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A B S T R A C T

Oil and gas companies are facing low output prices and are forced to focus on the development of mature
fields. Relevant investment decisions for operators include lifetime-enhancing activities, such as drilling new
wells or permanent shutdown. We study the problem of optimal timing of investments in mature oil and gas
fields in the presence of price uncertainty, which is an example of a complex real options problem consisting
of a portfolio of interdependent options. We formulate a multistage stochastic integer programming model that
incorporates a detailed representation of the uncertain oil price, and demonstrate how such a complex real
options problem can be efficiently solved using the Stochastic Dual Dynamic Integer Programming algorithm.
The paper presents a numerical example based on realistic data and discusses our computational results. We
find that only a small number of Markov states are required to represent the uncertain price process, while
obtaining convergence of the lower and upper bounds of the objective function. The value of stochastic solution
of 11% is considerable in this example. It is concluded that the shutdown decision tends to be postponed
as a result of high decommissioning costs, high discount rates, high price uncertainty and low operational
expenditures, while it generally is accelerated if the decommissioning costs increase over time.
1. Introduction

In 2018, an approximate volume of 70% of the world’s oil and
gas production came from mature fields (O’Brien et al., 2016). Mature
fields are defined to be those that have reached the plateau production
phase, the decline phase may have started and the fields are reaching
the end of their economic life. The number of such fields has been
steadily increasing and can be expected to grow in the near future.
Together with the relatively low recent output prices, this has forced
oil and gas operators to focus on mature fields. Optimal development
of mature fields means that operators have to make strategic decisions,
such as starting production enhancing activities or field shutdown. Oil
price fluctuations can have a considerable effect on these decisions,
particularly for marginal fields.

The field of real options has attempted to address similar prob-
lems (Ekern, 1988; Clarke and Reed, 1990; Lund, 2000), but the model
formulations tend to restrict either the price processes or the options
available. In mathematical programming, related work has been done
in the setting of general offshore oil field development (Nygreen et al.,
1998; Gupta and Grossmann, 2012). However, this literature tends to
focus on decisions taken at the beginning of a field’s lifetime. In this
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work, we take elements from real options and mathematical program-
ming and develop a multistage stochastic integer programming model
(MSIP) that maximizes the net present value of an offshore mature
asset. The model allows a detailed representation of the uncertain price
process as well as the inclusion of a portfolio of options. In particu-
lar, the price process is represented using the Short-Term Long-Term
(STLT) model from Schwartz and Smith (2000). We solve the developed
MSIP using the Stochastic Dual Dynamic integer Programming (SDDiP)
algorithm (Zou et al., 2019).

The main contribution of this work is to demonstrate how com-
plex real options problems, consisting of a portfolio of interdependent
options, can be formulated as an MSIP and efficiently solved using
SDDiP. This approach allows for evaluating multiple activities, several
stochastic factors and problem-specific constraints. The resulting model
can be efficiently solved using existing SDDiP packages (Ding and
Ahmed, 2019; Dowson and Kapelevich, 2021). We present a new model
formulation for the problem of optimally developing a mature offshore
oil field. To describe price uncertainty, we include the STLT model
and estimate its parameters based on recent oil futures data. Based on
input from a Norwegian operator, we construct a numerical example to
perform a computational study. Here, we find that only a small number
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of Markov states are needed to represent the uncertain price process.
In addition, we analyze the optimal policy to show how decisions may
adapt to realizations of the uncertain price process. Using the optimal
MSIP-policy as opposed to the solution of a deterministic problem
that uses expectations of uncertain factors leads to an improvement
in the objective function of around 11%. Also, we investigate the
effect of different factors on investment timing. Besides the traditional
finding that uncertainty delays investment, we find that increasing
decommissioning costs on mature fields can lead to acceleration of the
shutdown decision.

The remainder of this paper is organized as follows: Section 2
provides an extensive literature review. The MSIP model is presented
in Section 3. This section includes a problem description, treatment of
the uncertain price process as well as a formulation of the model. In
Section 4 we describe how our model can be solved using the SDDiP
algorithm. Further, Section 5 presents estimation results of the STLT
model as well as computational results from a numerical example,
including a discussion based on investment timing. The conclusions are
presented in Section 6.

2. Literature review

In this section we review the relevant literature in the fields of
real options and mathematical programming with a particular focus
on the development of oil fields. For a more general review of oil
field development we refer to Babadagli (2007) and Tavallali et al.
(2016), while Vrålstad et al. (2019) and Bakker et al. (2019) focus on
shutdown decisions and plug and abandonment (P&A) operations on
mature offshore oil fields.

2.1. Real options

In the context of oil fields, the field of real options has focused on
the option to prematurely abandon (or to shut down) a field (Paddock
et al., 1988; Ekern, 1988). Traditional real options literature is based on
financial option pricing and the assumption that a replicating portfolio
of financial instruments can be constructed to replicate the returns
of the real option. Myers and Majd (1983) and McDonald and Siegel
(1985) use this approach to value an abandonment option employing
standard no-arbitrage arguments. The prevailing stochastic processes,
such as the oil price or production rate, are typically assumed to evolve
as a Geometric Brownian Motion (GBM). Analytical results such as the
optimal abandonment time can be calculated (Olsen and Stensland,
1988; Clarke and Reed, 1990). More recently, this approach has been
used to value the option of switching from oil to gas production (Støre
et al., 2018).

Other solution approaches for real options problems are dynamic
programming and decision analysis (Dixit and Pindyck, 1994). Early
work has been conducted by Bonini (1977), who formulated a discrete
time dynamic programming model for abandoning a project with un-
certain future revenues. Smith and Mccardle (1998, 1999) integrated
the option pricing approach and the decision analytic approach in
an elegant way. They distinguished between market uncertainties and
private uncertainties, where the respective typical examples are oil
prices and production rates. Market risks can be perfectly hedged by
traded financial instruments, while private risks cannot be perfectly
hedged.

Applications of real options to petroleum field development and
abandonment include the following. Lund (2000) describes a stochastic
dynamic programming model for evaluating the development of a
marginal offshore oil field under uncertainty, where the author treats
both market and private risk. Several simplifications in the represen-
tation of the problem are required to obtain a manageable model in
terms of size. Most notably, the uncertain factors are restricted to have
only two or three realizations. Dias (2004) presents an overview of
real options that occur in petroleum exploration, development and
2

production. As an example, Dias (2004) discusses how the option to
expand production by drilling additional wells can be included in
traditional real options literature.

When a real options problem is formulated as a stochastic dy-
namic program, it is often solved using an Approximate Dynamic
Programming (ADP) technique (Powell, 2007). The optimal policy
value obtained from ADP approaches is often assessed by estimating
a dual bound using information relaxations (Brown et al., 2010). The
most commonly used technique to value real options in the last two
decades is the Least Squares Monte Carlo Approach (LSM) by Longstaff
and Schwartz (2001), which is also known as the simulation-and-
regression method. Applications of this approach to the petroleum
industry are given by Fleten et al. (2011) and Jafarizadeh and Bratvold
(2012), where the latter implements the STLT model.

2.2. Mathematical programming

Within the field of mathematical programming, an exten-
sive amount of research has been undertaken on the development of oil
and gas fields (Sullivan, 1988; Khor et al., 2017). Here, the main focus
tends to be on decision making during early phases of the life-cycle of
a field. In contrast, the present work contributes to the literature by
focusing on the development of mature fields.

A related topic is the planning and scheduling of (infrastructure)
investment and operation in offshore oil/gas fields. This includes the
design and operation of pipelines, fields, wells and installations. Deci-
sions have to be made regarding issues such as the network structure,
platform capacities, well locations and production rates. In addition,
both physical and financial restrictions have to be taken into account.
Most of the work on this problem uses a deterministic approach, and the
formulated models tend to be multiperiod mixed-integer programming
models (Nygreen et al., 1998; Iyer and Grossmann, 1998; Lin and
Floudas, 2003; Gupta and Grossmann, 2012). Integrality conditions,
multiple periods, detailed descriptions of operational or technical parts
and other features make these problems generally difficult to solve.
When introducing uncertainty, their complexity increases even further.

Several attempts have been made to analyze planning problems in
the petroleum industry under uncertainty and different decomposition
techniques have been used to solve multistage stochastic program-
ming models. Jonsbråten (1998) presents a mixed-integer programming
model for the optimal design and operation of an oil field under price
uncertainty. The problem is solved using a variant of the progressive
hedging algorithm that allows for integer variables. However, the
complexity of this problem forces the author to allow for only three
scenarios for the uncertain price process. Goel and Grossmann (2004)
and Gupta and Grossmann (2014) make use of a Lagrangian Decom-
position to solve a multistage stochastic program for the planning of
an offshore oil or gas field infrastructure, while Tarhan et al. (2009)
use a duality based branch-and-bound procedure for the same problem.
These problems are also extremely difficult to solve. As a result, the un-
certainties are described using high and low values, leading to scenario
sets of size four to eight. Even though these models are formulated as
multistage problems, in the case studies, two-stage stochastic programs
are solved to ease the computational burden.

Another approach to solve multistage stochastic optimization prob-
lems is the Stochastic Dual Dynamic Programming (SDDP) algorithm
(Pereira and Pinto, 1991). This algorithm is based on a dynamic pro-
gramming formulation with a nested cost-to-go function. It can be
considered an adaptation of the nested Benders decomposition (Birge,
1985). The applicability of this algorithm is restricted to linear prob-
lems with continuous variables. Recent advances have made it possible
to include integer variables in this framework. Zou et al. (2019) ex-
tended the SDDP algorithm to allow for binary state variables and refer
to this as Stochastic Dual Dynamic Integer Programming (SDDiP). A
conceptual treatment of the SDDiP algorithm is given in Section 4.
Applications of the SDDiP algorithm can be found in hydropower plant
scheduling (Hjelmeland et al., 2019) and electric power infrastruc-
ture planning (Lara et al., 2019). We contribute by presenting a new

application of the SDDiP algorithm to an oil field development problem.
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2.3. Real options vs. stochastic programming

When options are available in portfolios, the standard approaches
to real options have their scope limitations, particularly when there
are interdependencies between options. One approach to resolve these
challenges and to allow for interdependencies in a portfolio of real
options is to extend the traditional LSM method (Maier et al., 2019,
2020). The authors formulate the model as a multistage stochastic
integer program (MSIP) and describe the uncertainty using a Markov
process. Another example of a work cast as a real options problem in
a stochastic mixed-integer programming framework is by Wang and
de Neufville (2004). The authors make use of a two-step procedure,
where first options are identified within a simulation model, and sub-
sequently these options are used in a stochastic mixed integer linear
program. This highlights a key difference between real options and
stochastic programming, as outlined by Wallace (2010). Real options
require options to be predefined, while stochastic programming might
find options that are not directly clear. Another difference is that
stylized real options analysis more easily allows for gaining analytical
insights, while stochastic programming can be used to solve larger and
more complex problems. This work aims to combine both fields by
solving a complex real options problem using the SDDiP algorithm from
stochastic programming.

3. Mathematical model

In this section, we provide a problem definition, discuss the price
process that we use and formulate the main sets and variables, con-
straints and objective function for the corresponding MSIP.

3.1. Problem description

We consider a mature offshore oil field that is approaching the end
of its economic life. The field has gone through primary and secondary
recovery phases, but there are still certain activities available to extend
its lifetime. These activities to enhance production include the drilling
of new wells, sidetracking existing production wells (slot recovery) or
other techniques such as Enhanced Oil Recovery (EOR). These activities
are considered to be available real options. The production facility
can be a platform or a floating/subsea production system. When the
installation is producing, it incurs a yearly operational expenditure
(OPEX). Shutting down the field requires permanently plugging and
abandoning the wells as well as decommissioning the installation,
which are costly operations. Considering this problem and making clear
dissemination of our results, we restrict ourselves to a field that solely
produces oil. However, the analysis can quite easily be extended to
other commodities such as natural gas.

The two most important variables determining the value of a
petroleum asset are future prices and future production. Since oil prices
are by nature stochastic and have considerable fluctuation, we allow for
uncertainty in prices. In addition, production profiles might fluctuate
as well. To model production profiles from existing wells as well as
potential targets, operators make use of different methods, such as
complex reservoir simulators or more standard decline curves. Since we
are considering mature fields, operators have probably been able to col-
lect a considerable amount of data on historical production, reservoir
properties and the possibilities for activities that can extend the lifetime
of a particular field. On the Norwegian Continental Shelf, operators are
obliged to present an annual status report to the Norwegian Petroleum
Directorate, which compiles forecasted production profiles for existing
wells, as well as optional activities (Norwegian Petroleum Directorate,
2019). As a result, we assume that estimated production profiles are
given for the field, as well as the optional activities.

Focusing on the planning level of the problem at hand, strategic
decisions such as shutting down a field, or further developing it, are
3

typically taken on a yearly basis. These decisions require considerable p
planning and preparation and are therefore taken at least a year in
advance. On the Norwegian Continental Shelf, the production license
is granted for a period of ten years (Petroleumsloven, 1996, § 3-9).
Depending on field conditions, the time horizon for a mature field
can also be up to ten years. As a result, it is natural to formulate
this problem in discrete time with annual time steps and a finite time
horizon.

Finally, the problem of strategic decision making on mature offshore
oil fields aims to maximize the net present value of the field. This can
be achieved by optimally deciding when development activities should
be started and/or when the field has to be shut down. Yearly profits
equal the difference between revenues and cost, where the revenues are
calculated based on realized spot prices and given production profiles.

3.2. Price process

To model price behavior, both the GBM and mean reverting pro-
cesses such as the Ornstein–Uhlenbeck (OU) process, have often been
used. The GBM tends to be able to reflect the long-term behavior of
the oil price, while a mean reverting process can capture short-term
fluctuations. However, these simple models fail to capture the full
dynamics of the spot price for oil. More realistic price behavior can
be captured by the two-factor Short-Term Long-Term (STLT) model
by Schwartz and Smith (2000).

The STLT model has a stochastic equilibrium price level, while
short-term deviations, which are the difference between the spot price
and the equilibrium level, are also stochastic and mean revert to zero.
In the STLT model, the logarithm of the spot price at time 𝑡 (𝑝𝑡) can be
ecomposed as follows:

og 𝑝𝑡 = 𝜒𝑡 + 𝜉𝑡, (1)

where 𝜒𝑡 is referred to as the short-term factor (short-term deviations)
in prices and 𝜉𝑡 denotes the long-term factor (equilibrium price level).
The short-term deviations are assumed to revert to zero following
an OU process, while the equilibrium level is assumed to follow a
Brownian Motion Process. These factors are not directly observable, but
they can be estimated from historical future contracts. Schwartz and
Smith (2000) present a risk neutral version of the STLT model that can
be used for option valuation. The advantage of using the risk neutral
process is that we can discount cash flows at a risk-free rate. We have
to discretize the process to make use of the STLT model in a multistage
optimization problem. A possible discretization of this process is given
by Jafarizadeh and Bratvold (2012), who present a risk neutral STLT
model in discrete-time:

𝑝̃𝑡 = exp
(

𝜒𝑡 + 𝜉𝑡
)

, (2)

𝜒𝑡 = 𝜒𝑡−1𝑒
−𝜅𝛥𝑡 −

(

1 − 𝑒−𝜅𝛥𝑡
)
𝜆𝜒
𝜅

+ 𝜎𝜒 𝜖𝜒

√

1 − 𝑒−2𝜅𝛥𝑡
2𝜅

, (3)

𝜉𝑡 = 𝜉𝑡−1 + 𝜇∗
𝜉𝛥𝑡 + 𝜎𝜉𝜖𝜉

√

𝛥𝑡. (4)

Here, 𝑝̃𝑡, 𝜒𝑡 and 𝜉𝑡 are the risk-neutral equivalents to the spot price,
hort-term factor and long-term factor respectively, while 𝜎𝜒 and 𝜎𝜉

are volatilities and 𝜖𝜒 and 𝜖𝜉 are correlated standard normal random
variables with correlation coefficient 𝜌𝜒𝜉 . In addition, 𝜅 is the mean-
reversion coefficient, 𝜆𝜒 is a risk premium that specifies a reduction in
the drift for the short-term process and 𝜇∗

𝜉 is the risk neutral drift of the
equilibrium level, 𝜉𝑡. Finally, 𝛥𝑡 denotes the length of time period 𝑡 in
ears, allowing for time stages with different lengths. Note that in the
ong run, under the risk neutral measure, the expected spot prices grow
t a rate exp (𝜇∗

𝜉 +
1
2𝜎

2
𝜉 ). For a thorough discussion related to model

arameters, we refer to Schwartz and Smith (2000).
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3.3. Sets and variables

We give a brief definition of some of the main sets and variables,
and their corresponding domains. For a complete overview over all sets
and indices, parameters and variables used in the MSIP, we refer to
Appendix B.

The time structure of the problem is flexible with regards to both
resolution and horizon. We therefore define the set  , indexed by 𝑡
and 𝜏, representing time periods or stages of possibly different lengths.
The set , indexed by 𝑎, contains the activities that are available to
increase production. These activities include sidetracks (slot recovery),
drilling of new wells and/or enhanced oil recovery (EOR) methods.
Some activities cannot be started in a certain stage, so 𝑡 gives the
ctivities that can be started in stage 𝑡. Moreover, we define 𝛤𝑡 =
(𝑎, 𝜏) ∈  ×  ∣ 𝑎 ∈ 𝜏 , 𝜏 ≤ 𝑡 − 1

}

.
We have two types of binary state variables. First, we have the

hutdown variables 𝑦𝑡 equaling one if the installation has been shut
own in previous time periods, or if the shutdown decision is made in
ime period 𝑡. Second, the activity variables 𝑥𝑎𝑡 equal one if activity 𝑎 is
ndertaken in time period 𝑡. We make use of a time-lag of one period in
he decision process, since the decision to shut down the installation, or
o start an activity, affects production from the next period and onward.
he binary state variables have the following domains:

𝑎𝑡, 𝑦𝑡 ∈ {0, 1} , ∀𝑎 ∈ 𝑡, 𝑡 ∈  . (5)

n addition, we have stage or local variables capturing the production
𝑞𝑡) and cost (𝑐𝑡) in each time period, with the following domains:

𝑡, 𝑐𝑡 ∈ R+
0 , ∀𝑡 ∈  . (6)

.4. Constraints

The constraints of the MSIP can be related to the calculation of
roduction profiles or the relationships between activities.

.4.1. Production profile
The production in time period 𝑡, denoted by the continuous variable

𝑡, can be described by the following set of constraints:

𝑡 ≤ 𝑄𝐵𝐴𝑆𝐸
𝑡 +

∑

(𝑎,𝜏)∈𝛤𝑡

𝑄𝐴𝐷𝐷
𝑎𝜏𝑡 𝑥𝑎𝜏 ∀𝑡 ∈  , (7)

𝑡 ≤ 𝑀𝑃𝑅𝑂𝐷
𝑡 (1 − 𝑦𝑡−1), ∀𝑡 ∈  , (8)

here 𝑀𝑃𝑅𝑂𝐷
𝑡 equals the maximum achievable production in time

eriod 𝑡, and 𝑄𝐵𝐴𝑆𝐸
𝑡 and 𝑄𝐴𝐷𝐷

𝑎𝜏𝑡 are parameters that give the quantity
f the base production and additional production due to activities,
espectively. So, the production equals zero if the shutdown decision
as been made in the previous period. Otherwise, it equals a base
roduction level increased with additional quantities if activities have
een started.

There might be restrictions on the production capacity. In particu-
ar, the lower bound (𝑄𝐿), might represent a minimum production that
hould be obtained to keep the installation in operation.
𝐿 ≤ 𝑞𝑡 ≤ 𝑄𝑈 , ∀𝑡 ∈  . (9)

.4.2. Activities
The decision maker can make life-enhancing activities, defined by

𝑎𝑡 for all 𝑎 ∈ 𝑡, 𝑡 ∈  , or perform permanent shutdown, denoted 𝑦𝑡 for
ll 𝑡 ∈  . The first restriction on the activities is that they can only be
xecuted once:
∑

∈
𝑥𝑎𝑡 ≤ 1, ∀𝑎 ∈ . (10)

e might have relations between different activities. A simple example
an be a restriction on the maximum number of activities that can be
tarted each year, given by 𝐿 ∈ Z+. This is enforced by:
∑

𝑥𝑎𝑡 ≤ 𝐿, ∀𝑡 ∈  . (11)
4

∈𝑡
owever, we can easily add other relationships or logical constraints.
his makes it easy to deal with real option portfolios, where there are

nterdependencies between the real options. For example, when activity
1 has been started, activity 𝑎2 cannot be started anymore:

𝑎2𝑡 ≤ 1 −
∑

𝜏≤𝑡
𝑥𝑎1𝜏 , ∀𝑡 ∈  . (12)

For the shutdown decision, we impose a constraint that the field has to
be shut down at some point during the time horizon, i.e.:

𝑦𝑇 = 1, (13)

and

𝑦𝑡 ≥ 𝑦𝑡−1, ∀𝑡 ∈  ⧵ {0} , (14)

where the last equation defines the irreversibility of the shutdown
decision.

3.5. Objective

We aim to maximize the expected net present value (NPV) of the
asset, which consists of the expected discounted net profits in each
stage. Here, the profits equal the revenues due to the sale of the
extracted hydrocarbons minus total costs (𝑐𝑡):

max
{𝑦𝑡 ,𝑥𝑎𝑡}𝑎∈𝑡 ,𝑡∈

E

[

∑

𝑡∈
𝐷𝑡

(

𝑝̃𝑡𝑞𝑡 − 𝑐𝑡
)

]

, (15)

where 𝐷𝑡 is the discount factor for time period 𝑡 and the expectation
is with respect to the exogenous price factors. The discount factor
can also be expressed in terms of the risk-free interest rate (𝑅): 𝐷𝑡 =

1
(1+𝑅)𝑡 . Total costs consist of operational expenditures (𝐶𝑂𝑃𝐸𝑋

𝑡 ), costs of
undertaking activities (𝐶𝐴𝐶𝑇

𝑎𝑡 ) and decommissioning costs (𝐶𝐷𝐸𝐶𝑂𝑀
𝑡 ):

𝑐𝑡 = 𝐶𝑂𝑃𝐸𝑋
𝑡

(

1 − 𝑦𝑡−1
)

+
∑

𝑎∈𝑡

𝐶𝐴𝐶𝑇
𝑎𝑡 𝑥𝑎𝑡+

𝐶𝐷𝐸𝐶𝑂𝑀
𝑡

(

𝑦𝑡 − 𝑦𝑡−1
)

, ∀𝑡 ∈  .
(16)

4. SDDiP Algorithm

The SDDiP algorithm (Zou et al., 2019) is used to solve MSIPs
and makes use of a stage-wise decomposition to prevent a combi-
natorial explosion of the number of states/scenarios. SDDiP is based
on a dynamic programming formulation that includes expected cost-
to-go functions for each time stage. The expected cost-to-go functions
are not known in advance and have to be approximated. Given an
approximated cost-to-go function and state, solving the corresponding
stage optimization problem gives a decision for that stage. So implicitly
the approximated cost-to-go function maps a given state of the model
to a decision. We refer to such a mapping as a policy. The cost-to-go
functions are approximated in an iterative fashion using the solutions
of the optimization problem in each stage, which can be considered to
be Benders cuts. Each iteration consists of a forward pass and a backward
pass. In the forward pass a set of scenarios is sampled. The current
policy is evaluated on each of these scenarios, leading to a set of policy
values. Based on these realized policy values, a statistical bound on the
objective function value can be constructed. This is an upper bound
for a minimization problem, as the cost-to-go function is represented
by an outer approximation. The backward pass then generates cuts
that outer approximate the expected cost-to-go function. The backward
pass consists of solving relaxed subproblems from the last to the first
stage, where the solutions of future stages are used to generate cuts and
approximations to the cost-to-go function. The relaxed solution for the
first time stage gives a lower bound to the problem, as only a subset of
scenarios is considered. This procedure is repeated until a convergence
criterion has been reached. The performance of the obtained policy can
be tested by means of a simulation, which finally gives an expected
policy value.
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Table 1
Kalman Filter parameter estimates based on ICE Brent Crude Futures.

𝜅 𝜎𝜒 𝜆𝜒 𝜎𝜉 𝜇∗
𝜉 𝜌𝜒𝜉

Estimate 0.407 0.273 −0.147 0.149 −0.007 0.306
Standard error 0.004 0.014 0.015 0.006 0.001 0.054

SDDiP explicitly distinguishes between two types of variables in
ach stage. That is, state variables linking successive stages, and local

(or stage) variables. The SDDiP algorithm requires the optimization
problem at each stage to be linear and the state variables to be
binary. The latter is not a large restriction for real options problems,
as the decisions (to wait, abandon or expand) are binary. Moreover,
SDDiP restricts the stochastic process to a finite number of realiza-
tions (discrete process). If this is not the case, such a process can be
approximated using methods such as sample average approximation,
𝑘−means or other constructive methods (Pflug, 2001). The original
(possibly continuous) stochastic process, is sometimes referred to as the
true distribution (Ding and Ahmed, 2019).

The STLT model presented above is a stagewise dependent process,
satisfying the Markov property. In particular, the spot price in stage 𝑡 is
dependent on the realizations of the short-term and long-term factors in
the previous stage. There are two approaches to incorporate stagewise
dependence (Löhndorf and Shapiro, 2019; Downward et al., 2020) in
the SDDiP algorithm. The first approach, referred to as the Time Series
(TS) approach, incorporates the autoregressive model defined in (3)–
(4) as constraints and adds the short- and long-term factors as state
variables. The second approach, referred to as the Markov Chain (MC)
approach, uses an MC approximation of the random process in Eqs. (3)–
(4), capturing the correlation between both factors. Both Löhndorf and
Shapiro (2019) and Ding and Ahmed (2019) find that the MC approach
yields better convergence of the bounds and gives a superior optimal
policy compared to the TS approach. We implemented both approaches
and obtained similar results. Therefore, this work uses the MC ap-
proach. Nevertheless, Appendix C presents a short discussion about how
to implement the TS approach, as well as a short computational study.

Finally, the SDDiP algorithm can be almost directly applied to the
MSIP presented above. Extra care has to be taken when defining the
state variables that link the different stage problems. In particular, it is
important to keep track of past activities affecting current production
profiles, so we have to add all activity variables

{

𝑥𝑎𝑡 ∶ 𝑎 ∈ 𝑡, 𝑡 ∈ 
}

s state variables in each stage.

. Computational study

.1. STLT estimation

We make use of future contracts for Brent Crude to estimate the
arameters of the STLT model for oil prices. Brent Crude is the main
rading classification of oil produced from the North Sea and is being
raded on the Intercontinental Exchange (ICE). We retrieved historical
ata on these contracts from Thomson Reuters Eikon (2020), where
e used data from January 2006 until December 2019. The maturity of

hese contracts has been on average around eight years, which gives
good match with the time horizon of our decision problem. In case

f missing observations, we have made use of linear interpolation and
xtrapolation. Finally, we were able to estimate the parameters of
he STLT model using the Kalman Filtering technique (Harvey, 1990)
s implemented in Matlab by Goodwin (2020) for the STLT model.
arameter estimates and standard errors are given in Table 1. We only
eport parameter estimates for the risk-neutral process, which is the
rocess we use for valuation.

Focusing on the standard errors, we can conclude that all the
arameters are being estimated with relatively high accuracy. When
omparing the parameter estimates with previously published estimates
5

f the STLT model for oil prices (Schwartz and Smith, 2000; Jafarizadeh
and Bratvold, 2012), we observe that we obtain a much lower short-
term mean reversion rate (𝜅). This means that short-term deviations
are more persistent. The estimated value of 𝜅 implies a half-life of
deviations of 1.7 years. When comparing the volatility and correlation
coefficients (𝜎𝜒 , 𝜎𝜉 , 𝜌𝜒𝜉), we find fairly similar estimates. In addition,
we notice that we have a negative risk-neutral equilibrium drift rate.
Finally, we obtain initial values for the price factors given by 𝜒0 = 0.534
and 𝜉0 = 3.633, implying an initial spot price (𝑝0) of 64US$/bbl.

5.2. Numerical example

In order to demonstrate the performance of the developed model,
we have constructed a numerical example representing a mature off-
shore field on the Norwegian Continental Shelf. The parameter esti-
mates are based on input from a Norwegian operator as well as a
publicly available database (Norwegian Petroleum Directorate, 2020).

The field under consideration consists of a stand-alone production
facility with 15 well slots. There is a single reservoir from which mainly
oil is being produced. The yearly operational expenditures (OPEX) of
this installation are 50 million dollars (US$MM). The time horizon of
the problem is ten years, during which the installation has to be shut
down at some point. The risk-free interest rate for projects with this
time horizon is based on Norwegian 10-year government bonds and
set to 2%. We are mainly interested in the decisions during the first
number of years. Therefore, we set the first three stages to have an
annual resolution, the next two to have a bi-annual resolution, while
the last stage has a duration of three years. This leads to a total of six
stages.

The production profiles used in the numerical example are based on
actual realized production profiles (Norwegian Petroleum Directorate,
2020). In the first year, the base production level equals 0.81 million
barrels (MMbbl), while in year ten, this equals just 0.28 MMbbl. We
can increase production by undertaking three different activities that
have been quantified. That is, we have two possibilities to perform
slot recovery (𝑠𝑖𝑑𝑒𝑡𝑟𝑎𝑐𝑘1 and 𝑠𝑖𝑑𝑒𝑡𝑟𝑎𝑐𝑘2), where the activities target
different parts of the reservoir. In addition, four new wells can be
drilled (𝑤𝑒𝑙𝑙𝑠4). The drilling of new wells leads to a higher increase
in production compared to slot recovery. However, there is also a
significant higher cost related to this activity. The first two slot recovery
activities cost US$15MM and US$30MM respectively, while the four

ells cost US$200MM.
Finally, we assume that the fifteen wells require a rig to perform

lugging operations. With a day rate of US$0.5MM and an average of
5 days per well, this leads to a P&A cost of US$150MM. Removal of

the platform has been estimated to cost US$200MM, which leads to a
decommissioning cost of US$350MM.

5.3. Computational results

To analyze the numerical example, we implemented the model in
Python 3.8, formulated it using the MSPPy package (Ding and Ahmed,
2019) and solved it with Gurobi 9.0.1. The analyses have been carried
out on a Dell PowerEdge R640 computer with an Intel Xeon Gold 5115
CPU, 2.4 GHz processor, 96 Gb RAM, running CentOS Linux 7. We did
not make use of any of the parallelization schemes available in the
MSPPy package.

5.3.1. Markov Chain representation
The stochastic process in (3)–(4) defines a continuous Markov pro-

cess, which we refer to as the true distribution. To solve the model using
SDDiP, this needs to be represented by a discrete Markov Chain. The
Markov states in each stage are represented using pairs (𝜒𝑡, 𝜉𝑡). In our
analyses, we used the 𝑘-means approach to train the Markov Chains.

In each backward pass in the SDDiP algorithm we add both strength-
ened Benders cuts and Lagrangian cuts, which was found to give

satisfactory performance. Every 𝐾 iterations we simulate the obtained
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Table 2
Computational results for different numbers of Markov states per stage, including number of iterations (# its.), solution time,
deterministic upper bound and optimality gap. The presented optimality gap is based on a simulation of the discrete Markov
Chain, while the expected policy value and confidence interval are based on a simulation of the true distribution.

Markov
states

First stage
decision

#
Its

Time
(s)

UB
(MM US$)

Opt.
gap

𝐸𝑃𝑉 ∗

(MM US$)
CI∗95%

1 shutdown 9 0.36 −358.19 0.00% −358.19 (−358.19 , −358.19)
2 sidetrack2 12 0.94 −331.55 0.93% −326.95 (−329.87 , −324.03)
5 sidetrack2 12 6.35 −320.40 0.61% −316.70 (−319.33 , −314.07)
10 sidetrack2 12 24.36 −318.11 1.07% −316.54 (−319.14 , −313.94)
15 sidetrack2 12 39.84 −317.56 0.99% −316.38 (−319.00 , −313.76)
20 sidetrack2 12 56.22 −317.19 1.96% −316.12 (−318.75 , −313.48)
25 sidetrack2 12 70.67 −317.33 0.51% −316.10 (−318.73 , −313.47)
30 sidetrack2 12 127.02 −317.25 0.37% −316.06 (−318.70 , −313.43)
policy 𝑁𝑆𝐼𝑀 times, to evaluate the quality of the policy. In this way,
we can construct a (1 − 𝛼)-confidence interval on the Expected Policy
Value (EPV), which gives us a statistical lower bound for the problem.
The optimality gap can then be constructed based on the deterministic
upper bound (UB) obtained from the forward passes and the statistical
lower bound from the simulations. In the same way, we can construct a
(1 − 𝛼)-confidence interval for the improvement in the EPV. We use this
as a stabilization stopping criterion for the algorithm. When the upper
bound of this EPV-improvement interval does not exceed a specified
tolerance level 𝜖, we assume that the policy has stabilized and the
algorithm is terminated. Table 2 presents computational results for
different representations of the Markov Chain in terms of the number
of Markov states per stage.

The obtained policy is valid for the Markov states of the discrete
Markov Chain. When extending this policy to the true distribution, we
match realizations of the true distribution with Markov states that are
closest in terms of distance and use the corresponding approximation
of the cost-to-go function (Löhndorf and Shapiro, 2019). Using this
approach, we can construct a (1−𝛼)-confidence interval for the expected
policy value (EPV∗), denoted by CI∗1−𝛼 , where the asterisk refers to
the evaluation on the true distribution. Simulating the obtained policy
is computationally expensive, so it is not warranted to do this each
iteration or to use a very large 𝑁𝑆𝐼𝑀 . However, choosing a large value
of 𝐾 in turn increases the number of iterations and hence the solution
time. In the sequel, we have used 𝐾 = 3, 𝑁𝑆𝐼𝑀 = 5000, 𝛼 = 5% and
𝜖 = 0.01%, which provided a good balance towards computational
performance.

First, we note that considering only one Markov state is equivalent
to solving a deterministic problem which includes the expected spot
price as single scenario. This is the only case that is solved to optimality.
For the other cases, the stabilization stopping criterion is reached at a
point where there still is a relatively small optimality gap remaining.
Fig. 1 visualizes the convergence of the SDDiP algorithm for the case
with 10 Markov states. For visualization purposes we simulated the
obtained policy each iteration (i.e. 𝐾 = 1), which made the algorithm
terminate after 10 iterations. We observe that the confidence interval
for the EPV is relatively small, as we used a relatively large value
for 𝑁𝑆𝐼𝑀 . The statistical lower bound decreases in the fifth iteration,
which might be due to the algorithm reaching an unexplored part of
the feasible region. The algorithm terminates when there is no more
improvement in the performance of the obtained policy, but there is
still a marginal optimality gap.

Turning back to Table 2, we observe that the models solve in mere
seconds. When using 30 Markov states per stage, the problem still
solves in around 2 min. Also, the solution times scale approximately
linearly with the number of states. Moreover, we see that there is little
improvement in the 𝐸𝑃𝑉 ∗ when adding more than around 10 Markov
states. This implies that for the computational study relatively few
6

Markov states are needed to represent the uncertain price process.
Fig. 1. Convergence of the SDDiP algorithm in terms of development of the
deterministic upper bound and statistical lower bound for 10 Markov states.

5.3.2. Larger instances
The numerical example includes three activities, which is a typical

size of a real options or investment timing problem. Nevertheless,
the example can be considered to be relatively small. To test the
performance of the methodology on a larger instance, we extended the
numerical example to include a total of twelve activities and used 10
Markov states per state. The policy stabilized after 18 iterations and
55 s, with an optimality gap of 1.67%. Even though the computational
results indicate that larger instances can be solved, such instances are
considered to be less realistic for the problem under consideration
as operators only quantify the most promising activities on a field.
In addition, it is challenging to obtain data estimates for such large
instances (in particular production profiles).

5.3.3. Value of the stochastic solution
As mentioned before, the expected value problem is represented by

the use of a single Markov state, where the uncertainties are replaced
by their mean. Common practice for oil companies is to perform net
present value calculations based on expected price realizations and/or
on percentiles of price distributions such as the 10% percentile (P10,
low prices) and 90% percentile (P90, high prices). While this approach
aims to account for uncertainty in the price process, its actual use in de-
cision making is limited. In our numerical example, both the expected
value problem and the low price scenario (P10) suggest shutting down
the field immediately. However, if a high price scenario (P90) occurs,
it would be optimal to invest in 4 new wells. So, the solutions from
these deterministic models differ, giving inconsistent information to the
decision maker. Moreover, this deterministic approach fails to suggest
the optimal first stage solution, which is to perform two sidetracks.
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Fig. 2. Structure of the decisions (state variables) when simulating the optimal policy. We present the average spot price (in US$/bbl) in each stage for each pathway.
This decision is chosen to obtain more information about the uncertain
process in subsequent stages. For a high price realization, the option
to expand can still be exercised, while for low price realizations the
installation can still be shut down.

The expected benefit of using a representation of the prevailing
uncertainty instead of the expected value problem, is usually referred to
as the Value of the Stochastic Solution (VSS). In our numerical example,
the expected value problem results in a cost of US$358.2MM, while the
optimal policy when considering 10 Markov states leads to an expected
cost of US$318.1MM. This implies an expected VSS of US$40.1MM,
which reflects a 11% decrease in costs.

5.3.4. Decision structure
From Table 2 we have seen that the optimal first stage decision is to

perform two sidetracks. In addition, when solving the model we obtain
a policy, represented by a family of cuts that estimate the cost-to-go
function. We can use this policy in a Monte-Carlo study to find out
which decisions are being made for different scenarios at the various
stages. Fig. 2 visualizes the structures of the decisions that appear in
a Monte-Carlo study of the optimal policy using 5000 simulations.
A pathway represents a unique decision structure, while a box/node
represents a decision taken in a certain stage. The last column presents
the distribution of occurrences of the different decision structures.
Within each node, we present the average spot price for the pathways
that go through this particular node.

The diagram illustrates the richness in decision structures for the
fairly simple numerical example presented. When spot prices increase
drastically, we see that it can be optimal to drill four extra wells, while
for more moderate price changes, the optimal decision tends to be to
wait or to drill a new sidetrack. For low prices, we observe that the
field tends to be shut down before the time horizon of the problem.
In only around 12% of the scenarios, the field is shut down in the last
stage.

5.3.5. Factors influencing the average shutdown year
This section investigates the effect of different factors on the average

shutdown year. We solve the model for different parametrizations and
simulate the obtained policy. The average shutdown year is obtained by
translating the average shutdown stage into its duration in years. Note
that the figures in this section display some non-monotonic behavior.
As the model parameters are changed (the shutdown cost, discount
7

Fig. 3. Average year in which the field is shut down, as a function of decommissioning
costs and discount rate.

rate, OPEX and price volatility), the course of the SDDiP algorithm is
affected. As a result, the policies will evolve in different ways, even
when using the same seeds in these analyses.

Using data from a large set of oil and gas wells located in Canada,
Muehlenbachs (2015) uses a dynamic programming real options model
to show that it is common practice for oil and gas companies to
temporarily shut down wells to prevent the high costs that accompany
permanent P&A. By postponing the permanent shutdown decision,
permanent P&A costs are shifted forward and can be discounted by a
high discount factor. As a result, we are interested in the effect that
the shutdown cost and discount rate have on postponing the shutdown
decision in our problem setting.

Fig. 3 shows the average shutdown year, while varying the de-
commissioning costs and discount rate. With no monetary time value
(i.e. 𝑅 = 0), the field is expected to be shut down after approximately
4.7 years. In this case, the decommissioning costs have no effect on the
shutdown decision. However, the main observation is that the average
shutdown year increases both as a function of the decommissioning
costs as well as the interest rate. In the base-case with 𝐶𝐷𝐸𝐶𝑂𝑀 =
US$350MM and 𝑅 = 2%, the field is expected to be shut down after
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Fig. 4. Average year in which the field is shut down. Both as a function of different realizations of the operational expenditures 4(a) as well as the percentage increase in
decommissioning costs per stage 4(b).
5.67 years. For moderate increases in the parameters, this can be
extended by several years. Nevertheless, for these parametrizations,
permanent abandonment is not extended all the way to the horizon
(10 years). The main reason being that there is a significant OPEX
relative to decommissioning costs. That is, when the revenue from the
saleable production and the savings from postponing the shutdown
decision due to discounting do not cover this OPEX, the field will be
shut down.

The effect of operational expenditures on the average shutdown
year is illustrated in Fig. 4. With an OPEX of US$25MM, the shutdown
decision is pushed all the way back to the final year in the time horizon.
If it is legally possible to temporarily plug all wells connected to an
installation, the operational expenditures of the installation could be
reduced significantly, giving an economic incentive to postpone the
costly P&A operations.

While high decommissioning costs, high interest rates and low
operational expenditures extend the shutdown decision, increasing de-
commissioning costs over time might have the opposite effect. As we
focus on mature fields, we are facing ageing infrastructure and wells
that have an increased risk of integrity problems (Vignes and Aadnøy,
2010). Examples of such problems are corrosion on the platform or
deformation of the casing in the borehole. It requires more time to
plug wells with integrity problems and this may lead to higher decom-
missioning costs. Such a cost increase cannot be easily quantified, and
we are not aware of any works describing this. To evaluate the effect,
we define a percentage stagewise cost increase in decommissioning
costs. This is based on duration estimates of plugging operations for
different well complexities given by Øia et al. (2018), which can be
seen as a proxy for well integrity. The use of a 6% cost increase per
stage implies that the decommissioning cost will be 1.34 times higher
in stage 5 (years 8 through 10) than in stage 0, which is in accordance
with the data presented by Øia et al. (2018). Fig. 4 visualizes the
effect of a percentage stagewise cost increase in decommissioning costs
on the average shutdown year. As expected, we observe that with
increasing decommissioning costs, the shutdown decision is expedited.
When using a 5% cost increase per stage or higher, this would lead to
immediate shutdown in stage 0.

Finally, an important topic in the real options literature is the
relationship between uncertainty and investment timing. The effect
of increasing volatility on the price level at which an investment is
triggered or the expected time until the investment can be analyzed.
Traditionally, it is found that uncertainty delays the investment. For
example, Clarke and Reed (1990) consider the option to abandon an
oil well, assuming that the uncertain process follows a GBM. In this
case, the authors show that the oil price level triggering shutdown
decreases as the volatility of the GBM increases. However, as these
calculations quickly become complex, such comparative statistics are
8

Fig. 5. Average year in which the field is shut down, as a function of the volatility
of the short-term factor (𝜎𝜒 ) and the long-term factor (𝜎𝜉 ). For each curve, the other
volatility is fixed at its base level.

usually only performed for single options. When considering multiple
options in a portfolio, the effect of an increase in volatility is not so
easily determined. We therefore perform a sensitivity analysis on the
volatility of the short-term deviations (𝜎𝜒 ) and the long-term equilib-
rium level (𝜎𝜉), respectively. In Fig. 5 we present the average shutdown
year for varying volatility, where the base cases with 𝜎𝜒 = 0.273 and
𝜎𝜉 = 0.149 result in an average shutdown year of 5.67. Even though
we observe some non-monotonic behavior, the figure confirms the
traditional relationship found in real options literature that uncertainty
delays the shutdown decision (Dixit and Pindyck, 1994). This holds for
an increase in short-term as well as long-term volatility.

6. Conclusions

The problem of developing a mature offshore oil field can be
considered to be a real options problem consisting of a portfolio of
interdependent options. In this paper, we showed that this problem
can be formulated as a multistage stochastic integer linear program
and efficiently solved with the SDDiP algorithm. The oil price was
considered to be the main uncertain factor and is represented by the
STLT model of Schwartz and Smith (2000) to account for oil price
dynamics.

To analyze the problem, we considered a numerical example based
on realistic input from a Norwegian operator. We solved the problem
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using the SDDiP algorithm and Markov chain approach. We found that
the algorithm tends to converge quickly to a relatively small optimality
gap. We also investigated the number of Markov states that are needed
to represent the true distribution satisfactorily, based on the expected
policy value. We observed that the use of around 10 Markov states is
sufficient to represent the uncertain price process. The model solves
in mere minutes and scales linearly with the number of states. For the
numerical example, we found that the value of the stochastic solution
lies around 11%, which means that there is significant value in using
this model rather than deterministic alternatives.

The SDDiP framework allows for simulating obtained policies, giv-
ing the opportunity to perform different kinds of analyses. We evalu-
ated solution structures and found that the decisions in each stage are
highly dependent on the realizations of the price process. Moreover,
we investigated factors that influence the average shutdown year of
the field by means of a sensitivity analysis. Our conjectures were
confirmed in that high decommissioning costs, high discount rates and
low operational expenditure tend to postpone the shutdown decision.
Nevertheless, these effects might be negated if there are increasing well
integrity problems, represented by decommissioning costs that increase
over time, leading to acceleration of the shutdown decision. In line
with traditional real options theory, we found that an increase in the
volatility of the short-term deviations and long-term equilibrium level
postpones the shutdown decision.

To conclude, we demonstrated that industry-sized problems involv-
ing infrastructure development under uncertainty can be solved by
framing the problem as an MSIP and solving it using SDDiP. While
the computational results showed that the presented approach is ef-
fective when only considering price as stochastic, it remains to be
seen how the approach performs when considering multiple uncertain
elements, e.g. cost and production profile. Future work might also look
at applying the presented methodology on other cases that give rise
to larger instances with different configurations. This can be in terms
of, for example, the definition of the profits and costs, the number
of time periods or a larger set of interdependencies between options.
Finally, a limitation of the SDDiP method is that it requires binary state
variables, which in the context of a pure real options problem tends to
be satisfied. When, however, both continuous and binary state variables
are required, other solution methods are needed, such as binarization
of continuous state variables (Zou et al., 2019). Future research might
focus on the development and performance of such methods.
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Appendix A. Abbreviations

ADP Approximate Dynamic Programming
bbl Barrel
EOR Enhanced Oil Recovery
EPV Expected Policy Value
GBM Geometric Brownian Motion
LSM Least Squares Monte Carlo
MAE Mean Absolute Error
MC Markov Chain
MM Million
MSIP Multistage Stochastic Integer Programming
NPV Net Present Value
OPEX Operational Expenditures
OU Ornstein Uhlenbeck
P&A Plug and Abandonment
SDDiP Stochastic Dual Dynamic (Integer) Programming
SDDP Stochastic Dual Dynamic Programming
STLT Short-term Long-term
TS Time Series
VSS Value of Stochastic Solution

Appendix B. Nomenclature

B.1. Sets and indices

 = Set of time periods or stages, indexed by 𝑡 and 𝜏.
 = Set of activities (sidetracks, new wells, EOR/IOR) that

can be undertaken, indexed by 𝑎.
𝑡 = Subset of activities that can be undertaken at time

period 𝑡.
𝛤𝑡 = Set of pairs of activities and stages (𝑎, 𝜏) that could

have been undertaken before time period 𝑡.

.2. Parameters

𝐷𝑡 = Discount factor in time period 𝑡.
𝑅 = Risk neutral interest rate.
𝑄𝐵𝐴𝑆𝐸

𝑡 = Base production level in time period 𝑡.
𝑄𝐴𝐷𝐷

𝑎𝜏𝑡 = Additional production in time period 𝑡, when
activity 𝑎 has been started in time period 𝜏.

𝑀𝑃𝑅𝑂𝐷
𝑡 = Theoretically maximum production in time period

𝑡.
𝑄𝐿, 𝑄𝑈 = Lower and upper bound on the production

capacity.
𝐿 = Constant representing the maximum number of

activities that can be performed in a certain stage.
𝐶𝐴𝐶𝑇
𝑎𝑡 = Cost of undertaking activity 𝑎 in time period 𝑡.

𝐶𝑂𝑃𝐸𝑋
𝑡 = Operational expenditure if the installation is

producing in time period 𝑡.
𝐶𝐷𝐸𝐶𝑂𝑀
𝑡 = Decommissioning costs in time period 𝑡.

𝑝̃𝑡 = Spot price for oil in time period 𝑡.
𝐾 = Number of iterations between policy evaluations

(using simulation).
𝑁𝑆𝐼𝑀 = Number of simulations to evaluate a policy.

.3. Variables

.3.1. Binary state variables
𝑦𝑡 = Shutdown variable, equaling one if the decision to shut

down the installation is made in period 𝑡 or any of the
preceding time periods, and zero otherwise.

𝑥𝑎𝑡 = Activity variable, equaling one if the decision to start
activity 𝑎 is taken in time-period 𝑡, and zero otherwise.
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B.3.2. Control variables
𝑞𝑡 = Total production when the installation is in operation,

equals zero otherwise.
𝑐𝑡 = Costs in time period 𝑡, consisting of OPEX,

abandonment- and activity costs.

ppendix C. Time series approach

To solve the MSIP presented in Section 3 using a Time Series
pproach, several steps have to be undertaken:

1. Eqs. (2)–(4) have to be included in the model and 𝜒𝑡 and 𝜉𝑡
have to be included as state variables. The error terms in these
equations are now stagewise independent.

2. Eq. (2), defining the price as a function of the two factors,
includes the non-linear exponential function. This function has
to be approximated by a piecewise linear function.

3. The price is now modeled as a variable, instead of an uncertain
parameter. This leads to a product of the price and production
variable. But, since the production variable is based on binary
variables (the activity variables), this can be rewritten in an
exact manner.

more formal description of this procedure can be obtained from the
uthors.
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