
 1

Preprint:1

Agile Iteration Reviews in a Project Course: A
key to Improved Feedback and Assessment

Practice

 Torgeir Dingsøyr

Department of Computer Science
Norwegian University of Science

and Technology, Trondheim

Abstract—Agile development is increasingly taught at universities worldwide. Project courses are
redesigned in order to better fit these methods, both with respect to content taught and how courses
are organised. This position paper builds on experience with reviews as a feedback practice in a
bachelor level project course. Reviews are a key element in agile development, but there has been
little discussion in the software engineering education literature on the role of such reviews in
improving feedback and assessment. Through examples of course improvement work in a course
with about 140 students in 24 teams, we show how review practices are tailored to better comply
with principles of good feedback practice which intend to empower students and help self-regulate
learning. We argue that reviews can provide formative assessment and improve the learning
outcome. Finally, we conclude with five lessons learned from three years of continuous
improvement.

Keywords—software engineering education, capstone course, agile software development, Scrum,
self-regulated learning.

1. INTRODUCTION
Agile development is increasingly taught at universities worldwide in order to provide motivation through
real-world practices, and through software development methods that focus much more on feedback than
traditional approaches [1]. Many environments have reported experience with redesigning existing courses
from traditional methods focusing on phase models for project management with agile methods focusing
on evolutionary delivery of software. For the software industry, the change from traditional to agile methods
have meant significant changes in work practices for development such as pair programming and test-
driven development but also changes in how requirements are defined and managed, how and when
architectural decisions are taken, how improvement work is organised, a much stronger emphasis on
teamwork and other approaches to managing knowledge within and between teams [2, 3].

The traditional view of software development assumes that high quality software can be built by
meticulous and extensive planning, while agile methods assume such software can be built iteratively with
rapid feedback and that what is to be built is subject to change [2]. We can view this change as a move from
a tradition focusing on knowledge as something explicit and fairly stable to a focus on knowledge as tacit
and something subject to change within a sociocultural practice. This change of perspective will then
influence how students are assessed [4]. Adopting agile methods at universities is not just a matter of
changing curriculum in courses, but requires us to rethink not only how students are assessed but also how
courses are structured [1].

1 Preprint of article accepted for publication at the Software Engineering Education for the Next Generation Workshop, Joint
track on Software Engineering Education and Training, International Conference on Software Engineering 2021.

 2

The software engineering education literature includes a growing literature on project courses making
use of agile development methods. Schneider et al. [5] review literature on capstone courses and report that
a number of agile methods such as Extreme programming, Feature-driven development, Dynamic Systems
Development Method and Scrum have been introduced at universities.

An example is the semi-capstone course at Purdue Polytechnic Institute where a course was reorganised
to provide an "authentic learning experience" [6] which was student-centred and "delivered via active
pedagogies", and "situated in a meaningful context". Iterations was used to provide student teams with
formative feedback which was combined with traditional assessment methods.

That students greatly appreciate frequent feedback was described as a lesson learned from a software
engineering group project at Imperial College [7], which shows trials to simulate industrial conditions with
feedback given to groups at weekly intervals. Groups submitted code and also held bi-weekly
demonstrations of the software product.

This experience report focuses on three years of improvement work in a bachelor programming project
course where students develop a software product as a team over 14 weeks. Students are expected to
demonstrate capabilities in programming from a previous course, but learn about teamwork and
development process. The course had about 140 students in 24 teams who all developed the same software
product. The average team size was seven members.

We present a number of changes in the course, but focus mainly on how iteration reviews were used to
improve learning in a course with scarce resources. This paper is structured as follows: We first provide
context by describing the course learning objectives and resources available, as well as changes over a
period of three years. Then, we provide background on how iteration reviews are described in the
practitioner literature on agile development, we present a framework for feedback practice with seven
principles [8], and then use these to discuss the reviews as a feedback practice. Finally, we summarise main
lessons learned and present future plans for continuous improvement.

2. A PROJECT COURSE WITH FOCUS ON TEAMWORK AND PROGRAMMING
The project course is described as requiring students to “undertake a medium-scale programming project

in a team of 5 to 9 students. The main aim is to give the students an understanding of the relations between
the product-oriented and the process-oriented issues and work tasks in a programming project. ... Students
will have to work and reflect about integration of different components to ensemble a larger software
product. ... the aim of this course is to improve students’ practical skills in teamwork as well as
programming”. The course is taken by students at a bachelor program in informatics at the start of year
two, after they have completed a course in object-oriented programming. We describe this course as semi-
capstone as students are to use knowledge from the programming course to develop a larger product as a
team. The resources for the course were one adjunct professor (180 hours), two teaching assistants (120
hours) and four student assistants (100 hours). The physical resources available was an auditorium for
lectures and computer rooms shared with other courses for programming work. Course changes have been
discussed with "reference groups" who are 4-7 volunteers who are recruited at the start of the semester and
have met and discussed the course three times during the semester.

The course has gradually been changed. An earlier version included lectures on project management,
software development method, an introduction to software architecture and database design. Project work
started in parallel with lectures over the first five weeks of the semester. Teams were free to choose a
technology and development process, but all teams were asked to develop the same product which was
described in a requirements specification document. Teams were assigned an assistant who could meet
weekly. Students were mainly evaluated on a written team report delivered at the end of the project which
described the product developed as well as work process. In addition, students wrote an individual reflection
report about the work which counted 20% of the grade. The following changes were introduced:

• Method-focus in course: From presenting several approaches to development method to requiring teams
to use Scrum, but let them tailor the method to own needs.

• Curriculum: From using several textbooks to relying mainly on easy to read sources focusing on Scrum
[9], retrospectives [10] and experience with Scrum [11].

 3

• Supervision of teams: Teaching and student assistants played the role of product owners in addition to
supporting teams with other topics such as teamwork challenges and technical challenges with the
product under development. Weekly meetings with assistants, and a weekly coordination meeting
amongst assistants. All meetings conducted physically in an auditorium during four hours (six teams in
parallel).

• Assistant training: We introduced a two-day training of assistants before the start of the course to give
assistants a more thorough background on agile software development and Scrum. Further, we held
several workshops to improve feedback to students and conducted regular retrospectives with assistants
to capture ideas for course improvements.

• Lectures: Instead of having 2-hour lectures over the first five weeks of the course, we conducted all
training on project management and Scrum during the first week (4 hours), and then focused on setting
up the development environment and Github in week 2 (4 hours).

• Product source code: This was delivered together with project report at the end of the course, we
required all teams to commit code in a common repository where the assistants could follow progress.
We also conducted analyses on number of active code contributors in each team.

• Team report: We put a larger emphasis on reflections on own experience in using the development
method, and also asked for technical documentation of the product.

• Individual report: We changed the focus from individual experience with method to selecting one of
five key topics for individual reflection: Daily meetings, Teamwork, Retrospectives, Release planning
or Estimation.

• Portfolio assessment: We let reviews count 30% of the evaluation, the team report 40% and an individual
report 30%.

3. ITERATION REVIEWS IN AGILE DEVELOPMENT
Reviews are a key practice in the Scrum development method, and also an opportunity for feedback in

a project course. The practitioner literature describes iteration reviews as a meeting to inspect a product
increment, which is an "informal meeting, not a status meeting and the presentation of the increment is
intended to elicit feedback and foster collaboration" [12]. The team is advised to focus on what has been
done, show the actual working code, keep focus on a "business-level" such as on user stories, and not spend
much time preparing for the review.

Kniberg [9] lists a number of benefits with review meetings such as i) the team gets credit for what they
have accomplished, ii) other stakeholders learn about the product, iii) the team gets feedback from
stakeholders, iv) it is a social event where teams can interact and discuss their work, v) it puts emphasis on
completing work, making sure that new features are "really done". Rising and Janoff´s experience report
[11] describes Scrum as a method which develops the relationship with the customer, builds trust, grows
knowledge and creates a culture where everyone "expects the project to succeed".

4. FEEDBACK PRACTICE FOR SELF-REGULATED LEARNING
Feedback serves a number of purposes in teaching. Price et al. [13] critically discuss feedback practice

and identify five roles of feedback: Providing correction of student misconceptions, provide a positive or
negative reinforcement of behaviour, forensic diagnosis, benchmarking and longitudinal development. The
role that feedback has will also be influenced by when the feedback is given, how it is given, and by who.
An empirical study on feedback [13] found that students in general were critical to feedback received,
which was perceived as having an “overly negative tone” or was described as “vague” or “ambiguous”.
Teachers recognised the importance of feedback but had few ideas of the effect of the feedback apart from
seeming to think that a large volume of feedback lead to increased learning.

In a widely used article on formative assessment and self-regulated learning, Nicol and Macfarlane-Dick
[8] describe seven principles for supporting and developing learner self-regulation:
1. Clarify what good performance is - goals, criteria and standards, can be clarified in written statements

with assessment criteria.

 4

2. Facilitate self-assessment - create structured opportunities for self-monitoring and the judging of
progression towards goals.

3. Deliver high quality feedback information - relate feedback to goals, standards or criteria.
4. Encourage teacher and peer dialogue - increase understanding of feedback by allowing students to

correct misunderstandings.
5. Encourage positive motivation and self-esteem - use low-stakes assessment tasks with feedback geared

to provide information about progress and achievement.
6. Provide opportunities to close the gap - provide opportunities for resubmission of assignments to close

gap between current and desired performance.
7. Use feedback to improve teaching - generate cumulative information about students' understanding and

skills.
In the following, we use these principles in discussing reviews in the project course as a feedback

practice. Note that we did not use these principles in designing changes, but in the retrospective analysis of
the changes.

5. REVIEWS AS A FEEDBACK PRACTICE
We wanted to use reviews for two purposes, as a feedback practice, and as project milestones. As a

feedback practice, reviews are done often and could both provide students with an indication of progression
towards learning goals (principle 2), be a low-stakes assessment task in that they count only 10% of the
grade (principle 5) and that they are conducted regularly would make teams able to close gaps between
current and desired performance (principle 6). As milestones, the reviews encourage students to get started
with work in the course early, and also ensure that the students actually spend time developing a product
(and not only focus on the team- and individual report), so they get experience with development method
during the course and have experience to reflect on in summative team- and individual reports.

The first review was already in week 4, but was a presentation on method choices, an initial test plan,
release plan and sprint backlog for first iteration rather than a proper product review. The following two
reviews were of the real product, where the team got five (review2) and seven (review3) minutes to show
functionality. The reason for the short time was that we wanted to let all teams demonstrate during one full
day and had limited resources for assessment. Also, we did not want to make the reviews a "big thing",
each review counted 10% on the final grade, but assistants were asked to downplay the role of review. We
recommended the following agenda:
1. Show the release plan for your product
2. Show the most important user stories implemented, show that the user stories satisfy test conditions

To emphasise that the work is conducted in teams, we asked the whole team to be present. One team

member presented, and the rest of the team could engage in answering questions after the presentation. We
showed time remaining on a laptop, while the team could use one screen to show product and another
screen to show the release plan of the product to make it easier to follow. From the teaching staff, a teaching
assistant and a student assistant followed the review. The evaluation criteria were:

• Ability to show status on product

• Ability to show how the product satisfies test conditions
We emphasised that ability to present was not part of the evaluation criteria. The grades on reviews

gradually got better as teams began working together and understood better how to prepare.
Critique after the first year was that the teams wanted more feedback from reviews than a quick oral

feedback after the review and a grade (principle 3). Also, we were unsure if the teams prepared for the
reviews as a team or if this work was assigned to one or two members and the rest of the team would just
join the meeting. This led to two improvement actions:

 5

TABLE I. DIMENSIONS IN RUBRIC USED IN REVIEWS
Dimension Low Medium High Feedback

Show	status	of	product	
	

Show	that	main	user	stories	are	implemented	
	

Only	show	completed	user	stories	
	

Show	that	user	stories	satisfy	test	conditions	
	

Show	how	the	product	handles	errors	
	

Show	a	realistic	test	scenario	
	

Correct	use	of	terms	and	methods	
	

Reasoning	and	reflection	
	

Total	impression	
	

First, we developed an analytic rubric [14] which assistants completed during reviews, finalised in a

meeting shortly after all reviews had been conducted, and gave back to teams on paper in their weekly
supervision meeting the following week.

The rubric was developed through several workshops with assistants who would use them. Dimensions
are shown in Table 1 and the form also included a "total impression". Teams were scored "low", "medium"
or "high" on each dimension and also got qualitative feedback. For example, in the first review teams got
feedback from "you spent much time on describing topics not asked for" to feedback directly connected to
learning objectives such as "when you describe user stories for your product you should avoid describing
how it should be implemented such as when you describe what will be in a database". At the last review,
teams got feedback such as "are these the most important user stories?", and "the product backlog includes
technical tasks".

The rubric was given back to the team on paper at the meeting with the student assistant the week
following the review. The assistant gave an oral explanation for the score that each team got.

Second, to make sure that the learning effect of reviews was for the whole team and not only for some
team members, we tried out a method which has been found to increase learning effect. Instead of letting
the team decide who was presenting, we asked everyone to be prepared to present and then randomly
selected one team member for oral presentation. All team members could help to answer questions
afterwards. The reference group was sceptical to this change at first, but agreed to try it out. In practice, we
started the review by lining up all team members, and then ran a wheel of fortune which selected which
member was to present. The feedback from the reference group was that students felt they learned more
from this approach. However, the survey to all students after course completion showed that the self-
evaluation of learning effect of reviews did not change – reviews were still considered to have a smaller
learning effect than writing the team report (and a larger learning effect than writing the individual report).
One could think that preparing for the review as a team would have an effect on poorer students, but when
examining grades given there is no significant difference after introducing this change. However, it is
difficult to compare between years as the reports will be different as teams are developing another product
and team composition will influence choices on method.

Despite of limited resources, the students gave feedback in questionnaires indicating that the main
learning objective was reached – only 6 of 185 respondents (over three years) “disagree” that they got a
better understanding of the relationship between development process and software product. Qualitative

 6

feedback included statements on good learning outcome and organisation of course, such as "Such a great
course to get a better understanding of the process of a software development project. Great to work with
a good group of people and having meetings with a ‘customer’ every week makes it feel more real and
exciting.”, “It is a very good structure on the course, and most work well. It is fun to develop a product and
you learn a lot from the experience.” and “Good teaching assistants, good curriculum, learned a lot through
the project”. Suggestions for improvement regarding user stories, weighting of product versus reports, team
size as well as the evaluation criteria: "More thought-through user stories, especially the ones announced
during the course. They seemed not to be well connected to what the product should offer.”, and
“Evaluation criteria needs to be better specified. ... Very little information was given about the different
deliverables.”

Further, we asked students about the perceived learning effect of deliverables. They value the team
report as the deliverable leading to most learning, while reviews have a slightly higher average than
individual reports. Most agree that there is a learning effect in all deliverables.

The portfolio assessment leads to more evaluation work, but the current set-up achieves a number of
purposes: It encourages work during the semester and early initiation of teamwork with reviews, it
encourages team collaboration with making the product and team report, and with an individual report
counting 30%, about 25% of students change their grade compared to their team, which means that you are
not fully dependent on being in a "good" team to get a reasonably good grade.

In future courses, we would particularly like to work further on clarifying evaluation criteria (principle
1) – which can be challenging in a project course where teams have different prior skills and experience
different challenges during the project work, and in introducing practices to facilitate self-assessment such
as involving teams in giving feedback to other teams during review meetings or provide feedback on draft
team or individual reports.

6. LESSONS LEARNED
This experience report summarises improvement work when redesigning a project course for second

year bachelor students, with about 140 students organised into 24 development teams, making a software
product over 14 weeks. We have described the course organisation of a course which has been perceived
as relevant and motivating by students. All course deliverables are perceived by students to have a learning
effect. The reviews are a key practice in agile software development methods, and we have sought to use
these meetings as a feedback practice, as a project milestone and as a part of formative assessment of the
teams.

Although there are many effects of reviews in the practitioner literature which was not replicated in our
course setting, as we for example did not have a real product owner and real stakeholders for the product
developed, we believe the reviews had a function in giving credit to the teams for their effort in product
development, it was further a social event and a clear milestone for the teams.

In this experience report, we used seven principles for supporting and developing learner self-regulation
in discussing use of reviews. We hope the description of the course improvement can inspire others, and
we would in particular like to emphasise the following lessons learned:
1. Introducing reviews enables formative assessment into a project course which traditionally relied on

summative assessment. Keeping review meeting short and a lean process for providing feedback
ensures a good learning outcome with scarce resources.

2. The evaluation criteria provided a starting point on conceptualising what a good performance was when
student teams conducted review meetings.

3. Using analytic rubrics after review meetings provided teams with feedback on strengths and
weaknesses, the rubric developed can be useful for other courses.

4. The assistant training was essential in giving assistants sufficient background to provide feedback, and
a broader background for providing qualitative feedback on the relevant learning objectives through the
rubrics.

 7

5. The choice to randomly select a presenter ensured that the whole team needed to learn and underlined
a key principle in agile development that the team is collectively responsible for what is produced.

Relatively frequent, short review meetings with quick feedback based on a set of criteria linked to main
learning goals have led to a quick start of teamwork and performance improvements over time. Although
students indicate they learn more from the team report, the learning effect is clear and the resources needed
for conducting the reviews are moderate. Future improvements to the course will involve clarifying learning
objectives and evaluation criteria.

AUTHOR PROFILE
Torgeir Dingsøyr is professor in software engineering – agile at the Department of Computer Science,

Norwegian University of Science and Technology. He is further adjunct chief researcher at the SimulaMet
research laboratory. His research has focused on teamwork and learning in software development, as well
as development methods for large software projects and programs. He has published in the software
engineering, information systems and project management fields.

In 2019 he was awarded the Project Management Institute “paper of the year” award for an article on
coordination of knowledge work in larger-scale agile development, with co-researchers Nils Brede Moe
and Eva Amdahl Seim. With Nils Brede Moe, he was awarded the SINTEF prize for outstanding research
in 2020.

He co-edited the book “Agile Software Development: Current Research and Future Directions” (2010),
co-edited the special issue on Agile Methods the Journal of Systems and Software (2012), the special
section on continuous value delivery in Information and Software Technology (2016) and the special
section on Large-Scale Agile Development in IEEE Software (2019). He has further been program co-chair
for the Evaluation and Assessment in Software Engineering (EASE) Conference (2019) and for the
International Conference on Agile Software Development (2015).

He has a broad teaching experience from courses at the Norwegian University of Science and
Technology where he has had one course per year from 2006, at bachelor, master and PhD level. He has
further taught a course on agile project management at the Kristiania University College in Oslo (master
level) and a course on Introduction to Large-Scale Agile Software Development at the Technical University
of Munich (master level). He is currently co-teacher of the bachelor level software engineering course at
the Norwegian University of Science and Technology which will have about 500 students in the spring of
2021.

He seeks to make teaching industry-relevant and to include ideas from the agile community in teaching
practice. His industry experience comes from applied research with over 20 companies in his time as
researcher at the Sintef research foundation. Project partners included major companies such as the energy
company Equinor, the Kongsberg Group, DNV GL and consulting companies such as Sopra Steria, Bekk
and Kantega.

He has further given keynote talks at the Software in Practice Conference, organised by the British
Computer Society (2019), the educational symposium at the International Conference on Agile Software
Development (2019) and at the International Workshop on Teamworking 21: Putting knowledge into team
design (2017). He regularly gives talks to industry and at national events, and is also giving courses aimed
at the software industry.

REFERENCES
[1] Devedzic, V., "Teaching agile software development: A case study," IEEE Transactions on

Education, vol. 54, pp. 273-278, 2010.
[2] Nerur, S., Mahapatra, R., and Mangalaraj, G., "Challenges of migrating to agile methodologies,"

Communications of the ACM, vol. 48, pp. 72 - 78, 2005.
[3] Hoda, R., Salleh, N., and Grundy, J., "The Rise and Evolution of Agile Software Development,"

IEEE Software, vol. 35, pp. 58-63, 2018.
[4] Ajjawi, R., Bearman, M., and Boud, D., "Performing standards: a critical perspective on the

contemporary use of standards in assessment," Teaching in Higher Education, pp. 1-14, 2019.

 8

[5] Schneider, J.-G., Eklund, P. W., Lee, K., Chen, F., Cain, A., and Abdelrazek, M., "Adopting
industry agile practices in large-scale capstone education," in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering: Software Engineering Education and
Training, 2020, pp. 119-129.

[6] Magana, A. J., Seah, Y. Y., and Thomas, P., "Fostering cooperative learning with Scrum in a semi-
capstone systems analysis and design course," Journal of Information Systems Education, vol. 29,
p. 4, 2019.

[7] Chatley, R. and Field, T., "Lean learning-applying lean techniques to improve software
engineering education," in 2017 IEEE/ACM 39th International Conference on Software
Engineering: Software Engineering Education and Training Track (ICSE-SEET), 2017, pp. 117-
126.

[8] Nicol, D. J. and Macfarlane‐Dick, D., "Formative assessment and self‐regulated learning: A model
and seven principles of good feedback practice," Studies in higher education, vol. 31, pp. 199-218,
2006.

[9] Kniberg, H., Scrum and XP from the Trenches, 2nd edition ed.: InfoQ, 2015.
[10] Dybå, T., Dingsøyr, T., and Moe, N. B., Process Improvement in Practice - A Handbook for IT

Companies. Boston: Kluwer, 2004.
[11] Rising, L. and Janoff, N. S., "The Scrum software development process for small teams," IEEE

Software, vol. 17, pp. 26-+, Jul-Aug 2000.
[12] Sutherland, J. and Schwaber, K., "The scrum guide: The definitive guide to scrum - the rules of

the game," 2020.
[13] Price, M., Handley, K., Millar, J., and O'donovan, B., "Feedback: all that effort, but what is the

effect?," Assessment & Evaluation in Higher Education, vol. 35, pp. 277-289, 2010.
[14] Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C., and Norman, M. K., How learning

works: Seven research-based principles for smart teaching: John Wiley & Sons, 2010.
.

