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Abstract

Learning the procedure of counting represents a major step in
children’s development of the concept of the natural numbers.
How children acquire generalized concepts of number and
counting skills is still under debate. Here we investigate how
a neural network agent develops representations for key con-
cepts of counting while learning to perform several different
counting tasks in a multimodal, interactive environment. We
identify neural activity and connection patterns that realize a)
a representation of the entity to count that was invariant to the
task, b) a mapping from entity to number-word, and ¢) a rep-
resentation of the number of entities that have been counted
that was shared between tasks. The results support the notion
that abstract representations of number can arise from inte-
grating experiences across a range of number-related tasks.

Keywords: mathematical cognition; neural networks; learn-
ing to count; multimodal; representation;

Introduction

Learning to count involves acquiring several abstract con-
cepts necessary to apply the procedure reliably and in a wide
range of settings. Children usually reach basic competence
with counting in the earliest stages of their education, al-
though a full understanding of the generality of the relevant
concepts is often only reached years later (Davidson et al.,
2012). Even though key developmental stages of learning
to count have been identified and analyzed (Clements and
Sarama, 2009; Gelman and Gallistel, 1978), how children
develop an ability to count that can be applied across modal-
ities and contexts is still unclear. In particular, how the
knowledge required for counting is represented and how this
knowledge develops during learning are open questions.
One theory of knowledge and its origins holds that knowl-
edge consists of explicit systems of rules or propositions,
and learning is viewed as enriching or re-structuring such
representations (Spelke et al., 1992). For the case of the
counting concept, key principles that have been identified
by Gelman and Gallistel (1978) include:
1. ”Correspond each entity to exactly one number
word” (One-one principle)
2. ”The order of the number words must follow a fixed
sequence” (Stable order principle)

3. "The count word used on the last item in a set rep-
resents the number of items in the set” (Cardinality
principle)

4. ”The above principles can be applied to entities of
any kind” (Abstraction principle)

The theory that children represent their knowledge of
numbers and counting in a rule-based structure is the ba-
sis for the knower-level theory where the acquisition of the
cardinality principle is treated as reflecting a sudden rule
induction (Sarnecka and Carey, 2008). A computational
model developed in Piantadosi et al. (2012) shows how a
system - given a defined set of primitive symbol processing
operations - can bootstrap the meaning of number words.
In their work it is the pre-specified symbolic primitives that
give rise to the critical inductive leap/qualitative phenomena
in the literature of the knower-level theory. However, studies
presented in Davidson et al. (2012) indicate that children’s
ability to perform tasks thought to depend on the cardinal-
ity principle emerges gradually and is associated with their
ability to perform other number related tasks. This suggests
that learning to count might a) involve more gradual learn-
ing processes and b) involve the discovery of an integrated
understanding through learning to perform several number
related tasks.

The work we report here is part of a project in which
we explore whether neural network-based learning models
formulated within the parallel distributed processing frame-
work (Rumelhart, 1986; Rogers and McClelland, 2014)
can capture these aspects of children’s number learning.
We seek to understand how symbol-like processes could
arise through a neural network’s learning process. In Fang
et al. (2018) it was shown that a recurrent neural network
could learn to count squares arranged in a linear array
from interacting with an external environment without ex-
plicit/symbolic representations or the assumption of given
primitive cognitive operations. However, as many have ar-
gued, this specific task by itself might be performed by the
neural network without acquiring a general or abstract un-
derstanding of number.

To explore the possibility that a concept of counting could



arise from integrating experiences across a range of number-
related tasks, we recently extended this approach to a neu-
ral network agent that learned to solve several different
counting-related tasks (Sabathiel et al., AfP). The tasks cap-
ture key conceptual aspects of the tasks humans are tested
and educated on: recite N number words, count temporally
and spatially distributed objects, and perform a give-n ob-
jects task by moving a given number of objects to a tar-
get location. The approach successfully exhibits cross-task
generalization, in that the network learns a new task more
quickly after previously learning other tasks. That work did
not, however, explore the representations the network used
to solve the task and support transfer learning — representa-
tions that might capture task-invariant aspects of the count-
ing principles. In the current work, we were especially in-
terested in exploring these representations. Specifically, we
focus on the following research question:

Can abstract representations for the concepts of num-
ber and counting emerge in a neural network agent
learning to perform different counting-related tasks?

Set-up and Methods

The learning system and its environment is similar to that in
Sabathiel et al. (to appear) and described in the following.

Learning Environment

The learning environment provides an artificial agent with
a multimodal, interactive interface. The world is a 4x4 grid
with two binary features at each grid point, one signaling the
presence of an object at the grid location and another signal-
ing the presence of the agent’s hand (Fig. 1). The interface
allows a set of motor and linguistic outputs to the environ-
ment and allows teaching signals corresponding to these out-
puts to guide learning. The set of motor actions are one-step
movements of the hand in 2D space (left,right,up,down), as
well as a touch, picking up and release action. The language
output consists of the count words ’one’ to ’nine’ and the
word ’Stop’.

Hand layer Object Layer

Figure 1: 2-layered visual input - the gray square represents
the hand and the white squares represent the objects to be
counted in the environment.

Task descriptions The agent was trained on four different
tasks commonly used to investigate number comprehension
in children described in Fig. 2.
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(a) Count all objects: The agent is to touch each object exactly once
and say the corresponding number word as each object is touched.

«1) 29

(b) Count all events: The agent is to say the right number word
after each flash of a white square in the visual input.
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€1y €2 39 «4) (¢stopy)

(c) Recite-N: The agent is given an arbitrary number, N, from 1 to 9
as input in the language channel and is to recite the number words
from 1-N and say ’'Stop’ afterwards.

(1) (29

(tstop))

(d) Give-N: The agent is given an arbitrary number, N, from 1 to
9 as input in the language channel and is to move N white squares
from an infinite source of white squares in the upper left corner
of the environment to the target in the upper right corner of the
environment. The agent is to say the corresponding number word
after each given square and say ’'Stop’ after N objects have been
moved.

Figure 2: Description of the four counting tasks and illus-
tration of a solution process including the visual output and
verbal input. Spoken words are denoted below the image.
White squares represent manipulable objects and the gray
square represents the movable hand. Green arrows denote
the movement of the hand between the depicted time in-
stances.

Learning system

Demonstration-driven learning We simulate a learning
situation in which the agent observes and anticipates the
actions of a teacher performing the counting tasks. For
each time step, the agent receives feedback about the cor-
rect action of the teacher, and adjusts its connection weights
based on the prediction error using backpropagation. The
approach contrasts with reinforcement learning based ap-
proaches in which the environment only sets tasks and pro-
vides rewards. We argue that this approach captures impor-
tant features of the environment in which children learn, al-
lows the model to adopt culturally-defined counting habits,
and accords with evidence that children’s number learning
is influenced by adults’ use of number to refer to items
present in the child’s environment (Gunderson and Levine,
2011). In the subsequent testing situation, the agent acts au-
tonomously without feedback, essentially learning to imitate
the motor and language actions of the teacher. Importantly,



as discussed below, the scoring of performance during as-
sessment is based on adherence to number principles, rather
than the specific actions specified by the demonstration al-
gorithm.

Neural Network Architecture The network architecture
is illustrated in Fig. 4. The choice of architecture was moti-
vated by the need to balance simplicity and generalizability
on one hand with the computational capacity necessary to
process the complexity of the multimodal sensory input, ac-
tion space, and temporal dependencies inherent in the count-
ing tasks on the other. The network architecture includes two
channels, representing a visual modality and an auditory lan-
guage modality:

Visual channel: The visual channel is a ConvLSTM
Xingjian et al. (2015), which takes the 4x4 image as input
and is designed to have the capacity to remember long term
dependencies of the visual input. The ConvLSTM is a ver-
sion of an LSTM whose internal structure uses replicated
channels that tile the input space, as in a feed-forward Con-
volutional Neural Network (CNN), allowing the network to
develop a spatially structured working memory. In our ar-
chitecture the CNN consists of 5 kernels of size 3x3 applied
with a stride of 1 and a zero padding of size 2. The concate-
nated, flattened 2D hidden state of the ConvLSTM and the
task vector are fully connected to 70 units with ReL U activa-
tion function, constituting the output of the Visual Channel,
which we denote as Visual representation.

Language channel: The language channel receives the
task instructions encoded in a layer with a total of 20 bi-
nary units (Fig. 3), where the first 5 units encode the verb
(action) of the task instruction, the subsequent 10 units en-
code the quantifier (‘1°, 2, ..., ‘9, ‘ALL’) and the last 5
units encode the entity that is to be counted. Each of these
‘words’ is one-hot encoded. To allow for the possibility to
extend the instruction vocabulary that can be tested with the
same architecture, some of the units in the task instruction
have been left without ‘meaning’ (and thus are not shown in
Fig. 3 ). The language channel also receives the network’s
full output vector from the last time step, serving as an ’ef-
ference copy’ of the linguistic activations in the network’s
output layer, independently of whether an overt action was
emitted to the environment. These two vectors are concate-
nated to form the input to the LSTM. The data is then pro-
cessed via a standard LSTM with an internal vector size of
33 units, with fully connected weights to learn the LSTM’s
gates (Hochreiter and Schmidhuber, 1997). The output of
the LSTM is also a 33 unit vector.

Output: An intermediary, multimodal ’Visual-Language’
representation with 103 units is produced by concatenating
the output from the visual channel and the output from the
language channel. A fully connected feedfoward network
maps this representation to the action space where each unit
represents one action and can take values from O to 1 in-

dependently (sigmoid activation function). The most active
action is produced if the activation of the M unit exceeds
0.5, and the most active verbal output unit is produced if the
activation of the V unit exceeds 0.5.

Task = “Count All Objects”

Touch Recite [Count| Give 1 2 3

0o o0 1| 0 00O

LAl ‘ Objects | Events
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Action Quantifier Entity

Figure 3: Concatenated task vector, which is given as input
for the language channel. The vector corresponds to a state-
ment consisting of an action, a quantifier and an entity and
is used to instruct the agent about what task to perform.

Learning algorithm The network is trained via super-
vised learning with an automatic solving algorithm used to
create the teaching signal. For each time step, the agent pre-
dicts the action y of the teaching signal §, where the teach-
ing signal decides which action is executed and therefor the
next state of the environment. After each whole trial, the
weights 6 of the neural network are updated using back-
propagation to minimize the sum across items in a batch
and steps of the action sequence of the mean-square-error
between the output vector of the network and the encoded
vector for the action from the teaching signal: £. The batch-
size is 8 times the number of tasks that are to be learned in
the current learning schedule. An epoch of training is de-
fined as one full forward and backward pass of the whole
batch. After each trial a new batch is uniformly drawn from
the tasks and the number of entities to be counted. The net-
work was trained with the ADAM-optimizer Kingma and Ba
(2014) and a learning rate of 1072 in early learning stages
(until the average loss dropped to 0.2) and 10~ for the up-
coming epochs in later learning stages. During the train-
ing dropout was applied to the layer, which is denoted as
’Visual-Language representation’ in Fig. 4 where each unit
in the corresponding layer was set to O with probability 0.4.

Representations In this work, the word representation is
used to refer to the particular pattern of unit activity in the
neural network in a specific situation, such as the situation in
which the network has just encountered the third event in the
’count-the-events’ task. We use analyses described below to
determine whether these representations capture shared fea-
tures of different situations, such as encountering the third
item to be counted in different tasks.

Hinton diagrams For the visualization of the neural ac-
tivity and the weights of the neural network we use Hin-
ton diagrams (Hinton and Shallice, 1991), which allow for
a graphical analysis of values in 2D arrays. In a Hinton di-
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Figure 4: Neural Network architecture with multimodal
channels: The output of the visual channel consists of the
output of the ConvLSTM concatenated with the task input,
and is fully connected (FC) to the next layer. The output of
the Language Channel (LSTM) is concatenated with the out-
put of the Visual Channel to form the multimodal ’Visual-
Language’ representation. The next motor action and the
verbal output are computed via fully connected weights (FC)
from the Visual-Language representation. FC(n,m) denotes
fully connected weights from n to m units. 1-1(n) denotes a
one-to-one mapping from n to n units. Dashed boxes denote
the concatenation of their contained vectors and arrows rep-
resent the mapping between the layers according to their an-
notations. Annotations of the motor output nodes are arrows
denoting the possible actions, including hand movements in
the four directions, picking up (P), releasing (R) and touch-
ing (T') the object at the current position of the hand. For the
language output, S represents the word Stop and the num-
bers represent the corresponding number words. The action
represented by the most active output neuron is not executed
unless the values of the two extra nodes M and V exceed the
threshold of 0.5.

agram, positive values are shown as white squares and neg-
ative values by black squares. The sizes of the squares rep-
resents the magnitude of the weights or node activation. We
use these diagrams as an exploratory analysis tool to qualita-
tively identify potential representations of the network, be-
fore performing quantitative analysis.

Representational Similarity Analyses We use represen-
tational similarity analysis (RSA) based on correlations be-
tween patterns of activity to make two types of arguments
in this work: First, within a particular task, we use RSA to
show that the network uses representations that allow it to
distinguish between important concepts. That is, the repre-

sentations for states related to a particular concept are simi-
lar to each other and dissimilar from representations of states
not connected to the concept. Second, comparing between
tasks, we use RSA to test for the abstractness of the repre-
sentation. Here, we consider whether the representations of
the concepts are relatively independent of context, by show-
ing that states corresponding to instances of the same con-
cept are similar across different class contexts.

For this purpose, we assess representational similarity
on two subsets of nodes in the layer which we denoted as
Visual-Language-Representation in Fig. 4: (1) the subset
of nodes which receive their signals from the visual channel
(’Visual Representation’) and (2) the subset of nodes receiv-
ing the signal from the language channel ("Language Repre-
sentation’). We also consider the connection weights from
these nodes to illustrate the roles they play in determining
the behavior of the network. Each of the three analyzed
counting tasks involves a different kind of counted entity,
either objects at different positions in the count-all-objects
task; sequentially occurring events in the count-all-events
task, or sequentially given items in the give-N task.

For the analysis in this work we recorded the neural activ-
ity in test runs, such that we obtained sets of node activities
for all possible combinations of the representation, concept
and context. To calculate a scalar measure of the similarity
between any pair of the node vectors we used the Pearson
correlation and show them in form of color-coded correla-
tion matrices in the results.

Results
Training and testing the model

We trained a single instance of the neural network agent (see
Methods) to solve all four counting tasks: Recite the list
of number words (Recite N), count the number of flashes
(Count-all-Events), move a given number of objects across
the environment (Give-N), and count a given number of ob-
jects in the environment (Count-all-Objects). Within 15000
epochs the agent reached perfect performance in twenty con-
secutive trials on all tasks for the counting numbers one
through nine.

To investigate if the agent learned a unified, abstract pro-
cedure for counting applicable to all tasks, or separate count-
ing strategies specific to each task, we analyzed the repre-
sentations in the different channels of the network as the
agent solved the different tasks. Leaving the Recite N task
out, in the following analysis we focus on the three tasks that
involve counting entities.

Identification of entities
For the counting procedure to be widely applicable, it must

operate on an abstract concept of object or entity that is not
specific to any particular context or task. We asked if train-
ing the network to count different kinds of entities (tempo-
ral events, spatially distributed and given objects) was suf-



ficient to develop representations for such general entities,
and looked for network representations that reliably corre-
lated with the current presence of an entity to count.

Figure 5 shows the Visual representation of the neural net-
work using a Hinton diagram (see Methods). To see if some
nodes were preferentially responding when an entity to be
counted was present in the visual field during the count-all-
objects task, the neural activity is shown for different time
points at which the neural network agent encountered an en-
tity to count (numbers 1-9), and four time points at which it
did not encounter an entity to count.

From the node activation pattern we see that some nodes
were preferentially turned on when no entity was encoun-
tered and off only when an entity was to be counted. We
refer to these nodes as entity nodes (highlighted in yel-
low). The same observation could be made on the pop-
ulation level for each task: We compared the Visual rep-
resentation in each task with those of the other tasks both
when an entity was to be counted (separately considering
the first to the ninth entity) and when no entity was to be
counted. The correlation matrices in Fig. 6 show that the
population of visual nodes distinguished clearly between
times when an entity was to be counted and times when
no entity was to be counted. Correspondingly, a statisti-
cal analysis of 100 simulation runs showed that there was
high correlation (r = 0.89 + 0.11; Mean + ST D) be-
tween vectors of node activities in the Visual representa-
tion when an entity was to be counted and low correlation
(r=0.14 4+ 0.11; Mean + ST D) between the correspond-
ing vectors when entities were counted vs. when there was
no entity to count.

To see whether the representation of entity was 'abstract’
-in the sense that the representation was independent of the
kind of entity, task, and the spoken number word - we identi-
fied three nodes in the Visual representation that were selec-
tively activated when the agent did not encounter an entity
to be counted for all three tasks. The activity of all these ab-
stract entity nodes was recorded for 100 trials for each task
(see Fig. 7. The nodes’ activity was close to zero (a =
[0.03,0.005,0.004] +[0.01,0.01,0.02]; Mean + ST D) for
all counted numbers and tasks when there was an entity
to count, and substantially higher for all tasks when there
was no countable entity present(a = [3.15,2.88,2.86] +
[1.51,1.38,1.34]; Mean + STD), indicating that the rep-
resentation of entity was independent of the kind of entity
and task.

One-to-one correspondence between entity and
number words

Establishing 1-1 correspondence between entities and num-
ber words is an important developmental stage in learning
to count, and consists of at least two components: i) avoid-
ing counting the same object twice, and ii) moving to the
next number word only when a new object is encountered,
and not before. In previous work (Sabathiel et al., AfP), we
identified the emergence of a memory mechanism in the vi-
sual layer of the network that would allow the agent to avoid
counting the same object twice in the count-all-objects task.
In the present analysis, we also identified a mechanism for
the second component of 1-1 correspondence. Inspecting
the weight matrix of the Hinton diagram of Fig. 5, we see
that all entity nodes were connected to all the verbal num-

Figure 5: Hinton diagram (see Methods) of the enumerated node activations (above the horizontal black line) and connection
weights (below the horizontal black line) in the Visual representation. White and black squares represent positive and negative
activation values respectively. The size of the squares represents the magnitude of the weights and node activations. Nodes
that are selectively active whenever there is no entity to count for all tasks are highlighted in yellow. The uniform connection
weights of these nodes to the output of the number words indicate their number-independent inhibitory function when no entity

is counted.
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Figure 6: Similarity between representations in the visual
layer for different numbers and the non-presence of an en-
tity in different tasks, as measured by pairwise correlations
of node activation vectors. The Visual representation distin-
guishes sharply between instances when there was an entity
to count and when there was not, but did not distinguish be-
tween the number of entities that had been counted.
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Figure 7: Mean and standard deviation of the activity of neu-
ron number 20 in the Visual representation for time steps
when an entity is to be counted vs. when there is no entity
for different tasks. The plot shows that the activity encodes
countable entities independent to the kind of entity.

ber word nodes with equal inhibitory strength. This means
that whenever there is no entity to count, speaking the next
number word will be avoided through inhibitory control.
The state of the visual layer decided if a counting word
was to be spoken or not. However, this layer did not dis-
tinguish between the different numbers. Keeping track of
the number of entities counted was guided by the language
representation, as we will see in the next section.

Abstract number representations

A fully generalized counting procedure needs to operate on a
concept of discrete numbers that is abstracted away from the
specific context it was learned in. From the activity pattern
in the Hinton diagram of all the nodes in the language chan-
nel (Fig.8) we see that each number had a distinct language
representation that was highly similar for different tasks.

To quantify the impression that the language layer con-
tained an abstract representation of the current number of en-

Figure 8: Hinton diagram of the node activation in the lan-
guage representation for all tasks. White and black squares
represent positive and negative activation values respec-
tively. The size of a square represents the magnitude of the
node activation. The activity vectors for the same numbers
show similar patterns for different tasks, while activity vec-
tors for different numbers show different patterns.

tities counted, we simulated 100 trials of each counting task
and compared the similarity of the language representations
separately for each of the three tasks when a different num-
ber of entities had been counted. The similarity between rep-
resentations for each pair of distinct numbers was low within
each individual task (r = —0.09 4+ 0.09; Mean + ST D),
indicating that the language channel had developed distinct
representations for each number (Fig.9).
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Figure 9: Similarity between representations in the language
layer for different numbers in each task as measured by pair-
wise correlations of node activation vectors. Each number
has a distinct language representation.

The language representations for number were task-
independent, as seen by the high correlation between rep-
resentations of each number for different tasks (r = 0.97 +
0.01; Mean=+ST D; Fig.10). These results support the view
that a unified or abstract representation of discrete numbers
had emerged in the language layer of the network that was
used to solve several counting-related tasks.

Discussion

To better understand potential mechanisms underlying the
development of the concepts of counting and number, we an-
alyzed the internal representations of a neural network that
learned to solve multiple counting-related tasks. We found
that the network developed specific representations for sev-
eral key components of counting, like the identification of an
entity to count, the establishment of one-to-one correspon-



Figure 10: Similarity between representations in the lan-
guage layer for the same number in different tasks as
measured by pairwise correlations of node activation vec-
tors.The language representation of each number is the same
for each task.

dence between entities and number words, and the number
of entities counted. These representations were highly simi-
lar between different counting tasks, suggesting that the net-
work’s knowledge about and representation of the counting
procedure was shared across all of the tasks. In particular,
the representation for the event of a given ordinality (first,
second, third) is shared across the different task settings,
suggesting that the network has acquired an abstract con-
cept of number, independent of the particular entities being
counted.

The identified entity and number nodes distinguish per-
ceptually equivalent situations. We highlight two exam-
ples. First, when solving the Count-all-Objects task the en-
tity nodes distinguish situations in which the agent’s hand is
situated “on’ an object when the object is yet to be counted
from situations in which the object has been counted already
and the agent is supposed to move on to the next count-
able object. Second, for the identified node activity patterns
representing the number words, e.g. the second occurring
event in the Count-all-Events task is perceptually equiva-
lent to the third event, yet the Language layer represents
them differently. Even though not quantified in this work,
these findings are in line with the work in Marstaller et al.
(2013) where representation has been defined as ’that part
of the shared entropy between environment states and in-
ternal states that goes beyond what is seen in the sensors’.
Similarly, Haugeland (2013) understands representation as
something that ’stands in’ for specific features or aspects of
the environment, even if these are currently not reflected in
the perceptual system of the agent. In the neural network
agent presented in this work, the representation corresponds
to the activity pattern that ’stands in for’ the number of items
counted, which in itself is not present in the perceptual input.

The analysis we have described demonstrates how ab-
stract representations can emerge for situations within our
training regime. We have not shown that the neural network

can benefit from these representations by applying them to
new situations. However, our previous work has shown that
the speed of learning each task is facilitated by prior learning
of other tasks, and this is consistent with the idea that repre-
sentations established for one task become available for use
in other tasks that rely on the same conceptual structure.

We hope that this work inspires further projects to explore
the issue of generalization with the help of these initial ob-
servations.
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