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Ecodesigning and Improving Performance of Plugin Hybrid Electric Vehicle in 
Rolling Terrain through Multi-Criteria Optimization of Powertrain

Abstract

This work presents an ecodesigning and operating performance improvement methodology in series-parallel 

Plugin hybrid electric vehicle (PHEV) in passenger car category, through optimisation of powertrain, 

considering gradeability overreaching rolling terrain. Designing involves consideration for power of prime 

movers and the geometric specification governing gear ratio, which is the teeth number. PHEV performance 

is measured in terms of various output characteristics, such as, fuel economy, emissions, vehicle weight, 

battery charge, maximum velocity and maximum acceleration etc. and such output indicators comprising both 

ecodesign and vehicle operating performance attributes, eleven in all, are considered. For optimisation, the 

design space is generated using NREL, ADVISOR simulator in accordance with Taguchi’s method. Multi-

criteria optimisation is used to converge the aforesaid output indicators into a single one using TOPSIS, 

MTOPSIS, Grey Relational Analysis and their surrogate assisted evolutionary algorithm (SAEA) based 

solutions to select the best from. Such design solutions are tested with UDDS driving cycle for performance 

analysis; reflecting superiority of SAEA based results. However, best values of output indicators are not from 

a single solution but are spread over these SAEAs. While, gradability is embedded in the model, its variation 

as supplemental factor, together with total ownership cost, are included, for extended modelling to ascertain 

the suitability amongst SAEAs. To extend the test for suitability beyond one driving cycle, also a combined 

one is formed by integrating two other, namely NEDC and 1015Prius with UDDS. The simulation experiment 

results from combined driving cycle also indicate preference in favour of MTOPSIS-SAEA model, complying 

upto 25% gradability for rolling terrain, substantially better than the reference model while also ensuring 
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savings in fuel cost by about 60% over the entire ownership period besides reduction in greenhouse gas 

emissions ranging between 18% and 21%. This solution also helps in lightweighting the vehicle by over 6%.

Keywords

Plug-in Hybrid Electric Vehicle, Fuel Economy, Component Sizing, Gradeability, Multi Criteria Decision 

Making, Surrogate Assisted Evolutionary Algorithm 

Introduction

This article deals with the powertrain component sizing, for ecodesign and performance improvement, as it 

has an effect on the Plugin Hybrid Electric Vehicle (PHEV) alongside the driving pattern and power 

management strategy (PMS)1,2 . The PHEV powertrain component sizing methods can be categorised as 

sequential, iterative, bi-level and simultaneous optimisation3. The sequential techniques are adopted in recent 

studies4,5 where after setting the Power Management Strategy (PMS), the powertrain component specifications 

are determined. Iterative techniques, however, optimises the component sizes based on the convergence 

pattern of the performance results6. In each computation cycle, the component sizes as well as the control 

laws, are selected in simultaneous optimisation methods7,8 which is a tedious approach. In bi-level method, 

nested loops optimisation approach is used to derive the feasible solutions9.The PHEV powertrain sizing 

problem is multi-objective in nature and several studies, which improved the fuel efficiency and emissions 

(component of eco-design) , can be found in published literature. So, only recent important works related to 

PHEV are discussed here in this section. Zhou, et al., 2017 proposed a Chaos-enhanced Accelerated Particle 

Swarm Optimization (CAPSO) to find the feasible solutions in powertrain sizing problem (PSP) to increase 

utilisation of electric drive, with an effective Pareto analysis for the bi-objective problem10. In another work 

Zhou, Qin and Hu, 2017 expounded the effect of power flow topology on minimisation of fuel consumption 
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of both types, fossil and electric11. A series-parallel or power-split PHEV is considered by Chi, Ouyang and 

Tang, 2017 for design space exploration, where the gear ratios and traction components are optimised using 

PSO algorithm, for different driving modes12. Similar study can be found using hybrid optimisation method 

for multimode PHEV13. Multi-objective powertrain sizing brings out a pareto set instead of a single optimal 

solution due to the problem which is multi-objective in nature14. Several methodologies have been applied to 

obtain a single optimal solution from the pareto sets. For example, Millo, et al., 2017 converts the multiple 

objectives into a single cost function and the CO2 emission got reduced by 23% and the operating costs by 

26%15.  Vehicle cost, efficiency, emission, light-weighting and vehicle life as objective is considered in 

another similar work16. Geng, et al., 2018 searched best PHEV transmission configuration which improves 

fuel economy (FE) around 4% to 10% for three driving cycles while minimising the consumption of fossil 

fuel and total energy 17. Non shorted genetic genetic algorithm are used to find the pareto heads in He et 

al.,2020 and the desirability function is used for the selection of best solution from the pareto heads18. 

Application of  neumerical method for powertrain component sizing for connected car can be found in the 

work of Zulkefli and Sun,201919. The powertrain component and crash box optimization for minimum vehicle 

weight and maximum crash force absorption is presented in Anselma et al.,202020.

Reducing the engine size and increasing the motor size is a common way to reduce fossil fuel consumption 21. 

Also, improvement in fuel economy (FE) can be achieved by increasing the motor efficiency and reducing the 

overall vehicle weight22. Along with weight reduction, vehicle operating performance parameters are 

considered here. The term ‘Performance’ mentioned here precisely referred to vehicle operating performance 

like vehicle maximum speed, maximum acceleration, speed error, acceleration error and the capability in 

covering the target distance as well as performance related to fuel economy and emission attributes under 

ecodesign category. The use of powertrain cost in PSP can be found in Pourabdollah, et al., 2018 and Angerer 
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et al.,201823,24. The studies show a reduction in vehicle weight along with improvement in FE. The component 

size has effect on the total cost of ownership (TCO), which is an indicator of long-term PHEV benefits, and 

this can be found in the study of Luján et al., 201625.  Song and his fellow researchers applied Pontryagin 

minimum principle to optimise the battery pack in a PHEV for improving FE26. Dynamic Programming based 

optimisation of the hybrid storage system comprising of battery and supercapacitor is recounted by Song et al, 

201527. The optimisation of transmission ratio in PHV for reducing fuel consumption can be found in the 

study of Guo et al.,201828. Powertrain component sizing for reducing fuel consumption considering a power 

management can be found in the study of Madanipour29. Along with all aforementioned factors driving cycle 

or driving pattern or driving condition plays a crucial role in component sizing. Speeding characteristics 

define the power demand during driving30.This is the main reason of FE variability in different driving cycles 

as a distinct driving cycle have unique speeding charactristics31. This FE variability can be reduced by 

combining several driving cycles in a single one32. The driving condition also change the power demand and 

this can alter the FE. For example, the same driving cycle with various road gradient may produce variation in 

powertrain component size. Therefore, to develop a potent design, multiple driving cycles with variation in 

road gradient value need to be consider for checking the suitability of the powertrain and for obtaining a 

common eco-design of PHEV33. 

Contributions

 This article presents a design methodology that uniquely combined two aspects; one associated with 

ecodesign and other related to vehicle operating performance, which otherwise to develop a vehicle 

powertrain model. These two stated aspects, however, were addressed by researcher but in isolation, 

hence improvement in ecodesign was aimed not factoring in the vehicle operating factors and vice versa. 
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Hence there has been a need for a design methodology that will consider the trade-offs between these 

two aspects making the solutions more purpose oriented. 

 Furthermore, the vehicle weight a feature not practically considered in earlier model has been 

incorporated here since this influences the related performance of the vehicle.

 The proposed design especially considers its performance in rolling terrain, where gradeability is upto 

25% that addressing a consideration which is truly rare.

 With respect to methodology, the application of MCDM techniques and also hybridising those with 

Suurrogate Assisted Evolutionary Algorithm for the purpose of optimisation, which is a very new 

approach.

Plugin Hybrid Electric Vehicle Model

The PHEV powertrain model is portrayed in Figure 1. In this section, the significant components for the 

PHEV powertrain are illustrated using mathematical models.
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Figure 1. Architecture of the Series-parallel PHEV using MATLAB schematic

Engine Model

The ICE model is composed of maximum power, fuel consumption, Carbon-Monoxide (CO) emission, 

hydrocarbon (HC) emission and Nitrogen Oxide (NOX) emission models. The engine power (KW) is 

expressed using Eq. (1). 

Where τen is engine torque and ωen is engine speed. For component sizing, the scale factors are used in this 

vehicle model. Eq.(2) depicts the engine maximum power as a function of engine torque, speed, and scale 

factor for the maximum power of the engine.

Where ∈en,v is the engine speed scale factor, and ∈en,τ is the engine torque scale factor. The mass of the engine 

meng is defined using Eq.(4). The engine inertia Jen (Eq.5) is presented as the function of engine power scale 

factor.

The fuel consumption fen (gram/KW) is portrayed in Eq.(6-7) at a particular moment t. 

 

The emissions (CO, HC, and NOX) are depicted using Eq.(8)-(10). 
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Electric Motor Model

The mathematical expressions of the electric motor is exhibited using Eq.(11) – (16).

Where τmot is motor torque and ωmot is motor speed and Pmot is motor power.

Where Pmt,loss is the power loss, µmt is the efficiency of the motor. If Pmt, in is input power and Pmt,o is output 

power, and Pmt, max is the maximum power of the motor then,

The maximum motor power is related to other motor parameters with the scale factor.

Where the motor power scale mt,p is the product of motor angular velocity scale mt,v and motor torque scale mt,τ.

        

The mass of the motor is also related to maximum motor power with a mass scale factor. The relation could 

be expressed as,

Generator Model

The mathematical model for generator is expressed using Eq.(17) and Eq.(18)
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Where Pgn is generator power, τgn and ωgn are torque and angular velocity of the generator. Pgn,tot is the total 

power for the generator, and µgen is the engine efficiency. The mass of the vehicle and power is related to scale 

factors (Eq. 19 - 20).

Battery Model

The battery is modelled using Eq.(21)-(23). The considered model is based on a lithium-ion battery (charge 

capacity: 6Ah). The mass of the battery module mbat is the function of battery module number Nbat.

The state of charge (SOC) is defined as the ratio of the remaining charge and maximum charge Cmax. The 

model uses the charge used (Cused) with current (I), and temperature (T).

Transmission Model

Eq. (24)-(26) presents the HEV transmission or power-split model. The angular velocity and torque 

distributions are portrayed in Eq. (24) and Eq. (25) respectively. The angular velocity output is ωout, and output 

torque is τout. 
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Where k is the ratio of the ring gear teeth number (Nr) and sun gear teeth number (Ns), 

Vehicle Dynamics Model

Based on these components of the powertrain, the vehicle dynamics is presented using Eq.(27)34.

τw is the driving torque on the wheel, is the brake torque, η0 is the final drive efficiency, i0 is the final drive 

ratio, ηg is the Planetary Gear Set (PGS) efficiency and effecting gear ratio. The acceleration is expressed as, 

 

mveh is the mass of vehicle, g is the gravitational acceleration, CD is the aerodynamic drag coefficient, θ is the 

road inclination angle and fr is the rolling coefficient. The battery power is expressed as,

The overall efficiency of the powertrain is defined as,

The percentage grade is defined as,

More details on the powertrain modeling could be obtained from ref35. In this paper the Toyota Prius series-

parallel hybrid architecture is considered as base model, which has the engine power is 43kW, motor power is 
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31kW, generator power 15 kW, 40 Li-ion battery modules, 78 ring teeth, 30 sun teeth, final drive ratio of 3.93 

and vehicle weight of 1320 Kg. The battery used is of 21 Ah battery. 

Vehicle Model Validation

For the purpose of validation testing, the vehicle test data of Toyota PRIUS PHEV is retrieved from National 

Renewable Energy Limited (NREL), which follows SAE J1634 fuel efficiency testing standard36, compared 

with the vehicle model designed in ADVISOR. The simulation result, based on the present modelling scheme, 

shows that the fossil fuel mileage value is 38.7 mpg against the laboratory test value of 39.8 mpg and per cent 

battery capacity used per mile is 2.31 against the laboratory test value of 2.43, which are very close. 

Therefore, the numerical modelling scheme is regarded as validated. 

Methodology
 The proposed multi-criteria PHEV powertrain optimisation is performed using three different Multi criteria 

decision model (MCDM) methods, namely Grey Relational Analysis (GRA), Technique for Order Preference 

by Similarity (TOPSIS), Modified Technique for Order Preference by Similarity (MTOPSIS) and Assisted 

Evolutionary Algorithm (SAEA) of these three MCDM models. In these MCDM based methods, eleven 

responses, namely FE, emission (HC, CO and NOX), state of battery charge, maximum velocity, maximum 

acceleration, velocity tracking error, acceleration tracking error, failed to travel distance in driving cycle, and 

vehicle weight, are considered as the design selection criteria, and further total cost of ownership (TCO) and 

gradeability has been considered as the supplementary factors in the process of best design solution selection. 

The inclusion of ecodesign parameters and vehicle performance parameters as design criteria formulates the 

design problem realistic and similar work can be found in the previous work47. The initial data are generated 

using the Design of Experiment (DOE) based on Taguchi’s orthogonal array design (OAD). The experiments 
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are planned on L27 table. Figure 2 displays the methodological flowchart for obtaining the best PHEV design. 

The PHEV powertrain design and PMS are mutually related. This paper has adopted the fuzzy PMS strategies 

developed in reference37. The PMS flowchart is displayed in Figure 3. 

Figure 2. Flow diagram of the MCDM methodology for the PHEV powertrain design
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Figure 3. Power management strategy flowchart

GRA Based Technique

Taguchi’s OAD is applicable for the single-criteria problem. For MCDM problems, the GRA is suitable38, 

which has the ability to exploit Taguchi’s OAD and estimates the process responses using single grey 

relational grade (GRG). Steps of GRA are as follows:

Step1: The data are normalised and restricted in the range {0, 1}. When the performance objective is to be 

minimised, the non-beneficial (Eq. 32) rule is applied; otherwise, the beneficial (Eq. 33) rule is applied,

 Where, i∈[1, m] and x∈[1, n], m is the number of experimental runs and n is the number of responses. yi
0(x)max 

and yi
0(x)min are the largest and smallest values of yi

0(x) is the original data. 
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Step2: Compute grey relational coefficient (GRC) using Eq. (34),

Where δi
0 (x)=yi

0 (x)-yi
*(x), the deviation coefficient.

Step3: Calculate GRG using Eq. (35),

GRG depicts the overall quality index, which determines the ranking of experimental runs and obtain a near-

optimal set of variables.

TOPSIS Based Technique

The TOPSIS is another MCDM method introduced by reference39 TOPSIS is conceptualised on the select 

alternatives, which maintain the minimum and maximum Euclidean distances from the Positive Ideal Solution 

(PIS) and Negative Ideal Solution (NIS) respectively. TOPSIS assigns weights to the criteria, normalise the 

criteria, and compute the Euclidean distance among the alternatives and ideal solutions. TOPSIS steps are as 

follows:

Step1: A decision matrix D = [xij]m×n is constructed with m alternatives and n criteria, where each element xij is 

the performance rating for the alternatives against the criteria.

Step2: The normalisation is done on the decision matrix D using,

Step3: Calculation of the weighted normalised decision matrix is done using,

Where Wj is the weight of jth criteria such that ∑Wj=1∀ j.
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Step4: PIS and NIS are determined using,

where K indicates the beneficial (maximising) criteria and K’ indicates the non-beneficial (minimising) 

criteria.

Step5: The Euclidean distances of each alternative from the PIS and NIS are calculated using Eq. (40) and Eq. 

(41) respectively.

Step6: Relative closeness calculation is done using,

Where RCi is the closeness coefficient of ith alternative Ai with respect to the PIS A+, RCi < 1; the higher is the 

RCi values, better is the rank for the alternatives.

 MTOPSIS Based Technique

MTOPSIS is a modified version of the TOPSIS technique based on the synthetic evaluation method40.The 

MTOPSIS method follows similar steps until step 4. Further steps are defined as follows:

Step5: The D+ and D- distances are computed, D+ is considered as the x-axis and D- is considered as the Y-

axis. Therefore, the alternatives could be mapped using (Di
+, Di

-) coordinates. A reference point is decided as 
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the optimal ideal, which is A (min(Di
+), max(Di

-)). Thereafter the distances between each alternative and A is 

calculated using,

         

Step 6. The ranking is done using the preference order. Calculation of Ri is done using Eq. (44). The smaller is 

the Ri value, the better is the ranking score.

 

On the GRG, TOPSIS, and MTOPSIS performance scores the Taguchi’s optimisation can be applied by 

deriving the Analysis of Variance (ANOVA) to find out the sensitivity of the variables to the design process 

at 95% confidence level. The response table and main effect plot are obtained. The delta statistic is computed, 

which shows the difference between the largest and the smallest average for each variable. It finally indicates 

the most sensitive variables to the design process.

 Surrogate Modeling for Design Optimisation

Surrogate assisted model-based engineering design optimisation is a well-known method for finding optimal 

design solutions from lesser number of experimental or simulation data. In surrogate model, regression, 

Gaussian process, radial basis function, support vector machines and physics based models are used for 

product design41.Some examples of surrogate based models in different sector of engineering design 

optimisation can be found in references42,43,44,45. In the design of surrogates the use of MCDM models are rare. 

Here, GRG score (), TOPSIS score (RCi) and MTOPSIS score (MRCi) are considered as surrogate model in 

Surrogate Assisted Evolutionary Algorithm (SAEA) in powertrain component optimisation. 

Genetic Algorithm
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Genetic algorithm (GA) is an evolutionary optimisation method for finding the feasible solution. In different 

application the use of GA can be found for published literatures46,47,48. The application of GA in HEV or 

electric vehicle can be found in different literatures 29,49. The steps of GA is presented below as bullet points.

Step 1: initialise the population size, cross over probability, mutation probability

Step 2: Random generation of the population.

Step 3: Calculate fitness for each solution

Step 4: Select the best solutions

Step 5: crossover and mutation

Step 6: Repeat step 2 to 5 until the stopping criteria reached.

Computational Results 
The empirical data for the powertrain are generated using the ADVISOR simulator35 and MATLAB. The 

design parameters are presented in table 1 and the generated data according to Taguchi’s OAD are presented 

in table 250. The prime objectives are to reduce the fuel cost for an ownership period and gradeability. The 

design optimisation and selection steps are discussed in this subsection.

Table 1. Design variables and the levels

Variable 
Name

Pmaxeng Nbat Pmaxmot Pmaxgen Nr Ns i0

Level 1 50 40 50 25 7
8

3
0

3.9
3

Level 2 40 30 40 20 6
4

2
4

3.0
0

Level 3 30 20 30 15 5
0

1
8

2.5
0

Table 2. L27 table for experimental data

No Pmaxeng Nbat Pmaxmot Pmaxgen Nr Ns i0 mveh FE Ea HC CO NOX EL Ev delSOC Vmax amax
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.
1 50 40 50 25 7

8
3
0

3.9
3

121
7

20.3 5.419 1.36
2

2.036 0.87
8

0.0 0.405
4

0.238
7

162.
1

4.7

2 50 40 50 25 6
4

2
4

3.0
0

121
7

28.3 7.209 1.51
0

2.227 0.90
0

4.4 0.473
3

0.242
2

203.
9

4.6

3 50 40 50 25 5
0

1
8

2.5
0

121
7

37.1 11.34
3

2.19
2

3.178 1.21
2

7.0 0.572
0

0.248
6

203.
6

3.8

4 50 30 40 20 7
8

3
0

3.9
3

117
6

25.6 3.657 1.24
4

1.866 0.79
7

2.2 0.317
2

0.236
9

162.
1

4.7

5 50 30 40 20 6
4

2
4

3.0
0

117
6

32.0 9.224 1.80
1

2.631 1.03
6

5.7 0.555
9

0.247
5

196.
1

3.8

6 50 30 40 20 5
0

1
8

2.5
0

117
6

44.0 12.91
9

2.72
2

3.913 1.45
7

7.9 0.644
3

0.248
9

196.
7

3.1

7 50 20 30 15 7
8

3
0

3.9
3

113
4

26.9 5.459 1.40
5

2.072 0.85
4

3.4 0.547
1

0.247
4

162.
8

3.1

8 50 20 30 15 6
4

2
4

3.0
0

113
4

33.6 10.14
4

2.01
3

2.898 1.10
7

6.2 0.704
8

0.248
3

194.
9

2.6

9 50 20 30 15 5
0

1
8

2.5
0

113
4

77.7 16.52
7

5.87
1

8.176 2.72
9

10.
1

0.774
3

0.249
9

193.
9

2.3

10 40 40 40 15 7
8

2
4

2.5
0

114
8

55.7 15.80
0

3.55
2

5.142 1.86
2

9.7 0.647
9

0.251
1

218.
8

3.2

11 40 40 40 15 6
4

1
8

3.9
3

114
8

24.9 8.673 1.30
8

1.958 0.79
5

5.3 0.490
1

0.245
9

161.
8

4.7

12 40 40 40 15 5
0

3
0

3.0
0

114
8

35.4 10.13
8

1.59
1

2.453 1.09
4

6.2 0.544
9

0.248
2

213.
4

3.8

13 40 30 30 25 7
8

2
4

2.5
0

114
0

75.2 16.89
5

5.05
6

7.207 2.54
2

10.
4

0.734
1

0.250
1

206.
9

2.5

14 40 30 30 25 6
4

1
8

3.9
3

114
0

29.1 11.00
4

1.65
4

2.443 0.95
2

6.7 0.567
6

0.248
7

162.
4

4.0

15 40 30 30 25 5
0

3
0

3.0
0

114
0

25.1 4.491 1.05
8

1.651 0.76
3

2.8 0.395
2

0.238
2

162.
6

3.9

16 40 20 50 20 7
8

2
4

2.5
0

115
5

103.
5

17.71
1

7.34
7

10.35 3.54
4

10.
9

0.754
6

0.250
1

194.
9

3.5

17 40 20 50 20 6
4

1
8

3.9
3

115
5

27.7 10.68
2

1.61
8

2.365 0.91
1

6.6 0.582
9

0.249
4

162.
6

4.7

18 40 20 50 20 5
0

3
0

3.0
0

115
5

25.1 4.976 1.09
9

1.704 0.77
2

3.1 0.454
3

0.241
9

162.
9

4.7

19 30 40 30 20 7
8

1
8

3.0
0

111
2

51.1 16.84
6

3.52
0

5.181 1.79
2

10.
3

0.673
5

0.250
1

209.
6

3.0

20 30 40 30 20 6
4

3
0

2.5
0

111
2

58.0 16.02
2

2.90
0

4.419 1.84
2

9.8 0.704
9

0.250
0

203.
3

2.5

21 30 40 30 20 5
0

2
4

3.9
3

111
2

26.5 10.18
4

1.16
0

1.819 0.81
8

6.2 0.542
7

0.247
5

162.
8

3.9

22 30 30 50 15 7
8

1
8

3.0
0

112
8

56.1 17.14
8

3.90
8

5.603 1.91
7

10.
5

0.673
5

0.251
2

194.
7

4.7

23 30 30 50 15 6
4

3
0

2.5
0

112
8

64.2 16.46
6

3.30
7

5.028 2.06
2

10.
1

0.677
9

0.249
5

194.
0

3.9

24 30 30 50 15 5
0

2
4

3.9
3

112
8

24.7 9.656 1.10
2

1.722 0.76
8

5.9 0.536
2

0.248
1

162.
8

4.7

25 30 20 40 25 7
8

1
8

3.0
0

111
9

101.
6

18.32
2

7.68
7

10.74
9

3.51
5

11.
2

0.755
3

0.250
6

178.
9

3.6

26 30 20 40 25 6
4

3
0

2.5
0

111
9

99.1 17.64
7

5.40
1

8.101 3.22
8

10.
8

0.760
4

0.250
9

180.
9

3.0

27 30 20 40 25 5
0

2
4

3.9
3

111
9

28.8 11.52
6

1.36
4

2.104 0.91
0

7.1 0.632
6

0.248
1

163.
2

4.7
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GRA Analysis

The GRA calculations are presented in Table 3. The normalised matrix and the deviation sequences with 

GRG scores are portrayed in Table 3. The GRA technique converts the MCDM problem into a single 

objective GRG based problem. Thereafter Taguchi’s optimisation is applied on the GRG scores, and the main 

effect plot for the parameters are portrayed in Figure 4. The near-optimal combination for the parameters 

would be Pmaxeng3-Nbat3-Pmaxmot1-Pmaxgen2-Nr1-Ns3-i03.The analysis of variance (ANOVA) table is depicted in 

Table 4. 

504030

0.68
0.66
0.64
0.62
0.60
0.58
0.56
0.54
0.52
0.50

403020 504030 252015 786450 302418 3.9
3

3.00
2.50

Pmaxeng

M
ea

n 
o f

 G
RG

Nbat Pmaxmot Pmaxgen Nr Ns i0

Main Effects Plot for GRG

Figure 4. Main effect plot for GRG means

Table 3. Normalised values of responses and deviation sequences

Normalised Responses Deviation Sequences
mv FE Ea HC CO NO

X
EL Ev delSOC Vmax amax mv FE Ea HC CO NO

X
EL Ev delSOC Vmax amax GR

G
0.0
0

1.0
0

0.8
8

0.9
5

0.9
6

0.96 1.0
0

0.8
1

0.87 0.0
1

0.0
0

1.0
0

0.0
0

0.1
2

0.0
5

0.0
4

0.04 0.0
0

0.1
9

0.13 0.9
9

1.0
0

0.74

0.0
0

0.9
0

0.7
6

0.9
3

0.9
4

0.95 0.6
1

0.6
6

0.63 0.7
4

0.0
4

1.0
0

0.1
0

0.2
4

0.0
7

0.0
6

0.05 0.3
9

0.3
4

0.37 0.2
6

0.9
6

0.66

0.0
0

0.8
0

0.4
8

0.8
3

0.8
3

0.84 0.3
8

0.4
4

0.18 0.7
3

0.3
8

1.0
0

0.2
0

0.5
2

0.1
7

0.1
7

0.16 0.6
3

0.5
6

0.82 0.2
7

0.6
3

0.56

0.3
9

0.9
4

1.0
0

0.9
7

0.9
8

0.99 0.8
0

1.0
0

1.00 0.0
1

0.0
0

0.6
1

0.0
6

0.0
0

0.0
3

0.0
2

0.01 0.2
0

0.0
0

0.00 0.9
9

1.0
0

0.78

0.3
9

0.8
6

0.6
2

0.8
9

0.8
9

0.90 0.4
9

0.4
8

0.26 0.6
0

0.3
8

0.6
1

0.1
4

0.3
8

0.1
1

0.1
1

0.10 0.5
1

0.5
2

0.74 0.4
0

0.6
3

0.61

0.3
9

0.7
2

0.3
7

0.7
5

0.7
5

0.75 0.2
9

0.2
8

0.16 0.6
1

0.6
7

0.6
1

0.2
8

0.6
3

0.2
5

0.2
5

0.25 0.7
1

0.7
2

0.84 0.3
9

0.3
3

0.54

0.7
9

0.9
2

0.8
8

0.9
5

0.9
5

0.97 0.7
0

0.5
0

0.27 0.0
2

0.6
7

0.2
1

0.0
8

0.1
2

0.0
5

0.0
5

0.03 0.3
0

0.5
0

0.73 0.9
8

0.3
3

0.69

0.7
9

0.8
4

0.5
6

0.8
6

0.8
6

0.88 0.4
5

0.1
5

0.20 0.5
8

0.8
8

0.2
1

0.1
6

0.4
4

0.1
4

0.1
4

0.12 0.5
5

0.8
5

0.80 0.4
2

0.1
3

0.63

0.7
9

0.3
1

0.1
2

0.2
7

0.2
8

0.29 0.1
0

0.0
0

0.09 0.5
6

1.0
0

0.2
1

0.6
9

0.8
8

0.7
3

0.7
2

0.71 0.9
0

1.0
0

0.91 0.4
4

0.0
0

0.48



20

0.6
6

0.5
7

0.1
7

0.6
2

0.6
2

0.60 0.1
3

0.2
8

0.01 1.0
0

0.6
3

0.3
4

0.4
3

0.8
3

0.3
8

0.3
8

0.40 0.8
7

0.7
2

0.99 0.0
0

0.3
8

0.54

0.6
6

0.9
4

0.6
6

0.9
6

0.9
7

0.99 0.5
3

0.6
2

0.37 0.0
0

0.0
0

0.3
4

0.0
6

0.3
4

0.0
4

0.0
3

0.01 0.4
7

0.3
8

0.63 1.0
0

1.0
0

0.65

0.6
6

0.8
2

0.5
6

0.9
2

0.9
1

0.88 0.4
5

0.5
0

0.21 0.9
1

0.3
8

0.3
4

0.1
8

0.4
4

0.0
8

0.0
9

0.12 0.5
5

0.5
0

0.79 0.0
9

0.6
3

0.64

0.7
3

0.3
4

0.1
0

0.4
0

0.3
9

0.36 0.0
7

0.0
9

0.08 0.7
9

0.9
2

0.2
7

0.6
6

0.9
0

0.6
0

0.6
1

0.64 0.9
3

0.9
1

0.92 0.2
1

0.0
8

0.49

0.7
3

0.8
9

0.5
0

0.9
1

0.9
1

0.93 0.4
0

0.4
5

0.17 0.0
1

0.2
9

0.2
7

0.1
1

0.5
0

0.0
9

0.0
9

0.07 0.6
0

0.5
5

0.83 0.9
9

0.7
1

0.60

0.7
3

0.9
4

0.9
4

1.0
0

1.0
0

1.00 0.7
5

0.8
3

0.91 0.0
1

0.3
3

0.2
7

0.0
6

0.0
6

0.0
0

0.0
0

0.00 0.2
5

0.1
7

0.09 0.9
9

0.6
7

0.77

0.5
9

0.0
0

0.0
4

0.0
5

0.0
4

0.00 0.0
3

0.0
4

0.08 0.5
8

0.5
0

0.4
1

1.0
0

0.9
6

0.9
5

0.9
6

1.00 0.9
7

0.9
6

0.92 0.4
2

0.5
0

0.39

0.5
9

0.9
1

0.5
2

0.9
2

0.9
2

0.95 0.4
1

0.4
2

0.13 0.0
1

0.0
0

0.4
1

0.0
9

0.4
8

0.0
8

0.0
8

0.05 0.5
9

0.5
8

0.87 0.9
9

1.0
0

0.59

0.5
9

0.9
4

0.9
1

0.9
9

0.9
9

1.00 0.7
2

0.7
0

0.65 0.0
2

0.0
0

0.4
1

0.0
6

0.0
9

0.0
1

0.0
1

0.00 0.2
8

0.3
0

0.35 0.9
8

1.0
0

0.71

1.0
0

0.6
3

0.1
0

0.6
3

0.6
1

0.63 0.0
8

0.2
2

0.08 0.8
4

0.7
1

0.0
0

0.3
7

0.9
0

0.3
7

0.3
9

0.37 0.9
2

0.7
8

0.92 0.1
6

0.2
9

0.56

1.0
0

0.5
5

0.1
6

0.7
2

0.7
0

0.61 0.1
3

0.1
5

0.08 0.7
3

0.9
2

0.0
0

0.4
5

0.8
4

0.2
8

0.3
0

0.39 0.8
8

0.8
5

0.92 0.2
7

0.0
8

0.57

1.0
0

0.9
3

0.5
5

0.9
8

0.9
8

0.98 0.4
5

0.5
1

0.26 0.0
2

0.3
3

0.0
0

0.0
7

0.4
5

0.0
2

0.0
2

0.02 0.5
5

0.4
9

0.74 0.9
8

0.6
7

0.68

0.8
5

0.5
7

0.0
8

0.5
7

0.5
7

0.59 0.0
6

0.2
2

0.00 0.5
8

0.0
0

0.1
5

0.4
3

0.9
2

0.4
3

0.4
3

0.41 0.9
4

0.7
8

1.00 0.4
2

1.0
0

0.47

0.8
5

0.4
7

0.1
3

0.6
6

0.6
3

0.53 0.1
0

0.2
1

0.12 0.5
6

0.3
3

0.1
5

0.5
3

0.8
7

0.3
4

0.3
7

0.47 0.9
0

0.7
9

0.88 0.4
4

0.6
7

0.49

0.8
5

0.9
5

0.5
9

0.9
9

0.9
9

1.00 0.4
7

0.5
2

0.22 0.0
2

0.0
0

0.1
5

0.0
5

0.4
1

0.0
1

0.0
1

0.00 0.5
3

0.4
8

0.78 0.9
8

1.0
0

0.66

0.9
3

0.0
2

0.0
0

0.0
0

0.0
0

0.01 0.0
0

0.0
4

0.04 0.3
0

0.4
6

0.0
7

0.9
8

1.0
0

1.0
0

1.0
0

0.99 1.0
0

0.9
6

0.96 0.7
0

0.5
4

0.41

0.9
3

0.0
5

0.0
5

0.3
4

0.2
9

0.11 0.0
4

0.0
3

0.02 0.3
4

0.7
1

0.0
7

0.9
5

0.9
5

0.6
6

0.7
1

0.89 0.9
6

0.9
7

0.98 0.6
6

0.2
9

0.44

0.9
3

0.9
0

0.4
6

0.9
5

0.9
5

0.95 0.3
7

0.3
1

0.22 0.0
2

0.0
0

0.0
7

0.1
0

0.5
4

0.0
5

0.0
5

0.05 0.6
3

0.6
9

0.78 0.9
8

1.0
0

0.62

Table 4. ANOVA table for GRG

Source DF Adj. SS Adj. MS F p % Contribution
Pmaxeng 1 0.03389 0.03389 15.02 0.001 11.78%
Nbat 1 0.02142 0.02142 9.49 0.006 7.44%

Pmaxmot 1 0.00228 0.00228 1.01 0.328 0.79%
Pmaxgen 1 0.00011 0.00011 0.05 0.83 0. 04%

Nr 1 0.01927 0.01927 8.54 0.009 6.7%
Ns 1 0.05259 0.05259 23.31 0 18.28%
i0 1 0.11529 0.11529 51.1 0 40.07%

Error 19 0.04287 0.00226
Total 26 0.28773

TOPSIS Analysis
The TOPSIS results are displayed in Table 5-7. The performance scores for the TOPSIS method are depicted 
in the last column of Table 7. 

Table 5. Weighted normalised matrix using TOPSIS

mv FE Ea HC CO NOX EL Ev delSOC Vmax amax

0.01854
4

0.00679
1

0.00753
8

0.00708
4

0.00736
2

0.00876
5

0 0.01164
2

0.01688
1

0.01531
1

0.02136
0

0.01854
4

0.00946
7

0.01002
8

0.00785
4

0.00805
3

0.00898
5

0.01001
9

0.01359
2

0.01712
8

0.01925
9

0.02090
6
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0.01854
4

0.01241
1

0.01577
7

0.01140
2

0.01149
2

0.01209
9

0.01593
9

0.01642
4

0.01758
1

0.01923
1

0.01727
0

0.01791
9

0.00856
4

0.00508
6

0.00647
1

0.00674
8

0.00795
7

0.00500
9

0.00910
9

0.01675
4

0.01531
1

0.02136
0

0.01791
9

0.01070
4

0.01283
0

0.00936
8

0.00951
4

0.01034
2

0.01297
9

0.01596
3

0.01750
3

0.01852
2

0.01727
0

0.01791
9

0.01471
9

0.01796
9

0.01415
8

0.01415
0

0.01454
5

0.01798
8

0.01850
1

0.01760
2

0.01857
9

0.01408
9

0.01727
9

0.00899
8

0.00759
3

0.00730
8

0.00749
2

0.00852
6

0.00774
2

0.01571
1

0.01749
6

0.01537
7

0.01408
9

0.01727
9

0.01124 0.01411
0

0.01047
1

0.01047
9

0.01105
1

0.01411
7

0.02024
2

0.01756
0

0.01840
9

0.01181
6

0.01727
9

0.02599
2

0.02298
9

0.03053
8

0.02956
5

0.02724
4

0.02299
7

0.02223
5

0.01767
3

0.01831
5

0.01045
3

0.01749
3

0.01863
2

0.02197
7

0.01847
6

0.01859
4

0.01858
8

0.02208
7

0.01860
6

0.01775
8

0.02066
6

0.01454
3

0.01749
3

0.00832
9

0.01206
4

0.00680
3

0.00708
0

0.00793
7

0.01206
8

0.01407
5

0.01739
0

0.01528
3

0.02136
0

0.01749
3

0.01184
2

0.01410
2

0.00827
6

0.00887
0

0.01092
1

0.01411
7

0.01564
8

0.01755
3

0.02015
6

0.01727
0

0.01737
1

0.02515
6

0.02350
0

0.02629
9

0.02606
1

0.02537
7

0.02368
0

0.02108
1

0.01768
7

0.01954
2

0.01136
2

0.01737
1

0.00973
4

0.01530
6

0.00860
3

0.00883
4

0.00950
4

0.01525
6

0.01629
8

0.01758
8

0.01533
9

0.01817
9

0.01737
1

0.00839
6

0.00624
6

0.00550
3

0.00597
0

0.00761
7

0.00637
6

0.01134
8

0.01684
6

0.01535
8

0.01772
4

0.01759
9

0.03462
2

0.02463
6

0.03821
5

0.03742
6

0.03538
0

0.02481
9

0.02166
8

0.01768
7

0.01840
9

0.01590
7

0.01759
9

0.00926
6

0.01485
8

0.00841
6

0.00855
2

0.00909
5

0.01502
8

0.01673
9

0.01763
8

0.01535
8

0.02136
0

0.01759
9

0.00839
6

0.00692
1

0.00571
6

0.00616
2

0.00770
7

0.00705
9

0.01304
7

0.01710
7

0.01538
7

0.02136
0

0.01694
4

0.01709
4

0.02343
3

0.01830
9

0.01873
5

0.01789
0

0.02345
3

0.01934
0

0.01768
7

0.01979
8

0.01363
4

0.01694
4

0.01940
2

0.02228
7

0.01508
4

0.01597
9

0.01838
9

0.02231
4

0.02024
2

0.01768
0

0.01920
2

0.01136
2

0.01694
4

0.00886
5

0.01416
6

0.00603
4

0.00657
8

0.00816
6

0.01411
7

0.01558
5

0.01750
3

0.01537
7

0.01772
4

0.01718
8

0.01876
6

0.02385
3

0.02032
7

0.02026
1

0.01913
8

0.02390
8

0.01934
0

0.01776
5

0.01839
0

0.02136
0

0.01718
8

0.02147
6

0.02290
4

0.01720
1

0.01818
1

0.02058
5

0.02299
7

0.01946
6

0.01764
5

0.01832
4

0.01772
4

0.01718
8

0.00826
3

0.01343
1

0.00573
2

0.00622
7

0.00766
7

0.01343
4

0.01539
6

0.01754
6

0.01537
7

0.02136
0

0.01705
1

0.03398
7

0.02548
5

0.03998
4

0.03886
9

0.03509
0

0.02550
2

0.02168
9

0.01772
2

0.01689
8

0.01636
1

0.01705
1

0.03315
0

0.02454
6

0.02809
3

0.02929
4

0.03222
5

0.02459
1

0.02183
6

0.01774
4

0.01708
7

0.01363
4

0.01705
1

0.00963
4

0.01603
2

0.00709
5

0.00760
8

0.00908
5

0.01616
6

0.01816
5

0.01754
6

0.01541
5

0.02136
0

Table 6. Ideal best and ideal worst solution calculation

V 0.01694 0.00679 0.00508 0.00550 0.00597 0.00761 0 0.00910 0.016754 0.020666 0.010453
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+ 4 1 6 3 7 9
V- 0.01854

4
0.03462
2

0.02548
5

0.03998
4

0.03886
9

0.03538 0.02550
2

0.02223
5

0.017765 0.015283 0.02136

The Taguchi’s analysis is performed on the performance scores RCi. The main effect plot for TOPSIS 

performance scores is portrayed in Figure 5. The near-optimal combination for the decision variables would 

be Pmaxeng3-Nbat3-Pmaxmot3-Pmaxgen2-Nr1-Ns3-i03. The ANOVA analysis is depicted in Table 8. 
Table 7. Score matrix for TOPSIS

Di
+ Di

- RCi

0.01297725 0.068142579 0.840024
0.016665385 0.062299201 0.788951
0.02430217 0.053418879 0.687315
0.013360185 0.067791932 0.835369
0.019447618 0.058154792 0.749394
0.029149152 0.047950608 0.621929
0.012764888 0.064518048 0.834829
0.022112949 0.056401151 0.718357
0.054456205 0.021418379 0.282287
0.038335347 0.039051300 0.504626
0.019314372 0.063121308 0.765704
0.020580259 0.058023116 0.738176
0.050349445 0.025866793 0.339387
0.022535501 0.058576196 0.722167
0.011438087 0.067821125 0.855688
0.06926022 0.006865293 0.090184
0.023481122 0.059188187 0.715963
0.014790967 0.066843822 0.818815
0.039263875 0.039846694 0.503684
0.037264019 0.042503304 0.532841
0.020257036 0.062587291 0.755481
0.043055734 0.035678324 0.453150
0.041019665 0.03719738 0.475566
0.020966007 0.063569567 0.751986
0.070995880 0.005533307 0.072303
0.059363494 0.017670142 0.229382
0.025016417 0.059750562 0.704880

Table 8. ANOVA table for TOPSIS performance scores

Source DF Adj. SS Adj. MS F p % Contribution
Pmaxeng 1 0.19618 0.196185 14.22 0.001 14.03%
Nbat 1 0.15121 0.151213 10.96 0.004 10.81%

Pmaxmot 1 0.00033 0.000331 0.02 0.878 0.02%
Pmaxgen 1 0.00450 0.004499 0.33 0.575 0.32%

Nr 1 0.16878 0.168781 12.23 0.002 12.07%
Ns 1 0.09919 0.099189 7.19 0.015 7.09%
i0 1 0.51560 0.515600 37.37 0.000 36.88%

Error 19 0.26216 0.013798
Total 26 1.39795

504030

0.8

0.7

0.6

0.5

0.4

403020 504030 252015 786450 302418 3.9
3

3.002.50

Pmaxeng

M
ea

n 
of

 TO
PS

I S
 p

e r
f . 

s c
or

e Nbat Pmaxmot Pmaxgen Nr Ns i0

Main Effects Plot for TOPSIS perf. score

Figure 5:Main effect plot of TOPSIS performance scores

MTOPSIS Analysis

MTOPSIS analysis is similar to the TOPSIS analysis as both the techniques are grounded on the same 

methodology. MTOPSIS results are displayed in Table 9 (calculated from Table 5-6). The performance scores 

for this method are depicted in the last column of Table 9. The Taguchi’s analysis is performed on the 

performance scores RCi. The main effect plot, for MTOPSIS performance scores, is portrayed in Figure 6. 



23

The near-optimal combination for the decision variables would be Pmaxeng3-Nbat3-Pmaxmot3-Pmaxgen3-Nr3-Ns3-i03. 

The ANOVA analysis for the MTOPSIS is provided in Table 10. 

Table 9. Euclidean distance table for MTOPSIS
Di

+ Di
- MRCi

0.07360174
5

0.93162446
7

0.92678
1

0.82327700
8

0.25646660
0

0.23752
5

0.86456132
2

0.19329219
7

0.18272
1

0.77105309
5

0.31394095
8

0.28934
8

0.84506927
0

0.22459912
1

0.20997
1

0.87846582
3

0.16253217
9

0.15613
1

0.80235237
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0.20898
1

0.91951075
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0.08129781
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2

0.85823185
4

0.23010216
9

0.21142
6

0.78725015
7

0.31069269
5

0.28297
7

0.93914052
4

0.02838962
5

0.02934
2

0.85740998
7

0.23524929
1

0.21530
0

0.79588353
8

0.30106096
1

0.27445
4

0.90709190
1

0.12554938
4

0.12158
1

0.90125903
1

0.13935012
2

0.13391
2

0.85014091
1

0.26534384
7

0.23787
3

0.91269796
1

0.10613966
7

0.10417
7

0.90779882
0

0.11258144
6

0.11033
3

0.84664615
7

0.27452945
1

0.24485
9

Table 10. ANOVA table for MTOPSIS performance scores

Source DF Adj. SS Adj. MS F p % Contribution
Pmaxeng 1 0.091299 0.091299 8.12 0.010 12.91%
Nbat 1 0.062611 0.062611 5.57 0.029 8.85%

Pmaxmot 1 0.029299 0.029299 2.61 0.123 4.14%
Pmaxgen 1 0.024379 0.024379 2.17 0.157 3.45%

Nr 1 0.000274 0.000274 0.02 0.878 0.03%
Ns 1 0.080889 0.080889 7.19 0.015 11.44%
i0 1 0.204542 0.204542 18.19 0.000 28.92%

Error 19 0.213636 0.011244
Total 26 0.706930
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Figure 6. Main effect plot for MTOPSIS performance scores
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0.94253832
4

0.02348655
0

0.02431
3

0.93015568
9

0.05339613
9

0.05428
9

0.86343405
2

0.24278337
2

0.21947
2

Design Optimisation Using Surrogate modelling

Here three different regression models are derived from the calculated scores of GRA, TOPSIS and 

MTOPSYS. In designing a HEV the main contributed of the cost is the power sources in a vehicle powertrain. 

So, the power split device design is considered constant and therefore, the Ring teeth number and sun teeth 

number are fixed as 78 and 30. The regression models are presented in table 11. The solution points from the 

optimisation methods are presented in table 12 along with the base model. The problem formulation for the 

design optimisation is presented in equation 45.

Table 11. Regression models.

mode
l

Constant Nr Ns R2

GRG -0.069 0.0044 0.003
6

-0.0011 0.0004 -0.0023 0.009
0

0.110
8

0.8
5

RCi -0.627 0.0104 0.009
2

0.0043 -0.0032 -0.0069 0.012
4

0.233
2

0.8
1

MRCi -1.316 0.0071 0.005
9

0.0040 0.0074 0.0003 0.011
2

0.146
9

0.7
0

]

St.

Table 12. Solution design points

Method %Δ %Δ kWhr %Δ %Δ %Δ
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GRAGA 48 11.6 40 0 9.22 40.5 30 -3.2 22 46.7 78 30 3.93
TOPSISGA 49 13.9 39 -2.5 8.99 37.0 45 45.1 18 20.0 78 30 3.93
MTOPSISGA 49 13.9 40 0 9.22 40.5 49 58.1 23 53.3 78 30 3.87
GRA 50 16.3 40 0 9.22 40.5 30 -3.2 25 66.7 50 30 3.93
TOPSIS 50 16.3 40 0 9.22 40.5 50 61.3 20 33.3 50 30 3.93
MTOPSIS 50 16.3 40 0 9.22 40.5 50 61.3 25 66.37 78 30 3.93
Base model(Prius) 43 40 6.56 31 15 78 30 3.93

Performance measurement of obtained design points

   The vehicle performances are calculated in UDDS driving cycle with 20% road gradient and presented in 

table 13. Here vehicle mass (mv), fuel economy (FE), emissions (HC, CO, NOX) , SOC consumption (delSOC), 

Electric energy utilisation(EEU), Total Energy Utilisation (TEU) , Wheel torque change (MTC) and cost of 

powertrain (Cost) are measured for performance comparisons. Here in this work, the powertrain component 

cost model is considered from a published article51 and the cost model is presented through equation (46) to 

(48).

Table 13. Performance analysis and cost analysis in UDDS driving cycle with 20% grade

Method mv

(kg)
FE

(L/100 km)
HC

(gm/km)
CO

(gm/km)
NOX

(gm/km)
delSOC EEU

(kJ)
TEU 
(kJ)

MTC 
(Nm)

Cost
($)

GRA 1202 25.5 1.07 1.66 0.77 0.2451 4533.
9

55571.
5

3317.1 9756

TOPSIS 1239 24.7 1.06 1.66 0.76 0.2154 4478.
5

57197.
0

3263.6 1008
2

MTOPSIS 1250 22.1 1.02 1.55 0.68 0.2244 4627.
0

54836.
4

3203.9 1019
1

GRA+GA 1200 21.3 0.97 1.48 0.65 0.2342 4735.
9

51713.
7

3068.9 9666

TOPSIS+GA 1222 21.6 1.00 1.52 0.66 0.2263 4523.
1

53274.
6

3132.2 9768

MTOPSIS+G
A

1241 21.6 1.00 1.51 0.66 0.2308 4668.
6

53834.
0

3181.4 1011
4

The vehicle solutions are tested in three different driving cycles. The three driving cycles UDDS, NEDC and 

1015_prius are presented in figure 7. The UDDS driving cycle is selected to test vehicle model in highly start 
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and stop situations.NEDC is selected for testing the vehicle model in both urban and highway testing. Finally 

the 1015_prius driving cycle is selected as it is used to test the Toyota Prius vehicle.

Figure 7. Driving cycles used in analysis (a) UDDS (b) NEDC (c) 1015_Prius

The optimal values of all the eleven output features are distributed over the three solutions, as can be seen in 

table 13 and therefore no particular solution can be considered as best up till this stage. But in figure 8 it can 

be seen that the design change leads to improvement in motor operating points and it also found that the 

average operating efficiency of battery for the three design solutions, namely GRAGA,TOPSISGA and 

MTOPSISGA,  are 91.09% , 92.82% and 93.09%. Which is why, further refinement is necessary and for that 

other important associated supplemental factors have been explored. An extension model with supplemental 

factors namely variation in gradeability and TCO, are therefore considered for each driving cycle and 

presented in a subsequent section ‘Model extension with gradient variability and TCO’. 
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Figure 8. Average operating efficiency of motor in three combined driving cycle for three design solution

Model extension with gradient variability and TCO

As just stated in the previous section the two aspects variation in gradeability and TCO (Total cost of 

Ownership) has been explicated here along with determining the component values and estimation approach. 

The issue of TCO has already been underscored in the introduction section as well as in the methodology 

sections under the sub heading ‘Performance measurement of obtained design points’, are being included in 

the model to extend the same aiming to secure single solution for all practical application purpose as none of 

the three SAEA solutions contains the best values of the eleven output indicators. Fuel, both fossil (gasoline) 

and electric type, are cost components which are also major and also variable in nature that constitute TCO 

besides the other fixed type cost namely Maintenance and repairs, deprecation, Insurance, tax and subsidy.  
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These fixed type cost and their estimation approach are obtainable from literature and has been used in this 

work. Therefore, here the task remains, primarily to determine the major variable cost component which 

effectively are due to gasoline and electric fuel cost, that basically is dependent on the model type or design of 

the vehicle. The fuel cost actually creates difference as it varies based on the design or vehicle model that is 

selected. The fuel consumption rate varies with gradeability; that is the consumption pattern needs to be 

assessed at multiple gradients over each individual driving cycle. Four gradeability values are considered for 

testing the models based on a design rational; that is, it will cover travelling on plane, to the rolling terrain and 

a couple of intermediate values. For plane the gradeability is 0% and for the rolling terrain the maximum 

value for the gradeability in 25%52, while for two intermediate values with 10% increment from the plan level 

(0% gradeability) have been considered. Hence, the consumption of gasoline and electric fuel in this study has 

been estimated at four gradeability values (0%, 10%, 20% and 25%), which has been worked out using 

ADVISOR and the generated simulation data regarding such consumption is retrieved where the values are 

depicted in figures 9 through 12. In figures the prius indicates the base model. The output feature, analysed 

for individual driving cycle, have been arraigned exclusively for 0%, 10%, and 20% gradeability only to 

improve legibility of figure 9 through figure 11,where the one of the output features namely electric energy 

utilisation fraction in table 14, while the data for 25% gradeability is presented separately in figure 12. 

Though, in effect all these diagrams indicate the performance of the extended model at the four gradeability 

points only the detail elastration for 25% gradeability as a case example is only presented to economise on 

space of the present manuscript. 
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Figure 9.UDDS driving cycle results for varying road grade (a) Fuel consumption (b) HC emission (c) CO emission (d)NOX emission (e) SOC change (f) Electric energy utilisation (g) Total energy 
utilisation (h) Maximum torque change
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Figure 10. NEDC driving cycle results for varying road grade (a) Fuel consumption (b) HC emission (c) CO emission (d) NOX emission (e) SOC change (f) Electric energy utilisation (g) Total energy 
utilisation (h) Maximum torque change
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Figure 11.1015_6Prius driving cycle results for varying road grade (a) Fuel consumption (b) HC emission (c) CO emission (d) NOX emission (e) SOC change (f) Electric energy utilisation (g) Total 
energy utilisation (h) Maximum torque change   
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Figure 12. Result of simulation in 25% grade for three different driving cycles (a) fuel consumption (b) HC emission (c) CO emission (d) NOX emission (e) Change in SOC (f) Electric energy 
utilised (g) Total energy utilised (h) Maximum torque change (i) Electric energy fraction
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Table 14. Electric energy fraction in varying road grade (a) Electric energy fraction in UDDS (b) Electric energy fraction in NEDC (c) 
Electric energy fraction in 1015_6Prius

Driving 
Cycle

Design Electric energy fraction
0% road 

grade
10% road 

grade
20% road

grade
UDDS GRA+GA 0.38 0.36 0.5

TOPSIS+GA 0.42 0.36 0.6
MTOPSIS+GA 0.44 0.36 0.59
Prius or Base model 0.29 0.24 0.37

NEDC GRA+GA 0.21 0.17 0.32
TOPSIS+GA 0.18 0.16 0.28
MTOPSIS+GA 0.18 0.16 0.28
Prius or Base model 0.13 0.12 0.24

1015 Prius GRA+GA 0.09 0.08 0.14
TOPSIS+GA 0.08 0.07 0.13
MTOPSIS+GA 0.09 0.07 0.14
Prius or Base model 0.06 0.06 0.11

In prius model the battery capacity is lowest and hence it have lowest capability of supplying the electric 

energy. This difference between the battery energy storage capability can be found in table 12. Also the 

obtained design solutions have higher generator power , which helps to recover energy during driving and 

hence the base model have higher difference between the initial and final SOC value. 

The savings are calculated for the four road gradient values and is used to calculate the Total Cost of 

Ownership (TCO) for five years53. The annual fuel consumption on the basis of travel of 15000 km per year53 

has been  assessed for translating into cost forming a component in TCO, considering the price of gasoline at 

$3 per gallon to in the first year escalating 5% annually and for electric fuel it is at $0.12 per kWh to escalate 

in the similar manner. Now, the TCO is expressed as Eq.4953.

                                     (49)
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TCO= Total Cost of ownership =Purchasing price; PR=resell price at the end of the ownership period; 

CF=Total fuel cost during the cost of ownership; P=amount borrowed ;N=Number of monthly interest 

payments; r=monthly interest rate; IC=Insurance Cost; MR=Maintenance and repairs; T=Government tax; 

S=Government subsidies.

In TCO computation the cost other than the variable one are retrieved from literature and accordingly the 

repair and maintenance stand at 10%56, insurance cost is considered as $20/month54, tax is considered as 10% 

and the subsidy is $250054 and Resell value (price) after five years get reduced to 40% of the initial price56. It 

may be noted here that the considered increase in gasoline may actually not materialised for a couple of year 

according to some assessment 57, such changes however will get neutralised if it is considered that the product 

development will also take time and is likely to be more or less the same. Thereafter the gasoline price will 

again shoot up and so is factored in the computation. The TCOs, evaluated from SAEA solutions along with 

the ADVISOR date of the base model are presented in table 15. The changes in TCOs, with respect to the 

base model along with the variation in fuel cost reduction, emission reduction and gradeability is presented in 

table 16. 

Table 15. Total Cost of Ownership calculation over five years

Solutions ($) ($) IC ($) MR 
($) T ($) S ($) ($) TCO($

)
GRAGA 27355 17950 12000 2920 2736 2500 4636 29197

TOPSI+GA 27457 18017 12000 2937 2746 2500 4748 29371
MTOPSIS+G

A 27803 18244 12000 2949 2780 2500 4699 29487

BASE or Prius 25000 16405 12000 3604 2500 2500 11839 36048

Table 16. Model comparison summary
Fuel cost 
reduction Emission reduction Total cost of 

ownership reduction θ%

HC CO NOX

GRA+GA 60.84% 23.32
%

22.92
%

19.35% 19.00% 19%
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TOPSI+GA 59.90% 20.46
%

20.83
%

18.11% 18.52% 24%

MTOPSIS+GA 60.30% 20.46
%

21.35
% 18.11% 18.20% 25%

Table 16 shows a distributed improvement in features across the three design or their modelling, therefore 

ranking has been required to select the preferred solution methodology in design and for this purpose, 

multicriteria decision making method with weighted sum58 approach has been utilised. It has been evaluated 

with varying weightage emission and gradeability as the fuel cost reduction and TCO reduction does not 

exhibits any appreciable difference for these three models. For MCDM application, the weight of the two 

stated entities, namely emission reduction and gradeability are chosen with varying weight from 0.3 to 0.7 for 

either factor. The emission which is chosen as a criterion for MCDM comprising of HC, CO and NOX to be 

in a proportion 1:1.3:4 of as observed in a research article 56. These results have been presented in figure 13 

and discussed in the next section.

Figure 13. Weighted sum score for three SAEA solutions

Results discussion
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In the analysis of variance, in table 4, 8 and 10, shows that the Pmaxeng, Nbat, Nr, Ns and i0 are the most important 

parameters as the p values are less than 0.05 for all eleven parameters. It indicates that the change in engine, 

battery and transmission have significant influence while increasing the vehicle power or designing a 

powerful PHEV satisfying the criteria or objectives related to ecodesign and vehicle performance used in this 

study. The optimisation results in table 12 show an increment in the size of engine power, battery energy and 

generator power for all designs. However, in case of motor power value, all the design points, except GRA 

variant, are increased. The possible reason is to increase the wheel power supply. However, the increased 

energy of the battery module with no variation in the number of battery module shows the increased storage 

capacity for the individual battery. 

    

 It can be observed,in table 8 through 11, that the variation in road gradient for the same driving pattern have 

an effect on fuel consumption and energy consumption . It shows that the increase in driving on the higher 

gradient value leads to a decrease in fuel economy (FE). Also, in higher road gradient value, the utilisation of 

electric energy has been increased as intended by all the SAEA based design solutions because of the extra 

power demand due to increase in gradieability. The total cost of ownership (TCO) analysis and the summary 

of model performance has been presented in table 15 and 16, respectively, for the three design solution points 

obtained from three surrogate assisted optimisation algorithms. The result in table 16, shows that the SAEA 

models reduce the total fuel cost by about 60 % over the ownership period or conventionally considered life 

of the vehicle in comparison to the base model. The emission values also reduced in comparison to the base 

model and here GRA based SAEA solution produces better result while in terms of gradeability the 

MTOPSIS based SAEA is the best solution which can be observed in table 16.  In the final weighted sum 

approach for best design selection, it has been observed, in figure 13, the MTOPSIS based SAEA produces 

the best result in the wide range of variation weight value. MTOPSIS based SAEA solution achieved the 

grade compatibility through enhancing the maximum power of traction sources. The engine power, motor 

power and generator power are enhanced by 6 kW, 18kW and 8kW respectively. Also, the battery energy 

capacity has been increased by 2.66 kWh. The result shows that the reduction in TCO value is 18.20% and 

emission is reduced on average around 20%. Further it may be noted ligtweighting of the vehicle  is 

materialising from all three aforesaid SAEA solutions and their magnitudes are 9.09 %, 7.42 % and 6.36%  

for the model  hybrided with GRA, TOPSIS and MTOPSIS techniques respectedly. However for satisfying 
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the conditions of the objectives particularly the vehicles capability to travel in rolling terrain at the prescribed 

speed level which is being attained by MTOPSIS-SAEA model and the corresponding lightweighting is by 

6.36 % which well above 6 %.

Conclusions

The proposed methodology for PHEV powertrain design optimisation combining ecodesign and 

vehicle operating performance factors exhibits improvement in the attributes under both these 

categories, while the GHG emission has reduced by around 20% where the fuel consumption has 

substantially reduced by 60% during the useful life of the vehicle. Since here the focus is on 

Gradeability extending to rolling tarrain, a salient consideration for design, getting satisfyed through 

MTOPSIS-SAEA modelling, the corresponding lightweighting of 6.36%, that is well over 6 percent would be 

considered as practicable. The design is capable to scale the rolling terrain at the recommended 

optimal speed of the vehicle. The comparison analysis amongst alternative optimisation 

methodologies has ascertained the most suitable one through the analysis of performance providing 

guidance for the use of such in design methodology. Therefore, the proposed methodology can be 

gainfully implemented in the design of the powertrain in a HEV in passenger car category. 

Abbreviation

ADVISO
R Advance Vehicle Simulation Software Li-ion Lithium-ion battery

ANOVA Analysis of Variance MTOPSIS modified TOPSIS
CO Carbon-Monoxide MTC Maximum Torque Change

CAPSO Chaos-enhanced Accelerated Particle Swarm 
Optimization MCDM Multi-Criteria Decision Making

DF Digrees of Freedom NEDC New Europian Driving CYcle
DOE Design of Experiment NIS Negative Ideal Solution
EB Energy Based NREL National Renewable Energy Laboratory
EEU Electric Energy Utilised OAD Orthogonal Array Design
FTP Fedaral Test Procidure PHEV Plugin Hybrid Electric Vehicle
FC Fuel consumption PMS Power Management System
GA Genetic Algorithm PIS Positive Ideal Solution
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GRA Grey Relational Analysis SAE Society of Automotive Engineers
GHG Green House Gas SOC State of Charge

GRG Grey relational grade TOPSIS Technique for Order Preference by Similarity to Ideal 
Solution

HC hydrocarbon TEU Total Energy Utilised
HWFET Highway Fuel Economy Test UDDS Urban Dynamometer driving cycle

J1634 EV Energy Consumption and Range Test 
Procedure 1015_6Prius Toyota Prius testing driving cycle

LP Linear Program

Symbols

Vehicle front area Motor input power
Accelearation Engine Maximum Power
Positive Ideal Solution and Negative Ideal Solution Maximum motor power

amax Maximum vehicle linear accelearation Closeness coefficient
Aerodynamic drag coeficient Distance between alternatives
Carbon emission Tire radius 
Maximum charge T Temperature
Used charge Vehicle linear velocity

 , Euclidian distance from the positive and negative ideal 
solution

Vmax Maximum vehicle linear velocity

delSOC State of charge change Weighted normalised matrix
EL Distance failed to travel Weighted normalised matrix element
Ev Velocity error Weight
Ea Accelearation error x variable

Carbon emission function Normalised limit of response value
Hidrocarbon emmision function yi

0 Response value
Nitrox emission function Percentage value of road grade
Motor power function Mass change
Fuel consumption function Deviation coefficient
Rolling coefficient Engine power scale factor
Inertia function ϵ Fraction of electric energy utilised

FE Fuel Economy Motor torqu escale factor
Gravitational accelearation Engine speed scale factor
Hidrocarbon emmision from engine Generator mass scale factor
Gear mechanism ratio Motor power scale factor
Finaldrive gear ratio Engine torque scale factor

I current Motor rotational velocity scale factor
Ratio of ring gear teeth and sun gear teeth number Gray relational coefficient
Engine inertia Air density 
Ratio of Ring teeth number to Sun teeth number Vehicle powertrain efficiency
Motor mass Efficiency of motor
Vehicle mass Generator efficinency 
Engine mass Powersplit efficiency
Battery mass Final drive efficiency

m,n Limit variable Road slope angle
Number of battery module Brake torque on the wheel
Teeth number of Ring gear Engine torque
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Teeth number of Sun gear Motor torque
Nitrox emmision from engine Motor torque
Elements of decision materix Generator torque 
Maximum power of generator Wheel torque
Generator power Output rotional velocity
Motor power Engine rotational velocity
Generator power output Motor rotational velocity
Engine power Generator rotational velocity
Motor output power Motor rotational velocity
Motor power Loss Gray cofficients
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