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Abstract

This master’s thesis revolves around the work on creating a deep learning based sound
event detection system for birds in the arctic biosphere. The thesis presents a workflow
starting from raw audio data, to a fully functional state-of-the-art model for the task of
sound event detection. The work undertaken and described includes approaches to anno-
tation of audio data, dataset creation, augmentation & feature engineering, state-of-the-art
deep learning model creation, inference algorithm development, and productivity focused
experimental setups for training. Lastly, the work includes an extensive codebase which
simplifies creation of models for solving sound event detection problems.

The training and validation datasets have been annotated from audio provided by Norsk
Institutt for Naturforskning (NINA) , amounting to a total of 5740 sound events span-
ning 5 different sound event classes, annotated from a source of 450 hours of audio.
A test dataset to verify generalization of the model has been sourced from user con-
tributed recordings from Xeno Canto, amounting to 677 sound events, spanning the same
5 classes.

An attempt has been made to benefit from a state-of-the-art-image based object detection
method, the Single Shot Multibox Detector (SSD), to create a custom multiline, equivalent
architecture. This architecture performed at a classwise mean Average Precision (mAP)
of 0.029, given a threshold value for Intersection over Union (IoU) of 0.5 implying a true
positive prediction, this resulted in it being deemed unfit for practical applications.

A conventional spectrographic “sliding-window” (SED) classifier apporach to Sound Event
Detection, as in the example of BirdNET has also been developed. The training results of
hundreds of individual training sessions of this classifier are presented. The best perform-
ing classification model achieved a mAP of 0.989 on the classifier validation dataset and
0.971 on the classifier test dataset, with a window size of 2.5 seconds and positive ground
truths implying 25% of the window containing the sound event. Due to its results, this
classifier was deemed fit for practical application and a sliding-window moving average
inference algorithm has been implemented, with ability to format output as csv-files or
Audacity-compliant label-files. Some examples of the outputs of the inference algorithm
are also presented.

The work in this thesis also includes an implementation of an extensive, extendable,
reusable, and nearly fully configurable, sliding-window sound event detection codebase,
which is mainly implemented through the pytorch framework, using torchvision and tor-
chaudio as supplementary frameworks. The codebase should be suitable for application
on most sound event detection problems with minimal efforts except annotation, allowing
further work to be done more effectively in the future.

This thesis is written under the assumption that the reader has some background knowl-
edge within state-of-the-art deep learning techniques, and has at least an introductory
level familiarity with the pytorch-framework. A couple of key ideas behind state-of-the-
art techniques are elaborated upon, but it does not elaborate on the core mathematical
fundamentals of how ANNs work.

A recommendation for an introduction to ANNs is Michael Nielsens “Neural networks
and deep learning” in addition to Grant Sandersons introductory video series on the topic,
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published on his YouTube channel “3Blue1Brown”. To get both a practical and a theo-
retical grip on the pytorch framework and some of the more state-of-the-art deep learning
techniques, reading papers on the techniques and pytorch-implementations of them is
recommended. A couple of recommendations are the ResNet-paper and the SSD-paper.
Additionally, pytorch can be described as one of the best documented frameworks that’s
publically available, and it can be highly recommended as a learning source.
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Sammendrag

Denne masteroppgaven dreier seg rundt et arbeid for å skape et dyp-lærings-basert sys-
tem for lydhendelsesdeteksjon (”sound event detection”) for fugler i den arktiske bios-
færen. Oppgaven presenterer en arbeidsflyt fra råe lydfiler, til en fullt fungerende, topp-
moderne modell for oppgaven av lydhendelsesdeteksjon. Oppgaven inneholder beskriv-
elser av tilnærminger til annotering av lyddata, datasett-skaping, augmentering & egen-
skapsskaping for lyddata, toppmoderne dyplærings-modeller, utvikling av algoritme for
postprossessering av prediksjoner, og produktivitetsfokusert eksperimentelt oppsett for
modelltrening. Sist, men ikke minst omhandler oppgaven utvikling av en omfattende
kodebase som forenkler utvikling av “glidevindu”-løsninger for lydhendelsesdeteksjon-
sproblemer i fremtiden.

Gjennom oppgaven har datasett for trening og validering blitt annotert fra opptak gjort
av Norsk Institutt for Naturforskning (NINA). Opptakene som annoteringene er gjort på,
består til sammen av 450 timer med lydopptak, og fra disse har det blitt annotert til
sammen 5740 unike lydhendelser som spenner 5 forskjellige klasser. Et testdatasett for
å verfisere generalisering av modellen har blitt hentet ut fra brukerbidrag til Xeno Canto,
og fra disse bidragene har det blitt annotert 677 lydhendelser som spenner de 5 samme
lydklassene.

Under oppgaven har det blitt gjort et forsøk på å skape en lydhendelsesdeteksjons-parallell
av “Single Shot Multibox Detector”. Denne arkitekturen førte til en “mean Average Pre-
cision” (mAP) på 0.001 regnet ut med en terskelverdi for “Inetersection over Union”
(IoU) på 0.5 for en sann positiv prediksjon, dette førte til at videre implementasjon av en
praktisk applikasjon ble utelukket i arbeidet.

En forholdsvis konvensjonell spektrografisk “glidevindu”-klassifisator-tilnærming til ly-
dhendelsesdeteksjon, i likhet med “BirdNet” har også blitt utviklet. Resultater fra hun-
drevis av eksperimentelle treningsøkter på klassifisatorer for dette er presentert. Den beste
klassifisatoren klarte å oppnå en mAP på 0.989 på valideringsdatasettet, og 0.971 på test-
datasettet. Dette ble gjort med vindustørrelse på 2.5 sekund, og med en antakelse om at
dersom 25% av vinduet inneholder en lydhendelse av en klasse, er det en positiv instans
for klassen. Denne klassifisatoren ble dømt til å være passende for implementasjon, og en
algoritme for postprossessering av flertallige klasseprediksjoner for enkeltvindu til kon-
tinuerlige lydhendelsesprediksjoner presenteres. Den praktiske tilnærmingen inklduerer
også mulighet for eksportering til csv-filer eller Audacity-kompatible merkelapp-filer. Ek-
sempler på lydhendelser som er predikert, er også presentert.

Arbeidet under oppgaven inkluderer også implementeringen av en omfattende, utvidbar,
gjenbrukbar, og nærmest fullt konfigurerbar kodebase for lydhendelsesdeteksjonsprob-
lemer. Kodebasen er først og fremst implementert gjennom pytorch-rammeverket for
python, med torchvision og torchaudio som støtterammeverk. Kodebasen skal ha mu-
lighet for å støtte tilnærmet hvilket som helst lydhendelsesdeteksjonsproblem med enklere
innsats fra en bruker.

Oppgaven er skrevet med en antakelse om at leseren har litt bakgrunnskunnskap in-
nen toppmoderne dyp-læring-teknikker, samt en forholdsvis grei kjennskap til pytorch-
rammeverket. Et par oversiktlige ideer bak noen av de mer toppmoderne teknikkene in-
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nenfor dyp læring er presentert, men oppgaven går ikke inn på detalj på den matematiske
kjernen til kunstige nevrale nett.

En anbefaling for en introduksjon til kunstige nevrale nett er Michael Nielsens ”Neural
networks and deep learning” samt Grant Sandersons videoserie på temaet, publisert på
YouTube-kanalen “3Blue1Brown”. For å få en praktisk, samt teoretisk forståelse for noen
av de mer toppmoderne teknikkene innenfor emnet, kan det anbefales å lese artiklene om
noen av de større nyvinningene innen emnet, samt lese deres implementering i pytorch. To
anbefalinger til noen mer moderne artikler er SSD og ResNet. Tilleggsvis kan det nevnes
at pytorch kan beskrives som en av de best dokumenterte rammeverkene til python som
er offentlig tilgjengelig, og det kan anbefales på det høyeste å anvende dokumentasjonen
deres som en læringskilde.
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1 Introduction

In the past few years, the availability and feasability of developing deep Artificial Neural
Networks (ANNs) has made the field figuratively explode with areas of application. To
illustrate this point, in the original version of Figure 1, published in 2014, the woman
requested a research team and 5 years to detect whether a bird was in a photo, while
today, it can be achieved by grad students working outside their field of expertise in a
matter of months, if not even days.

Figure 1: A self-made twist on one of my favorite comics, XKCD, the original made by
Randall Munroe, a retired programmer/roboticist who now makes comic strips [23], the
picture is licensed under CC BY-NC 2.5 [8]

.

As Figure 1 references, the main problem taken on in this master’s thesis has been detec-
tion and classification of bird vocalizations. This problem falls into a broader category of
machine learning problems commonly referred to as Sound Event Detection (SED).
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1.1 Task description

The task at hand can be visually explained as making the system within the dotted line in
Figure 2.

Sound Event
Detection System

Input

Time+

Output
Bird1

Bird2
Bird1

Bird3

Bird1
Bird2

Time+
Figure 2: A diagram displaying the scope of this task as the system within the dotted line,
input is an audio file, output is predictions of distinct types of bird vocalizations.

The scope of the project is that the system, here depicted as a purple arrow, should uti-
lize a deep learning model to produce the output. The system should be made for post-
processing of recordings, and is therefore not subject to real-time constraints. The outputs
should be formatted as a sound event label, the starting time of the sound event (onset),
and the end time of the sound event (offset).

1.2 Motivation

The world is always, and has always been undergoing changes, but current scientific con-
sensus tells us with overwhelming confidence that this change is happening faster than
what is permissible for it to continue supporting population growth in addition to the pop-
ulation already inhabiting it. One of the bigger crises that’s currently underway is the
permanent and irreversible loss of biologic diversity. One of the main missions of Norsk
Institutt for Naturforskning (NINA), is to do research on wildlife to find solutions for the
environment that takes this and other aspects of sustainability into account [24]. Software
based solutions, like this sound event detector, may allow for some of their more tedious
and repetetive workload to be automated. When their more tedious workloads are auto-
mated, it will potentially allow NINA to further focus on the essence of their academic
work. If this is the case, it may potentially allow NINA to produce more, and better
solutions, which may help their mission.
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1.2.1 Codebase motivation

The cooperative ongoing research between NTNU and NINA, of which this project is an
example of, is likely to continue, and will probably generate multiple projects involving
bio-acoustic sound event detection. Given this assumption, it’s assessed as a productive
endeavor to create an extendable, reusable, configurable codebase, for similar projects,
hopefully accelerating the rate of which these kinds of models can be created in addition
to increasing the developed models’ performance.

1.2.2 Dataset creation motivation

To create a working deep learning model, a dataset has to be generated; through corre-
spondence with NINA, a suitable compromise between their interests and project feasabil-
ity has been established in the bird species listed in Table 1.

Table 1: Target birds for the project. Norwegian names are listed due to them being used
during annotation.

eBird code English name Norwegian name
comsnip Common Snipe Enkeltbekkasin
whimbr1 Whimbrel Småspove
eugplo European Golden Plover Heilo
woosan Wood Sandpiper Grønnstilk

The bird species in Table 1 are selected by NINA due to their interest in further knowledge
of the circadian rhythmic behavior of waders. Wader denotes suborder of birds within the
charadriiformes type genus, of which members are commonly found along shorelines and
mudflats. Waders are in these areas in order to forage for food, thereby the name. Knowl-
edge about the circadian rhythmic behavior of different species is crucial for optimization
of sampling procedures for monitoring the population and nesting behavior. Both of these
aspects encompass some of the more important research areas of NINA, and a model
developed from a dataset on different species within the subspecies, will allow NINA to
research these attributes of the species with more ease than earlier.
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2 Theory

Both sound event detection and object detection are well established fields both within
applications of deep learning and also other, more classical approaches to detection and
classification. The following sections represents an attempt to elaborate on some of the
theories, methods, and techniques used to approach solutions to some of the problems
encountered during the work on this thesis.

In Section 2.1, an introduction to the metrics used for detector evaluation is given. Section
2.2 gives a theoretic basis for some approaches to data agumentation & feature engineer-
ing for audio.

In Section 2.3.1, the architecture of a sliding-window-based sound event detection system
is elaborated upon, while some key architectural details of the Single Shot Multibox De-
tector are explained in Section 2.4. Lastly, two of the more recent techniques for feature
extraction used within the works of this thesis are presented in Section 2.5.

2.1 Evaluation of detectors

To be able to quantitatively describe the performance of a detector, it is useful to estab-
lish some metrics that have been used to evaluate detector performance. This section is
dedicated to a thorough, and comprehensive introduction to the metrics discussed in this
thesis.

2.1.1 Intersection over Union

Intersection over Union (IoU) [15], also known as Jaccard index or Tanimoto index [16,
38], which is graphically explained for the case of time dimension in Figure 3, is an
evaluation metric often used within image detection to decide whether a prediction can be
classified as a true or false positive. The conventional method involves setting a threshold
value for the IoU between a prediction and any underlying ground truths; if the IoU is
below the threshold for all ground truths, the prediction is regarded as a false positive, if
it is above, a true positive. A usual IoU threshold for images is 0.5 [10].

Of course, calculation of IoU is only relevant between predictions and ground truths of
the same class, as an IoU between a prediction of one class, and a ground truth of another,
can not imply a true positive.
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Prediction 1 Prediction 2

t+

Intersection

Ground truth 2

UnionUnion

Intersection

Ground truth 1

= 0.75 = 0.40
Figure 3: An example of IoU calculations in the time dimension, if the IoU threshold
were 0.5 here, Prediction 1 would be a true positive and Prediction 2 would be a false
positive.

2.1.2 Average Precision

Average Precision (AP ) is an evaluation metric which by itself can describe the relation-
ship between precision and recall within threshold value based detectors, with precision
(P ) and recall (r) being calculated from the amount of true positives (TP ), false positives
(FP ), and false negatives (FN ) by the relationship described in (1) and (2).

P =
TP

TP + FP
(1)

r =
TP

TP + FN
(2)

Since both precision and recall are dependent on some threshold value used to classify a
sample as positive or negative, a relationship between the two is developed by viewing
precision as a function of recall where the precision, P , at a given recall value, r is equal
to P (r). Given this, average precision in its continuous form is elaborated in (3) with its
discrete, numeric counterpart in (4) [43].

AP =

∫ 1

0

P (r)dr (3)

AP
D
=

1

R

R∑
r=0

P (
r

R
) (4)

It is also common practice to use an interpolated value for precision,
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Pinterp(r) = maxr̂:R>r̂>rP (r̂), so that one of the more common implementation of aver-
age precision is shown in (5) [10, 32].

AP
D,interp

=
1

R

R∑
r=0

Pinterp(
r

R
) (5)

To get mean Average Precision (mAP), the average precision for all classes is calculated,
yielding mAP as the mean of all classes’ average precisions.

2.2 Data augmentation & feature engineering

Feature engineering

Feature engineering can be described as utilization of domain specific knowledge to trans-
late raw data into features that makes solving for a solution from already existing meth-
ods feasible. For a more concrete example, one might actually argue that the k-nearest-
neighbor algorithm is an example of feature engineering, representing the raw data as
coordinates within an n-dimensional euclidean space, finding the classes of the k near-
est points to the point in the n-dimensional euclidean space and using the neighbouring
classes as a feature to solve the problem of classification, an example of this can be shown
in Figure 4.

Raw data as points in euclidean space Features (k=5)

Figure 4: Example of k-nearest-neighbors with k=5 and two dimensions, where the black
spot should be classified.

Data augmentation

Data augmentation is a well established method for increasing model generalization through
artificially inflating the training dataset [19, 35, 37]. Data augmentation is usually done
through adding some sort of randomized alterations that should not affect the final model
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outcome [33]. An informal analogy can be found through giving a student a math as-
signment with random parameters; since the method of solving the problem remains the
same, the random parameters forces the student (model) to learn the method for solving
the problem (generalization), instead of just cramming the answers (overfitting).

2.2.1 Spectrograms

Creating spectrograms from raw audio data is a feature engineering technique used within
sound classification to convert data from the target domain of audio to a source domain of
2-dimensional images [17]. Within applications of deep learning, one of the most com-
mon source domains is image classification, so this is a feature engineering method which
makes a lot of sense coming from a target domain of audio, even though this isn’t a loss-
less feature convertion, and data is lost in the process.
Configuring the window size, Wwindow and the hop length of the Fast Fourier Transform
(FFT), Whop slided along the time axis enables generation of spectrograms with a resolu-
tion fitting any image based model input dimensions, as the output width Wout and output
height Hout can be written as (6) and (7), given the input audio signal width, Win [39].

Wout = d
Win −Wwindow

Whop

e (6)

Hout = b
Wwindow

2
c+ 1 (7)

2.2.2 Logscale

Attenuation of acoustic signals usually works as exponential decays over the distance
between the signal generator and the signal receptor, dependent on the properties of the
medium in which they propagate and the signal’s frequency properties [34]. To ensure that
the more attenuated signals are represented in a manner that makes them easily detectable,
one could therefore refactor the signal strength into a logarithmic scale to effectively
represent the attenuation as linear. This input data transformation is quite simple and can
be seen in (8), where X is the input data, and X̂ is the modified data.

X̂ = log(X) (8)

2.2.3 Standardization

Input signals to the classification model usually has a wide range of input signal strength
and noise, sometimes noise that may appear as the event the model is trying to detect. In
the case of this project, it may be different bird vocalizations that appear to be the same as
the vocalizations the model is trying to detect. If the features of this unknown bird vocal-
ization are similar enough, and the signal strength strong enough, it may be misclassified
as an instance of the vocalization that the model is trying to detect. A useful method to aid
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the model through this problem, is to standardize the input data [5]. Input data that has
been standardized prevents negative ground truths from overwhelming the classifier into
a false positive prediction. The standardization transformation can be formally written as
(9), where X is the input data, and X̂ is the modified data.

X̂ =
X − µ

X

σ
X

(9)

To clarify a possible misunderstanding due to ambiguous notation usage, in (10), the σ
X

,
represents the standard deviation of X , not to be confused with the σ used to represent
the sigmoid activation function in (12).

2.2.4 Random time shifting

Random time shifting is an established technique for audio data augmentation [22], and it
could be described as the audio equivalent of random and resized crops for images [30].
For a detection and classification scheme which incorporates the features of a Single Shot
Detector, the time shifting is rather unproblematic, as the annotations consisting of classes
with onset & offset of the underlying audio can just be reformatted and forwarded with
the shifted time sequence.
However, when random time shifting of multiclassled data with onset and offset annota-
tions is done on data that’s supposed to be used to train or validate a multilabel classifier,
a problem arises: how much of the randomly selected time series need to contain a sound
event of a given class for the window to be considered a true positive instance of the
class? To put it in the perspective of this thesis; how much of a given audio sequence
needs to contain a bird song for it be considered an audio sequence containing the bird
song? This is a problem that will need to be examined further to be able to provide an
optimal solution. The intermediate solution presented in this thesis is to set an adjustable
IoU threshold that determines whether an underlying time series contains a true ground
truth or if it is negative. An example of this scheme can be seen in Figure 5.

Time series with labels containing class, onset, & offset

Randomly chosen sub time series with
classes that has IoU > Threshold

Figure 5: Random timeshift with IoU being over a predetermined threshold implying an
active class in the randomly selected time series.

Here, the threshold IoU value is left as an adjustable parameter, since this value doesn’t
have any easily apparent methods to approximate without experimentation.
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2.2.5 Gaussian noise

Adding gaussian noise is a simple, well established method to randomly obfuscate input
data so that it appears different before each pass through a model [6]. The gaussian noise
added to the input data should also be adjusted to the loudness of the underlying data in
the model, so that the whole operation can be written as shown in (10), where X is the
initial input data and X̂ is the modified data.

To further clarify, in the equation Xi represents an element in a vector X , N (0, 1) rep-
resents a normally distributed random variable with standard deviation of 1 and expected
value of 0, and σ

X
is the standard deviation of a vector X .

X̂i = Xi +N (0, 1) · σ
X

(10)

However, by looking at (10), it is clear that the noise added by this transform only has one
possible intensity, which is the standard deviation of the input data. It’s not a certainty that
the standard deviation is a clear cut answer for how much data augmentation is required
for optimal training results. A modified version of (10) can be seen in (11), with noise
intensity α left as an adjustable parameter.

X̂i = Xi +N (0, 1) · σ
X
· α (11)

2.3 Sliding-window classifier

Sliding-window classification is an established technique for detection and classification
of bird vocalizations, and have yielded applicable results in the case of BirdNET [17].
The deep learning aspect of a sliding-window classifier has the exact same architecture as
a normal classifier, this implies that the task of training the classifier can be done in the
same way as a commonplace audio classification system. The main difference between
a sliding-window classifier and a commonplace classifier lies in the inference algorithm,
where the inferring task of a normal classifier is to predict the class of a single data point,
the task of inferring with a sliding-window classifier is to infer predictions of classes on
multiple consecutive data-points, and then utilize these inferred class predictions to make
estimates for the onsets and offsets of the classified sound events. The sound event in the
case of this thesis, is a bioacoustic sound of a specific pattern, generated by a specific bird
species.

2.3.1 Sliding-window classification

Sliding-window classification works by extracting windows of a fixed size, N , from the
main audio recording, running a classification scheme on the windows, and then running
some functionality to convert these single point predictions into continuous onset & offset
predictions. The windows starting points other with a preselected hop sized space. A
visual interpretation of the method can be seen in Figure 6.
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One of the main disadvantages of this method is that during development, it is difficult to
determine the optimal window size for the different temporal aspects of the audio signals
that has to be classified [27] (e.g. birds have differing length in vocalization patterns).
Window size N , is therefore best suited to be left as a user adjustable parameter, allowing
for an experimental approach to estimate the right window size for any given dataset.

Entire audio recordingX0

X1,0 X1,1 X1,N
    . . . . . . 

Entire audio recordingX1

Hop
length

Classification
scheme

Y1

Y0X0,0 X0,1 X0,N
    . . . . . . 

Classification
scheme

Figure 6: Sliding-window classification, where X0, and X1 is, respectively, the first and
second window of the main audio recording, with Y0 and Y1 as the respective first and
second window class predictions from the classification scheme.

2.3.2 Multilabel classification

Different types of sound events one might wish to detect might occur at the same time in
the audo recording. To atone for this, the developed classification scheme should support
multilabel classification. Multilabel classification can be defined as a set of classification
problems where the different classes are not mutually exclusive, meaning several classes
may have positive ground truths in the same input instance [7]. By treating the problem
as multiple binary relevance problems [42], the models used for multilabel classification
can almost have the exact same architecture as models used for mutually exclusive clas-
sification, with the exception of the final activation function and the loss function.

Activation function
The conventional activation function used for multilabel classification treated as multiple
binary relevance problems is the sigmoid function (12) [7], with a selected plot displayed
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in Figure 7.

σ(x) =
1

1 + e−x
(12)

6 4 2 0 2 4 6
x

0.0

0.2

0.4

0.6

0.8

1.0

(x)

Figure 7: Sigmoid function for x ∈ [−6, 6].

The reasoning behind using sigmoid for the output is that it has the ability to take any
output of a layer, x, given x ∈ R, at face value and place the output between 0 and 1,
which can be translated into a value that represents the model’s “confidence” in a given
class being a true positive. This is the reason the unprocessed output of the activation
function is referred to as “confidence values”.

Loss function
The loss function, `(x, y), with x, y respectively representing predicted value and actual
value, most commonly used for multilabel classification problems solved as multiple bi-
nary relevance problems is Binary Cross Entropy loss (BCE) [7]. BCE can be written as
(13). By taking the sigmoid activation function (12) into account, the loss function from
the unactivated neuron output is written as (14).

`(x, y) = L = {`0, ..., `N}> , `n = −wn[yn · log(xn) + (1− yn) · log(1− xn)] (13)

`(x, y) = L = {`0, ..., `N}> , `n = −wn[yn ·log(σ(xn))+(1−yn)·log(1−σ(xn))] (14)

In (13) and (14), L represents the vector of loss, one for each of the N predicted classes,
wn is an adjustable weight parameter that can be set to remedy datasets being skewed
toward certain classes. The common implementation of the loss function is modeled as
(14) since combining the activation function takes advantage of the log-sum-exp trick,
making the calculation more numerically stable [2, 12].
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2.3.3 Moving mean of class confidence

If the sliding-window classifier described in Section 2.3.1 is applied in combination with
multilabel classification, it allows for the different confidence levels that are output of
the model to be taken into a moving mean scheme. This scheme will allow for the final
predictions to be more precise than otherwise, as a result of the fact that a false positive
will require the classifier scheme to make multiple false positive predictions before the
final moving mean score is tipped into a false positive classification, vice versa for recall
and false negatives. For a visual representation of this concept, see Figure 8.

Y0 Y1 Y2 YN-1 YN. . . . . .

+

+

+

= C0 C1 C2 C3 CH-3. . . . . . CH-2 CH-1 CH

/ 4
/ 4

/ 4
/ 4

Y0 Y1 Y2 YN-1 YN. . . . . .

Y0 Y1 Y2 YN-1 YN. . . . . .

Y0 Y1 Y2 YN-1 YN. . . . . .

Figure 8: Moving mean confidence value scheme. Hop size here is window size divided
by 4, this has the implication that H, representing the length of C, is equal to N+3. N
being the amount of hops through the entire record that inference is run on.

Another benefit of the moving mean architecture is that a confidence score is provided
for each hop of the classifier, in addition to the offset made by the window size, poten-
tially making the predicted onsets and offsets more accurate. Under the assumption of
a perfectly working classifier, the upper limit of the onset and offset time’s inaccuracy
(εmax) can be written as (15), with the error having a uniform distribution. The reason
for it having a uniform distribution is that given a random sound event in a window, the
difference between the starting point of the window and the starting point of the onset of
the sound event will be uniformly distributed, vice versa for offsets.

εmax = Whop (15)

To add to this, a certain gap will be required between sound events of the same label for
them to be considered separate events, and the minimum of this required length, Lsep,min,
assuming a perfectly working classifier will be equal to the width of the classifier window
Wwindow. The maximum required gap Lsep,max between sound events of the same label
will be the width of the hop added to the width of the window. The argument for this is
that a perfectly working classifier applied with the sliding-window technique, will have
to make a classification on a window without any positive ground truth instances to yield
a negative classification. The extracted window in a gap between sound events may be
“placed perfectly”, meaning the window start is at the offset of a sound event and the
window end is at the onset of the next or it may be “placed poorly”, where the window
hops from a sound event being just barely within the window, to the next sound event
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barely being within the window.

Lsep ∈ [Wwindow,Wwindow +Whop] (16)

After the operation displayed in Figure 8 the confidence scores at the first 3 indices and
the last 3 indices will have to be set to a representative mean of the confidence values
they are based of, to actually represent the model’s confidence of a class being present in
the underlying hop sized time window. This technique has been arrived at independently
during work on this thesis, but there is little to no doubt that it is subject to multiple
discovery as it is neither intricate nor advanced.

2.4 Some architectural details of a Single Shot Multibox Detector
(SSD)

The SSD [19] has been a huge contribution to the scene of image based object detection,
and because of its almost “plug-and-play”-like architecture with different convolutional
backbones and feature extraction schemes, an enormous amount of “spin-off architec-
tures” from the original has been conceived, amounting to the original article having over
15000 citations. A brief overview of the original architecture can be seen in Figure 9.

Reduction 1

Redution 2

Reduction 4

Reduction 3

Reduction 5

Reduction 6

Reduction 9

Reduction 7

Input image (W×H)=(300×300)

(W×H)=
(38×38)

(W×H)=
(19×19)

(W×H)=
(10×10)

(W×H)=
(5×5)

(W×H)=
(3×3)

(W×H)=
(1×1)

Box Head

Classification
Head

Predicted
boxes

Predicted
classes

Figure 9: A brief overlook at the architecture of a Single Shot Multibox Detector [19].
The blocks marked as ”Reduction” are in reality Convolutional Neural Networks that
reduce the height and width dimensions by either strides or lack of padding.

Figure 9 also displays one of the bigger architectural features of the SSD, which is multi-
resolution feature maps, which aids detection of objects at multiple scales.
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2.4.1 Detector heads

Both the classification head and the box head shown in Figure 9 are in practice convo-
lutional layers, where the classification head produces a confidence map for each class
for each pixel in the feature maps, and the box head decides the offsets for the respective
bounding box. Figure 10 illustrates the technique of the classification head seen in the
forward action of a single class kernel, for a single aspect ratio, for a single box size.

5×5×C feature
map C

Class head
kernel

5×5 Class
confidence map

Figure 10: Classification head kernel forward action. C denotes the channel dimension of
the input feature map. The output is of the dimension 5×5, due to padding not shown in
the figure.

The kernels used for detection of classes in the feature map have a fixed, constant 3×3
size, but feature maps extracted from 3×3-kernels from a high resolution input image
might have underlying ground truth objects with different sizes and different aspect ra-
tios. To atone for different aspect ratios and different box sizes, both the box head and
the classification head has (#sizes)·(#aspect ratios) kernels for each feature map that is
forwarded to it. All in all, this leads to the number of output channels of a classification
head being (#sizes)·(#aspect ratios)·(#classes), while the number of output channels for a
box head being (#sizes)·(#aspect ratios)·4, where the number 4 is due to the regression of
the box center position (x, y) and the box dimensions (width, height).

Since the applied area of this thesis is grounded in sound event detection, where aspect
ratios do not exist due to there only being one dimension, time, the thesis implementation
doesn’t have to take aspect ratios into consideration.

Figure 10 could still be representative for the box head regression, as the method only dif-
fer by insted of yielding a class confidence map, it outputs a map of offsets for the place-
ment and dimensions of the bounding boxes. After non-maximum suppression, further
described in Section 2.4.2, the classes are matched to their respective box coordinates,
giving a final output of mostly non-overlapping boxes with respective class confidence
scores. This does implicate that the bounding box coordinates are estimated indepen-
dently of the underlying classes in the image.
During inference, after non-maximum-suppression, the outputs of class confidences are
usually thresholded so that predictions with low class confidences are not deemed as pos-
itive predictions.
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2.4.2 Non-maximum suppression

With the combined output of the classification head and the box head, what essentially is
provided is an enormous amount of predicted bounding boxes combined with their respec-
tive class confidence maps. The raw output will therefore ususally contain huge amounts
of overlapping bounding boxes for the same ground truth. The postprocessing technique
used to fix this is called non-maximum suppression. Non-maximum suppression takes
the highest confidence predictions from the unprocessed predictions, removes all unpro-
cessed predictions with an IoU to the aforementoned prediction above a threshold value,
and lastly adds the prediction to the output predictions. This filtering continues until there
are no more unprocessed predictions left. Python pseudocode for non-maximum suppres-
sion can be seen in the snippet below.

unprocessed_predictions = unprocessed_predictions.sort(key=confidence)
nms_preds = []
while len(unprocessed_predictions) > 0:

out_pred = unprocessed_predictions[0]
new_preds = []
for pred in unprocessed_predictions:

if iou(pred, out_pred) > nms_threshold:
continue

else:
new_preds.append(pred)

unprocessed_predictions = new_preds
nms_preds.append(out_pred)

2.4.3 Hard negative mining

During training, a SSD detector head will be presented with a huge amount of negative
ground truths compared to positive ground truths. To present the model with more positive
ground truths during training and not starve the model of positive feedback, hard negative
mining is utilized [19]. This training strategy works through sorting the negative ground
truth predictions by classification loss, generated by the classification head. Then the n
predictions with the highest classification loss among these are picked and only these are
used for backpropagation.

The number n which decides the number of high loss predictions with negative ground
truths is dictated by the number of predictions with positive predictions (b) through the
relationship: n = a · b. Here a represents a coefficient which in the SSD paper [19], is
described through this sentence: ”so that the ratio between the negatives and positives is
at most 3:1” =⇒ a ≤ 3.

2.5 Feature extraction

Feature extraction through Convolutional Neural Networks (CNNs) is easily argued to
be both the metaphorical and literal “backbone” of modern image based deep learning
applications, by reducing seemingly complex images into abstract features with high se-
mantic value. Feature extraction from 2D images is where a lot of the research efforts and
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creative, ground-breaking work is done within state of the art deep learning these days.
Because of this, it is deemed purposeful to take a quick look at a couple of the more recent
state of the art techniques, of which both are used in this project.

2.5.1 Compound scaling

EfficientNet introduced one of the most appliable and useful concepts within recent ad-
vancements of feature extraction techniques, compound scaling [35]. To shortly summa-
rize, compound scaling introduces a technique to scale up any well working small scale
model to fit a given computational budget. The compound scaling technique is illustrated
in Figure 11.
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Figure 11: An illustration of the concept of compound scaling, instead of utilizing one of
the CNN scaling methods, all are combined.

The question that remains is how to utilize the different scaling techniques in tandem, to
achieve optimal compound scaling. The EfficientNet paper presents the following solu-
tion:

depth: d = αφ , width: w = βφ , resoltuion: r = γφ , with a soft constraint given by
α · β2 · γ2 ≈ 2.

With φ being the parameter that specifies how much the network should be scaled. The
reason for the solution is that depth·width2·resolution2 is proportional to the amount
of floating point operations (FLOPS) required for forwarding an image through a 2-
dimensional convolutional neural network. Which effectively means that this is a method
for scaling a model to any given FLOPS budget. FLOPS scaling can be expressed as
FLOPS ≈ FLOPSBase · 2φ, with FLOPSBase being the FLOPS required by the baseline
model.

Through excessive testing of this method with the given constraint, the team behind the
paper reported the best results with α = 1.2 , β = 1.1 , and γ = 1.15.
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2.5.2 BiFPN

Feature Pyramid Networks (FPN) combines the advantages of the high resolution of the
more shallow features, with the high semantic value of the deeper features. The assump-
tion is that semantic value have a tendency to increase the deeper you go, but resolution
decreases. Theoretically, the original implementations of feature pyramid networks al-
lowed for the features from more shallow layers to contain the same semantic value as the
deeper layers, by upscaling the feature maps and adding them to the input to a subsequent
convolution [18]. The consept is explained graphically in Figure 12.
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output

features

FPN
output

features
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Upsample

Add

Figure 12: An example of a FPN-network applied with a convolutional backbone.

Several altered implementations of this feature extraction method have been applied within
object detection with great results; one of the more recent alterations can be found in the
EfficientDet paper, which utilizes an EfficientNet backbone with a FPN consisting of sev-
eral BiFPN-layers [37]. The name is derived from the layers being bi-directional feature
pyramid networks, which means that the features are consecutively upscaled and down-
scaled, potentially allowing for better cooperation between high-resolution, low-semantic
features, and high-semantic, low-resolution features. As a visual interpretation can pro-
vide more clarity into the technique, it is provided in Figure 13.
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Figure 13: An example of a BiFPN-layer applied with a convolutional backbone.
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3 Methodology

This section attempts to describe the process of creating custom state-of-the-art models
for sound event detection, from a starting point of unannotated audio data. In Section
3.1, the method for dataset creation for this thesis is described. The section elaborates
on dataset annotation, the annotated sound patterns, postprocessing of the audio data &
annotations, and implementation of pytorch iterable-style dataset [28] from the processed
data.

An approach to productivity focused experimental training setup is described in Section
3.2. Implementation of data augmentation & feature engineering with support for the
aforementioned experimental training setup is described in Section 3.3.

Two architectural approaches to sound event detection have been implemented through
the work on the thesis one based on the architecture of the SSD, as described in Section
2.4, and one based on a sliding-window approach, as described in Section 2.3. A SSD-
based implementation is described in Section 3.4. The dataset primarily postprocessed for
the SSD-based approach have been rewritten, and an implementation of a sliding-window
based approach, along with the dataset rewriting process is described in Section 3.5.

3.1 Datasets

The datasets used for training and validation have been sourced from recordings con-
tributed by NINA, of which all have been made around Kautokeino, in the Troms &
Finnmark-region of Norway, the recording locations can be seen in Figure 14. All record-
ings have been made with NINA’s equipment, in the same season, early summer, which,
in combination with the recording locations, bears the implication that the data used
for training and validation is sadly not as diverse, population-wise, season-wise, nor
equipment-wise, as would be required for a optimally generalized result. However, the
main task in this project, model-wise, is to make it suitable for the detection and clas-
sifications of the regional bird populations, with the equipment NINA uses, as these are
the populations that NINA actively researches and this is the equipment that NINA uses.
To investigate and further reflect upon the impact this lack of population, seasonal, and
equipment diversity, the test dataset consists of data sourced from user contributions to
Xeno Canto, theoretically providing both a population-wise and equipment-wise almost
optimal diversity for testing the generalizability across these input data altering factors.
The data from Xeno Canto published along the thesis is licensed under the Creative Com-
mons Non-Commercial sharealike license 4.0 [9]. Some of the Xeno Canto data listed
in Appendix A has also been published under licensing requiring republication to not
have any modifications done to it. Data sourced from these recordings has therefore been
omitted in the published test dataset.
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Figure 14: Map of the locations, the maps are provided by Open Street Map [25], and are
therefore licensed under CC BY-SA [26]. The locations follow the naming conventions
of NINA.

3.1.1 Dataset annotation

The annotations of the different datasets have been performed using a self-described ”ac-
tive window” method. This method is designed around the purpose of creating audio files
of a loosely fixed size, which in practice means it varies from the hard minimum length
of 1 minute, up to a soft upper limit of 2 minutes. The soft upper limit is mostly kept in
the interest of dataloader speed, since the current design of the dataset requires loading
an audio file into memory for each datapoint that is forwarded to the model. Annotations
have been manually performed by using Audacity’s labelling-functionality, with the pos-
sibility to export labels as text-files with a format that easily enables them to be parsed.
Parsing is further discussed in Section 3.1.3. The annotations within Audacity are practi-
cally performed with a ”BEGIN” label signalling the beginning of an annotated section of
the audio file, and a ”END” label signalling the end of this annotated section. A selected
screenshot from Audacity providing a visual explanation of this can be seen in Figure 15.
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Figure 15: Screen capture from Audacity providing a practical example of the annotation
method.

3.1.2 Annotated sound patterns

All the bird species that have been chosen for the dataset have several different sound pat-
terns that they generate, either through vocalization or winnowing. A potential problem
with this, is that an untrained ear (or eye, in the case of spectrograms), might not easily
distinguish the origins of sounds that are deceptively similar. Consultations with NINA
have provided a limited set of sounds, making the job of annotating huge amounts of raw
data a feasible task.

Due to the European golden plover having two distinctly different sound patterns that are
still distinguishable in the dataset source recordings, it has been split into two different
labels. The song vocalization of the European golden plover is not as frequently present
as the other sounds, but as the performance of a multilabel classifier implemented as a
binary relevance problem is not much affected by having more classes (due to it effectively
working as multiple seperate binary classifiers in the final layers), it has still been added
as a suitable part of the dataset, as it might give some insight to the effect on the model
performance from dataset size. it has Spectrograms of the different sounds can be seen
in Figure 16, 17, 18, 19, and 20. These are spectrogram screenshots from Audacity, and
includes time as seconds in the x-axis at the top, and frequency as Hz in the y-axis at the
left.

Figure 16: Common snipe winnowing sound spectrogram.
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Figure 17: European golden plover call spectrogram.

Figure 18: European golden plover song spectrogram.

Figure 19: Whimbrel song spectrogram. The noisy lines are induced by rain.
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Figure 20: Wood sandpiper song spectrogram.

3.1.3 Dataset generation

After annotation in the fashion mentioned in Section 3.1.1, the annotations and the accom-
panying audio files needs to be processed into an easily processable format, suitable for
a dataset implementation in the fashion of a torch.util.data.Dataset-inherited
class [28]. For this task, an Audacity label parsing and dataset generating script have been
written in python, using the pydub package [31]. The script is listed in Appendix A.1. The
main workflow of the script is to first create dictionaries containing all annotations of all
audio files through an Audacity-label-parsing function called parse_labels. These
labels and their accompanying audio-files are then used to create datasets through the
create_dataset-function, which makes audio files for each ”BEGIN”-”END” la-
belled in the audio file, and a csv-file for all the annotations in between. The script then
generates a pseudorandom uniformly distributed number to decide whether to put it in
a directory dedicated to training or a directory dedicated to validation. The chances for
it to be put within validation or training is user adjustable through the input-variable for
the create_dataset-function called val_amount which is set to 0.17 by default,
which gives a 17% chance that a window is sent to the validation dedicated directory.

3.1.4 Test dataset

As mentioned in Section 3.1, the test dataset have been generated with intent to inves-
tigate the generalizability of the sound event detection systems across bird populations
and recording equipment, to be used for further discussion. The test dataset has therefore
been sourced from user contributions to Xeno Canto [41], an online society for sharing
bird sounds, to be able to source bird sounds from across the globe. The dataset was
created by finding sounds matching the target sounds discussed in Section 3.1.2, on the
site, resampling, mono-sound-transforming, and concatenating them, before applying the
methods described in Section 3.1.1 and 3.1.3. For a complete list of the recordings used
for the Xeno Canto test dataset, and the creditations for the contributors, see Appendix A.
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3.1.5 Multilabel classification dataset

Over a minute long audio files is not a good idea for a dataset that is going to be used
for a classifier, as the relatively huge batch sizes may increase loading time, and the
audio sequences used for previous sliding-window classification implementations [17]
are comparably smaller than what is viable for the SSD-based architecture. Due to this,
it was deemed purposeful to recompile the dataset created with the methods described in
3.1.1 and 3.1.3 to 10 seconds intervals. A python script implementing this functionality
is listed in appendix A.2, the script works by going through all the previously compiled
wav-files and csv-files, by starting at second 0 and sequentially jumping a hop length of 5
seconds and exporting the underlying audio and label into wav- and csv-files, respectively.
If the current 10 second interval of audio has no positive ground truth labels, it is skipped
in the interest of not overwhelming the classifier with too many samples with no positive
underlying ground truths, as hard negative mining, described in Section 2.4.3, has not
been implemented for training of the classifier.

It should be mentioned that this method creates some overlap between samples, but not
between training, validation, or testing datasets.

3.2 Experimental training setup

Running numerous training setups with little to no differences between different hyper-
parameters and different user configurable variables can be a hassle and a real time thief,
leading to a lot of research efforts being wasted to retype things that a machine could do,
manually running experiments and logging the findings of them.

To prevent this, a hyperparameter configuration setup, inspired from Håkon Hukkelås’
setup used in the course he’s overseeing as an educational assistant, Computer Vision
and Deep Learning [14], has been implemented. Taking the setup one step further by
automatically generating a selection of experimental configuration yaml-files. The setup
is implemented through utilization of Facebooks yacs package (yet another configura-
tion setup), the package is licensed under the Apache 2.0 license [11]. Through yacs’
yacs.config.CfgNode-class, a default configuration is created, this is done through
the script listed in Appendix B. After the default configuration object is created, it is partly
overwritten by experimental values listed in a given yaml-file. The functionality overwrit-
ing the configuration object is implemented in the train.py-script, listed in Appendix G.1.

To create functionality for automatic generation of such yaml-files pythons PyYaml-
package has been used, by loading a default yaml as a dictionary, writing new config-
urations to the loaded dictionary and dumping the dictionary into a specified yaml-file
with a user specified name in a user specified directory. The script implementing this
functionality is listed in Appendix C.

Lastly, a bash script has been written to run multiple training configurations sequentially
without requiring user intervention, it is listed in Appendix G.2.
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3.3 Data augmentation & feature engineering

To enable the data augmentations and the feature engineering to be supported by the ex-
perimental setup discussed in 3.2, they have to be implemented as reusable, fully modular
code. A practical solution to the problem has been found within the pytorch framework,
by implementing all transformations as an inherited class of torch.nn.Module [29].
Within the codebase, this is implemented in the transforms.py-file, which can be found
in Appendix E. All transformations are initialized through the object of a class named
AudioTransformer that instantiates all the data augmentation and feature engineer-
ing transforms by specification from the yacs.config.CfgNode object passed to it.
The following sections are brief summaries of the implemented transforms that are used
during the work on this thesis, glossing over the method of implementation. All trans-
form implementations can be found listed as their full form in Appendix E. A few other
transformations have been implemented, but since they’re neither used, nor experimented
with in the work of this thesis, they will not be further elaborated on. They are still listed
in Appendix E.

3.3.1 Annotation sample formatting

Since multiple of the transformations (e.g. time shifting) require the annotations (consist-
ing of onset, offset, and label) to be reformatted, a transform to convert the annotations
from second to sample form have been implemented to ease the task of working with an-
notations ”further down the line”. The implementation is not of noteworthy complexity
and the following snippet can adequately explain the entirety of it.

for idx, annotation in enumerate(lines):
#lines are lists containing annotation [onset, offset]
onset = annotation[0]
offset = annotation[1]
new_onset = np.ceil(onset*self.sample_rate)
new_offset = np.floor(offset*self.sample_rate)
lines[idx] = [new_onset, new_offset]

3.3.2 Random time shifting

Random time shifting has been implemented by creating a restricted pseudorandom start-
ing point within a given time series so that the new time series generated is not out of
bounds, done with the snippet below.

min_start, max_start = (0, x.size()[1] - self.length - 1)
start = np.random.randint(low=min_start, high = max_start)

Here, x represents the input time series as a tensor. After this operation the new time
series is generated through the narrow method built into torch.Tensor, as shown in
the line below.
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x = x.narrow(1, start, self.length)

Of course, when time shifting, the underlying ground truth lines and labels have to be
shifted and possibly removed if they are out of bounds. The snippet below perform this
action. It is worth noting that the functionality assumes the conversion to sample form as
described in Section 3.3.1 has been performed.

if lines is not None:
new_lines = []
new_labels = []
for idx, annotation in enumerate(lines):

#Have to deduct starting point from the onset
annotation_onset = annotation[0] - start
#End = starting point + annotation length
annotation_offset = annotation_onset + (annotation[1] - annotation[0])
#Fix out of bounds issues
if annotation_offset > self.length:

annotation_offset = self.length
if annotation_onset < 0:

annotation_onset = 0
if annotation_onset > self.length or annotation_offset < 0:

continue
else:

new_lines.append([annotation_onset, annotation_offset])
new_labels.append(labels[idx])

lines = np.zeros((len(new_lines), 2), dtype=np.float32)
labels = np.zeros((len(new_labels)), dtype=np.int64)
for idx, new_line in enumerate(new_lines):

lines[idx] = new_line
labels[idx] = new_labels[idx]

Lines, constisting of onsets & offsets, may be omitted in this, and all other transforms,
in the interest of supporting pure, mutually exclusive classification problems, where the
transformation done to the data shouldn’t affect the ground truth.

3.3.3 Gaussian noise

Random gaussian noise has been implemented through the existing torch.randn-
method, which generates a tensor full ofN (0, 1)-distributed variables in a user requested
shape. The following snippet summarizes how noise is added.

#noise_factor = std(x) * intensity
noise_factor = x.std() * self.intensity
#x_i + N(0,1) * noise_factor
x += torch.randn(x.size()) * noise_factor

The x.std-method is a built-in torch.Tensor-method for computing the standard
deviation of a tensor, and self.intensity represents the α as described in Section
2.2.5.
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3.3.4 Spectrogram creation

Creating spectrograms of user-defined resolution is suported through the Spectrify-
class, the class supports multi-channel spectrograms, so that a user may combine mel-,
standard-, and log-spectrograms in a requested manner. This is implemented through list-
ing all the transformations in a torch.nn.ModuleList, which is required to poten-
tially support computational acceleration. The snippet below summarizes the generation
of this spectrogram transform list.

for channel in self.channels:
if channel == "mel":

out_height = self.height
if self.crop is not None:

out_height = self.crop[1]
hop_size = cfg.LENGTH // self.width
melify = nn.Sequential(

torchaudio.transforms.MelSpectrogram(
n_mels=self.height,
hop_length=hop_size

)
)
self.transformations.append(melify)

if channel == "log" or channel == "normal":
num_ffts = (self.height - 1)*2 + 1
hop_size = cfg.LENGTH // self.width

self.transformations.append(
torchaudio.transforms.Spectrogram(

n_fft = num_ffts,
hop_length = hop_size

)
)

If a user has figured out that the sound events they’re set out to detect only span a limited
frequency range, a method for frequency cropping is implemented. The frequency crop-
ping is not implemented in the melscale-spectrograms, as the crop done in linear scale
would require a mel-scale cropping, which is yet to be implemented.

For the datasets developed for this thesis, a qualitative analysis has found very limited
amount of signal features for the target sounds listed in Section 3.1.2, with frequency
components above 4 kHz. Due to this, spectrograms are created with a resolution (Height
, Width) of (450 , 224), but is cropped to the lower half, to yield a final resolution of
(224 , 224), which is the standard resolution for most pretrained convolutional models.
In the case of the SSD-based architecture, the classification and bounding line heads are
adaptable, so the resolution is set to (512 , 2048), and cropped to (256 , 1028).

if not (self.crop is None) and self.channels[i + 1] != "mel":
channel = torch.narrow(

input = channel,
dim = channel.dim() - 2,
start = self.crop[0],
length = self.crop[1]
)
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If the current channel is a logarithmically scaled channel, logarithmic scaling is done
through the snippet listed below.

if self.channels[i+1] == "log":
channel = torch.log(channel)

All spectrograms are lastly standardized by the method described in Section 2.2.3 through
the snippet below.

channel = (channel - torch.mean(channel)) / torch.std(channel)

Channels are then concatenated channel-wise by the following snippet, utilizing the method
torch.cat to concatenate at dimension 0.

y = torch.cat((y, channel), 0)

The transform also changes the onset and offset coordinates so that they’re relative to the
output resolution of the transform instead of relative to raw audio sample coordinates,
this is done in a similar way as the sample coordinate transform in Section 3.3.1, for
the complete annotation transformation, see Appendix E, specifically the class named
Spectrify.

3.4 SSD-based architecture

An SSD-inspired model has been developed from a starting point of a codebase for an
SSD used in TDT4265 [14], in the 4th assignment of the course. The code implementing
the architecture could be considered relatively sizable; due to this, and the fact that most
of the new functionality are only slight modifications from the starting point, a thorough
walkthrough of the SSD-based architecture is deemed excessive. Instead, in this section,
glossing over the more intrusive architectural modifications is deemed as sufficient. The
codebase for the attempted architecture can be found published on github [4].

3.4.1 Architectural modifications

As most of the codebase in the starting point code [14] revolves around bounding boxes
and images, most of the codebase alterations have been to rewrite the functionality to in-
stead support bounding lines and audio files. Some aspects, most significantly the detector
heads, required more intrusive architectural modifications, making some assumptions to
acommodate for the required completion of the project.

Detector heads
The detector heads no longer need to take height, nor center y-position into account when
inferring class confidence or position/dimension regressions. Therefore the heights of
the detector head convolutional kernels have been set to the post-padded heights of their
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backbone forwarded feature maps. Looking back to Figures 9 and 10, before looking at
the diagram of the modified detector head in Figure 21 should be sufficient to acquire a
visual conceptualization of the modfication. Figure 21 represents an example of just one
size of the forwarded feature maps from the backbone, with multiple output feature map
sizes, as shown in Figure 9.

7×7×C feature map
(5×5×C post padding) C

Class head
kernel

1×5 Class
confidence map

Figure 21: Example displaying modified classification head kernel size for 1D object
detection.

Aspect ratios
Instead of taking aspect ratios into account with the method mentioned in Section 2.4.1,
the convolutional kernel heads of the modified architecture only takes two different line
sizes into account. This makes the output channel count of the so called “line head” equal
to 4, as there are two line location parameters offsets to regress (center x, width), and two
line sizes to regress for (big and small).

Experimental ground truth class labelling for classification loss
The loss function for the classification utilizes IoU to label the ground truths of predicted
boxes as positive or negative. Since sound events tend to be repetetive of nature, an ex-
perimental modification of the class labelling functionality for the loss evaluator for the
classification head has been made. The difference between the original and the experi-
mental ground truth class labelling method is illustrated in Figure 22.

The experimental classification method takes the fact that sound events usually are repete-
tive of nature into account by allowing a prediction to be positive as long as it overlaps
sufficiently with the ground truth in comparison with the predictions length. This allows
for a prediction to still be positive, even when the underlying ground truth is larger than
the prediction. As can be seen in Figure 22, this is implemented through dividing the
intersection by the prediction and the area of the prediction not covered by ground truth
(PNGT). This new unit, dubbed IoP+ in Figure 22, is then thresholded with the same
threshold value as IoU would, with the original ground truth labelling method.
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Figure 22: Experimental ground truth class labelling for classification loss, the criteria for
a positive class label is listed at the bottom.

NMS IoU threshold
During annotation as described in 3.1.1, any overlapping sound events have been labelled
as the same continuous sound event, making overlap between two instances of the same
sound event label impossible. Due to this, the non-maximum suppression of the modified
architecture is done with an IoU-threshold of 0.

3.4.2 Convolutional backbones

For the convolutional backbone of the SSD-inspired architecture, a combination of Effi-
cientNet [35] and a BiFPN from the EfficientDet-paper [37] has been combined, with 6
repeating BiFPN layers. The EfficentNet-BiFPN backbone utilizes Luke Melas-Kyriazi’s
implementation of EfficientNet [20], in addition to Zylo117’s implementation of BiFPN
in an EfficientDet [37] implementation. Additionally, a ResNet50-based backbone has
been developed with repeating the last convolutional layer 3 times to generate the smaller
scale feature maps for the SSD-based architecture. The backbone implementations are
done through already existing implementations of well-known architectures due to this
project not revolving around creation and evaluation of new convolutional backbones.

3.4.3 Pytorch dataset implementation

From the method described in Section 3.1.3, audio files and complementary csv-files
containing annotations are allocated to their respective directories from the purpose they
should serve (training, testing, validation). To effectively utilize this data within the
pytorch-based codebase, a pytorch dataset, in the form of a
torch.util.data.Dataset-inherited class is implemented. The implementation
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is listed in Appendix D.3 as the class Kauto5Cls. The class works by making a list
of audiofiles and annotations, using the __getitem__-method to provide the input and
the target for a selected indice.

During validation and/or testing, a sliding-window approach with a hop length of the
window size divided by two is used to accomodate a thorough run-through through each
record contained within the validation and/or test dataset. This approach to validation and
testing is meant to represent how the model performs during actual inference, as overlap
hopping must be utilized to catch the entirety of every instance of longer lasting sound
events.

Implementation-wise, a validation_crop-object is added to the AudioTransformer
instance in the dataset class’ self.transform if the instance is not a training dataset,
allowing for the dataset-class to timeshift at a selected starting point of the time series it
forwards to the validation_crop-transformation. This yields a time_series of
the predetermined length that is used during model training with a selected starting point.
The following snippet explains the method.

audio_filename, start_sec = self.audio_bits[idx]
lines, labels = self._get_annotation(audio_filename)
time_series, _ = torchaudio.load(self.data_dir + "/" + audio_filename)
#ValCrop object initalized in transform when is_train is set false
time_series, lines, labels = self.transform.validation_crop(

time_series,
start_sec,
lines,
labels

)

Some preprocessing of the dataset class’ variables are done to acquire the variables re-
quired for the snippet above. The required preprocessing is implemented through the class
function called convert_to_validation. Since most of the required variables are
shown in the previous snippet, the following snippet from convert_to_validation
might provide further insight to the variable preprocessing.

for audio_filename in self.audio_filenames:
annotations = self.annotation_dict[audio_filename]
earliest = min(annotations, key=lambda t:t[0])[0]
latest = max(annotations, key=lambda t:t[1])[1]
if earliest < 1:

earliest = 0
else:

earliest = earliest - 1.0
while (earliest + self.audio_bit_length) < latest:

#Audio bits contain list of (filename, start(sec))
self.audio_bits.append(

(audio_filename,
earliest)
)

earliest += (self.audio_bit_length / 2)
#No need to add latest annotation if it's over before end
if latest > self.audio_bit_length:
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self.audio_bits.append(
(audio_filename,
latest - self.audio_bit_length)

)

3.4.4 Evaluation

Since no existing evaluation functionality for SSD-based architectures applied on 1-Dimensional
problems have been found readily available, a script performing this evaluation have been
developed by modifying the script used in TDT4265, assignment 4, task2 [14]. This
modified script can be found in Appendix H.2. The script has an implementation that
is mostly similar to the method described in Section 2.1.2, but some modifications are
required when handling bounding line predictions instead of class predictions.

When verifying bounding lines a matching strategy is required to match processed pre-
dictions to the best matching ground truths within the same class. Predictions and ground
truths are matched by sorting the potential matches by IoU, then going through this list,
keeping the highest match, discarding all other matches that includes the highest IoU-
match’s prediction or ground truth line, until no potential matches are left. Then IoU
threshold is taken into account to classify predictions as true or false positives.

After this is done, the calculation of average precision can be performed as described in
Section 2.1.2.

3.5 Sliding-window architecture

A codebase for creating sliding-window based sound event detectors has been developed
from a starting point of the code created for the SSD-inspired architecture described in
Section 3.4. The final codebase for the Sliding-window Sound Event Detector (SSED) is
published on github [3]. The classification models used are standard image classification
models, using the convolutional backbones of ResNet34, ResNet50, and EfficientNet for
compound coefficients from 0 to 7. The code implementing the classifier models can
be found in Appendix J. The implementation is based on the ResNet-models within the
torchvision framework [40], and EfficientNet models are from Luke Melas-Kyriazi’s im-
plementation of it [20]. The following sections aim to elaborate more on the aspects of
the sliding-window classifier that has been developed during the work of this thesis.

3.5.1 Sliding-window dataset

A dataset-class for the sliding-window architecture has been developed from a starting
point of the dataset for the SSD-inspired architecture, the full implementation of this
is listed in Appendix D.1, and the method for creating the actual data is described in
Section 3.1.5. The implementation is mostly similar to the SSD-inspired architecture’s
dataset implementation, except for a transform to convert the lines and labels into binary
labels for each input instance. This functionality has been implemented using the method
discussed in Section 2.2.4, measuring the IoU of all lines of a label and the input, and

32



labeling the input as a positive instance of the class if the IoU is over a user-specified
threshold. The following snippet from the TargetTransform-class should provide
some insight into how this has been implemented in practice, the full implementation can
be found in Appendix F.

out_labels = torch.zeros(self.num_classes)
line_contents = {}
if lines is not None:

for idx, line in enumerate(lines):
if labels[idx] not in line_contents:

line_contents[labels[idx]] = 0
line_contents[labels[idx]] += (line[1] - line[0]) / self.length
#Mark data as positive if more than threshold of it is

positive.↪→

if line_contents[labels[idx]] > self.threshold:
out_labels[labels[idx]] = 1

As can be seen in the snippet, the implementation takes into account that multiple in-
stances of the same sound event class should imply that the class is marked as positive.
From the perspective of the dataset used in this thesis, it means that if multiple bird sounds
of the same type are in the input instance, it is marked as positive if all these bird sounds
of the same type add up to be above the threshold.

It is not known whether this method, or one that requires a single sound event to be over
the threshold yields optimal results, and it has to be acknowledged that this is a heuristic
leap that has been performed to achieve results.

3.5.2 Sliding-window inference

To implement the inference method for the sliding-window architecture as described
in Section 2.3.1, a torch.util.data.Dataset-inherited WindowSlide dataset-
class and an inference-script has been created; the complete code for both can be found
in Appendix D.2 and I, respectively.

As opposed to the dataset class used during training and validation, this dataset class is
instantiated with a single audio file. The reasoning behind this is to optimize inference
time, by avoiding loading audio files in-and-out of memory sequentially, but rather load-
ing the files into tensors once, and containing them in memory as class variables. To
support any sample rate, in addition to stereo recordings, the dataset has built-in auto-
matic resampling and mono-downmixing. The WindowSlide-class has also been im-
pelmented as a iterable style dataset, a snippet displaying the core functionality of the
class’ __getitem__-method is shown below.

#Done to not go out of bounds, is consistent with __len__-method
#Get start of this audio tensor slice relative to entire record
audio_bit_start = min(

self.record.size()[0] - self.input_length,
idx * self.hop_size

)
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#Extract audio tensor slice
audio_bit = torch.narrow(

self.record,
0,
audio_bit_start,
self.input_length

)

The inference-script is based upon the training script mentioned in Section 3.2, the script
in its entirety can be found listed in Appendix I. The script works by taking the configuration-
file of a requested pretrained model, and any given number of audio file paths to run
inference on as positional arguments. The script then utilize these to instantiate the
Inferencer-class, which loads the pretrained model from memory and runs through
the files sequentially by utilizing an instance the WindowSlide dataset-class. When a
list of predictions, one for each classifier window hop, is generated, the class implements
the method illustrated in Section 2.3.3 through the snippet below.

#For loop to make processed preds into moving average
#of raw preds based on number of hops per class window
for hop_no in range(num_hops):

#Have to add if statement for last hop, since
#apparantly, there's no elegant way to do this
if hop_no < (num_hops - 1):

processed_preds[hop_no:-num_hops + hop_no + 1,:] \
+= all_raw_preds[hop_no:-num_hops + hop_no + 1,:]/num_hops

else:
processed_preds[hop_no:,:]\
+= all_raw_preds[hop_no:,:]/num_hops

if num_hops > 1:
#Need to fix edge cases if hops_per_window > 1

#Setting up a fractional edge multiplier
numerator=torch.linspace(1,num_hops-1, num_hops-1)
denominator = torch.linspace(num_hops-1, 1, num_hops-1)
edge_multiplier=torch.div(numerator, denominator)

#To multiply elementwise, it need to have a row for each label
edge_multiplier=\
edge_multiplier.view(-1,1).repeat(1,num_labels).view(num_hops-1,num_labels)

#end_hops += end_hops*[1/(num_hops-1), 2/(num_hops-2),..., (num_hops-1)/1]
processed_preds[-num_hops + 1:,:]+=\
torch.mul(

edge_multiplier,
processed_preds[-num_hops+1:,:]
)

#Flip it around and bring it back (denominator/numerator)(fixing edge at start)
edge_multiplier = torch.div(denominator, numerator)
edge_multiplier=\
edge_multiplier.view(-1,1).repeat(1,num_labels).view(num_hops-1,num_labels)

#begin_hops += begin_hops*[(num_hops-1)/1,...,2/(num_hops-2),1/(num_hops-1)]
processed_preds[0:num_hops-1,:]+=\
torch.mul(
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edge_multiplier,
processed_preds[:num_hops-1,:]

)

This implementation solves the edge-case issues by only taking the mean of the available
samples for the samples that lie near the edges, as discussed in Section 2.3.3.

3.5.3 Average precision

A method for calculcation of discretized interpolated average precision for multilabel
classification (AP

D,interp
) has been implemented, since no reusable functionality for this

has been found readily available. The code implementing the functionality as described
in Section 2.1.2 is listed in Appendix H.1. The calculation is also made universal with
respect to amount of classes, amount of discretized recall values to calculate precision for,
and the amount of sampling points R.
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4 Results

This section mostly attempts to elaborate upon the results gathered from experiments with
both architectures, but also the results from the annotation undertaken during this thesis’
work. Section 4.1 displays the results of the SSD-based architecture, while Section 4.2
makes a more thorough presentation of the results of the best performing sliding-window
based model.

In Section 4.4, the results of the data gathering done during this thesis’ work is presented.
Section 4.3 attempts to present the codebase of this thesis’ work as a result. The results
of the sliding-window based model discussed in Section 4.2 are based on hundreds of
experimental training sessions, some of the key insights these produced are presented in
Section 4.5.

4.1 SSD-based architecture

The SSD-based architecture has been trained for 10 000 batches for both backbones de-
scribed in Section 3.4.2, and both class labelling methods described in Section 3.4.1. The
resulting mAP, final classification loss, and final line head loss is shown in Table 2, the
other, most relevant hyperparameters and configurations used during training are listed in
Table 3.

Table 2: Final results for both backbone and both class labelling methods for the SSD-
based architecture.

Backbone Class labelling mAP Class head loss Line head loss
ResNet50 Original 0.029 1.225 0.541

EfficientNet + BiFPN Original 0.001 3.229 1.051
ResNet50 Experimental 0.011 0.986 1.982

EfficientNet + BiFPN Experimental 0.011 1.337 1.011

Table 3: Hyper parameters and configurations for the training sessions of the SSD-based
architecture.

Hyperparameter-/Config-name Value/Description
Optimizer SGD

Momentum 0.9
Weight decay 0.0005

Spectrogram resolution (H, W) (512, 2048) with Freq crop to (256, 2048)
Start LR 0.001

Learning rate scheduling Stepdown at iteration 5000, 7500 and 9000
Stepdown gamma 0.1

Random gaussian noise intensity 0.35
Iterations trained for 10000

Batch size 7
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To make better sense of the results, debugging of the code have been attempted, yielding
no results. The bounding lines and class predictions made by the architecture have been
found to be sensical with respect to the method of implementation in the code.

4.2 Sliding-window architecture

Results for all the different experimental training sessions are listed in Section 4.5, this
section is dedicated to the results of the best developed classifier model, which is assessed
to be the EfficientNet-based model with a compound coefficient φ = 7, trained with
a random gaussian noise intensity α = 0.35, window size of 2.5 seconds, and a IoU
threshold implying positive ground truth of 0.25. The results for all backbones can be
seen in Section 4.5.2, the selected backbone has been evaluated as the best backbone due
to overall impressive metrics across both validation data and test data, combined with the
fact that model selection is not the majorly deciding factor for inference times, as shown
in Section 4.5.3.

4.2.1 Quantitatively assessable results

As can be seen in Section 4.5.2, the model reached a mAP of 0.989 on the validation
dataset, but this metric can be deceptively non-descriptive, as it is calculated from a class-
wise mean of the average precisions. This could bear the implications that a perfectly
working model for all classes but one has a low mAP. To further elaborate on this metric,
and better visualize the tradeoffs between precision and recall for all classes, the curves
for Pinterp(r), as discussed in Section 2.1.2, for the different classes are displayed in Fig-
ures 23, 24, 25, 26, and 27.
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Figure 23: Precision-recall curve for the Wood sandpiper song.
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Figure 24: Precision-recall curve for the Common snipe winnowing sound.
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Figure 25: Precision-recall curve for the Whimbrel song.
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Figure 26: Precision-recall curve for the European golden plover call sound.
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Figure 27: Precision-recall curve for the European golden plover song.

4.2.2 Qualitatively assessable results

To provide a visual representation of the end results, selected screenshots from audacity
with labels generated by the inference script in Appendix I is provided in this section. The
listed predictions are made on recordings that have not been used for training, validation,
or testing.

First, predictions have been inferred with a confidence threshold of 0.76; this value was
chosen from the assumption of a perfectly working classifier with 4 hops per window.
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Given the assumption, it will require all predicted windows to be positive before classify-
ing a hop as positive. The calculation can be written as
( 1

hops per window · (hops per window− 1)+0.01), where 0.01 is chosen as an arbitrary small
number.

A qualitative analysis of the predictions made with a confidence threshold of 0.76 leaves
the impression that a dominating majority of predictions have underlying positive ground
truths with onset & offset inaccuracies that are below the maximal uncertainty. False neg-
atives for this threshold threshold has not been detected. Through 24 hours of inferred
audio, 4 false positives has been identified. An example which gives a qualitative argu-
ment for the sensitivity, specificity, and onset- & offset-precision of the detector can be
found in Figure 28. It should be mentioned that none of the sound origins has been veri-
fied by professionals (i.e. ornithologists), and that this should be taken into account when
reviewing the results.

Figure 28: An example of true positive predictions of relatively weak sound events of
multiple labels.

As can be seen in Figure 28, the Whimbrel-song is nearly unobservable in the spectro-
gram, with only what can be described as the main sequence of the vocalization as shown
in Figure 19 being present, but it is still detected with relatively precise onset & offset.
The same can be said for the Common snipe winnowing sound, although this sound is
slightly more easily perceived. Example spectrograms of the sounds are listed in Section
3.1.2, but they are not to scale with the spectrograms listed in this section.

As mentioned in Sections 3.5.1 and 4.5.1, there has to exist a gap between the sound
events for them to be considered separate. This has turned out to be an especially present
problem for the call vocalization of the European golden plover, as they are often consec-
utively vocalized. An instance of this problem can be seen in Figure 29.
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Figure 29: An illustration of the predictions for the European golden plover being “fused”
together into a single predicted sound event.

The fusing of multiple sound events, as can be seen in Figure 29 may present a significant
problem if an end user of the system is dependent on counting occurences of the sound
events. However, NINA have been consulted with regards to this, and for their use, it
does not present significant problems. If, for some application, it does, adjusting window
size, IoU threshold, and number of hops per window should lead to a detector with better
performance with regards to this quality.

Some false positive vocalizations are seen predicted with the confidence threshold of 0.76;
although they are few, as only 4 false positives have been observed by going through 24
hours of predicted audio. This amount is not a definite count, as each of the 723 predicted
sound events have not been meticulously examined, and none of the predictions have been
examined by professionals.

The amount of detected false positive predictions should still be acknowledged. An ex-
ample of one of the false positive predictions, a prediction for the call-vocalization of
European golden plover can therefore be seen in Figure 30.

Figure 30: A false positive prediction for the call-vocalization of the European golden
plover.

By looking at Figure 28, it is possible to argue that a confidence threshold of 0.76 leads to
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a too high sensitivity at the cost of precision. Therefore, inference has also been run with
a confidence threshold of 0.95, to be able to present some examples of false negatives, as
none have been found with a confidence threshold of 0.76.

Setting the confidence threshold to 0.95 mostly had the effect that the predicted sound
events were narrowed, meaning predicted onsets were skewed forward in time, and pre-
dicted offsets were skewed backward in time. An example can be seen in Figure 31.

Figure 31: Two predictions of the Wood sandpiper song, the top label line being per-
formed with a confidence threshold of 0.76, while the bottom label line is performed with
a confidence threshold of 0.95.

Additionally, some cases of actual false negatives have been found with the confidence
threshold of 0.95, one example of a false negative can be seen in Figure 32. However, the
amount of false negatives can not be described as completely detrimental to every aspect
of the detector’s performance. To back this statement up, within the 24 hour example
audio file, a confidence threshold of 0.95 only yielded 15.3% fewer predictions than with
a confidence threshold of 0.76, down from 723 predictions to 612 predictions. An upside
is that no false positives have been identified in the example record for this confidence
threshold.

Figure 32: True positive and false negative prediction of the Wood sandpiper song. The
top label line contains a true positive from an inference with a confidence threshold of
0.76, the bottom label line contains a false negative from an inference with a confidence
threshold of 0.95.
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4.3 Codebase

Arguably, the final presented codebase of the ”Sliding-window Sound Event Detector”
(SSED) [3] is the main result of the work on this thesis, a lot of reservations are made, to
strive for objectivity.

All aspects of the codebasehave been developed with reusability, readability, configurat-
bility, and extendability in mind.

the codebase for SSED have worked well for the experimental work in this thesis and it
is well documented, as almost every function contains a substantial docstring elaborating
the user interface. SSED has not been subject to code review of any kind. Limited unit
testing have been performed on some parts of the new functionality. The SSED-code is
worked out from a codebase used in TDT4265, a course with over a hundred students
participating each year, which could be an argument for functionality from the original
codebase being thoroughly tested; since this functionality still represents a significant
portion of the codebase, it is probably the best quantitative indicator that can be given to
speak for its quality.

4.4 Datasets

Two datasets has been developed during the work on this thesis, one for the SSD-based
architecture, and one for the sliding-window architecture. The results from the annota-
tions, done in the style described in Section 3.1.1, of the recordings provided by NINA,
and the recordings sourced from Xeno Canto, to create the dataset for the SSD-based ar-
chitecture, are shown in Section 4.4.1. The data in this dataset was later processed into
a dataset more suitable for a classifier, the metrics for the resulting classifier dataset is
described in Section 4.4.2.

4.4.1 SSD-based architecture dataset

A dataset for a SSD-based architecture for sound event detection has been annotated, both
from the recordings provided by NINA and the recordings sourced from Xeno Canto. The
sound event count annotated in the recordings NINA provided can be seen in Table 4, with
source locations and year of recordings being shown in Table 6. The sound event counts
annotated on the test dataset from the Xeno Canto recordings are shown in Table 5.

Table 4: Sounds annotated from NINAs recordings.

eBird code Vocalization name (Xeno Canto) Amount of annotations
comsnip Winnowing 1497
whimbr1 Song 1048
eugplo Call 1177
eugplo Song 220
woosan Song 1798
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It has to be acknowledged that the data which has been annotated has not been verified by
professionals within the field (i.e. Ornithology). It is therefore plausible that some of the
vocalizations are erronously annotated. However, NINA was consulted before annotation
was done, in part to atone for this problem.

Table 5: Sounds annotated from Xeno Canto recordings.

eBird code Vocalization name (Xeno Canto) Amount of annotations
comsnip Winnowing 259
whimbr1 Song 69
eugplo Call 214
eugplo Song 32
woosan Song 103

The source locations for the Finnmark data, with regards to the locations shown in Figure
14, is shown in Table 6.

Table 6: Training/Validation data source locations.

Source location (year) comsnip whimbr1 eugplo (song) eugplo (call) woosan
Lok1 (2017) 170 801 137 773 1245
Lok1 (2018) 955 208 76 278 431
Lok2 (2016) 371 11 0 0 96
Lok4 (2017) 1 28 7 126 26

Total 1497 1048 220 1177 1798

4.4.2 Classifier dataset

From a starting point of the dataset for the SSD-based architecture, the method described
in Section 3.1.5 has yielded a dataset suited for training, validating and testing a classifier.
The dataset consists of 8237 individual recordings of 10 seconds each. Each recording
with a respective csv-file containing the labels, onsets and offsets of the sounds within
them. The dataset split ended up with a distribution of label instances shown in Table 7.

Table 7: Amount of sound event labels split into each data group.

Sound event label Training instances Validation instances Testing instances
comsnip 2564 810 630
whimbr1 2329 522 206

eugplo(call) 1807 744 480
eugplo(song) 380 124 88

woosan 3143 844 269

Some of these recordings have overlaps between each other, but there exists no overlap
between training, validation, and testing data.
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4.5 Experimental findings

As mentioned in Section 4.2, the presented model is a result made from hundreds of
experimental training sessions. This section attempts to elaborate on the results that gave
some key insights used to develop the presented model.

In Section 4.5.1, the results of a grid search for the optimal window size and positive
instance implying IoU threshold is presented. Both ResNet- and EfficientNet-backboned
models have been implemented in the codebase, Section 4.5.2 presents the results of train-
ing sessions with each different backbone.

Time spent on inference is an important aspect to take into account when applying the
developed models from an end user perspective. A thorough evaluation of inference times
for each backbone has been performed, and the resulting inference times are presented in
Section 4.5.3. As mentioned in Section 2.2.5, the intensity, α, of gaussian noise applied
for data augmentation can not be analytically approached, Section 4.5.4.

4.5.1 Window size and IoU thresholding

As mentioned in Section 2.2.4, the IoU threshold of a randomly selected time sequence
and an underlying sound event required for it to be assumed positive for a given label, is
something that has to be experimented on. As window size and IoU threshold together
decide how much time of a vocalization has to be within the window for it to be assumed
a true positive, window size has been added as a variable in this experiment. To get a good
range of results, 100 different training sessions have been run. The other hyperparameters
and configurations for the training sessions are listed in Table 8.

Table 8: Other hyperparameters and configurations for the experiments.

Hyperparameter/configuration description Value
Model backbone ResNet50

Optimizer SGD
Momentum 0.9

Weight decay 0.0005
Start LR 0.03

LR scheduling Stepdown at epoch 15, 20 and 23
Stepdown gamma 0.1

Random gaussian noise intensity 0.35
Epochs trained for 25

Spectrogram resolution (H, W) (450, 224) with freq crop to (224, 224)
Batch size 128

The experiments yielded extensive results. To best convey these, a heat map with window
sizes in the X-axis, and IoU threshold in the Y-axis can be seen in Figure 33. As the heat
map displays, the optimal choice for window size and IoU threshold lies around a window
size of 2.5 seconds - 3 seconds, with an IoU threshold of 0.25. These window sizes are the
same as the sizes assumed optimal during development of BirdNET [17], in other words,
this result can be used as an argument for the assumption made in the paper.
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Due to this IoU threshold, 4 hops per classification window has been determined a suitable
amount, since that means the inferencer will hop the time required for a positive ground
truth for each hop. This, in theory, should implicate that, given a perfectly working clas-
sifier, the timing error for the onsets and offsets has an upper limit of 0.625 seconds.
Also, because of the heuristic leap mentioned in Section 3.5.1, it means that for sound
events to be considered to be separate events, Lsep ∈ [1.875 seconds, 2.5seconds] as de-
scribed in Section 2.3. These numbers are worked out by replacing Wwindow with the
width of the required inactive sound gap for a negative prediction, which can be written
as Wwindow × (1− IoUthr). The reason for this replacement, is that the perfectly working
classifier assumed in Section 2.3, was assumed to have an IoU threshold of 0.
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Figure 33: A heat map displaying the smallest validation losses achieved at different
values for IoU threshold and window size. Darker/smaller values are better.

4.5.2 Backbone evaluation

Evaluation results for all codebase supported backbones (ResNet34, ResNet50, Efficient-
Net with compound coefficients from 0 to 7) have been performed with the same training
hyperparameters and configurations, which can be found listed in Table 10. The resulting
classwise mAP for the validation dataset and the test dataset, and lowest validation loss
and test loss, is listed in Table 9, the best results are marked in bold. The reason that
the lowest validation loss is used as the evaluation metric, is that the trainer-class in the
codebase saves the parameters of the model with the lowest validation loss, and this saved
parameter snapshot is what is used when inferencing.
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Table 9: Key performance metrics for the tested backbones.

Model name Lowest val loss Test loss mAP (validation) mAP (test)
ResNet34 0.046 0.101 0.989 0.957
ResNet50 0.047 0.123 0.988 0.943

EfficientNet (φ = 0) 0.049 0.134 0.986 0.941
EfficientNet (φ = 1) 0.049 0.149 0.987 0.954
EfficientNet (φ = 2) 0.047 0.121 0.988 0.959
EfficientNet (φ = 3) 0.048 0.089 0.986 0.960
EfficientNet (φ = 4) 0.050 0.177 0.988 0.936
EfficientNet (φ = 5) 0.048 0.101 0.989 0.955
EfficientNet (φ = 6) 0.051 0.174 0.986 0.953
EfficientNet (φ = 7) 0.046 0.953 0.989 0.971

Table 10: Hyperparameters and configurations for backbone evaluation.

Hyperparameter/configuration description Value/desciption
Optimizer SGD

Momentum 0.9
Weight decay 0.0005

Start LR 0.03
LR scheduling Stepdown at epoch 15, 20 and 23

Stepdown gamma 0.1
Random gaussian noise intensity 0.35

Number of epochs 25
Spectrogram resolution (H, W) (450, 224) with freq crop to (224, 224)

Batch size 128

4.5.3 Inference timing

Running the inference algorithm requires a fixed amount of time for loading the data and
performing transformations, before requiring a variable amount of time for the model
processing. To further inquire how much the model size affects inference performance,
the inference times for each model on a 24 hour long audio file have been gathered, and
is listed in Table 11 with the inference setup listed in Table 12. The most relevant aspects
of the hardware used during inference is listed in Table 13.

Table 12: Hyperparameters and configurations for inference times.

Hyperparameter/configuration description Value/Description
Batch size 128

Spectrogram resolution (H, W) (450, 224) with freq crop to (224, 224)
Window size 2.5 seconds

Hops per window 4
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Table 11: Model inference times for a 24 hour long audio file.

Model name inference time (seconds)
ResNet34 344.6
ResNet50 349.6

EfficientNet (φ = 0) 344.5
EfficientNet (φ = 1) 348.8
EfficientNet (φ = 2) 349.8
EfficientNet (φ = 3) 351.3
EfficientNet (φ = 4) 354.8
EfficientNet (φ = 5) 363.9
EfficientNet (φ = 6) 371.5
EfficientNet (φ = 7) 444.9

Table 13: Hardware description

Component type Component description
GPU Nvidia RTX3090
CPU Intel Core I7-6700k
RAM Kingston 2 × 16GB @ 2133MT/s

Storage INTEL SSDPEKKW512G7

4.5.4 Random Gaussian noise

Random gaussian noise has been applied at 40 different intensity intervals from 0.05 up
to 2.0. The best/lowest validation loss achieved for the 40 different training sessions is
displayed in Figure 34. The other hyperparameters used during these experiments can be
found listed in Table 14.

Table 14: Hyperparameters and configurations for Gaussian noise experiments.

Hyperparameter/configuration description Value
Model backbone ResNet50

Optimizer SGD
Momentum 0.9

Weight decay 0.0005
Start LR 0.03

LR scheduling Stepdown at epoch 15, 20 and 23
Stepdown gamma 0.1
Epochs trained for 25

Spectrogram resolution (H, W) (450, 224) with freq crop to (224, 224)
Batch size 128

48



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Random gaussian noise intensity

0.056

0.058

0.060

0.062

0.064

0.066

0.068

0.070

0.072

be
st

 v
al

 lo
ss

Figure 34: Best validation loss for the 40 different intensity values of the random gaussian
noise data augmentation method.

As the graph shows, the validation loss has a best result for the dataset used in this project
with an intensity around 0.35, with the exception of an anomaly around 1.40. The reason
for the anomaly is unknown, with the configuration yaml-file having been examined. It is
most likely an example of lucky pseudorandom number generations.
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5 Discussion

5.1 SSD-based architecture dataset

Since the results of the SSD-based architecture has deemed it unsuitable for practical
implementation, the SSD-based dataset is most likely only useful as a base for developing
more datasets for a sliding-window architecture. This can be done the same way as in
Section 3.1.5.

5.2 Sliding-window based architecture dataset

The methodology for creating the dataset for the sliding-window architecture, especially
the IoU thresholding to implicate a positive label, is most likely a suitable method for
utilizing onset&offset-labelled sound events as a dataset for training a multilabel classifier
for sliding-window sound event detection. Although, as mentioned in Section 3.5.1, a
heuristic leap has been made with the thresholding technique, and it is probably worth
examining whether the assumed best thresholding technique actually provides optimal
results.

As can be seen in Section 4.4.2, the datasets used for training have comparable amounts
of instances for all classes except for the song of the European golden plover. Even
with this minute amount of training data compared to the other classes, the trained model
performed comparably well on the validation data for this sound, as can be seen in Section
4.2.1. This bears some implication that similar sound event detection models may not be
particularly senstive to amounts of training data with regards to performance.

5.3 SSD-based architecture

As shown in Section 4.1, the SSD-based architecture performed poorly with regards to
both precision and recall. Due to this, further development on an inference algorithm for
the architecture has not been developed. A possible reason for the failure of the architec-
ture is due to the annotated sound events being repetetive of nature; it is most likely hard
to determine how many repetitions of a certain sound event pattern makes it a positive or
a negative ground truth instance because of the classification head’s ground truth labelling
methods. This is only emphasized by the fact that the amount of pattern repetitions will
vary widely. If this is the reason for the failure, it probably made the classification head
nearly untrainable, yielding only extremely minor improvements to wild guesses for the
sound events, as the bounding lines are chosen based on the classification heads class
predictions. Of course, there is also a possibility some oversight has been made during
development, resulting in non-representative results. However, since the sliding-window
architecture has very impressive results, looking further into this will most likely not yield
any significant improvements, result-wise.
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5.4 Sliding-window architecture

As shown in Section 4.2, the sliding-window approach to sound event detection is a well
working technique, even allowing for relatively high-precision onset and offset predic-
tions for the sound events. The window size and the IoU threshold for positive classifi-
cations are probably not generalizable for datasets with different sound events, probably
not even for datasets containing different bird sounds. The scheme might also, in theory
be developed into a system with real time constraints, as spectrogram windows can be
extracted in real time and this detection scheme can be run on it, of course with window
size setting a hard constraint for the real-time minimum deadlines.

The fast-paced development of mobile solutions for neural processing, e.g. Arm’s Ethos
N-series [1], in addition to interest in making smaller, more efficient models able to run
on such devices [13] may enable non-centralized, real-time solutions for bio-acousitc
sound event detection, which could lead to interesting future approaches to bio-acoustic
monitoring.

A method for describing the onset- & offset inaccuracies is described in Section 2.3, and
in Section 4.5.1 this method is taken into account to approach Lsep and εmax for the final
presented classifier. It still has to be acknowledged that these methods only hold for a
perfectly working classifier. In reality, one of the bigger sources for inaccurate classifica-
tions may be that the classifier struggles to define the blurry line between a positive and a
negative as defined by the labelling method used in this thesis described in Section 3.5.1.
In addition, some inaccuracies in the annotations are probably present, as there are no
exact clear cut answers to the onset and offset of every sound event, even with attempts to
make it as consistent as possible.

If a model developer relies on counting separate sound events, given enough target domain
knowledge, these methods can most likely be used for rough estimates for approaching an
optimal window size and IoU threshold. But, since both model performance and require-
ment of separation of sound events have to be taken into account, combining this with a
heuristic, qualitative approach of end results will probably be required.

5.5 Test dataset performance

As displayed in Section 4.5.2, the models trained on the NINA dataset performs relatively
well on the test dataset developed from user contributions to Xeno Canto. Although there
is a penalty on the models for not having been trained on optimally generalized data, this
penalty is not sufficient to make the models incapable of generalized applications. This
may indicate that generalized data from the target domain is not a strict requirement, if
target domain specialists are consulted before model development.

5.6 Codebase as framework for future detector development

The SSED-development codebase [3] that has been written during the work on this thesis
is generalizable to most sound event detection problems, possibly making it a valuable
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resource for development of future detectors. The work undergone is currently published
on github, with NINA having been consulted for the dataset licensing, agreeing to a licen-
siation under the creative commons non-commercial sharealike license [9] for the datasets
derived from their recordings. The datasets are published within the codebase as scripts
that automatically downloads the data for an end user. The codebase could easily be
extended to support future datasets, and extentions of its own functionality, making it a
possible foundation for future work.
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6 Conclusion

6.1 SSD-based architecture

An architecture inspired from the SSD-architecture [19] has been developed and eval-
uated. As shown in Section 4.1 and discussed in Section 5.3, looking further into the
SSD-based architecture can not be recommended, as the results from the implementation
in this thesis indicates poor performance. A likely cause is the structure of sound events
themselves compared to 2D-objects.

6.2 Sliding-window architecture

A sliding-window architecture, loosely resembling the same approach as in BirdNET
[17], has been developed and evaluated. This method for sound event detection can be
recommended for further use for bio-acoustic purposes, as both the numerical, and the
qualitative results shows promise, as can be seen in Section 4.2. Another appealing feature
is that the scheme seemingly require very limited amounts of data to train models able to
provide state of the art results. This is best exemplified by the relatively few examples of
the song-vocalization of the European golden plover; while few, it still yields an almost
perfect average precision on the validation dataset.

6.2.1 Codebase

A codebase for developing and applying sliding-window based architectures with relative
ease has been developed and utilized during the thesis work. As no readily available code-
base for sound event detection resembling this one has been made, further development
and utilization of the codebase, published as SSED on github [3], can be recommended
for solving future sound event detection problems, if only as a reference baseline solution.

6.3 Recommendation of future work

6.3.1 Datasets

Creating multiple datasets and expanding the codebase for multiple different sound event
detection problems could result in a final codebase consisting of multiple ready-to-go
sound event detectors, possibly creating a framework for solving all of NINAs sound event
detection needs. As mentioned in Section 3.1.2, creating datasets with many more sound
events should not impose any great risk to loss of performance, due to how multilabel
classification issues treated as multiple binary relevance problems work.

Another interesting aspect to look into is an experimental, incremental approach to grad-
ually increase the number of data-points in the training dataset and see how a trained
model performs on a validation dataset of a fixed size. This will effectively yield a trade-
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off curve for time spent data-gathering vs. model performance, possibly allowing for an
economically optimized approach of data-gathering efforts.

6.3.2 Codebase

Further automation of detector creation
The SSED-codebase [3] has the ability to be further developed into a system that allows
for automatic detector creation all the way from combined Audacity label files and audio
files, to a finished product as an inferencing detector system providing predictions in a
user requested format. Further work on this, could one day lead to all being needed from
an end user perspective to develop a state of the art sound event detection system, are data
and annotations.

More data augmentation & feature engineering
The AudioTransformer-class could be built upon to develop more data augmenta-
tion & feature engineering techniques. One possibly interesting technique that has not
been implemented is development of phase spectrograms [21], which could give further
insight into features that can not be extracted from standard spectrograms. Also including
a way to frequency crop the melspectrograms could probably adjust the channel so that
the underlying information of a traversing kernel in the first layer is more in line with
the other spectrograms. Also, progressive learning, as presented in EfficientNetV2 [36],
should probably be developed support for, as this may increase the speed of which highly
generalized models can be trained.

Speed optimization
The results of the different inferrence times shown in Section 4.5.3 for the 8 different
compound coefficients of EfficientNet bears the implication that model complexity does
not have an overwhelming impact on inferrence time, as the execution time is almost
constant even with exponential increase in floating point operations for model forwarding
[35]. The issue might be within spectrogram creation, as this is a resource intensive pro-
cess, and it is repeated once for every 0.625 seconds of input audio (window size of 2.5
seconds divided by 4 hops per window). A good starting point for optimization might be
to make larger spectrograms and extract windows from it, instead of the current method,
where all spectrograms are effectively calculated hops_per_window times for every
window. Of course, optimizing for speed is probably not of significant interest before
real-time constraints are required from an application, or a large scale implementation
of this detector approach is implemented. Another approach to speed optimization is to
develop 1-dimensional convolutional backbones, with inspirations from the 2D counter-
parts, as these models will not require computationally intensive transformations before
being forwarded to a model. The data augmentation & feature engineering code in the
SSED-codebase has some support built-in for 1D approaches, and the rest of the code-
base should also be able to acommodate for a 1D approach with minor modifications.

Adding more classifier backbones
Currently, the codebase only have built-in support for ResNet34, ResNet50, and Efficient-
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Nets with compound coefficients from 0 to 8. As the field of image based deep learning is
developing, continuously adding more model support is probably a good idea. During the
work on this thesis, EfficientNetV2 [36] has been presented, with the promise of smaller
models and faster training; it is probably worthwhile taking the time to add support for
this. As mentioned with regards to speed optimization, adding models with 1-dimensional
convolutional backbones could also be of interest.

Web interface for end users
The end users of the detector system will probably be more inclined to use the detectors
if it has a better end user interface. Creating a web interface for uploading files, adjust-
ing a few parameters for the detection, (e.g. model selection, confidence threshold, &
output format) and sending the predictions per email to the user is most likely going to
increase user interaction when compared to a command-line interface. Research results
into software systems, no matter how great they are, can be seen as pointless if they are
not applicable from an end user perspective, so this is arguably the most productive area
to direct future efforts.
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Appendix

A Xeno Canto data information

The test data from Xeno Canto has provided useful insight into how well generalized
a model trained on narrowly sourced data is. The individual contribution IDs, listed
named of contributors, recording dates, and recording positions are listed in Table 15.
The recordings licensed with the condition of no derivative work [? ] is marked in bold,
these files are not included in the published code. The rest of the files are licensed under
Creative Commons Non-Commercial Sharealike 4.0 [9].

Table 15: Xeno Canto recordings description.

Record
ID

Contributor name Recording date Position (latitude, longtitude)

27059 Patrik Åberg 2008-06-21 (68.3728, 18.6987)
27077 Patrik Åberg 2007-06-24 (68.353501, 18.99667)
36348 Herman Van Oosten 2009-06-19 (60.887, 63.7045)
36349 Herman Van Oosten 2009-06-19 (60.887, 63.7045)
36487 Niels Krabbe 2009-07-03 (55.8817, 14.2201)
36489 Peter Woodall 2009-01-04 (-27.543056, 153.051138)
41286 Matthias Feuersenger 2009-10-12 (54.181, 7.8822)
41816 Hans Petter Kristoffersen 2009-05-09 (69.6001, 19.8334)
42344 Patrik Åberg 2009-04-10 (58.5356, 14.2284)
42798 Stuart Fisher 2003-06-14 (57.8995, -6.8495)
57855 Ruud van Beusekom 2010-06-08 (63.4189, -19.039)
57910 Ruud van Beusekom 2010-05-30 (63.8759, -22.7128)
57911 Ruud van Beusekom 2010-06-08 (63.4189, -19.039)
57912 Ruud van Beusekom 2010-06-08 (63.4189, -19.039)
64625 Patrik Åberg 2010-04-20 (58.3714, 14.1395)
76912 Jelmer Poelstra 2011-04-21 (59.581111, 17.914925)
83879 Patrik Åberg 2011-05-30 (65.5501, -17.2334)
83880 Patrik Åberg 2011-05-30 (65.5501, -17.2334)
83881 Patrik Åberg 2011-05-30 (65.5501, -17.2334)
83934 Patrik Åberg 2011-06-05 (63.9209, -20.7639)
83935 Patrik Åberg 2011-05-30 (65.5501, -17.2334)
83937 Patrik Åberg 2011-05-31 (65.5501, -17.2334)
85842 Christoph Bock 2011-07-28 (71.055, 28.044)
102868 Jarek Matusiak 2010-05-03 (57.962, 24.796)
110504 Davyd Betchkal 2012-05-24 (63.741 , -149.583)
129520 Mathias Ritschard 2012-05-26 (53.3667, 22.5667)
129521 Mathias Ritschard 2012-05-26 (53.3667, 22.5667)
135140 Andrew Spencer 2013-05-25 (64.4655, -165.1492)
138422 Fernand DEROUSSEN 1996-06-17 (63.6282, -20.0803)
144493 Davyd Betchkal 2013-05-13 (63.0838, -150.4888)
181110 Elias A. Ryberg 2014-05-27 (62.5896, 10.5599)
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190017 Stein Ø. Nilsen 2014-05-10 (69.586, 18.044)
213776 PE Svahn 2014-04-02 (57.7414, 14.0294)
216977 Janne Bruun 1999-06-03 (67.3338, 26.067)
216978 Janne Bruun 1995-06-13 (69.1813, 27.3329)
237879 Eetu Paljakka 2015-04-30 (60.09, 24.4872)
240474 Jarek Matusiak 2015-05-04 (51.3901, 26.8728)
240796 Mikael Litsgård 2015-05-03 (59.5061, 16.4632)
241184 Anon Torimi 2015-05-09 (34.6993, 135.4668)
263922 Terje Kolaas 2015-05-17 (63.3379, 13.4596)
316225 Teet Sirotkin 2016-05-05 (60.402, 18.0382)
318809 Bernard BOUSQUET 2016-05-07 (58.2783, -4.06)
323473 Espen Quinto-Ashman 2016-06-12 (48.8027, 110.0529)
342340 Tero Linjama 2009-05-01 (62.2312, 26.2692)
342367 Tero Linjama 2009-04-29 (53.277, 22.602)
342880 Tero Linjama 2008-06-03 (66.1209, 28.9662)
342909 Tero Linjama 2008-06-04 (65.9432, 29.1853)
354783 Frank Lambert 2015-06-01 (64.7904, -165.2115)
363800 Lars Edenius 2016-07-05 (63.7599, 20.2763)
370121 Krzysztof Deoniziak 2017-05-14 (53.0039, 23.6973)
372395 Albert Lastukhin 2017-05-27 (55.7772, 46.0566)
372396 Albert Lastukhin 2017-05-27 (55.7772, 46.0566)
381969 Jens Kirkeby 2017-06-15 (64.7927, 178.7307)
382143 Jens Kirkeby 2017-06-07 (64.7398, 177.6849)
393693 Anon Torimi 2017-11-19 (35.1519, 136.1098)
400538 Stein Ø. Nilsen 2012-06-29 (68.3104, 23.2813)
414026 Lars Edenius 2018-05-07 (63.7515, 20.3103)
425635 Peter Boesman 2018-06-26 (13.4612, -16.7051)
430928 Albert Lastukhin 2018-06-02 (62.6394, 74.1914)
431019 Albert Lastukhin 2018-06-04 (63.1838, 75.391)
431109 Albert Lastukhin 2018-06-04 (63.1834, 75.3989)
431110 Albert Lastukhin 2018-06-04 (63.1834, 75.3989)
431556 Albert Lastukhin 2018-06-09 (63.0467, 63.0467)
431564 Albert Lastukhin 2018-06-09 (63.0528, 74.552)
431870 Logan McLeod 2018-07-07 (64.9775, -139.0697)
437902 Bram Piot 2018-10-07 (15.865, -16.5121)
446863 David Pennington 2017-08-10 (53.567, -1.8697)
456679 david m 2019-01-08 (54.1212, -0.5416)
471282 guus van duin 2019-05-07 (52.2826, 4.9271)
472029 Stanislas Wroza 2019-04-16 (42.965, 9.4512)
476064 Lars Edenius 2019-05-20 (65.1878, 19.6687)
476067 Lars Edenius 2019-05-21 (65.1878, 19.6687)
476093 Stein Ø. Nilsen 2019-05-18 (70.1843, 19.8821)
478714 Lars Edenius 2019-06-04 (64.3823, 19.6144)
480960 Lars Edenius 2019-06-12 (64.5298, 17.6549)
481806 Lars Edenius 2019-06-16 (64.296, 18.5804)
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481809 Lars Edenius 2019-06-16 (64.296, 18.5804)
487713 Stanislas Wroza 2018-07-18 (65.446, -22.1853)
487737 Stanislas Wroza 2018-07-18 (65.446, -22.1853)
487738 Stanislas Wroza 2018-07-18 (65.446, -22.1853)
487742 Stanislas Wroza 2018-07-18 (65.446, -22.1853)
487743 Stanislas Wroza 2018-07-18 (65.446, -22.1853)
490896 Thomas Bergman 2019-06-19 (61.9883, 13.1968)
493129 Albert Lastukhin 2019-05-05 (56.6954, 46.9404)
506558 Lars Edenius 2019-05-21 (65.1878, 19.6687)
519965 Leif Arvidsson 1975-05-00 (58.3217, 13.5522)
519966 Leif Arvidsson 1969-05-14 (58.3217, 13.5522)
526933 James Lidster 2017-05-30 (47.8594, 104.317)
523295 Joost van Bruggen 2020-01-11 (11.9036,-15.5603)
539331 Ireneusz Oleksik 2020-03-28 (50.0832, 18.9544)
545316 Lars Edenius 2019-05-21 (65.1878, 19.6687)
546259 Lars Edenius 2019-06-12 (64.5298, 17.6549)
549245 Isain Contreras Rodrı́guez 2020-04-21 (25.6036, -109.0521)
549750 Jarek Matusiak 2020-04-23 (52.23, 21.0105)
550220 Uku Paal 2020-04-21 (59.0596, 23.5582)
551341 Jarek Matusiak 2020-04-26 (53.4721, 22.6577)
551729 James Spencer 2020-04-27 (54.0113, -0.3886)
552326 Uku Paal 2020-04-27 (58.3984, 26.3845)
552367 Peter Stronach 2020-04-30 (57.2821, -3.6965)
552599 Vincent Martens 2020-04-30 (52.5061, 6.2538)
554677 Teet Sirotkin 2020-05-06 (59.2168, 18.0724)
557090 Peter Stronach 2020-05-08 (57.2821, -3.6965)
559258 Mats Rellmar 2020-04-23 (57.261, 13.8873)
561288 Mı́cheál Cowming 2020-05-09 (52.2688, -7.1063)
562056 Thomas Bergman 2020-05-22 (62.1371, 16.2479)
562986 Lars Edenius 2020-05-28 (63.7599, 20.2763)
564393 Lars Edenius 2020-06-01 (65.957, 16.2078)
565297 Lars Edenius 2020-05-26 (65.1761, 18.8739)
587085 Lars Edenius 2020-05-29 (65.1761, 18.8739)
590290 Seth Beaudreault, Toolik

Field Station
2020-05-31 (68.6315, -149.5862)

592664 Simon Elliott 1990-05-20 (54.8145, -2.2635)
605533 Niels Van Doninck 2020-06-21 (64.505, 13.7272)
605535 Niels Van Doninck 2020-06-21 (64.505, 13.7272)
605536 Niels Van Doninck 2020-06-21 (64.505, 13.7272)
605551 Niels Van Doninck 2020-06-21 (64.505, 13.7272)
606814 Lars Edenius 2020-05-14 (64.4343, 21.4379)
608282 Lars Edenius 2020-05-14 (65.957, 16.2078)
611785 Ulf Elman 2020-05-05 (59.5207, 17.4029)
621750 Chris Batty 2020-05-03 (53.9299, -2.9833)
627027 Irish Wildlife Sounds 2021-03-02 (51.8857, -8.9977)
631066 Ulf Elman 2020-05-05 (59.5207, 17.4029)
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646585 Lars Edenius 2021-05-08 (63.8313, 20.2607)
647337 Lars Edenius 2021-05-08 (63.8313, 20.2607)
647845 Lars Edenius 2021-05-12 (63.8313, 20.2607)
647846 Lars Edenius 2021-05-12 (63.8313, 20.2607)
648421 Irish Wildlife Sounds 2021-04-27 (52.5603, -6.2027)
648435 Irish Wildlife Sounds 2021-04-28 (52.5603, -6.2027)
648515 Irish Wildlife Sounds 2021-04-27 (52.5603, -6.2027)
648533 Thomas Bergman 2021-05-12 (62.1377, 16.2456)
652278 Sławomir Karpicki-

Ignatowski
2021-05-17 (53.3697, 22.556)

B Code

A Dataset creation

A.1 Label parsing script

#!/usr/bin/env python3
from math import ceil, floor
import numpy as np
from pydub import AudioSegment
from datetime import timedelta
import argparse
import os
import pandas as pd

def parse_labels(label_file_path: str) -> dict:
"""
Function to parse labels
Input:
label_file_path - path to audacity-style label file
Ouput:
dict in style of label_dict["class_name"]=(onset, offset, low_freq,
high_freq)↪→

"""
assert os.path.exists(label_file_path), f"Could not find label

file: {label_file_path}\n"↪→

label_file = open(label_file_path)
label_lines = label_file.readlines()
label_file.close()
label_dict = {}
for line_no, label_line in enumerate(label_lines):

#backslash implies it's a frequency range line
if label_line[0] == "\\":

continue
label_vals = label_line.rstrip("\n").split(" ")
#get class of annotation
print(label_vals)
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voc_class = label_vals[2]
#don't need it in tuple
del label_vals[2]
label_vals.extend(label_lines[line_no +

1].rstrip("\n")[2:].split(" "))↪→

#Turn values into floats
label_vals = [float(val) for val in label_vals]
#Check if dict already contain annotation of this class
if voc_class in label_dict:

label_dict[voc_class].append(tuple(label_vals))
else:

label_dict[voc_class] = [tuple(label_vals)]
return label_dict

def split_to_dirs(
label_dict: dict,
wav_file_path: str,
buffer = 0.0,
output_path = "output/"
):
"""
Function to create separate folders for each class
and store audio of each annotation as a separate file
Inputs:
label_dict - dict in style of
label_dict["class_name"][index]=(onset, offset, low_freq,
high_freq)

↪→

↪→

wav_file_path - path to wav file
buffer = 0.0 - buffer added before and after annotation in input
file to create output audio segment↪→

"""
if output_path != "":

output_path = output_path + "/"
os.system(f"rm -rf {output_path}")
os.system(f"mkdir {output_path}")

#Verify that wav path exists
assert os.path.exists(wav_file_path), f"Could not find input wav

file: {wav_file_path}\n"↪→

record = AudioSegment.from_wav(wav_file_path)
for voc_class in label_dict.keys():

if os.path.exists(output_path + voc_class):
#Dirty solution to clean directory
os.system("rm -rf " + output_path + " " + voc_class)

os.system(f"mkdir {output_path}{voc_class}")
for voc_no, annotation in enumerate(label_dict[voc_class]):

#Assuming onset and offset is measured in seconds
onset, offset, _, _ = annotation
if onset < buffer:

onset = 0
#Recalculating onset and offset to comply with pydub
if onset < buffer:

onset = 0
else:

onset = int(floor((onset-buffer)*1000))
if (offset + buffer) > (len(record)/1000):

offset = len(record) - 1
else:
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offset = int(floor((offset+buffer)*1000))
vocalization = record[onset:offset]

vocalization.export(f"{output_path}{voc_class}/{voc_no}.wav",
format="wav")

↪→

↪→

def compound_class_record(
label_dict: dict,
wav_file_path: str,
buffer = 1.0,
make_label_file = False,
output_path = "output/",
crossfade = True
):
"""
Function to create compound wav file for all occurences for each
class↪→

Inputs:
label_dict - dict in style of
label_dict["class_name"][index]=(onset, offset, low_freq,
high_freq)

↪→

↪→

wav_file_path - path to wav file
buffer = 0.0 - buffer added before and after
annotation in input file to create output audio segment
"""
if output_path != "":

os.system(f"rm -rf {output_path}")
os.system(f"mkdir {output_path}")

assert os.path.exists(wav_file_path), f"Could not find input wav
file: {wav_file_path}\n"↪→

record = AudioSegment.from_wav(wav_file_path)
for voc_class in label_dict.keys():

os.system(f"mkdir {output_path}{voc_class}")
compound_sound = record[0]
output_labels = ""
for annotation in label_dict[voc_class]:

onset, offset, low_freq, high_freq = annotation
#Recalculating onset and offset to comply with pydub
if onset < buffer:

onset = 0
else:

onset = int(floor((onset-buffer)*1000))
if (offset + buffer) > (len(record)/1000):

offset = len(record) - 1
else:

offset = int(floor((offset+buffer)*1000))
if make_label_file:

comp_onset = float(len(compound_sound)/1000) + buffer
comp_offset = float(comp_onset) +

float((offset-onset)/1000) - buffer*2↪→

if crossfade:
comp_onset -= min(len(compound_sound)*1000,

buffer/2)↪→

comp_offset -= min(len(compound_sound)*1000,
buffer/2)↪→

comp_onset = str(comp_onset)
comp_offset = str(comp_offset)
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low_freq = str(low_freq)
high_freq = str(high_freq)
output_labels += \
"{comp_onset} {comp_offset} " + \
"{voc_class+str(timedelta(seconds=onset//1000))}\n\\"+\
"{low_freq} {high_freq}\n"

vocalization = record[onset:offset]
compound_sound = compound_sound.append(vocalization,

crossfade = min((buffer*1000)//2, len(compound_sound)))↪→

compound_sound.export(f"{output_path}{voc_class}/{voc_class}.wav",
format = "wav")

↪→

↪→

if make_label_file:
if os.path.exists(f"{output_path}{voc_class}.txt"):

os.remove(f"{output_path}{voc_class}.txt")
label_file =

open(f"{output_path}{voc_class}/{voc_class}.txt", 'a')↪→

label_file.write(output_labels)
label_file.close()

def create_dataset(annotations_dir_path : str, valid_classes : list,
val_amount = 0.17):↪→

"""
Creates test/val dataset from directory containing directories of
.wav-files and .txt-audacity-label-files↪→

The .wav-files and the .txt-audacity-label-files must be the same
name as the directory they're in↪→

For each "BEGIN" and "END" in the label-file, creates a wav file
with it's own csv file↪→

containing the annotations from the .txt-audacity label file.
Input:
annotations_dir_path - relative path to the directory containing
directories of .wav/.txt-annotation combos↪→

valid_classes - list of strings containing the name of the valid
classes for the detector↪→

val_amount - amount of validation data in test/val split*

*time-frames are selected for validation by pseudo-random chance
"""
#purge/create directories for wav/csv-files
os.system("rm -rf train \n mkdir train \n rm -rf val \n mkdir val")
#Annotations_dir_path contains directories with .wav and .txt label

files↪→

annotation_dirs_paths = os.listdir(annotations_dir_path)
for annotation_path in annotation_dirs_paths:

wav_path =
f"{annotations_dir_path}/{annotation_path}/{annotation_path}.wav"↪→

label_path =
f"{annotations_dir_path}/{annotation_path}/{annotation_path}.txt"↪→

label_dict = parse_labels(label_file_path=label_path)
record = AudioSegment.from_wav(wav_path)
valid_classes.extend(["BEGIN", "END"])
#Check if an end or a beginning has been forgotten
if len(label_dict["END"]) != len(label_dict["BEGIN"]):

print(f"mismatch of timeframe BEGIN and END in
{label_path}")↪→

#Check for erronous labels

65



elif not all(voc_class in valid_classes for voc_class in
label_dict):↪→

print(f"{label_path} contains invalid annotation")
print("labels in file:")
for voc_class in label_dict:

print(voc_class)
else:

for time_frame_no, beginning in
enumerate(label_dict["BEGIN"]):↪→

begin_time = beginning[0]
end_time = label_dict["END"][time_frame_no][0]
assert (end_time-begin_time) > 60, f"time frame in:

{label_path} with less than 60 seconds, starts at:
{begin_time}"

↪→

↪→

if (end_time - begin_time) > 200:
print(f">200 second time frame in {label_path}

starting at {begin_time}")↪→

#rows in csv output
rows = []
for valid_label in valid_classes:

#Create list of lists containing [label, onset,
offset] for rows in csv file↪→

if valid_label not in label_dict.keys():
continue

rows.extend([
[valid_label, voc[0]-begin_time,

voc[1]-begin_time] for voc in
label_dict[valid_label] if (voc[0] >
begin_time and voc[1] < end_time)

↪→

↪→

↪→

])
time_frame_record = record[int(floor(begin_time*1000))]
time_frame_record +=

record[int(floor(begin_time*1000))+1 :
int(ceil(end_time*1000))]

↪→

↪→

df = pd.DataFrame(np.array(rows), columns=["class",
"onset", "offset"])↪→

if np.random.uniform() < val_amount:

df.to_csv(f"val/{annotation_path}_{time_frame_no}.csv")↪→

time_frame_record.export(out_f=f"val/{annotation_path}_{time_frame_no}.wav",
format="wav")

↪→

↪→

else:

df.to_csv(f"train/{annotation_path}_{time_frame_no}.csv")↪→

time_frame_record.export(out_f=f"train/{annotation_path}_{time_frame_no}.wav",
format="wav")

↪→

↪→

if __name__ == "__main__":
create_dataset(

"composite_test",
[

"bekkasinflukt",
"småspove-sang",
"grønnstilk-sang",
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"heilo-pip",
"heilo-sang"

],
val_amount = 0
)

A.2 Classification dataset generation

import pandas as pd
import os
from pydub import AudioSegment

data_dir = "test/"
out_dir = "new_test/"
filenames = os.listdir(data_dir)

audio_filenames = []
for filename in filenames:

if ".csv" not in (filename.lower()):
audio_filenames.append(filename)

annotation_dict = {}
for audio_filename in audio_filenames:

#csv should have same name as audio file except extension
csv_filename = audio_filename.split(".")[0] + ".csv"
#Using C engine because it's supposed to be faster, requires

delimeter to be commas↪→

data_frame = pd.read_csv(data_dir + "/" + csv_filename, engine="c")
#Storing all annotations in dictionary
annotation_dict[audio_filename]=[]
for _, row in data_frame.iterrows():

annotation_dict[audio_filename].append(
(float(row["onset"]),
float(row["offset"]),
str(row["class"]))

)

for audio_filename in annotation_dict:
print(audio_filename)
annotations = annotation_dict[audio_filename]
new_record_start = 0
new_record_length = 10*1000
hop_length = 5 * 1000
record = AudioSegment.from_wav(data_dir + audio_filename)
i = 0
last = False
while not last:

#=> last new record from old record
if (new_record_start + new_record_length) > len(record):

new_record_start = len(record) - new_record_length
last = True

new_record = record[new_record_start:new_record_start +
new_record_length]↪→

new_annotations = []
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for annotation in annotation_dict[audio_filename]:
if (annotation[0]*1000) > (new_record_start +

new_record_length):↪→

continue
elif (annotation[1]*1000) < new_record_start:

continue
else:

onset = (max(annotation[0]*1000, new_record_start) -
new_record_start)/1000↪→

offset = (min(annotation[1]*1000,
new_record_start+new_record_length) -
new_record_start)/1000

↪→

↪→

new_annotations.append((onset,offset,annotation[2]))
if len(new_annotations) > 0:

new_filename = audio_filename.split(".")[0] + "_" + str(i)
print(new_filename)
i+=1
new_record.export(out_f=out_dir + new_filename + ".wav",

format="wav")↪→

new_df = pd.DataFrame(new_annotations, columns=["onset",
"offset", "class"])↪→

new_df.to_csv(out_dir + new_filename + ".csv")

B Configuration code

#yacs is licensed under apache 2.0, which can be found in the
LICENSES-directory.↪→

from yacs.config import CfgNode as CN

cfg = CN()

#Model setup
cfg.MODEL = CN()
# Set any record containing THRESHOLD or more of a class as positive
cfg.MODEL.THRESHOLD = 0.25
cfg.MODEL.NUM_CLASSES = 5

#
----------------------------------------------------------------------------
#

↪→

↪→

# Model name
#

----------------------------------------------------------------------------
#

↪→

↪→

cfg.MODEL.NAME = 'efficientnet-b7'

#
-----------------------------------------------------------------------------↪→

#
#

-----------------------------------------------------------------------------↪→

#Dataset setup
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cfg.INPUT = CN()
cfg.INPUT.RECORD_LENGTH = 40960
cfg.INPUT.SAMPLE_FREQ = 16000
cfg.INPUT.NAME = "kauto5cls"
#Used in case of spectrogram
cfg.INPUT.IMAGE_SIZE = [224, 224]

#Basic stuff
cfg.INPUT.TRANSFORM = CN()
cfg.INPUT.TRANSFORM.SAMPLE_COORDS = CN()
cfg.INPUT.TRANSFORM.SAMPLE_COORDS.ACTIVE = True
cfg.INPUT.TRANSFORM.CROP = CN()
cfg.INPUT.TRANSFORM.CROP.ACTIVE = True
cfg.INPUT.TRANSFORM.LENGTH = 40960

#Alright config for spectrogram
cfg.INPUT.TRANSFORM.SPECTROGRAM = CN()
cfg.INPUT.TRANSFORM.SPECTROGRAM.ACTIVE = True
cfg.INPUT.TRANSFORM.SPECTROGRAM.RESOLUTION = [224, 450]#OUTPUT

RESOLUTION↪→

cfg.INPUT.TRANSFORM.SPECTROGRAM.FREQ_CROP = [12, 224] #[BOTTOM_CROP,
HEIGHT]↪→

cfg.INPUT.TRANSFORM.SPECTROGRAM.CHANNELS = ["normal", "mel", "log"]

#Random gaussian noise with random intensity
cfg.INPUT.TRANSFORM.RAND_GAUSS = CN()
cfg.INPUT.TRANSFORM.RAND_GAUSS.ACTIVE = False
cfg.INPUT.TRANSFORM.RAND_GAUSS.INTENSITY = 0.35
cfg.INPUT.TRANSFORM.RAND_GAUSS.RAND = True
cfg.INPUT.TRANSFORM.CHANCE = 1

#Random "flip"
cfg.INPUT.TRANSFORM.RAND_FLIP = CN()
cfg.INPUT.TRANSFORM.RAND_FLIP.ACTIVE = False
cfg.INPUT.TRANSFORM.RAND_FLIP.CHANCE = 0.5

#Random amplification/attenuation
cfg.INPUT.TRANSFORM.RAND_AMP_ATT = CN()
cfg.INPUT.TRANSFORM.RAND_AMP_ATT.ACTIVE = False
cfg.INPUT.TRANSFORM.RAND_AMP_ATT.FACTOR = 5
cfg.INPUT.TRANSFORM.RAND_AMP_ATT.CHANCE = 1.0

#Random "contrast"
cfg.INPUT.TRANSFORM.RAND_CONTRAST = CN()
cfg.INPUT.TRANSFORM.RAND_CONTRAST.ACTIVE = False
cfg.INPUT.TRANSFORM.RAND_CONTRAST.CHANCE = 1.0
cfg.INPUT.TRANSFORM.RAND_CONTRAST.ENHANCE = 25

#
-----------------------------------------------------------------------------↪→

# DataLoader
#

-----------------------------------------------------------------------------↪→

cfg.DATA_LOADER = CN()
cfg.DATA_LOADER.NUM_WORKERS = 8
cfg.DATA_LOADER.PIN_MEMORY = True
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#
----------------------------------------------------------------------------
#

↪→

↪→

# Solver - The same as optimizer
#

----------------------------------------------------------------------------
#

↪→

↪→

cfg.TRAINER = CN()
cfg.TRAINER.EPOCHS = 25
cfg.TRAINER.SCHEDULER = "multistep"
cfg.TRAINER.LR_STEPS = [15, 20, 23]
cfg.TRAINER.GAMMA = 0.1
cfg.TRAINER.BATCH_SIZE = 32
cfg.TRAINER.EVAL_STEP = 1
cfg.TRAINER.OPTIMIZER = "sgd"
cfg.TRAINER.LR = 1e-3
cfg.TRAINER.MOMENTUM = 0.9
cfg.TRAINER.WEIGHT_DECAY = 5e-4
cfg.TRAINER.ACTIVATION = "sigmoid"

#
----------------------------------------------------------------------------
#

↪→

↪→

# Specific test options
#

----------------------------------------------------------------------------
#

↪→

↪→

cfg.TEST = CN()
cfg.TEST.BATCH_SIZE = 32

cfg.OUTPUT_DIR = "outputs"
cfg.DATASET_DIR = "datasets"

#
----------------------------------------------------------------------------
#

↪→

↪→

# Inference options
#

----------------------------------------------------------------------------
#

↪→

↪→

cfg.INFERENCE = CN()
#Hops per window should probably be around 1/MODEL.THRESHOLD
cfg.INFERENCE.HOPS_PER_WINDOW = 4
cfg.INFERENCE.OUTPUT_DIR = "predictions/"
cfg.INFERENCE.BATCH_SIZE = 128
cfg.INFERENCE.OUTPUT_FORMAT = "audacity"
cfg.INFERENCE.THRESHOLD = 0.76
cfg.INFERENCE.NUM_WORKERS = 8

C Configuration generation

import yaml
import copy
import numpy as np
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def yaml_to_dict(yaml_path):
yaml_file = open(yaml_path, 'r')
text = yaml_file.read()
yaml_file.close()
yaml_as_dict = yaml.load(text)
return yaml_as_dict

def write_value(my_dict, nesting_sequence, value):
#Quick function to write recursive dict
if len(nesting_sequence) == 1:

my_dict[nesting_sequence[0]] = value
return my_dict

else:
my_dict[nesting_sequence[0]] = write_value(

my_dict[nesting_sequence[0]],
nesting_sequence[1:],
value

)
return my_dict

def multi_dict_creator(
nesting_sequence : list,
values : list,
default_dict : dict
):
"""
Function to create bunch of dictionaries with one variable altered
Arguments :
nesting sequence - sequence of key-dict nesting to get to value
values - Values to write to nesting sequence value
default_dict - default dictionary

There is probably a better way to do this, but this was quick &
easy↪→

"""
out_dicts = []
for value in values:

new_dict = default_dict
new_dict = write_value(new_dict, nesting_sequence, value)
out_dict = copy.deepcopy(new_dict)
out_dicts.append(out_dict)

return out_dicts

def dict_to_yaml(out_path, out_dict):
with open(out_path, 'w') as outfile:

yaml.dump(out_dict, outfile, default_flow_style=False)

def generate_configs(
nesting_sequence:list,
default_yaml_path:str,
values:list,
value_name : str,
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out_path : str
):
"""
Function to generate multiple yaml files with minor alterations
Arguments:
nesting sequence - list of keys do get to altered value
values - values to overwrite with
value_name - name of altered value to be used for output filenames
"""
default_dict = yaml_to_dict(yaml_path=default_yaml_path)
new_dicts = multi_dict_creator(nesting_sequence, values,

default_dict)↪→

for value, new_dict in zip(values, new_dicts):
out_name = default_yaml_path.split(".")[0] + \
"_" + value_name + str(value) + ".yaml"
print(new_dict)
dict_to_yaml(out_path + "/" + out_name, new_dict)

def main():
#Example usage
nesting_list = ["INPUT", "TRANSFORM", "RAND_GAUSS", "INTENSITY"]
values = list(np.linspace(0.05, 2, 40))
yaml_path = "configs/resnet50.yaml"
out_path = "configs/rand_gauss"
name = "rg"
generate_configs(

nesting_sequence=nesting_list,
default_yaml_path=yaml_path,
values=values,
value_name=name,
out_path=out_path

)

if __name__ == "__main__":
main()

D Dataset

D.1 Sliding-window training dataset

"""
Dataset class for self annotated Kautokeino bird vocalization dataset
Written (entirely) by:
Bendik Bogfjellmo (github.com/bendikbo) (bendik.bogfjellmo@gmail.com)
"""
import torch
import torchaudio
import numpy as np
import os
import pandas as pd
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class Kauto5Cls(torch.utils.data.Dataset):

def __init__(
self,
data_dir:str,
transform=None,
target_transform=None,
is_train=True,
inference_filepath="",
audio_bit_length=0.0
):

self.is_train = is_train
if inference_filepath != "":

self.inference = True
self.entire_record, sample_rate =

torchaudio.load(inference_filepath)↪→

self.length = self.entire_record.size()[1] / sample_rate
#Can't have test and inference mode at the same time.
self.is_train = False

else:
self.inference = False

self.label_dict = {
"grønnstilk-sang" : 0,
"bekkasinflukt" : 1,
"småspove-sang" : 2,
"heilo-pip" : 3,
"heilo-sang" : 4

}
filenames = sorted(os.listdir(data_dir))
self.data_dir = data_dir
self.audio_filenames = []
#audio_bits variable is used for validation to split up larger

audio files↪→

self.audio_bits = []
self.audio_bit_length = audio_bit_length
for filename in filenames:

if ".csv" not in (filename.lower()):
self.audio_filenames.append(filename)

self.transform = transform
self.target_transform = target_transform
self.annotation_dict = {}
for audio_filename in self.audio_filenames:

#csv should have same name as audio file except extension
csv_filename = audio_filename.split(".")[0] + ".csv"
#Using C engine because it's supposed to be faster,

requires delimeter to be commas↪→

data_frame = pd.read_csv(data_dir + "/" + csv_filename,
engine="c")↪→

#Storing all annotations in dictionary
self.annotation_dict[audio_filename]=[]
for _, row in data_frame.iterrows():

self.annotation_dict[audio_filename].append(
(float(row["onset"]),
float(row["offset"]),
str(row["class"]))

)
if not self.is_train:
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#Have to create a data loading method to create validation
dataset↪→

self.convert_to_validation()
self.validate_dataset()

def convert_to_validation(self):
"""
Function to create dataset for validation and/or test
fills self.audio_bits with filenames and start time which
is later used to crop the audio files through a transform.
The cropping is done so that the audio bits always have 50%
overlap with the next sequence, as this is how inference is
intended to work on the dataset.
"""
for audio_filename in self.audio_filenames:

annotations = self.annotation_dict[audio_filename]
earliest = min(annotations, key=lambda t:t[0])[0]
latest = max(annotations, key=lambda t:t[1])[1]
if earliest < 1:

earliest = 0
else:

earliest = earliest - 1.0
while (earliest + self.audio_bit_length) < latest:

#Audio bits contain list of (filename, start(sec))
self.audio_bits.append(

(audio_filename,
earliest)
)

earliest += (self.audio_bit_length / 2)
#No need to add latest annotation if it's over before 32

secs↪→

if latest > self.audio_bit_length:
self.audio_bits.append(

(audio_filename,
latest - self.audio_bit_length)

)

def validate_dataset(self):
for audio_filename in self.audio_filenames:

assert audio_filename in self.annotation_dict,\
f"Did not find label for record {audio_filename} in

labels"↪→

def __getitem__(self, idx):
if self.is_train:

lines, labels = self.get_annotation(idx)
record = self._read_record(idx)

#Don't have to care about lines or labels during inference
elif self.inference:

start_sec = idx * self.audio_bit_length / 2
if (start_sec + self.audio_bit_length) > self.length:

start_sec = self.length - self.audio_bit_length
record, _, _ = self.transform.validation_crop(

self.entire_record,
start_sec,
lines = None,
labels = None

)
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timespan = (start_sec, start_sec + self.audio_bit_length)
return record, timespan, idx

#Have to care about lines and labels during validation/testing
else:

audio_filename, start_sec = self.audio_bits[idx]
lines, labels = self._get_annotation(audio_filename)
record, _ = torchaudio.load(self.data_dir + "/" +

audio_filename)↪→

#ValCrop object initalized in transform when is_train is
set false↪→

record, lines, labels = self.transform.validation_crop(
record,
start_sec,
lines,
labels

)
if self.transform:

record, lines, labels = self.transform(record, lines,
labels)↪→

if self.target_transform is not None:
targets = self.target_transform(lines, labels)

return record, targets, idx

def __len__(self):
if self.is_train:

return len(self.audio_filenames)
else:

return len(self.audio_bits)

def _get_annotation(self, audio_filename):
annotations = self.annotation_dict[audio_filename]
lines = np.zeros((len(annotations), 2), dtype=np.float32)
labels = np.zeros((len(annotations)), dtype=np.int64)
for idx, annotation in enumerate(annotations):

line = [
annotation[0],
annotation[1]

]
lines[idx] = line
labels[idx] = self.label_dict[annotation[2]]

return lines, labels

def get_annotation(self, index):
audio_filename = self.audio_filenames[index]
return self._get_annotation(audio_filename)

def _read_record(self, idx):
audio_filename = self.audio_filenames[idx]
audio_filepath = self.data_dir + "/" + audio_filename
record, _ = torchaudio.load(audio_filepath)
return record

D.2 Sliding-window inference dataset

import torch
import torchaudio
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import numpy as np
import os
from classifier.data.transform.transforms import AudioTransformer

class WindowSlide(torch.utils.data.Dataset):

def __init__(
self,
cfg,
audio_file:str
):

assert os.path.exists(audio_file)
self.input_length = cfg.RECORD_LENGTH
hops_per_window = getattr(cfg.INFERENCE, "HOPS_PER_WINDOW", 4)
self.hop_size = self.input_length // hops_per_window
self.transform = AudioTransformer(cfg.TRANSFORM,

is_train=False)↪→

self.sample_rate = cfg.INPUT.SAMPLE_FREQ
self.record, fs = torchaudio.load(audio_file)
if fs != self.sample_rate:

self.resampler = torchaudio.transforms.Resample(
orig_freq=fs,
new_freq=self.sample_rate

)

def __getitem__(self, idx):
audio_bit_start = min(

self.record.size()[0] - self.input_length,
idx * self.hop_size

)
audio_bit = torch.narrow(

self.record,
0,
audio_bit_start,
self.input_length

)
return audio_bit, idx

def __len__(self):
return int(np.ceil(self.record.size()[0] / self.hop_size))

D.3 SSD-based architecture dataset

class Kauto5Cls(torch.utils.data.Dataset):

def __init__(
self,
data_dir:str,
transform=None,
target_transform=None,
is_train=True,
inference_filepath="",
audio_bit_length=0.0
):

self.is_train = is_train
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if inference_filepath != "":
self.inference = True
self.entire_record, sample_rate =

torchaudio.load(inference_filepath)↪→

self.length = self.entire_record.size()[1] / sample_rate
#Can't have test and inference mode at the same time.
self.is_train = False

else:
self.inference = False

self.label_dict = {
"grønnstilk-sang" : 0,
"bekkasinflukt" : 1,
"småspove-sang" : 2,
"heilo-pip" : 3,
"heilo-sang" : 4

}
filenames = sorted(os.listdir(data_dir))
self.data_dir = data_dir
self.audio_filenames = []
#audio_bits variable is used for validation to split up larger

audio files↪→

self.audio_bits = []
self.audio_bit_length = audio_bit_length
for filename in filenames:

if ".csv" not in (filename.lower()):
self.audio_filenames.append(filename)

self.transform = transform
self.target_transform = target_transform
self.annotation_dict = {}
for audio_filename in self.audio_filenames:

#csv should have same name as audio file except extension
csv_filename = audio_filename.split(".")[0] + ".csv"
#Using C engine because it's supposed to be faster,

requires delimeter to be commas↪→

data_frame = pd.read_csv(data_dir + "/" + csv_filename,
engine="c")↪→

#Storing all annotations in dictionary
self.annotation_dict[audio_filename]=[]
for _, row in data_frame.iterrows():

self.annotation_dict[audio_filename].append(
(float(row["onset"]),
float(row["offset"]),
str(row["class"]))

)
if not self.is_train:

#Have to create a data loading method to create validation
dataset↪→

self.convert_to_validation()
self.validate_dataset()

def convert_to_validation(self):
"""
Function to create dataset for validation and/or test
fills self.audio_bits with filenames and start time which
is later used to crop the audio files through a transform.
The cropping is done so that the audio bits always have 50%
overlap with the next sequence, as this is how inference is
intended to work on the dataset.
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"""
for audio_filename in self.audio_filenames:

annotations = self.annotation_dict[audio_filename]
earliest = min(annotations, key=lambda t:t[0])[0]
latest = max(annotations, key=lambda t:t[1])[1]
if earliest < 1:

earliest = 0
else:

earliest = earliest - 1.0
while (earliest + self.audio_bit_length) < latest:

#Audio bits contain list of (filename, start(sec))
self.audio_bits.append(

(audio_filename,
earliest)
)

earliest += (self.audio_bit_length / 2)
#No need to add latest annotation if it's over before 32

secs↪→

if latest > self.audio_bit_length:
self.audio_bits.append(

(audio_filename,
latest - self.audio_bit_length)

)

def validate_dataset(self):
for audio_filename in self.audio_filenames:

assert audio_filename in self.annotation_dict,\
f"Did not find label for record {audio_filename} in

labels"↪→

def __getitem__(self, idx):
if self.is_train:

lines, labels = self.get_annotation(idx)
record = self._read_record(idx)

#Don't have to care about lines or labels during inference
elif self.inference:

start_sec = idx * self.audio_bit_length / 2
if (start_sec + self.audio_bit_length) > self.length:

start_sec = self.length - self.audio_bit_length
record, _, _ = self.transform.validation_crop(

self.entire_record,
start_sec,
lines = None,
labels = None

)
timespan = (start_sec, start_sec + self.audio_bit_length)
return record, timespan, idx

#Have to care about lines and labels during validation/testing
else:

audio_filename, start_sec = self.audio_bits[idx]
lines, labels = self._get_annotation(audio_filename)
record, _ = torchaudio.load(self.data_dir + "/" +

audio_filename)↪→

#ValCrop object initalized in transform when is_train is
set false↪→

record, lines, labels = self.transform.validation_crop(
record,
start_sec,
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lines,
labels

)
if self.transform:

record, lines, labels = self.transform(record, lines,
labels)↪→

if self.target_transform is not None:
targets = self.target_transform(lines, labels)

return record, targets, idx

def __len__(self):
if self.is_train:

return len(self.audio_filenames)
else:

return len(self.audio_bits)

def _get_annotation(self, audio_filename):
annotations = self.annotation_dict[audio_filename]
lines = np.zeros((len(annotations), 2), dtype=np.float32)
labels = np.zeros((len(annotations)), dtype=np.int64)
for idx, annotation in enumerate(annotations):

line = [
annotation[0],
annotation[1]

]
lines[idx] = line
labels[idx] = self.label_dict[annotation[2]]

return lines, labels

def get_annotation(self, index):
audio_filename = self.audio_filenames[index]
return self._get_annotation(audio_filename)

def _read_record(self, idx):
audio_filename = self.audio_filenames[idx]
audio_filepath = self.data_dir + "/" + audio_filename
record, _ = torchaudio.load(audio_filepath)
return record

E Transform code

import torch
from torch import Tensor
import torch.nn as nn
import numpy as np
import torchvision
import torchaudio

class ToSampleCoords(nn.Module):
"""
Pytorch module to convert coordinates measured in seconds
into coordinates measured in sample Nos,
Default sample rate is 16kHz unless this is set through
cfg.SAMPLE_RATE↪→
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"""
def __init__(self, cfg):

super(ToSampleCoords, self).__init__()
self.sample_rate = 16000
if hasattr(cfg, "SAMPLE_RATE"):

self.sample_rate = cfg.SAMPLE_RATE
def forward(self, x, lines=None, labels=None):

for idx, annotation in enumerate(lines):
onset = annotation[0]
offset = annotation[1]
new_onset = np.ceil(onset*self.sample_rate)
new_offset = np.floor(offset*self.sample_rate)
lines[idx] = [new_onset, new_offset]

return x, lines, labels

class Differentiate1D(nn.Module):
"""
Pytorch module to discretely differentiate a 1D input tensor
Differentiates by taking tensor[1:end] - tensor[0:end-1]
"""
def __init__(self, cfg):

super(Differentiate1D, self).__init__()
if hasattr(cfg.DIFFERENTIATE, "STEP"):

self.step = cfg.DIFFERENTIATE.STEP
else:

self.step = 1

def forward(self, x, lines = None, labels = None):
minuend = torch.narrow(x, 0, self.step, x.size()[0] -

self.step)↪→

subtrahend = torch.narrow(x, 0, 0, x.size()[0] - self.step)
x = minuend - subtrahend
return x, lines, labels

class RandFlip1D(nn.Module):
"""
Pytorch module to "flip" signal along the x-axis
Supports random application through cfg.RAND_FLIP.CHANCE or
cfg.CHANCE↪→

defaults to random application with p = 0.5
"""
def __init__(self, cfg):

super(RandFlip1D, self).__init__()
#Code block for setting up random application
if hasattr(cfg.RAND_FLIP, "CHANCE"):

self.chance = cfg.RAND_FLIP.CHANCE
elif hasattr(cfg, "CHANCE"):

self.chance = cfg.CHANCE
else:

self.chance = 0.5
def forward(self, x : Tensor, lines = None, labels = None):

if np.random.uniform() < self.chance:
x = x.mul(-1)

return x, lines, labels
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class RandGauss1D(nn.Module):
"""
Pytorch module to add gaussian noise to 1D tensor
Supports random application through cfg.RAND_FLIP.CHANCE or
cfg.CHANCE↪→

Also supports noise intensity through INTENSITY
For uniformly distributed intensity, include a RAND to cfg.GAUSS
"""
def __init__(self, cfg):

super(RandGauss1D, self).__init__()
#Code block for random application
if hasattr(cfg.RAND_GAUSS, "CHANCE"):

self.chance = cfg.RAND_GAUSS.CHANCE
elif hasattr(cfg, "CHANCE"):

self.chance = cfg.CHANCE
else:

self.chance = 0.5
self.intensity = 1.0
if hasattr(cfg.RAND_GAUSS, "INTENSITY"):

self.intensity = cfg.RAND_GAUSS.INTENSITY
self.random_intensity = False
if hasattr(cfg.RAND_GAUSS, "RAND"):

self.random_intensity = True
def forward(self, x : Tensor, lines = None, labels = None):

if np.random.uniform() < self.chance:
#noise_factor = std(x) * intensity
noise_factor = x.std() * self.intensity
if self.random_intensity:

noise_factor *= float(np.random.uniform())
#x_i + N(0,1) * noise_factor
x += torch.randn(x.size()) * noise_factor

return x, lines, labels

class RandAmpAtt1D(nn.Module):
"""
Pytorch module to randomly amplify or attenuate signal
Supports random application through cfg.RAND_AMP_ATT.CHANCE or
cfg.CHANCE↪→

defaults to random application with p = 0.5
cfg.AMP_ATTEN is required to have parameter "FACTOR"
"""
def __init__(self, cfg):

super(RandAmpAtt1D, self).__init__()
#Code block for setting up random application
if hasattr(cfg.RAND_AMP_ATT, "CHANCE"):

self.chance = cfg.RAND_AMP_ATT.CHANCE
elif hasattr(cfg, "CHANCE"):

self.chance = cfg.CHANCE
else:

self.chance = 0.5
assert hasattr(cfg.RAND_AMP_ATT, "FACTOR"),\

"Transform AmpAtt1D requires parameter cfg.FACTOR"
self.factor = max(1/cfg.RAND_AMP_ATT.FACTOR,

cfg.RAND_AMP_ATT.FACTOR)↪→

def forward(self, x : Tensor, lines = None, labels = None):
if np.random.uniform() < self.chance:
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factor = np.random.uniform(low = 1/self.factor, high =
self.factor)↪→

x.mul(factor)
return x, lines, labels

class RandContrast1D(nn.Module):
"""
Pytorch module to add random contrast to the data
Supports random application through cfg.RAND_CONTRAST.CHANCE or
cfg.CHANCE↪→

defaults to random application with p = 0.5
Contrast enhancement amount may range between 0-100
enhancement of 0 still yields a significant contrast enhancement
"""
def __init__(self, cfg):

super(RandContrast1D, self).__init__()
#Code block for setting up random application
if hasattr(cfg.RAND_CONTRAST, "CHANCE"):

self.chance = cfg.RAND_CONTRAST.CHANCE
elif hasattr(cfg, "CHANCE"):

self.chance = cfg.CHANCE
else:

self.chance = 0.5
assert hasattr(cfg.RAND_CONTRAST, "ENHANCE"), "RandContrast1D

needs attribute cfg.RAND_CONTRAST.ENHANCE)"↪→

self.enhancement = cfg.RAND_CONTRAST.ENHANCE
if self.enhancement < 0 or self.enhancement > 100:

print(f"enhancement not in 0-100 range, setting to
{np.abs(self.enhancemnet % 100)}")↪→

self.enhancement = np.abs(self.enhancement % 100)
def forward(self, x : Tensor, lines = None, labels = None):

if np.random.uniform() < self.chance:
amount = np.random.uniform()*self.enhancement
torchaudio.functional.contrast(waveform=x,

enhancement_amount=amount)↪→

return x, lines, labels

class Crop1D(nn.Module):
"""
Pytorch module to crop one dimensional signal
Supports "random" mode and "center" mode through cfg.CROP.TYPE
defaults to random application with p = 1.0 unless cfg.CROP.CHANCE
is set↪→

If the chance doesn't activate, it defaults to crop
to the middle of the input time series.
Onset/offset annotations can optionally be added through the lines
variable↪→

"""
def __init__(self, cfg):

super(Crop1D, self).__init__()
#Code block for setting random application
self.type = "random"
if hasattr(cfg.CROP, "TYPE"):

self.type = cfg.CROP.TYPE
if hasattr(cfg.CROP, "CHANCE"):

self.chance = cfg.CROP.CHANCE
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else:
self.chance = 1

#Chance set to 0 => centercrop
if self.type == "center":

self.chance = 0
assert hasattr(cfg, "LENGTH"), "Crop1D needs output tensor

length to function"↪→

self.length = cfg.LENGTH
def forward(self, x : Tensor, lines=None, labels=None):

start = int(np.floor((x.size()[1]-self.length)/2))
if np.random.uniform() < self.chance:

min_start, max_start = (0, x.size()[1] - self.length - 1)
start = np.random.randint(low=min_start, high = max_start)

x = x.narrow(1, start, self.length)
#Onset/onset annotations need to be fixed if they're added
if lines is not None:

new_lines = []
new_labels = []
for idx, annotation in enumerate(lines):

#Have to deduct starting point from the onset
annotation_onset = annotation[0] - start
#End = starting point + annotation length
annotation_offset = annotation_onset + (annotation[1] -

annotation[0])↪→

#Fix out of bounds issues
if annotation_offset > self.length:

annotation_offset = self.length
if annotation_onset < 0:

annotation_onset = 0
if annotation_onset > self.length or annotation_offset

< 0:↪→

continue
else:

new_lines.append([annotation_onset,
annotation_offset])↪→

new_labels.append(labels[idx])
lines = np.zeros((len(new_lines), 2), dtype=np.float32)
labels = np.zeros((len(new_labels)), dtype=np.int64)
for idx, new_line in enumerate(new_lines):

lines[idx] = new_line
labels[idx] = new_labels[idx]

return x, lines, labels

class Spectrify(nn.Module):
"""
Pytorch module to convert 1D tensor to spectrogram(s)
cfg.RESOLUTION to specify [WIDTH, HEIGHT]
cfg.CHANNELS to specify channel order between ["mel", "log",
"normal"]↪→

cfg.FREQ_CROP, if only part of the spectrogram frequency dimension
is needed↪→

All outputs are normalized
"""
def __init__(self, cfg):

super(Spectrify, self).__init__()
self.length = cfg.LENGTH
#Setting imagenet resolution as defaults
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self.width = 224
self.height = 224
sample_freq = 16000
if hasattr(cfg.SPECTROGRAM, "RESOLUTION"):

self.width = cfg.SPECTROGRAM.RESOLUTION[0]
self.height = cfg.SPECTROGRAM.RESOLUTION[1]

self.out_width = self.width
self.out_height = self.height
if hasattr(cfg.SPECTROGRAM, "FREQ_CROP"):

self.crop = cfg.SPECTROGRAM.FREQ_CROP
self.out_height = self.crop[1]

else:
self.crop = None

if hasattr(cfg, "SAMPLE_RATE"):
sample_freq = cfg.SAMPLE_RATE

self.transformations = nn.ModuleList()
self.channels = ["normal","log","mel"]
self.resize = torchvision.transforms.Resize((self.out_height,

self.out_width))↪→

if hasattr(cfg.SPECTROGRAM, "CHANNELS"):
self.channels = cfg.SPECTROGRAM.CHANNELS

for channel in self.channels:
if channel == "mel":

#Not sure whether this is right or not
out_height = self.height
if self.crop is not None:

out_height = self.crop[1]
hop_size = cfg.LENGTH // self.width
melify = nn.Sequential(

torchaudio.transforms.MelSpectrogram(
n_mels=self.height,
hop_length=hop_size

)
)
self.transformations.append(melify)

if channel == "log" or channel == "normal":
num_ffts = (self.height - 1)*2 + 1
#A bit unsure of line below, but think it should

give right width↪→

hop_size = cfg.LENGTH // self.width
self.transformations.append(

torchaudio.transforms.Spectrogram(
n_fft = num_ffts,
hop_length = hop_size

)
)

def forward(self, x : Tensor, lines = None, labels = None):
if lines is not None:

new_lines = np.zeros((len(lines), 2), dtype=np.float32)
for idx, annotation in enumerate(lines):

#Onset_pixel = onset_sample * spectrogram_width /
waveform_sample_length↪→

annotation_onset =
int(np.round((annotation[0]*self.width)/self.length))↪→

annotation_offset =
int(np.round((annotation[1]*self.width)/self.length))↪→

new_lines[idx] = [annotation_onset, annotation_offset]
lines = new_lines
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#Convert first element of output to be able to just torch.cat
it later↪→

y = self.transformations[0](x)
if not (self.crop is None) and self.channels[0] != "mel":

y = torch.narrow(
input = y,
dim = y.dim() - 2,
start = self.crop[0],
length = self.crop[1]

)
#Normalization after crop
y = (y - torch.mean(y)) / torch.std(y)
width = y.size()[-1]
height = y.size()[-1]
if width != self.out_width or height != self.out_height:

y = self.resize(y)
#If more spectrograms are specified, use them
if len(self.transformations) > 1:

for i, transformation in
enumerate(self.transformations[1:]):↪→

channel = transformation(x)
#No point in cropping mel spectrogram as its done

through resize↪→

#This is because of how the melscale works.
if not (self.crop is None) and self.channels[i + 1] !=

"mel":↪→

channel = torch.narrow(
input = channel,
dim = channel.dim() - 2,
start = self.crop[0],
length = self.crop[1]

)
width = channel.size()[-1]
height = channel.size()[-2]
if width != self.out_width or height !=

self.out_height:↪→

channel = self.resize(channel)
#Statement for logarithmic output.
if self.channels[i+1] == "log":

channel = torch.log(channel)
#Normalization after crop
channel = (channel - torch.mean(channel)) /

torch.std(channel)↪→

y = torch.cat((y, channel), 0)
return y, lines, labels

class ValCrop(nn.Module):
"""
Pytorch module to crop one dimensional signal specified by
Supports "random" mode and "center" mode through cfg.CROP.TYPE
defaults to random application with p = 1.0 unless cfg.CROP.CHANCE
is set↪→

If the chance doesn't activate, it defaults to crop
to the middle of the input time series.
Onset/offset annotations can optionally be added through the lines
variable↪→
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"""
def __init__(self, cfg):

super(ValCrop, self).__init__()
assert hasattr(cfg, "LENGTH"), "ValCrop needs output tensor

length to function"↪→

self.length = cfg.LENGTH
self.sample_freq = 16000
if hasattr(cfg, "SAMPLE_RATE"):

self.sample_freq = cfg.SAMPLE_RATE
#If data should be differentiated, a sample has to be added
if hasattr(cfg, "DIFFERENTATE"):

self.length += getattr(cfg.DIFFERENTATE, "STEP", default=1)
def forward(self, x : Tensor, start_second=0.0, lines=None,

labels=None):↪→

signal_length = x.size()[1]
leftover_samples = signal_length -

start_second*self.sample_freq + self.length↪→

#Implicates that this is the last audio bit in the file
#In case there is more samples, will then add them to the audio

bit↪→

if leftover_samples < (self.length / 2):
start_second += min(1.0, leftover_samples/self.sample_freq)

start = int(np.floor(self.sample_freq * start_second))
x = x.narrow(1, start, self.length)
#Onset/onset annotations need to be fixed if they're added
if lines is not None:

new_lines = []
new_labels = []
for idx, annotation in enumerate(lines):

#Have to deduct starting point from the onset
annotation_onset = annotation[0] - start_second
#End = starting point + annotation length
annotation_offset = annotation_onset + (annotation[1] -

annotation[0])↪→

#Fix out of bounds issues
if annotation_offset > self.length/self.sample_freq:

annotation_offset = self.length/self.sample_freq
if annotation_onset < 0:

annotation_onset = 0
if annotation_onset > self.length/self.sample_freq or

annotation_offset < 0:↪→

continue
else:

new_lines.append([annotation_onset,
annotation_offset])↪→

new_labels.append(labels[idx])
lines = np.zeros((len(new_lines), 2), dtype=np.float32)
labels = np.zeros((len(new_labels)), dtype=np.int64)
for idx, new_line in enumerate(new_lines):

lines[idx] = new_line
labels[idx] = new_labels[idx]

return x, lines, labels

class AudioTransformer(nn.Module):
def __init__(self, cfg, is_train=True):

super(AudioTransformer, self).__init__()
self.transforms = nn.ModuleList()
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#Implementations of new transforms will have to be added in
these↪→

#dictionaries to be supported by YAML-specification
if is_train:

transform_dict = {
"SAMPLE_COORDS" :

ToSampleCoords,↪→

"DIFFERENTIATE" :
Differentiate1D,↪→

"CROP" : Crop1D,
"RAND_FLIP" : RandFlip1D,
"RAND_GAUSS" :

RandGauss1D,↪→

"RAND_AMP_ATT" :
RandAmpAtt1D,↪→

"RAND_CONTRAST" :
RandContrast1D,↪→

"SPECTROGRAM" : Spectrify
}

else:
#Data augmentation and crop is unnecessary on

validation/test data↪→

#As both test and validation data has their own cropping
function↪→

transform_dict = {
"SAMPLE_COORDS" :

ToSampleCoords,↪→

"DIFFERENTIATE" :
Differentiate1D,↪→

"RAND_CONTRAST" :
RandContrast1D,↪→

"SPECTROGRAM" : Spectrify
}

self.validation_crop = ValCrop(cfg)
for transform_name in transform_dict:

if hasattr(cfg, transform_name):
if getattr(cfg, transform_name).ACTIVE == True:

#This is not allowed with torchscript
transform_module =

transform_dict[transform_name](cfg)↪→

self.transforms.append(transform_module)
def forward(self, x, lines = None, labels = None):

for transform in self.transforms:
x, lines, labels = transform(

x,
lines = lines,
labels = labels
)

return x, lines, labels

F Sliding-window target transform

import torch
import torch.nn as nn
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class TargetTransform(nn.Module):
"""
Target transformation for a "scanline" classifier,
strategy is that any "scanline" containing more than a threshold
part of it as a value for a class should be regarded as positive.
"""
def __init__(self, cfg):

super(TargetTransform, self).__init__()
if hasattr(cfg.INPUT.TRANSFORM, "SPECTROGRAM"):

self.length = cfg.INPUT.TRANSFORM.SPECTROGRAM.RESOLUTION[0]
else:

self.length = cfg.INPUT.RECORD_LENGTH
self.threshold = cfg.MODEL.THRESHOLD
self.num_classes = cfg.MODEL.NUM_CLASSES

def forward(self, lines = None, labels = None):
"""
Forward function assumes lines is relative to model input

dimensions.↪→

"""
out_labels = torch.zeros(self.num_classes)
line_contents = {}
if lines is not None:

for idx, line in enumerate(lines):
if labels[idx] not in line_contents:

line_contents[labels[idx]] = 0
line_contents[labels[idx]] += (line[1] - line[0]) /

self.length↪→

#Mark data as positive if more than threshold of it is
positive.↪→

if line_contents[labels[idx]] > self.threshold:
out_labels[labels[idx]] = 1

return out_labels

G Training automation

G.1 Training script

import argparse
import logging
import torch
import pathlib
import numpy as np
from classifier.config.defaults import cfg
from classifier.data.build import make_data_loaders
from classifier.logger import setup_logger
from classifier.trainer import Trainer
from classifier.models import build_model
from classifier.utils import to_cuda

np.random.seed(0)
torch.manual_seed(0)
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def start_train(cfg):
logger = logging.getLogger('classification.trainer')
model = build_model(cfg)
model = to_cuda(model)
dataloaders = make_data_loaders(cfg)
trainer = Trainer(

cfg,
model=model,
dataloaders=dataloaders
)

trainer.train()
return trainer.model

def get_parser():
parser = argparse.ArgumentParser(description='Single Record MultiLine Detector Training With PyTorch')
parser.add_argument(

"config_file",
default="",
metavar="FILE",
help="path to config file",
type=str,

)
parser.add_argument(

"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,

)
return parser

def main():
args = get_parser().parse_args()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = pathlib.Path(cfg.OUTPUT_DIR)
output_dir.mkdir(exist_ok=True, parents=True)
logger = setup_logger("Classifier", output_dir)
logger.info(args)
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:

config_str = "\n" + cf.read()
logger.info(config_str)

logger.info("Running with config:\n{}".format(cfg))
model = start_train(cfg)

if __name__ == "__main__":
main()

G.2 Run experiments script

#!/usr/bin/bash

#Use this script to run through all configuration files
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#in a chosen directory. Script will run all training sessions
#and dump the seission outputs as a log in outputs/

cd "$(dirname "$0")"
proj_dir=$(dirname "$0")
experiment_dir="$1"
#Cange experiment dir to run with config files in your chosen

directory↪→

for config_file in "${proj_dir}/${experiment_dir}"/*
do

#Getting conf_name for output logfile
conf_name="$(basename $config_file)"
conf_name=$(echo "$conf_name" | cut -f 1 -d '.')
env/bin/python train.py $config_file >

$proj_dir/outputs/$conf_name.log↪→

done

H Evalutaion code

H.1 SSED evaluation code

"""
Scanline classifier mean Average precision evaluator
Written as part of master thesis by Bendik Bogfjellmo
(github.com/bendikbo) (bendik.bogfjellmo@gmail.com)
"""
import torch
from statistics import mean

def _calculate_AP(
class_predictions: torch.Tensor,
class_targets: torch.Tensor,
recall_vals = 1000,
conf_vals = 1000
):
"""
calculates average precision for a single class
Arguments:
- class_predictions : torch.Tensor in shape of [num_preds]
- class_targets : torch.Tensor in shape of [num_targets]
where num_preds == num_targets
"""
#linear approximation of continuous confidence threshold
confidence_thresholds = torch.linspace(0, 1, conf_vals)
#Initalize array of predictions considered positive at each

distinct confidence threshold↪→

pos_preds = torch.zeros(conf_vals, class_predictions.size()[0])
for i in range(conf_vals):

#confidence >= threshold => positive prediction
pos_preds[i, class_predictions>=confidence_thresholds[i]] = 1

#tensor of size [conf_vals] containing true positives for threshold
num_true_positives = torch.sum((pos_preds*class_targets), dim=1)
#tensor of size [conf_vals] containing false positives for each

threshold↪→
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num_false_positives = torch.sum(pos_preds, dim=1) -
num_true_positives↪→

#The same for false negatives
num_false_negatives = torch.sum(class_targets) - num_true_positives
#initialize tensors for precision and recalls
precisions = torch.zeros(conf_vals)
recalls = torch.zeros_like(precisions)
for i in range(conf_vals):

num_tp = num_true_positives[i]
num_fp = num_false_positives[i]
num_fn = num_false_negatives[i]
if (num_tp + num_fp) == 0:

precisions[i] = 1
else:

precisions[i] = num_tp/(num_tp + num_fp)
if (num_tp + num_fn) == 0:

recalls[i] = 0
else:

recalls[i] = num_tp / (num_tp + num_fn)
recall_levels = torch.linspace(0, 1, recall_vals)
final_precisions = torch.zeros_like(recall_levels)
for i in range(recall_vals):

recall_level = recall_levels[i]
recall_level_precisions = precisions[recalls >= recall_level]
if not precisions.numel():

final_precisions[i] = 0
else:

final_precisions[i] = torch.max(recall_level_precisions)
return torch.mean(final_precisions)

def calculate_mAP(predictions: torch.Tensor, targets : torch.Tensor):
"""
calculates mean average precision based on predictions and targets.
Arguments:
- Predictions : torch.Tensor in shape of [num_preds, num_classes]
- Targets : torch.Tensor in shape of [num_targets,
num_classes]↪→

where num_targets == num_preds
"""
ap_vals = {}
for i in range(targets.size()[-1]):

#print(f"class: {i}")
class_predictions = predictions[:, i]
class_targets = targets[:,i]
class_AP = _calculate_AP(class_predictions, class_targets)
#Tensors are a bit annoying to work without significant payoff.
ap_vals[i] = float(class_AP)

ap_vals["mAP"] = mean(ap_vals.values())
return ap_vals

H.2 SSD-based architecture evaluation

import numpy as np
import matplotlib.pyplot as plt
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def calculate_iou(prediction_line, gt_line):
"""Calculate intersection over union of single predicted and ground

truth line.↪→

Args:
prediction_line (np.array of floats): location of predicted

sound as↪→

[tmin, tmax]
gt_line (np.array of floats): location of ground truth sound as

[tmin, tmax]
returns:

float: value of the intersection of union for the two
lines.↪→

"""
t1_t, t2_t = gt_line
t1_p, t2_p = prediction_line
if t2_t < t1_p or t2_p < t1_t:

return 0.0

# Compute intersection
t1i = max(t1_t, t1_p)
t2i = min(t2_t, t2_p)
intersection = (t2i - t1i)

# Compute union
pred_t = (t2_p - t1_p)
gt_t = (t2_t - t1_t) * (t2_t - t1_t)
union = pred_t + gt_t - intersection
iou = 0
iou = intersection / union
assert iou >= 0 and iou <= 1
return iou

def calculate_precision(num_tp, num_fp, num_fn):
""" Calculates the precision for the given parameters.

Returns 1 if num_tp + num_fp = 0
Args:

num_tp (float): number of true positives
num_fp (float): number of false positives
num_fn (float): number of false negatives

Returns:
float: value of precision

"""
if (num_tp + num_fp) == 0:

return 1
return num_tp / (num_fp + num_tp)

def calculate_recall(num_tp, num_fp, num_fn):
""" Calculates the recall for the given parameters.

Returns 0 if num_tp + num_fn = 0
Args:

num_tp (float): number of true positives
num_fp (float): number of false positives
num_fn (float): number of false negatives

Returns:
float: value of recall
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"""
denominator = num_tp + num_fn
if denominator == 0:

return 0
return num_tp / denominator

def get_all_line_matches(prediction_lines, gt_lines, iou_threshold):
"""Finds all possible matches for the predicted lines to the ground

truth lines.↪→

No bounding line can have more than one match.
#TODO: allow for possibility of multiple pred line having one

gt line as match↪→

and one pred line having multiple gt line as match.
Remember: Matching of bounding lines should be done with

decreasing IoU order!↪→

Args:
prediction_lines: (np.array of floats): list of predicted

bounding lines↪→

shape: [number of predicted lines, 2].
Each row includes [tmin, tmax]

gt_lines: (np.array of floats): list of bounding lines ground
truth↪→

objects with shape: [number of ground truth lines, 2].
Each row includes [tmin, tmax]

Returns the matched lines (in corresponding order):
prediction_lines: (np.array of floats): list of predicted

bounding lines↪→

shape: [number of line matches, 2].
gt_lines: (np.array of floats): list of bounding lines ground

truth↪→

objects with shape: [number of line matches, 2].
Each row includes [tmin, tmax]

"""
ious = []
indices = []
# Find all possible matches with a IoU >= iou threshold
for pred_idx, pred_line in enumerate(prediction_lines):

for gt_idx, gt_line in enumerate(gt_lines):
iou = calculate_iou(pred_line, gt_line)
if iou >= 0:

ious.append(iou_threshold)
indices.append((pred_idx, gt_idx))

ious = np.array(ious)
indices = np.array(indices)
if indices.size == 0:

return np.array([]), np.array([])
assert indices.shape[1] == 2

# Sort all matches on IoU in descending order
sorted_idx = np.argsort(ious)[::-1]
ious = ious[sorted_idx]
indices = indices[sorted_idx]

# Find all matches with the highest IoU threshold
seen_prediction_lines = np.zeros(len(prediction_lines))
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seen_gt_lines = np.zeros(len(gt_lines))
final_prediction_lines = []
final_gt_lines = []

for (pred_idx, gt_idx) in indices:
if seen_prediction_lines[pred_idx] == 0 and

seen_gt_lines[gt_idx] == 0:↪→

final_prediction_lines.append(prediction_lines[pred_idx])
final_gt_lines.append(gt_lines[gt_idx])

seen_prediction_lines[pred_idx] = 1
seen_gt_lines[gt_idx] = 1

return np.array(final_prediction_lines), np.array(final_gt_lines)

def calculate_individual_record_result(prediction_lines, gt_lines,
iou_threshold):↪→

"""Given a set of prediction lines and ground truth lines,
calculates true positives, false positives and false negatives
for a single record.
NB: prediction_lines and gt_lines are not matched!

Args:
prediction_lines: (np.array of floats): list of predicted

bounding lines↪→

shape: [number of predicted lines, 2].
Each row includes [tmin, tmax]

gt_lines: (np.array of floats): list of bounding lines ground
truth↪→

objects with shape: [number of ground truth lines, 2].
Each row includes [tmin, tmax]

Returns:
dict: containing true positives, false positives, true

negatives, false negatives↪→

{"true_pos": int, "false_pos": int, false_neg": int}
"""
matched_pred_lines, matched_gt_lines = get_all_line_matches(

prediction_lines, gt_lines, iou_threshold)

num_tp = len(matched_gt_lines)
num_fp = len(prediction_lines) - num_tp
num_fn = len(gt_lines) - num_tp
return {"true_pos": num_tp, "false_pos": num_fp, "false_neg":

num_fn}↪→

def calculate_precision_recall_all_records(
all_prediction_lines, all_gt_lines, iou_threshold):
"""Given a set of prediction lines and ground truth lines for all

records,↪→

calculates recall and precision for all records.
NB: all_prediction_lines and all_gt_lines are not matched!

Args:
all_prediction_lines: (list of np.array of floats): each

element in the list↪→

is a np.array containing all predicted bounding lines for
the given record↪→

with shape: [number of predicted lines, 2].
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Each row includes [tmin, tmax]
all_gt_lines: (list of np.array of floats): each element in the

list↪→

is a np.array containing all ground truth bounding lines
for the given record↪→

objects with shape: [number of ground truth lines, 2].
Each row includes [tmin, tmax]

Returns:
tuple: (precision, recall). Both float.

"""
true_pos = 0
false_pos = 0
false_neg = 0
for idx in range(len(all_prediction_lines)):

pline = all_prediction_lines[idx]
gtline = all_gt_lines[idx]
res = calculate_individual_record_result(pline, gtline,

iou_threshold)↪→

true_pos += res["true_pos"]
false_pos += res["false_pos"]
false_neg += res["false_neg"]

precision = calculate_precision(true_pos, false_pos, false_neg)
recall = calculate_recall(true_pos, false_pos, false_neg)
return precision, recall

def get_precision_recall_curve(
all_prediction_lines, all_gt_lines, confidence_scores,

iou_threshold↪→

):
"""Given a set of prediction lines and ground truth lines for all

records,↪→

calculates the recall-precision curve over all records.
for a single record.
NB: all_prediction_lines and all_gt_lines are not matched!

Args:
all_prediction_lines: (list of np.array of floats): each

element in the list↪→

is a np.array containing all predicted bounding lines for
the given record↪→

with shape: [number of predicted lines, 2].
Each row includes [tmin, tmax]

all_gt_lines: (list of np.array of floats): each element in the
list↪→

is a np.array containing all ground truth bounding lines
for the given record↪→

objects with shape: [number of ground truth lines, 2].
Each row includes [tmin, tmax]

scores: (list of np.array of floats): each element in the list
is a np.array containting the confidence score for each of

the↪→

predicted bounding line. Shape: [number of predicted lines]
E.g: score[0][1] is the confidence score for a predicted

bounding line 1 in record 0.↪→

Returns:
precisions, recalls: two np.ndarray with same shape.

"""
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# Instead of going over every possible confidence score threshold
to compute the PR↪→

# curve, we will use an approximation
confidence_thresholds = np.linspace(0, 1, 1000)

precisions = []
recalls = []
for confidence_thr in confidence_thresholds:

temp_pred_line = []
for record_idx in range(len(all_prediction_lines)):

pred_lines = all_prediction_lines[record_idx]
scores = confidence_scores[record_idx]
prune_mask = scores >= confidence_thr
temp_pred_line.append(pred_lines[prune_mask])

precision, recall = calculate_precision_recall_all_records(
temp_pred_line, all_gt_lines, iou_threshold

)
precisions.append(precision)
recalls.append(recall)

return np.array(precisions), np.array(recalls)

def plot_precision_recall_curve(precisions, recalls):
"""Plots the precision recall curve.

Save the figure to precision_recall_curve.png:
'plt.savefig("precision_recall_curve.png")'

Args:
precisions: (np.array of floats) length of N
recalls: (np.array of floats) length of N

Returns:
None

"""
plt.figure(figsize=(20, 20))
plt.plot(recalls, precisions)
plt.xlabel("Recall")
plt.ylabel("Precision")
plt.xlim([0.8, 1.0])
plt.ylim([0.8, 1.0])
plt.savefig("precision_recall_curve.pdf", format="pdf")

def calculate_average_precision(precisions, recalls):
""" Given a precision recall curve, calculates the mean average

precision.
Args:

precisions: (np.array of floats) length of N
recalls: (np.array of floats) length of N

Returns:
float: mean average precision

"""
# Calculate the mean average precision given these recall levels.
recall_levels = np.linspace(0, 1.0, 1000)

final_precisions = []
for recall_level in recall_levels:

precision = precisions[recalls >= recall_level]
if precision.size == 0:
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precision = 0
else:

precision = max(precision)
final_precisions.append(precision)

average_precision = 0
average_precision = np.mean(final_precisions)
return average_precision

def average_precisions(
targets,
predictions,
iou_threshold = 0.5
):
""" Calculates the mean average precision over the given dataset

with IoU threshold of 0.5
Args:

targets: (list of dicts, one for each record)
[
{
"lines":[[onset0, offset0],[onset1,offset1], ...],
"labels":[label0, label1, ...]
},
{...},
...
]
predictions: (list of dicts, one for each record)
[
{
"lines":[[onset0, offset0],[onset1,offset1], ...],
"labels":[label0, label1, ...],
"scores":[score0, score1, ...]
},
{...},
...
]
iou_threshold: threshold of iou for a prediction
to be considered a true positive.

"""
average_precisions = []
for label in range(1,6):

label_pred_lines = []
label_pred_scores = []
label_gt_lines = []
for rec_preds, rec_targs in zip(predictions, targets):

#Indexing by boolean mask to only get lines/scores
#where label == label
pred_lines = rec_preds["lines"][rec_preds["labels"]==label]
pred_scores =

rec_preds["scores"][rec_preds["labels"]==label]↪→

gt_lines = rec_targs["lines"][rec_targs["labels"]==label]
label_pred_lines.append(pred_lines)
label_pred_scores.append(pred_scores)
label_gt_lines.append(gt_lines)

precisions, recalls = get_precision_recall_curve(
label_pred_lines,
label_gt_lines,
label_pred_scores,
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iou_threshold)
label_AP = calculate_average_precision(precisions, recalls)
average_precisions.append(label_AP)

return average_precisions

I Window-slide Inference script

"""
Scanline Sound Event Detection inference program
Written by Bendik Bogfjellmo in 2021
(github.com/bendikbo) (bendik.bogfjellmo@gmail.com)
Feel free to reuse, but let a brother get in them mentions

The main idea of the inference stuff is to do n hops per
classifying window. Meaning that each "subwindow" has n
classifications made on it, and then just average all these
confidence scores and just threshold those to get get them bools
"""
import torch
import pandas as pd
import pathlib
import argparse
from tqdm import tqdm
from torch.utils.data import DataLoader, dataloader
from torch import sigmoid
#Used to dereference from active neuron to class name
from classifier.data.datasets import dereference_dict
from classifier.models import build_model
from classifier.config.defaults import cfg
from classifier.utils import to_cuda
from classifier.utils import load_best_checkpoint
from classifier.data.datasets.window_slide import WindowSlide
import time

class Inferencer:
def __init__(

self,
cfg,
audio_files: list
):
self.start_time = time.time()
self.cfg = cfg
self.audio_files = audio_files
self.dataloaders = []
self.dereference_dict = dereference_dict(self.cfg.INPUT.NAME)
for audio_file in audio_files:

self.add_dataloader(audio_file)
self.model = self.load_model()
self.model.eval()
to_cuda(self.model)
self.output_dir = self.cfg.INFERENCE.OUTPUT_DIR

def add_dataloader(self, audio_file):
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dataset = WindowSlide(self.cfg, audio_file)
dataloader = DataLoader(

dataset=dataset,
batch_size=self.cfg.INFERENCE.BATCH_SIZE,
shuffle=False,
num_workers=self.cfg.INFERENCE.NUM_WORKERS

)
self.dataloaders.append(dataloader)

def load_model(self):

model = build_model(self.cfg)
checkpoint_dir = pathlib.Path(self.cfg.OUTPUT_DIR)
state_dict = load_best_checkpoint(checkpoint_dir)
model.load_state_dict(state_dict=state_dict)
return model

def infer(self):
for audio_file, dataloader in zip(self.audio_files,

self.dataloaders):↪→

self.start_time = time.time() #For performance measurements
#output filename
output_filename = audio_file.split("/")[-1].split(".")[0]
#Instantiating predictions for entire audio file
all_raw_preds = torch.zeros(

len(dataloader.dataset),
len(self.dereference_dict)

)
#Size [Predictions_per_file, Num_classes]
all_raw_preds = to_cuda(all_raw_preds)
with torch.no_grad():

for x_batch, indices in tqdm(dataloader):
x_batch = to_cuda(x_batch)
#Have to convert tensor to long for indexing
indices = indices.long()
indices = to_cuda(indices)
preds = self.model(x_batch)
preds = sigmoid(preds)
#Just to make absolutely sure everything's in order
all_raw_preds[indices] = preds

num_hops = self.cfg.INFERENCE.HOPS_PER_WINDOW
#processed_preds.size() == (predictions_per_file + num_hops

- 1, num_classes)↪→

processed_preds = torch.zeros(
(all_raw_preds.size()[0]+num_hops - 1,
all_raw_preds.size()[1])

)
#For loop to make processes preds into moving average
#of raw preds based on number of hops per class window
all_raw_preds = all_raw_preds.cpu()
processed_preds = processed_preds.cpu()
for hop_no in range(num_hops):

#Have to add if statement for last hop, since
#apparantly, there's no elegant way to do this
if hop_no < (num_hops - 1):

processed_preds[hop_no:-num_hops + hop_no + 1,:] \
+= all_raw_preds[:,:]/num_hops

else:

99



processed_preds[hop_no:,:]\
+= all_raw_preds[:,:]/num_hops

if num_hops > 1:
num_labels=processed_preds.size()[-1]
#This is done to fix edge cases in moving mean method
numerator=torch.linspace(1,num_hops-1, num_hops-1)
denominator = torch.linspace(num_hops-1, 1, num_hops-1)
edge_multiplier=torch.div(numerator, denominator)
#Have to repeat multiplier for each label type
edge_multiplier=\

edge_multiplier.view(-1,1).repeat(1,num_labels).view(num_hops-1,num_labels)↪→

processed_preds[-num_hops + 1:,:]+=\
torch.mul(

edge_multiplier,
processed_preds[-num_hops+1:,:]
)

#Flip it around and bring it back
edge_multiplier = torch.div(denominator, numerator)
edge_multiplier=\

edge_multiplier.view(-1,1).repeat(1,num_labels).view(num_hops-1,num_labels)↪→

processed_preds[0:num_hops-1,:]+=\
torch.mul(

edge_multiplier,
processed_preds[:num_hops-1,:]

)
self.format_and_write(output_filename, processed_preds)

def format_and_write(
self,
output_filename : str,
processed_preds : torch.Tensor
):

predictions = []
threshold = self.cfg.INFERENCE.THRESHOLD
for label in range(processed_preds.size()[1]):

label_name = self.dereference_dict[label]
label_preds = processed_preds[:,label]
pos_preds = torch.zeros_like(label_preds)
pos_preds[label_preds >= threshold] = 1
i = 0
pred_start = 0.0
pred_stop = 0.0
active_pred = False
hop_length_in_seconds = \

(self.cfg.INPUT.RECORD_LENGTH//self.cfg.INFERENCE.HOPS_PER_WINDOW)/
\

↪→

↪→

self.cfg.INPUT.SAMPLE_FREQ
num_preds = int(pos_preds.size()[0])
#Couldn't figure out a prettier way to do this
while i < num_preds:

if pos_preds[i]:
if not active_pred:

pred_start = i*hop_length_in_seconds
active_pred = True
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elif pos_preds[i-1] and active_pred:
active_pred = False
pred_stop = i*hop_length_in_seconds
predictions.append((label_name, pred_start,

pred_stop))↪→

i+=1
if self.cfg.INFERENCE.OUTPUT_FORMAT == "csv":

self.write_to_csv(predictions, output_filename)
elif self.cfg.INFERENCE.OUTPUT_FORMAT == "audacity":

self.write_audacity_labels(predictions, output_filename)

def write_to_csv(
self,
predictions,
output_filename
):
df = pd.DataFrame(

predictions,
columns=["class", "onset", "offset"]
)

pathlib.Path(cfg.INFERENCE.OUTPUT_DIR).mkdir(
parents=True,
exist_ok=True

)
output_path = self.cfg.INFERENCE.OUTPUT_DIR + output_filename +

".csv"↪→

df.to_csv(output_path)
print(f"\n\nFinished inference on: {output_filename}")
print(f"time used: {time.time() - self.start_time}")
print(f"ouput stored as: {output_path}")

def write_audacity_labels(
self,
predictions,
output_filename
):
pathlib.Path(cfg.INFERENCE.OUTPUT_DIR).mkdir(

parents=True,
exist_ok=True

)
stuff_to_write = ""
for prediction in predictions:

first_line =
f"{prediction[1]} {prediction[2]} {prediction[0]}\n"↪→

second_line = f"\\ 000.000 000.000\n"
stuff_to_write += first_line + second_line

#Audacity label files are .txt extension
output_path = self.cfg.INFERENCE.OUTPUT_DIR + output_filename +

".txt"↪→

out_file = open(output_path, 'w+')
out_file.write(stuff_to_write)
out_file.close()
print(f"\n\nFinished inference on: {output_filename}")
print(f"time used: {time.time() - self.start_time}")
print(f"ouput stored as: {output_path}")
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def get_parser():
parser = argparse.ArgumentParser(

description='Sound Event Detection inference')
parser.add_argument(

"config_file",
default="",
metavar="config_file",
help="path to config file",
type=str,

)
parser.add_argument(

"audio_files",
help="Audio files to run inference on",
default=None,
nargs=argparse.REMAINDER,

)
return parser

def main():
args = get_parser().parse_args()
cfg.merge_from_file(args.config_file)
audio_files = args.audio_files
cfg.freeze()
output_dir = pathlib.Path(cfg.OUTPUT_DIR)
output_dir.mkdir(exist_ok=True, parents=True)
print("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:

config_str = "\n" + cf.read()
print(config_str)

print("Running with config:\n{}".format(cfg))
inferencer = Inferencer(cfg, audio_files)
inferencer.infer()

if __name__ == "__main__":
main()

J Classifier Models

J.1 ResNet50 & ResNet34

import torch.nn as nn
from torchvision.models import resnet50
from collections.abc import Iterable

class ResNet50BB(nn.Module):
"""
Resnet50 classifier class
"""
def __init__(self, cfg):

super(ResNet50BB, self).__init__()
if getattr(cfg, "PRETRAINED", True) == False:

self.pretrained = False
else:
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self.pretrained = True
self.res = resnet50(pretrained=self.pretrained)
self.fc = nn.Sequential(

nn.Linear(in_features=1000, out_features=cfg.NUM_CLASSES)
)

def forward(self, x):
x = self.res(x)
x = self.fc(x)
return x

class ResNet34BB(nn.Module):
"""
Resnet34 classifier class
"""
def __init__(self, cfg):

super(ResNet50BB, self).__init__()
if getattr(cfg, "PRETRAINED", True) == False:

self.pretrained = False
else:

self.pretrained = True
self.res = resnet34(pretrained=self.pretrained)
self.fc = nn.Sequential(

nn.Linear(in_features=1000, out_features=cfg.NUM_CLASSES)
)

def forward(self, x):
x = self.res(x)
x = self.fc(x)
return x

J.2 EfficientNet

from efficientnet_pytorch import EfficientNet

def effnet(cfg):
return EfficientNet.from_pretrained(cfg.NAME,

num_classes=cfg.NUM_CLASSES)↪→
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