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Abstract

A global analysis recently showed that seabird breeding phenology (as timing of egg-laying and hatching)
does not, on average, respond to temperature changes or advance with time [1]. This group, the most
threatened of all birds, is therefore prone to spatio-temporal mismatches with their food resources. Yet,
other aspects of the breeding phenology may also have a marked influence on breeding success, such as
the arrival date of adults at the breeding site following winter migration. Here, we used a large tracking
dataset of two congeneric seabirds breeding in 14 colonies across 18° latitudes, to show that arrival date
at the colony was highly variable between colonies and species (ranging 80 days) and advanced 1.4
days/year while timing of egg-laying remained unchanged, resulting in an increasing pre-laying duration
between 2009 and 2018. Thus, we demonstrate that potentially not all components of seabird breeding

phenology are insensitive to changing environmental conditions.

Introduction

Timing of life history events such as reproduction is predicted to have evolved to optimally utilize
temporally favourable conditions in seasonal systems [2]. Breeding phenology is a key adaptation with
direct consequences on reproductive success and population dynamics [3, 4]. Rapid climate change has
led to an advancement of the annual cycle in many organisms in temperate and polar regions, while
species that have not adjusted to climate change seem to be more prone to population declines [5, 6]. In
seabirds, timing of egg-laying has been shown to be insensitive to changing climatic conditions globally,
highlighting the vulnerability of this group to mismatches with lower-trophic-level resources [1]. Yet,
spring arrival at the colony, and the pre-laying period — the time between arrival at the colony and egg-
laying - are also important and rarely considered components affecting breeding success. This period
allows birds to establish and defend nest sites [7], build up body condition [8, 9] and mate [10], which

often starts months before egg-laying [11, 12].

Here, we took advantage of a large tracking dataset, enabling us to determine arrival dates in two
seabird species, across nine years (2009 - 2018) and 14 colonies across a large latitudinal gradient (62°N -
79°N), to test if arrival date also does not exhibit any trend across years, similar to timing of egg-laying
[1]. This data was available for two colonial, congeneric species, the common (hereafter COGU, Uria
aalge) and Briinnich’s guillemot (hereafter BRGU, Uria lomvia). These species are long-distance migrants
[13-15], have similar morphology and life history [16, 17], and exhibit no trend in breeding phenology
[18], but contrasting population trends [19-21]. Their arrival date is hypothesized to be driven by timing

of food availability in the vicinity of the colony [22, 23], which can be roughly approximated by latitude

3
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[24], or by colony size through increasing pressure on nest site defence displayed as longer pre-laying
periods in larger colonies [11, 25, 26]. We tested the hypothesis that arrival date is without trend across
years, same as egg-laying date. Further, we examined if arrival date is delayed with latitude, similar to

timing of egg-laying [24], or determined by colony size due to pressure on nest site defence.

Material and Methods

Data acquisition

The date of first arrival at the colony for each colony and species was estimated using salt water
immersion data recorded by light-level geolocators deployed on adult breeders. Arrival date was here
defined as the date when the pre-laying period commences. It was identified as the date when the
majority of tracked individuals attended the colony for the first time after the non-breeding period, using
the assumption that first arrival back at the colony is synchronized and independent of sex in guillemots
[26-28] (details in SI). Using a colony-wide first arrival date rather than individual arrival dates resulted in
more robust results due to limitations in logger data resolution and accuracy. Tracking data were
available from 14 colonies (figure 1A), for one to eight years (in the period 2009 - 2018) [29]. BRGU and
COGU breed sympatrically at five of these colonies. Three instances of estimated arrival dates could be
validated with available time-lapse camera data at two colonies (figure S1). To estimate pre-laying
duration as well as temporal changes in phenology, we gathered annual measures of breeding timing
which were available as population-level mean hatching dates at twelve colonies (details in SlI) for one to
seven years (in the period 2009 - 2018) [24, 30-37]. To assess the potential consequences of variable
arrival dates on reproductive success, we used annual breeding success for which data was available

from five colonies (details in Sl) for four to six years (in the period 2010 - 2017) [30-37].

Data analysis

Temporal trends in breeding phenology and their consequences - Colony- and species-specific inter-
annual variation in arrival dates was quantified as standard deviation (SD) from mean arrival timing. To
test if arrival date changes with year we applied a linear mixed effect model (LME, package Ime4) with
relative arrival dates (mean = 0) as response variable (n = 79), year and species as fixed effects and id (as
combination of colony and species) as random intercept. The same model was applied on a subset of
data for which mean hatching date data were available (n = 40). Using this subset, we applied the same

fixed and random effects to relative pre-laying duration as well as relative mean hatching date as



108 response variables in order to assess if guillemot hatching timing and pre-laying duration have changed
109 over time. Most parsimonious models were selected using Akaike information criterion [38], resulting in
110  allinstances in a removal of species and its interaction with year as predictor variables. We calculated
111  the percentage of variance explained by the fixed effects (marginal R?) and fixed and random effects

112 (conditional R%; [39]). In order to assess if a large-scale factor is driving temporal trends in arrival date,
113  we assessed temporal synchrony as mean correlation of relative arrival dates between colonies using the
114  msynch function (package ncT [40]). To test if potential temporal trends in arrival date had an effect on
115 reproductive output, we applied a LME with standardized breeding success (SD = 1, mean = 0) as

116  response variable, relative arrival date as fixed effect and id as random intercept (n = 33).

117 Effect of latitude and colony size on arrival date - To test for the effect of latitude on arrival date at the
118 colony, we applied a linear model with mean species- and colony-specific arrival date as the response
119  variable (n = 19) and latitude and species and their interaction as predictors. Further, if latitude drives
120  arrival date, we would expect that colonies close to each other would exhibit similar arrival timing.
121 Hence, we used a Mantel-correlation test with 1000 permutations (package ade4) to test if spatial
122 proximity can explain mean arrival date in either species. Alternatively, to test if arrival date and

123  consequently pre-laying duration can be instead linked to colony size, we applied a linear model with
124 mean species- and colony-specific pre-laying duration as the response variable (n = 15) and colony size
125 on the log-scale and species as predictors. Population counts are taken from a similar time period to
126 account for the contrasting population trends (table S1). To account for collinearity, we also tested
127 latitude against colony size, but found no overall latitudinal trend (linear model, Biatitude = -0.10 with

128  standard error (SE) = 0.10, adj. R? = <-0.01). R (version 3.5.1, [41]) was used for all statistical analyses.

129

130 Results

131 Timing of colony arrival

132  Annual arrival dates varied between January 28 and April 18 with considerable variation across the

133 Northeast Atlantic (figure 1B). Most of this variation is found among colonies (SD = 21.6 and 16.2 days
134  for COGU and BRGU, respectively, figure S1) and species (SD = 12.8 days across sympatric colonies),

135 while colony- and species-specific inter-annual variation was significantly smaller (mean SD = 7.8 and 4.9

136 days for COGU and BRGU, respectively).
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Temporal variability in breeding phenology and its consequences

Timing of hatching in guillemots showed no trend over time (Byear = -0.17 with SE = 0.23, marg. R* = 0.01,
cond. R? = 0.01; figure 2C). In contrast, arrival date at colony advanced by 1.4 days/year irrespective of
species (full dataset: Byear = -1.4 with SE = 0.28, marg. R? = 0.24, cond. R? = 0.24; subset with available
mean hatching data: Byear = -1.7 with SE = 0.35, marg. R? = 0.39, cond. R? = 0.39; figure 2A). This was also
visible as prolonged pre-laying duration (Byear = 1.4 with SE = 0.40, marg. R? = 0.23, cond. R? = 0.23; figure
2B) as arrival date and pre-laying duration were highly and negatively correlated (-0.86). Colony arrival
dates did not display synchrony among each other for either species (COGU: mean correlation = 0.15
with 95% confidence interval (Cl) =-0.34 - 0.55 and BRGU: 0.09 with Cl =-0.56 - 0.71). And, no
consequence of an advancing arrival date was detectable in exhibited breeding success for either species

(Bstd. arrival = -0.005 with SE = 0.02, marg. R? = <0.01, cond. R? = <0.01; figure 2D).

Does latitude or colony size predict arrival date?

Mean arrival date at the colony could not be explained by latitude and the two species exhibited
opposite trends (Biatitude sreu = 1.63 with SE = 1.24 and Biatitude * cocu = -2.73 with SE = 2.19, adj. R? = 0.23;
figure 1B). Similarly, there was weak evidence for an effect of proximity on arrival dates for COGUs
(Mantel correlation = 0.19, p = 0.14), but somewhat stronger evidence in BRGUs (Mantel correlation =
0.29, p = 0.034). Contrastingly, pre-laying duration showed substantial variability among colonies (mean
=75 days, SD =19, range = 49 - 102) and was highly correlated with colony size (Biog(size) = 6.96 with SE =
0.97, adj. R? = 0.82; figure 1C).
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Discussion

The main findings of our study are that timing of first arrival at the colony of both guillemot species and
all colonies was highly variable and advanced through time despite no visible trend in mean hatching
date. This advancement had apparently no effect on guillemot average breeding success. Further, the
duration of the pre-laying period and hence timing of arrival is not determined by latitude, but is better

explained by the size of the colony, being longer in large colonies.

Theoretically, the minimum pre-laying duration required in guillemots is five days, as females undertake
a four day long pre-laying exodus away from the colony [42]. Yolk formation (usually 14-15 days [42])
could also occur away from the colony and fertilization occurs very soon after ovulation, which in turn
occurs 24 hours before the egg is laid [10]. So, copulation right before the pre-laying exodus should be
sufficient. Nonetheless, here we identified extensive pre-laying periods of more than one and up to
several months with large variability between colonies and species. In an extreme case of a population
further south, most breeding birds arrive back at the colony already in the autumn and in at least some
years birds attend the breeding sites throughout the winter [11, 43]. This variability may have costs and
benefits associated with it. During the pre-laying period prospective breeders attend the colonies at
regular intervals [26-28] which restricts them to quasi central place foraging. This in turn limits their
available prey options and could even lead to local depletion of food resources before spring bloom at
large colonies [44], decreasing their body condition and potentially breeding probability prior to
breeding. Alternatively, early return to the breeding sites might help secure nesting sites, mating
partners and facilitate courtship [23], or it might be a response to unfavourable conditions experienced
by these migrants during the end of their non-breeding period, resulting in an earlier return to the

colony.

We showed that colony arrival date advanced in both the Briinnich’s and common guillemot across the
study area, while their timing of hatching did not display any trend as shown previously in seabirds
globally [1] and for alcids in the Atlantic and Pacific [18]. Contrary to these previous studies, concluding
that breeding phenology is insensitive to short-term climatic change, we identified a clear trend in arrival
dates across both species studied. This advancement resulted in an increasing pre-laying duration as
mean hatching date did not advance, suggesting that part of breeding in these seabirds is indeed
sensitive to changing conditions, although we cannot derive conclusions regarding the process driving

this phenomenon or if it is an adaption to a changing environment. A potential explanation could be that
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the cue used to time arrival across the North Atlantic is changing as has been shown in some passerine

species [45], but could not be demonstrated in others [46, 47].

Although overall timing in both species exhibits the same trend, arrival time series were not
synchronized between species and colonies. This indicates that short-term fluctuations in arrival date
were not parallel through time among species and/or colonies, which suggests the interaction between
large-scale environmental trends acting on the entire species combined with more local features.
However, environmental conditions, although exhibiting the same trend, do not change homogenously
across the genus’ range [48], which encompasses most of the North Atlantic for these species breeding
within the study area [13-15]. Hence, synchrony is not necessarily expected. As of now we could not
detect any immediate consequences of advancing arrival dates on population-wide reproductive success.
As we used adult breeders to estimate arrival times, we cannot make any inference of the potential
effect of advancing arrival dates on breeding propensity. Not all birds breed every year [49, 50] and the
egg laying and hatching dates as well as the recorded breeding success may reflect only individuals with
sufficient body condition, i.e. the ones that managed to get enough energy during the pre-laying period

in order to breed [8].

Pre-laying duration and hence arrival timing at the colony could be linked with colony size [11, 25, 26]
rather than latitude. This could explain the displayed large-scale variability in arrival timings between
colonies as well as the lack of synchronicity between time series. Although guillemots typically show high
nest site fidelity, site changes are documented which usually increase nest site quality for the usurper
and decrease it for the usurped [51] underlining the importance of nest site defence as potential driver
of arrival date resulting in the pressure to arrive earlier in larger colonies [11, 25, 26]. But, the influence
of environmental conditions on arrival timing cannot be ruled out, as unfavourable weather has already
been shown to affect pre-laying colony attendance in BRGU [27] although the same could not yet be

shown for arrival timing.

Our large-scale approach highlights the extent and importance of the pre-laying period in contributing to
the challenges faced by colonial breeders in a changing environment. The advancing trend in arrival
dates elucidates that not all parts of breeding phenology in seabirds are insensitive to change across

years, although we cannot make inferences if this change is adaptive or not.
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Figure 1. Panel A displays the colony locations of Common (red, COGU) and Briinnich’s guillemots (blue, BRGU)
included in the study. Panel B illustrates the relationship between mean arrival date and latitude, while panel C
shows the correlation of mean pre-laying duration and colony size. Colonies with less certain pre-laying duration
estimates are indicated as open circles. Bands in panels B and C indicate 95% confidence intervals for predicted

values.
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Figure 2. Temporal trends in arrival dates at the
colony (Panel A), pre-laying duration (Panel B) and
mean hatching date (Panel C). Dashed line in panel
A represents linear mixed effect model predictions
for the subset of data for which hatching timing
information was available (squares), while the solid
line in panel A illustrates the same model
prediction for arrival date using the entire dataset
(squares and dots). Panel D shows the relationship
between advancing arrival date and breeding
success. Bands in all panels indicate bootstrapped
95% confidence intervals for predicted values
calculated using the bootMer function with 1000
simulations (package Ime4). Red and blue symbols
represent Common (COGU) and Briinnich’s

guillemots (BRGU), respectively.
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