging over 1000 independent runs.

In Fig. 5.1, we present the learning curves of the approaches based on CC and

RFF, with |D| = D = 256. For large enough dictionary sizes and RFF-space di-

mensions, these implementations reach similar performance to that of the GKLMS

implementation without sparsification. The centralized implementations can better

approximate the GKLMS without sparsification when compared to the GDKLMS.

This is an expected result considering that data from the entire graph is available

during the learning process of the centralized approaches.

In Fig. 5.2 we compare the proposed algorithms when smaller dictionaries and
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Figure 5.2: Learning curves (network-level MSE vs iteration index) for the proposed

algorithms considering small values for D.
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Figure 5.3: Tracking performance of the proposed algorithms.

RFF-space dimensions are considered. Specifically, we compare the implement-

ations based on RFF and coherence check against each other. Results show that

both CC- and RFF-based algorithms are capable of effectively representing the

target function. For |D| = D and for similar values of network-level steady-state

MSE, the RFF-based GKLMS converges faster than the CC-based one. Moreover,

it can be observed that the performance of the implementations with fixed-size

dictionaries greatly improves as D is increased from 16 to 32.

5.6.2 Tracking Performance of the Proposed Algorithms

We consider now the estimation of a nonlinear function given by

fn(rk,n) =

⎧⎨⎩
√

r2k,n,1 + r2k,n,4 − rk,n,3e
−r2k,n,2 0 < n ≤ 4000√

r2k,n,1 + r2k,n,2 + r2k,n,3 + r2k,n,4 4000 < n.
(5.35)

Fig. 5.3 shows the learning curves for the centralized and distributed algorithms

for two values of dictionary sizes and RFF-space dimension, namely, D = 16
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(c) D = 250.

Figure 5.4: Network-level MSE after 20000 iterations vs step size for the proposed al-

gorithms RFF-based GDKLMS. Vertical red line indicates the theoretical upperbound ac-

cording to Theorem 6.2.

and D = 32. We see that the RFF-based implementations are resilient to model

changes, while the CC-based implementations suffer from noticeable performance

losses, especially for small dictionaries. This is an expected behavior, since larger

dictionaries can represent more functions. We also see that the GKLMS achieves

the lowest MSE, however, at the cost of an unconstrained dictionary size.

5.6.3 Convergence Simulations

We verify, through numerical experiments, the theoretical bounds established for

μ in Section 5.4. We compute the network-level MSE for the GDKLMS after

20000 iterations, for μ ∈ {0.1, 0.5, 1.5, 2, 2.25, 2.5}, as presented in Fig. 5.4.

This simulation is repeated for different values of D and we assess if the algorithm

converges in practice in accordance with the theoretical results. Results confirm

that the conditions established for μ in Theorem 6.2 are sufficient for convergence.

5.6.4 Laboratory-monitoring Data

We consider the Intel Lab database [142] that contains temperature and humidity

data, measured during March 2004, from 52 sensors spread across a laboratory and

its common areas. The undirected graph is constructed by connecting each sensor

to its four nearest neighbors and we consider the task of estimating humidity from

the temperature signal.

In our simulations, we used L = 5 and D = 128, for centralized and distributed

implementations. The step sizes are 0.03 for CC- and RFF-based GKLMS, and

0.5 for GDKLMS implementations.

The humidity signals from Sensors 1 and 40 are plotted in Figs. 5.5a and 5.5b,

respectively, together with the estimated signals from the graph filters. The vari-
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(a) Time series for Sensor 1.
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(b) Time series for Sensor 40.

Figure 5.5: Time series of original and estimated humidity signals using the proposed

algorithms for the Intel Lab dataset.
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Figure 5.6: Network structure for the Intel Lab simulation and snapshots of the original

and estimated humidity signals.

ations in the plots are aligned with events that induce model changes. For example,

the most notable peaks are aligned with the beginning and end of work shifts. The

implementations based on CC and RFF have similar performances, while the latter

exhibit slightly more resilience to changes in the model. Fig. 5.6 depicts the graph

representation of the Intel Lab sensor network and presents snapshots of the hu-

midity signals, both the original and the one estimated via RFF-based GDKLMS.

These results confirm that the proposed algorithms can effectively estimate the

humidity level from temperature readings.

5.7 Summary
This research introduced nonlinear adaptive graph filters for model estimation in

the reproducing kernel Hilbert space. A centralized graph kernel LMS algorithm

was derived. Coherence-check-based dictionary-sparsification and random Four-

ier features were proposed to overcome complexity issues of kernel methods.
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Diffusion-based distributed implementations of both CC- and RFF-based GKLMS

algorithms were developed using only local communications and in-network pro-

cessing, and we presented the mean and mean-square-error convergence conditions

for the proposed GDKLMS using RFF. Numerical simulations were conducted to

demonstrate the performance of the proposed algorithms. Results confirmed that

CC- and RFF-based approaches effectively estimate nonlinear graph filters, while

the latter exhibits a faster convergence and is robust to model changes.
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Chapter 6

Kernel Regression on Graphs
using RFF

Unlike the diffusion LMS methodology presented in the previous chapter, this

chapter addresses the scenario where the input signal is not necessarily a graph

signal. In this sense, we propose a batch-based kernel regression method that

maps a general signal, possibly agnostic to the graph, into an output signal that

resides on a given graph. A penalty term, added to the loss function, achieves

this mapping and enforces the graph signal at the output, whose smoothness (as

discussed in Section 2.7) across the graph is defined by the graph Laplacian. This

work is related to the research documented in papers P7 [77] and P8 [78].

Section 6.1 reviews the state-of-the art methodology for KRG. Section 6.2 pro-

poses KRG using RFF and an efficient implementation for the batch-based al-

gorithm. Section 6.3 presents online algorithms for KRG using RFF. Stability

conditions for the online algorithms are presented in Section 6.4. In Section 6.5, a

discussion on the complexity of the proposed algorithms is presented. Section 6.6

presents numerical experiments. Conclusions for this chapter are presented in Sec-

tion 6.7.

6.1 Kernel Regression over Graphs
This section presents the learning methodology introduced in [31], which serves

as a basis for our proposed methodology. Consider a graph G = {V,L} with K
nodes and graph Laplacian L. Considering a graph-based system, which takes an

input vector x ∈ R
M and outputs a graph signal t ∈ R

K , we are interested in

estimating the corresponding mapping M : RM → R
K . In [31], the model is

65
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estimated in terms of a matrix W ∈ R
M×K such that

yn = WTφ(xn), (6.1)

where yn is an estimate of the target graph signal tn and φ : RM → R
M is an

unknown function of the input signal. Recall that the quadratic form (2.46) of

the graph Laplacian induces a variation metric as discussed in Section 2.7.2. By

defining ν(y) � yTLy, we have a measure of how smooth y is with respect to G.

Under the assumption that a graph signal is smooth according with the underlying

graph, model (6.1) is expected to generate estimates yn for which ν(yn) is low.

The optimal parameter matrix W is found by minimizing the cost function

C(W) =

N−1∑
n=0

‖tn − yn‖22 + αtr(WTW) + β

N−1∑
n=0

ν(yn), (6.2)

where N ≥ M . The cost function C(W) augments traditional regression meth-

ods by incorporating the penalty
∑N−1

n=0 ν(yn), which enforces smoothness of the

output signal with respect to the graph. Defining the matrices

T = [t0 t1 . . . tN−1]
T ∈ R

N×K , (6.3)

Y = [y0 y1 . . . yN−1]
T ∈ R

N×K , (6.4)

Φ = [φ(x0) φ(x1) . . . φ(xN−1)]
T ∈ R

N×M , (6.5)

and assuming Φ is full rank, we can make the substitution W = ΦTΨ, so that the

optimization is now conducted in terms of Ψ ∈ R
N×K . The predicted output of

the kernel regression is given by [31]

y = ΨTΦφ(x) = ΨTk(x)

=
(
mat

(
(B+C)−1vec(T)

))T
κ(x), (6.6)

where κ(x) = [κ1(x) κ2(x) . . . κN (x)]T, with κn(x) = φT(xn)φ(x). Also,

B = (IK ⊗ (K+ αIN )), (6.7)

C = (βL⊗K), (6.8)

with K = ΦΦT ∈ R
N×N . Here, the kernel trick is employed to avoid the explicit

knowledge of φ(·), by replacing the inner product κn(xi) = φT(xi)φ(xn) with

a kernel κ(xi,xn) [51, 52]. The method described in (6.6), which outputs an

estimate y for an input x, is referred to as kernel regression on graphs.
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6.1.1 Discussion and Remarks

The method proposed in [31] can handle scenarios for which previous solutions

were not applicable. For example, consider the case of moving sources, whose

positions correspond to the input data, and a sensor network, which corresponds to

the known graph. Consider the task of estimating the signal at the sensors given the

sources’ positions. This case illustrates non-graph data projected onto the graph.

Therefore, the input signal cannot be treated as a graph signal. Another example is

the case where data on two different graphs are related to each other. In this case,

a graph filter is not directly applicable to relate data from both graphs.

Remark 6.1. The regression in (6.6) is performed in a batch-based fashion, assum-

ing that all training samples are available a priori. A significant drawback of this

implementation is the inherent delay of batch-based implementations, as the com-

putation of the parameter matrix Ψ must wait for all training samples {xn, tn}N−1
n=0

to be available. Also, the increase in the computational burden of the KRG with

the number of training samples is twofold. First, computing Ψ becomes more

complex as the dimensions of K increase with N . Second, the regression dimen-

sion increases as the size of k(x) increases with N , and each additional training

sample requires a kernel evaluation. The model complexity also depends on the

number of training samples N , requiring N kernel evaluations for each new input

signal, which is an issue if an online implementation is derived. In the following

section, we address the growing complexity by proposing a batch-based approach

using random Fourier features.

6.2 Batch KRG using Random Fourier Features
In Section 6.1.1, we discussed the complexity issues associated with current state-

of-the-art approaches for KRG. Similar to the approach adopted in Chapter 5, we

can resort to RFF to derive efficient KRG algorithms.

6.2.1 RFF-based KRG

To employ RFF in the KRG methodology, we first consider the kth entry of the

estimate y as

yk = wT
k φ(x), (6.9)

where wk denotes the kth column of the parameter matrix W. Using the substitu-

tion W = ΦTΨ, and the kernel trick κ(xm,xn) = φ(xm)Tφ(xn), (6.9) can be

rewritten as

yk =

(
N∑

n=1

Ψn,kφ(xn)

)T

φ(x) =

(
N∑

n=1

Ψn,kκ(xn,x)

)
. (6.10)
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Using RFF, we can approximate (6.10) as

yk ≈
N∑

n=1

Ψn,kz
T
nz = hT

k z. (6.11)

Finally, the RFF-based regression estimate for the entire graph signal is written as

y = HTz, (6.12)

where H = [h1 h2 . . . hK ] ∈ R
D×K is the representation of the regression

coefficient matrix in the RFF space. Letting the matrix

Z = [z1 z2 . . . zN ]T ∈ R
N×D (6.13)

represent the RFF mapping of all training input vectors {xn}Nn=1, and using T and

Y as respectively defined in (6.3) and (6.4), the cost function (6.2) can be rewritten

in terms of H as

C(H) =

N∑
n=1

‖tn‖22 − 2tr(TTZH) + tr(HTZTZH)

+ α(HTH) + βtr(HTZTZHL). (6.14)

Minimizing (6.14), the regression coefficients in the RFF space can be obtained as

vec(Hopt) = (BRFF +CRFF)
−1vec(ZTT), (6.15)

where

BRFF = (IK ⊗ (ZTZ+ αID)), (6.16)

CRFF = (βL⊗ ZTZ). (6.17)

Once the regression coefficients are trained, the target estimate y, given an input

signal x corresponding to z in the RFF space, is given by

y = HT
optz. (6.18)

From (6.16) and (6.17), it can be observed that the computational burden of obtain-

ing the regression parameters is drastically reduced when compared to the conven-

tional KRG, as the size of the BRFF and CRFF is now KD×KD, with D possibly

much smaller than N . From (6.18), we see that the estimation does not depend on

the number of training samples and the model has a fixed size D, requiring only

the mapping of each new input sample into the RFF space.
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6.2.2 Efficient Computation For Large Networks

For large networks, computing the inverses in (6.6) and (6.15) may be prohibitively

complex. We propose an efficient way to compute the parameters in these cases.

We adopt the notation of the conventional KRG, but the same reasoning applies

directly to the RFF-based implementation. Considering the eigendecompositions

(IK + βL) = UΣUT and K = VΩVT, it is possible to show that

Ψ = VΓUT, (6.19)

where

Γ = mat
(
(αIKN +Σ⊗Ω)−1vec(VTTU)

)
. (6.20)

Using this implementation, the dominating complexity is reduced from (KN)3 op-

erations due to matrix inversion to approximately K3 and N3 operations required

for the eigendecompositions of (IK + βL) and K, respectively.

6.3 Online Kernel Regression on Graphs
In what follows, we consider online implementations of the KRG. To bypass the

dimensionality problem associated with the kernel dictionary, we resort to online

RFF-based KRG implementations.

6.3.1 Mini-batch Stochastic-Gradient KRG

Consider the following minimization problem:

min
H

E
[
‖t− y‖22] + αtr(HTH) + E[βν(y)

]
. (6.21)

We propose the use of a mini-batch stochastic-gradient approach to solve (6.21).

We define the matrices composed by the signals corresponding to each individual

mini-batch, with Nb samples, as

Zn = [z(nδ−Nb+1) . . . znδ]
T ∈ R

Nb×D

and

Tn = [t(nδ−Nb+1) . . . tnδ]
T ∈ R

Nb×K ,

where 1 ≤ δ ≤ Nb is the batch displacement parameter. A particular case of

the MGKRG is defined by making Nb = δ = 1. In this case, only the current

sample is used to compute the approximation of the gradient. This corresponds to

a stochastic-gradient approach and will be referred to as stochastic gradient KRG

(SGKRG).
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Algorithm 6: MGKRG

Initialization:
H1 = 0D×K ;

draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
%Learning
for each time instant n do

map rn into zn;

if (n mod δ) = 0 then
Zn = [z(n−Nb+1) . . . zn]

T;

Tn = [t(n−Nb+1) . . . tn]
T;

Yn = ZnHn;

En = Tn −Yn;

Hn+1 = (1− μα)Hn + μ
Nb

ZT
n (En − βYnL);

end
store zn;

release z(n−Nb+1);

end

Letting Yn = ZnHn be the mini-batch estimate and En = Tn −Yn be the cor-

responding a priori error matrix, the update equation for the mini-batch gradient

KRG is written as

Hn+1 = (1− μα)Hn +
μ

Nb
ZT
n (En − βYnL) . (6.22)

The steps for the MGKRG are summarized in Algorithm 6.

6.3.2 Recursive Least-Squares KRG

We now explore the principles of the recursive least squares algorithms [143] to

solve (6.14) recursively. First, we rewrite (6.15) as

vec(Hn) =
(
(IK ⊗ (ZTZ+ αID)) + (βL⊗ ZTZ)

)−1
vec(ZTT)

= R−1
n rn, (6.23)

where

Rn = αIK ⊗ ID + (IK + βL)⊗ ZTZ (6.24)

rn = vec(ZTT). (6.25)
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Algorithm 7: RFF-based RLSKRG

Initialization:
R−1

−1 =
1
αIKD;

H−1 = 0D×K ;

draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
%Learning
for each time instant n do

map rn into zn;

Pn = IK ⊗ zn;

Qn = (IK + βL)⊗ zTn ;

Gn = R−1
n−1Pn

(
IK +QnR

−1
n−1Pn

)−1
;

ŷn = HT
n−1zn;

en = tn − ŷn;

Hn = Hn−1 +mat(Gn(en − βLŷn));

R−1
n = R−1

n−1 −GnQnR
−1
n−1;

end

Letting

Gn =
(
R−1

n−1 −GnQnR
−1
n−1

)
Pn = R−1

n Pn, (6.26)

with

Pn = (IK ⊗ zn)

Qn = ((IK + βL)⊗ zTn ),
(6.27)

it is possible to derive the update equation

Hn = Hn−1 +mat(Gn(en − βLŷn)), (6.28)

where mat(·) denotes the vector-to-matrix operator, ŷn = HT
n−1zn is the a pri-

ori target estimate, and en = tn − ŷn is the a priori error. Equation (6.28) is

the recursive update equation for the proposed recursive least squares KRG (RL-

SKRG) algorithm. The steps for the implementation of the RLSKRG algorithm

are summarized in Algorithm 7.

Due to its recursive nature, the RLSKRG algorithm considers past samples when

computing the update matrix at each iteration. Thus, its performance is expected

to match that of the batch-based approach.
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Algorithm 8: Efficient RLSKRG

Initialization:
Rz,−1 = 0D×D;

H−1 = 0D×K ;

get U and Σ;

draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
%Learning
for each time instant n do

map rn into zn;

Rz,n = Rz,n−1 + znz
T
n ;

Get Vn and Ωn;

Pn = IK ⊗ zn;

ŷn = HT
n−1zn;

en = tn − ŷn;

Ξ = mat(Pn(en − βLŷn));

Γn = mat((αIKD +Σ⊗Ωn)
−1vec(VT

nΞnU));
Hn = Hn−1 +VnΓnU

T;

end

Similar to the batch-based implementation, as presented in Section 6.2.2, the RL-

SKRG admits an efficient implementation. Using the eigendecompositions (IK +
βL) = UΣUT and Rz,n = VnΩnV

T
n , the update equation for the efficient RL-

SKRG is given by

Hn = Hn−1 +VnΓnU
T, (6.29)

where Γn = mat((αIKD +Σ⊗Ωn)
−1vec(VT

nΞnU)). The steps for the imple-

mentation of the efficient RLSKRG are presented in Algorithm 8.

6.4 Convergence Analysis
It is possible to show that the proposed online algorithms converge both in the

mean and in mean squared sense. In what follows, Ho denotes the optimal linear

estimator in the least mean squares sense of Tn in the RFF domain. Consider that

the RFF-mapped data signal zn is drawn from a wide-sense stationary multivariate

random sequence with correlation matrix Rz = E[znz
T
n ]. Let λmax(·) denote

the maximum eigenvalue of the argument matrix and let ρ(·) denote the spectral

radius of the argument matrix, i.e., the largest absolute value of its eigenvalues.

For the MGKRG, the following conditions are sufficient for first- and second-order

stability, respectively:
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Theorem 6.1. A sufficient condition on the step size μ for the convergence of the

proposed MGKRG algorithm governed by (6.22), is given by

0 < μ <
2

λmax(Rz) + α+ βλmax(L)λmax(Rz)
, (6.30)

and

Theorem 6.2. Then, the second-order convergence of the proposed gradient-based

algorithms, namely the MGKRG and the SGKRG, is guaranteed under

0 < μ <
1

λmax(Rz) + α+ βλmax(L)λmax(Rz)
. (6.31)

Remark 6.2. Under the convergence condition (6.30), the MGKRG converges

asymptotically to (αIKD + (IK + βL) ⊗ Rz)
−1(αIKD + βL ⊗ Rz)ho. This

means that limn→∞Hn is a biased estimate of Ho. Also, the bias is introduced by

the regularization coefficients α and β, such that a non-regularized problem leads

to an unbiased solution.

Theorem 6.2 shows that the condition for second-order stability of the MGKRG

is more strict than that of the first-order stability. The upper-bound imposed on

the step-sizes for second-order stability is half of the upper-bound established in

Theorem 6.1.

Under a reasonable set of assumptions, the following theorems hold for the RL-

SKRG:

Theorem 6.3. The RLSKRG described in Algorithm 7 is stable in the mean sense

and converges to a steady state.

In fact, it is possible to show that Hn is an asymptotically biased estimate of Ho,

with limn→∞ E[H̃n] = βHoL(IK + βL)−1.

Remark 6.3. Under the convergence condition (6.30), the bias of the MGRKG

tends to the bias of the RLSKRG when α → 0+. In addition, the bias in the

RLSKRG is introduced solely by the regularization coefficient β, since the reg-

ularization coefficient α contributes only with an initial condition for the matrix

Rn, which plays no role in the algorithm’s average behavior as n grows to infinity.

Theorem 6.4. The RLSKRG described in Algorithm 7 is stable in the mean-squared

sense and converges to a steady state.

In this case, the RLSKRG converges in the mean-squared sense to

lim
n→∞E[‖h̃n‖22] = ‖vec

(
βHoL(IK + βL)−1

)
‖22.
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6.5 Discussion on Complexity
For the MGKRG algorithm, the update (6.22) requires DK +Nb(K

2 + 2DK +
K) multiplication operations. That is, the complexity of the MGKRG increases

linearly with Nb with a slope equal to K2+2DK+K. Additionally, the MGKRG

requires a memory to store Nb > 1 samples. Hence, the batch-size translates into

a trade-off between complexity and performance.

The proposed efficient implementation of the RLSKRG in (6.29) requires D3 +
D2 + 2D2K + 5DK + 2DK2 + K2 multiplication operations to update Hn.

Assuming that Nb has the same order of magnitude as D and K, the RLSKRG

has a slightly heavier computational burden per iteration when compared to the

MGKRG. The offline batch KRG using RFF (6.19) requires D3+D2N+2D2K+
3DK +2DK2 +KDN multiplications. This complexity is considerably smaller

than that of the conventional implementation (6.15), which requires the inversion

of a DK×DK matrix, leading to complexity equivalent to D3K3 multiplications

for the inversion operation only.

6.6 Numerical Results
In this section, we validate the performance of the proposed algorithms with nu-

merical experiments using both synthesized and real datasets.

6.6.1 Synthesized Data 1

Similar to the setup in [31], we consider an Erdös Rényi graph with K = 50 nodes

and edge-probability equal to 0.1. A total of S = 20000 K-dimensional i.i.d.

samples, {xn}Sn=1, are generated, where xn ∼ N (0,CS). The S-dimensional

covariance matrix CS ∈ R
S×S is drawn from the inverse Wishart distribution with

an identity scale matrix. We generate the target graph signals {tn}Sn=1 as in [31],

i.e., by solving tn = argminτ
{
‖xn − τ‖22 + τTLτ

}
. We assess the normalized

mean squared error

NMSE = 10 log10

(
E

[
‖Y −T0‖2F

‖T0‖2F

])
, (6.32)

where T denotes the true target matrix and Y denotes the estimated matrix. The

expected value is obtained as the ensemble average over 500 independent runs.

Fig. 6.1 presents the results of the batch-based implementations and the RLSKRG.

We see that the RFF implementation approximates well the conventional KRG

even for relatively small D = 32. The performance of the RLSKRG closely

matches the performance of the batch-based implementation. Results in Fig. 6.2

show that online algorithms can effectively learn the regression parameters and
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Figure 6.1: NMSE achieved by the Bacht-based and RLSKRG implementations versus

number of training samples using synthesized data.
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Figure 6.2: NMSE achieved by the MGKRG implementations versus number of training

samples for different mini-batch sizes.

we analyze the performance of the MGKRG for different mini-batch sizes. Plots

show an increase in convergence speed as Nb increases to 15 and then to 50

samples, demonstrating the improved accuracy when more samples are used in

the stochastic-gradient approximation.

6.6.2 Real Data - fMRI Signal Extrapolation

This section reproduces the example from [31], which employs the conventional

KRG to estimate the intensities of voxels in a functional magnetic resonance ima-

ging (fMRI) dataset. The data and graph used are available in [144]. The experi-

ment consists of estimating the fMRI signal on 90 of the voxels – volumetric units

that represent regions of the brain – using the signal from ten other voxels. In other

words, we consider an input signal x ∈ R
10 to estimate a graph signal t ∈ R

90.

The graph corresponds to the pairwise relations of the 90 voxels.

Results in Fig. 6.3 show that the RFF-based KRG closely matches the conven-
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Figure 6.3: NMSE achieved by the KRG implementations versus number of training

samples for the fMRI signal simulation.

tional KRG, converging to approximately -23 dB, with D = 32. The RLSKRG

matches the batch-based implementations. Results also show that the SG-based

implementations can achieve low NMSE, around -20 dB. Again, increasing the

number of samples when computing the stochastic approximation for the gradient

increases the convergence speed while matching the same accuracy after conver-

gence.

6.6.3 Real Data - Image Reconstruction

We now consider the application of KRG in the image and video processing scen-

ario. This simulation showcases the performance and the capability of the online

algorithms to deal with large datasets. In particular, we tackle the reconstruction

of a corrupted video frame. In this setup, corrupted frames have up to one random

pixel per 4× 4-pixel block that is set to unity, simulating a saturated pixel. An ex-

ample of a corrupted frame, along with a block of pixels with one corrupted pixel,

and the corresponding graph, using the NN image model, is illustrated in Fig. 6.4a.

Fig. 6.4b shows the NMSE versus iterations for the proposed algorithms. These

results are consistent with previous simulations and show that online KRG strategies

can successfully learn the target model. We observe that the RLSKRG exhibits the

best performance while the single-sample SGKRG exhibits the worst perform-

ance, as expected, given the complexity-performance trade-off. In this simulation,

increasing the number of blocks to Nb = 20 and Nb = 60 (which corresponds

to half the number of blocks on a single line in an image) considerably increases

the performance of the MGKRG. Fig. 6.5 the frame reconstruction using the RL-

SKRG, which showcases the capabilities of the proposed algorithm.
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Figure 6.4: Image reconstruction process using KRG: (a) example frame and how a 4× 4
block of pixels is treated as a graph; (b) NMSE achieved by the KRG implementations

versus number of training samples in the image reconstruction simulation.

Figure 6.5: Original frame, corrupted frame, and reconstructed frame, from left to right.

6.7 Summary
In this chapter, we addressed learning over graphs, considering the case where

the input signal is not defined over the graph. We proposed efficient batch-based

KRG implementations using RFF. We also proposed online strategies based on

stochastic-gradient approaches, the MGKRG and the SGKRG, and the recursion-

based RLSKRG. We presented convergence conditions and a brief discussion on

the trade-off between complexity and performance of the proposed algorithms.

The proposed methodology was employed for a range of numerical experiments

using synthesized and real data simulations, including experiments on brain-data

extrapolation and image reconstruction. Results confirmed that both the proposed

KRG using RFF and the RLSKRG have accuracy close to that of the conven-

tional KRG, with a considerable reduction in complexity. Additionally, simula-

tions showed that the MGKRG can effectively learn the regression parameters and

that its performance can be improved at a small increase in computational cost by

increasing the number of samples in the mini-batch.
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Chapter 7

Conclusions and Future Work

This thesis provided contributions to two key research areas of GSP and invest-

igated a range of different applications for the proposed tools. As the first re-

search topic, we investigated the challenges of translating real-world problems into

GSP models. This research topic branches into two contributions: we developed

a GSP-based model for blocks of pixels that is suitable for compression of light

field images, and we proposed an augmentation methodology for sparse adjacency

matrices, which yields a scale-dependent GFT, called sGFT. The second research

topic addresses the learning of relations between reference and target signals over

graphs. We proposed two methodologies that tackle different scenarios, the first

exploring concepts of graph filters and the second based on kernel regression.

When investigating the application of GSP for light-field compression, we identi-

fied the challenges of using graphs to represent multiple different networks, with

each network being associated with a block of pixels. As GSP explores individual

characteristics of each block, the optimal representation of all blocks in an im-

age requires a different adjacency matrix for each block, increasing computational

burden. To overcome this issue, we employed a sparse model for the adjacency

matrices, reducing the complexity associated with each matrix. We leveraged the

redundancy in light fields to use a single representation for multiple blocks. We

developed a simplified compression scheme similar to HEVC-based methods for

light-field compression, and numerical experiments showed that, using the GFT,

we need a reduced number of transform coefficients to achieve the same distortion

when compared to the DCT. As future directions for this research, we note the

GSP-based approach for compressing light-fields needs more in-depth investiga-

tion of other methods for creating the graph model and that more complex schemes

for compression can be used to develop simulations in line with practical state-of-
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the-art implementations. Additionally, the proposed methodology can be adapted

to specific settings of light field, such as single-camera light-field imaging, to be

compared against recent works that employ GSP for light-field compression.

On the scope of developing GSP-based models for real-world problems, we also

proposed the extended adjacency matrix using diffusion distances and the sGFT.

The additional spectral information provided by the sGFT can be explored by GSP

tools based on the graph spectrum, which was demonstrated by applying the pro-

posed methodology for anomaly detection on networked data. Results showed that

the augmented model offers a significant improvement over the conventional ad-

jacency, increasing detection scores. In this line of research, future works include

the study of how other GSP tools interact with the proposed augmented adjacency

matrix and the investigation of other applications that can benefit from the pro-

posed model.

In Chapter 5, we first presented the basic concepts of learning over graphs and

a state-of-the-art methodology using graph-diffusion LMS algorithms. Building

upon this methodology, we first proposed the concept of nonlinear graph filters.

The proposed nonlinear graph filtering consists of a nonlinear function applied

to graph-shifted signals, generalizing the well-known LSI graph filters. The ad-

aptive centralized GKLMS algorithm was derived to estimate the parameters of

nonlinear graph filters, with implementations based on CC and RFF to avoid the

complexity issues inherent to kernel methods. Additionally, using concepts of

network diffusion, the fully decentralized GDKLMS using RFF was proposed,

where each node uses only local computations and communications to estimate

the filter’s parameters. Mean and mean-square convergence conditions, along with

complexity analysis, were presented for the proposed algorithms. Numerical sim-

ulations using both synthesized and real data showed that the proposed methods

could effectively estimate nonlinear graph filters. Also, results showed that RFF-

based implementations yield faster convergence than CC-based implementations,

besides being robust to model changes. Future directions for this research include

developing RLS-based distributed approaches for learning nonlinear graph filters

and methodologies for learning the graph structure together with the parameters,

i.e., including the GSO as a variable in the optimization problem.

Complementary to the methodology proposed in Chapter 5, the work presented

in Chapter 6 uses kernel regression methods to learn over graphs while consider-

ing that the input signal is not necessarily a graph signal. Similar to the approach

presented in Chapter 5, we adopted RFF to overcome the complexity issues of ker-

nel methods and derived the batch-based KRG algorithm using RFF. Furthermore,

we proposed distinct strategies for online KRG. First, we proposed the gradient-

descent-based algorithms MGKRG and, as a particular case, the SGKRG. Using
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concepts of conventional RLS algorithms, we proposed the RLSKRG. We showed

that the RLSKRG achieves the same accuracy as the batch-based KRG and that

the SG-based algorithms can effectively estimate the regression parameters at re-

duced complexity. Moreover, using the MGKRG, the performance can be im-

proved at a relatively small increase in computational cost by increasing the num-

ber of samples in the mini-batch. We also provided first- and second-order stability

conditions for the proposed online algorithms. The performance of the proposed

algorithms was validated over a range of numerical simulations using both synthes-

ized and real data. Real data experiments included temperature prediction, brain-

activity estimation, and image reconstruction. As future work, we consider the

derivation of the RLSKRG using a forgetting factor, such that older samples have

exponentially less weight, and the implementation of other complexity-reduction

techniques, especially for the RLSKRG. For instance, dichotomous-coordinate

descent (DCD) iterations have been used in the literature for reduced-complexity

RLS algorithms and can be adapted to the KRG methodology.

Other future directions include the combination of GSP with other machine-learning

approaches, such as unsupervised learning, reinforcement learning, and deep learn-

ing, in contrast with the supervised algorithms proposed in this thesis. For instance,

similarly to the KRG approach, graph smoothness can be used as a regularization

factor in the reward function of reinforcement learning approaches. Also, machine-

learning algorithms can leverage GSP-based data attributes, such as graph-spectral

coefficients, as features when knowledge regarding the relations between input

elements is available. Another open direction is the construction of combinations

of graph-filters, exploring concepts of combinations of filters from DSP and lever-

aging the degree of freedom given by the graph structure in the filter construction.
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Graph Fourier Transform for
Light Field Compression
Vitor Rosa Meireles Elias and Wallace Alves Martins

Abstract— This work proposes the use of graph Fourier trans-
form (GFT) for light field data compression. GFT is a tool
developed for the emerging field of digital signal processing on
graphs, which combines graph theory and classical DSP in order
to exploit signal-related information present on graph structures.
The proposed method explores the high correlation of residual
images from light field. Simulations with real light field data in-
dicate significant reduction in the number of coefficients for data
representation; for instance, an 8.97% reduction was achieved
while keeping smaller mean squared error when compared to
discrete cosine transform-based compression.

Keywords— Signal Processing on Graphs, Graph Fourier
Transform, Compression, Light Field, Discrete Cosine Transform.

I. INTRODUCTION

Light field imaging is a promising technology that opens a
variety of new possibilities to entertainment industries, such as
photography and cinema, by capturing 4D data from a scene.
Practical light field capturing techniques usually consist of
a microlens array placed between the sensor plane and the
main lens of a digital camera so that each microlens generates
a micro-image associated with a different perspective of the
scene. An alternative way of capturing a light field is through
an array of cameras, or by moving a single camera and
capturing the scene on a grid of determined positions. All these
methods generate a large amount of data when compared to
traditional imaging, since many images are used to compose a
single scene. Dealing with the resulting huge amount of data
is a challenging task [1], [2].

In order to provide solutions and a standard framework
to deal with data generated by light field imaging and other
techniques, the JPEG standardization committee created, in
2015, the “JPEG Pleno" initiative and the process is due
to continue through the next years with a first international
standard in 2018 [3].

Given the advances in video coding technology and the
advent of high-efficiency encoders that are suitable to various
types of contents, recent researches focus on improving the
compression of light field data by using HEVC-based solu-
tions [4]–[6]. Since HEVC encompasses a range of complex
signal processing steps, researchers usually focus on individual
components of the encoding scheme, such as intra or inter
prediction, data-arrangement, or other key processing blocks.

This work focuses on the transform block of a simplified
encoding scheme. Instead of employing discrete-cosine trans-
form (DCT) along with discrete-sine transform (DST) as in

Mr. Vitor R. M. Elias and Prof. Wallace A. Martins are with the
Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil (emails:
vitor.elias@smt.ufrj.br, wallace.martins@smt.ufrj.br).

The authors are grateful for the financial support provided by CNPq,
CAPES, and FAPERJ, Brazilian research councils.

the HEVC encoder, this paper proposes the use of graph
Fourier transform (GFT) [7] in order to reduce the number of
coefficients required to represent a block of prediction residual,
which is the difference between an image and its prediction.
GFT has recently arisen as one of the main signal processing
tools within the emerging field of Digital Signal Processing
on Graphs (DSPG) [8]. In DSPG, signals are represented as
graphs, which may contain more information than usual signal
representations, and the traditional DSP tools are translated
and adapted to process data in the graph structure.

GFT applied to a graph signal is able to provide better
compression quality in terms of mean squared error (MSE),
while keeping the same number of transform coefficients
as the two-dimensional DCT applied to a traditional image
signal. However, unlike DCT, GFT and its companion inverse
graph Fourier transform (IGFT) depend on the signal-related
adjacency matrix and the graph structure requires extra data
for signal representation [7], [9]. This work proposes a method
that explores the redundancy among light field images in order
to reduce the impact of the extra data on the present graph
structure and compares the efficiency of this method to that
of the DCT.

It is worth pointing out that the use of GFT within the
image processing context is not new. Indeed, some previous
works use GFT for image compression. The seminal paper [7]
that introduces GFT as a tool for DSPG presents image
compression as an example of GFT application. In addition,
the authors in [9] propose a hybrid image transform for color
and depth images based on DCT and GFT.

This paper is organized as follows. Section II provides the
background knowledge on light field and signal processing
on graphs required for this work. Section III introduces the
proposed compression methodology. Section IV describes the
simulations and discusses the results obtained. Section V com-
piles some of the next steps for future works, and Section VI
presents some conclusions of this paper.

II. BACKGROUND ON LIGHT FIELD AND DSPG

Although both light field and graph theories are known for a
long time, only recently technology allowed the construction
of real and practical light field capturing devices and, even
more recently, the fundamentals of digital signal processing
on graphs were proposed. This section provides the basic
knowledge about light field data and the DSPG concepts and
tools used in this work.

A. Light Field
Light field data usually consist of a set of multiple images

of different perspectives from a scene that are captured either
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Fig. 1. Example of images that compose light field data.

by an array of microlenses, an array of cameras, or by moving
and capturing with a single camera. Fig. 1 shows an example
of 16 images that compose a light field obtained from the
Stanford light field archive [10]. The entire light field data for
this case was captured by a moving camera on a rectangular
grid with 16 × 16 positions, yielding a total of 256 images;
this is the data set used throughout the paper.

Some important applications that justify why light field ima-
ging is a promising technology include the light field render-
ing, which allows the creation of novel views by manipulating
multiple previously captured views, and the synthetic aperture
photography, which allows photographs to be refocused after
they are taken [11].

B. Digital Signal Processing on Graphs

A graph is the pair G = (V,A), where V = {v0, . . . , vN−1}
is the set of N vertices, and A = {a00 . . . a(N−1)(N−1)}
is the set of N2 edges. The relation between V and A is
as follows: each element aij represents the edge connecting
vertex vj to vertex vi.

1 In other words, an edge represents a
relation between two vertices, and this relation depends on the
underlying application of the graph. In a directed graph, edges
have orientations and aij may differ from aji. If a graph is
undirected, edges have no orientations. The set A of all edges
can also be represented by an N × N adjacency matrix A,
which is symmetric if the graph is undirected.

A finite-duration complex-valued discrete-time signal s[n]
can be regarded as a function s : {0, 1, . . . , N − 1} → C

that maps points within a well-structured domain into the
complex plane. Indeed, any two points n1, n2 within the
domain {0, 1, . . . , N − 1} can be compared, i.e. n1 > n2

or n1 = n2 or n1 < n2; for any n ∈ {0, 1, . . . , N − 1},
the inequalities N − 1 ≥ n ≥ 0 always hold. These domain
properties induce several useful properties in the analysis
of discrete-time signals s[n]. Nonetheless, there are many
applications that call for the use of a more general domain
and, in these cases, graphs may be the appropriate structure.

1In fact, if aij = 0 one can consider there is no edge connecting vj to vi.

The concept of signals on graphs uses the set of vertices V
of a graph G as the domain of a dataset of N elements, and
the set of edges A of the graph G to encode an underlying
relationship between the elements of this dataset. For example,
for a dataset of temperature measurements of N sensors,
vertices can represent the sensors’ spatial positions, whereas
edges may represent the distances between pairs of sensors
on an undirected graph. Note that, in this case, the domain is
not ordered — one cannot state that a sensor 3D position is
larger/smaller than the other, in principle.

In this paper, an entire signal s : V → C on the vertices
of a graph is referred to as s, in which the n-th entry of s is
sn = s[vn], with vn ∈ V . Tools in DSPG are usually developed
as equivalent forms of existing tools in classical DSP [8]. In
DSPG, given a graph G with adjacency matrix A, a graph
shift is defined as

s̃ = As. (1)

The operation defined in (1) is the graph equivalent of the
delay or shift, which is the basic building block of filters in
classical DSP. That is, in graph domain, shifting a signal s
is equivalent to replacing each signal sample sn with a linear
combination of its neighborhood according to weights given
by the adjacency matrix A. Classical DSP shift can be viewed
as a special case of graph shift when the adjacency matrix is
the cyclic shift matrix

C =

⎡
⎢⎢⎢⎣

1
1

. . .

1

⎤
⎥⎥⎥⎦ . (2)

The concept of filters is also extended to the graph domain.
Indeed, in classical DSP, a finite-duration impulse response
(FIR) filter of length L ≤ N with coefficients hl induces the
following circular convolution:

⎡
⎢⎢⎢⎣

s̄[0]
s̄[1]

...
s̄[N − 1]

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

h0 hN−1 · · · h1

h1
. . .

. . .
...

...
. . .

. . . hN−1

hN−1 · · · h1 h0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=H(C)=

L−1∑
l=0

hlCl

⎡
⎢⎢⎢⎣

s[0]
s[1]

...
s[N − 1]

⎤
⎥⎥⎥⎦ , (3)

where hl = 0 for l ≥ L. Similarly, a linear, shift-invariant
graph filter is defined as a polynomial over a general adjacency
matrix A, i.e.,

H(A) =

L−1∑
l=0

hlA
l. (4)

C. Graph Fourier Transform
In classical DSP, the basis vectors that comprise a discrete

Fourier transform are the orthonormal vectors that diagonalize
the cyclic shift matrix C in (2), and the frequencies are
their corresponding eigenvalues. Similarly, a graph Fourier
transform can be defined by using the vectors that diagonalize
the adjacency matrix A. In other words, the graph Fourier
transform is defined as

ŝ = Fs = V−1s, (5)
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where V is a matrix whose columns are the eigenvectors of
the adjacency matrix A if it is diagonalizable. If A is not
diagonalizable, V is the set of generalized eigenvectors from
the Jordan decomposition of A [7], [12]. The inverse graph
Fourier transform is defined as

s = F−1ŝ = Vŝ. (6)

If V is an orthogonal matrix, which is the case when V is
the matrix whose columns are normalized eigenvectors of a
symmetric adjacency matrix A, then V−1 = VT.

III. LIGHT FIELD COMPRESSION METHODOLOGY

This section describes the compression scheme, signal mod-
els, and figures of merit adopted throughout the paper.

A. Compression process

The main interest of this work is to evaluate how effi-
cient the proposed GFT-based compression method can be in
comparison to the traditional DCT when applied to blocks
of prediction residual. In order to define how the residual is
computed, the prediction needs to be defined for the light field
case, since images are not associated with a time sequence as
usual on a video coding process.

For the light field presented in Section II-A, considering
the 16 × 16 grid over which the multiple images are taken,
this work assumes that the first image from each of the 16
grid lines is an intra image, i.e., no prediction is assumed
when encoding these images. The following 15 images from
each line are inter images for which GFT and DCT are used
to perform a lossy encoding of their corresponding residual
blocks. Given the capturing process and the format of light
field data, it is clear that images next to each other tend to
be more similar than images far from each other. Hence, the
prediction should be restricted to the spatial neighborhood of
a given image in order to reduce the prediction residual. A
simple prediction scheme adopted in this work is Ipk = Ik−1,
where k ∈ {2, 3, . . . ,K} is the index of the k-th image at
each line of the light field array and Ip is the prediction for an
image. For the light field data treated in this paper, K = 16
images per light field line. Finally, the residual is given by
Rk = Ik − Ipk.

Fig. 2 illustrates two examples of other prediction schemes
that may be utilized: zig-zag sequencing starting from the
upper-left corner of the light field array, or blocks of images
where all residuals are relative to a central image, for example.

B. Signal model

Once the residual image Rk is obtained, it is divided into T
blocks of size 32×32 pixels. If much smaller blocks are used,
such as 4× 4 or 8× 8 pixels, blocks at the same position for
different residual images may have low correlation with each
other. The proposed compression method requires that blocks
at the same position for various residual images are similar.

In order for the GFT to be applied, the residual block
needs to be represented as a graph. Consider the t-th block
of M1×M2 pixels from residual image Rk, denoted as Bk,t,
with t ∈ {1, 2, . . . , T}. The signal sk,t associated with the

Fig. 2. Examples of alternative prediction schemes on the light field array.
The bold mark in the center of a box indicates an intra image.

block is defined as the column vector formed by stacking the
columns of Bk,t. The corresponding adjacency matrix Ak,t is
defined by the nearest-neighbor (NN) image model proposed
in [13]. This model states that a pixel is only related to the
nearest pixels as shown in Fig. 3, i.e., every edge from the
graph representation that lies outside the neighborhood of a
pixel is equal to zero. Considering a pixel from the center of
the block, its neighborhood is composed by the pixels directly
under, above, to the left, and to the right from the reference
pixel. If a pixel is located at the upper-left corner of the
block, only the pixel to the right and the pixel under it are
considered as neighbors. This model leads to a sparse Ak,t

matrix with a fixed structure. Sparsity comes from the fact
that each vertex has at most four nonzero edges associated
with its neighborhood. The structure is fixed because these
edges are represented by the same entry positions in Ak,t for
different blocks of the same size, although entry values (i.e.
edge weights) may differ. Another key feature of the NN image
model is that, for a given pair of columns of pixels in a block,
all horizontal edges connecting the two columns have the same
values. Likewise, for a pair of lines, all vertical edges have
the same values. Considering this property, the N ×N matrix
Ak,t associated with an M1×M2 block, where N = M1M2,
has at most (M1 − 1) + (M2 − 1) different nonzero values.
The edge values are computed by minimizing ‖As − s‖2
subject to the matrix structure imposed by the previously
described model properties. This is an overdetermined least-
squares minimization problem.

Note that Ak,t is symmetric as pixel relations are assumed
to be undirected and, thus, is diagonalizable.

C. Proposed method

Once the adjacency matrix is computed for a block, graph
Fourier transform matrix Fk,t can be computed as the trans-
pose of the matrix composed by normalized eigenvectors
of Ak,t, as it is diagonalizable and symmetric. Transform
coefficients ŝk,t are obtained by applying Fk,t to sk,t. The
original block information can be recovered from transform
coefficients using FT

k,t to perform the IGFT.

By setting the Q smallest transform coefficients to zero, the
signal sQk,t recovered by the IGFT is a compressed version

of sk,t, and the compressed block BQ
k,t is obtained from the

compressed graph signal. In this paper, the MSE between
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Fig. 3. Relation edges proposed in the nearest-neighbor image model for
corner, edges, and central pixels.

compressed and original residual blocks is used as figure of
merit to determine how compression affects the images. It
is expected that the MSE will behave as a non-decreasing
function of Q, as there is a trade-off between compression
rate and image quality. As both GFT and DCT concentrate
most of signal energy on few transform coefficients, only a
small part of the block information is lost during compression.
When compared to DCT, GFT provides better MSE for the
same Q, but the downside of GFT is that Fk,t depends on
Ak,t associated with the block being compressed, unlike DCT,
which is a fixed transform. That is, when performing inverse
transform, transform coefficients and block-dependent FT

k,t

are required in the IGFT case, and IDCT requires only the
transform coefficients.

Considering light field data, images next to each other are
similar and, consequently, the associated residual images are
highly redundant. By exploring this redundancy, it is possible
to avoid transmitting a different Fk,t or Ak,t with every single
block. In the proposed scheme, for a given block position t0,
only one Ak,t0 is considered for the entire light field line,
i.e., for K − 1 residual images, as depicted in Fig. 4. In the
proposed compression method, only the adjacency matrices
associated with the central residual image R8, with blocks
B8,t, are computed, for the case of a light field with 16 total
images per line and 15 residual images. Note that the first
image from each line is an intra image and no prediction nor
residual image is associated with it.

By utilizing a single adjacency matrix for K − 1 sim-
ilar blocks, the impact of transmitting Ak,t along with the
transform coefficients is reduced, but GFT efficiency may be
degraded for the blocks that are not the reference blocks
when the adjacency matrix is computed. Central residual
image R8 is defined heuristically as reference, in order to
minimize degradation of GFT. This definition assumes that
blocks’ similarity is reduced the further a image is from the
reference image, and the central image is, on average, the best
approximation for the entire line.

It is important to note that, by transmitting A instead of F,
the transmitted data is critically reduced, given the inherent
sparsity and structure of the adjacency matrix discussed in
Section III-B, but complexity on receiver side is increased
since F needs to be computed from the adjacency matrix.

k

K − 1

t0

t0

t0

t0

Fig. 4. Representation of a block position t0 for K 1 residual images.

IV. SIMULATION AND RESULTS

During the simulations, only luminance component from
the light field images is considered. Images are 512 × 640
pixels. Utilizing blocks with 32× 32 pixels, DCT yields 1024
transform coefficients, from which the 100 largest coefficients
are kept, i.e., Q = 924. MSE for reconstructed residual images
from DCT compressed coefficients is computed. The algorithm
searches for the largest Q for which GFT results on better MSE
for a residual image when compared to DCT. That is, how
many more GFT coefficents can be set to zero and still yield
smaller mean squared error. In this simulation, Q is set for a
whole image, thus, every block Bk,t in the k-th residual image
is represented by the same number of transform coefficients.

The result for this simulation, considering only the first light
field line, is shown in Fig. 5 as the difference between Q used
for GFT and DCT. The resulting MSE for this case is shown
in Fig. 6. As expected, the best case occurs for the reference
residual image R8 from which A matrix is computed, where
GFT is capable of providing better MSE while setting 28
more coefficients to zero. Results also show that, as images
get further apart from the reference image, GFT efficiency
decays when compared to DCT. For the last residual image
R15, GFT needs two more coefficients than DCT in order to
provide smaller MSE. Previous simulations are extended to
the whole light field data and the result is presented in Fig. 7.
This shows consistency of the method for all light field lines.

Considering the total number of coefficients, in the present
simulation, DCT requires 100 transform coefficients per block.
Each image is divided into T = 320 blocks, and there are 240
residual images. This yields 7,680,000 transform coefficients
for the whole light field data in the DCT case. From the previ-
ous results, GFT requires 6,673,600 transform coefficients and
320 A matrices per line. As only 62 coefficients are needed to
construct each A, as shown in Section III-B, GFT requires a
total of 6,991,040 coefficients. This means 8.97% reduction in
number of coefficients while keeping smaller MSE than DCT.

When applied to two other light field sets from [10], namely
Lego Knights and Tarot cards and crystal ball, the proposed
compression methodology achieves a combined reduction in
number of coefficients of 4.6% as compared to DCT.
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Fig. 5. Difference between Q values used for GFT and DCT on the first
light field line.

Fig. 6. MSE for each residual image for GFT and DCT.

V. FUTURE WORKS

This paper contains some preliminary results of an ongoing
research. Thus, some of the assumptions and heuristics adop-
ted here admit deeper investigations, as both light field and
DSPG are developing fields, and putting them together is new
to the best of our knowledge. Hence, the proposed method
should be tested on a larger data base; the NN image model
could be used considering data from all residual blocks instead
of a single reference block for matrix A computation, which
may improve GFT efficiency for various blocks; other image
models and prediction schemes should be tested; new figures
of merit for compression efficiency evaluation should be used.

VI. CONCLUSIONS

This work provided an efficient method of using GFT
as an alternative to DCT when compressing residual image
blocks from light field data. The proposed method allows
significant reduction in the number of transmitted coefficients
while providing smaller MSE when compared to DCT. The
method was applied to real light field data and results indicate
that GFT is a viable transform for compression purposes when
there is high correlation between various images.

Fig. 7. Difference between Q values used for GFT and DCT on the whole
light field.
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On the Use of Graph Fourier Transform
for Light-Field Compression

Vitor Rosa Meireles Elias and Wallace Alves Martins

Abstract—This work proposes the use and analyzes the viabil-
ity of graph Fourier transform (GFT) for light-field compression.
GFT is employed in place of discrete-cosine transform (DCT)
in a simplified compression system based on high-efficiency
video coding (HEVC). The effect on GFT efficiency of different
implementations for prediction procedure is analyzed, as well
as different methods for computing GFT given residual images.
Results indicate that the prediction scheme is sensitive to the
type of light field being compressed, and a preliminary method
for selecting the best prediction scheme is explored. Moreover,
considering multiple residual images when computing GFT,
instead of only one central image, improves compression rate and
makes compression more uniform across multiple views. GFT
achieves reduction of up to 21.92% in number of transform
coefficients when compared to DCT-based compression, while
providing better or equal mean squared reconstruction error.

Index Terms—Signal Processing on Graphs, Graph Fourier
Transform, Light Field, Compression, High Efficiency Video
Coding, Discrete-Cosine Transform, Prediction.

I. INTRODUCTION

Light field imaging is a promising technology that opens a

variety of new possibilities to entertainment industries, such

as photography and cinema, by capturing 4D data from a

scene [1]–[7]. Light field technology is based on the 5D

plenoptic function 𝐿 (𝑥, 𝑦, 𝑧, 𝜃, 𝜙), which describes the amount

of light 𝐿, denominated radiance, along every position (𝑥, 𝑦, 𝑧)
in space and in any direction (𝜃, 𝜙). Theoretically, if the

plenoptic function for a region of interest is known, any

image associated with that region can be recreated, from

every perspective. This motivates the use of light field in

entertainment industries, mainly photography and cinema [1].

Other application for light fields reside in medical imaging,

such as microscopy [8] and brain imaging [9]. In practice,

determining the plenoptic function is unfeasible, so light field

cameras capture a 4D parametrization of the plenoptic function

that consists of multiple photographs of a scene. This can be

done moving a digital camera in a grid of various positions and

taking photographs at each position, by using an array with

multiple cameras, or by adding a microlens array in front of

the camera sensor [3].

As light field data consists of multiple photographs, data

size may increase drastically depending on the configuration of

the light-field recording setup, making the manipulation of the

resulting data a challenging task [10]–[15]. The “JPEG Pleno”

Mr. Vitor R. M. Elias and Prof. Wallace A. Martins are with the
Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil (emails:
vitor.elias@smt.ufrj.br, wallace.martins@smt.ufrj.br).

The authors are grateful for the financial support provided by CNPq,
CAPES, and FAPERJ, Brazilian research councils.

Digital Object Identifier: 10.14209/jcis.2018.10

initiative, conducted by the JPEG standardization committee,

aims at providing solutions for framework and data manipu-

lation considering several multiview image techniques, such

as light field [6]. The delivery of a complete set of tools,

including framework, coding, tests, and software, is set to

2018 [6], [16]. This requires in-depth research in order to

develop and improve the various tools.

The use of graphs is specially relevant when dealing with

an irregular domain or any domain that is not well represented

by traditional time series [17]. In the current stage of the

information era, the necessity of dealing with data from

enormous networks, such as social networks, sensor networks,

transport networks, among many others, increases daily. Given

the non-ordered nature of these networks, using graphs as an

underlying domain for the associated data becomes an inter-

esting alternative to standard analyses [18]. Data from these

networks become signals on graphs and, in order to manipulate

these data, tools from classic digital signal processing (DSP)

are adapted to signals on graphs, yielding the emerging field

of digital signal processing on graphs (DSPG ) [17], [19]–[23].

Two important concepts that serve as basis for a signal

processing framework for signals on graphs are the definitions

of shift operator and frequency domain. As an emerging field,

there are no consensus regarding the proper definitions of

these concepts, giving rise to many researches addressing the

approach that best fits each particular application [24]. One

approach is based on the spectral graph theory [25], which uses

the graph Laplacian L as shift operator and its eigenvectors as

spectrum of the graph. This approach is usually restricted to

undirected graphs, for which relations between two different

elements are symmetrical, i.e., an edge from element 𝑖 to

element 𝑗 has the same value as an edge from 𝑗 to 𝑖. A second

approach, valid for both directed and undirected graphs, uses

the adjacency matrix of the graph A as shift operator [19],

[26], [27]. In this case, the spectrum of the graph is defined

as the eigenvalues of A. This approach is the one adopted

throughout this work, as it allows the use of more general

classes of graphs.

This work is an extended version of the work presented in

[28], where the application of graph Fourier transform (GFT)

was proposed and studied as an alternative to the discrete-

cosine transform (DCT) in the compression of light-field data.

The objective of this work is to provide an improvement for

light-field compression systems based on high-efficiency video

coding (HEVC) [14], [29]. In HEVC, DCT and discrete-sine

transform (DST) are used as block transforms, with the objec-

tive of mapping data into a frequency-related domain where

quantization (and thus compression) is more efficient. This

increase in efficiency is due to the energy compaction property
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related to these trigonometric transforms when applied to

images. It has been shown in [30], [31] that GFT is able to

concentrate energy in fewer coefficients when compared to

DCT, decreasing compression distortion when using the same

number of coefficients. GFT usually depends on the original

data and, thus, is not a fixed transform. Transmitting the

transform basis from encoder to decoder is required, increasing

transmission rate, and the impact of this task must be dealt

with in order for GFT to be more efficient than DCT in the

rate-distortion sense.

A. Scope and Contributions

This work begins by providing a review on both light

field and DSPG theories and an overview on how both these

concepts are employed in this work. This includes: presen-

tation of introductory concepts on both topics, motivation

of the proposed approaches, notation, and database adopted

throughout this work. The remaining part of this work focuses

on analyzing the viability of using GFT in place of DCT under

different analysis methods. We investigate forms of improving

the performance of GFT by studying some of its parameters for

which no consensus has been reached. The main contributions

of this work are:

• Proposal and investigation of real applications for the

developing field of DSPG , given real and practical light

field data.

• Performance comparison between GFT and traditional

and broadly used DCT, analyzing viability of using GFT

in the proposed application.

• Study of the effects of different settings for graph repre-

sentation on GFT.

B. Outline

In Section II, background review on both light field and

DSPG is provided, including theory, applications, and moti-

vation. Section III presents the proposed approach for using

GFT light-field compression in an HEVC-based system. Sec-

tion IV describes the entire methodology regarding database,

definitions, and other concepts adopted throughout this work.

Simulations and results are presented in Section V. Section VI

presents a brief discussion of the results and future works.

Section VII presents a conclusion for this work.

II. LIGHT FIELD AND DSPG : A REVIEW

This section reviews the main concepts related to both light

fields and DSPG . It begins by presenting light-field theory,

focusing on recent implementations and how light-field data

is generated. Then basic graph concepts and notations adopted

in this work are presented, along with recent advances in the

area.

A. Light field

Early notions of interpreting light as a field and conceiving a

vector function to represent the amount of light present at (and

passing through) points in space date back to the beginning

of the 20th century. In 1936, Andrey Gershun introduced the

Figure 1: Planes 𝑠𝑡 and 𝑢𝑣, which serve as 4D parametrization

for plenoptic function.

term light field [32] and an early version of the function that

would later be called the plenoptic function. In its standard

interpretation, the 5D plenoptic function 𝐿 (𝑥, 𝑦, 𝑧, 𝜃, 𝜙), which

is a scalar field, describes light intensity that goes through a

given point in space as a function of its position and the di-

rection toward which the light ray is headed. Light intensity is

denominated radiance and is given in W⁄sr·m2 (watts per steradian

per meter squared, i.e., power per solid angle per area). The

function 𝐿 (·) may be extended to higher dimensionality, for

instance, by also considering time or wavelength. The idea

of this function is to convey the complete information about

a scene1 associated with electromagnetic radiation. If 𝐿 (·)
is known, then every possible view2 associated with a scene

can be reconstructed by correctly arranging evaluations of the

function for different points and directions in space, having

several applications in imaging, photography, rendering, and

other areas.

In practice, the plenoptic function is not available or ob-

tainable in a feasible way. If free space is assumed, that is,

the space associated with the region of interest is free of

obstacles, the plenoptic function may be represented in lower

dimensionality, considering a light ray sustains its radiance for

different points along a given direction. The assumption of free

space may be generalized to keeping the region of interest

limited to the convex hull of any object. A straightforward

parametrization of the plenoptic function in four dimensions

is composed by two planes as shown in Figure 1. This

representation of plenoptic function in four dimensions leads

to current implementations of light-field-capturing devices. In

devices used for capturing scenes and creating a light-field

composition, the 𝑢𝑣 plane is taken as the camera plane and

the 𝑠𝑡 plane as the focal plane. That is, multiple light rays from

the scene located at plane 𝑠𝑡 travel along the space and hit a

sensor region in plane 𝑢𝑣, creating a view of the scene [1].

Common implementations are:

• array of cameras, with all cameras focused on the scene,

creating a discrete version of plane 𝑢𝑣;

• moving camera over a grid, capturing the scene at each

point of the grid. It is actually similar to using an array of

1In this context, scene is a region of interest in space, usually containing
an observable object.

2In the sense of a graphical projection of the scene onto a planar surface.
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Figure 2: Example of light-field data, consisting of multiple

views of a scene, captured by a moving camera.

cameras, but requiring a static scene. An example of light

field captured by a moving camera is shown in Figure 2;

• microlens array inside a conventional digital single-lens

reflex (DSLR) camera, where each microlens captures

light from a different direction rendering different per-

spectives of the scene.

Light-field technology comes with several applications,

most of them in the entertainment field. With light-field data

captured by systems such as the aforementioned ones, features

otherwise unfeasible become direct applications. For instance,

synthetic aperture photography allows changing the focal point

of a picture after it was taken. Light-field rendering allows the

creation of novel views not previously captured. Light field

displays may improve virtual-reality displays by using full

light-field data rather than simple stereoscopic views. Light-

field applications, however, are very data-intensive, since a

single traditional image is now represented by a set of multiple

images. Recent researches are dedicated to dealing with the

high amount of data from light field [10], [11], [14].

B. Digital signal processing on graphs

Graphs are commonly defined as mathematical structures

composed by two different sets: set V = {𝑣0, 𝑣1, . . . , 𝑣𝑁−1}
composed of 𝑁 vertices (also known as nodes) and set E =
{𝑒00, 𝑒01, . . . , 𝑒 (𝑁−1) (𝑁−1) } of 𝑁2 edges. Vertices are basic

units and are interpreted as objects of a graph G = {V, E},
which can be used to model objects in diverse systems, e.g.,

points in R2, sensor locations in a network, social-network

users, or chemical elements on a molecule, among many

other applications. Edges 𝑒𝑖 𝑗 , whose meaning and (possibly

complex) value rely on the application of the graph, represent

pairwise relations between vertices 𝑣𝑖 and 𝑣 𝑗 , being equal to

zero if there is no relation. The neighborhood of a vertex 𝑣𝑖
is defined as the set of all vertices directly connected to 𝑣𝑖

Figure 3: Example of undirected graph with 𝑁 = 4.

by a non-zero edge. These assumptions consider that there

are no multiple edges between two vertices, but there are no

restrictions to self-loops, which means a vertex can be directly

related to itself. In this context, relation between elements does

not have a fixed definition and depends on the application. If

the relation between vertices 𝑣𝑖 and 𝑣 𝑗 is the same as the

relation between vertices 𝑣 𝑗 and 𝑣𝑖 for every pair of vertices,

i.e., 𝑒𝑖 𝑗 = 𝑒 𝑗𝑖 , ∀𝑖, 𝑗 , the graph is denominated undirected
graph. Otherwise, if the direction of the edge is relevant and

𝑒𝑖 𝑗 ≠ 𝑒 𝑗𝑖 for some pair of vertices, the graph is denominated

directed graph. An example for an undirected graph is shown

in Figure 3, with 𝑁 = 4 vertices. This graph is not fully

connected, since many edges are equal to zero. Another form

of representing the relations between vertices is the adjacency
matrix A ∈ C𝑁×𝑁 , whose element [A]𝑖 𝑗 = 𝑒𝑖 𝑗 . The graph is

undirected if, and only if, A is symmetric. Throughout the rest

of this paper, graphs will be represented by pairs G = {V, A}.

Graphs are traditionally used as tools for data visualization

and system modeling, whereas classical digital signal process-

ing (DSP) is traditionally constructed around well-structured

domains, such as time or space. Time domain is interesting

for DSP as it holds properties that are particularly useful in

the analysis of discrete-time signals. Consider a discrete-time

finite-duration signal 𝑠[𝑛] as a function 𝑠 : {0, 1, . . . , 𝑁−1} →
C that maps instants 𝑛 ∈ {0, 1, . . . , 𝑁 − 1} in time domain

into the complex plane. Time domain is well-structured, as

comparisons such as 𝑛1 < 𝑛2 and 𝑛1 = 𝑛2 are feasible for

any two points 𝑛1, 𝑛2 within {0, 1, . . . , 𝑁 − 1}, and it is a

totally ordered domain. For many applications that emerge

with recent advances and necessities in technology, treating

signals associated with unstructured and more general domains

is required. These applications are usually associated with

networks, such as social, transport, sensor, and biological

networks, for which representing the underlying domain with

time or space would waste part of the information regarding

connections among elements in the network. Graphs provide

the suitable discrete domain for signals extracted from these

types of network. Moreover, these applications are usually

data-intensive, and graphs are a natural tool for representation

of Big Data [20].

The concept of signals on graphs uses the set of 𝑁 ver-

tices V of a graph G as the domain of a dataset of 𝑁
elements, equivalently to the use of 𝑁 time instants 𝑛 ∈

{𝑛0, 𝑛1, . . . , 𝑛𝑁−1}, as shown in Figure 4. The set of edges

E of the graph is used to encode any relevant relationship

between elements of the signal that could not be represented
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Figure 4: Relation between a signal represented in time domain

and in graph domain.

in the time domain. A classic example is a sensor network that

measures local temperature for 𝑁 sensors distributed across

several points of a country. Each location is represented by

a vertex of the graph and the locally measured temperature

is the signal on the vertex. Edges may be used to indicate

distance between sensors, rendering an undirected graph. An-

other example is the measurement of user activity on a social

network. Vertices would indicate each user account, for which

an online-time is measured, and users are connected to each

other via “following” tags, rendering a directed graph. For

both cases, representing signals in time domain discards pieces

of information that could be of paramount importance when

processing these data.

The notation for signals on graph adopted throughout this

paper is as follows: a graph signal given by 𝑠 : V → C is

referred to as a vector s. The 𝑛-th entry of vector s is 𝑠𝑛 =
𝑠[𝑣𝑛], with 𝑣𝑛 ∈ V.

Once graph domain and the definition of a signal over

this domain are formally stated, one can build tools to pro-

cess signals on graphs, which lead to two major approaches

developed in the last years. The first approach is based on

graph spectral theory [25] and on the graph Laplacian, being

restricted to undirected graphs with non-negative edge values.

This approach has received great attention and much effort

was put into developing tools with these concepts [17]. Tools

for DSPG are mostly translations from already-consolidated

classical DSP tools, which was mostly exploited by the second

approach proposed by Sandryhaila and Moura [19], [20], [26],

whose concepts are adopted and reviewed in the following

definitions.

The first and most fundamental tool translated from classical

DSP is the unit-delay or unit-shift operator, denoted as T−1,

which consists of an essential block in filter design. In DSP,

when a unit shift T−1 is applied to a length-𝑁 discrete-time

signal 𝑠[𝑛], the signal is shifted in time resulting in a signal

𝑠[𝑛] = T−1 {𝑠[𝑛]} = 𝑠[(𝑛 − 1) mod 𝑁]. (1)

The unit-shift operator T−1 is a linear transformation,

implying that it can be associated with a matrix. Indeed, when

Figure 5: Cyclic graph: generalization of discrete-time domain.

using vector notation, one can rewrite Equation (1) as

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑠[0]
𝑠[1]
...

𝑠[𝑁 − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
1

. . .

1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

︸����������������︷︷����������������︸
=C

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑠[0]
𝑠[1]
...

𝑠[𝑁 − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2)

One can interpret the relation in Equation (2) within a graph

framework. Indeed, consider the directed cyclic graph in Fig-

ure 5. Given all edges equal to 1, this graph can be interpreted

as a graph generalization of the discrete-time domain, where

each vertex 𝑣𝑛 represents a time instant 𝑛 ∈ {0, 1, . . . , 𝑁 − 1}.
The adjacency matrix of this graph is the cyclic-shift matrix
C appearing in Equation (2).

One can bring these ideias to the graph domain by con-

sidering a graph G = {V, A} as the underlying structure for

a signal s, and by identifying the graph-shift operator with

the graph adjacency matrix A. That is, a shifted signal s̃ on a

graph is given by

s̃ = As. (3)

This definition for graph shift means that shifting a signal

on graph domain is equivalent to replacing each signal sample

𝑠𝑛 by a linear combination, given by the 𝑛-th row of A, of its

neighborhood. This approach is not restricted to undirected

graphs, allowing the use of directed graphs with complex-

valued edges. A straightforward property of this definition is

that it generalizes the unit-shift operator from classical DSP.

Given a formal definition for unit-shift in the graph domain,

defining filters is the next natural step and it is performed by

translating filtering concepts from classical DSP. In discrete-

time domain, the output from a finite-duration impulse re-

sponse (FIR) filter with length 𝑃 is defined by the linear

combination of its 𝑃 most recent inputs, i.e.,

𝑠[𝑛] = ℎ0𝑠[𝑛] + ℎ1𝑠[𝑛 − 1] + · · · + ℎ𝑃−1𝑠[𝑛 − 𝑃 + 1],

=
𝑃−1∑
𝑝=0

ℎ𝑝T
−𝑝 {𝑠[𝑛]} , (4)

where the time-invariant coefficients ℎ0, ℎ1, . . . , ℎ𝑃−1 define

the impulse response of the filter and each term 𝑠[𝑛−𝑝] results

from shifting 𝑠[𝑛] with a shift operator T−𝑝 . For a signal

with finite duration 𝑁 , applying an FIR causal filter of length

𝑃 ≤ 𝑁 , that is, ℎ𝑝 = 0 for 𝑝 < 0 and 𝑝 ≥ 𝑃, induces the

following circular convolution
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑠[0]
𝑠[1]
...

𝑠[𝑁 − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ0 ℎ𝑁−1 · · · ℎ1

ℎ1
. . .

. . .
...

...
. . .

. . . ℎ𝑁−1
ℎ𝑁−1 · · · ℎ1 ℎ0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦︸��������������������������������︷︷��������������������������������︸
=H(C)=

𝑃−1∑
𝑝=0

ℎ𝑝C𝑝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝑠[0]
𝑠[1]
...

𝑠[𝑁 − 1]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

which shows that the filter is equivalent to a length-𝑃 poly-

nomial over the cyclic-shift matrix C. Analogously, the linear,

shift-invariant graph filter is defined as a polynomial over the

adjacency matrix A, i.e.,

H(A) =
𝑃−1∑
𝑝=0

ℎ𝑝A𝑝 . (6)

Once signals, shift, and filters on graphs are defined, con-

cepts of spectral decomposition and Fourier transform can

be extended to graph domain. For a signal space S, spectral

decomposition of S is the identification of 𝑊 filtering-invariant

subspaces S0, . . . , S𝑊−1 of S. Being invariant to filtering

means that, for a signal s𝑤 ∈ S𝑤 , the output of filtering this

signal is s̄𝑤 = H(A)s𝑤 ∈ S𝑤 . The spectral decomposition is

uniquely determined for every signal s ∈ S if, and only if:

• S𝑤 ∩ S𝑟 = {0}, 𝑤 ≠ 𝑟;

• dim (S0) + · · · + dim (S𝑊−1) = dim (S) = 𝑁;

• Each S𝑤 is irreducible to smaller subspaces,

and, in this case,

S = S0 ⊕ S1 ⊕ · · · ⊕ S𝑊−1. (7)

Given S as defined in Equation (7), satisfying the above

conditions, any signal s ∈ S is univocally represented as

s = s0 + . . . + s𝑊−1. (8)

The diagonalization of the adjacency matrix A leads to a

spectral decomposition of the signal space S on the graph

domain. Nonetheless, given the arbitrary nature of A, as

allowed in this DSPG approach, it is not always diagonalizable.

It is shown in [19] that the Jordan decomposition A = VJV−1

is used to conduct spectral decomposition of S on graphs. J
is the Jordan normal form and V is the matrix whose columns

are the generalized eigenvectors of A, which are the bases of

the subspaces of S. Hence, Equation (8) can be written as

s = Vŝ, (9)

where ŝ is the vector of coefficients that expand s into the

subspaces of S. The union of these subspaces is the graph
Fourier basis. The graph Fourier transform (GFT), which

provides the coefficients of the expansion of a signal over

the graph Fourier basis, is defined as

F = V−1, (10)

such that ŝ = Fs. The inverse graph Fourier transform (IGFT)

is given by

F−1 = V. (11)

If the graph is undirected, A is a symmetric matrix and it is

diagonalizable. The graph Fourier transform is then obtainable

from the eigenvectors of A. In this case, the eigenvectors are

orthogonal and V−1 = VT, which makes computation of the

transform matrix F less intensive.

III. PROPOSED APPROACH TO LIGHT FIELD COMPRESSION

The application of HEVC-based methods for compression

of light-field data has been intensively researched over the past

years [14], [29], [33], [34]. HEVC presents a complex scheme

composed by intra-frame and inter-frame prediction, motion

estimation and compensation, transformation, quantization,

coding, and other procedures, for which several configurations

are available. These procedures are applied to coding tree
units, which are blocks of up to 64×64 pixels into which video

frames are divided. Notable procedures considered in this work

are inter-frame prediction, transformation, and quantization,

whose general concepts are explained below.

• Inter-frame prediction: When encoding a block of pixels

of the current frame, the algorithm searches for a similar

block, denominated reference block, from the previously

encoded frame. Instead of encoding the raw values of

pixels of the current block, the algorithm encodes only

the difference between current and reference blocks. This

difference is denominated prediction residual. The pre-

diction procedure may be a complex process, using, for

example, algorithms to estimate and compensate move-

ment of blocks between different frames. Residual blocks

should have less entropy than raw blocks, which makes

compression in transformation, quantization, and coding

stages more efficient. It must be noted that, in order to

make inter-frame prediction possible, at least one frame

that was previously encoded must have been encoded

without inter-frame prediction. This frame is referred to

as intra frame.

• Transformation: HEVC applies two-dimensional

discrete-sine transform (DST) and, mostly, discrete-

cosine transform (DCT) to residual blocks.

Transformation is used to map data from residual

blocks into a frequency-related domain, where energy

concentration in lower frequencies can be exploited

during compression. The output of transformation stage

is a transform-coefficient block. Transform coefficients

are real values that indicate how much each frequency

component contributes to build the image in the original

domain, in this case, the residual block.

• Quantization: Quantization maps coefficient values that

may assume any value from a large, possibly contin-

uous, set into a smaller set, allowing application of

coding procedures otherwise unfeasible. The stronger the

quantization, the fewer bits will be necessary to encode

transform coefficients, thus reducing the associated rate.
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Figure 6: Block diagram describing the simplified compression

process adopted throughout this work.

Quantization is a lossy process, i.e., information is per-

manently lost once coefficients are quantized. The loss of

information is called distortion, for which several metrics

are available. Compression processes must consider the

trade-off between rate and distortion.

This work proposes and analyzes the viability of using

GFT in place of DCT in HEVC-based light-field encoders,

while exploiting the similarity among light-field images. The

use of GFT within data compression context, and specifically

image compression, is not new. The competence of GFT for

concentrating information in few transform coefficients in a

competitive manner when compared to other transforms is

known and has been approached in other works [30], [31],

[35]. Notwithstanding GFT inducing relatively high energy

concentration, the transform and its inverse IGFT depend on

the adjacency matrix A, which has no fixed structure and

depends on the application and on the data. The impact of

storing or transmitting A or the transform matrix F must be

considered during compression. The method proposed in this

work aims at reducing the impact of the extra data related to

graph structure by exploring the redundancy that exists among

images near to each other in light fields.

IV. METHODOLOGY

In order to assess the performance of using GFT for

light-field compression, a simplified compression process is

defined, as presented in Figure 6, which is detailed in the

next subsections. A database composed by 7 light fields is

used. Three of them, namely Humvee, Knights, and Tarot,
are obtained from the Stanford Light Field Archive [36] and

some sample views are shown in Figure 7. These light fields

are captured from real scenes using a moving camera on a

rectangular grid with 16 × 16 positions, yielding 256 total

images for each light field. The other four light fields are

generated synthetically, obtained from the HCI 4D Light Field
Dataset [37], [38]; sample views for boxes, cotton, dino, and

sideboard are presented in Figure 8. For these light fields,

views are captured over a grid of 9 × 9 positions, for a total

of 81 images for each light field. Database information is

summarized in Table I. Only the luminance component from

Figure 7: Sample views from light fields captured from real

scenes. Humvee (top), Knights (bottom left), and Tarot (bottom

right).

Figure 8: Sample views from light fields captured from syn-

thetic scenes. Boxes (top left), Cotton (top right), Dino (bottom

left), and Sideboard (bottom right).

these light fields is used throughout this work, despite the fact

that RGB versions are depicted here.

A. Prediction

The input of video codecs is a stream of frames ordered

according to their time stamps. It is reasonable to assume

that similarity between frames decays when two frames are

selected further apart in time if compared to similarity between

two consecutive frames. Thus, prediction for video streams

can be implemented by selecting the frame that comes right

before the current frame. It is worth noting that complex

prediction schemes are not usually limited to only one frame.
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Table I: Database information

Light field Scene View resolution [pixels] Grid size
Humvee Real 640 × 512 16 × 16
Knights Real 1024 × 1024 16 × 16
Tarot Real 1024 × 1024 16 × 16
Boxes Synthetic 512 × 512 9 × 9
Cotton Synthetic 512 × 512 9 × 9
Dino Synthetic 512 × 512 9 × 9
Sideboard Synthetic 512 × 512 9 × 9

For light fields, a prediction order is not straightforward. It

is expected that views close to each other should be more

similar. However, there is no consensus on how to determine

the optimal selection of views or the boundaries for spatial

neighborhood used for prediction in light fields. Considering

the light field humvee as example, with a grid of 16 × 16
positions, three prediction schemes are considered in this

work:

• Rows: Prediction is performed over each row with 1×16
images, independently from other rows. The first image

from each line is assumed to be an intra image, i.e.,

no prediction is used when coding this image. For the

remaining 15 images from each line, prediction residuals

are calculated. A simple prediction scheme is adopted.

The prediction image Ip
𝑘 for the 𝑘-th image I𝑘 in a light

field row, where 𝑘 ∈ {2, 3, . . . , 𝐾} and 𝐾 = 16 in this

example, is given by Ip
𝑘 = I𝑘−1. That is, each image is

assumed to be equal to the previous image in the line,

given the high similarity among adjacent views in light

fields. Finally, the residual image R𝑘 is computed as the

difference between current image and its prediction, i.e.,

R𝑘 = I𝑘 − Ip
𝑘 = I𝑘 − I𝑘−1. A total of 𝐾 −1 residual images

are computed for each row.

• Columns: Prediction using columns is similar to predic-

tion using rows. Columns with 16× 1 images are treated

independently, and the first image from each column is

an intra image, whereas the remaining are inter images.

Computation of residual images R𝑘 is analogous to the

one described for rows.

• Blocks: When using a block scheme to perform pre-

diction, a 3 × 3 block of views is selected. The central

view of the block is the intra image and the prediction

image for every inter image is the central view. In other

words, a block is composed by 𝐾 = 9 views on a 3 × 3
grid. The central image I𝑐 is intra-encoded, for some

𝑐 ∈ {1, 2, . . . , 𝐾}. Per group, 𝐾 − 1 residual images are

computed as R𝑘 = I𝑘 − I𝑐 , for 𝑘 ∈ {1, 2, . . . , 𝐾} and

𝑘 ≠ 𝑐.

Given one of the prediction schemes described, the set of

views selected for prediction procedure, i.e, views from a row,

column, or block, will be referred to as prediction group.

B. Transformation

As stated, block transform is used to map data from residual

image blocks into a frequency-related domain. This allows

better compression of the data. HEVC uses DCT for residual

blocks from size 4 × 4 up to 32 × 32, and DST for some

cases of 4 × 4 blocks. In this work, GFT is used to transform

blocks of size 32 × 32 and results are compared to those of

DCT. If smaller blocks, such as 4 × 4 or 8 × 8, are used, it is

expected that blocks at the same position for different residual

images should have low correlation with each other, given the

parallax between adjacent views. For large 32×32 blocks, the

impact of parallax is reduced. High correlation among blocks

in the same position from several views in a prediction group

is beneficial for the proposed compression scheme, as will be

further explained in this section.

Up to this point, images are treated as sets of pixels in 2D

space. In order to make the use of GFT possible, the signal

associated with a residual block must be represented as a signal

on a graph, previously defined as a vector s, such that the 𝑛-th

entry 𝑠𝑛 is a function of the vertex 𝑣𝑛 ∈ V. Let the signal

associated with a pixel from an 𝑀1 × 𝑀2 residual block be

𝑟 : I𝑀1×𝑀2 → R, where I𝑀1×𝑀2 represents the set of integer

indexes for the positions of pixels on the 𝑀1×𝑀2 block. That

is, for each position on the 𝑀1 × 𝑀2 block, a residual-related

real value is assigned. The signal on graph is defined such that

𝑠[𝑀1 (𝑚2 − 1) + 𝑚1] = 𝑟 [(𝑚1, 𝑚2)], for (𝑚1, 𝑚2) ∈ I𝑀1×𝑀2 .

That is, the graph signal s is defined as a column vector formed

by stacking the columns of the residual block.

Let a residual block B𝑘,𝑡 , 𝑘 ∈ {1, . . . , 𝐾}, 𝑡 ∈ {1, . . . , 𝑇},
be the 𝑀1 × 𝑀2 block from the 𝑘-th residual image R𝑘 (in a

prediction group with 𝐾 −1 residual images) that was divided

into 𝑇 blocks. The graph signal associated with this block

is s𝑘,𝑡 . The corresponding adjacency matrix is denoted by

A𝑘,𝑡 and the GFT matrix by F𝑘,𝑡 . Note that the transform

matrix, and consequently its inverse, depend on the signal,

unlike the DCT, which is the same for every 𝑀1 × 𝑀2 block.

The first consideration adopted in this work in order to reduce

the impact of transmitting the transform matrix is to build

a sparse adjacency matrix and transmit A𝑘,𝑡 instead of F𝑘,𝑡 .

The adjacency matrix A𝑘,𝑡 is built according to the nearest-

neighbor (NN) image model [39], which is shown to offer an

efficient image representation whilst providing a sparse and

fixed graph structure. This model defines an image as a 2D

nearest-neighbor graph. An NN graph is a graph for which

a vertex 𝑣𝑖 is connected to 𝑣 𝑗 if, and only if, the distance

𝑑 (𝑣𝑖 , 𝑣 𝑗 ) is minimum among the distance between 𝑣𝑖 and

all other vertices. For a regular structure like an image, the

minimum distance exists for more than one pixel, as depicted

in Figure 9. Using NN image model implies that each vertex

of the graph will have at most four non-zero edges, and pixels

at the corner, border, or interior of the block have different

number of edges. The model also assumes that an image is a

2D NN graph constructed as a Cartesian product of two 1D

NN graphs. A 1D NN graph is a possibly-directed line graph

similar to the one presented in Figure 5, apart from the loop

edge. This generates a structure where multiple edges assume

the same value, indicated by coefficients 𝑎0, . . . , 𝑎𝑀1−2 and

𝑏0, . . . , 𝑏𝑀2−2 in Figure 9. As a result, considering an 𝑀1×𝑀2
residual block B𝑘,𝑡 , the corresponding adjacency matrix A𝑘,𝑡 ∈

R
𝑁×𝑁 , 𝑁 = 𝑀1𝑀2, has at most (𝑀1 − 1) + (𝑀2 − 1) unique

non-zero coefficients. For blocks of size 32×32, this means 62

unique non-zero coefficients out of 1024 entires of A𝑘,𝑡 . The

coefficients 𝑎0, . . . , 𝑎𝑀1−2 and 𝑏0, . . . , 𝑏𝑀2−2 are defined so as
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Figure 9: Relation edges according to the NN image model.

Edges connect only pixels at minimum distance among all

pixels.

to minimize the ℓ2 distortion introduced by the shift operation,

i.e., ‖A𝑘,𝑡s𝑘,𝑡 − s𝑘,𝑡 ‖2. As described in [39], this minimization

is solved as an overdetermined least-squares problem. This

entire reasoning eventually implies that the adjacency matrix

A𝑘,𝑡 is transmitted in place of the graph Fourier transform

matrix F𝑘,𝑡 . While this saves bandwidth, it adds complexity

to the decoder, as the eigenvectors of A𝑘,𝑡 must be computed.

Note that A𝑘,𝑡 is symmetric and, thus, diagonalizable. Finally,

it is worth pointing out that other schemes rather than the

NN image model could have been employed as well, which

might induce different performances; however, the NN model

proved viable, as corroborated by the results achieved in this

work (see Section V).

The second consideration employed to reduce the impact of

A𝑘,𝑡 , besides forcing sparsity and fixed structure via NN image

model, is to exploit the redundancy among the many views in

the light field in order to avoid transmitting A𝑘,𝑡 with every

single block. Considering that every view is equally divided

into 𝑇 blocks, only one A𝑡0 is transmitted for a given block

position 𝑡0 across the entire prediction group. Figure 10 shows

an example of block position 𝑡0 across views from a prediction

group. This consideration assumes that blocks in the same

position are highly correlated among several residual images.

In this work, two similar methods for computing matrix A𝑡0

are considered. The first is using only adjacency matrices

associated with one of the 𝐾 − 1 residual images R𝑘 . For

rows or columns prediction schemes, using the central residual

image (for example R8 when 𝐾 = 16) is an intuitive choice,

since other views are symmetrically similar to it. For blocks
prediction scheme, there is no defined choice. The second

method is to use multiple residual images R𝑘 and compute the

coefficients of A𝑡0 by minimizing
∑𝑘2

𝑘=𝑘1
‖A𝑘,𝑡0s𝑘,𝑡0 − s𝑘,𝑡0 ‖2,

1 ≤ 𝑘1 < 𝑘2 ≤ 𝐾 − 1. That is, the distortion introduced by

the shift operator is minimized jointly for multiple, possibly

all, residual images in a prediction group. For both methods,

using an adjacency matrix which is not specifically computed

for a given block may degrade the efficiency of the GFT, but

the impact of transmitting the matrix is slightly reduced.

Once the adjacency matrix is computed, the GFT matrix

𝑘

𝐾 − 1

𝑡0

𝑡0

𝑡0

𝑡0

Figure 10: Representation of a block position 𝑡0 for residual

images from a prediction group.

for each block position is given by F𝑡 , whose columns are the

eigenvectors of A𝑡 —the reader should keep in mind that the

index 𝑘 can now be dropped from A𝑘,𝑡 and F𝑘,𝑡 since it is

assumed that adjacency and transform matrices do not depend

on the residual image, given that only one matrix is considered

for a given block position across the entire prediction group.

The transform coefficients for each block from residual images

in the prediction group are computed as ŝ𝑘,𝑡 = F𝑡s𝑘,𝑡 , where

s𝑘,𝑡 is the graph signal corresponding to each block.

C. Coefficient selection

A heuristic technique is adopted to assess the performance

of GFT against DCT for light-field compression when em-

ployed in an HEVC-based compression system. The IGFT is

given by the transpose of F𝑡 , since eigenvectors from A𝑡 are

orthogonal. If IGFT is applied to transform coefficients ŝ𝑘,𝑡 ,
the signal s𝑘,𝑡 is perfectly recovered. In practical applications,

compression occurs when transform coefficients are quantized,

resulting also in loss of information. In this work, a simplified

compression process is conducted by setting 𝑄 smallest trans-

form coefficients to zero, resulting in compressed transform

coefficients ŝ𝑄𝑘,𝑡 . When IGFT is applied to these coefficients,

the signal s𝑄𝑘,𝑡 , which is recovered by inverse transform, is

an approximation of the original signal s𝑘,𝑡 . A compressed

version BGFT
𝑘,𝑡 of the original block B𝑘,𝑡 can be constructed

from the signal recovered. For the case of DCT, the 2D DCT

is applied directly to block B𝑘,𝑡 and by setting the smallest

coefficients from the transform block to zero, a compressed

block BDCT
𝑘,𝑡 is recovered via inverse discrete-cosine transform

(IDCT).

V. SIMULATIONS AND RESULTS

Simulations were conducted in order to compare GFT

against DCT when employed in the proposed compression sys-

tem. The basic concept underlying all simulations presented in

the next subsections is to set GFT coefficients to zero as much

as possible while still recovering blocks with less distortion

when compared to a specific DCT compression. The number

of compressed DCT coefficients is fixed at 𝑄DCT = 924, i.e.,

only the 100 largest out of 1024 coefficients are kept and DCT
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Table II: Simulation results for transform-setup analysis

Central residual Part of group Entire group
Light field Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q
Humvee 8.97 6.97 9.65 4.63 8.63 1.82
Knights 13.40 11.04 16.67 8.57 17.53 1.93
Tarot -3.91 3.50 -0.65 1.96 -0.29 0.83
Boxes 0.22 4.56 6.57 2.45 7.76 1.42
Cotton 5.90 3.05 6.28 1.94 6.07 1.00
Dino 21.22 5.14 21.92 3.61 21.18 1.92
Sideboard -3.89 2.67 -2.29 1.23 -2.04 0.86

is fixed at approximately 10:1 compression ratio. Distortion

𝐷DCT is evaluated for DCT. For each residual image, the

simulation searches for the largest number of compressed GFT

coefficients 𝑄GFT for which the corresponding distortion 𝐷GFT

is still smaller or equal to 𝐷DCT. It is important to note that

both 𝑄DCT and 𝑄GFT are set for an entire residual image and,

thus, every block in each residual image will be represented

by the same number of coefficients. The figure of merit used

to characterize distortion is the mean squared error (MSE)

between compressed and original residual images. For some

simulations, the structural similarity (SSIM) index [40] is

also considered as figure of merit for distortion. While MSE

represents an indication of absolute error between images,

the SSIM index provides information related to changes in

structural information between images.

Different simulation setups are considered given the op-

tions described in Section IV. Three prediction methods were

proposed, namely: rows, columns, and blocks. Moreover, two

methods for building the adjacency matrix are considered.

The first uses only one reference residual image, whereas

the second uses multiple residual images when computing the

coefficients of A𝑡 . The effects of these different setups are

analyzed in this section. The database presented in Section IV

and detailed in Table I is used.

A. Transform-setup analysis

As presented in Section IV-B, the coefficients of A𝑡 may

be computed either for a single reference residual image or

jointly for multiple residual images. For this simulation, using

the rows prediction scheme, three setups are considered for

transform computation:

• Using only one central residual image as reference. The

8-th residual image R8 for real light fields, where 𝐾 =
16 images per line, and the 5-th residual image R5 for

synthetic light fields, with 𝐾 = 9 images per line;

• Using part of the prediction group. Residual images from

R5 to R10 for real light fields and from R3 to R6 for

synthetic light fields;

• Using all residual images from the prediction group.

Table II shows the results obtained for simulations consid-

ering these three setups. Results show the reduction in number

of coefficients used by GFT when compared to DCT for the

entire light field, so that GFT is still able to yield better or

equal distortion for every residual image. Reduction values

for the total number of coefficients (#) for each light field are

Figure 11: Number of compressed coefficients 𝑄 according

to residual image position for the three proposed methods for

computing A𝑡 .

computed as

Reduction =
# DCT coefficients − # GFT coefficients

# DCT coefficients
. (12)

It is worth highlighting that the number of coefficients as-

sociated with the adjacency matrices is included in # GFT

coefficients and, thus, the impact of transmitting A𝑡 is consid-

ered. GFT shows slight improvement over DCT for most cases,

yielding up to 21.92% of reduction in number of coefficients.

The analysis shows that using multiple residual images when

building A𝑡 improved the results for all cases when compared

to results obtained using only one residual image as reference.

This result can be observed in Table II by considering each

light field independently, which is represented by each row.

For each light field, an increasing trend in the reduction value

can be noted when going from “Central residual” to “Entire

group” sections, with few exceptions, indicating the overall

improvement when using multiple residual images.

A relevant analysis given different transform setups is to

observe the standard deviation of the number of coefficients

used by the GFT across the residual images. The standard

deviation of 𝑄GFT is estimated for each light field, using

the number of compressed GFT coefficients 𝑄GFT from each

residual image as sample for the standard deviation estimator.

From Table II, it is notable that using the entire prediction

group reduces the standard deviation of 𝑄GFT. When GFT is
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Table III: Results for simulation using SSIM index and A𝑡 computed from all residual images

Humvee Knights Tarot Boxes Cotton Dino Sideboard
Reduction [%] 4.22 10.56 1.15 2.38 -5.36 10.74 -1.14
Standard deviation of Q 1.50 1.83 0.99 1.06 1.15 1.73 1.33

Table IV: Simulation results for prediction-setup analysis

Rows Columns Blocks
Light field Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q Reduction [%] Standard deviation of Q
Humvee 8.63 1.82 -2.80 4.06 3.15 5.52
Knights 17.53 1.93 11.50 2.24 16.09 1.86
Tarot -0.29 0.83 -8.42 0.81 -5.55 3.07
Boxes 7.76 1.42 11.00 1.18 7.38 1.81
Cotton 6.07 1.00 6.10 0.90 6.18 3.00
Dino 21.18 1.92 15.22 1.24 15.53 5.00
Sideboard -2.04 0.86 2.10 1.84 -0.25 2.72

built using only the central residual image, its efficiency is high

for the central residual image, but decays as residual images

get further apart form the central reference. This is expected,

since correlation is reduced and the impact of using a single

transform matrix is increased, requiring more coefficients.

Constructing the transform while considering multiple images

reduces the efficiency decay across the prediction group.

This effect is depicted in Figure 11, where the difference

Δ𝑄 = 𝑄GFT − 𝑄DCT in number of compressed coefficients

for one row of the humvee light field is presented. In this

case, the coefficients of A𝑡 are not considered. The three

proposed transform setups are considered. The peak for Δ𝑄 at

R8 is notable when this residual image is the only one used

for transform computation. When using all residual images,

this effect is no longer present, allowing for a more uniform

compression across all images.

This simulation was replicated using SSIM as metric when

searching for 𝑄GFT. Only the transform setup based on all

residual images for the construction of A𝑡 was used, consid-

ering it achieved the best results in the previous simulation.

Results are presented in Table III. Values for reduction in

number of coefficients are lower than the ones obtained when

using MSE, but GFT is still competitive when compared

to DCT. Moreover, small values for standard deviation are

achieved, as expected.

B. Prediction-setup analysis

In this simulation, the three proposd prediction methods,

namely rows, columns, and blocks, are tested. The transform

matrix is built using all residual images from each group when

computing the matrix coefficients. Results are shown in Table

IV. For real light fields, using the rows prediction scheme

yields the best results, followed by blocks, which increases the

standard deviation of 𝑄GFT across residual images. For syn-

thetic light fields, the discrepancy in results among different

methods is reduced and the efficiency of columns prediction

scheme slightly increases.

These results indicate that different prediction methods may

be better suitable for some specific type of light field. Video

encoders usually work with several possible configurations for

each processing stage. This opens the possibility of searching

for the best prediction method when compressing light field

images in a more complex system. An analysis of how the

Figure 12: Analysis of the correlation between average sim-

ilarity in a prediction group and the resulting efficiency of

using that group for light-field compression.

similarity between images in a prediction group affects the

compression efficiency in that group was conducted. For each

light field, prediction groups based on the three proposed

methods were constructed. For each group, the SSIM index is

computed for every pairwise combination of residual images

in that group and the average SSIM index value is computed.

That is, for each prediction group, the corresponding average

structural similarity is computed. Figure 12 shows the average

SSIM results for every group for all light fields in the available

database, along with the average reduction in number of

coefficients used per group. This simulation is conducted for

the three prediction methods. Results indicate high correlation

between intra-group similarity and compression efficiency. In

a more complex compression system, similarity could be used

as a metric for the selection of the best prediction method.

C. Transform coding gain

The transform coding gain is a criterion commonly used in

order to assess the effectiveness of a transform, by comparing

the transform quantization against direct quantization in the
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Table V: Transform coding gain for GFT and DCT computed

for each light field, considering independent transforms A𝑡

Humvee Knights Tarot Boxes Cotton Dino Sideboard
𝐺GFT 9.24 28.13 19.20 3.40 2.05 5.04 5.18
𝐺DCT 5.12 27.53 21.47 2.91 1.90 4.07 4.24

Table VI: Transform coding gain for GFT and DCT computed

for each light field, considering all A𝑡 as a single transform

Humvee Knights Tarot Boxes Cotton Dino Sideboard
𝐺GFT 5.45 8.04 7.58 1.91 1.66 2.59 2.25
𝐺DCT 5.24 8.06 9.79 1.98 1.80 2.67 2.40

original domain [41]. For orthogonal block transforms, which

is the case for both GFT and DCT, and assuming high-rate, i.e.,

every coefficient contributes equally to distortion after optimal

bit allocation, the transform coding gain is given by

𝐺T =
1
𝑁

∑
𝑖 𝜎

2
𝑖

𝑁

√∏
𝑖 𝜎

2
𝑖

, (13)

where 𝜎2
𝑖 is the variance of the 𝑖-th transform coefficient across

all blocks. The transform coding gain is the ratio between

arithmetic and geometric means of coefficient variances. When

estimating the transform coding gain from data from a light

field, it must be considered that GFT is not a single transform,

since it was defined as a data-dependent transform. In order

to compute the transform coding gain 𝐺GFT associated with

GFT, blocks are treated according to their position 𝑡, for which

a single A𝑡 is defined. That is, given a prediction group, an

independent 𝐺GFT,𝑡 is computed for each block position, since

the transform F𝑡 is restricted to that block position in that

prediction group. For each light field, the final gain 𝐺GFT is

given by the average gain across all block positions for all

prediction groups. For DCT, the transform coding gain 𝐺DCT
is computed in the same way as 𝐺GFT to make comparison

possible. Results for the estimation of transform coding gain,

using rows prediction method and using all residual images

for computing A𝑡 , are presented in Table V. Transform coding

gain shows better efficiency for GFT when compared to DCT

for all light fields but one (Tarot). For some block positions

from Humvee light field, 𝐺GFT,𝑡 could not be computed due

to zero variance encountered in some coefficients, resulting

in zero geometric mean. For Humvee, the dynamic range of

𝐺GFT,𝑡 was set to 10 by limiting the maximum value.

Table VI shows results for transform coding gain if the

entire light-field data is considered at once, i.e., assuming

that GFT is a unique data-independent transform. As expected,

these results are worse for GFT.

VI. DISCUSSION AND FUTURE WORK

The simulations show mixed results in the comparison be-

tween GFT and DCT for light-field compression in an HEVC-

based system. When comparing the reduction in number of co-

efficients, GFT is rather promising, being capable of reducing

the number of transform coefficients by up to 21.18% in some

cases, while keeping equal or better distortion when compared

to DCT. Transform coding gain was used in order to provide an

insight of how well transform coefficients may be coded, but

results may be biased due to GFT not being a data-independent

transform. The compression system employed is a simplified

model based on HEVC, therefore several possibly relevant

optimization procedures were not considered. Employing GFT

in a more complex system is required so as to allow practical

operation analysis. Moreover, several possible methods for

implementing GFT were proposed, but some analyses were

restricted to a single setup using rows prediction scheme and

computing A𝑡 from all residual images. A broader analysis

could offer better understanding of GFT behavior.

VII. CONCLUSIONS

This work proposed and analyzed the use of GFT for light-

field compression in an HEVC-based compression system. The

comparison of the proposed method against the traditionally

used DCT shows that GFT greatly reduces the number of coef-

ficients required to represent light-field residual images while

providing smaller distortion when compared to DCT. Different

methods for constructing and employing GFT were tested for

real and synthetic light fields. Using multiple images when

computing the coefficients of the adjacency matrix provides

a more uniform compression across residual images within

a prediction group and improves reduction when compared to

computing coefficients from a single reference residual image.

An analysis of different prediction methods was conducted, as

well as an analysis of how similarity between images within

a prediction group affects the performance. When estimated

from coefficients from the entire light field, transform coding

gain favors DCT. Given the fact that GFT is data-dependent

and, thus, not a fixed transform, a transform coding gain analy-

sis regarding blocks for which GFT is unique was conducted.

This analysis yields better transform coding gain for GFT.

The compression system adopted may be improved in order

to allow the comparison with practical coding systems.
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Diffusion-based Virtual Graph Adjacency for
Fourier Analysis of Network Signals

Vitor Rosa Meireles Elias, Wallace Alves Martins, and Stefan Werner

Abstract— This work proposes a graph model for networks
where node collaborations can be described by the Markov prop-
erty. The proposed model augments an initial graph adjacency
using diffusion distances. The resulting virtual adjacency depends
on a diffusion-scale parameter, which leads to a controlled
shift in the graph-Fourier-transform spectrum. This enables a
frequency analysis tailored to the actual network collaboration,
revealing more information on the graph signal when compared
to traditional approaches. The proposed model is employed for
anomaly detection in real and synthetic networks, and results
confirm that using the proposed virtual adjacency yields better
classification than the initial adjacency.

Keywords— diffusion distances, virtual adjacency matrix,
graph signal processing (GSP), graph Fourier transform (GFT).

I. INTRODUCTION

The connectivity of real-world elements and the amount

of data generated in networks have been increasing consis-

tently [1], [2]. Real networks and their corresponding data

come in vastly different shapes and applications, ranging from

genetic interaction networks [3] and the human brain [4] to

sensor networks and smart cities [5]. Graph signal process-

ing (GSP) explores pairwise relations between elements of

a network to construct tools suitable for the processing of

network data [1], [2], [6]–[12]. In GSP, networks are modeled

as graphs and data defined over, or generated by, elements

of these networks are modeled as a graph signal—a mapping

from the set of vertices into the set of complex numbers. The

relations between elements of the real network are embedded

into the edges of the graph, connecting pairs of vertices.

Several GSP tools are functions of a graph-shift operator

(GSO), which carries the network-structure information. Thus,

the choice of the GSO and its properties impact the outcomes

of many GSP tools [13]–[16]. Different approaches for GSP

and the definition of the GSO have emerged over the last

years [2], [6], [17] and many works are devoted to improve

the framework [7], [18]. The two main approaches define the
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GSO either as the adjacency matrix of the graph [6] or the

Laplacian matrix [2].

GSP is a highly application-dependent framework. This

dependency starts in the choice of the mapping from the real

network into the graph [19], [20]. Most works rely on generic

approaches for modeling the network. For example, defining

the structure for physical networks in terms of distance be-

tween network elements, and adopting a GSO equal to the

Laplacian matrix. If the network and application are known,

a GSO can be tailored to the application at hand. Here, we

consider Markov networks and the frequency analysis of the

associated signals. In a Markov network, nodes collaborate

with each other according to a defined Markov property, which

defines the initial network adjacency.

We propose the use of diffusion distances (DDs) to incor-

porate the Markov property into the GSO. DD is a concept

within the diffusion maps (DMs) framework proposed in [21].

The DM framework is conceived as a tool for uncovering

a hidden geometry of the dataset by exploring properties of

the eigenfunctions of the Markov matrix associated with the

network states [22], [23]. The DDs serve as a metric for the

diffusion-probability-based relation between two states of data.

One parameter on the computation of DDs is the number of

transition steps of the Markov chain, which corresponds to

the stage or level of the collaboration. Hence, the proposed

model depends on this number of steps. As graph spectrum

depends on graph connectivity, the corresponding Fourier

analysis adapts to the collaboration embedded in the model.

The combination of DM and GSP has been considered

in [24], [25]. These works proposed the use of Markov

matrices as GSO. The Markov matrix has desirable properties

for GSP, such as being diagonalizable, and allows the use of

DM-based tools, such as dimensionality reduction and cluster-

ing [24]. In contrast, we model the relation between elements

of Markov network as a function of DDs. This yields an adja-

cency matrix that captures virtual dependencies between non-

adjacent elements of the network. This is particularly relevant

when nodes collaborate with neighbors over a sequence of

interactions. The virtual adjacency reveals additional spectral

content, which can be exploited by applications that make

decisions based on frequency features, such as classifiers and

detectors.

The paper is organized as follows: Section II reviews

concepts of GSP and DM. Section III presents the proposed

virtual-adjacency matrix and its effects on the graph Fourier

analysis. In Section IV, we analyze the proposed model

using numerical experiments and use it together with spectral

analysis for anomaly detection in synthetic and real networks.

Section V concludes the paper.
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II. BACKGROUND AND NOTATION

A. Graph signal processing

The graph is denoted by G = {V, E}, where V =
{v1, . . . , vN} is the set of vertices (or nodes) and E =
{e11, . . . , eNN} is the set of edges. Each vertex corresponds

to one element of the network being modeled. Elements eij
indicate pairwise relations between nodes vi and vj of the

graph. An edge eij exists if and only if vi and vj are related

(adjacent). These relations may incorporate functional proper-

ties of the network, based on the network data, or structural

characteristics of the network, yielding relations based on the

network elements. We represent the set of, possibly weighted,

edges in the adjacency matrix A.

The degree matrix D is a diagonal matrix such that Djj =
deg(vj), where deg(vj) =

∑
i∈Nj

eij and Nj is the set of

vertices that are adjacent to vj , referred to as neighborhood

of vj . Assuming a symmetric adjacency matrix, the graph

Laplacian is the positive semidefinite matrix L = D−A.

In the GSP framework [2], [6], the signal on a graph is given

by the mapping s : V → C and is usually represented by a

vector s, such that the ith entry of s is si = s(vi). The graph

signal represents a snapshot of the network state at a given time

instant. Let L = UΛUT be the eigendecomposition of the

graph Laplacian, where Λ is a diagonal matrix whose elements

are the real eigenvalues λi and U has the eigenvectors ui as

columns, with i ∈ {1, . . . , N}. The graph Fourier transform

(GFT) of a graph signal s is given by ŝ = UTs and the

signal can be recovered from the GFT coefficients via the

inverse GFT as s = Uŝ [2]. Here, L is taken as the GSO. The

eigenvalues carry a notion of graph frequency that quantifies

the intensity of the signal variation across the graph nodes,

with larger eigenvalues indicating higher variations [2]. We

note that several definitions of the GFT exist in literature. For

instance, [6] defines the GFT in terms of the eigendecompo-

sition of A, with A taken as the GSO.

B. Diffusion maps and distances

In this section, we consider data-state-wise graphs, instead

of network-wise graphs from GSP. Let X ∈ R
N×K be a data

matrix that represents a set of K data points of dimension

N , also called states, and assume that there is an underlying

(hidden) process that relates the data points and possibly

influences the data generation. The DM framework aims to

make this process explicit [21]–[24]. Our focus is on one of

the subproducts of the DM framework, which is the concept

of diffusion distances. For a detailed description of DMs,

see [21]–[24].

The first step of the DM framework is to create a graph in

which nodes correspond to the columns of X. The resulting

graph is not intended to model a network, but to capture rela-

tions between data states. One may interpret it as a state-wise

graph instead of the traditional element-wise graph described

in Section II-A. The edges are computed via a symmetric non-

negative kernel that maps the affinity between two states into

a real value, thereby defining an adjacency matrix A [21]. By

normalizing the adjacency matrix, a probability of transition-

ing from state xi to xj is given by p(xj |xi) = Aij/ deg(vi).

A right-stochastic (Markov) matrix M = D−1A comprises all

transition probabilities [26]. Powers Mt are associated with t

steps of the random walk and pt(xj |xi) = M
(t)
ij , the (i, j)th

element of Mt, denotes the probability of starting at xi and

reaching xj after t steps.

The DD between two states is computed as [21], [23], [24]

D2
t (xi,xj) =

K∑
z=1

(pt(xz|xi)− pt(xz|xj))
2

φ1,z
, (1)

where φ1,z is the zth entry of φ1, the top left eigenvector of

M. The DD extends relations from the local structure given

by A into a global metric by assimilating probabilities of

diffusion paths through the graph. Two points with similar

posterior distributions have small DD, even if they are not ini-

tially adjacent. This can be seen in terms of paths connecting

the two initial points through the end-points in the posterior

distributions. The computation of the DD depends on the

parameter t, which we denote as the diffusion-scale parameter.

It represents the number of steps taken in the random walk.

Increasing t allows an initial state to reach ending states that

are further away in terms of steps of the random walk.

III. GSP FOR MARKOV NETWORKS

Markov networks inherently allow a modeling of the rela-

tion between its elements in terms of a stochastic matrix. Some

networks that admit this modeling are: consensus networks

[27]–[29], which perform a possibly weighted average of

neighboring nodes in order to reach consensus through the

entire network; conservative diffusion networks [30]–[32];

and random-walk driven networks [26], [33]. We propose to

use DDs to incorporate the Markov property into the graph

model. This approach renders a GSO tailored for Markov

networks and provides a graph-frequency-analysis tool that

offers more information on the signal when compared to

traditional approaches.

A. Virtual adjacency

Modeling of networks for GSP usually relies on some

strict constraints of adjacency between nodes. For instance, a

wireless sensor network (WSN) is usually modeled in terms of

the direct communication capabilities between sensors, given

limitations imposed by the physical distance between them.

If it is a consensus network, however, it operates on the data

through iterative steps according to a stochastic matrix [27].

Thus, a node of the network is related to another node that is

not adjacent through collaboration. We model this relation by

adapting the concept of DDs and derive the virtual-adjacency

matrix. Let the graph G = {V,B} model the network with an

initial symmetric Markov-like adjacency matrix B. The DD

between nodes vi and vj (elements of the network) is defined

by

D2
t (vi, vj) =

N∑
n=1

(
B

(t)
in −B

(t)
jn

)2

(1/N)
, (2)

where (1/N) corresponds to the elements of the top left

eigenvector of B and B
(t)
ij denotes the (i, j)th element of Bt.
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The DD in (2) extends the relation of nodes to other nodes that

are outside their original neighborhoods and this extension is

dependent on the scale parameter t. From this definition of

DD between elements of the network, we propose the virtual

adjacency matrix A(t) defined by

Aij(t) =

{
Bij + exp

(
−D2

t (vi,vj)
ρN

)
i �= j

0 i = j.
(3)

where ρ is a free parameter, N is the size of the network, and

ρN prevents the diffusion-related term from quickly fading to

zero as network size increases. Note that N cancels out with

the denominator in (2). The parameter ρ provides sufficient

adjustment of the function, meeting possible requirements of

different applications.

It must be noted that DDs are always real positive values,

yielding Aij(t) > 0 for every i �= j. Thus, instead of using

the expression in (3) we actually consider edges to exist only

if Aij(t) is greater than a given threshold; otherwise, Aij(t)
is set to zero. For increasing t, the DD between nodes is

non-decreasing. This leads to non-decreasing edge values and

new edges possibly appearing as t increases. As t tends to

infinity, the graph is expected to become fully connected.

GSOs associated with different scales t model different stages

of node collaboration.

B. Adaptable Fourier Analysis

As presented in Section II-A, the GFT is defined as the

expansion of a graph signal in terms of the eigenvectors of

the Laplacian matrix, which in turn depends on the adjacency

matrix. Hence, the dependence on the diffusion-scale parame-

ter t in the definition of A(t) is carried over to the GFT, since

the diffusion-scale-dependent Laplacian matrix is

L(t) = D(t)−A(t), (4)

where D(t) is the degree matrix associated with A(t).
Given the eigendecomposition of the Laplacian as L(t) =
U(t)Λ(t)UT(t), the graph Fourier transform can be written

as

x̂(t) = UT(t)x, (5)

which, now, depends on t. Laplacian eigenvalues of connected

graphs are non-decreasing with addition of edges [34]. As

the number of edges in the virtual-adjacency matrix is non-

decreasing with t, increasing t also increases the eigenvalues

of L(t). This yields a frequency analysis tailored for each

stage of node collaboration. Intuitively, more collaboration

results in more connected nodes. Therefore, variations in

graph signals are perceived by more pairs of nodes, thus

corresponding to larger graph frequencies if compared to

the frequency content obtained using the initial adjacency.

Hence, by incorporating node collaboration into the graph

model, we provide a frequency analysis that reveals more

information on the network signal than that offered by the

conventional GFT. Therefore, applications that use spectrum-

related features, such as classifiers and detectors, can benefit

from the proposed methodology.
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Fig. 1. Average and maximum node degree versus diffusion scale t. For
t = 0, the values correspond to the average and maximum degrees of the
original κNN network.

IV. EXPERIMENTS

In this section, we present numerical experiments to show-

case properties of the virtual-adjacency matrix and its effects

on the Fourier analysis. Experiments are conducted over a sen-

sor network that is modeled as a κ-nearest-neighbors (κNN)

graph G = {V,B}, such that each sensor is bidirectionally

connected to the κ nearest sensors. A sensor can be a nearest

neighbor of a sensor that is not one of its nearest neighbors.

Note that this allows a sensor to be connected to more than

κ sensors. Let the symmetric matrix A indicate connections

between nodes, such that Aij = 1 if and only if nodes vi and

vj are connected. A consensus algorithm is implemented over

this network, such that the updated network state at iteration

k + 1 is given by x(k + 1) = Bx(k), where the stochastic

matrix B is defined as B = I− εL, where L is the Laplacian

of A [27]. The parameter ε affects the convergence of the

consensus algorithm and is set to ε = 1/(1.25Δ), where Δ
is the maximum degree in G. Given B, we can associate the

network with a Markov chain and, hence, the techniques in

Section III can be applied.

A. Increasing connectivity

From the initial stochastic adjacency matrix B, we compute

the diffusion distance between sensors in the network and the

virtual-adjacency matrix is constructed according to (3). We

consider a κNN network with N = 20 sensors and κ = 2
nearest sensors. The parameter ρ in (3) is fixed at 0.35. Fig. 1

shows the graph average and maximum degrees of the virtual

adjaency matrix versus diffusion scale, with scales varying

from t = 1 to t = 9. As t is increased, more steps of the

random walk are taken in the network and, given a reference

node, the distance to nodes that are further away is expected

to decrease. This results in more edges being created and,

therefore, the connectivity of the graph increases. In fact, as t
tends to infinity, the diffusion distance between any two nodes

in a connected graph tends to zero and A(t)|t→∞ tends to the

adjacency matrix of a fully connected graph with no self loops,

i.e., each node is connected to every other node.
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Fig. 2. Histogram of eigenvalues of diffusion Laplacian matrices Lt, for
t ∈ {1, . . . , 6}. Spectral “gap” denotes the smallest non-zero eigenvalue and
spectral “radius” denotes the maximum eigenvalue.

B. Spectrum analysis

For a network with N = 100 sensors and κ = 4, we analyze

the behavior of the GFT spectrum for different diffusion scales,

for A(t) constructed with ρ = 0.4. The histograms of the

eigenvalues of L(t) for t ∈ {1, . . . , 6} are shown in Fig. 2.

Increasing the diffusion scale and connectivity produces a shift

on the graph-frequency spectral range into higher frequency

ranges. In fact, as t→∞, the graph becomes fully connected

and the maximum eigenvalue tends to {N + θi}Ni=1, where

{θi}Ni=1, with |θi| ≤ 1, are the eigenvalues of the Laplacian

of the stochastic matrix B. Each diffusion scale t yields

a frequency analysis associated with different collaboration

stages. Thus, the virtual adjacency allows for additional spec-

trum information when compared to the initial adjacency.

This additional information can be used by applications that

make decisions based on the signal’s frequency content, as

exemplified in the next section.

C. Application

The virtual adjacency is implemented in a synthetic con-

sensus network and in a real weather-station network, wherein

spectral analysis is used for anomaly detection [38]. Different

diffusion scales and the parameter ρ allow for a tailored

frequency decomposition. We compare detectors based the

spectrum yielded by virtual adjacency matrices against the

TABLE I

F1 SCORES — SYNTHETIC DATA

0 step 1 step 2 steps

Virtual Adjacency t = 1 0.70 0.62 0.53
Virtual Adjacency t = 2 0.73 0.69 0.62
Virtual Adjacency t = 3 0.74 0.66 0.61

Initial Adjacency 0.66 0.60 0.57

Fig. 3. Graph model for weather-stations network.

detector based on that of the initial adjacency. A similar task

using GFT was applied in [35]–[37]. We evaluate the f1 score,

given by the harmonic mean between precision and recall of

the detectors.

We use a network with N = 150 sensors measuring a

synthetic healthy signal drawn from a normal distribution

with expected value equal to 20 and variance of 0.4. The

anomaly is injected in up to 2 sensors that are randomly chosen

as anomalous sensors. Anomalous sensor measurements are

drawn from a uniform integer distribution in the interval

[15, 25].

The detector is based on applying a threshold on the coeffi-

cients of the graph signal after a high-pass filter, assuming that

anomalies induce high frequencies on the signal. We use grid

search to optimize the filter cut-off frequency and the detection

threshold for the conventional GFT. For the GFT based on

virtual adjacency matrices, ρ is also optimized. We treat three

scales t ∈ {1, 2, 3} separately. This simulation is performed

for three different stages of the consensus algorithm: raw data

following previously described distributions; data after one

consensus step; and data after two consensus steps. Results

for the f1 score obtained by different detectors are presented

in Table I, showing that the GFT using virtual adjacency

achieves better results than those obtained by the conventional

approach.

For anomaly detection in a real network, we use 150

randomly-selected weather stations, modeled as the graph in

Fig. 3, and temperature data from the database in [38]. It must

be noted that a Markovian relation is not initially defined for

the nodes of this network. However, we are able to generate

a Markovian relation by constructing a matrix B = I − εL
based on physical adjacency. This example serves to show that

the proposed methodology only requires a form of Markov

model, but it is not restricted to Markov networks. Original

data are converted from degrees Fahrenheit to degrees Celsius

and range from −29.4◦C to 38.6◦C. We introduce anomaly in

up to 7 stations. Anomaly is given by additive white Gaussian

noise with variance equal to 1 ◦C2 and mean drawn from



XXXVIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2020, 22–25 DE NOVEMBRO DE 2020, FLORIANÓPOLIS, SC 5 of 5

the integer uniform distribution [−7 ◦C,+7 ◦C]. Conventional

GFT achieves f1 score of 0.50, while GFT using the proposed

model achieves better results with f1 score equal to 0.55 for

t = 1 and 0.64 for t = 2.

V. CONCLUSION

We proposed an virtual-adjacency matrix which adapts

Fourier analysis to node collaboration in Markov networks.

We construct the adjacency matrix as function of diffusion

distances between elements of the network. The obtained

virtual adjacency depends on the diffusion scale, given by

the number of diffusion steps under consideration, such that

increasing diffusion scales increases the connectivity of the

graph. We showed that the virtual adjacency allows for an

adaptable graph-frequency analysis considering different levels

of collaboration between nodes. Changing the diffusion scale

in the construction of the virtual-adjacency matrix shifts the

range of frequencies discriminated by the GFT. Tools that

operate on the graph spectrum can leverage on the addi-

tional information. For instance, we employed the proposed

model for anomaly detection using spectral information. The

resulting detectors leveraged on the proposed graph-frequency

representation associated with different collaboration stages to

obtain better results than those achieved by the GFT. As future

work, we aim at exploring other applications for the proposed

methodology and investigating efficient ways to determine the

optimal diffusion-scale parameter.
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Abstract—This paper proposes the augmentation of the ad-
jacency model of networks for graph signal processing. It is
assumed that no information about the network is available,
apart from the initial adjacency matrix. In the proposed model,
additional edges are created according to a Markov relation
imposed between nodes. This information is incorporated into the
extended-adjacency matrix as a function of the diffusion distance
between nodes. The diffusion distance measures similarities
between nodes at a certain diffusion scale or time, and is a metric
adopted from diffusion maps. Similarly, the proposed extended-
adjacency matrix depends on the diffusion scale, which enables
the definition of a scale-dependent graph Fourier transform.
We conduct theoretical analyses of both the extended adjacency
and the corresponding graph Fourier transform and show that
different diffusion scales lead to different graph-frequency per-
spectives. At different scales, the transform discriminates shifted
ranges of signal variations across the graph, revealing more
information on the graph signal when compared to traditional
approaches. The scale-dependent graph Fourier transform is
applied for anomaly detection and is shown to outperform the
conventional graph Fourier transform.

Index Terms—diffusion distances, diffusion maps, extended ad-
jacency, graph signal processing, scale-dependent graph Fourier
transform.

I. INTRODUCTION

LARGE quantities of heterogeneous data are constantly

collected by numerous sensors, which are often geo-

graphically dispersed. Real networks and their corresponding

data come in vastly different shapes and applications, ranging

from genetic interaction networks [1] and the human brain [2]

to sensor networks and smart cities [3]. The increased connec-

tivity and availability of abundant data calls for methods that

can uncover hidden connections between seemingly unrelated

things in complex and irregular structures.

Graph signal processing (GSP) explores pairwise relations

between signals residing on nodes of a graph [4]–[6]. In GSP,

elements of networks are modeled as vertices (or nodes) of

a mathematical structure – the graph – and relations between

two connected elements are represented by edges [1]–[4]. The
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dimensionality of the data matches that of the graph, such that

each entry is associated with a vertex.

Most GSP tools are functions of a graph-shift operator

(GSO) matrix [7]–[9] that encodes relations between the graph

nodes. For instance, the graph Fourier transform (GFT) is

defined as the signal expansion in terms of the eigenbasis of

the GSO. The literature contains several GSO definitions that

suit different applications [2]–[20]. The two most commonly

used GSOs are the adjacency matrix of the graph [7], and the

graph Laplacian [6].

The application dependency of the GSO is related to the

more fundamental problem of modeling the original network

by a graph; different models have different properties that

can be explored by GSP tools [11]–[20]. For a particular

network and application, it is desirable to define a GSO

that best describes node relations, so that the corresponding

network signals can be better analyzed/processed. Consider,

for instance, the frequency analysis yielded by the GFT. The

spectrum of a graph is directly related to the eigenvalues

of the GSO. As a consequence, changes in the GSO en-

tries are reflected in the graph spectrum, possibly allowing

the discrimination of different frequency contents of a same

network signal. We assume here that adjacency matrices are

initially sparse, rendering GSOs with a reduced number of

edges. This is due to sparsity constraints commonly im-

posed upon adjacency matrices or application limitations, e.g.,

sensors identifying their own neighbors. Moreover, if only

the adjacency information is available but accurate network

information is unknown, updating or deriving a new GSO

becomes a challenging task. This work proposes a method for

augmenting an initial adjacency matrix for frequency analysis

of networked data.

We derive virtual Markov relations between nodes and

incorporate the Markov property into the GSO as a function of

diffusion distances (DDs) between network elements. Markov

relations occur naturally in some applications, such as in

consensus [21]–[23] and random-walk-driven networks [24],

[25]. For generic networks, we propose a derivation of the

Markov matrix based on the consensus algorithm [21]. DDs

are part of the diffusion-maps (DMs) framework introduced

in [26]. DMs are applicable to datasets composed by states

of high-dimensional data points. These data points can be

interpreted as data states as they vary with time. As a function

of the Euclidean distance between data points, a Markov

matrix can be defined by describing transition probabilities of

a random walk between data states. Here, the set of data states

can be represented by the nodes of a graph. Note that each

node of the graph is associated with an entire data state of the

network, such that edges define transition relations between



2 of 13

these high-dimensional data states. This view is in contrast

with that of GSP, where edges associate individual network

elements. Using eigenvectors of the corresponding Markov

matrix, DMs uncover descriptions of the underlying geometry

of the dataset [27]–[29]. In this framework, DDs provide a

metric for relating two states of data according to the random

walk.

We consider elements of the network as nodes of a graph,

as in the GSP framework, and the relations between these ele-

ments depend on a concept of transition-probability distance,

as in the DM framework. The use of DDs yields an augmented

version of the initial adjacency model. For instance, DDs

relate nodes that are beyond the local reach of the physical

neighborhood. This relation depends on how many transition

steps of the Markov chain are considered in the computation of

the DD. The resulting GSO, called extended-adjacency matrix,

depends on the number of transition steps. We demonstrate

the benefits of the extended adjacency by implementing a

method that uses the proposed model together with the GFT

to get a scale-dependent graph-frequency analysis, which we

call scale-dependent graph Fourier transform (sGFT). We

note that the proposed GSO model can be used with other

GSP tools, including other graph-frequency representations.

Moreover, the proposed mapping is not restricted to networks

that inherently present the Markov property; indeed, it is

possible to derive a Markov chain from a generic adjacency

matrix as we show in Section V-A.

The combination of DM and GSP has been considered

in [30] and [31]. The work in [30] proposes the use of

Markov matrices as GSO. In the context of GSP, Markov

matrices, of the form in [30], have desirable properties, e.g.,

they are diagonalizable and the inverse eigenvector matrix can

be computed efficiently. The use of Markov matrices also

allows DM-related tools, such as dimensionality reduction and

clustering, to be incorporated in GSP [30]. Furthermore, the

work in [30] studies the similarities between both frameworks,

making explicit how some operations from GSP can be

interpreted from a DM perspective. For instance, both graph-

shifting and graph-filtering operations can be written in terms

of embeddings from the DM framework. In [31], a method

for graph-signal interpolation is derived using the Nyström

extension [32] when employing a Markov matrix as GSO.

The use of DM for classical digital signal processing (DSP)

tasks has been studied in different applications in [29]. The

authors introduce two filtering schemes that leverage on prop-

erties of DMs: non-local filtering updates a state xi according

to the affinity between xi and other states xj , while this

affinity is computed by using the Gaussian kernel over the

DD between xi and xj ; and graph-based processing explores

subsets of eigenvectors acquired by DMs to extract the desired

component of noisy data states. Moreover, the authors in [29]

present applications of DMs in single-channel source localiza-

tion and in the suppression of transient interference for speech

enhancement.

In contrast to previous works, we incorporate DDs into the

GSP framework and construct a graph model that captures

the interaction between elements of the Markov network.

Specifically, while the work in [30] proposes a Markov matrix

as GSO, we use a Markov matrix only as the starting point of

our work. Moreover, the Markov matrix proposed in [30] is not

symmetric, whereas we adopt a doubly-stochastic matrix based

on the discrete-time consensus algorithm [21]. The proposed

model is derived by further implementing concepts of DMs

given the initial Markov matrix. Namely, we use the Markov

matrix to compute DDs between nodes and generate additional

edges. The main contributions of this paper are as follows:

• We propose an extended-adjacency matrix that captures

dependencies between non-adjacent nodes of the graph.

The model augments the original adjacency using DDs

between nodes. We show that the extended-adjacency

matrix can be derived for a non-Markov network for

which an associated Markov model can be constructed.

• We present a scale-dependent graph Fourier transform

(sGFT), as a function of the extended-adjacency matrix,

that describes the frequency content of the graph signal.

The sGFT reveals the graph frequency versus time, or

scale, of the associated Markov chain. The sGFT is

applied for anomaly detection using synthetic and real

data, and we show that the proposed GSO improves the

GFT in the anomaly-detection task when compared to

other GSO models.

The rest of the paper is organized as follows. Sections II

and III present the fundamentals of graph signal process-

ing and diffusion maps. Section IV introduces the proposed

extended-adjacency matrix and scale-dependent graph Fourier

transform. In Section V we present numerical experiments that

validate the proposed methodology. In Section VI we consider

the application of the scale-dependent graph Fourier transform

to the problem of anomaly detection in sensor networks.

Finally, conclusions are given in Section VII.

II. GRAPH SIGNAL PROCESSING

This section introduces the notation adopted throughout this

work and some fundamental concepts of GSP.

A. Graphs and network modeling

Let a graph be represented by G = {V, E}, where V =
{v1, . . . , vN} denotes the set of vertices (or nodes) and

E = {e11, . . . , eNN} denotes the set of edges. Each vertex

corresponds to one element of the network [3], [4], [6],

[10], [19], [20], [33]. Each edge eij represents a pairwise

connection between nodes vi and vj . Edges reflect the relation

between elements of the original structure, if this relation

exists. Nodes connected by an edge are adjacent nodes. A

mapping w : E → C is used to model weighted edges, such

that wij denotes the weight value for edge eij . A graph is

often represented by the adjacency matrix A ∈ C
N×N , whose

(i, j)th element is Aij = wij .

The set of vertices that are adjacent to a vertex vj is referred

to as the neighborhood of vj . The setNj comprises the indexes

of vertices in the neighborhood of vj . For an undirected graph,

where wij = wji, the weighted degree of node vj is given

by deg(vj) =
∑

i∈Nj
wij and we define the diagonal degree

matrix D, such that Djj = deg(vj). The graph Laplacian
matrix of an undirected graph is defined as L = D−A.
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B. Signals over graphs and GSP

Data collected from or generated by elements of the net-

works can be viewed as a graph signal. A complex-valued

graph signal is given by the mapping s : V → C. We represent

a graph signal as a vector s ∈ C
N , where the ith entry si is

given by s(vi), i.e., the signal component at vertex vi. The

graph signal represents a snapshot of the network state.

The graph shift operator (GSO), denoted by S, is an

N ×N matrix employed to generate the graph-shifted signal

s̃ = Ss. That is, the graph-shifted signal on node vi is a

combination of signals sj , given by s̃i =
∑N

j=1 Sijsj . One

choice of S, presented in [10], is the adjacency matrix A. This

choice is partly motivated by direct analogy with discrete-time

processing of periodic signals. In this case, the resulting graph-

shifted signal at node vi is a local combination of the signal

in its neighborhood.

Another popular choice for S is the graph Laplacian, L,

which is a local difference operator. The choice is motivated by

graph spectral theory [34]. Motivations and applications using

the graph Laplacian as GSO are thoroughly reviewed in [6].

As we show in Section II-C, the eigenvectors of the GSO

compose the Fourier basis in graph domain. This construction

of the Fourier basis has a particular link with conventional

DSP, since the classical Fourier transform may be interpreted

as the expansion of a continuous-time function in terms of

complex exponentials, which are the eigenfunctions of the one-

dimensional Laplace operator.

The aforementioned approaches yield local operators, i.e.,

Sij > 0, for i �= j, if and only if Aij �= 0 [6], [10]. We

note that other matrices than A or L can be used as GSO,

and the choice of the GSO depends on the application at

hand [12], [13]. In this work, we propose non-local GSOs

that extend the initial adjacency relations between nodes.

Once a shift is defined, many results and techniques from

conventional DSP theory can be extended to graph domain,

e.g., convolution, filtering, transforms (Fourier and wavelets),

and spectral analysis.

C. Graph Fourier transform

We assume a graph with real-valued weighted edges. Con-

sider the diagonalizable GSO matrix S = UΛU−1, where Λ
is a diagonal matrix whose entries are the eigenvalues λi of

S, and U has as columns the eigenvectors ui of S. The GFT

coefficients of a graph signal s are obtained from the analysis

equation [6], [10]

ŝ = U−1s, (1)

and the graph signal is recovered from the synthesis equation

s = Uŝ. (2)

The eigenvalues λi of S, with i ∈ {1, . . . , N}, correspond

to the graph-frequency spectrum. The eigenvectors ui, with

i ∈ {1, . . . , N}, are the graph-frequency components [6], [10],

[35]. In this work, we adopt the graph Laplacian as GSO, i.e.,

we set S = L. We show next that larger eigenvalues of the

graph Laplacian correspond to higher graph frequencies. For

this purpose, consider a variation metric for signal x �= 0 on

G given by

ν(x) =
xTLx

xTx
(3)

=
xT

(
D−A

)
x

xTx

=

∑
i �=j

Aij

(
xi − xj

)2
xTx

, (4)

which measures the total difference between the signal values

on different vertices, weighted by the edge values. Equation (3)

is the Rayleigh quotient of L, which is bounded below and

above by the extreme eigenvalues of L, λ1 = 0 and λN ,

respectively. As the GFT is defined as the expansion of a

signal over the eigenvectors of L, λ2 and λN correspond,

respectively, to the smallest and the largest non-zero variations,

or graph frequencies. The eigenvalue λ1 = 0 corresponds

to frequency equal to zero, associated with a constant graph

signal. The eigenvalue λ2 is called graph spectral gap, and

λN is called graph spectral radius.

As indicated by (4), the graph frequencies provide infor-

mation on how fast a signal varies across the vertices. In this

context, the signal is a single snapshot of the network state.

High frequency means that the signal sample on a given vertex

differs considerably from samples on neighboring vertices.

Low frequency means that the graph signal is smooth across

all nodes. Here, we highlight a fundamental motivation for

our work: the adjacency model of a network directly affects

its graph-frequency analysis, given the definition of the graph

spectrum and its dependency on the elements of the adjacency

matrix, as shown in (4). However, this implication of (4) is

often neglected when adjacency models are constructed. Thus,

we aim for a model that is capable of capturing node relations

while taking into account its influence on GSP applications.

III. DIFFUSION MAPS

This section introduces the basics of diffusion maps (DMs)

and diffusion distances (DDs) [26], necessary for the develop-

ment of the proposed extended adjacency and sGFT.

Let X = [x1, . . . ,xK ] ∈ R
L×K be a data matrix with

K data points, also called states, each of dimension L. For

example, matrix X can describe the evolution of the state xk of

a network with L elements for time instants k ∈ {1, . . . ,K}.
It is assumed that there is an underlying (hidden) process that

relates the different data points, possibly driving the way data

is generated. However, note that there is no underlying graph

associated with X. The objective of the DM framework is to

make this underlying process explicit [26], [29], [30].

A. Construction of the similarity graph

The first step when constructing a DM is to create a

graph that associates data points xi with nodes, and quantifies

their interrelationship [26]. In contrast to the GSP framework,

this association is merely an alignment of the data with the

structure. That is, the data point is not treated as a signal

on the node, but rather as the node itself. In order to make
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the contrast between the GSP and DM approaches clear, we

highlight that, throughout this section, the number of data

states K corresponds to the number of nodes in the graph

constructed for the DM framework.

Let X ⊂ R
L represent the dataset that contains the columns

of X. The edges are created through a symmetric kernel

k : X × X → R+, i.e., k(x,y) = k(y,x) ≥ 0. The obtained

graph is undirected and possibly weighted, and serves as a

preliminary geometric description of the data based on the

underlying driving process [26]. The choice of the kernel

depends on the application. For instance, a common choice

is the radial-basis-function (RBF) kernel

k(xi,xj) = exp

(
−‖xi − xj‖22

2σ2
RBF

)
, (5)

where σRBF > 0 is a free parameter that controls the

bandwidth of the kernel.

The RBF kernel expresses a relationship based on the affin-

ity between data points xi and xj , in terms of the Euclidean

distance. Once a metric for similarity is established for the data

points, an adjacency matrix A ∈ R
K×K can be defined with

entries Aij = k(xi,xj). The corresponding degree matrix is

D ∈ R
K×K such that Dii =

∑
j∈Ni

k(xi,xj).

B. Construction of the random walk

To capture how data is influenced by an underlying process,

a random walk on the data is defined. The idea is to character-

ize how one state of the high-dimensional data transitions into

another state [26]. For this purpose, the similarity between two

data points is normalized as [26]

p(xj |xi) =
k(xi,xj)∑
j

k(xi,xj)
=

Aij

Dii
, (6)

where p(xj |xi) is interpreted as the transition probability from

xi to xj , which establishes a Markov chain. Using matrix

notation, the Markov chain can be described in terms of a

right-stochastic matrix M = D−1A, commonly referred to as

a Markov matrix, with entries Mij = p(xj |xi). Taking t steps

of the random walk is captured by Mt, i.e., the (i, j)th entry

of Mt gives the transition probability, denoted by pt(xj |xi),
from xi to xj in t steps. The probability pt(xj |xi) considers

all possible paths composed of t edges that connect xi to

xj , including self-loops. The probability in (6) is the same as

pt(xj |xi) for t = 1.

Consider the decomposition of M in terms of its right and

left eigenvectors ψk and φk and the eigenvalues γk, with k ∈
{1, . . . ,K}.1 The transition probabilities can be written as [26]

pt(xj |xi) =
K∑

k=1

γt
kψk,iφk,j . (7)

The eigenvalues of a right-stochastic matrix satisfy |γk| ≤ 1.

Assuming the graph is connected, the Markov chain is irre-

ducible and γ1 = 1 [26]. We adopt the ordering γ1 = 1 >

1Not every Markov matrix is diagonalizable, but M = D−1A =

D−
1
2 (D−

1
2 AD−

1
2 )D

1
2 is, for it is similar to the symmetric matrix

D−
1
2 AD−

1
2 .

|γ2| ≥ · · · ≥ |γK |. Consequently, a random walk driven

by these transition probabilities has an asymptotic behavior

governed by γ1 [26], i.e.,

lim
t→∞ pt(xj |xi) = φ1,j , (8)

where φ1,j is the jth entry of the first left eigenvector of M,

φ1, normalized as ‖φ1‖1 = 1. In other words, φ1,j is the

asymptotic probability of reaching state xj from any initial

state. As the graph is connected, this quantity is non-zero for

every j, as given by (7). Note that the right eigenvector ψ1,

associated with γ1 = 1, is a constant vector, as M · 1 = 1.

C. Diffusion distances

The diffusion distance (DD) at a certain diffusion, or time,

scale t [26] is a metric for the (inverse) affinity between two

data points as a function of transition probabilities, and is given

by

D2
t (xi,xj) =

K∑
k=1

(pt(xk|xi)− pt(xk|xj))
2

φ1,k
. (9)

The DD extends local relations, in terms of adjacency

and direct similarity between nodes, into a global metric by

assimilating probabilities of diffusion paths [27]. If two points

have similar posterior distributions, they are well connected

through the end-points, indexed by k, of these distributions.

This means that if there are high-probability paths between

two data points, they are considered to be close in terms of

diffusion distance, even if not adjacent. Conversely, the diffu-

sion distance between xi and xj is large when the probability

of reaching xj from xi is small even by considering non-direct

paths through xk. An alternative interpretation for the diffusion

distance between xi and xj is to consider a limited amount

of energy placed on both nodes. This energy is then diffused

through the network for t diffusion steps according to Mt.

Finally, the distance is computed as the difference between

the contributions from these two nodes to the network, in

the sense of how much energy was diffused to each node.

If the two points have similar contribution to a given node, it

means that they are well connected through that node. Note

that the diffusion distance depends on t, which serves as a

diffusion-scale parameter. An increased t equals more steps of

the random walk, which corresponds to a larger-scale diffusion

over the network.

IV. GSP FOR MARKOV NETWORKS

The DM framework in [26] treats the entire network signal

as a state of a Markov chain and generates a Markov-based

graph over these states. In contrast, we adapt the diffusion

distances to develop a comprehensive network model by

treating the original network itself as the Markov-based graph.

That is, the states of the Markov chain are no longer associated

with the data (entire network state), but with the vertices

(individual network elements).

We introduce the extended-adjacency matrix, which cap-

tures node collaboration of Markov networks. Some common

cases of these networks are consensus networks [21]–[23],
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conservative diffusion networks [18], [36], [37], and random-

walk driven networks [24], [25]. Moreover, we introduce the

sGFT and analyze the spectral behavior of the graph through

the perspective of the extended-adjacency model.

A. Extended adjacency

The networks considered here are initially constrained by

adjacency rules of the network topology. For example, the con-

nections between nodes in a wireless sensor network (WSN)

depend on their communication capabilities, usually dictated

by physical distance. Furthermore, the sum of the weights

of the edges connecting a node to its neighbors is equal to

unity, yielding a stochastic adjacency. Nodes communicate

directly with their immediate neighbors. However, nodes that

are not initially connected can be related to each other through

collaboration. In other words, network adjacency is associated

with one step of the collaboration process, such that the net-

work operates on the data through iterative multiplications of

the stochastic matrix. Similarly to the conventional adjacency,

which depends on the physical distance between nodes, we

develop the extended adjacency based on diffusion distances.

Let the network be represented by a connected graph

G = {V,B} with a symmetric, irreducible, and stochastic

adjacency matrix B with positive real edges. In analogy with

the theory presented in Section III, this matrix is equivalent

to M and the states of the Markov chain are the nodes of the

graph. The diffusion distance between nodes vi and vj of the

graph is given by

D2
t (vi, vj) =

N∑
n=1

(
B

(t)
in −B

(t)
jn

)2

(1/N)
, (10)

where (1/N) corresponds to the elements of the first left

eigenvector q1 of B, as in (9), and B
(t)
ij denotes the (i, j)th

entry of Bt. Since we assume B symmetric, its left and right

eigenvectors are the same and q1 = (1/N)1. Similar to the

DM framework, the DDs between network elements depends

on the scale t. The metric in (10) expresses distances between

nodes, including nodes that are not neighbors as defined by

B. We derive similarity from diffusion distances in similar

manner as conventional adjacency matrices are derived from

geographic distances. The extended-adjacency matrix Ā(t) is

such that

Āij(t) =

{
Bij + exp

(
−D2

t (vi,vj)
ρN

)
i �= j

0 i = j,
(11)

where ρ > 0 is a free parameter and N is the size of

the network. The term Bij in (11) guarantees that original

edges are maintained, whereas the RBF term is responsible

for extending the adjacency. The term ρN makes the argument

of the RBF kernel independent of the network size (cf. (10)).

The range of the kernel output can be adjusted for different

applications according to the free parameter ρ. Moreover,

although the extended adjacency is defined for ρ > 0, it is

possible to obtain Bij , with i �= j, through (11) by making

ρ→ 0+. That is, the original adjacency is a particular case of

the extended adjacency.

Although traditional GSOs are local with respect to net-

work connections, we note that this property is not present

in the proposed adjacency model. A local GSO offers a

straightforward visualization of the physical structure of the

graph and facilitates the implementation of distributed GSP

algorithms. However, in many applications, the definition of

locality is unknown, or a local GSO fails to model implicit

node relations. In this work, we aim to derive a model

that is not restricted by locality assumptions and is useful

for networks where non-adjacent nodes interact. Hence, we

propose a non-local model that offers a trade-off between

locality and representation of node interactions. As we show in

the next section, this trade-off is indirectly controlled via the

diffusion-scale parameter. In this same context, other desirable

features inherent to specific graph structures might be lost after

the implementation of the extended adjacency. For instance,

the correspondence between the GFT over a ring graph and

the conventional discrete Fourier transform (DFT) is lost when

the extended-adjacency matrix is considered. Our proposal,

however, is aimed at graphs whose topologies are not well-

structured or perfectly known and we show that some GSP

tools can benefit from the proposed model.

Moreover, the proposed extended-adjacency matrix models

a graph with no self-loops. Although this assumption is

also common in the GSP framework, we note that it is not

necessary. Further modifications of Ā(t) are possible, such

as imposing an upper bound on edge values, or applying a

threshold on the matrix values to enforce sparsity.

B. Analysis of the extended-adjacency matrix

The resulting extended-adjacency matrix Ā(t) is a symmet-

ric matrix with positive entries that depend on the diffusion-

scale t and bandwidth ρ.

Proposition 1. The DD given in (10) is a non-increasing
function of the diffusion scale t.

Proof. The symmetric matrix B can be decomposed as B =∑N
l=1 σlqlq

T
l , where σl and ql, with l ∈ {1, . . . , N}, are the

eigenvalues and orthonormal eigenvectors of B. We can write

B
(t)
in −B

(t)
jn =

N∑
l=1

σt
l (ql,i − ql,j)ql,n. (12)

Substituting (12) into (10), we have

D2
t (vi, vj) = N

N∑
l=1

N∑
m=1

σt
lσ

t
m(ql,i − ql,j)(qm,i − qm,j)ζl,m,

(13)

where ζl,m =
∑N

n=1 ql,nqm,n = δ(l − m) and δ(·) is the

Kronecker delta function. Thus,

D2
t (vi, vj) = N

N∑
l=1

σ2t
l (ql,i − ql,j)

2. (14)

Since (ql,i − ql,j)
2 ≥ 0 and σ2

l ∈ [0, 1], then D2
t (vi, vj) ≥

D2
t+1(vi, vj), ∀t ≥ 1.

In accordance with Proposition 1, the following corollary

and lemma can be established:
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Corollary 1. Edge weights are non-decreasing with t accord-
ing to (11). Assuming that an edge exists only if its weight
exceeds a given threshold, the number of edges is also non-
decreasing with increasing t. In other words, increasing t for
a fixed ρ possibly creates new edges, given the reduction in
the DD.

Lemma 1. The entries of the asymptotic extended-adjacency
matrix Ā = limt→∞ Ā(t) are given by

Āij =

{
Bij + 1 i �= j

0 i = j,
(15)

and correspond to those of an adjacency matrix of a complete
graph without self-loops. That is, each node vi is connected
to every node vj in the graph, with i �= j, by an edge of value
1 +Bij .

Proof of Lemma 1. From (14), t → ∞ implies that the dif-

fusion distance between any two vertices tends to zero, since

σ2t
l tends to zero for l �= 1 and the only remaining non-zero

term σ2t
l corresponds to l = 1, for which (q1,i − q1,j) = 0,

since q1 = (1/N)1. With D2
t (vi, vj) = 0, we have Āij(t) =

Bij + 1, ∀i �= j, and Āii(t) = 0, with i, j ∈ {1, . . . , N}.

C. Scale-dependent graph Fourier transform

Similar to the extended-adjacency matrix Ā(t), the defi-

nition of other graph-related matrices and the graph Fourier

transform also depend on the scale t. For each diffusion scale,

there is a corresponding Laplacian matrix defined as

L̄(t) = D̄(t)− Ā(t), (16)

where D̄(t) is the diagonal degree matrix associated with

Ā(t). Given the eigendecomposition L̄(t) = Ū(t)Λ̄(t)ŪT(t),
we define the scale-dependent graph Fourier analysis of signal

x as

x̂(t) = ŪT(t)x, (17)

where, in contrast to the conventional GFT, the coefficients

x̂(t) depend on the diffusion-scale t. The scale-dependent

graph Fourier synsthesis equation is given by

x = Ū(t)x̂(t). (18)

Remark 1. Note that the analysis and synthesis equations
result from the use of the conventional GFT together with the
proposed extended-adjacency model. Thus, (17) and (18) do
not establish a novel transform. However, we will refer to
(17) as the scale-dependent graph Fourier transform (sGFT)
for simplicity throughout the text.

D. Analysis of the sGFT

Now, we analyze how the proposed adjacency model affects

the graph-frequency analysis. Recall that graph frequencies are

directly associated with the eigenvalues of the graph Laplacian,

as shown in (4). Hence, the analysis is conducted in terms of

which graph frequencies are discriminated by the Laplacian

eigenvalues for varying diffusion scales. For this purpose, we

determine bounds for the spectral gap and spectral radius of the

graph in function of t. Let the eigenvalues of the Laplacian be

λ̄1(t), λ̄2(t), . . . , λ̄N (t), in ascending order with λ̄1(t) = 0.

The spectral gap is λ̄2(t) and the spectral radius is λ̄N (t),
and both depend on t. Let θ2 denote the smallest non-zero

eigenvalue of LB, the Laplacian of B, and θN denote the

maximum eigenvalue of LB. Moreover, let LC denote the

Laplacian of the unweighted complete graph with N nodes,

whose entries are given by

LCij
=

{
−1 i �= j

N − 1 i = j.
(19)

Proposition 2. For a graph with N nodes, if t is increased, the
range of graph-frequencies discriminated by the sGFT shifts
into higher frequencies. Asymptotically, the sGFT discrimi-
nates graph-frequency ranges up to the interval [N + θ2,N +
θN ].

Proof. The eigenvalues of the Laplacian of a connected graph

are non-decreasing with the addition of new edges in the

graph [38]. As follows from Corollary 1, edges can only be

added, and not removed, as t increases. Consequently, the

spectral gap and radius are non-decreasing for increasing t.

As follows from Lemma 1, the asymptotic extended adja-

cency Ā corresponds to that of a complete graph. The resulting

graph Laplacian is LĀ = LB + LC. Given the structure of

LC and the fact the LB is symmetric, these matrices commute

and the eigenvalues of LB + LC are given by the sums of

eigenvalues of each matrix. Eigenvalues of LC are: 0 with

multiplicity 1 and the eigenvalue N with multiplicity N − 1.

Consequently, for LĀ, the spectral gap achieves the value

N + θ2, and the spectral radius achieves N + θN .

As t increases, the interval of graph frequencies discrim-

inated by the sGFT is shifted into higher frequencies. We

note that the maximum frequency discriminated by the sGFT,

N + θN , matches the largest possible variation, according to

(4), of signals defined over the proposed adjacency matrix.

The sGFT is a frequency-analysis tool tailored for each

stage of the Markov chain. From a node-collaboration perspec-

tive, the effect of node collaboration on the graph spectrum

can be interpreted in an intuitive manner: if more steps of

collaboration are taken, more edges are introduced. Conse-

quently, variations in graph signals are observed by additional

node pairs and are perceived as larger frequencies. Hence, by

incorporating node collaboration into the graph model, we pro-

vide a frequency-analysis tool that reveals more information

on the network signal than that offered by the conventional

GFT.

Remark 2. The proposed implementation of the Fourier anal-
ysis based on the extended adjacency adds a degree of freedom
for tools that use the graph-spectrum. Therefore, some applica-
tions may require training data along with a hyperparameter-
training method, such as grid-search and cross-validation, for
determining the adequate diffusion scale.
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Original [Average degree: 2.6] t = 1 [Average degree: 4.2] t = 3 [Average degree: 8.5] t = 500 [Average degree: 19.5]

Fig. 1. Connectivity versus diffusion scale. Only edges of Ā(t) that exceed 30% of the highest edge value are shown.
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Fig. 2. Average and maximum degrees versus diffusion scale t. For t = 0,
the values correspond to those of the original network.

V. NUMERICAL EXAMPLES

In this section we verify through numerical examples the

analyses conducted in Section IV-B and Section IV-D.

A. Nearest-neighbors and consensus network

We consider a sensor network with N sensors that collec-

tively estimate a common parameter through collaborations,

more specifically through consensus averaging [21], [22].

In an average consensus algorithm, the global average of

initial sensor states, xi[0], with i ∈ {1, . . . , N}, is computed

in a distributed fashion through local computations and local

message exchanges. More specifically, sensor vi implements

the following iterative algorithm

xi[k + 1] = Piixi[k] +
∑
j∈Ni

Pijxj [k], k ∈ N (20)

where Pij are weights given to local and neighbor node values.

In the case of sensor networks, the neighborhood Ni is usually

defined by sensor nodes within the transmission radius of

sensor vi. Equation (20) can be written as

x[k + 1] = Px[k], (21)

where x[k] = [x1(k) . . . xN (k)]T. If P is doubly stochastic,

then the sensor states will converge to (1/N)1T · x[0].
Let the network be modeled by an unweighted and undi-

rected graph G = {V ,A} with graph Laplacian L. One par-
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Fig. 3. Histogram of eigenvalues of diffusion Laplacian matrices L̄(t), for
t ∈ {1, . . . , 6}.

ticular form of P, which leads to Laplacian based consensus,

is given by

P = I− εL, (22)

where ε is the consensus step size. In this work, we set

ε = 1/(1.25Δmax), where Δmax is the maximum degree in

G (more information on convergence of consensus algorithms

and the choice of ε can be found in [21]). Thus, we are able

to associate the network with a stochastic matrix P, since

P · 1 = 1− εL · 1 = 1.



8 of 13

B. Increasing connectivity

Given matrix P, the diffusion distances between sensors,

with B = P, and the extended-adjacency matrix Ā(t) are

given by (10) and (11), respectively. We consider a sensor

network with N = 20 sensors, with an average node degree

equal to 2.6, and ρ = 0.35, Fig. 1 shows the connections

of the original network and the new edges introduced at

larger diffusion scales. As expected, the network becomes

more connected tending to a complete graph as t grows large.

Fig. 2 shows the increase in average and maximum degrees

versus diffusion scale. This experiment illustrates the effects

of changing diffusion scales presented in Proposition 1 and

Lemma 1.

C. Spectrum analysis

For a network with N = 100 nodes, we conduct an exper-

imental analysis of the sGFT spectrum for different diffusion

scales, while the DDs are computed for ρ = 0.4. Fig. 3 shows

histograms of the eigenvalues of the graph Laplacian L̄(t)
versus diffusion scale. An increase in the diffusion scale yields

an increase in the spectral gap (Proposition 2), from around

14 for t = 1 up to around 55 for t = 6, and in the spectral

radius, from around 34 up to over 74. At each scale, the sGFT

yields a different spectrum according to the number of steps of

node collaboration. In contrast, the conventional GFT yields

a fixed spectrum. The additional information provided by the

sGFT can benefit applications that make decisions based on

spectrum-related features, such as classifiers and detectors.

Numerical results indicate that the new eigenvectors ūi(t),
with i ∈ {1, . . . , N}, virtually preserve the notion of smooth-

ness with respect to the initial Laplacian matrix L. For

this analysis, consider v = [uT
1 Lu1 . . .u

T
NLuN ], where

ui, with i ∈ {1, . . . , N}, are the eigenvectors of L, and

v̄(t) = [ū1(t)
TLū1(t) . . . ūN (t)TLūN (t)]. We assess the

cosine similarity between v̄(t) and v given by

cv̄(t)v =
(v̄(t)− μv̄(t))

T(v − μv)

‖v̄(t)− μv̄(t)‖2‖v − μv‖2 , (23)

where μv denotes the mean of v. For a total of 1000 random

graphs, with N in the interval [20, 200] and number of

neighbors in the interval [2, 16], we obtain an average value

for cv̄(1)v of 0.92 when t = 1. This value decreases slightly

as the scale increases: cv̄(2)v = 0.90 and cv̄(3)v = 0.86.

VI. APPLICATION

In this section, we illustrate how the sGFT can be used for

anomaly detection in synthetic and real networks. The appli-

cation is motivated by increasing connectedness of real-world

elements [39]–[42], which demands security and reliability in

networks [43]–[49]. The free parameters of the sGFT allow

for a tailored frequency decomposition when constructing an

anomaly detector based on spectral information of the network

state. We compare results from detectors based on the sGFT

with detectors based on other different GSO approaches.

Given an initial adjacency matrix A, the proposed method

is compared to the GFT based on the eigenvectors of the cor-

responding Laplacian and to the GFT using the eigenvectors

of the Markov GSO as proposed in [30]. Additionally, a scale-

dependent GSO model based on shortest-path distances is

implemented and used for comparison. This GSO depends on

the length of the shortest-paths as follows: for A, the shortest-

paths and corresponding distances from each node to the rest

of the graph are computed using Dijkstra’s algorithm [52].

Once the paths are computed, a GSO can be constructed

by connecting each node to other nodes reachable through

shortest-paths no longer than a given length, with edge-weights

equal to the inverse of the shortest-path distances. Note that,

given an unweighted adjacency matrix, the GSO based on

shortest-paths for lengths up to 1 is equal to A.

In the following simulation results and figures, the GSO

approaches are coded as follows:

• GFT: conventional GFT using the graph Laplacian;

• DF1: sGFT using scale t = 1;

• DF2: sGFT using scale t = 2;

• SP2: GFT using shortest-path-based GSO with paths up

to length equal to 2 hops;

• SP3: GFT using shortest-path-based GSO with paths up

to length equal to 3 hops;

• MRK: GFT using the eigenvectors of the Markov matrix

from [30].

A. Anomaly detection task

We construct classifiers based on the graph-spectral infor-

mation generated by the sGFT and the conventional GFT

along with the aforementioned GSO-construction methods.

The approach for constructing the anomaly detector is similar

to those in [35], [50], [51]. In particular, [35] and [50] compute

the respective high-frequency components from the adjacency

matrix and the graph Laplacian. On the other hand, in [51], the

Laplacian eigenvectors are obtained from a constrained opti-

mization problem that enforces properties not considered here,

such as sparsity. More specifically, assuming that smoothness

is expected in the healthy signal, we apply a high-pass filter

with cut-off frequency λcut and conduct the classification

based on the filtered coefficients. If one of the coefficients

exceeds a threshold τ , the signal is classified as anomalous.

Consider a training dataset Xtrain = {XH, XA}, where XH and

XA indicate the healthy and anomalous parts of the training

dataset, respectively, with “healthy” indicating a signal free

from anomalies. Elements of these sets are graph signals, that

is, vectors with length equal to the number of nodes. The

detection threshold is determined as follows:

1) graph-frequency coefficients are computed for each

healthy signal in XH;

2) high-pass filter is applied, so that coefficients corre-

sponding to graph-frequencies higher than λcut are kept;

3) for each signal, we select a partial τp that corresponds

to the largest coefficient after filtering;

4) Once τp is computed for all signals, the detection

threshold is computed as:

τ = μτp + αστp , (24)

where μτp is an estimation of the average value and στp

is an estimation of the standard deviation of all partial
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Fig. 4. Experiment 1 – setup and results: (a) spatial distribution of the sensors and their interconnections plotted over a snapshot of the observed signal; and
(b) f1-scores achieved by each of the GSO-construction approaches.

τp computed. The non-negative parameter α scales a

confidence factor associated with the standard deviation

of the partial thresholds.

Using the conventional GFT, with the graph Laplacian, and

the GFT from the Markov matrix, λcut and α are the param-

eters that require training. The scale-dependent approaches,

however, have more free parameters: the path length for the

shortest-path-based approach, and both the diffusion scale t
and the normalization parameter ρ for the sGFT. Two different

diffusion scales t ∈ {1, 2} are tested separately, as well as

two maximum path lengths equal to 2 and 3. Parameters

λcut, α, and ρ are optimized via grid-search. That is, a set

of pre-determined values is given for each parameter and all

combinations are tested according to some metric. We choose

the f1 score as metric, which is given by

f1 =
precision · recall
precision + recall

, (25)

where

precision =
TP

TP + FP
, (26)

and

recall =
TP

TP + FN
, (27)

with TP indicating true positives (correctly classifying

anomaly as anomaly), FP indicating false positives (wrongly

classifying healthy signal as anomaly), and FN indicating false

negatives (wrongly classifying anomaly as healthy signal).

Moreover, we conduct cross-validation with 5 folds, such that

the training data is split into 5 sets and, for each combination

of parameters, the training (computing τ ) is performed over 4

sets and the metric is evaluated over the remaining set. The

combination of parameters yielding the best average result

across the folds is selected. Our simulations are conducted in

Python and we use the GridSearchCV class (which performs

the grid-search with cross-validation) from the scikit-learn
library to train the classifier.

Once the classifiers are trained, their performance is as-

sessed by measuring the f1 score achieved over a test dataset

Xtest. All simulation results presented in the next subsections
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Fig. 5. F1 scores achieved by each GSO approach for the two cases of
Experiment 2.

are averaged over 50 random training and test datasets, which

are specified according to each simulation.

B. Simulations over synthetic networks

1) Experiment 1: spatially-spread anomaly: We consider

first N = 100 sensors randomly distributed in the square

space [0, 1] × [0, 1]. A network is constructed by connecting

each sensor to its 4 nearest-neighbors, and the corresponding

adjacency matrix A is known. The sensors measure a spatially-

smooth wave signal given by s(δx, δy) = cos(2πδx + θx) +
cos(2π2δy + θy), where δx, δy ∈ [0, 1] are, respectively, the

horizontal and vertical spatial coordinates and θx and θy are

varying phase values uniformly and independently sampled

from [0, 2π]. The graph structure and a snapshot of the signal

s are depicted in Fig. 4a.

We consider the problem of detecting an additive (space-

wise) high-frequency interference signal given by si(δx, δy) =
0.1 (cos(2π5δx + θx) + cos(2π6δy + θy)). Training and test

datasets, Xtrain and Xtest, have 150 healthy samples and 150

anomalous samples each. Results for the f1 score achieved

over the 50 independent runs are presented in Fig. 4b. Results

show that the detector based on the spectral information

provided by the extended-adjacency matrices outperform de-

tectors based on other GSO approaches. Additionally, using
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Fig. 6. Experiment 3 – setup and results: (a) graph structure for the Intel Lab dataset; and (b) f1 scores achieved by each of the GSO-construction approaches.
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Fig. 7. Experiment 4 – setup and results: (a) graph structure for the GSOD dataset; and (b) f1 scores achieved by each of the GSO-construction approaches.

the Markov matrix alone offered worse results than using the

Laplacian of the original adjacency matrix.

2) Experiment 2: anomaly/attack on few sensors: Consider

now a network with N = 150 sensors in the same square

space [0, 1]× [0, 1], each connected to its 6 nearest neighbors,

that measure healthy signals x ∼N (20·1, 0.4·I). Up to two

sensors are randomly selected as anomalous, i.e., the network

will have one or two out of 150 sensors with anomalous data.

This selection is conducted independently for each snapshot,

such that the anomalous sensors of a given graph signal

do not depend on the anomalous sensors of other signals.

Each anomalous sensor measures a random value 20 ± b,
with b drawn uniformly from {1, 2, 3, 4, 5} and independently

for each sensor and each signal. The possible values for b
are heuristically chosen so that the anomaly is sufficiently

strong to be detected, but still not be trivially detected, by

all approaches.

We assume the anomaly is present in the initial data mea-

sured by the network and that the network performs consensus

over the data according to (20). This makes the anomalies

smoother as they are diffused according to the consensus

algorithm. We conduct the anomaly-detection task before the

consensus step is taken, and also after the consensus step is

taken. These simulations are independent of each other. For

each case, training and test datasets have 200 data samples

each, of which 100 are anomalous samples, and experiments

are run for 50 independent randomizations of these datasets.

Fig. 5 shows results for the f1 scores obtained by the best

classifiers over the test datasets. Results show that the sGFT

achieves better detection scores than using the other GSO

approaches, before and after consensus. In both cases, the

detectors based on the shortest-path approaches outperform

the conventional GFT, whereas using the eigenvectors of the

Markov matrix yields the worst results for both cases.

C. Simulations over real networks

Two real networks are used and their structures are pre-

sented in Fig. 6a and Fig. 7a. For both cases, sensors’

positions and healthy data are extracted from the available

databases [53], [54]. Networks used in this example are basic

sensor networks for which a Markovian relation is not ini-

tially defined, and we construct a Markovian relation between

sensors as in (22).

For these databases, we assume that all data available

are healthy. Thus, anomaly must be manually introduced in

the data. For Experiments 3 and 4, this is conducted with

minor differences from the method described for anomaly

construction in Experiment 2. The anomaly is given by an

additive Gaussian noise with non-zero mean over the healthy

data. The mean value of the noise is allowed to vary according

to a discrete uniform distribution, assuming non-zero integer
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values in the interval [−bmax,+bmax]. Similar to the synthetic

case, a maximum possible number of anomalous sensors is

defined and specified next for each simulation. For Experi-

ment 5, we generate an anomaly similar to the one used in

Experiment 1. The anomaly is given interference signal given

by si(δx, δy) = 5 (cos(2π0.1δx + θx) + cos(2π0.1δy + θy)).
For all cases, training is conducted in similar manner as

that employed for the synthetic data, with 5 folds in cross

validation.

1) Experiment 3: Intel lab data [53] - sensor malfunction:
The network is modeled as a κNN sensor network with κ = 3
according to the available sensor positions. We use temperature

data, in degrees Celsius, from 52 of the 54 sensors measured

between 00 AM and 07 AM during the week from March 01,

2003 to March 05, 2003. Sensors named 5 and 15 are not used

due to unavailable measurements. Healthy data range from

13.6 ◦C to 21.2 ◦C. The anomaly is described by bmax = 3 ◦C,

noise variance equal to 0.4 ◦C2, and up to 2 anomalous sensors

The total number of available samples from the database

is 373. For each independent run, 350 samples are randomly

selected, of which half receive the anomaly. The 350 samples

are then equally split into training and test datasets.

Results for the Intel lab data are presented in Fig 6b. In

this case, the conventional approach is competitive against

the scale-dependent methods. Still, the detectors based on

the extended-adjacency for scale t = 1 outperform all other

approaches. Moreover, using the eigenvectors of the Markov

matrix also yields competitive results, with average f1 score

approximately 0.02 behind the conventional approach.

2) Experiment 4: Global Surface Summary of the Day
(GSOD) [54] - sensor malfunction: The database provides

measurements from weather stations distributed across the

territory of the United States of America. We use temperature

measurements, converted from degrees Fahrenheit to degrees

Celsius, obtained during the year 2010 by 150 randomly-

selected stations from the conterminous United States (exclud-

ing Alaska, Hawaii, and other off-shore insular areas) in order

to keep the graph connected. Network structure is derived from

available stations’ latitudes and longitudes. Healthy data range

from -29.4 ◦C to 38.6 ◦C. We use κ = 3, bmax = 7 ◦C, noise

variance equal to 1 ◦C2, and up to 7 anomalous sensors.

Daily samples are available, for a total of 365 signals.

From these, we randomly select 350 signals for each run and

generate training and test datasets as in Experiment 3.

In Fig. 7b, results show that the proposed approach outper-

forms the oher approaches for both scales t = 1 and t = 2,

while the latter offers the best result. Here, the Markov-matrix-

based approach outperforms the ones using the conventional

Laplacian and the shortest-path-based GSOs.

3) Experiment 5: GSOD - spatially-spread anomaly: Us-

ing the GSOD data and network, we simulate the pres-

ence of a spatially-spread additive interference signal, given

by si(δx, δy) = 5 (cos(2π0.1δx + θx) + cos(2π0.1δy + θy)),
where δx and δy correspond to weather station’s longitude

and latitude, respectively, and with θx and θy randomly

sampled from [0, 2π]. For each independent experiment, the

interference is constrained to a randomly selected interval of 5

degrees of longitude, such that only the sensors in that interval
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Fig. 8. F1 scores achieved by each GSO approach for Experiment 5.

are anomalous. Training and test datasets are generated as in

Experiment 4.

Results are presented in Fig. 8 and show that the GFT con-

siderably benefits from the proposed model when compared

to the conventional approach. Moreover, the approach based

on shortest-paths, for maximum length equal to 3, exhibits

competitive results, while the approach based on the Markov

matrix yields results similar to those of the conventional

approach.

VII. CONCLUSION

We proposed the extended-adjacency matrix, which incor-

porates relations between non-adjacent nodes on a certain

diffusion scale or time. We use the extended adjacency to

augment the modeling of node relations in order to improve

the efficiency of GSP tools. We also presented the scale-

dependent graph Fourier transform for data defined over these

networks, by using the conventional GFT together with the

proposed scale-dependent model. We showed that increasing

the diffusion scale results in an increased connectivity in

the network, such that each different scale for the sGFT

yields a different perspective of graph frequency, as a tailored

connectivity is considered. We developed a theoretical analysis

that shows that changing the diffusion scale shifts the spectral

range yielded by the sGFT and corroborated the analysis

with numerical experiments. Tools that operate on the graph

spectrum can leverage on the additional information. For

instance, we employed the sGFT for anomaly detection in

synthetic and real networks. We used the free parameters of

the sGFT to conduct a frequency analysis tailored for the given

network. The proposed method was compared to the GFT

based on the conventional graph Laplacian and to the GFT

based on other augmented GSO models, and results showed

that anomaly detectors based on the sGFT achieved better

results than the other approaches.
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du Luxembourg. His research interests are in the fields of digital signal
processing, especially adaptive signal processing and graph signal processing,
as well as digital communications, with focus on equalization and precoding
for wireless communications. Dr. Martins has authored more than 60 technical
papers in refereed journals and conferences, and 1 book. Also, he received
the Best Student Paper Award from EURASIP at EUSIPCO-2009, Glasgow,
Scotland, and the 2011 Best Brazilian D.Sc. Dissertation Award from Capes.

Stefan Werner (SM’07) received the M.Sc. degree
in electrical engineering from the Royal Institute
of Technology, Stockholm, Sweden, in 1998 and
the D.Sc. degree (Hons.) in electrical engineering
from the Signal Processing Laboratory, Helsinki
University of Technology, Espoo, Finland, in 2002.
He is currently a Professor in the Department of
Electronic Systems, Norwegian University of Sci-
ence and Technology, Trondheim, Norway. He is
also an Adjunct Professor with Aalto University in
Finland, and an Adjunct Senior Research Fellow

with the Institute for Telecommunications Research, University of South
Australia. He was a visiting Melchor Professor with University of Notre Dame
during summer 2019, and was holding an Academy Research Fellowship,
funded by the Academy of Finland, from 2009 to 2014. His research
interests include adaptive and statistical signal processing, signal processing
for communications, and security and privacy in cyberphysical systems. He
is a member of the editorial boards for the EURASIP Journal of Signal
Processing and the IEEE Transactions on Signal and Information Processing
over Networks.



134 Publications on Extended Adjacency using Diffusion Distances



Appendix C

Publications on Learning over
Graphs using Graph Kernel LMS

P5 [2020] IEEE. Reprinted, with permission, from V. C. Gogineni, V. R. M.

Elias, W. A. Martins, and S. Werner, “Graph diffusion kernel LMS using

random Fourier features,” in Asilomar Conference on Signals, Systems, and
Computers, pp. 1–5, Nov. 2020.

P6 V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, “Adaptive

graph filters in reproducing kernel Hilbert spaces: Design and performance

analysis,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 7, pp. 62–74, 2021.

135



Graph Diffusion Kernel LMS using
Random Fourier Features

Vinay Chakravarthi Gogineni †, Vitor R. M. Elias∗‡, Wallace A. Martins‡§, Stefan Werner∗
† Department of Machine Intelligence, SimulaMet, Simula Research Laboratory-Oslo, Norway

∗ Department of Electronic Systems, NTNU – Norwegian University of Science and Technology, Trondheim
‡ Electrical Engineering Program, UFRJ – Federal University of Rio de Janeiro

§ Interdisciplinary Centre for Security, Reliability and Trust, UniLu – University of Luxembourg

Abstract—This work introduces kernel adaptive graph filters
that operate in the reproducing kernel Hilbert space. We propose
a centralized graph kernel least mean squares (GKLMS) ap-
proach for identifying the nonlinear graph filters. The principles
of coherence-check and random Fourier features (RFF) are
used to reduce the dictionary size. Additionally, we leverage the
graph structure to derive the graph diffusion KLMS (GDKLMS).
The proposed GDKLMS requires only single-hop communication
during successive time instants, making it viable for real-time
network-based applications. In the distributed implementation,
usage of RFF avoids the requirement of a centralized pre-
trained dictionary in the case of coherence-check. Finally, the
performance of the proposed algorithms is demonstrated in
modeling a nonlinear graph filter via numerical examples. The
results show that centralized and distributed implementations
effectively model the nonlinear graph filters, whereas the random-
feature-based solutions are shown to outperform coherence-check
based solutions.

I. INTRODUCTION

Recently, graph signal processing (GSP) has received in-

creased attention due to its wide applicability to model, pro-

cess, and analyze network signals and large data sets [1]–[4].

For instance, in the context of a wireless sensor network, graph

nodes and edges represent sensors and communication links,

respectively. Similar to conventional digital signal processing

(DSP) techniques, the basic building block in GSP is the

graph-shift operation, which captures node interconnections.

In the particular case of linear networks, the graph-shifted

signal on a given node is a linear combination of adjacent

node signals, where the weights relate to the edge values. The

development of tools for GSP has been extensively studied

over the last few years [1]–[9].

A key area of GSP research is to model the unknown

relations between input and output graph signals through a

filter [1], [3], [7], [8], [10]. The application of linear shift-

invariant filter models is widely employed in the literature,

e.g., to design graph spectral filters [7], [10] and model

dynamic graph signals [8], [9]. More recently, several works

deal with adaptive learning of graph filters, see, e.g., [11]–

[15]. However, linear models cannot accurately model many

This work was partly supported by the Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior – Brasil (CAPES) -– Grant number:
88887.310189/2018-00, CNPq, ERCIM Alain Bensoussan Fellowship Pro-
gramme, ERC project AGNOSTIC, FAPERJ, and the Research Council of
Norway.

real-world systems that exhibit more sophisticated input-output

relations. Prominent examples include the relations between

air pressure and temperature, and wind speed and generated

power in wind turbines [16], [17].

In this work, we introduce the concept of nonlinear adaptive

filtering of graph signals. Adaptive filtering in reproducing

kernel Hilbert spaces (RKHS) has proven to be an effective

method for modeling nonlinear relations [18]–[28]. Therefore,

drawing upon the ideas of kernel methods, we propose graph

kernel adaptive filters that effectively capture the nonlinear

input-output relations of graph signals. We first derive the

centralized graph kernel least mean square (GKLMS) for

nonlinear graph system identification. To tackle the growing

dimension problem in GKLMS, we first consider a coherence-

check approach to construct a fixed-size dictionary. However,

this approach requires a centralized pre-trained dictionary

and, therefore, does not render an efficient distributed im-

plementation. To overcome this issue, using random Fourier

features [29], we propose centralized GKLMS in RFF space.

By extending the concepts of distributed learning over net-

works [12], [25], [30]–[32], we also propose a graph diffusion

KLMS (GDKLMS) using RFF that solely depends on local

information exchange. Furthermore, we establish the condi-

tions for the mean convergence of the proposed RFF based

GDKLMS. Finally, numerical experiments are conducted to

demonstrate the performance of the proposed algorithms.

II. PROBLEM FORMULATION

Consider an undirected graph G = {N , E}, where N =
{1, 2, . . . ,K} is the set of nodes and E is the set of edges

such that (k, l) ∈ E if and only if nodes k and l are

connected. The graph is equipped with the graph shift operator,

defined by a symmetric matrix S ∈ R
K×K whose entries

[S]k,l = skl take non-zero values only if (k, l) ∈ E [1],

[2]. The graph Laplacian matrix [1] and the graph adjacency

matrix [2] are the common choices for S. At time-index n, a

graph signal is defined by the mapping x(n) : N → R and

represented by a vector x(n) = [x1(n)x2(n) . . . xK(n)]T,

where xk(n) represents the signal value at the kth node. The

graph shift operation Sx(n) is performed locally at each node

k by linearly combining the samples from neighboring nodes,

namely,
∑

l∈Nk
sklxl(n), where Nk denotes the neighborhood

of node k including k itself.
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A length-L linear shift-invariant (LSI) graph filter linearly

combines these shifted versions of a graph signal and yields

an output y(n) =
∑L−1

i=0 hiS
ix(n− i), for n ≥ L− 1, where

h0, h1, . . . , hL−1 are the coefficients of the graph filter [12].

This model embeds time-evolution and is an alternative to

the initial linear graph filter designs [10]–[12]. By retaining

the samples {xk(n), [Sx(n−1)]k, . . . , [S
L−1x(n−L+1)]k},

only one graph shift operation needs to be performed at each

time-instant n, which makes this model suitable for real-

time applications. For this model, linear graph diffusion LMS

strategies have been proposed in [12] for adaptive graph signal

processing.

However, in many real-world scenarios, the limited ca-

pabilities of linear models fail to represent systems with

more sophisticated input-output relations reasonably [18]. This

limitation on linear models is discussed in many problems such

as channel regression and time-series prediction [18], [26],

[28]. Adopting a nonlinear model proved to be effective when

tackling this class of problems. In this context, at every node k,

we assume a nonlinear relation between the input and output

as given below:

yk(n) = f(rk(n)) + υk(n), (1)

where f : RL → R is a nonlinear function on R
L, υk(n) is

the observation-noise at node k, and

rk(n) = [xk(n) [Sx(n− 1)]k . . . [SL−1x(n− L+ 1)]k]
T.
(2)

Here, the goal is to estimate the function f(·) at each node k
given a set of data pairs {rk(i), yk(i)} for i ∈ {1, 2, . . . , n};

this refers to a nonlinear system identification task. While

a linear filter can be uniquely defined by its coefficients

h0, h1, . . . , hL−1, the characterization of a nonlinear filter ad-

mits a range of approaches. Several methods exist in literature

to estimate the non-linear functions in an adaptive fashion [18],

[28], [33]. Of these, kernel methods take a linear form in high-

dimensional feature space and, thus, gained much popularity in

modeling the nonlinear input-output relations [18]–[25], [27].

Thus, we characterize the nonlinear relations on graphs as

graph kernel adaptive filters.

III. GRAPH KERNEL FILTERS

In order to estimate the nonlinear function f(·) in (1), kernel

methods first map the input regressor rk(i) ∈ R
L into a high-

dimensional feature space where f(·) takes a linear form [18],

[26]. This mapping is denoted by κ(·, rk(i)), where κ(·, ·) is

a reproducing kernel. The reproducing kernel κ(·, ·) : RL ×
R

L → R satisfies [18]

κ(rk(n), rk(i)) = 〈κ(·, rk(n)), κ(·, rk(i))〉H, (3)

where H is the induced RKHS and 〈·, ·〉H denotes the cor-

responding inner product. In (3), κ(·, rk(i)) is a representer

evaluation at rk(i) [27], [28].

A. Centralized Graph Kernel LMS

In the graph setting, at every time-instant n, K new data

samples are available. Then, at time-instant n, using the

representer theorem [20], the estimate of yl(n) (i.e., ŷl(n)),
given data pairs {rk(i), yk(i)}n−1,K

i=1,k=1

⋃{rk(n)}Kk=1, can be

expressed as

ŷl(n) = f(rl(n)) =
n∑

i=1

K∑
k=1

αik κ(rl(n), rk(i)). (4)

The model in (4) grows with both time, n, and network

size, K. This is a well-known issue with single-node kernel

methods [19], [26]–[28], [34]–[36], where several solutions

have been proposed that learn a sparse, or fixed-size dictionary.

Of these, the coherence-check (CC) methods use a coherence

metric [19], [28] between a candidate regressor and the current

dictionary to decide whether to include the candidate in the

dictionary. Using coherence-check criterion, ŷl(n) can be

written as

ŷl(n) = f(rl(n)) =
∑

i∈M(n)

∑
k∈K(i)

αik κ
(
rl(n), rk(i)

)
, (5)

where M(n) is a set of time instants in which at least one

input regressor is added to the dictionary until time-index

n, with |M(n)| ≤ n, and K(i) is a set of node indices

of regressors that passed the coherence-check at time-index

i, with |K(i)| ≤ K. Under the coherence-check criterion,

at time-index n, the dictionary D(n) contains |D(n)| =∑
i∈M(n) |K(i)| regressors.

Remark 1. Given reasonable conditions on the coherence-

metric threshold, the maximum number of regressors in the

dictionary is finite, i.e., |D| stops increasing after a certain

time [28].

The coefficients of the function expansion in (5) are ob-

tained through the following minimization problem

min
αik

K∑
l=1

E

[(
yl(n)−

∑
i∈M(n)

∑
k∈K(i)

αik κ
(
rl(n), rk(i)

))2]

= min
α∈R|D(n)|

E
[‖y(n)−K(n)α‖22

]
, (6)

where α � [αT
1 αT

2 . . . αT
|M(n)|]

T, with αT
i = [αi1 αi2 . . .

αi|K(i)|] ∈ R
|K(i)| and K(n) = [K1(n)K2(n) . . . K|M(n)|] ∈

R
K×|D(n)|, with [Ki(n)]lk = κ(rl(n), rk(i)), for l ∈ N and

k ∈ K(i).
Considering the growing nature of the dictionary, access

to second-order statistics is impractical. Therefore, we use a

stochastic-gradient approach and minimize the instantaneous

value of (6) recursively. The update equation for the graph

KLMS (GKLMS) is given by

α(n+ 1) = α(n) + μ KT(n)
(
y(n)−K(n)α(n)

)
, (7)

where μ is a positive adaptation step size.

Remark 2. If coherence-check is employed in an online

fashion, two events must be considered for each candidate
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regressor: if the regressor does not satisfy the coherence-check

criteria, the dictionary remains the same. Otherwise, K(n) gets

one new column and a zero-valued entry must be appended to

α(n) [28]. At every time instant i, |K(i)| regressors are added

to D. Hence, |K(i)| zeros must be appended to α(n).

B. Centralized GKLMS using RFF

An alternative to sparsification methods is provided by

random Fourier features (RFF) [29]. RFF are used to approxi-

mate the evaluation of a shift-invariant kernel κ(r(n), r(i)) =
κ(r(n)− r(i)) as an inner-product in the D-dimensional RFF

space. This turns the problem into a finite-dimension linear

problem while removing the need to evaluate kernel func-

tions [29]. Let zk(n) be the mapping of rk(n) into the RFF

space R
D. Then, the kernel evaluation can be approximated

as κ(rl(n), rk(i)) ≈ zTk (i)zl(n), and the estimate ŷl(n) in (4)

can be approximated by

ŷl(n) ≈
( n∑

i=1

K∑
k=1

αik zk(i)
)T

zl(n) = hTzl(n), (8)

where h ∈ R
D is the representation of the function f(·) in the

RFF space. Let the matrix Z(n) = [z1(n) z2(n) . . . zK(n)]
describe the RFF mapping of all input vectors at time n. Now,

the optimization problem becomes

h∗(n) = arg min
h∈RD

E
[‖y(n)− ZT(n)h‖22

]
. (9)

Similar to (7), approximating the solution through stochastic

gradient descent iterations yields the update rule

h(n+ 1) = h(n) + μZ(n)e(n), (10)

where e(n) � y(n)− ZT(n)h(n).

The estimates α in (7) and h in (10) require knowledge

of the input of the entire graph, which can be impractical in

applications without a centralized processing unit. Therefore,

we consider now a distributed implementation of the GKLMS,

named graph diffusion KLMS (GDKLMS).

C. GDKLMS using RFF

The global optimization problem (9) can be rewritten as the

following separable problem

(ψ∗1(n), . . . ,ψ
∗
K(n))= argmin

ψ1,...,ψK∈RD

K∑
k=1

E[(yk(n)−zTk (n)ψk)
2],

(11)

where ψk is the local estimate of h at node k. Prob-

lem (11) is solved in a distributed fashion by minimizing

E
[
(yk(n)− zTk (n)ψk)

2
]

at each node. Similar to the central-

ized case, denoting ek(n) = yk(n)− zTk (n)ψk(n), the update

rule for ψk is given by

ψk(n+ 1) = ψk(n) + μ ek(n)zk(n). (12)

We now adopt the adapt-then-combine (ATC) strategy to

improve individual estimates via graph diffusion [11], [12],

[19], [30], [32]. The parameter update of hk(n) at node

k is obtained by combining the local estimates from its

neighborhood. The ATC update rule for the GDKLMS using

RFF is given by

ψk(n+ 1) = hk(n) + μ ek(n)zk(n), (13a)

hk(n+ 1) =
∑
l∈Nk

alk ψl(n+ 1), (13b)

where combination coefficients alk are non-negative and sat-

isfy the condition
∑

l∈Nk
alk = 1 [32].

We note that if coherence-check is implemented for indi-

vidual nodes, it can lead to unequal dictionaries across the

graph, making it challenging to implement the algorithm in

a distributed fashion [28]. As an alternative, we consider

the construction of a pre-trained centralized dictionary [19].

The ATC approach using coherence-check proposed in [19]

can be generalized for graph kernel filters, such that each

node k updates its coefficient vector αk by combining the

local estimates from its neighborhood. The dictionary can be

obtained in a centralized way and broadcasted to the entire

network or by a single dedicated node that shares its dictionary

with all nodes. Moreover, the pre-training of the dictionary

depends on available training data. Therefore, we note that

RFF offer more flexibility for distributed implementations than

the coherence-check approach, as the dimension of the RFF

space can be set equally for all nodes.

IV. MEAN CONVERGENCE ANALYSIS

In this section, we study the mean convergence of the

GDKLMS using RFF. For this, at network-level, we define

the filter coefficient vector in RFF space hg = 1K ⊗
h, the estimated filter coefficient vector in RFF space

hg(n) = [hT
1 (n)h

T
2 (n) . . . h

T
K(n)]T, and the input data

matrix Z(n) = blockdiag
{
z1(n), z2(n), . . . , zK(n)

}
, where

blockdiag{·} denotes the block-diagonal-stacking operator.

The symbol 1K is a column vector of size K × 1 with every

element taking the value one and ⊗ denotes the right Kro-

necker product operator. Combination coefficients are gathered

into a stochastic matrix A such that [A]k,l = akl. From these

definitions, the network-level data model is given by y(n) =
ZT(n)hg + υ(n), where υ(n) = [υ1(n) υ2(n) . . . υK(n)]T.

Using these definitions, the network-level update recursion of

the GD-KLMS using RFF can be stated as

hg(n+ 1) = A (hg(n) + μZ(n)e(n)) , (14)

where A = AT ⊗ ID. Denoting the global weight deviation

vector of the proposed GDKLMS using RFF at time index

n as h̃g(n) = hg − hg(n), and considering that Ahg = hg

(since the matrix A is left stochastic), from (14), the recursion

for h̃g(n) can then be obtained as

h̃g(n+ 1) = B(n)h̃g(n)− μ AZ(n)υ(n), (15)

where B(n) = A(
IDK − μZ(n)ZT(n)

)
.

Taking the statistical expectation on both sides of (15),

assuming statistical independence between hk(n) and zk(n),
∀k ∈ N [31], and considering that the observation noise υk(n)
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Fig. 1. Learning curves (network-level MSE vs iteration index) for the proposed algorithms.

is a zero mean i.i.d. random sequence, which is taken to be

independent of any other signal, we obtain

E[h̃g(n+ 1)] = B E[h̃g(n)], (16)

where B = E[B(n)] = A(
IDK − μRz

)
with Rz =

E[Z(n)ZT(n)] = blockdiag(Rz,1,Rz,2, . . . ,Rz,K), with

Rz,k = E[zk(n)z
T
k(n)]. Note that the vector zk(n) is the

representation of rk(n) in the RFF space. So the input vectors

zk(n), for k ∈ N , may not satisfy both zero-mean and

Gaussian distribution conditions [24]. However, if the basis of

the RFF space is generated in a way such that the basis vectors

vi �= vj for any i �= j, the autocorrelation matrix Rz,k, for

k ∈ N will be strictly positive definite [24]. Therefore, from

(16), it is easily seen that limn→∞ E
[
h̃g(n)

]
attains a finite

value if and only if ‖B‖ < 1, where ‖ · ‖ denotes any matrix

norm. We derive a convergence condition in terms of μ, by

constraining the block maximum norm of the matrix B (i.e.,

‖B‖b,∞). Using the properties of block maximum norm [32],

we can write

‖B‖b,∞ ≤ ‖A‖b,∞‖IDK − μRz‖b,∞. (17)

Using [32, Lemma D. 3(a), D. 5], a sufficient condition for

E[h̃g(n)] to converge asymptotically in mean is given by

ρ(IDK − μRz) < 1, or, equivalently, |1− μλj(Rz))| < 1 for

j ∈ {1, 2, . . . , DK}, where ρ(·) denotes the spectral radius of

the argument matrix and λj(Rz) denotes the jth eigenvalue

of Rz . After solving this, we obtain the following condition

on μ:

0 < μ <
2

max
∀k∈N

{
max
∀i

{λi( Rz,k)}
} . (18)

V. NUMERICAL RESULTS

We validate the performance of the proposed algorithms

on a connected Erdös-Renyi graph consisting of 20 nodes

with edge probability equal to 0.2. The shift matrix S is

constructed as follows: first, the existing edges, according to

the previously constructed graph, receive a weight value drawn

from the uniform distribution in the interval (0, 1]; each entry

skl receives the value of the corresponding edge weight or

zero if the edge does not exist; the eigenvalues {λk}Kk=1 of S

are normalized by the largest eigenvalue such that |λk| ≤ 1.

Input signal x(n) and observation noise υ(n) are drawn

from zero-mean normal distributions with covariance matrices

Rx = diag{σ2
x,k} and Rυ = diag{σ2

υ,k}, respectively, where

σ2
x,k are drawn from the uniform distribution in [1, 1.5] and

σ2
υ,k from [0.1, 0.15]. For distributed implementations, the

combination coefficients akl are computed according to the

Metropolis rule [32]. We used a Gaussian kernel with σ2 = 1.

For a filter of length L = 4, we aim at estimating the nonlinear

function given by

f(rk(n)) =
√

rk,1(n)2 + sin2(rk,4(n)π)

+ (0.8− 0.5 exp(−rk,2(n)
2)rk,3(n)

(19)

The network-level MSE given by MSE(n) =
1
K

∑N
k=1 e

2
k(n) was considered as the performance metric,

and results are displayed by plotting the MSE versus iteration

index n, averaging over 1000 independent experiments.

In order to compare coherence-check-based approaches

with RFF-based approaches, the adaptation step size μ was

adjusted so that the learning curves achieve similar steady

network-level MSE. A centralized training dataset was used

for the coherence-check simulations to pre-train the dictionary

and broadcast it to all nodes before the learning iterations.

The number of training samples used in the pre-training is not

considered in the results. Moreover, we note that the linear

approaches, namely the graph LMS and the graph diffusion

LMS [12], could not model the target function reasonably.

Fig. 1a shows the learning curves for centralized solutions.

Specifically, we compare the GKLMS without dictionary

sparsification with μ = 0.1 to the solutions using RFF and

coherence-check. The value D ∈ {16, 32} represents both the

dimension of the RFF space and the size of the pre-trained

dictionary for the coherence-check approach. Results show

that the GKLMS without dictionary sparsification, coherence-

check, and RFF based algorithms can effectively represent the

target function. Fig. 1a also shows that, for the same D and

similar values of steady-state network-level MSE, the RFF

based algorithm converges faster than the coherence-check-

based one. Moreover, comparing the plots for D = 32 to the

GKLMS plot shows that both the coherence-check and RFF
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based algorithms can approximate the graph KLMS without

sparsification as D increases.

Fig. 1b shows the results for the distributed GDKLMS

using coherence-check and RFF. Similar to the centralized

case, the plots show that the coherence-check and RFF-

based approaches can effectively represent the target function,

achieving network-level MSE of approximately −10 dB for

D = 16 and −14 dB for D = 32. Again, the RFF-based

solution exhibits faster convergence for both values of D when

the steady-state network-level MSE is matched.

VI. CONCLUSIONS

This paper introduced nonlinear graph filters that operate

in the reproducing kernel Hilbert space. To this end, a cen-

tralized graph kernel LMS (GKLMS) algorithm was derived.

To overcome the growing dimension problem encountered

in the centralized GKLMS algorithm, coherence-check based

dictionary-sparsification and random Fourier feature (RFF)

based approaches were proposed. Furthermore, diffusion-

based distributed implementations of coherence-check and

RFF-based graph KLMS algorithms were developed to update

filter parameters through local communications and in-network

processing. Mean convergence conditions on the adaptation

step size were established for the proposed GDKLMS using

RFF. Numerical simulations were conducted to demonstrate

the performance of the proposed algorithms. Although the

coherence-check and RFF-based approaches effectively es-

timate the nonlinear graph filter, the RFF-based approach

exhibits a faster convergence rate than the coherence-check

based approach.
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Abstract—This paper develops adaptive graph filters that
operate in reproducing kernel Hilbert spaces. We consider both
centralized and fully distributed implementations. We first define
nonlinear graph filters that operate on graph-shifted versions of
the input signal. We then propose a centralized graph kernel least
mean squares (GKLMS) algorithm to identify nonlinear graph
filters’ model parameters. To reduce the dictionary size of the cen-
tralized GKLMS, we apply the principles of coherence check and
random Fourier features (RFF). The resulting algorithms have
performance close to that of the GKLMS algorithm. Additionally,
we leverage the graph structure to derive the distributed graph
diffusion KLMS (GDKLMS) algorithms. We show that, unlike
the coherence check-based approach, the GDKLMS based on
RFF avoids the use of a pre-trained dictionary through its data-
independent fixed structure. We conduct a detailed performance
study of the proposed RFF-based GDKLMS, and the conditions
for its convergence both in mean and mean-squared senses are
derived. Extensive numerical simulations show that GKLMS and
GDKLMS can successfully identify nonlinear graph filters and
adapt to model changes. Furthermore, RFF-based strategies show
faster convergence for model identification and exhibit better
tracking performance in model-changing scenarios.

Index Terms—Adaptive signal processing, distributed learning,
kernel graph filters, kernel LMS, random Fourier features.

I. INTRODUCTION

Graph signal processing (GSP) has recently received in-

creased attention due to its wide applicability to model,

process, and analyze signals and large data sets, ranging from

daily-life social networks to sensor networks for industrial and

military applications [1]–[5]. For instance, in the context of

a wireless sensor network, graph nodes and edges represent

sensors and communication links, respectively, while the so-

called graph signal is the measurement snapshot across sen-

sors [6]. Similar to traditional digital signal processing (DSP)

techniques, the basic building block in GSP is the graph-shift

operation, which captures node interconnections [7]. In the

particular case of linear networks, the graph-shifted signal on
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a given node is a linear combination of adjacent node signals,

where the weights relate to the edge values. This resemblance

to DSP has sparked the development of a vast amount of GSP

counterparts of methods related to spectral analysis [8]–[14]

and traditional time-series analysis [15], [16].

One of the key research areas in GSP is modeling unknown

relations between input and output graph signals through a

filter [11]–[18]. The application of linear shift-invariant filter

models is widely employed in the literature, e.g., to design

graph spectral filters [11], [12] and model dynamic graph

signals [15], [16]. Several works deal with adaptive learning

of graph filters, see, e.g., [19]–[23]. These methods were later

extended to multitask graphs [24], [25]. The previous works

adopt the ideas of linear adaptive networks [26], [27] to esti-

mate the graph filter through in-network processing. However,

linear models cannot accurately represent many real-world

systems that exhibit more sophisticated input-output relations.

Prominent examples include the relations between air pressure

and temperature [28], and wind speed and generated power in

wind turbines [29].

In conventional DSP, several approaches to nonlinear sys-

tem modeling exist in the literature [30]–[38]. In particular,

methods based on reproducing kernel Hilbert spaces (RKHS)

have gained popularity due to their efficacy and mathematical

simplicity [36]–[53]. There is extensive literature on function

estimation in RKHS for both single- and multi-node networks,

see, e.g., [39]–[57]. Most works on adaptive networks treat

each nodal signal as time series to estimate a common filter

vector. In contrast, in GSP, the graph filter operates on an in-

stantaneous topology-dependent snapshot of the network state

by exploiting graph shifts. Although some of the prior works

account for the input signals’ network-related characteristics,

such as smoothness across the graph, existing RKHS-based

approaches do not consider graph-shifted signals. The shift

operator and delayed versions of graph signals have been

explored for linear adaptive graph filters [22], [23].

This paper introduces nonlinear graph filters and presents

two adaptive methods for function estimation over graphs,

namely the centralized graph kernel least mean squares

(GKLMS) and the graph diffusion kernel least mean squares

(GDKLMS). Preliminary results on this topic have been pre-

sented in [58]. The proposed nonlinear graph filters generalize

conventional linear graph filters and consist of a nonlinearity

applied to a combination of graph-shifted versions of the

input signal. For the estimation methods, we consider two

approaches for model reduction, namely coherence check

(CC) [40], [52] that sparsifies the original dictionary of the
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GKLMS, and random Fourier features (RFF) [59] that ap-

proximate kernel evaluations with inner products in a fixed-

dimensional space. One of the main features of the CC-

based implementation is the automatic tuning of the model

order by selecting regressors based on a coherence mea-

sure [52]. On the other hand, RFF-based implementations

use a data-independent mapping into a space where kernel

evaluations can be approximated as inner-products, making

them resilient to model changes. Building upon ideas of

network diffusion [26], [27], the proposed RFF-based graph

diffusion KLMS (GDKLMS) avoids the centralized processing

and updates local estimates at each node through collaboration

with neighbors. One of the main features of the RFF-based

GDKLMS is its data-independent mapping that avoids using a

pre-trained dictionary. This makes the GDKLMS more robust

to changes in the underlying system since there is no need

to retrain dictionaries associated with distributed CC-based

solutions [52]. We analyze the performance of the GDKLMS

and establish the convergence conditions in both mean and

mean-squared senses.

This paper is organized as follows. Section II presents

the necessary concepts and notations of GSP, including the

conventional models of linear graph filters, and formulates the

problem of modeling nonlinear graph filters. The proposed

GKLMS and GDKLMS algorithms are presented in Sec-

tion III. We first derive the GKLMS as a centralized solution

for the modeling problem and present the implementations

based on CC and RFF. Thereafter, the RFF-based GDKLMS

is derived. In Section IV, we present the convergence analysis

of the RFF-based GDKLMS, along with the conditions for

convergence in the mean and mean-squared senses. In this

section, we also study the steady-state mean-squared error. In

Section VI, numerical experiments are conducted to demon-

strate the performance of the proposed solutions for identifying

and tracking the nonlinear graph filters. For this, we use both

synthetic and real-life networks. Synthetic examples employ

generic nonlinear functions, whereas real-life examples treat

the modeling of relations between temperature and humidity

data from sensor networks. Finally, in Section VII, we present

the concluding remarks of this work.

II. PROBLEM FORMULATION

Consider an undirected graph G = {N , E}, where N =
{1, 2, . . . ,K} is the set of nodes and E is the set of edges

such that (k, l) ∈ E if nodes k and l are connected. The

graph is associated with a graph-shift operator, S ∈ R
K×K ,

whose entries [S]k,l = skl take non-zero values only if

(k, l) ∈ E [1], [2]. The graph adjacency matrix [2] and the

graph Laplacian matrix [1] are the most common choices

for S. At time instant n, the graph signal is defined by a

vector xn = [x1,n x2,n . . . xK,n]
T, with xk,n being the signal

value at node k. The graph-shift operation Sxn is performed

locally at each node k by linearly combining the samples from

neighboring nodes, namely
∑

l∈Nk
sklxl,n, where Nk denotes

the neighborhood of node k including k itself. In this work,

we assume the graph topology and the shift matrix are known.

For cases where S is not known, one can employ different

techniques for learning the graph structure available in the

GSP literature [11], [60]–[64].

A linear shift-invariant (LSI) graph filter of size L × 1
combines shifted graph signals and is defined by

H =

L−1∑
i=0

hiS
i, (1)

where [h0 h1 . . . hL−1]
T is the linear graph filter coefficient

vector [12], [22]. When streaming data is available, a two-

dimensional graph-time filter [13] can be employed. The filter

processes the signal xn and yields the graph filtered vector

yn = [y1,n y2,n . . . yK,n]
T as

yn =

L−1∑
i=0

M−1∑
j=0

hi,jS
ixn−j + υn, (2)

where M − 1 is the filter memory in temporal domain,

and υn = [υ1,n υ2,n . . . υK,n]
T is a zero-mean wide-

sense stationary (WSS) noise with covariance matrix Rυ =
diag{σ2

υ,1, σ
2
υ,2, . . . , σ

2
υ,K}. Also, υn and υm are i.i.d. for any

n �= m. The model (2) uses walks of up to length L − 1
in the graph. Thus, it requires multihop communication in

distributed implementations, which limits its usage in real-time

applications.

A simplified model that avoids multihop communication can

be constructed by combining time and graph domains into one,

as

yn =
L−1∑
i=0

hiS
ixn−i + υn. (3)

A graph diffusion LMS strategy using model

(3) is proposed in [23]. In (3), samples

{xk,n, [Sxn−1]k, . . . , [S
L−1xn−L+1]k} are available locally

at node k. Thus, only one graph-shift operation is needed

at each time instant. A crucial difference between our

GSP approach and conventional single- and multi-variate

DSP approaches lies in our assumption that the signals’

spatio-temporal dynamics depend on the graph structure.

In many real-world applications, these linear models cannot

fully capture the input-output relations [37]. For this purpose,

we assume a nonlinear relation between input and output, at

node k, given by

yk,n = f(rk,n) + υk,n, (4)

where f : RL → R is a continuous nonlinear function on R
L,

υk,n is the observation noise at node k, and

rk,n =
[
xk,n [Sxn−1]k . . . [SL−1xn−L+1]k

]T
. (5)

The objective here is to identify f(·) at each node k given a

set of data pairs {rk,i, yk,i}, i ∈ {1, 2, . . . , n}. In this paper,

we characterize nonlinear graph filters using the principles of

kernel adaptive filters.

III. GRAPH KERNEL ADAPTIVE FILTERS

In order to estimate the nonlinear function f(·) in (4), kernel

methods first map the input regressors {rk,i}n,Ki=1,k=1 into a

higher dimensional feature space where f(·) takes a linear
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form [37], [49]. This mapping is denoted by κ(·, rk,i), in

which κ(·, ·) : RL × R
L → R is a reproducing kernel, which

satisfies [37]

κ(rk,n, rk,i) = 〈κ(·, rk,n), κ(·, rk,i)〉H , (6)

where H is the induced RKHS and 〈·, ·〉H denotes the cor-

responding inner product. In (6), κ(·, rk,i) is a representer

evaluation at rk,i [51], [52]. The definition of the kernel

function is sufficient to evaluate the inner product in (6)

without explicitly mapping the data into RKHS.

A. Graph Kernel LMS

In the GSP context, K new data samples are avail-

able at each time instant. Then, given a set of regressors

{rk,i}n,Ki=1,k=1, the graph function f(·) can be expressed as

a kernel expansion in terms of the mapped data as

f(·) =
n∑

i=1

K∑
k=1

αik κ(·, rk,i). (7)

The model (7) can approximate any continuous function

f(·) [37]. Hence, the corresponding estimate of yl,n, at node

l, is given by

ŷl,n = f(rl,n) =
n∑

i=1

K∑
k=1

αik κ(rl,n, rk,i). (8)

The coefficients of the expansion in (8) are obtained through

the following minimization problem:

min
αik∈R

K∑
l=1

E

[(
yl,n −

n∑
i=1

K∑
k=1

αik κ(rl,n, rk,i)
)2

]
= min

α∈RnK
E
[‖yn −Kn α‖22

]
, (9)

where E[·] denotes the expected value of the argument, αT =
[αT

1 αT
2 . . . αT

n ], with αT
i = [αi1 αi2 . . . αiK ], and the matrix

Kn = [K1,n K2,n . . . Kn,n] ∈ R
K×nK (10)

is a Gram matrix with [Ki,n]l,k = κ(rl,n, rk,i) for k, l ∈ N .

Considering the growing nature of the dictionary, access to

the second-order statistics is impractical. Therefore, we use a

stochastic-gradient approach and minimize the instantaneous

value of (9) recursively. The update equation for the graph

KLMS (GKLMS) is given by

αn+1 = αn + μ KT
n (yn −Knαn), (11)

where μ > 0 is the step size.

The proposed GKLMS algorithm is summarized in Algo-

rithm 1.

B. Graph Kernel LMS using Coherence-check

As follows from (8), the model order grows with both time,

n, and network size, K, when new data samples arrive. This

increase makes this model unsuitable for real-time applications

and large-scale networks. The growing dimensionality of the

dictionary is a well-known issue in single-node kernel meth-

ods [40], [41], [49]–[53], where several solutions have been

Algorithm 1: GKLMS

Input: step size μ
Initialization: α0 = empty vector;

%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

append K zeros to αn;

compute Kn = [K1,n K2,n . . . Kn,n];
update αn+1 = αn + μ KT

n (yn −Knαn);
store regressors {rk,n}Kk=1;

end

proposed that learn a sparse, or fixed-size dictionary. Of these,

the coherence-based sparsification schemes use a coherence

metric [40], [52] between a candidate regressor and the current

dictionary to decide whether to include the candidate in

the dictionary. Given a set of data samples {rk,i}K,n−1
k=1,i=1,

various approaches can be employed to construct a CC-based

sparse dictionary adaptively. In a centralized manner, one can

consider regressors from all nodes at each time instant and

test the coherence metric for each regressor rl,n, given by

δl,n = max
rj∈Dn

|κ(rl,n, rj)|, (12)

where Dn denotes the dictionary obtained before testing

regressor rl,n; the dictionary starts empty before running the

algorithm. Given a predefined threshold, δ > 0, if δl,n < δ, the

regressor is added to the dictionary. The process continues over

the remaining regressors, accounting for previous regressors

added to the dictionary, until a predefined dictionary size, D,

is achieved, or all the data samples are used.

Therefore, using the coherence check criterion, ŷl,n in (8)

can be rewritten as

ŷl,n =
∑

i∈Mn

∑
k∈Ki

αik κ(rl,n, rk,i), (13)

where Mn is a set of time instants (up to time instant n) in

which at least one input regressor is added to the dictionary,

with |Mn| ≤ n, and Ki is a set of node indices of the

regressors that passed the coherence check at time index i,
with |Ki| ≤ K. Under the CC criterion, at time index n, the

dictionary Dn contains |Dn| =
∑

i∈Mn
|Ki| regressors.

Remark 1. Given a set of reasonable conditions on the thresh-

old, δ, the maximum number of regressors in the dictionary

is finite, i.e., |Dn| stops increasing after a certain time [52].

The coefficients of the expansion in (13) are obtained

through the following minimization problem:

min
α̃ik∈R

K∑
l=1

E
[(

yl,n −
∑

i∈Mn

∑
k∈Ki

α̃ik κ(rl,n, rk,i)
)2]

= min
α̃∈R|Dn|

E
[
‖yn − K̃nα̃‖22

]
, (14)

where α̃T = [α̃T
1 α̃T

2 . . . α̃T
|Mn|], with α̃T

i = [α̃i1 α̃i2 . . .

α̃i|Ki|] ∈ R
|Ki|. The matrix K̃n is a Gram matrix given by

K̃n = [K̃1,n K̃2,n . . . K̃|Mn|,n] ∈ R
K×|Dn|, (15)
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Algorithm 2: GKLMS using coherence check

Input: training data {r̃l,i, ỹl,i}K,t
l=1,i=1, dictionary size

D, threshold δ, and step size μ
Initialization: D = ∅, α0 = empty vector;

%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

for k = 1, . . . ,K do
if |D| < D then

compute δl,n = maxrj∈D |κ(rl,n, rj)|;
if δl,n < δ then

add rl,n to D;

add l to Kn;

end
end

end
if |Kn| �= 0 then

append |Kn| zeros to α̃n;

add n to Mn;

end
compute K̃n = [K̃1,n K̃2,n . . . K̃|Mn|,n];
update α̃n+1 = α̃n + μ K̃T

n (yn − K̃nα̃n);
end

with [K̃i,n]l,k = κ(rl,n, rk,i), for l ∈ N and k ∈ Ki.

Using the stochastic-gradient approach and minimizing the

instantaneous value of (14), we obtain the following update

rule of the centralized GKLMS using coherence check:

α̃n+1 = α̃n + μ K̃T
n (yn − K̃nα̃n). (16)

Algorithm 2 summarizes the steps for pre-training the

dictionary according to the CC criterion and the learning stage

of the CC-based GKLMS algorithm.

Remark 2. If coherence check is employed in an online

fashion, two events must be considered for each candidate

regressor. If the regressor does not satisfy the CC criterion,

the dictionary remains the same. Otherwise, K̃n gets one new

column and a zero-valued entry must be appended to α̃n [52].

At every time instant i, for i ∈Mn, |Ki| regressors are added

to the dictionary. Hence, |Ki| zeros must be appended to α̃n.

C. Graph Kernel LMS using Random Fourier Features

An alternative to sparsification methods, like CC, is pro-

vided by RFF [59]. The shift-invariant kernel evaluation

κ(rl,n, rk,i) = κ(rl,n − rk,i) can be approximated as an

inner product in the D-dimensional RFF space. This turns the

problem into a finite-dimension linear filtering problem, while

avoiding the evaluation of kernel functions [59]. Let zl,n be

the mapping of rl,n into the RFF space R
D, given by

zl,n =

(D/2)
− 1

2
[
cos(vT

1 rl,n + b1) . . . cos(v
T
Drl,n + bD)

]T
,

(17)

Algorithm 3: GKLMS using RFF

Input: RFF-space dimension D, pdf p(v), step size μ
Initialization:
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
h0 = 0D;

%Learning
for each time instant n do

Input: yn, {rk,n}Kk=1

compute {zl,n}Kl=1 using (17);

construct matrix Zn using (21);

update hn+1 = hn + μZnen;

end

where the phase terms {bi}Di=1 are drawn from a uniform

distribution on the interval [0, 2π]. Vectors {vi}Di=1 are drawn

from the probability density function (pdf) p(v) such that

k(rl,n − rk,i) =

∫
p(v) exp

(
jvT(rl,n − rk,i)

)
dv, (18)

where j2 = −1. In other words, the Fourier transform of

k(rl,n − rk,i) is given by p(v). From (17) and (18), it can

be verified that E[zTk,izl,n] = k(rl,n, rk,i). Then, the kernel

evaluation can be approximated as κ(rl,n, rk,i) ≈ zTk,izl,n and

the estimate ŷl,n in (8) can be approximated by

ŷl,n ≈
( n∑

i=1

K∑
k=1

αik zk,i

)T

zl,n = hTzl,n, (19)

where h ∈ R
D is the representation of the function f(·) in the

RFF space. A higher value of D improves the approximation

of the kernel function. Therefore, the choice of D depends

mostly on the application, as it represents a trade-off between

performance and complexity.

We note that, if a Gaussian kernel given by κ(rl,n, rk,i) =
exp

(−‖rl,n − rk,i‖22/(2σ2)
)

is used, the pdf p(v) is given in

closed form as a normal distribution. See [59] for closed-form

representations of p(v) when other kernel functions are used.

The linear representation of f(·) in the RFF space, h, can

be estimated by solving the following optimization problem:

min
h∈RD

E
[‖yn − ZT

nh‖22
]

, (20)

where the matrix

Zn = [z1,n z2,n . . . zK,n] (21)

represents the RFF mapping of all input vectors at time n.

Similar to (16), approximating the solution through stochastic-

gradient descent iterations yields the RFF-based centralized

graph kernel LMS (GKLMS) update rule

hn+1 = hn + μZnen, (22)

where en = yn − ZT
nhn. The proposed GKLMS using RFF

is summarized in Algorithm 3.

Notice that the estimates α̃ in (16) and h in (22) require

knowledge of the input of the entire graph, which can be

impractical in applications without a centralized processing
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unit. Therefore, we propose a distributed implementation of

the GKLMS, named graph diffusion KLMS (GDKLMS).

Remark 3. A CC-based distributed implementation requires a

pre-trained dictionary available at each node [40]. The dictio-

nary can be pre-trained in a centralized way and broadcasted to

the entire network, or by a single node that shares its dictionary

with all nodes. More importantly, the dictionary depends on

available training data, and may be retrained whenever there

are changes in the underlying model. Therefore, RFF-based

algorithms seem more suitable for distributed implementations

and robust to changes in model and data statistics.

D. Graph Diffusion Kernel LMS using RFF

In order to derive a distributed implementation, the global

optimization problem (20) is expressed alternatively in the

following separable form:

argmin
ψ1,...,ψK∈RD

K∑
k=1

E
[
(yk,n − zTk,nψk)

2
]
, (23)

where ψk is the local estimate of h at node k. The op-

timization problem in (23) can be solved in a distributed

fashion by minimizing E
[
(yk,n − zTk,nψk)

2
]

at each node.

Let ek,n = yk,n − zTk,nψk. Following the similar lines of

centralized GKLMS, the update rule for ψk is given by

ψk,n+1 = ψk,n + μ ek,nzk,n. (24)

We now leverage the graph structure and adopt the adapt-

then-combine (ATC) strategy to improve individual estimates

via graph diffusion [22], [23], [26], [40], [65]. The ATC

strategy is one common diffusion strategy composed by two

steps. At iteration n, the first step updates the local estimate,

at a given node k, using the new input {rk,n, yk,n}, generating

an intermediate estimate. In the second step, nodes share

and combine their intermediate estimates to generate the final

estimate for that iteration. That is, the parameter update of

hk,n at node k is obtained by combining the estimates from its

neighborhood. Note that the graph structure defines a node’s

neighborhood, and adjacent nodes relate to each other. The

ATC update rule for the GDKLMS using RFF is given by⎧⎪⎨⎪⎩
ψk,n+1 = hk,n + μ ek,nzk,n, (25a)

hk,n+1 =
∑
l∈Nk

alk ψl,n+1, (25b)

where the combination coefficients alk are non-negative and

satisfy the condition
∑

l∈Nk
alk = 1 [26]. We could use a

similar combine-then-adapt (CTA) strategy [65]. Both ATC

and CTA strategies share fundamentally the same structure

and yield similar results [27]. Algorithm 4 summarizes the

steps of the GDKLMS implementation using RFF.

IV. CONVERGENCE ANALYSIS

In this section, we study the performance of the pro-

posed RFF-based GDKLMS and establish the conditions

for its convergence both in mean and mean-squared senses.

Algorithm 4: GDKLMS using RFF

Input: RFF-space dimension D, pdf p(v), step size μ,

combination coefficients alk
Initialization:
draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
hk,0 = 0D, ∀k ∈ {1, 2, . . . ,K};
ψk,0 = 0D, ∀k ∈ {1, 2, . . . ,K};
%Learning
for each time instant n do

for k = 1, . . . ,K do
compute zk,n using (17);

update ψk,n+1 = hk,n + μ ek,nzk,n;

end
for k = 1, . . . ,K do

update hk,n+1 =
∑

l∈Nk

alk ψl,n+1;

end
end

For this, at network level, we define the filter coeffi-

cient vector in the RFF space hg = 1K ⊗ h, the es-

timated filter coefficient vector in RFF space hg,n =
[hT

1,n h
T
2,n . . . hT

K,n]
T, and the (RFF-mapped) input data ma-

trix Zn = blockdiag {z1,n, z2,n, . . . , zK,n}. In these defini-

tions, 1K is a vector of size K×1 with every entry taking the

value one, ⊗ denotes the right Kronecker product operator, and

blockdiag{·} denotes the block-diagonal-stacking operator.

Using these definitions, the network-level data model is given

by

yn = ZT
nhg + υn. (26)

From these definitions, the network-level recursion of the

RFF-based GDKLMS can then be expressed as follows:

hg,n+1 = A(
hg,n + μZnen

)
, (27)

where A = AT ⊗ ID. The matrix A, with [A]l,k = alk, is a

K×K left stochastic matrix (i.e., each column consists of non-

negative real numbers whose sum is unity). In the following,

we study the convergence behavior of the proposed RFF-based

GDKLMS governed by the form (27). For this, we assume the

following:

A1: Given a node k ∈ N , the RFF-mapped data signal zk,n
is drawn from a WSS multivariate random sequence with

correlation matrix Rz,k = E[zk,nz
T
k,n]; in addition, the

data vectors zk,n and zl,m are independent, for all k �=
l ∈ N .

A2: The observation noise υn is a zero-mean WSS multivari-

ate random sequence, with diagonal correlation matrix

Rυ = E[υnυ
T
n ] = diag{σ2

υ,1, σ
2
υ,2, . . . , σ

2
υ,K}, being

independent of any other random signal in the model.

A3: The weight vector hk,n is taken to be independent of

zk,n, for k ∈ N .

A4: The graph topology is assumed to be static, meaning

the shift matrix S and the combiner coefficients alk are

constant throughout the process.
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A5: The step size μ is sufficiently small so that the terms

involving higher order powers of μ can be ignored.

The above assumptions are commonly used in the analysis of

distributed adaptive schemes over networks.

Remark 4. Note that the vector zk,n is the representation of

rk,n in the RFF space. Hence, zk,n may not be normally

distributed. If the basis of the RFF space is generated in a

way such that the basis vectors vi �= vj for any i �= j, the

autocorrelation matrix Rz,k, for k ∈ N will be strictly positive

definite [47].

Apart from these assumptions, the analysis also requires

properties of the block maximum norm of a matrix (i.e., ‖ ·
‖b,∞), the block vectorization operator (i.e., bvec{·}) [27], and

the block Kronecker product of two matrices (i.e., ⊗b) [66].

Details of these operators can be found in [27], [66], [67].

A. First-order Convergence Analysis

Denoting the global weight deviation vector of the proposed

GDKLMS using RFF, at time instant n, as h̃g,n = hg −hg,n,

recalling the fact that Ahg = hg (since the matrix A is

left stochastic), from (27), the recursion for h̃g,n can then

be obtained as

h̃g,n+1 = Bnh̃g,n − μ AZnυn, (28)

where Bn = A(
IDK − μZnZT

n

)
. In the following, we

establish the condition for the convergence in mean.

Theorem 1. Assume the data model (26) and the assumptions

A1-A4 hold (assumption A5 is not required here). Then a

sufficient condition for the proposed RFF-based GDKLMS to

converge in mean is given by

0 < μ <
2

max
1≤k≤K

{
max

1≤i≤D
{λi( Rz,k)}

} . (29)

Proof. Taking the statistical expectation E[·] on both sides of

(28), and using the assumptions A1-A4, we obtain

E[h̃g,n+1] = B E[h̃g,n], (30)

with B = E[Bn] = A(
IDK − μRz

)
, where Rz = E[ZnZT

n ]
= blockdiag(Rz,1,Rz,2, . . . ,Rz,K).

From (30), it is easily seen that limn→∞ E
[
h̃g,n

]
attains a

finite value if and only if ‖B‖ < 1, where ‖ · ‖ denotes any

matrix norm. We derive a convergence condition in terms of μ,

by constraining the block maximum norm of the matrix B (i.e.,

‖B‖b,∞). Using the properties of block maximum norm [26],

we can write

‖B‖b,∞ ≤ ‖A‖b,∞‖IDK − μRz‖b,∞. (31)

Since the matrix A is left stochastic, we have ‖A‖b,∞ =
‖AT⊗ID‖b,∞ = 1. Furthermore, as the matrix (IDK−μRz)
is block diagonal symmetric, using [26, Lemma D. 3(a), D. 5],

a sufficient condition for E[h̃g,n] to converge in mean is given

by ρ(IDK − μRz) < 1, or, equivalently, |1− μλj(Rz))| < 1
for j ∈ {1, 2, . . . , DK}, where ρ(·) denotes the spectral radius

of the argument matrix and λj(Rz) denotes the jth eigenvalue

of Rz . After solving this, we arrive at (29).

B. Second-order Convergence Analysis

Next, we focus on the second-order convergence analysis

of the proposed GDKLMS using RFF. Using the energy

conservation approach, we investigate the steady-state MSE

performance of the proposed scheme.

Defining the Σ-weighted norm-square of h̃g,n as

‖h̃g,n‖2Σ = h̃T
g,nΣh̃g,n, where Σ is a positive semi-

definite matrix that can be chosen arbitrarily, and using the

assumptions A1-A4, one can write

E
[
‖h̃g,n+1‖2Σ

]
= E

[
‖h̃g,n‖2Σ′

]
+ μ2E[υT

nZT
nATΣAZυn], (32)

where the cross terms are zero since υn is taken to be zero-

mean and statistically independent of zk,n. The matrix Σ′ is

given by

Σ′ = E[BT
nΣBn]. (33)

Now, using the block Kronecker product denoted by ⊗b [66]

and the bvec{·} operator [66], we can relate the vectors σ =
bvec{Σ} and σ′ = bvec{Σ′} as

σ′ = FTσ, (34)

with

F = E[Bn ⊗b Bn] = (A⊗A)H, (35)

where

H ≈ ID2K2 − μ(Rz ⊗b IDK)− μ(IDK ⊗b Rz). (36)

In the above expression, using the assumption A5, the

terms involving high-order powers of μ are ignored, and we

continue our analysis with this approximation. Note that this

approximation is standard in the analysis of many distributed

schemes over networks [26], [27].

Now, consider the second term on the right-hand side

of (32). We can write it as

E[υT
nZT

nATΣAZυn]

= Tr
(
E[υT

nZT
nATΣAZυn]

)
= Tr

(
AE[Znυnυ

T
nZT

n ]ATΣ
)

= Tr
(
AE[Φn]ATΣ

)
, (37)

where Φn = ZnRυZT
n .

Using the properties of block Kronecker product [66], we

finally have

Tr
(
AE[Φn]ATΣ

)
= γTσ, (38)

where γ = bvec{AE[Φn]AT} = (A⊗A)γυ , with

γυ = bvec{E[Φn]}
= bvec{E[ZnRυZT

n ]}
= E[Zn ⊗b Zn] · bvec{Rυ}. (39)

Combining these results, (32) can be expressed as

E
[
‖h̃g,n+1‖2bvec−1{σ}

]
= E

[
‖h̃g,n‖2bvec−1{FTσ}

]
+ μ2γTσ, (40)
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where bvec−1{·} rearranges the argument vector of size

D2K2 × 1 into a DK ×DK matrix, i.e., Σ = bvec−1{σ}.
Theorem 2. Assume the data model (26) and that assumptions

A1-A5 hold. Furthermore, assume that the step size μ is

sufficiently small such that the approximation (36) is justified

by ignoring the higher-order powers of μ, so that (40) can be

used as a reasonable representation for studying the dynamics

of the weighted mean-squared deviation (MSD). Then, the

proposed RFF-based GDKLMS converges in mean-squared

sense under

0 < μ <
1

max
1≤k≤K

{
max

1≤i≤D
{λi(Rz,k)}

} . (41)

Proof. Iterating the recursion (40) backwards down to n = 0,

we obtain

E
[
‖h̃g,n+1‖2bvec−1{σ}

]
=E

[
‖h̃g,0‖2bvec−1{(FT)n+1σ}

]
+ μ2γT

(
ID2K2 +

n∑
i=1

(
FT

)i
)
σ,

(42)

where h̃g,0 = hg − hg,0. Note that under ‖FT‖ = ‖F‖ <
1, we will have (FT)n+1 → 0D2K2 as n → ∞. Hence,

E[‖h̃g,n‖2bvec−1{σ}] attains a finite value. Therefore, a sufficient

condition for convergence of E[‖h̃g,n+1‖2σ] is then given by

‖F‖ < 1. To derive a convergence condition in terms of μ, we

use the block maximum norm of the matrix F , i.e., ‖F‖b,∞.

From the properties of the block maximum norm [26], we can

write

‖F‖b,∞ = ‖(A⊗b A)H‖b,∞ ≤ ‖(A⊗b A)‖b,∞‖H‖b,∞.

(43)

The term (A⊗bA) can be written as (A⊗A)T⊗ (ID⊗ID).
Again, from the properties of the block maximum norm, we

have ‖A ⊗b A‖b,∞ = ‖(A ⊗ A)T ⊗ ID2‖b,∞ = 1. Now,

substituting the definition of H as given by (36), we have

‖F‖b,∞ ≤ ‖ID2K2 − μ(Rz ⊗b IDK)− μ(IDK ⊗b Rz)‖b,∞.

(44)
Since the argument of the norm on the right-hand side

of (44) is a block diagonal symmetric matrix, from the proper-

ties of block maximum norm, it is seen that E[‖h̃g,n‖2bvec−1{σ}]
converges under

ρ(‖ID2K2−μ(Rz⊗b IDK)−μ(IDK⊗bRz)‖b,∞) < 1, (45)

or, equivalently,

|1− μλp(Rz)− μλq(Rz)| < 1, p, q ∈ {1, 2, . . . , DK}.
(46)

Note that (Rz ⊗b IDK) and (IDK ⊗b Rz) have the same set

of eigenvectors and eigenvalues. Also, λl(Rz) has multiplicity

of DK, for l ∈ N . After solving the above condition, we

obtain the mean-squared convergence condition on μ given in

(41).

Remark 5. We observe that the bounds established for μ are

inversely proportional to the spectral radius of the covariance

matrix of vectors zk. Hence, similar to conventional stochastic

gradient algorithms, μ requires tuning according to the largest

eigenmode.

C. Steady-State Mean-Squared Error

For μ under (41), letting n→∞ on both sides of (40), we

have

lim
n→∞E

[
‖h̃g,n‖2bvec−1{(ID2K2−FT)σ}

]
= μ2γTσ. (47)

By selecting σ = (ID2K2 −FT)−1bvec(Rz), (47) becomes

lim
n→∞E

[
‖h̃g,n‖2Rz

]
= μ2γT(ID2K2 −FT)−1bvec(Rz).

(48)

Using (48), the network-level steady-state mean-squared

error (SMSE) of the proposed RFF-based GDKLMS is given

by

SMSE =
1

K
lim
n→∞E[eTnen]

=
1

K
lim
n→∞

[
E[h̃T

g,nZnZT
n h̃g,n] + E[υT

nυn]
]

=
1

K

[
lim
n→∞E[‖h̃g,n‖2Rz

] + lim
n→∞E[υT

nυn]
]

=
1

K

[
μ2γT(ID2K2 −FT)−1bvec(Rz) + tr(Rυ)

]
.

(49)

V. COMPLEXITY ANALYSIS

This section details the computational complexity of the

proposed algorithms. For the GKLMS algorithm, the Gram

matrix computation (10) requires a total of nK2 kernel

evaluations. The complexity of kernel evaluations is treated

separately, as we do not consider a specific kernel function.

The computational cost of (11) is 2nK2 + nk multiplications

and 2nK2 additions. These values reveal that kernel methods’

complexity does not scale well with time and network size

without using techniques to deal with the growing dictionary.

CC-based sparsification requires K|D| kernel evaluations

per iterations for computing the Gram matrix, where D denotes

the dictionary size, and |D|(2K+1) multiplications and 2K|D|
additions for the parameter update. The CC-based approach

also requires dictionary training, and the minimum number of

kernel evaluations for training is |D|(|D|−1)/2, assuming the

first |D| regressors are added to the dictionary. An upper bound

for the training process is t|D| kernel evaluations, where t is

the number of training data samples.

For the RFF-based computation, the mapping’s complexity

into RFF space is assumed similar to that of the kernel

evaluation. In this case, the RFF-GKLMS requires KD kernel

evaluations for the mapping, and D(2K + 1) multiplications

and 2KD additions for the update, where D denotes the di-

mension of the RFF space. Considering the case where |D| and

D are the same for the CC- and RFF-based implementations,

their complexities per iteration are also the same. The CC-

based approach, however, has the added complexity of training

the dictionary.

Finally, The GDKLMS using RFF requires, at each node,

D(|N |+3) multiplications and D(|N |+1) additions, with |N |
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Fig. 1. Learning curves (network-level MSE vs iteration index) for the
proposed algorithms with large dictionary size and RFF-space dimension.

denoting the node’s neighborhood cardinality. The mapping

into the RFF space needs D kernel evaluations.

VI. NUMERICAL RESULTS

This section demonstrates the performance of the proposed

algorithms through extensive numerical experiments under

synthetic and real network data. We exclude comparisons with

state-of-the-art methods based on the linear model (3) because

their performance in the considered setting will be poor. In all

simulations, the value of δ is adjusted as a function of the

target dictionary size, such that we can reach the target size

while still having a representative dictionary.

A. Nonlinear Graph Filter Identification

First, we consider a connected Erdös-Renyi graph com-

prising K = 20 nodes with edge probability equal to 0.2.

The shift matrix S is constructed as follows: first, the ex-

isting edges, according to the previously constructed graph,

receive a weight value drawn from the uniform distribution

in the interval (0, 1]; each entry skl receives the value of

the corresponding edge weight or zero if the edge does

not exist; the eigenvalues {λk}Kk=1 of S are normalized by

the largest eigenvalue such that |λk| ≤ 1. Input signal xn

and observation noise υn are drawn from zero-mean normal

distributions with covariance matrices Rx = diag{σ2
x,k} and

Rυ = diag{σ2
υ,k}, respectively, where σ2

x,k are drawn from

the uniform distribution in [1, 1.5] and σ2
υ,k from [0.1, 0.15].

For distributed implementations, the combination coefficients

akl are computed according to the Metropolis rule [26]. We
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Fig. 2. Learning curves (network-level MSE vs iteration index) for the
proposed algorithms considering small values for D.

used a Gaussian kernel with σ2 = 1. For a filter of length

L = 4, we aim at estimating the time-invariant nonlinear

function given by

f(rk,n) =
√

r2k,n,1 + sin2(rk,n,4π)

+ (0.8− 0.5 exp(−r2k,n,2)rk,n,3.
(50)

The network-level instantaneous MSE, given by MSEn =
1
K

∑K
k=1 e

2
k,n, is considered as the performance metric and

results are displayed by plotting MSEn versus the iteration

index n, averaging over 1000 independent runs.

In Fig. 1a, we present the learning curves of the centralized

approaches based on CC and RFF. We limit the size of

the dictionary and set the dimension of the RFF space to

D = 256. Results show that, for large enough dictionary

sizes and RFF-space dimensions, these implementations are

able to reach similar performance to that of the GKLMS

implementation without sparsification methods. In Fig 1b,

we show similar results comparing the CC- and RFF-based

GDKLMS against the GKLMS without sparsification. For the

CC-based GDKLMS, we pre-train the dictionary before the

learning process. The centralized implementations can better

approximate the GKLMS without sparsification when com-

pared to the GDKLMS. This is an expected result considering

that data from the entire graph is available during the learning

process of the centralized approaches.

In Fig. 2a we compare the proposed algorithms when

smaller dictionaries and RFF-space dimensions are considered.

Specifically, we compare the implementations based on RFF
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Fig. 3. Learning curves for the RFF-based GDKLMS with different values
of D and the theoretical steady-state MSE values.

and coherence check against each other. For this purpose, we

adjust the step-size μ and assess the convergence speed as

the learning curves for both implementations achieve similar

values of network-level steady-state MSE. Again, the value

D ∈ {16, 32} represents both the dimension of the RFF space

and the size of the pre-trained dictionary for the coherence

check approach. Results show that both CC- and RFF-based

algorithms are capable of effectively representing the target

function. Fig. 2a also shows that, for the same value of D
and for similar values of network-level steady-state MSE, the

RFF-based GKLMS converges faster than the CC-based one.

Moreover, it can be observed that the performance of the

implementations with fixed-size dictionaries greatly improves

as D is increased from 16 to 32.

Fig. 2b shows the results for the distributed GDKLMS

using CC and RFF. Similar to the centralized case, the plots

show that both approaches can effectively represent the tar-

get function, achieving network-level MSE of approximately

−5 dB for D = 16 and −7 dB for D = 32 for the noise

scenario simulated. Again, the RFF-based solution exhibits

faster convergence for both values of D when the network-

level steady-state MSE is matched.

B. SMSE of the RFF-based GDKLMS

In this experiment, we observe the steady-state behavior of

the proposed RFF-based GDKLMS. The network and data

parameters employed in this simulation are the same used

in Section VI-A. We run the RFF-based GDKLMS for a

total of T = 50000 iterations, for different dimensions of

the RFF space. In Fig. 3, we show the learning curves for

D ∈ {25, 50, 250} and the value of the SMSE computed

using (49). The step-size is μ = 0.05. Results show that
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Fig. 4. Tracking performance of the proposed algorithms.

increasing D reduces the gap between the numerical and the-

oretical results for the steady-state behavior of the algorithm.

This observation is in line with the result presented in [47].

C. Tracking Performance of the Proposed Algorithms

In this section we study the performance of the algorithms

subjected to an abrupt change in the underlying model. The

simulation setup is the same as in Section VI-A. The nonlinear

function to be estimated is given by

fn(rk,n) = (51)⎧⎨⎩
√

r2k,n,1 + r2k,n,4 − rk,n,3e
−r2k,n,2 0 < n ≤ 4000√

r2k,n,1 + r2k,n,2 + r2k,n,3 + r2k,n,4 4000 < n.

Fig. 4 shows the learning curves for the centralized and dis-

tributed algorithms for two values of dictionary sizes and RFF-

space dimension, namely, D = 16 and D = 32. We see that

the RFF-based implementations are resilient to model changes,

while the CC-based implementations suffer from noticeable

performance losses, especially for small dictionaries. This is an

expected behavior, since larger dictionaries can represent more

functions. We also see that the GKLMS achieves the lowest

MSE, however, at the cost of an unconstrained dictionary size.

D. Laboratory-monitoring Data

We consider the Intel Lab database [68] that contains

temperature and humidity data, measured during March 2004,

from 52 sensors spread across a laboratory and its common

areas. The undirected graph is constructed by connecting
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Fig. 5. Time series of original and estimated humidity signals using the proposed algorithms for the Intel Lab dataset.
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Fig. 6. Network structure for the Intel Lab simulation and snapshots of the original and estimated humidity signals.

each sensor to its four nearest neighbors. We consider the

task of estimating humidity from the temperature signal. The

data set comprises asynchronous sensor measurements, and

we construct a snapshot of the graph signal by considering

windows of 5 minutes from which we collect the first value

available for each sensor. The model from temperature to

humidity is expected to change with time. For instance, as

workers arrive in the lab, the temperature and humidity are

expected to change.

In our simulations, we used L = 5 and D = 128, for

centralized and distributed implementations. The step sizes are

0.03 for CC- and RFF-based GKLMS, and 0.5 for GDKLMS

implementations.

The humidity signals from Sensors 1 and 40 are plotted

in Figs. 5a and 5b, respectively, together with the estimated

signals from the graph filters. The variations in the plots are

aligned with events that induce model changes. For example,

the most notable peaks are aligned with the beginning and end

of work shifts. The implementations based on CC and RFF

have similar performances, while the latter exhibit slightly

more resilience to changes in the model. Fig. 6 depicts the

graph representation of the Intel Lab sensor network and

presents snapshots of the humidity signals, both the original

and the one estimated via RFF-based GDKLMS. These results

confirm that the proposed algorithms can effectively estimate

the humidity level from temperature readings.

VII. CONCLUSION

This paper introduced nonlinear adaptive graph filters for

model estimation in the reproducing kernel Hilbert space.

To this end, a centralized graph kernel LMS (GKLMS) al-

gorithm was derived. To overcome the growing dimension

problem encountered in the centralized GKLMS algorithm,

coherence check based dictionary-sparsification and random

Fourier features (RFF) were proposed. Furthermore, diffusion-

based distributed implementations of both coherence check

and RFF-based graph KLMS algorithms were developed that

update filter parameters through local communications and in-

network processing. Mean and mean-square-error convergence

conditions were established for the proposed GDKLMS using

RFF. Numerical simulations were conducted to demonstrate

the performance of the proposed algorithms. Simulations

confirmed that coherence check and RFF-based approaches

effectively estimate nonlinear graph filters, while the latter

exhibits a faster convergence and is robust to model changes.
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ABSTRACT

This work proposes an efficient batch-based implementation for
kernel regression on graphs (KRG) using random Fourier features
(RFF) and a low-complexity online implementation. Kernel regres-
sion has proven to be an efficient learning tool in the graph signal
processing framework. However, it suffers from poor scalability
inherent to kernel methods. We employ RFF to overcome this issue
and derive a batch-based KRG whose model size is independent
of the training sample size. We then combine it with a stochastic
gradient-descent approach to propose an online algorithm for KRG,
namely the stochastic-gradient KRG (SGKRG). We also derive suf-
ficient conditions for convergence in the mean sense of the online
algorithms. We validate the performance of the proposed algo-
rithms through numerical experiments using both synthesized and
real data. Results show that the proposed batch-based implementa-
tion can match the performance of conventional KRG while having
reduced complexity. Moreover, the online implementations effec-
tively learn the target model and achieve competitive performance
compared to the batch implementations.

Index Terms— kernel regression on graphs, online learning on
graphs, random Fourier features, stochastic gradient.

1. INTRODUCTION

The connectivity of real-world elements and the amount of data
generated in networks have increased over the last decades [1, 2].
Real networks and their corresponding data come in vastly dif-
ferent shapes and applications, ranging from genetic interaction
networks [3] and the human brain [4] to sensor networks and smart
cities [5]. Although an extensive range of classical digital signal
processing (DSP) tools are available, they are not directly applica-
ble to information processing of signals from networked structures.
The graph signal processing (GSP) emerged in the last decade as a
suitable framework for signal processing over networks, leveraging
the network structure to process the networked data [4–7].

A major area of research in GSP is learning over graphs, which
aims at discovering patterns in the data and graph structure to al-
low, e.g., prediction and reconstruction of graph signals [10–18].

The work of V. R. M. Elias was supported, in part, by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil (CAPES) -– Grant
number: 88887.310189/2018-00 and, in part, by CNPq. The work of Dr.
Martins was supported, in part, by the ERC project AGNOSTIC and, in part,
by FAPERJ. The work of Dr. Werner was supported, in part, by the Research
Council of Norway.

Among the several approaches for learning over graphs, kernel re-
gression has proved to be an innovative technique in several estima-
tion and reconstruction applications for networked data [14–17]. In
this work, we build upon the methodology of kernel regression on
graphs (KRG) proposed in [16], which embeds a metric of smooth-
ness over the graph in the optimization problem to improve the learn-
ing of regression parameters. However, the methodology in [16] suf-
fers from scalability issues from kernel methods and is restricted to
a batch-based offline approach. In this work, we first derive an ef-
ficient batch-based KRG using random Fourier features [19]. Then,
we propose an online strategy for KRG using the stochastic gradient
descent approach.

This paper is organized as follows. Section 2 presents the basic
concepts of graph signal processing, and formulates the problem of
kernel regression over graphs. The proposed batch-based KRG using
RFF is presented in Section 3, and in Section 4, we present the online
strategy for KRG, namely, the stochastic-gradient KRG (SGKRG).
In Section 5, we derive sufficient conditions for the update step size
to guarantee the proposed online algorithm’s convergence. In Sec-
tion 7, we present the final remarks of this work.

2. LEARNING OVER GRAPHS

2.1. Graph Signal Processing

A graph is denoted by G = {V, E}, where V = {1, . . . ,K} is the set
of vertices, or nodes, and E = {e11, . . . , eKK} is the set of edges.
Elements eij > 0 indicate pairwise relations between nodes i and j
according to a chosen metric, and an edge eij exists if and only if i
and j are related [1,7]. In GSP, edges are typically represented in the
adjacency matrix A, such that the entry Aij = eij if eij exists and
Aij = 0 otherwise. In this work, we consider undirected graphs,
such that eij = eji. The degree matrix D is a diagonal matrix such
that Djj =

∑
i∈Nj

eij andNj is the set of vertices that are adjacent

to node j, referred to as neighborhood of j. The graph Laplacian is
the positive semidefinite matrix L = D−A [2].

In GSP [2, 6], the signal on a graph is given by the mapping
s : V → R and is represented by a vector sn ∈ R

K . The graph
signal represents a snapshot of the network state at time n. The
graph Laplacian induces a variation metric for a graph signal s that
depends on the graph structure [7]. The variation metric is given by

ν(s) = sTLs =
∑
i �=j

Ai,j

(
si − sj

)2
, (1)

where we can observe that the difference between two entries of the
signal vector are penalized by the weight of the edge connecting the



2 of 5two nodes. That is, a graph signal where values in adjacent nodes are
different is associated with a large variation metric according to (1).

2.2. Learning Task

Consider a set of data pairs {xn, tn}, n ∈ {1, 2, . . . , N}, such
that vectors xn, called reference signals, are related to target sig-
nals tn through an unknown function f(·) such that tn = f(xn).
The objective of typical learning strategies over graphs is to model
f(·) : R

K → R
K in the case where both xn and tn belong to

the same graph G. Previous research on learning over networks in-
clude, e.g., dictionary learning [11], linear [12, 13] and nonlinear
graph filtering [18], kriged Kalman filtering [10], and kernel regres-
sion strategies [14–17].

In particular, the work in [16] proposes a kernel regression
methodology that allows the reference signal to be agnostic to the
graph. That is, the regression signal does not need to be a graph
signal, whereas the target signal lies over G, which widens the range
of applications for the proposed method. For this, [16] assumes that
graph signals are expected to be smooth with respect to the graph,
inducing a low value of the variation metric (1). The model is then
estimated in terms of a matrix W such that

yn = WTφ(xn), (2)

where yn is an estimate of the target graph signal tn and φ(·) is an
unknown function of the input signal. The optimal parameter matrix
W is found by minimizing the cost function

C(W) =
N∑

n=1

‖tn − yn‖22 + αtr(WTW) + β

N∑
n=1

ν(yn), (3)

where the last term on the right-hand side enforces that the model
respects the smoothness of the target signal. The solution for (3) is
obtained in [16] in closed form using the kernel method. This leads
to a model whose dimension increases with the number of training
samples. In the next sections, we propose a reduced-complexity so-
lution for the batch-based solution of (3) using RFF, and we propose
an online implementation for KRG.

3. BATCH-BASED KRG USING RANDOM FOURIER
FEATURES

A way to overcome the scaling issues of kernel methods is provided
by random Fourier features [19]. Using RFF, a shift-invariant kernel
evaluation κ(xi,xj) = κ(xi − xj) is approximated as an inner
product in the D-dimensional RFF space, where D is much lower
than the number of training samples. The mapping of xi into the
RFF space R

D is given by

zi = (D/2)−
1
2

[
cos(vT

1 xi + b1) . . . cos(v
T
Dxi + bD)

]T
, (4)

where the phase terms {bi}Di=1 are drawn from a uniform distribu-
tion on the interval [0, 2π], and vectors {vi}Di=1 are drawn from
the probability density function (pdf) p(v), which corresponds to
the Fourier transform of k(xi − xj) [14, 19]. To derive the KRG
model in the RFF-space, consider the kth entry of the estimate y as
yk = wT

k φ(x) where wk denotes the kth column of the parameter
matrix W. Using the substitution W = ΦTΨ, and the kernel trick
κ(xi,xj) = φ(xi)

Tφ(xj), we can write

yk =

(
N∑

n=1

Ψn,kφ(xn)

)T

φ(x) =

(
N∑

n=1

Ψn,kκ(xn,x)

)
. (5)

Using RFF, (5) can be approximated by

yk ≈
N∑

n=1

Ψn,kz
T
nz = hT

k z. (6)

Finally, the RFF-based regression for the entire graph signal is writ-
ten as

y = HTz, (7)

where H = [h1 h2 . . . hK ] ∈ R
D×K is the representation of

the regression coefficient matrix in the RFF space. Now, the cost
function (3) can be rewritten for the optimization in terms of H as

C(H) =
N∑

n=1

‖tn − yn‖22 + αtr(HTH) + β
N∑

n=1

ν(yn). (8)

Letting the matrix Z = [z1 z2 . . . zN ]T ∈ R
N×D represent the

RFF mapping of all training input vectors {xn}Nn=1, the cost func-
tion (8) can be rewritten as

C(H) =

N∑
n=1

‖tn‖22 − 2tr(TTZH) + tr(HTZTZH)

+ α(HTH) + βtr(HTZTZHL), (9)

where T = [t1 t2 . . . tN ]T ∈ R
N×K . The gradient of C(H) with

respect to H is given by

∇C(H) = −2ZTT+ 2ZTZH+ 2αH+ 2βZTZHL. (10)

By making∇C(H) = 0, we obtain

(ZTZ+ αID)H+ βZTZHL = ZTT. (11)

Then, vectorizing both sides of (11) and using the relation vec(AXB) =
(BT ⊗ A)vec(X), where vec(·) denotes the column-stacking op-
erator and ⊗ denotes the Kronecker-product operator, the optimum
regression coefficients in the RFF space can be obtained as

vec(Ho) = (BRFF +CRFF)
−1vec(ZTT), (12)

where BRFF = (IK ⊗ (ZTZ+αID)) and CRFF = (βL⊗ZTZ).
Once the regression coefficients are trained, the target estimate

y given an input signal x corresponding to z in the RFF space is
given by

y = HT
o z.

It can be seen that the regression does not depend on the number
of training samples and the model has a fixed size D. Therefore,
the proposed RFF-approach offers an efficient batch-based KRG for
large datasets. Note that the batch-based implementation requires
that all samples are available.

4. ONLINE KERNEL REGRESSION ON GRAPHS

We now derive online implementations for KRG using stochastic-
gradient descent approaches. These implementations avoid the delay
inherent to the batch-based implementation by updating the regres-
sion parameters for each new sample. Additionally, each update has
a small computational cost when compared to the batch computa-
tion.
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4.1. Stochastic Gradient Descent KRG

We propose to update the parameters of the KRG in an iterative
manner using a stochastic approximation of the gradient ∇C(H),
and derive the stochastic-gradient KRG (SGKRG) algorithm. Con-
sider the instantaneous version, at time n, of the RFF-based KRG
model (7), given by

yn = HT
nzn, (13)

Then, we can write the corresponding instantaneous cost function

C(Hn) = ‖tn − yn‖22 + αtr(HT
nHn) + βν(yn). (14)

The gradient of C(Hn) with respect to Hn, which corresponds
to a stochastic approximation of∇C(H) in (10), is given by

∇C(Hn) = −2zntTn + 2znz
T
nHn + 2αHn + 2βznz

T
nHnL

= −2
(
zn(e

T
n − βyT

nL)− αHn

)
, (15)

where en = tn − yn is the network-level error at iteration n.
Given (15), in order to recursively minimize C(Hn), the parame-
ter matrix Hn is updated by taking a step in the negative-gradient
direction as

Hn+1 = Hn + μ
(
zn(e

T
n − βyT

nL)− αHn

)
, (16)

where μ > 0 is the step size. Equation (16) represents the update
equation for the proposed online SGKRG algorithm using RFF. We
note the gradient obtained using all samples is expected to offer a
better optimization direction than the one obtained using a single
sample. Thus, the SGKRG and the batch-based KRG have opposite
characteristics in the trade-off between complexity and convergence
speed.

5. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the proposed online
algorithm in the mean sense [20–22]. We assume the observation
model tn = HT

o zn+υn, where υn is observation noise vector. The
noise is assumed to be zero-mean and independent of zn. Let Ξn =
Hn − Ho denote the deviation between the regression parameters
Hn and the optimal parameters Ho at iteration n. We have

Ξn+1 = Hn + μ
(
zn(t

T
n − zTnHn − βzTnHnL)− αHn

)
−Ho

= Ξn + μ
(
zn(t

T
n − zTnHn)− βznz

T
nHnL− αHn

)
,

(17)

which can be rewritten as

Ξn+1

= Ξn + μ(znυ
T
n + znz

T
n (Ho −Hn)− βznz

T
nHnL− αHn)

= (ID − μznz
T
n )Ξn + μznυ

T
n − μ(βznz

T
nHnL+ αHn).

(18)

Vectorizing both sides of (18), we obtain

ξn+1 =
(
IK ⊗ (ID − μznz

T
n )

)
ξn + μ(IK ⊗ zn)υn

− μ
(
αIKD + (βL⊗ znz

T
n )

)
vec(Hn), (19)

where ξn = vec(Ξn). Substituting vec(Hn) = ξn +vec(Ho) into
(19), it can be rewritten as

ξn+1 =
[
IKD − μ

(
αIKD + (IK + βL)⊗ (znz

T
n )

)]
ξn

− μ
(
αIKD + βL⊗ (znz

T
n )

)
vec(Ho)

+ μ(IK ⊗ zn)υn. (20)

We now take the expected value on both sides of (20). Given the
zero-mean and independence assumptions on the observation noise,
the last term’s expected value on the right-hand side of (20) is zero.
We obtain the following recursion on E[ξn]

E[ξn+1] = AE[ξn]−Bvec(Ho), (21)

where

A = IKD − μ (αIKD + (IK + βL)⊗Rz)

B = μ (αIKD + βL⊗Rz) , (22)

with Rz = E[znz
T
n ]. Taking the recursion (21) down to zero, we

obtain

E[ξn] = AnE[ξ0]− μ

n−1∑
i=0

An−1−iBvec(Ho). (23)

From (23), we see that convergence is guaranteed if limn→∞An =
0, which is achieved when ρ(A) < 1, where ρ(·) denotes the spec-
tral radius of the argument, i.e., its largest absolute eigenvalue. We
have that ρ(A) < 1 if ρ (μ (αIKD + (IK + βL)⊗Rz)) < 2.
Therefore, a sufficient condition for the convergence of the proposed
SGKRG algorithms is given by

0 < μ <
2

ρ(Rz) + α+ βρ(L)ρ(Rz)
. (24)

Under the convergence condition (24), (23) converges asymptoti-
cally to (IKD−A)−1Bvec(Ho), which reduces to (αIKD+(IK+
βL) ⊗ Rz)

−1(αIKD + βL ⊗ Rz)vec(Ho). This means that the
solution of the SGKRG is asymptotically biased in the mean sense.
The bias is introduced by the regularization coefficients α and β.

6. NUMERICAL EXPERIMENTS

In this section we validate the performance of the proposed algo-
rithms. We reproduce two regression problems adopted in [16] and
compare the proposed algorithms against the conventional KRG.
In both experiments, we use the Gaussian kernel κ(xi,xj) =
exp

(−‖xi − xj‖22/(2σ2)
)

when employing the kernel methods
and the RFF implementations.

6.1. Synthesized Data

The first experiment uses an Erdös Rényi graph with artificially gen-
erated data. The graph has K = 50 nodes with edge-probability
equal to 0.1. A total of S = 20000 K-dimensional data sam-
ples are generated as follows. First, a covariance matrix CS ∈
R

S×S is drawn from the inverse Wishart distribution with an iden-
tity hyperparameter matrix and S degrees of freedom. Then, K
independent vector realizations are drawn from an S-dimensional
Gaussian distribution N (0,CS). Letting {xn}Sn=1 denote the ob-
tained signals, the corresponding target vectors {tn}Sn=1 are gen-
erated by projecting each signal onto the graph by solving tn =
argminτ

{‖xn − τ‖22 + τTLτ
}

.
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(a) Batch-based solutions.
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(b) Online solution.

Fig. 1. NMSE achieved by the KRG implementations versus number
of training samples.

From the total S = 20000 samples, we use 1000 samples as test
dataset and up to 19000 samples as training dataset. Target data in
the training dataset are corrupted with additive white Gaussian noise
(AWGN) and the signal-to-noise ratio is 5 dB. The parameters α and
β are estimated via 5-fold cross-validation with grid-search using a
separate dataset, and minimizing the normalized squared estimation
error

NMSE = 10 log10

(
E

[‖Y −T0‖2F
‖T0‖2F

])
, (25)

where T is the true target matrix, Y is the estimated matrix. We
select the parameters that result in the best NMSE at the end of the
learning process.

The proposed batch-based algorithm is compared against the
conventional KRG from [16] and results, averaged over 500 inde-
pendent runs, are presented in Fig. 1a. The batch-based algorithms
are trained with up to 3000 samples, which meets the limit of our
computational power when running the conventional KRG. Plots
show that the RFF-based approach approximates well the conven-
tional KRG. In Fig. 1b, results show that the online algorithm is ca-
pable of learning the regression parameters. We run the SGKRG up
to 20000 samples, such that the test samples are included at the end
of the initial training samples. Note that the value of μ affects the
convergence of the proposed stochastic-gradient-based implementa-
tion. We demonstrate the performance for different step sizes and we
show that the NMSE level achieved by the SGKRG approximates
that of the batch RFF-based KRG as μ decreases.
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Fig. 2. NMSE achieved by the KRG implementations versus number
of training samples for the fMRI signal simulation.

6.2. Real Data

The second experiment uses real data and addresses the task of es-
timating brain activity of voxels in a functional magnetic resonance
imaging (fMRI) dataset. The data and graph used in [16] are made
available in [23] and the same are used in this experiment.

A voxel is a volumetric unit that constitutes a 3-dimensional im-
age of the brain, and each voxel is associated with a small cubic por-
tion of the brain. Regions of the brain relate to each other anatomi-
cally and, by considering these relations, a graph can be constructed
where voxels are the nodes, and edges represent relations between
them. More details on this dataset and graph construction are pro-
vided in [16]. The regression experiment consists of estimating the
signal on 90 of the voxels using the signal from 10 other voxels, such
that the graph structure corresponds to the set of pairwise relations of
the 90 voxels. Training and test datasets have the same size equal to
146 input-target pairs. The training signal is corrupted by an AWGN
with covariance matrix 0.1 · IK .

We conduct 100 independent runs with different permutations of
signals between training and test datasets. The RFF-space dimension
is D = 32. Results are shown in Fig. 2 for both batch and online
algorithms. In this experiment, both batch-based implementations
converge together to approximately -23 dB and it can be observed
that the RFF-based implementation matches the conventional KRG.
Results show that the SG-based implementation is capable of suc-
cessfully learning the target model and achieving low NMSE, around
-20 dB, using μ = 0.04.

7. CONCLUSION

This paper proposed batch-based and online implementations for
kernel regression on graphs. The performance of the proposed al-
gorithms was validated with numerical experiments using synthe-
sized and real data. The proposed batch-based implementation uses
RFF to approximate kernel evaluations as inner-products in a fixed-
dimension space, reducing the complexity of the regression model
compared to the conventional KRG. Results of numerical experi-
ments showed no significant performance loss in approximating the
kernel evaluations using RFF, such that the RFF-based implemen-
tation can achieve the same performance as the conventional KRG.
Additionally, sufficient conditions for convergence of this algorithm
in the mean sense were derived.
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Abstract—This paper proposes efficient batch-based and online
strategies for kernel regression over graphs (KRG). The proposed
algorithms do not require the input signal to be a graph signal,
whereas the target signal is defined over the graph. We first use
random Fourier features (RFF) to tackle the complexity issues
associated with kernel methods employed in the conventional
KRG. For batch-based approaches, we also propose an imple-
mentation that reduces complexity by avoiding the inversion of
large matrices. Then, we derive two distinct online strategies
using RFF, namely, the mini-batch gradient KRG (MGKRG)
and the recursive least squares KRG (RLSKRG). The stochastic-
gradient KRG (SGKRG) is introduced as a particular case of the
MGKRG. The MGKRG and the SGKRG are low-complexity
algorithms that employ stochastic gradient approximations in
the regression-parameter update. The RLSKRG is a recursive
implementation of the RFF-based batch KRG. A detailed stability
analysis is provided for the proposed online algorithms, includ-
ing convergence conditions in both mean and mean-squared
senses. A discussion on complexity is also provided. Numerical
simulations include a synthesized-data experiment and real-data
experiments on temperature prediction, brain activity estimation,
and image reconstruction. Results show that the RFF-based batch
implementation offers competitive performance with a reduced
computational burden when compared to the conventional KRG.
The MGKRG offers a convenient trade-off between performance
and complexity by varying the number of mini-batch samples.
The RLSKRG has a faster convergence than the MGKRG and
matches the performance of the batch implementation.

Index Terms—kernel regression on graphs, random Fourier
features, stochastic gradient, recursive least squares

I. INTRODUCTION

Graph signal processing (GSP) employs graph-structural

information to model, process, and analyze signals defined

over graph nodes [1]–[4]. The growing importance of GSP

is due to its applicability to networked data processing,

as connectivity between real-world elements progressively

increases with the advent of the internet-of-things, sensor

networks, and better communication technologies [5]–[7]. By
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associating real-world network elements with graph nodes

and encoding their interrelations through graph edges, GSP

leverages the graph structure to process or analyze the network

data, modeled as a graph signal. Like conventional signal

processing, the literature consists of various GSP techniques

and approaches that address different needs associated with

real-world networks.

Here, we are particularly interested in GSP approaches for

modeling relations between a reference signal and a target

signal, usually referred to as an input-output pair [8]–[18].

Typically, state-of-the-art techniques address the case where

both reference and target signals share the same graph. In

the context of linear system modeling, different learning

problems have been studied within the GSP framework, e.g.,

classification on graphs [19], autoregressive models for graph

signal prediction [15], [16], [20], dictionary learning [21],

and distributed adaptive filtering [8]–[14]. Several learning

strategies have been proposed for the nonlinear setting as

well. In particular, kernel regression has been extensively

employed for a range of nonlinear learning tasks, such as

reconstruction [22]–[24] and prediction of graph signals [15].

In contrast to previous works, [15] proposes a batch-based

kernel regression method that maps a general signal, not neces-

sarily a graph signal, to an output signal that resides on a given

graph. A penalty term, added to the loss function, achieves this

mapping and enforces the graph signal at the output, whose

smoothness across the graph is defined by the graph Laplacian.

The batch implementation in [15] requires that all samples are

available before computing the solution, which induces a delay

when dealing with streaming data. Moreover, obtaining the

regression parameters through the batch-based KRG for large

amounts of data may be computationally prohibitive. Finally,

the approach in [15] inherits the well-known scaling issue of

kernel methods [25], [26] since the model dimension increases

with the number of training samples, which increases with the

network size and with time.

This work proposes an approach for kernel regression

on graphs using random Fourier features (RFF) [27], [28],

which enjoys a reduced model complexity compared to the

batch-based KRG. Also, we derive and analyze two online

strategies, namely, the mini-batch gradient KRG (MGKRG),

with the particular case of the stochastic-gradient descent KRG

(SGKRG), and the recursive least squares KRG (RLSKRG).

The proposed RFF-based algorithms approximate the kernel

evaluations by inner-products in a fixed-dimensional space,

avoiding the model dimension dependency on the number of

training samples encountered in the conventional KRG. Addi-
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tionally, we propose an efficient implementation applicable to

the conventional and RFF-based KRG that avoids large-scale

matrix inversions. Similar to the approach in KRG [15], the

proposed algorithms produce signals that vary smoothly over

the graph, while input signals need not reside on a graph.

Among the proposed online algorithms, the stochastic gra-

dient implementations, SGKRG and MGKRG, offer low-

complexity alternatives. While the SGKRG requires the least

computational effort, the MGKRG can improve the perfor-

mance at a small additional cost by incorporating more sam-

ples in the stochastic gradient approximation. The RLSKRG,

being the most complex, has faster convergence and higher

accuracy than the other online implementations.

This paper is organized as follows. In Section II, we

present some basic GSP concepts, formulate the problem of

learning over graphs, and briefly describe the KRG method-

ology proposed in [15]. Section III presents the proposed

methodology for batch-based KRG using RFF, along with

an efficient implementation for large networks. The proposed

online algorithms, namely the MGKRG, the RLSKRG, and

its efficient implementation, are presented in Section IV.

Section V provides a convergence analysis of the proposed

online algorithms, and Section VI provides a brief discussion

on the complexity of the algorithms. Numerical experiments to

validate the performance of the proposed algorithms on both

synthesized and real data are presented in Section VII. In the

real-data experiments, we tackle the problems of predicting

temperature on a weather-station network, estimating brain

activity, and reconstructing corrupted video frames. Finally,

concluding remarks for this work are presented in Section VIII.

Mathematical notation: scalars are denoted by lowercase

letters, column vectors by bold lowercase, and matrices by

bold uppercase. Superscripts (·)T and (·)−1 denote the trans-

pose and inverse operators, respectively. Given a matrix A =
[a1 a2 . . . aN ], the column-stacking operation is denoted by

vec(A) = [aT1 aT2 . . . aTN ]T and the reverse operation that

reshapes a column vector back to its appropriate matrix form

is A = mat(vec(A)). The (i, j)th element of matrix A is

denoted by Ai,j . Symbol ⊗ denotes the Kronecker product.

1N denotes the N×1 vector with all entries equal to unity and

IN denotes the N×N identity matrix. The M×N matrix with

all entries equal to zero is denoted by 0M×N . ‖ · ‖2 denotes

the 2-norm of the argument vector or the spectral norm of the

argument matrix. The Frobenius norm of the argument matrix

is denoted by‖ · ‖F. E[·] denotes the expected value of the

argument.

II. BACKGROUND AND PROBLEM FORMULATION

Consider an undirected graph G = {N , E}, where N =
{1, 2, . . . ,K} is the set of nodes and E is the set of edges

such that (k, l) ∈ E if nodes k and l are connected. To

each edge (k, l) ∈ E , a weight wk,l ∈ R+ can be assigned,

which represents the strength of the relation between nodes

k and l [1]–[3]. The set of edges is usually represented

by the adjacency matrix A ∈ R
K×K
+ , such that the entry

Ak,l = Al,k = wk,l if (k, l) ∈ E and Ak,l = 0 otherwise.

At time instant n, the graph signal is defined by a vector

xn = [x1,n x2,n . . . xK,n]
T, with xk,n ∈ R being the signal

value at node k.

Let Nk denote the neighborhood of node k, which is the set

of nodes connected to k including itself. The graph Laplacian

matrix is defined as L = D − A, where D is the degree

matrix of G, with Dk,k =
∑K

l=1 wk,l. The graph Laplacian

is associated with the total-variation metric ν(x) of a graph

signal x as follows:

ν(x) = xTLx

=
∑
k<l

Ak,l

(
xk − xl

)2
. (1)

The metric (1) represents how much a signal varies across the

graph, taking into account the edge weights [2], [15].

Considering a graph-based system, which takes an input

vector x ∈ R
M and outputs a graph signal t ∈ R

K ,

we are interested in estimating the corresponding mapping

M : R
M → R

K . Given a set of training (available) data

pairs {xn, tn}Nn=1, regression methods can estimate M. Re-

gression methods that leverage the graph structure to improve

the estimation are proposed in [15]. These methods were

shown to outperform other approaches that do not use graph

information.

A. Kernel Regression on Graphs

In [15], the model is estimated in terms of a matrix W ∈
R

M×K such that

yn = WTφ(xn), (2)

where yn is an estimate of the target graph signal tn and

φ : RM → R
M is an unknown function of the input signal.

The optimal parameter matrix W is found by minimizing the

cost function

C(W) =
N∑

n=1

‖tn−yn‖22+αtr(WTW)+β
N∑

n=1

ν(yn), (3)

where N ≥M . The cost function C(W) augments traditional

regression methods by incorporating the penalty
∑N

n=1 ν(yn),
which enforces smoothness of the output signal with respect

to the graph. Defining the matrices

T = [t1 t2 . . . tN ]T ∈ R
N×K , (4)

Y = [y1 y2 . . . yN ]T ∈ R
N×K , (5)

Φ = [φ(x1) φ(x2) . . . φ(xN )]T ∈ R
N×M , (6)

and assuming Φ is full rank, we can make the substitution

W = ΦTΨ, so that the optimization is now conducted in

terms of Ψ ∈ R
N×K . The predicted output of the kernel

regression is given by [15]

y = ΨTΦφ(x) = ΨTk(x)

=
(
mat

(
(B+C)−1vec(T)

))T
κ(x), (7)

where κ(x) = [κ1(x) κ2(x) . . . κN (x)]T, with κn(x) =
φ(xn)

Tφ(x). Also,

B = (IK ⊗ (K+ αIN )), (8)

C = (βL⊗K), (9)
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with K = ΦΦT ∈ R
N×N . Here, the kernel trick is employed

to avoid the explicit knowledge of φ(·), by replacing the inner

product κn(xi) = φ(xi)
Tφ(xn) with a kernel κ(xi,xn) [30],

[31]. The method described in (7), which outputs an estimate

y for an input x, is referred to as kernel regression on graphs.

The regression in (7) is performed in a batch-based fashion,

assuming that all training samples are available a priori. A

significant drawback of this implementation is the inherent

delay of batch-based implementations, as the computation of

the parameter matrix Ψ must wait for all training samples

{xn, tn}Nn=1 to be available. The increase in the computational

burden of the KRG with the number of training samples is

twofold. First, computing Ψ becomes more complex as the

dimensions of K increase with N . Second, the regression

dimension increases as the size of k(x) increases with N , and

each additional training sample requires a kernel evaluation.

The model complexity also depends on the number of training

samples N , requiring N kernel evaluations for each new

input signal, which is an issue if an online implementation is

derived. In the following section, we treat the growing com-

plexity by proposing a batch-based approach using random

Fourier features.

III. BATCH KRG USING RANDOM FOURIER FEATURES

Random Fourier features is a widely used technique to

circumvent the scaling problems of kernel methods [27]. This

methodology presumes that the evaluation of a shift-invariant

kernel, which satisfies κ(xm,xn) = κ(xm − xn, 0), can

be approximated as an inner product in the D-dimensional

RFF space. This turns the problem into a finite-dimension

linear filtering problem while avoiding the evaluation of kernel

functions. Let zn be the mapping of xn into the RFF space

R
D, given by

zn = (D/2)
− 1

2
[
cos(vT

1 xn + b1) . . . cos(v
T
Dxn + bD)

]T
,

(10)

where the phase terms {bi}Di=1 are drawn from a uniform

distribution on the interval [0, 2π]. Vectors {vi}Di=1 are real-

izations of a random variable with probability density function

(pdf) p(v) such that

κ(xm,xn) =

∫
p(v) exp

(
jvT(xm − xn)

)
dv, (11)

where j2 = −1. In other words, the Fourier transform of

κ(xm,xn) is given by p(v). From (10) and (11), it can be

verified that E[zTnzm] = κ(xm,xn) [27].

A. RFF-based KRG

To employ RFF in the KRG methodology, we first consider

the kth entry of the estimate y as

yk = wT
kφ(x), (12)

where wk denotes the kth column of the parameter matrix

W. Using the substitution W = ΦTΨ, and the kernel trick

κ(xm,xn) = φ(xm)Tφ(xn), (12) can be rewritten as

yk =

(
N∑

n=1

Ψn,kφ(xn)

)T

φ(x) =

(
N∑

n=1

Ψn,kκ(xn,x)

)
.

(13)

Using RFF, we can approximate (13) as

yk ≈
N∑

n=1

Ψn,kz
T
nz = hT

k z. (14)

Finally, the RFF-based regression estimate for the entire

graph signal is written as

y = HTz, (15)

where H = [h1 h2 . . . hK ] ∈ R
D×K is the representation of

the regression coefficient matrix in the RFF space. Letting the

matrix

Z = [z1 z2 . . . zN ]T ∈ R
N×D (16)

represent the RFF mapping of all training input vectors

{xn}Nn=1, and using T and Y as respectively defined in (4)

and (5), the cost function (3) can be rewritten in terms of H
as

C(H) =
N∑

n=1

‖tn‖22 − 2tr(TTZH) + tr(HTZTZH)

+ α(HTH) + βtr(HTZTZHL). (17)

The gradient of C(H) with respect to H is given by

∇C(H) = −2ZTT+ 2ZTZH+ 2αH+ 2βZTZHL. (18)

Setting ∇C(H) = 0, we obtain

(ZTZ+ αID)Hopt + βZTZHoptL = ZTT. (19)

Then, vectorizing both sides of (19) and using the relation

vec(AXB) = (BT ⊗ A)vec(X), the regression coefficients

in the RFF space can be obtained as

vec(Hopt) = (BRFF +CRFF)
−1vec(ZTT), (20)

where

BRFF = (IK ⊗ (ZTZ+ αID)), (21)

CRFF = (βL⊗ ZTZ). (22)

Once the regression coefficients are trained, the target

estimate y given an input signal x corresponding to z in the

RFF space is given by

y = HT
optz. (23)

From (21) and (22), it can be observed that the com-

putational burden of obtaining the regression parameters is

drastically reduced when compared to the conventional KRG,

as the size of the BRFF and CRFF is now KD ×KD, with

D possibly much smaller than N . From (23), we see that the

estimation does not depend on the number of training samples

and the model has a fixed size D, requiring only the mapping

of each new input sample into the RFF space.
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B. Efficient Computation For Large Networks

For large networks, computing the inverses in (7) and (20)

may be prohibitively complex. We propose an efficient way

to compute the parameters in these cases. We adopt the

notation of the conventional KRG, but the same reasoning

applies directly to the RFF-based implementation. We rewrite

(B+C)−1 as

(B+C)−1 = (IK ⊗ (K+ αIN ) + βL⊗K)
−1

= (IK ⊗ αIN + (IK + βL)⊗K)
−1

= (αIKN + (IK + βL)⊗K)
−1

. (24)

Consider the eigendecompositions (IK + βL) = UΣUT

and K = VΩVT. We use the mixed-product property

(AB)⊗ (CD) = (A⊗C)(B⊗D) to rewrite the Kronecker

product. Note also that matrices αIKN and (IK + βL) ⊗K
are simultaneously diagonalizable. Then, (24) can be written

as

(B+C)−1 = (U⊗V)(αIKN +Σ⊗Ω)−1(UT⊗VT), (25)

and

(B+C)−1vec(T)

= (U⊗V)(αIKN +Σ⊗Ω)−1(UT ⊗VT)vec(T)

= (U⊗V)(αIKN +Σ⊗Ω)−1vec(VTTU). (26)

Letting

Γ = mat
(
(αIKN +Σ⊗Ω)−1vec(VTTU)

)
(27)

and using the relation (BT ⊗ A)vec(X) = vec(AXB), we

have

Ψ = VΓUT. (28)

Hence, the dominating complexity is reduced from (KN)3

operations due to matrix inversion to approximately K3 and

N3 operations required for the eigendecompositions of (IK +
βL) and K, respectively.

IV. ONLINE KERNEL REGRESSION ON GRAPHS

In what follows, we consider online implementations of the

KRG. To bypass the dimensionality problem associated with

the kernel dictionary, we resort to online RFF-based KRG

implementations.

A. Mini-batch Stochastic-Gradient KRG

Consider the following minimization problem:

min
H

E
[‖t− y‖22] + αtr(HTH) + E[βν(y)

]
. (29)

Similar to the batch-based approach, which conducts the

optimization over N batch samples, problem (29) considers

the expectation of the regularized regression problem. The

gradient of the cost function in (29) is

∇C(H) = −2Rzt + 2RzH+ 2αH+ 2βRzHL, (30)

where Rzt = E[ztT] and Rz = E[zzT]. In practice, the

statistics Rzt and Rz can be unavailable.

Algorithm 1: MGKRG

Initialization:
H1 = 0D×K ;

draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
Learning:
for each time instant n do

map rn into zn;

if (n mod δ) = 0 then
Zn = [z(n−Nb+1) . . . zn]

T;

Tn = [t(n−Nb+1) . . . tn]
T;

Yn = ZnHn;

En = Tn −Yn;

Hn+1 = (1− μα)Hn + μ
Nb

ZT
n (En − βYnL);

end
store zn;

release z(n−Nb+1);

end

In the proposed approach, we use mini-batch averages to

approximate Rzt and Rz . We define the matrices composed

by the signals corresponding to each individual mini-batch as

Zn = [z(nδ−Nb+1) . . . znδ]
T ∈ R

Nb×D

and

Tn = [t(nδ−Nb+1) . . . tnδ]
T ∈ R

Nb×K ,

where 1 ≤ δ ≤ Nb is the batch displacement parameter. For

the nth batch, we can compute the approximations R̂zt,n =
(ZT

nTn)/Nb and R̂z,n = (ZT
nZn)/Nb. We implement the

sliding-window MGKRG, with δ = 1, such that consecutive

mini-batches have maximum overlap of Nb − 1 samples.

A particular case of the MGKRG is defined by making

Nb = δ = 1. In this case, only the current sample is used to

compute the approximation of the gradient. This corresponds

to a stochastic-gradient approach and will be referred to as

stochastic gradient KRG (SGKRG).

The regression parameters are updated at the nth batch by

taking a step in the negative direction of the corresponding

approximate gradient, i.e.,

Hn+1 = (1− μα)Hn +
μ

Nb
ZT

n (Tn − ZnHn − βZnHnL) .

(31)

Letting Yn = ZnHn be the mini-batch estimate and En =
Tn−Yn be the corresponding a priori error matrix, the update

equation for the mini-batch gradient KRG is written as

Hn+1 = (1− μα)Hn +
μ

Nb
ZT

n (En − βYnL) . (32)

B. Recursive Least-Squares KRG

We now explore the principles of the recursive least squares

algorithms [32] to derive a recursive learning of the regression

coefficients of the RFFKRG. That is, we part from the same
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optimization problem (17) but, instead of solving (20) directly,

we solve it recursively. First, we rewrite (20) as

vec(Hn)

=
(
(IK ⊗ (ZTZ+ αID)) + (βL⊗ ZTZ)

)−1
vec(ZTT)

= R−1
n rn, (33)

where

Rn = αIK ⊗ ID + (IK + βL)⊗ ZTZ (34)

rn = vec(ZTT). (35)

Note that these terms are obtained at time n, i.e., once n
training samples are available. We aim to write both R−1

n

and rn in terms of R−1
n−1 and rn−1, respectively, to derive a

recursive algorithm. First, we rewrite (34) as

Rn = αIKD + (IK + βL)⊗
n∑

i=0

ziz
T
i (36)

= αIKD + (IK + βL)⊗
n−1∑
i=0

ziz
T
i + (IK + βL)⊗ znz

T
n

= Rn−1 + (IK + βL)⊗ znz
T
n . (37)

We rewrite the second term on the right-hand side (RHS)

of (37) using the mixed-product property and the fact that

the resulting matrix is symmetric, as

(IK + βL)⊗ znz
T
n = ((IK + βL)⊗ zn)(IK ⊗ zTn )

= (IK ⊗ zn)((IK + βL)⊗ zTn )

Now, letting Pn = (IK ⊗ zn) and Qn = ((IK + βL)⊗ zTn ),
we can use the matrix inversion lemma to derive a recursive

equation for R−1
n as

R−1
n = R−1

n−1 −R−1
n−1Pn

(
IK +QnR

−1
n−1Pn

)−1︸ ︷︷ ︸
Gn∈RKD×K

QnR
−1
n−1.

(38)

where the gain matrix Gn may be simplified as follows:

Gn =
(
R−1

n−1 −GnQnR
−1
n−1

)
Pn = R−1

n Pn. (39)

We now write (35) in a recursive manner as

rn = vec

(
n∑

i=0

zit
T
i

)
= rn−1 + vec(znt

T
n ). (40)

Substituting (40) into (33), we obtain

vec(Hn) = R−1
n rn−1 +R−1

n vec(znt
T
n ). (41)

Using the relation vec(AXB) = (BT ⊗ A)vec(X) and the

mixed-product property, vec(znt
T
n ) can be written as

vec(znt
T
n ) = tn ⊗ zn = (IK ⊗ zn)tn.

and (41) becomes

vec(Hn) = R−1
n rn−1 +R−1

n (IK ⊗ zn)tn

= R−1
n rn−1 +Gntn (42)

Algorithm 2: RFF-based RLSKRG

Initialization:
R−1
−1 = 1

αIKD;

H−1 = 0D×K ;

draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
Learning:
for each time instant n do

map rn into zn;

Pn = IK ⊗ zn;

Qn = (IK + βL)⊗ zTn ;

Gn = R−1
n−1Pn

(
IK +QnR

−1
n−1Pn

)−1
;

ŷn = HT
n−1zn;

en = tn − ŷn;

Hn = Hn−1 +mat(Gn(en − βLŷn));
R−1

n = R−1
n−1 −GnQnR

−1
n−1;

end

Substituting (38) into (42)

vec(Hn) = R−1
n−1rn−1 −GnQnR

−1
n−1rn−1 +Gntn

= vec(Hn−1) +Gn(tn −Qnvec(Hn−1))

= vec(Hn−1) +Gn

(
tn − (IK ⊗ zTn )vec(Hn−1)

− (βL⊗ zTn )vec(Hn−1)
)

= vec(Hn−1) +Gn(tn −HT
n−1zn − βLHT

n−1zn)

= vec(Hn−1) +Gn(en − βLŷn), (43)

or, equivalently,

Hn = Hn−1 +mat(Gn(en − βLŷn)), (44)

where ŷn = HT
n−1zn is the a priori target estimate and en =

tn − ŷn is the a priori error. Equation (43) is the recursive

update equation for the proposed recursive least squares KRG

(RLSKRG) algorithm. The steps for the implementation of the

RLSKRG algorithm are summarized in Algorithm 2.

Due to its recursive nature, the RLSKRG algorithm consid-

ers past samples when computing the update matrix at each

iteration. Thus, its performance is expected to match that of

the batch-based approach.

C. Efficient RLSKRG Implementation

The complexity associated with large matrix multiplications

or inversions can render the RLSKRG impractical for large

networks. For instance, the computations of Gn and R−1
n in

Algorithm 2 require multiplications of matrices with dimen-

sion KD ×KD and KD ×K. This implies at least K3D2

multiplication operations for each computation. We now derive

an alternative implementation with reduced complexity.

Substituting (36) into (39), and substituting the result

into (44), we obtain

Hn = Hn−1

+mat
(
(αIKD + (IK + βL)⊗Rz,n)

−1
ξn)

)
,

(45)
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Algorithm 3: Efficient RLSKRG

Initialization:
Rz,−1 = 0D×D;

H−1 = 0D×K ;

get U and Σ;

draw vectors {vi}Di=1 from p(v);
draw phase terms {bi}Di=1 from [0, 2π];
Learning:
for each time instant n do

map rn into zn;

Rz,n = Rz,n−1 + znz
T
n ;

Get Vn and Ωn;

Pn = IK ⊗ zn;

ŷn = HT
n−1zn;

en = tn − ŷn;

Ξ = mat(Pn(en − βLŷn));

Γn = mat((αIKD +Σ⊗Ωn)
−1vec(VT

nΞnU));
Hn = Hn−1 +VnΓnU

T;

end

where Rz,n =
∑n

i=0 znz
T
n and ξn = Pn(en − βLŷn). We

now use the eigendecompositions (IK + βL) = UΣUT and

Rz,n = VnΩnV
T
n . Using the mixed-product property of the

Kronecker product, and considering that αIKD and (IK +
βL) ⊗Rz,n share the same set of eigenvectors, (45) can be

rewritten as

Hn = Hn−1

+mat
(
(U⊗Vn)(αIKD +Σ⊗Ωn)

−1vec(VT
nΞnU))

)
,

(46)

where Ξn = mat(ξn). Letting Γn = mat((αIKD +
Σ ⊗ Ωn)

−1vec(VT
nΞnU)), and using the relation (BT ⊗

A)vec(X) = vec(AXB), the update equation for the efficient

RLSKRG algorithm is given by

Hn = Hn−1 +VnΓnU
T. (47)

All steps for the implementation of the efficient RLSKRG are

presented in Algorithm 3.

V. CONVERGENCE ANALYSIS

This section examines the convergence of the proposed

online algorithms; in particular, we study their first- and

second-order stability conditions. In the following analysis,

Ho denotes the optimal linear estimator in the least mean

squares sense of Tn in the RFF domain. In this case, Tn =
ZnHo +Υn, where Υn = [υ(nδ−Nb+1) . . . υnδ]

T ∈ R
Nb×K

denotes the corresponding optimum-error matrix, which sat-

isfies the orthogonality condition E[ZT
nΥn] = 0D×K ⇔

E[(IK ⊗ ZT
n )vec(Υn)] = 0KD×1 [32], [33].

For the derivations that follow, let λmax(·) denote the

maximum eigenvalue of the argument matrix and let ρ(·)
denote the spectral radius of the argument matrix, i.e., the

largest absolute value of its eigenvalues. Additionally, we

use the following property of the Kronecker product: let the

eigenvalues of a matrix A be {λ1, λ2, . . . , λM} and of a

matrix B be {σ1, σ2, . . . , σN}. Then, the eigenvalues of

A⊗B and B⊗A are given by {λiσj}M,N
i=1,j=1 [33].

A. First-Order Analysis of the MGKRG

Making the substitution in (31) and subtracting both sides

from Ho yields

H̃n+1 = H̃n − μαH̃n − μ

Nb
ZT

nZnH̃n − μ

Nb
βZT

nZnH̃nL

+
μ

Nb
βZT

nZnHoL+ μαHo − μ

Nb
ZT

nΥn,

(48)

where H̃n = Ho − Hn is the parameter-deviation matrix.

Defining h̃n = vec(H̃n), ho = vec(Ho), and γn = vec(Υn),
the above recursion can be alternatively expressed as

h̃n+1 =

(
IKD − μ

(
αIKD +

1

Nb
(IK + βL)⊗ (ZT

nZn)

))
h̃n

+ μ

(
αIKD +

β

Nb
L⊗ (ZT

nZn)

)
ho

− μ

Nb
(IK ⊗ ZT

n )γn. (49)

To study the convergence behavior of the proposed MGKRG

governed by the form (49), we make the following assump-

tions:

A1: The RFF-mapped data signal zn is drawn from a wide-

sense stationary multivariate random sequence with cor-

relation matrix Rz = E[znz
T
n ].

A2: For n large enough, the contribution of the batch Zn

to Hn is negligible, such that Hn is considered to be

independent of Zn.

A3: The graph topology is assumed to be static, meaning that

the graph Laplacian L is fixed throughout the process.

Theorem 1. A sufficient condition on the step size μ for the

convergence of the proposed MGKRG algorithm governed

by (32), is given by

0 < μ <
2

λmax(Rz) + α+ βλmax(L)λmax(Rz)
. (50)

Proof. Taking the expectation E[·] on both sides of (49), using

A1-A2, and using the orthogonality condition such that the

error-related term can be set to zero, we obtain

E[h̃n+1] = AE[h̃n] +Bho, (51)

where

A = IKD − μ (αIKD + (IK + βL)⊗Rz)

B = μ (αIKD + βL⊗Rz) .
(52)

Iterating the above recursion back down to zero, we obtain

E[h̃n] = AnE[h̃0] +
n−1∑
j=0

An−1−jBho. (53)

Therefore, we see that convergence is guaranteed if ρ(A) < 1.

We note that a scalar matrix aI, with a ∈ R, is simultane-

ously diagonalizable with any arbitrary matrix with adequate

dimensions. Using the properties of the Kronecker product,

and recalling that the eigenvalues of L and Rz are non-

negative, the above condition reduces to 0 < μ(α + (1 +
βλmax(L))λmax(Rz)) < 2. The result in (50) follows from

here.



7 of 12

Remark 1. Under the convergence condition (50), (53) con-

verges asymptotically to (IKD−A)−1Bho, which reduces to

(αIKD+(IK+βL)⊗Rz)
−1(αIKD+βL⊗Rz)ho. This means

that limn→∞Hn is a biased estimate of Ho. Also, the bias

is introduced by the regularization coefficients α and β, such

that a non-regularized problem leads to an unbiased solution.

B. Second-Order Analysis of the MGKRG

For the second-order analysis of the MGKRG, we consider

the following additional assumption:

A4: The step size μ is sufficiently small so that the terms

involving higher order powers of μ can be ignored.

Using A1-A4, the covariance matrix of the parameter deviation

vector h̃n+1 is given by

E[h̃n+1h̃
T
n+1] = E[h̃nh̃

T
n ]− μE[h̃nh̃

T
n ]C − μCE[h̃nh̃

T
n ]

− μE[h̃nh
T
o ]D − μDE[hoh̃

T
n ],

(54)

where

C = αIKD + (IK + βL)⊗Rz

D = αIKD + βL⊗Rz .
(55)

The cross terms involving μ
Nb

(IK ⊗ ZT
n )γn are zero due to

the orthogonality condition. By vectorizing both sides of (54)

and defining ηn = vec(h̃nh̃
T
n ), we can now write

E[ηn+1] = ΔE[ηn] +Θn, (56)

where

Δ = IK2D2 − μ(C ⊗ IKD)− μ(IKD ⊗ C) (57)

and

Θn =

− μ(D ⊗ IKD)vec(E[h̃n]h
T
o )− μ(IKD ⊗D)vec(hoE[h̃n]

T).
(58)

Theorem 2. Assume A1-A4 hold. Then, the second-order con-

vergence of the proposed gradient-based algorithms, namely

the MGKRG and the SGKRG, is guaranteed under

0 < μ <
1

λmax(Rz) + α+ βλmax(L)λmax(Rz)
. (59)

Proof. Iterating the recursion (56) back down to zero, we

obtain

E[ηn] = ΔnE[ηo] +

n−1∑
j=0

Δn−1−jΘj . (60)

Recalling that E[h̃n] is finite under (50), so Θn converges

asymptotically with n. Therefore, equation (60) is stable iff

ρ(Δ) < 1. Since matrices C ⊗ IKD and IKD ⊗ C commute

and are both diagonalizable, the eigenvalues of their sum equal

the sum of their eigenvalues. Moreover, these matrices share

the same eigenvalues under the properties of the Kronecker

product. Then, the condition for ρ(Δ) < 1 reduces to

ρ(IK2D2 − 2μ(C ⊗ IKD)) < 1, (61)

which can be written as |1− 2μλmax(C)| < 1. Substituting C
as in (55), the second-order convergence condition reduces to

0 < 2μ
(
α+ (1 + βλmax(L))λmax(Rz)

)
< 2, (62)

from which (59) follows.

Theorem 2 shows that the condition for second-order sta-

bility of the MGKRG is more strict than that of the first-

order stability. The upper-bound imposed on the step-sizes for

second-order stability is half of the upper-bound established

in Theorem 1.

C. First-Order Analysis of the RLSKRG

In the analysis of the RLSKRG, the following additional

assumption is considered:

A5: The random sequence that governs signals zn is ergodic.

Then, for sufficiently large n, Rn behaves as a deter-

ministic matrix given by Rn = αIKD + (IK + βL) ⊗
(n+ 1)Rz .

Assumption A5 is commonly employed in the analysis of

RLS-based algorithms [34]. It considers that, given ergodicity,

the time average of rank-one covariance matrices znz
T
n can be

replaced by the expected value for large enough n.

Multiplying both sides of (33) from the left by Rn, and

using (40) in conjunction with (33) we can write

Rnvec(Hn) = rn

Rnvec(Hn) = rn−1 + vec(znt
T
n )

Rnvec(Hn) = Rn−1vec(Hn−1) + vec(znt
T
n ) (63)

Substituting the model tn = HT
o zn + υn into (63), we have

Rnvec(Hn) = Rn−1vec(Hn−1) + vec(znυ
T
n ) + vec(znz

T
nHo)
(64)

We now subtract both sides from Rnvec(Ho). By recalling

that h̃n = vec(Ho −Hn), we obtain

Rnh̃n =Rnvec(Ho)−Rn−1vec(Hn−1)

− vec(znυ
T
n )− vec(znz

T
nHo). (65)

Substituting (37) into the first term on the RHS, we

rewrite (65) as

Rnh̃n = Rn−1h̃n−1 − vec(znυ
T
n ) + (βL⊗ znz

T
n )vec(Ho).

(66)

Taking the recursion down to n = 0 and solving for h̃n, we

obtain

h̃n = R−1
n R0h̃0 +R−1

n πn, (67)

where

πn =
n∑

i=0

vec(βziz
T
i HoL− ziυ

T
i ). (68)

Using vec(AXB) = (BT ⊗A)vec(X) and A5, we get

πn = (βL⊗ (n+ 1)Rz)ho −
n∑

i=0

vec(ziυ
T
i ). (69)

Theorem 3. The RLSKRG described in Algorithm 2 is stable

in the mean sense and converges to a steady state.
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Proof. The expected value of the parameter deviation in (67)

is given by

E[h̃n] = E[R−1
n R0h̃0] + E[R−1

n πn]. (70)

For sufficiently large n, we can apply A5 so that R−1
n can be

regarded as a deterministic matrix for which limn→∞R−1
n =

0KD×KD, since Rn is dominated by the term (IK + βL) ⊗
(n + 1)Rz . Thus, the first term on the RHS of (70) tends to

zero. As for the second term, under the same conditions we

have that

E[R−1
n πn] =R−1

n (βL⊗ (n+ 1)Rz)ho

−R−1
n

n∑
i=0

vec
(
E[ziυ

T
i ]
)︸ ︷︷ ︸

=0KD×1

, (71)

where the second term on the RHS is zero due to the

orthogonality condition. Regarding the first term, as Rn is

dominated by the term (IK + βL)⊗ (n+ 1)Rz , then we can

write limn→∞R−1
n (βL⊗ (n+ 1)Rz)ho = Eho, in which

E = lim
n→∞ [(IK + βL)⊗ (n+ 1)Rz]

−1
(βL⊗ (n+ 1)Rz)

=
[
(IK + βL)−1βL

]⊗ ID , (72)

where we used the Kronecker product property (A⊗B)−1 =
(A−1 ⊗ B−1) and the mixed-product property. Hence, we

have that Hn is an asymptotically biased estimate of Ho, and

by using the relation (BT ⊗ A)vec(X) = vec(AXB), we

can rewrite the bias term Eho as follows: limn→∞ E[H̃n] =
βHoL(IK + βL)−1.

Remark 2. Under the convergence condition (50), the bias of

the MGRKG tends to the bias of the RLSKRG when α→ 0+.

In addition, the bias in the RLSKRG is introduced solely

by the regularization coefficient β, since the regularization

coefficient α contributes only with an initial condition for the

matrix Rn, which plays no role in the algorithm’s average

behavior as n grows to infinity.

D. Second-Order Analysis of the RLSKRG

For the second order analysis, we assume further that

A6: Variables zn and tn are jointly ergodic, so that, for

sufficiently large n,
∑n

i=0 zit
T
i ≈ (n+ 1)E[zit

T
i ].

Assumptions A5 and A6 imply that, for sufficiently large n,

matrix
∑n

i=0 zi(t
T
i − zTi Ho) can be approximated as (n +

1)E[ziυ
T
i ], which is equal to 0K×D due to the orthogonality

condition.

Theorem 4. The RLSKRG described in Algorithm 2 is stable

in the mean-squared sense and converges to a steady state.

Proof. From (67), we have

E[‖h̃n‖22] = E[‖R−1
n R0h̃0‖22]

+ 2E[h̃T
0 R0R

−2
n πn] + E[‖R−1

n πn‖22].
(73)

For sufficiently large n, we can apply A5 so that the

first non-negative term on the RHS of (73) is up-

per bounded by ‖R−1‖22 · E[‖R0h̃0‖22], which tends to

zero since E[‖R0h̃0‖22] is bounded and limn→∞R−1
n =

0KD×KD. Under A5 and A6, we can write R−1
n πn =

vec
(
βHoL(IK + βL)−1

)
for sufficiently large n. This im-

plies both that the middle term on the RHS of (73) can

be written as 2E[h̃T
0 R0]R

−1
n vec

(
βHoL(IK + βL)−1

)
, which

tends to zero as n grows to infinity, and that the last term

on the RHS of (73) is finite. Therefore, the RLSKRG con-

verges in the mean-squared sense to limn→∞ E[‖h̃n‖22] =
‖vec (βHoL(IK + βL)−1

) ‖22.

VI. DISCUSSION ON COMPLEXITY

For the MGKRG algorithm, the update (32) requires DK+
Nb(K

2 + 2DK + K) multiplication operations. That is, the

complexity of the MGKRG increases linearly with Nb with a

slope equal to K2 + 2DK + K. Additionally, the MGKRG

requires a memory to store Nb > 1 samples. Hence, the

batch-size translates into a trade-off between complexity and

performance since the gradient approximation using more

samples yields a better update direction than those using a

reduced number of samples. In this sense, the SGKRG yields

the lowest computational burden of the proposed online KRG

implementations.
The proposed efficient implementation of the RLSKRG

in (47) requires D3 + D2 + 2D2K + 5DK + 2DK2 + K2

multiplication operations to update Hn. The terms D2 and

D3 correspond to the complexity of updating the matrix

Rz,n and computing its eigendecomposition, respectively.

Since Rz,n is only updated with znz
T
n at time n, and we

only need its eigensystem, the complexity can be reduced

using efficient techniques for rank-one updates of the singular

value decomposition [35]. Other techniques for reducing the

complexity of the RLSKRG can be considered. For instance,

dichotomous-coordinate descent (DCD) iterations, which uses

only additions and bit-shifts with no multiplications, have been

considered for reduced-complexity RLS implementations [36].

Under a reasonable assumption that Nb has the same order of

magnitude as D and K, we observe that the RLSKRG has

a slightly heavier computational burden per iteration when

compared to the MGKRG.
The efficient implementation (28) of the offline batch KRG

using RFF requires D3 +D2N + 2D2K + 3DK + 2DK2 +
KDN multiplications. We highlight that this complexity is

considerably smaller than that of the conventional implementa-

tion (20), which requires the inversion of a DK×DK matrix,

leading to complexity equivalent to D3K3 multiplications

for the inversion operation only. Moreover, we note that the

computations of ZTZ and ZTT depend on N and yield the

terms D2N and KND, respectively. This implies that the

complexity of the offline RFF-based KRG is not constant with

time. The batch-based KRG can be considered in an online

fashion, such that matrices ZTZ and ZTT are stored and only

rank-one updates are required at each time instant, reducing

the complexity of these terms to D2 and KD multiplications

per iteration, respectively.

VII. NUMERICAL RESULTS

In this section, we validate the performance of the proposed

algorithms with numerical experiments using both synthesized

and real datasets.
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Fig. 1. NMSE achieved by the Bacht-based and RLSKRG implementations
versus number of training samples using synthesized data.

A. Synthesized Data 1

Similar to the setup in [15], we consider an Erdös Rényi

graph with K = 50 nodes and edge-probability equal to 0.1. A

total of S = 20000 K-dimensional i.i.d. samples, {xn}Sn=1,

are generated, where xn ∼ N (0,CS). The S-dimensional

covariance matrix CS ∈ R
S×S is drawn from the inverse

Wishart distribution with an identity scale matrix. We generate

the target graph signals {tn}Sn=1 as in [15], i.e., by solving

tn = argminτ
{‖xn − τ‖22 + τTLτ

}
. The generated signals

are divided into a training set and a test set, containing Nts

and N samples, respectively, with Nts + N ≤ S. The target

signals in the training dataset are perturbed by white Gaussian

noise (AWGN). The SNR is fixed across all nodes, with noise

variance on the kth node σ2
n,k =

σ2
s,k√
10

, where σ2
s,k denotes

the signal variance on the kth node. In our simulations, we

fix Nts = 1000 and let N vary. Finally, α and β were

obtained from the training set, via grid search and 5-fold cross-

validation, by minimizing the normalized mean squared error

NMSE = 10 log10

(
E

[‖Y −T0‖2F
‖T0‖2F

])
, (74)

where T denotes the true target matrix and Y denotes the

estimated matrix. In the experiments, we use the Gaussian

kernel κ(xi,xj) = exp
(−‖xi − xj‖22/(2σ2)

)
, with σ2 also

obtained via grid search.

We evaluate the NMSE over the entire test dataset for the

proposed online algorithms at each iteration n. That is, for

every n, we obtain Hn, calculate the estimates of all Nts

test signals, and we compute the NMSE using (74). The

expected value is obtained as the ensemble average over 500

independent runs.

Fig. 1 presents the results of the batch-based implementa-

tions and the RLSKRG. We see that the RFF implementation

approximates well the conventional KRG even for relatively

small D = 32. The performance of the RLSKRG closely

matches the performance of the batch-based implementation.

Results in Fig. 2a show that online algorithms can effectively

learn the regression parameters. We analyze different step sizes

and we show that the NMSE level achieved by the SGKRG

approximates that of the batch RFF-based KRG as μ decreases.

Fig. 2b shows the performance of the MGKRG for different

mini-batch sizes. Plots show an increase in convergence speed

as Nb increases to 15 and then to 50 samples.
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(b)

Fig. 2. NMSE achieved by the MGKRG implementations versus number of
training samples for different step sizes and mini-batch sizes.

B. Real Data - Temperature Prediction

In this experiment, we use temperature data from 30 weather

stations distributed across Norway’s mainland, collected by the

Norwegian Meteorological Institute [37]. Data from 2019 are

used for the final experiment, while data from 2018 are used

for training hyperparameters σ, α, and β.

We construct a nearest-neighbor graph with K = 30 nodes

using the GSPBOX toolbox for MATLAB, such that each

station is connected to its five nearest neighbors. The latitude

and longitude coordinates of the stations are available in [37]

and are used for computing the distance between stations.

Fig. 3a shows the graph and the approximate positions of the

weather stations.

We employ the KRG for a 4-days ahead temperature

prediction on the 2019 data, with a 70% and 30% split

between training and test data, respectively. For the RFF-based

implementations, we use D = 128. The results are obtained as

an ensemble average over 100 independent experiments, with

different permutations of the data to generate the correspond-

ing training and test datasets.

Results are presented in Fig. 3. In this example, we observe

that the SG-based approaches, shown in Fig. 3b, achieve

performance similar to the performance achieved by the batch-

based approaches and the RLSKRG, in Fig. 3c. Comparing the

SG implementations among themselves, we control the step

size to achieve a similar steady-state NMSE. We observe that

increasing the mini-batch size increases convergence speed.

Plots in Fig. 3c show that the RLSKRG closely matches the

batch-based KRG using RFF. Also, for D = 128 used in this

example, the RFF offer an approximation that allows the RFF-
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Fig. 3. Setup and results for temperature-prediction simulation: (a) illustration of the map of Norway and the approximate position of the stations, as
represented by the graph used in the simulations; (b) results for SGKRG algorithms; and (c) results for batch-based algorithms and RLSKRG.
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Fig. 4. NMSE achieved by the KRG implementations versus number of
training samples for the fMRI signal simulation.

based KRG to match the conventional KRG in performance.

C. Real Data - fMRI Signal Extrapolation

This section reproduces the example from [15], which

employs the conventional KRG to estimate the intensities of

voxels in a functional magnetic resonance imaging (fMRI)

dataset. The data and graph used are available in [38].

In the fMRI context, a voxel is a volumetric unit that

constitutes a 3-dimensional image of the brain, analogous

to pixels in 2-dimensional digital images. Each voxel is

associated with a small cubic portion of the brain. The fMRI

measures the changes in blood flow on each of these voxels.

The blood flow is, in turn, associated with brain activity and,

thus, by collecting measurements on all voxels, one can obtain

a mapping of the brain activity. Regions of the brain relate to

each other anatomically and, by considering these relations,

a graph can be constructed where voxels are the nodes, and

edges represent relations between them. For more details on

this dataset and graph construction, see [15].

The regression experiment consists of estimating the signal

on 90 of the voxels using the signal from other 10 voxels.

In other words, we consider an input signal x ∈ R
10 to

estimate a graph signal t ∈ R
90. The graph corresponds to the

pairwise relations of the 90 voxels. A total of 292 snapshots

is available. We consider training and test datasets of same

size equal to 146 input-target pairs. The training signals are

corrupted by an AWGN with covariance matrix 0.1 ·IK . RFF-

based implementations use D = 32.

Fig. 4 shows the results for all algorithms. We can observe

that D = 32 is enough for the RFF-based KRG to closely

match the conventional KRG, converging to approximately -

23 dB. Again, the RLSKRG mostly coincides with the batch-

based implementations. Results also show that the SG-based

implementations can achieve low NMSE, around -20 dB,

while increasing the number of samples when computing

the stochastic approximation for the gradient increases the

convergence speed.

D. Real Data - Image Reconstruction

We now consider the application of KRG in the image

and video processing scenario. This simulation showcases the

performance and the capability of the online algorithms to deal

with large datasets. In particular, we tackle the reconstruction

of a corrupted video frame. Each frame is divided into blocks

of 4 × 4 pixels. Each block of pixels is represented as a

graph with K = 16 nodes, where each node corresponds to

a pixel, and nodes are connected to their nearest neighbors

inside a fixed radius equal to the minimum distance between

two pixels. Frames are black and white, and pixels are treated

in double format, such that a zero corresponds to black and

a one corresponds to white. In this setup, corrupted frames

have up to one random pixel per block that is set to unity,

simulating a saturated pixel. An example of a corrupted frame,

along with a block of 4 × 4 pixels with one corrupted pixel,

and the corresponding graph are illustrated in Fig. 5a.

The video recording used in this simulation corresponds to a

sequence of objects being captured against a generic wooden

background as the camera pans from left to right, moving

along the objects, at 30 frames per second. The video frames

have a resolution of 480× 480 pixels, which results in 14400

non-overlapping blocks per frame. We utilize six full frames

taken with a distance of 50 frames between them to train the

regression parameters, and two frames are used as the test

dataset. We highlight that, in a real application, six frames

correspond to approximately 0.2 seconds of video. Consistent

learning during a video sequence becomes quickly impractical

for the conventional KRG due to the large dataset.
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(a) (b)

Fig. 5. Example of the image reconstruction process using KRG: (a) shows an example frame and how a 4 × 4 block of pixels is treated as a graph; (b)
shows the original frame, the corrupted frame, and the reconstructed frame, from left to right.
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Fig. 6. NMSE achieved by the KRG implementations versus number of
training samples in the image reconstruction simulation.

Fig. 6 shows the NMSE versus iterations for the proposed

algorithms. These results are consistent with previous simu-

lations and show that online KRG strategies can successfully

learn the target model. We observe that the RLSKRG exhibits

the best performance while the single-sample SGKRG exhibits

the worst performance, as expected, given the complexity-

performance trade-off. In this simulation, increasing the num-

ber of blocks to Nb = 20 and Nb = 60 (which corresponds

to half the number of blocks on a single line in an image)

considerably increases the performance of the MGKRG. A

depiction of the frame reconstruction using the RLSKRG is

presented in Fig. 5b, which showcases the capabilities of the

proposed algorithm.

VIII. CONCLUSION

This paper proposed efficient batch-based implementations

for kernel regression on graphs (KRG). The proposed im-

plementations use random Fourier features (RFF) to over-

come the growing complexity of kernel methods. Addition-

ally, we showed that we could leverage the properties of

the matrices involved in the regression process to formu-

late a less computationally-demanding derivation of the re-

gression parameters. Furthermore, online strategies for RFF-

based KRG were proposed, namely the mini-batch gradient

KRG, the stochastic-gradient KRG, and the recursive least

squares KRG. We showed that the RLSKRG also enjoys

an alternative reduced-complexity implementation leveraging

matrices’ properties. For all online algorithms, conditions for

convergence in the mean and the mean-squared sense were

derived. We also presented a brief discussion on the trade-

off between complexity and performance of the proposed

algorithms. Finally, the performance of all algorithms was

validated with numerical experiments using synthesized and

real data simulations. Results confirmed that both the proposed

KRG using RFF and the RLSKRG have accuracy close to

that of the conventional KRG, with a considerable reduc-

tion in complexity. Additionally, simulations showed that the

MGKRG can effectively learn the regression parameters and

that its performance can be improved at a small increase in

computational cost by increasing the number of samples in the

mini-batch.
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