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Firmness is one of the most important quality measures of strawberries, and is related to other aspects of the fruit, such as flavour, ripeness and 

internal characteristics. The most popular method for measuring firmness is puncturing with a penetrometer, which is destructive and time- 

consuming. In the present study, we make an attempt to predict the firmness of strawberries in a fast, non-destructive and non-contact way using 

hyperspectral imaging (HSI) and data analysis with various regression techniques. The primary goal of this research is to investigate and compare 

the firmness prediction capability of seven prominent regression techniques. We have performed HSI data acquisition of 150 strawberries and 

optimised seven regression models using the spectral information to predict strawberry firmness. These models are linear, ridge, lasso, k-neigh-

bours, random forest, support vector and partial least square regression. The results show that HSI data with regression models has the potential 

to predict firmness in a rapid, non-destructive manner. Out of these seven regression models, the k-neighbours regression model outperformed all 

other methods with a standard error of prediction of 0.14, which is better than that of the state-of-the-art results.

Keywords: hyperspectral imaging, non-destructive firmness measurement, strawberry firmness, regression models

Introduction
The quality inspection of fruits and vegetables is critical in 
a food value chain.1 Producers, suppliers and consumers 
assess the quality based on several attributes, primarily 
by visual inspection and automated systems. Firmness 
is one of the leading quality indicators linked with other 
characteristics such as taste, ripeness levels etc. of the 
fruit or vegetable.2 Firmness is a complicated feature 
determined by various attributes, such as the fruit’s inner 

structure and composition.3 Puncturing with a pene-
trometer is the most common approach for determining 
firmness. Estimating the fruit’s firmness helps to deter-
mine the fruit’s maturity and is a direct pointer to the 
harvesting time and shelf life. This research investigates 
hyperspectral imaging (HSI) applications to predict straw-
berries’ firmness in a rapid, non-destructive manner. 
The attractiveness of strawberries is influenced by their 
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ripeness, which is directly linked with the fruit’s firmness.4 
Strawberry is a fruit with delicate skin and hence is very 
susceptible to injuries. It is crucial to estimate the firm-
ness of the strawberry and sort the fruit accordingly.

Different destructive and non-destructive methods are 
available to measure the fruits’ firmness, though no stand-
ardised methods have been established.5 Destructive 
techniques measure the firmness by mechanically 
applying pressure, and in most cases, this causes some 
degree of damage to the fruit. Such physical disruptions 
also lead to undesirable metabolic chaos and biochemical 
changes of the fruit. Penetration methods using a pene-
trometer also provide information on firmness by esti-
mating the needle’s depth, which is inversely proportional 
to the firmness. However, this method also damages the 
fruit and is not suitable for large-scale measurements. 
Measurement techniques such as acoustic meters6 and 
texture analysers7 have been mainly limited to large-
scale and online measurements. Optical techniques offer 
several advantages over the previously listed measure-
ment methods, such as speed and non- contact nature. 
HSI, a technology originally developed for remote sensing, 
has recently gained much attention in close-range appli-
cations such as food inspection8 and classification,9,10 
medical imaging,11,12 forensics,13,14 cultural heritage15,16 
etc. HSI has received wide acceptance in food analysis 
as it offers the possibility to simultaneously record both 
spectral and spatial information. As shown in Figure 1, 
HSI data can be viewed as a data cube17 that consists 
of different band images as layers and is often referred 
to as an HSI data cube. It has spatial information along 
the X- and Y-axes and spectral information along the 
Z-axis. Fast and accurate spectral measurements provide 

the advantage of fruit quality evaluation in real-time, 
irrespective of the fruit’s size and shape. Firmness esti-
mation and prediction on different fruits such as banana, 
blueberries etc. using HSI have been reported.18–20

Researchers have attempted to predict strawberry 
firmness from HSI data using various algorithms in the 
last few decades. Nagata et al.3 used HSI in the visible 
region to produce prediction models for firmness and 
soluble solids content (SSC) in strawberries using multiple 
linear regression.21 Tallada et al.22 used NIR HSI to predict 
firmness in strawberries using partial least squares (PLS) 
regression.23 Sánchez et al.24 applied modified PLS and 
local algorithms for firmness prediction. Liu et al.25 used 
several computational models for predicting the firmness 
and total soluble solids (TSS) of intact strawberry fruit, 
including PLS, support vector machine (SVM) and back-
propagation neural network (BPNN) from multispectral 
data. Recently Mancini et al.26 used partial least squares 
regression (PLSR) to predict strawberry firmness. Even 
though these researches achieved a decent prediction 
capacity, many other popular regression methods such as 
ridge27 and lasso (least absolute shrinkage and selection 
operator)28 have never been tested for this purpose.

This research’s primary goal is to check the applicability 
of other regression methods for better prediction capa-
bility than the state-of-the-art techniques and quantita-
tively compare the prediction results. This paper presents 
the HSI data in the visible near infrared (VNIR) region to 
predict strawberries’ firmness using several regression 
models. We used some of the most popular regression 
models suitable for training on smaller datasets such as 
k-neighbours,29 random forest,30 along with the tradi-
tional ridge, lasso, linear, support vector31 and PLS23 

Figure 1. Hyperspectral data cube representation where the XY-axis indicates the spatial plane while the 
Z-axis represents the spectral dimension.
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regressions. Five different parameters are used in the 
comparative study to assess the predictive skills of these 
methods. The best regression will be established based 
on the essential wavelengths to generate a lighter model 
and we used successive projections algorithm (SPA)32 to 
select these wavelengths.

Materials and methods
Samples
Strawberries used in this study were purchased from 
a local farm in Norway. A total of 150 strawberries 
were selected as samples. Strawberries were carefully 
chosen by excluding fruits having any visible defects or 
bruises. All the strawberries were cleaned to eliminate 
any external contaminants, and the water drops from 
the fruits were swept away before the HSI acquisition 
and penetration measurement. The strawberries were 
all grown under the same conditions and were at the 
ripening or over-ripened stage. The fruits were stored in 
recommended storage conditions (4° C) and kept in the 
lab at a controlled room temperature for an hour before 
HSI acquisition. The strawberries are processed batch by 
batch; each batch contains 8 to 12 strawberries based on 
their size. Each batch is carefully taken out of the refrig-
erator, imaged and firmness measured before proceeding 
to the next batch.

Hyperspectral imaging
Hyperspectral imaging for this study was conducted 
using a camera (HySpex-VNIR-1800, developed by Norsk 
Elektro Optikk AS). The camera has a spectral sensi-
tivity from 400 nm to 1000 nm and spectral sampling 
of 3.18 nm, which provides 186 spectral bands. This 
VNIR push broom scanner records 1800 pixels across the 

field of view spanning approximately 10 cm for the lens 
used, which has a 30 m focusing distance, 1 cm depth 
of focus and a polariser to avoid specular reflection. The 
camera was placed at right angles to a moving translator 
stage where the fruit samples were placed. Two halogen 
light sources were used to illuminate the scene with 
45° : 0° geometry to the camera. Details of the setup are 
presented in Figure 2. The image acquisition resulted in a 
hyperspectral data cube with spatial (X and Y) and spec-
tral (Z) directions. Here, the X-axis size was 1800 pixels, 
the size of the Y-axis depends on the size and number 
of strawberries used in a single scan, and the size of the 
Z-axis was 186. A reference target with known reflec-
tance (Contrast Multi-Step Target by Spectralon®) values 
was present in the scene for converting the radiance to 
the reflectance at the post-processing stage.

Firmness attribute measurements
The firmness of each strawberry was measured imme-
diately after spectral measurement using a digital fruit 
penetrometer (Turoni, Italy). The firmness was measured 
using a puncture test at the fruit’s equatorial side using 
an 8 mm diameter cylindrical probe and is expressed as 
Newton (N). The probe was attached to the stand with a 
handle to control the penetration speed. The maximum 
force (N) detected during the puncture test was recorded 
as the firmness of that particular fruit. The data contains 
the firmness of 150 strawberries with a minimum of 
0.4 N and a maximum of 3.0 N, with an average of 1.1 N.

Regression models
The study of dependency is known as regression, and it is 
used in many research projects.33 In this work, we denote 
the firmness value as variable Y and the predictor vari-
able as X; the variable X represents the strawberry spec-
trum with values X1, X2, X3,…, Xn. Here n is the number of 

Figure 2. HSI acquisition setup.
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wavelengths present in the spectrum and is 186 in the 
present case. Then, by using a regression model, the rela-
tionship between the spectrum (X) and firmness (Y) can 
be approximated using Equation 1.34

 Y = f(X1, X2, X3, ..., Xn) + e (1)

where e represents the discrepancy in the approximation 
and is considered as a random error, and f represents 
the regression model. This work uses seven different 
regression models, and they are described in detail in the 
following sections.

Linear regression
Consider X to be a single explanatory variable; for a given 
set of X and Y observations, the relationship between 
a dependent variable Y and an independent variable X 
can be estimated using simple linear regression. Simple 
linear regression can be extended to include more than 
one explanatory component and is then called multiple 
linear regression.21 Since we presume that the response 
variable is directly connected to a linear combination of 
the explanatory variables in both cases, we continue to 
use the expression “linear”. The equation for multiple 
linear regression is similar to single linear regression, but 
it contains more terms than Equation 1,21 and it is given 
in Equation 2.

 Yi = b0 + b1Xi1 + b2Xi2 + ... + bnXi n (2)

where b0 is the y-intercept, bn is the slope coeffi-
cient for each explanatory variable, n is the number 
of bands and e represents the prediction error. The 
linear regression tries to optimise the b values such 
that it minimises the cost function. Here we are 
using mean squared error (MSE) as the linear regres-
sion model’s cost function, which is represented in 
Equation 3.
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where Y i represents the expected (measured) firm-
ness, îY  represents the predicted firmness using linear 
regression and p is the number of samples. In a multiple 
regression model, the ordinary least squares approach 
(OLS)35 is widely used for estimation36 of parameters; 
in this work, we used the OLS method to estimate the 
parameters.

Ridge regression
The existence of near-linear relationships among the 
predictor variables is known as multicollinearity. Ridge 
regression is a modified version of linear regression for 
reducing multicollinearity among predictor variables in 
a multiple regression model.37 Ridge regression utilises 
a modified loss function by adding a penalty equal to 
the square of the magnitude of the coefficients27 as in 
Equation 4 to overcome this problem.
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where the l parameter regularises the penalty, ridge 
regression resembles linear regression; if l = 0.

Lasso regression
Like ridge regression, lasso regression also evolved from 
linear regression to avoid multicollinearity problems. 
Instead of taking the coefficients’ square as in ridge, lasso 
uses only magnitudes of the coefficients to penalise the 
cost function28 as in Equation 5.
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k-Neighbours regression
The k-neighbours regression is developed based on the 
k-nearest neighbours’ algorithm, a non-parametric method 
used for classification and regression.29 The k-neighbours 
estimates the Y based on the local interpolation of the 
neighbourhood values determined while training. The 
size of the neighbourhood should be selected during 
the training phase using cross-validation. Since it is an 
instance-based learning method, k-neighbours adapts 
rapidly with new training data, enabling the algorithm 
to react quickly to variations in the training parameters 
during real-time operations.

Random forest regression
Random forest30 incorporates several decision trees38 
and adds a layer of randomness to the bagging method. 
Random forests change how classification and regression 
trees are created and use a different bootstrap sample 
of the data for each tree.39 The dependent variable’s 
predicted value was obtained for the regression problem 
by averaging all decision trees’ outputs. It builds as many 
more decision trees as possible, and each of these trees 
has high variance and low bias. However, averaging 
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all decision tree output to blend the results causes a 
final model with low bias and moderate variance, which 
reduces the overfitting problem and results in higher 
precision.

Support vector regression
Support vector regression (SVR)31 is a machine learning 
technique that uses all of the significant features of the 
SVM and is highly robust against noise.40 One of the 
critical benefits of SVR is that its computing complexity 
is independent of the input space’s dimensionality. It also 
has a good generalisation potential and a high prediction 
accuracy.41 The two main SVR types are e-SVR31 and 
v-SVR;40 here, we used e-SVR for strawberry firmness 
prediction because of its ability to control the error in the 
model.42

Partial least squares regression
PLSR integrates and generalises principal component 
analysis and multiple regression. It uses a series of inde-
pendent variables or predictors to interpret a set of 
dependent variables. This prediction is made by gener-
ating a set of orthogonal variables called latent variables 
from the predictors with the most significant predictive 
power.43 PLSR’s usefulness comes from its ability to inter-
pret noisy and collinear variables. The accuracy of the 
model parameters increases as the number of related 
variables and observations rises, which is a favourable 
property of PLSR.23

Processing pipeline
The acquired HSI data from the camera will go through 
a series of processing steps before reaching the regres-
sion models; they are preprocessing, normalised reflec-
tance estimation, extraction of the mean spectrum from 
strawberry HSI and, finally, training and prediction using 
the selected regression method. The camera software 
performs the preprocessing of the data, including dark 
current removal, sensor corrections and radiometric 
calibration. During the normalisation process, the HSI 
data were transformed to normalised reflectance values 
between 0 % and 100 %, describing each pixel’s spectral 
response, which was computed using the multilevel refer-
ence’s known reflectance values, which were present in 
the scene during acquisition.

The spectral reflectance value can be determined as 
the reflected incident light ratio, as in Equation 6.
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Here, the reflectance of wavelength l at positions x, 
y is denoted as R(x, y, l), and the incident and reflected 
lights for wavelength l at x, y are represented as Li and 
Lr. The incident light can be determined by rearranging 
Equation 6, as shown below.
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Equation 7 will be used to measure incident light across 
the field of view using the known reflectance of the refer-
ence target and reflected light intensities collected from 
the HSI sensor. We will use the incident light to esti-
mate the entire HSI image’s reflectance using Equation 6 
since the device is a line scanner. After normalisation, 
the mean spectra of strawberries were calculated from a 
square-shaped region of interest (ROI) with a dimension 
of 200 × 200 pixels around the centre pixel of each straw-
berry. The extent is determined by the largest possible 
ROI that fits with all strawberries under investigation. As 
the final step, the obtained mean spectra were used for 
the regression.

A number of optimal wavelengths need to be selected 
from the HSI data to realise a multispectral imaging (MSI) 
system that can be used for potential real-time inspec-
tions. We used the successive projections algorithm 
(SPA)32 to eliminate the redundant bands for dimension-
ality reduction. SPA is considered as a general, functional 
and robust recursive algorithm for solving near-separable 
non-negative matrix factorisation (NMF). The column of 
the input matrix X with the highest l2 norm is selected 
at each step of the algorithm, and X is then updated 
by projecting each column into its orthogonal comple-
ment.44 SPA has proved its capabilities in predicting fruit 
quality parameters;45,46 hence, we used SPA to extract the 
critical bands from the strawberry spectra.

Training and evaluation
Each model will be calibrated and trained using 70 % of 
the strawberries, and the remaining 30 % will be used 
for prediction (testing); the training and test sets were 
selected randomly. The repeated K-fold technique with 
split count of ten and three repeats will train and cross- 
validate each regression model. Each regression model 
should go through parameter tuning while training, 
and the final model will be created based on the best 
parameters. Then the model will be used for the predic-
tion and evaluation of the particular regression model. 
During the evaluation, five statistical parameters will 
be calculated to assess the efficiency of the estab-
lished models. They are standard error of calibration 
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(SEC),47 standard error of prediction (SEP),47 mean 
absolute error (MAE),48 mean squared error (MSE)49 and 
coefficient of determination or R2.50 A decent model 
should have a high coefficient of determination (R2) 
and a low SEC, SEP, MSE and MAE. Furthermore, the 
gap between SEC and SEP is a criterion for determining 
whether a model is suitable or not; lower is better. 
Besides calibration and prediction, the model metrics 
indicate overfitting; the model is potentially overfitting 
if it performs far better on the training set than on the 
test set.

Results and discussion
We implemented the entire processing pipeline using 
Python 3.6; the HSI data of 150 strawberries were 
acquired, processed and used for building regression 
models to predict the strawberry firmness. The mean 
spectrum obtained from all individual strawberry spectra 
was plotted and shown in Figure 3, along with the stan-
dard deviation (SD). The spectral profile contains 186 
bands between 400 nm and 1000 nm with a 3.18 nm 
spectral resolution. The resulting spectral profile matches 
the previous studies; the sugar and water absorption 
bands are 840 nm and 960 nm, respectively,51 in the 
near infrared (NIR) region. Anthocyanin and chlorophyll 
pigments, which reflect the fruit’s colour characteristics, 
are found in regions around 535 nm and 680 nm.1,52

Analysis of variance (ANOVA) between the test 
and training firmness values gives a p-value of 0.47, 
which means that the training and test data sets seem 

statistically similar. Table 1 shows that k-neighbours 
and random forest regression accurately predicted the 
firmness values with very low and closer SEP and SEC, 
lower MSE and MAE, and higher R2 values. Even though 
k-neighbours and random forest regression results were 
nearly similar, the k-neighbours performed marginally 
better. Hence, it is considered as the best regression 
according to the results we obtained. Linear regression 
has the lowest performance with SEP of 0.34, which is 
much closer to the previous research result.25 This means 
that all the seven regression techniques performed pretty 
well in this experiment. The predicted vs measured firm-
ness obtained for each regression and visualisation of the 
evaluation parameters are shown in Figure 4.

Each regression model was tuned for the best param-
eters using training data; for linear regression, the imple-
mentation was just plain OLS wrapped as a predictor 
for firmness. However, this model does not have any 
parameters for tuning; the final model was built using 
cross-validation of the training data. The prediction vs 
measured firmness for this model is displayed in Figure 
4a. This model obtained an MAE of 0.14, MSE of 0.11, R2 
of 0.66 and SEP of 0.34 during evaluation, which is in an 
acceptable range and close to the calibration values.

In the ridge regression model, the tuning was done for 
the regularisation parameter l, which determines the 
penalty. The grid search algorithm53 was used for param-
eter optimisation and cross-validation on the training data 
set. The same algorithm was used for parameter tuning of 
lasso and SVR models. The optimal value obtained in this 
experiment was 0.02, which was selected from a grid of 
l values between 0 and 1 at 0.01 step. The prediction vs 

Figure 3. Mean spectrum of 150 strawberries with standard deviation.
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measured firmness for this model is displayed in Figure 
4b. The ridge obtained a better SEP value of 0.23 with 
the help of regularisation. However, the performance was 
much better in comparison with linear regression having 
an SEP of 0.34. The lasso regression is also an exten-
sion of linear regression with L1 norm as a regularisation 
parameter instead of L2 in ridge regression. The optimi-
sation procedure was the same as ridge and obtained 
0.01 as the optimised parameter for l. After optimisa-
tion, the lasso regression obtained an improved SEP of 
0.22, a minor improvement from the ridge regression. 
The prediction vs measured firmness for the lasso model 
is displayed in Figure 4c. In ridge regression, the gap 
between the calibration and prediction values is higher 
than that of linear and lasso regression, indicating lower 
reliability. These differences can be quickly confirmed 
from Figure 4h.

In k-neighbours regression, the prediction is made 
based on the closest local neighbours determined during 
the training phase. The number of neighbours “k” is the 
parameter that needs to be optimised to control the 
model’s performance. The parameter optimisation was 
performed using random search for hyper-parameter 
optimisation;54 unlike grid search, a fixed number of 
parameter settings are sampled from the specified distri-
butions rather than all parameter values. The algorithm 
accepts a parameter that specifies how many different 
parameter settings should be attempted. After the param-
eter tuning using training data, we obtained the best k 
value as six, and the model obtained a SEP of 0.14 and 
is much closer to its SEC of 0.15. The other evaluation 
parameters obtained for this model during calibration 
and prediction are given in Table 1. The random forest 
regression also obtained nearly similar values to k-neigh-
bours; however, this model has more parameters for 
tuning. The most significant parameters are the number 
of trees in the forest (estimators), a threshold number 
of attributes needed for splitting a node (max features), 
maximum levels in each decision tree (max depth), the 
minimum number of data points that can be added in a 
node before it is divided (min sample split), least quan-
tity of data points permitted in a leaf node (min samples 
leaf) and whether bootstrap is enabled or not. Bootstrap 
decides the nature of sampling the data points; if enabled, 
sampling happens with replacement, otherwise without 
replacement. After the optimisation step, we obtained a 
model with an estimator count of 600, max features as 
the square root of the number of features, max depth 
of 30, min sample split of 2, min samples leaf of 4 and 
bootstrap as false. The optimisation was obtained using 
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(a) Linear regression (b) Ridge regression

(c) Lasso regression (d) k‐Neighbours regression

(e) Random forest regression (f) SVR

(g) PLSR (h) Evaluation parameter variation of regression models

Figure 4, Predicted vs. measured firmness from all regression models used (a, b, c, d, e, f, g, and h) and the evaluation 
parameter variation for each regression models (h)

Figure 4. Predicted vs measured firmness from all regression models used (a–h) and the evaluation parame-
ter variation for each regression models (h).
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Figure 4, Predicted vs. measured firmness from all regression models used (a, b, c, d, e, f, g, and h) and the evaluation 
parameter variation for each regression models (h)
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the random search algorithm as in k-neighbours regres-
sion, and the implementation from the “sklearn” library55 
was used. This optimised model obtained an SEP of 0.14, 
the same as k-neighbours; however, this model has a 
slightly higher gap between SEP and SEC (gap of 0.02) 
than k-neighbours (0.01). The k-neighbours has zero gaps 
for MSE and MAE between calibration and prediction, 
which shows its reliability; however, the random forest 
model possesses a slight difference in MSE and MAE 
obtained during calibration and prediction. With these 
desirable parameters, the k-neighbours regression can 
be considered the best regression in this experiment; the 
prediction vs actual firmness plots for these two models 
are given in Figures 4d and 4e. Figure 5 shows the predic-
tion map for strawberry firmness using the k-neighbours 
regression model having a measured firmness of 1.2 N, 
where the colourmap represents the predicted firmness 
variation.

The SVR model was successfully trained and evaluated, 
and yielded an SEP of 0.24 and an SEC of 0.21, and the 
prediction vs measured firmness plot is given in Figure 4f. 
The SVR model is tuned for parameters like kernel, the 
regularisation parameter C, kernel coefficient ϒ (gamma) 
and e, which is the e in the e-SVR model. The kernel 

parameter was tested for three values—linear, RBF (radial 
basis function) and poly—and linear was identified as the 
most suitable kernel for this experiment. Also, we tested 
a range of values between 1.5 and 15 for C, 0 and 0.5 
for e and e–9 and e–4 for gamma using grid search opti-
misation. After optimisation, it was determined that 10, 

Figure 5. Firmness prediction map using the 
k-neighbours regression model.

Figure 4 (continued). Predicted vs measured firmness from all regression models used (a–h) and the evaluation parameter 
variation for each regression models (h).

(h) Evaluation parameter variation of regression models
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0.1 and e–7 are the optimal values for C, e and gamma, 
respectively.

The PLSR model was optimised against the param-
eter number of components to keep after dimension-
ality reduction. During optimisation, this parameter was 
varied between 1 and 10. It used cross-validation to 
observe and detect the best value and obtained six as the 
best number of components for this model. We used the 
NIPALS (Nonlinear Iterative Partial Least Squares)56 algo-
rithm to obtain singular vectors of the cross-covariance 
matrix and used the implementation from the “sklearn” 
library.55 The results from PLSR are plotted in Figure 4g. 
This model obtained an SEP of 0.26 and an SEC of 0.20; 
the difference between SEP and SEC is significant, which 
indicates that this model is overfitted towards training 
data.

The k-neighbours model provided excellent SEP (0.14), 
MSE (0.02), MAE (0.06) and R2 (0.94) values which are 
better than in the previous works reported in References 
24–26. Mancini et al.26 reported an R2 of 0.54, which is 
significantly lower than that of k-neighbours. Sánchez et 
al.24 reported the best SEP of 0.17, which is closer to our 
best model. Finally, Liu et al.25 obtained an SEP of 0.375 
and an R2 value of 0.94; the SEP value is far from the 
best model obtained in this experiment with a similar R2 
value. However, because of its adaptability and ability to 
fit the data correctly without overfitting, k-neighbours is 
considered the best algorithm for firmness prediction. 
In the k-neighbours model, the data itself is a model 
that would be the reference for future prediction; it is 
very effective in improvising for random modeling on 
the available data; thus, it performed well in our case. 
However, the k-neighbours algorithm is susceptible to 
outliers because it uses the local neighbourhood values 
for prediction; it is also susceptible to imbalanced data. 
Hence while considering a more extensive data set for 
k-neighbours, it is essential to consider these weak-
nesses along with its strengths.

To develop an MSI system, a set of optimal wave-
lengths were chosen using the SPA algorithm to elim-
inate redundant details to realise HSI in prospective 
real-time analysis. The dataset contains 186 spectral 
bands ranging from 400 nm to 1000 nm, from which we 
extracted the 30 most important wavelengths using SPA. 
Out of these 30 bands, SPA identified band 128 (corre-
sponding to wavelength 804.3 nm) as the most important 
one and 171 (corresponding to wavelength 941.6 nm) as 
the least important band. The k-neighbours model was 
re- established using these wavelengths and measured 
the evaluation parameters. The variation of these param-
eters against the various number of SPA bands is plotted 
in Table 2. According to the results, we can conclude that 
a multispectral system with three bands can provide a 
significant firmness prediction power. Those three bands 
are 804.3 nm, 552.2 nm and 667.1 nm, and the predic-
tion vs measured value plot for this model is presented 
in Figure 6. The model with these three wavelengths 
produced the best evaluation matrices and has the lowest 
difference between calibration and prediction values. The 
804 nm obtained from SPA as the most crucial wave-
length, close to the 840 nm wavelength, is associated 
with the C–H bond related to carbohydrate content.57 In 
addition to this, the following two SPAs were close to the 
wavelengths that determine the colour of the strawber-
ries, 535 nm and 680 nm,52 which can also be correlated 
with the firmness of the strawberry.

Conclusions
HSI data with various regression models were success-
fully calibrated, tuned and evaluated for strawberry firm-
ness prediction. A total of 150 strawberries were used, 
and seven regression models were tested in this study. 
The k-neighbours model outperformed all other regres-
sion models with less error and overfitting. The relevant 

Parameters
Number of SPA bands

1 3 5 10 20 30
Cal Pred Cal Pred Cal Pred Cal Pred Cal Pred Cal Pred

MAE 0.19 0.47 0.15 0.20 0.14 0.22 0.15 0.21 0.15 0.22 0.15 0.24
MSE 0.32 0.34 0.07 0.07 0.04 0.09 0.04 0.07 0.04 0.09 0.05 0.09
R2 0.22 0.08 0.82 0.79 0.84 0.74 0.82 0.78 0.83 0.74 0.79 0.70
SEC 0.43 — 0.21 — 0.19 — 0.20 — 0.20 — 0.22 —
SEP — 0.59 — 0.27 — 0.29 — 0.27 — 0.29 — 0.32

Table 2. Evaluation of k-neighbours model on a various number of SPA bands.
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bands were identified from the original 186 bands using 
the SPA algorithm and re-established the k-neighbours 
model for varying SPA bands. We have identified that 
the k-neighbours model with the three most essential 
bands provided a comparable result of the entire band, 
which might be helpful in developing handheld, real-time 
applications. The potential future works will be to extend 
this research with more strawberries at different maturity 
levels and probing the potential of these models’ predic-
tion capability with other fruits.
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