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Abstract—Wind farms are usually located in high-
latitude areas, which brings a high risk of icing. Traditional
methods of anti-blade-icing are limited by extra costs and
potential damages to the original mechanical structure.
Model-based methods are heavily dependent on mathemat-
ical models of the blade icing, which are prone to produce
erroneous estimation. As data-driven models are better
able to achieve competitive performances for the blade
icing estimation, this paper proposes a temporal attention-
based convolutional neural network (TACNN). This novel
data-driven model introduces a temporal attention module
into a convolutional neural network, with the goal of deter-
mining the importance of sensors and timesteps and auto-
matically identifying discriminative features from raw sen-
sor data. Benchmark experiments on ten public datasets
of multivariate time series classification show competitive
performance against the state-of-the-art methods. Com-
pared with ten baseline networks and three widely used
attention mechanisms, the TACNN shows significant advan-
tages applying to three real-world datasets. These datasets
are logged by the supervisory control and data acquisition
system and contain operational and environmental mea-
surements such as power and temperature. The ablation
study and sensitivity study demonstrate the effectiveness
of the key components of the TACNN. The practicability
of the TACNN is further verified through online estimation
testing.
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I. INTRODUCTION

W IND energy, which is abundant and inexhaustible, has
for decades been an important energy source [1]. In

order to provide a reliable source of energy, wind turbines must
be able to operate under various climate conditions. This may
entail icing, especially in winter. Ice accreting on the blades
of wind turbines changes their aerodynamic efficiency and
torque, resulting in a reduction in power generation, as well as
intensification of fatigue loads [2]. Additionally, severe icing
brings potential safety hazards, affecting the economic benefits
and stable operation of wind farms. Improving the detection
of ice accretion on blades is of paramount importance to the
proper maintenance of wind farms [3], [4].

Traditionally, there have been three main types of anti-icing/
de-icing for wind turbine blades: passive, active, and hybrid.
Passive methods involve the application of certain materials
to prevent blade surfaces from icing. Special materials such
as liquid-infused surfaces [4], [5] have been employed to
prevent icing. Advantages of passive methods include reduced
operating costs and the ability to keep wind turbine blades ice-
free without the need for control systems [6]. Active methods
depend on the external system (e.g., thermal or mechanical
methods) to remove ice. They have garnered increased atten-
tion because they work in a controllable fashion. In active
methods, electro-thermal and ultrasonic de-icing devices are
external sensors and equipment widely used for blade icing
detection [7], [8]. Hybrid methods have become increasingly
popular in recent years, as they offer a combination of the
advantages of both active and passive methods [2], [9]. Con-
ventional anti-icing/de-icing methods often incur high costs
and additional energy demands. In addition, these methods
suffer from internal unreliability that may cause inaccurate
estimations of icing conditions. To make matters worse, these
traditional methods may require mechanical replacement of the
wind turbine, a process that requires significant human effort
and may cause damage to the original mechanical structure
[10].

In order to deal with the disadvantages of traditional meth-
ods, several researchers have made extensive efforts to identify
ice conditions on the basis of the operational measurements
of a given wind turbine. This approach has largely involved
model-based, data-driven, and hybrid methods. Model-based
approaches have been proposed to establish mathematical or
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numerical models, with the help of human domain knowledge
[11]. However, these methods depend heavily on assumptions,
which can lead to the misidentification of icing conditions.
They also require costly external experimental tools (e.g.,
wind tunnels) to establish accurate models. Conversely, data-
driven approaches directly mine useful information hidden
in operational measurements [12], [13]. The advantage of
data-based methods is that they do not rely on prior domain
knowledge and only need to use existing sensors; this saves on
cost. Hybrid methods integrate the advantages of both model-
driven and data-driven methods [14].

Data-driven methods, which can be further roughly divided
into shallow machine learning and deep learning-based meth-
ods [15], have been used widely in fault detection in key
components of wind turbines such as gearboxes [16] and main
shafts [17], and corresponding conditions monitoring systems
have been introduced. Shallow machine learning methods
identify blade icing by extracting the representative features
characterizing icing conditions and then creating classification
models from those extracted features. Commonly used shallow
machine learning models include logistic regression, support
vector machine, artificial neural networks, and random for-
est [12], [13], [18]–[20]. The limitation of shallow machine
learning methods is that the process for obtaining such fea-
tures is usually time-consuming and can be very expensive.
Deep learning-based methods attempt to model high-level
representations of sensor data and identify icing conditions
via a hierarchical structure [10], [16], [21], which is more
competitive in terms of performance than shallow machine
learning methods are.

However, to the best of our knowledge, their use in detecting
icing on wind turbine blades has not yet been extensively
studied [10], [12], [21]. There are even fewer studies of deep
learning-based methods for icing detection [10]. This may
be because of four main challenges to apply deep learning-
based methods to this type of task. The first is that wind
turbines usually work in varying environmental conditions,
and therefore the measured sensor data are characterized by
high nonlinearity and non-stationarity quality. Thus, automat-
ically extracting useful features from raw sensor data for
icing detection is quite difficult. The second challenge is the
substantial imbalance between the non-icing (i.e., normal) and
icing statuses in such data. It is not easy to properly process
the raw sensor data to avoid biased identification and make
a deep learning model learn all the possible features of the
icing status. The third challenge is how to achieve early
predictions of blade icing on wind turbines. Though difficult,
predicting icing as early as possible and identifying icing
trends in advance would be very beneficial for engineers and
maintenance personnel, sparing the additional time needed to
activate anti/de-icing systems. The fourth challenge is how to
identify the importance of sensors and timesteps. Detection of
icing conditions can be modeled as a time series classification
(TSC) task, but most researches on TSC have focused on
the architectural design of deep learning models. Few studies
have investigated the importance of particular sensors and
timesteps. Intuition indicates that the temperature sensor would
be significant in distinguishing between icing and non-icing

conditions, but scant research has provided a roadmap for
evaluating whether this is actually the case. Likewise, the
features of some timesteps, such as those already in an icing
state or those that are about to freeze, may show a more
salient pattern than others, but research has not delineated such
distinctions.

To address these challenges, a convolutional neural network
(CNN) is adopted in the present research, due to its excel-
lent learning capabilities. To overcome the data imbalance,
a specially designed imbalanced data processing approach is
utilized. A temporal attention (TA) module is integrated into a
CNN to learn the importance of sensors and timesteps. A TA-
based CNN (TACNN) is then designed to automatically learn
and discover discriminative features from balanced data and
classify icing or non-icing conditions of wind turbine blades.
The proposed TACNN can learn the relationships between
different timesteps, so as to predict the icing probability of
wind turbine blades at an early stage.

The contributions of this research can be summarized as
follows:

1) A novel deep learning network, TACNN, is presented
by introducing a TA module into a conventional CNN. The
TACNN ensures effective features extraction through its ability
to learn the importance of sensors and timesteps and overcome
the limitations of conventional CNNs that treat each sensor
equally. An end-to-end framework is developed based on
the proposed TACNN for icing detection on wind turbine
blades. The framework successfully processes highly imbal-
anced sensor data and simultaneously ensures both automatic
discriminative feature learning and effective icing conditions
identification.

2) The performance of the proposed TACNN is evaluated
according to ten benchmark datasets of multivariate TSC and
real supervisory control and data acquisition (SCADA) data
from three wind turbines. Compared to the state-of-art TSC
methods in the ten benchmark datasets, TACNN achieves
better performance. The comparisons of baseline networks
and other attention modules in the SCADA data demonstrate
the superiority and significance of the proposed model. The
generalizability and practicability of the proposed model are
further verified through online estimation testing.

The rest of this research is structured as follows. Section II
reviews the related work for wind turbine blade icing detection
and TSC. The proposed TACNN is presented in Section III.
The performance of the proposed approach is evaluated in
Section IV. Section V emphasizes the conclusions and future
work.

II. RELATED WORK

Detection of icing conditions can be modeled as a TSC
task, it is, therefore, necessary to review the methods used in
TSC. The primary TSC algorithms are distance-based, feature-
based, or deep learning-based. Orsenigo et al. proposed a
distance-based method that combines discrete SVM and warp-
ing distances [23]. Feature-based methods classify time series
data based on the patterns extracted from time series. Models
of feature-based approaches mainly involve a bag-of-features
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Fig. 1: Framework of wind turbine blade icing detection. The photo of frozen wind turbine blades is from [22].

framework [24], bag-of-SFA-symbols structure [25], or hidden
unit logic model [26]. One limitation of feature-based methods
is that extracting effective features requires substantial human
effort and domain knowledge. Deep learning-based methods
have been thoroughly explored in recent years, motivated
by the need to overcome the shortcomings of feature-based
methods. Several alternatives to deep learning models have
been proposed by various researchers. For example, Wang et
al. recommended several baseline models for TSC [27]. Fazle
et al. proposed a parallel structure of long short-term memory
(LSTM) and a fully convolutional network (FCN) (LSTM-
FCN) [28]. A similar deep learning model was proposed by
Cheng et al., but an additional spectral branch was added to
the LSTM-FCN [29]. Moreover, the authors presented a novel
model combining dense connections and a CNN to achieve
state-of-the-art performance [30]. Zhang et al. proposed a
prototype-based deep learning model (TapNet) for TSC. This
model showed a competitive performance over others. The
literature exploring these deep learning models in TSC ap-
plications has mainly focused on model structural design;
the attention mechanisms used widely in computer vision
and natural language processing have yet to be thoroughly
investigated.

III. THE TEMPORAL ATTENTION CONVOLUTIONAL
NEURAL NETWORK FOR ICING DETECTION

A. Structure

The proposed approach consists of three components: data
preprocessing, a temporal attention convolutional neural net-
work, and icing detection, as depicted in Fig. 1. The perfor-
mance of data-driven models depends almost exclusively on
access to high-quality data. To reduce uncertainty regarding
data quality, researchers have typically begun with data clean-
ing and processing and correlation analysis. Wind turbines
typically operate in conditions without ice. Thus, the problem
of imbalanced data remains. In the proposed methodology,
processed sensor data are fed into the TACNN model. The
sensor data sent to the TACNN model are first processed by
the TA module. The TA module has been designed to identify
key sensors and important timesteps. The weighted sensor data
are then sent to the CNN for feature extraction. Finally, the
features learned by the TACNN are utilized to calculate the
probability of icing in the fully connected (FC) network.
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Fig. 2: An illustration example of SWU.

B. Data Preprocessing

As illustrated in Fig. 1, data preprocessing mainly involves
data cleaning, correlation analysis, and imbalanced data pro-
cessing. To reduce the impact of outliers and noise in the
sensor data, it is necessary to clean the raw sensor data.
Correlation analysis is employed to study the relationships
between sensors, which is helpful in reducing the amount of
redundant information. In this work, the Pearson correlation
analysis is utilized. Various methods have been developed
for handling class-imbalanced learning problems. A common
method of rebalancing is to undersample the majority samples
or oversample the minority samples. However, undersampling
may eliminate potentially useful information, and improper
over-sampling may lead to overfitting [28]. Another solution
for rebalancing is to use a specially designed loss, such
as the focal loss function [29]. However, it is necessary to
optimize some hyper-parameters in order to use these meth-
ods. Even worse, in practical use, focal loss has not greatly
improved model performance. To address this challenge of
data imbalance, in the proposed method, a sliding window
upsampling (SWU) method is employed [3]. The idea of SWU
is simple but effective. Non-icing data are partitioned in a non-
overlapping way with a window of predefined size, while an
overlapped sliding window is utilized for the icing data. As
illustrated in Fig. 2, more non-icing data points are collected
than icing data points (eight points for non-icing and five
points for icing). By using SWU, four samples can be obtained
for non-icing data with a non-overlapping sliding window,
and four samples can be obtained with an overlapping sliding
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window, if the window size of samples is set to two.

C. Temporal Attention Convolutional Neural Network
CNN is utilized for automatic feature learning because wind

turbines usually work under varying environmental condi-
tions. Previous works focused on improving CNN’s automatic
feature learning capability (i.e., structural design). However,
traditional CNNs can’t focus on adaptively learning more dis-
tinguishing features and ignoring those that are irrelevant. To
address these challenges, the attention mechanism is usually
utilized.

Attention has been recognized as an important aspect of
human perception. To the best of our knowledge, squeeze-and-
excitation (SE) is the first attention module to be integrated
into an FCN model and applied to TSC [28]. There have
been some other attention modules, such as the convolutional
block attention module (CBAM) [31] and global contexts (GC)
[32], which are specially designed for these applications in
computer vision. A common characteristic of these attention
modules is to re-weight the features extracted by a CNN
to obtain their importance. In other words, these attention
modules are attached after the CNN layers. Although such
attention mechanisms can effectively improve the performance
of a CNN, they cannot recognize the importance of each sensor
and timestep in raw time series data.

To address this issue with attention modules, the present
work proposes a TA module. The main difference between the
proposed TA module and attention modules (e.g., SE, CBAM,
GC) is that our proposed TA module is placed before the CNN
layer, and thus can directly calculate the importance of each
sensor and timestep.

To be able to calculate the importance of each sensor and
time step, the cell state ct−1 and hidden state ht−1 of previous
timesteps in LSTM are utilized [33]. As shown by the middle
panel in Fig. 1, the two states (ct−1 and ht−1) are transformed
by an FC layer. A similar operation is also applied to the
input. As shown in Fig. 1, the encoded input and states are
then transformed by certain operations such as add, tan, and
FC, before they are sent to the LSTM.

Assuming the number of sensors is N , the number of
timesteps is T , and the number of hidden units in LSTM is
M , the shape of the purple FC is defined as Wp ∈ R2M×T ,
the yellow as Wy ∈ RT×T , and the blue as Wb ∈ RT×1.
The subscripts p, y, and b represent the colors of the three FC
layers, as shown in Fig. 1. The calculation of these three FCs
can be represented as follows:

zp = Wp([ht−1; ct−1]),

zy = Wy(Xk),

zb = Wb(tan(zp + zy)),

(1)

where zp, zy , and zb donate the output of the three FC layer.
Then, the importance of each sensor can be computed as:

αk = softmax(zb) =
exp(zb)∑n
j=1 exp(z

j
b)

(2)

where αk is the weight for each timestep in Xk. Thus, the
input for each timestep can be represented as:

X̃t
k = αk ∗Xt

k = (α1
kX

1
k , α

2
kX

2
k , · · · , αn

kX
n
k ) (3)

The whole time series is weighted by LSTM and fed into the
CNN for feature extraction. There is one basic convolutional
(CONV) layer, one batch normalization (BN), and one rectified
linear unit (RELU) sequentially stacked in each CNN layer.
In this work, 1D CNN is applied. The convolution operation
in each CNN layer can be summarized as follows:

Y = CONV (X,W,b)

Y = BN(Y)

Y = ReLU(Y)

(4)

where X ∈ RT×M is the weighted input, Y is the intermediate
features, and W and b are trainable parameters in the 1D
CNN. The CNN block is constructed by sequentially stacking
several CNN layers. The optimized layers of the CNN block
are discussed in Section IV.

D. Icing Detection of Wind Turbine Blades
In this work, the icing detection of wind turbine blades is

considered to be a binary classification problem. The feature
representations obtained by the TACNN are fed into a global
average pooling (GAP) layer and an FC network. The softmax
function is utilized in the output layer to output a probabilities
for icing and normal (non-icing) statuses.

Assuming the features obtained by the TACNN are X ∈
RK×T , where K is the number of filters in the CNN layer
and T is the length of the time series, the output probability
Pk ∈ [0, 1] of the corresponding icing condition for icing and
normal statuses can be computed as follows:

Pk = softmax(Φ(GAP (s))) =
exp(ΨkΦ(GAP (s)))∑n
k=1 exp(ΨkΦ(GAP (s)))

(5)
where Φ is the parameter of the FC network, Ψ denotes the
parameter of the output layer, and

∑n
k=1 Pk = 1, k ∈ [0, 1]. It

is worth noting that these parameters, Φ and Ψ, are automat-
ically updated and optimized during training on the basis of
training samples.

In this paper, the back-propagation algorithm is utilized to
train the model in gradient descent and the cross entropy is
chosen as the loss function. The Adam algorithm is used to
optimize the loss function to achieve efficient calculation and
minimize memory usage.

IV. EXPERIMENTS AND DISCUSSION

All experiments are implemented on a server equipped with
Intel processors (64GB) and TITAN V (12GB). Pytorch is used
for the implementation of the models. Throughout the training
process, the learning rate is set to 1e-4.

A. Benchmark Comparison
The proposed TACNN can be considered as a general

solution for TSC. Thus, the TACNN is firstly evaluated in
ten public benchmark datasets [34]. The ten datasets consist
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TABLE I: Accuracy Comparison in UEA Multivariate Time Series Dataset.

Dataset TACNN TapNet MLSTM
-FCN

WEASEL
+MUSE

ED
-1NN

DTW-
1NN-1

DTW-
1NN-D

ED-1NN
(norm)

DTW–1NN
-I(norm)

DTW–1NN
-D(norm)

ArticularyWordRecognition 0.983 0.987 0.973 0.99 0.97 0.98 0.987 0.97 0.98 0.987
AtrialFibrillation 0.467 0.333 0.267 0.333 0.267 0.267 0.2 0.267 0.267 0.22

BasicMotions 0.975 1 0.95 1 0.675 1 0.975 0.676 1 0.975
FaceDetection 0.629 0.556 0.545 0.545 0.519 0.513 0.529 0.519 0.5 0.529

HandMovementDirection 0.446 0.378 0.365 0.365 0.279 0.306 0.231 0.278 0.306 0.231
Heartbeat 0.756 0.751 0.663 0.727 0.62 0.659 0.717 0.619 0.658 0.717
NATOPS 0.961 0.939 0.889 0.87 0.86 0.85 0.883 0.85 0.85 0.883
PenDigits 0.988 0.98 0.978 0.948 0.973 0.939 0.977 0.973 0.939 0.977

SelfRegulationSCP2 0.572 0.55 0.472 0.46 0.483 0.533 0.539 0.483 0.533 0.539
StandWalkJump 0.533 0.4 0.067 0.333 0.2 0.333 0.2 0.2 0.333 0.2
Average Value 0.731 0.687 0.617 0.657 0.585 0.638 0.624 0.584 0.637 0.626

Wins&Ties 8 1 0 1 0 1 0 0 1 0

of various applications, such as FaceDetection, Heartbeat, and
PenDigits. The number of output classes also varies. For
example, FaceDetection has only two classes, while Articu-
laryWordRecognition has 25. The size of the ten datasets also
varies from hundreds of kilobytes to several megabytes. Clas-
sification accuracy is employed as the evaluation metric. The
average accuracy and the number of Wins/Ties are calculated
for the comparison of different approaches.

The state-of-the-art approaches used for evaluation are as
follows: 1) TapNet [35]: TapNet is a recently proposed model
based on prototypes for TSC. The TapNet can extract features
automatically by utilizing its parallel structure of LSTM and
CNN, and then identify the class according to the distance
from the extracted features to the prototype. 2)MLSTM-
FCN [28]: This model consists of two parallel structures,
LSTM and FCN, and the FCN is equipped with an SE module.
3) WEASEL-MUSE [36]: WEASEL-MUSE is a feature-
based model for TSC. 4) ED-1NN, DTW-1NN-I, DTW-
1NN-D, ED-1NN(norm), DTW-1NN-I (norm), and DTW-
1NN-D (norm): In these methods, Euclidean distance (ED)
and dynamic time warping (DTW) represent two distance
measurement methods. I means that the DTW treats each
dimension individually and D denotes that the data normal-
ization is applied. The hyper-parameters of the TACNN are
as follows: the number of hidden units in LSTM M = 64,
and three layers of CNN are utilized based on the number of
filters {128, 256, 128}. Only one FC layer is used in the icing
detection network in this experiment. The best accuracy for
each dataset is denoted with boldface.

In terms of average accuracy, the proposed TACNN out-
performs all state-of-the-art methods. The TACNN gets the
best average accuracy of 0.731, a significant improvement
over the existing state-of-the-art approach, TapNet, with an
average accuracy of 0.687. In terms of the number of wins/ties,
our model achieves eight, which is the best among the nine
methods, while TapNet and WEASEL+MUSE achieve only
one win or tie each. These results suggest that our model
can achieve better performance in most datasets, especially in
those datasets with small amounts of data such as Heartbeat
and HandMovementDirection, which only contain hundreds of
training samples.

TABLE II: SCADA Data Specification

No. Parameter No. Parameter
1 Wind speed 14 Temperature of pitch motor 1
2 Generator speed 15 Temperature of pitch motor 2
3 Active power 16 Temperature of pitch motor 3
4 Wind direction 17 Horizontal acceleration

5 Average wind direction
angle within 25s 18 Vertical acceleration

6 Yaw position 19 Environment temperature
7 Yaw speed 20 Internal temperature of nacelle
8 Angle of pitch 1 21 Switching temperature of pitch 1
9 Angle of pitch 2 22 Switching temperature of pitch 2
10 Angle of pitch 3 23 Switching temperature of pitch 3
11 Speed of pitch 1 24 DC power of pitch 1 switch charger
12 Speed of pitch 2 25 DC power of pitch 2 switch charger
13 Speed of pitch 3 26 DC power of pitch 3 switch charger

B. Dataset and Evaluation Metrics

In this work, icing data for the wind turbine blades are
obtained from Goldwind Inc., one of the largest manufac-
turers of wind turbines in the world. We have access to the
operational data of three wind turbines logged by the SCADA
system in Inner Mongolia, China. The recorded running times
for the three turbines are 305.77, 695.59, and 329.28 hours,
respectively.

There are some interruptions in the first two machines due
to the stop, and only the last one machine has continuous
logging. The raw sensor data collected by the SCADA system
include hundreds of dimensions. Only 26 parameters related
to icing blades are left; the remaining parameters are removed
by the engineer based on the domain knowledge. Furthermore,
the engineers also help us label the range of icing occurring.
The sensor data are highly imbalanced according to the labeled
range, and thus the imbalanced data processing described in
Section III-B is applied. The data from the two machines
whose sensor data have interruptions are mixed up for offline
training and testing. The ratios for training and testing are
approximately 80% and 20%, respectively. The data from the
machine with continuous logging are utilized in the online
estimation of icing probability.

The following metrics are used to evaluate the models:
including Precision, Recall, F1, and Matthews correlation
coefficient (MCC). The definitions of these metrics are pre-
sented as follows:
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Precision =
TP

TP + FP
Recall =

TP

TP + FN
(6)

F1 =
2× Precision × Recall

Precision + Recall
(7)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(8)

where TP , FP , FN , and TN represent true positive, false
positive, false negative and true negative, respectively.

C. Baseline Comparison
To verify the performance of our proposed approach to icing

detection on wind turbine blades, we compare ten baseline
networks. The details regarding the ten baseline networks are
as follows:

• MultiLayer Perceptron (MLP): There are three FC
layers with 500 hidden nodes in each layer. The dropout
layer is employed between FC layers.

• Long Short-Term Memory (LSTM): LSTM is a power-
ful tool for the modeling of time series data. The LSTM
used for comparison in this work is only one layer. The
number of hidden units is selected from {8, 16, 32, 64},
and the best performance model is chosen for compari-
son.

• Gated Recurrent Unit (GRU): GRU is a light-weight
variant of LSTM, but its performance is not inferior to
LSTM. The number of hidden units for GRU is also
selected from {8, 16, 32, 64}, and the best performance
model is chosen for comparison.

• CNN: A CNN layer is utilized with the parameters and
structure described in Section III-C.

• FCN: FCN shows competitive performance in TSC [27].
There are three convolutional layers with filter size of
{128, 256, 128} in this experiment.

• ResNet: ResNet is a variant of CNN which is widely used
in TSC. The ResNet used for comparison is adopted from
[27].

• WaveletFCNN: WaveletFCNN is a deep neural network
especially designed for blade icing detection in wind
turbines. WaveletFCNN integrates the wavelet transfor-
mation and fully convolutional neural network (FCNN),
which automatically learns useful features from raw sen-
sor data. We use the same settings as described in [10].

• MSCNN: is a novel multi-scale deep CNN for fault
diagnosis in wind turbine gearboxes. The model is re-
implemented according to the settings in this research.
In the present work, three scales are considered in the
MSCNN [16].

The MLSTM-FCN and TapNet are described in Section
IV-A. Our proposed model is an end-to-end deep learn-
ing model. Thus, only the two deep learning models (i.e.,
MLSTM-FCN and TapNet) described in Section IV-A are
used for comparison in this section. The hyper-parameters of
the TACNN are also the same as in Section IV-A, except that

there are three FC layers in the icing detection network in this
experiment. The window size (T) for the sensor data is 128
(almost 15 mins).

TABLE III: Performance of baseline comparison on SCADA
data

Models Recall Precision F1 MCC
MLP 0.607 0.718 0.714 0.420
LSTM 0.659 0.863 0.799 0.601
GRU 0.594 0.851 0.770 0.544
CNN 0.556 0.851 0.756 0.520
FCN 0.730 0.879 0.833 0.665
ResNet 0.885 0.778 0.834 0.674
TapNet 0.710 0.776 0.777 0.547
MLSTM-FCN 0.657 0.833 0.786 0.570
WaveletFCNN 0.445 0.920 0.732 0.498
MSCNN 0.687 0.837 0.798 0.594
TACNN 0.922 0.850 0.891 0.784

As illustrated in TABLE III, our proposed model achieves
better results than did the other baseline methods. In terms
of MCC and F1, our model has almost 16.3% and 6.83%,
respectively, improvements over the best result achieved by
ResNet. Compared with the worst-performing model, there is
an improvement of 24.8% and 86.7% regarding to F1 and
MCC, respectively. LSTM and GRU are slightly better than
MLP due to their ability to learn periodic features. As for
Recall, our proposed model is the only one whose accuracy
is greater than 90%. However, WaveletFCNN achieves better
accuracy in Precision than our proposed TACNN. ResNet
and FCN obtain almost the same levels of accuracy as the
F1 and MCC metrics. Surprisingly, TapNet and MLSTM-
FCN do not achieve the desired accuracy. The reason for this
may be that there are numerous hyper-parameters that would
have needed to be optimized to obtain higher accuracy. In
addition, these two methods are designed for multivariate TSC
problems rather than the field of wind turbines. WaveletFCNN
and MSCNN are specially designed multi-scale deep neural
networks intended for use in fault diagnosis in wind turbines.
Compared with WaveletFCNN and MSCNN, the performance
of the TACNN has improved by 57.4% and 32.0% for MCC,
respectively. For F1, there was an improvement of 21.7% and
11.7% over these two methods (WaveletFCNN and MSCNN,
respectively). Importantly, WaveletFCNN and MSCNN be-
long to the concept of multi-scale networks. WaveletFCNN
uses wavelets to generate multi-scale features, while multi-
scale entropy is utilized for multi-scale feature generation by
MSCNN. The performances of WaveletFCNN and MSCNN
are not as expected. One possible reason is that we only select
a specific variant for comparison (the scale is set to three in
both methods). Furthermore, MSCNN is designed for health
monitoring of wind turbine gearboxes and may not be able to
fully mine the discriminative features from the sensor data for
blade icing.

D. Comparison with Other Attention Mechanisms
To further illustrate the performance of the proposed ap-

proach, three widely used attention mechanisms are used for
comparison with the icing datasets, presented in TABLE IV.
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TABLE IV: Comparison with other attention modules

Models Recall Precision F1 MCC
SE 0.727 0.848 0.818 0.633
CBAM 0.863 0.780 0.829 0.660
GC 0.996 0.746 0.845 0.729
TACNN 0.922 0.850 0.891 0.784

For a fair comparison, these attention modules are attached
after CNN layer. The structure and parameters for the CNN
are the same as those used in TACNN. It is worth noting
that there is one attention module attached to every CNN
layer. The details of the attention modules used are as follows.
SE [37]: is a famous attention module proposed for CNN.
CBAM [31]: is sequentially comprised of channel and spatial
attention module. GC [32]: is a lightweight attention module
that can model the global context.

TABLE IV clearly indicates that the proposed TACNN
outperforms the other attention modules in terms of MCC,
F1, and Precision. GC achieved the second-best performance
among the three attention modules because it is equipped with
better feature learning capabilities. Specifically, the proposed
TACNN has 23.9%, 18.8%, and 7.54% better performances
than the SE, CBAM, and GC for MCC, respectively. With
respect to F1, SE and CBAM obtain almost the same classifi-
cation accuracy, and there is approximately a 5.44% improve-
ment between the TACNN and GC. Interestingly, for Recall,
the GC achieves almost a 100% accuracy, which is better than
the proposed TACNN. We believe that the reason for this is
that the GC has the ability to explore the relationships among
the features extracted in a global context way.

The main difference between our proposed TACNN and
these widely used attention modules is that our proposed
attention mechanism is faced with the raw sensor data, which
is applied before the CNN, while these widely used attention
mechanisms reweight the features extracted by the CNN. The
experimental results indicate that the proposed TACNN can
effectively improve performance. The reason might be that
our proposed model can directly evaluate the importance of
sensors and time steps, while these other attention mechanisms
used for TSC can not. In short, these attention mechanisms
need to rely on the features extracted by the CNN, while our
method first processes the sensor data and then is fed into
the CNN. In summary, the superiority and significance of the
proposed TA module relate to 1) reinforcing the icing status
learning mechanism and 2) exploiting the discriminant feature
learning mechanism.

E. Ablation Study and Sensitivity Analysis

An ablation study is conducted to illustrate the importance
of the proposed TA module. To perform the ablation study,
the TA module is removed, and thus it is called TACNN TA.
The performance of TACNN and TACNN TA is compared in
four different datasets when the window size is set to {32, 64,
128, 256}. As shown in Fig. 3, the F1 and MCC are presented
for TACNN and TACNN TA within this different window
size. From Fig. 3, we can observe that 1) TA do improve
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Fig. 3: Ablation analysis.

the performance of traditional CNN, 2) the biggest accuracy
drop happens when the window size is 128, and 3) with the
change in window size, the performance of TACNN increases
and then decreases. TACNN achieves the best performance
when the window size is 128. However, the performance of
the CNN gradually declines. In sum, the proposed TACNN is
determined to be sensitive to the length of the time series.

To study the influence of important factors on the TACNN
and optimize its structure, a sensitivity analysis is performed.
The results are presented in Fig. 4. To explore the impact of
the number of CNN layers in TACNN, four different networks
are created. The number of filters for the four networks are
{128}, {128, 256}, {128, 256, 128}, and {128, 256, 128, 128},
respectively. To investigate the influence of filter size in
TACNN, we set the number of layers to three, and vary the
filter size as such: {32, 64, 128, 256}. To understand the
importance of hidden units in TA module, we set the layers
of CNN to three with a filter size of {128, 256, 128} and vary
the number of hidden units from 16 to 128.

As illustrated in Fig. 4a, the highest Precision, F1, and MCC
values occur when there are three CNN layers. It also can be
seen from Fig. 4a that the worst performance happens when
the number of CNN layers is four and not one. The explanation
for this result is the impact of the number of filters. If we
optimize the number of filters, the results might change. As in
Fig. 4b, the best Precision, F1, and MCC can also be found
when the filter size of the CNN is 128. There is a trend in
the accuracy increasing for both F1 and MCC when the filter
size of the CNN increases from 32 to 128. The performance
decreases when the filter size is 256. As depicted in Fig.
4c, the best performance occurs when the number of hidden
units of the TA module is 64. There is also a trend in which
the accuracy increases when the number of hidden units in
TA module increases from 16 to 64. Then, the performance
significantly drops when the number of hidden units is 128
and grow even worse than when the number of hidden units
is 32.

F. Online Estimation
An online estimation scheme is proposed to provide real-

time identification of the icing conditions of wind turbine
blades on wind farms. The model is trained in an offline
fashion as presented in the previous section, beginning with
segmenting the historical sensor data into a fixed window size
to train the icing detector. For the online identification scheme,
a sliding window with the same length as the segments
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Fig. 4: SA of (a) CNN layers, (b) filters size in CNN, and (c) hidden units in TA.
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Fig. 5: Results of online estimation of TACNN and
TACNN TA.

moves as new sensor data become available. Then the trained
model provides a predicted probability of icing and normal
conditions. The majority vote algorithm is utilized for the
real-time estimation of icing condition. It is verified that the
majority vote algorithm can ensure robustness and eliminate
accidental errors [10]. As mentioned in Section III-B, this
machine, along with continuous logging sensor data , can
be utilized for online icing detection. In this experiment, the
hyper-parameters are the same as with previous experiments.
The model is able to predict output approximately every 4
minutes and the entire testing time is around 23 hours.

To further illustrate the performance of the proposed TA
module, the online estimation results of the TACNN and
TACNN TA are presented in Fig. 5. The magenta background
indicates the icing period (i.e., when icing has occurred),
a condition that is labeled by the domain engineer. The
green dash line presents the classical threshold (0.5) for icing
detection. During the icing period, it is easy to ensure that
the proposed TACNN achieves 100% accuracy, while the
TACNN TA has only approximately 50% accuracy. During
normal condition, the output probability of the TACNN in-
creases gradually, while the TACNN TA changes suddenly.
This suggests that these results can be attributed to the pro-
posed TA module, which employs the relationships between
time steps. Ice accumulation, of course, is generally a slow
process. Compared with the CNN, our proposed model allows
engineers more time to prevent icing, facilitating mitigation in
advance of negative outcomes.

There are only two states (i.e., normal/icing) in recorded
SCADA data; the ice accretion on blades is a gradual process
with various intensities, which makes it difficult for deep

learning models to detect the severity of icing on wind turbine
blades. In icing detection, it is of practical meaning to identify
icing of wind turbine blades at an early stage. The simplest
way is to interpret the output probability, which is defined
in Eq. 5. In other words, we can set different thresholds to
adjust the sensitivity of the proposed model for early icing
identification. For example, if the threshold is set to 0.3,
compared with the TACNN TA, the proposed TACNN can
identify icing at a very early stage, though there are some
misidentifications during the normal period. If the threshold
is 0.75, the proposed TACNN also achieves competitive per-
formance both in the normal and icing periods. In practice,
the threshold can be determined by observing the relationship
between the threshold and amount of icing.

V. CONCLUSION

This research presents a novel deep learning network for
identifying icing conditions for wind turbine blades. The
proposed model integrates the traditional CNN with a TA
module, with the goal of learning the importance of sensors
and timesteps and automatically learning and discovering
discriminative features from raw temporal sensor data. The
effectiveness of the proposed TACNN in dealing with the four
challenges mentioned in Section I has been demonstrated. The
proposed TACNN can also be considered as a general solution
for TSC, which is verified by ten public benchmark datasets.
The TACNN has been applied to the icing datasets of three
wind turbines obtained from one of the largest wind power
companies in the world. Compared with ten state-of-the-art
baseline networks, the TACNN shows significant advantages in
terms of accuracy. Compared with three widely used attention
mechanisms, the proposed model achieves competitive results.
The generalization and practicability of the proposed model
are further verified by online estimation testing.

It is worth noting that there are two assumptions for the
proposed model: 1) Feature space and label space of training
and testing samples should be the same, that is, the window
size and sampling frequency of training and testing samples
should be the same. 2) The distribution of training and
testing samples also should be the same. There are some
limitations on the proposed TACNN. The first is that it does
not indicate the severity of the icing on wind turbine blades.
One potential solution may be structural modification of the
proposed model to ensure robust feature learning of icing
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conditions. The second limitation is that the proposed TACNN
relies on individual training for every individual wind turbine,
limiting generalization of the TACNN. As transfer learning
can be used to extrapolate to other sizes of wind turbines,
the application and improvement of the proposed model for
domain adaptability of different types of wind turbines should
also be further explored. The third limitation is that it is
dangerous to blindly apply the TACNN to vibrating systems.
There is no guarantee that the underlying model necessarily
aligns with the dynamics, rendering extrapolation difficult. A
possible solution is to combine the mathematical modeling
methods or Gaussian processes [38] to capture the dynamics
in an interretable or easy to supervise fashion. Future work
should also study the hyper-parameters optimization to obtain
the best network structure.
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[26] W. Pei, H. Dibeklioğlu, D. M. Tax, and L. van der Maaten, “Multivariate
time-series classification using the hidden-unit logistic model,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 4,
pp. 920–931, 2018.

[27] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in 2017 International
Joint Conference on Neural Networks (IJCNN), pp. 1578–1585. IEEE,
2017.

[28] F. Karim, S. Majumdar, H. Darabi, and S. Harford, “Multivariate lstm-
fcns for time series classification,” Neural Networks, vol. 116, pp. 237–
245, 2019.

[29] X. Cheng, G. Li, R. Skulstad, S. Chen, H. P. Hildre, and H. Zhang,
“Modeling and analysis of motion data from dynamically positioned
vessels for sea state estimation,” in 2019 International Conference on
Robotics and Automation (ICRA), pp. 6644–6650. IEEE, 2019.

[30] X. Cheng, G. Li, A. L. Ellefsen, S. Chen, H. P. Hildre, and H. Zhang, “A
novel densely connected convolutional neural network for sea state esti-
mation using ship motion data,” IEEE Transactions on Instrumentation
and Measurement, vol. 69, no. 9, pp. 5984–5993, 2020.

[31] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European Conference on
Computer Vision (ECCV), pp. 3–19, 2018.

[32] Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “Gcnet: Non-local networks
meet squeeze-excitation networks and beyond,” in Proceedings of the
IEEE International Conference on Computer Vision Workshops, pp. 0–
0, 2019.

[33] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell,
“A dual-stage attention-based recurrent neural network for time series
prediction,” in IJCAI, 2017.

[34] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom,
P. Southam, and E. Keogh, “The uea multivariate time series classi-
fication archive, 2018,” arXiv preprint arXiv:1811.00075, 2018.

[35] X. Zhang, Y. Gao, J. Lin, and C.-T. Lu, “Tapnet: Multivariate time series
classification with attentional prototypical network,” in Proceedings of
the AAAI Conference on Artificial Intelligence, 2020.
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