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Assignment

Acceleration of deep learning algorithms for cardiac ultrasound processing by use of Xilinx FPGA.
Deep neural networks (DNNs) have recently achieved impressing results within medical ultrasound

imaging. Usually, CPUs or GPUs are used for deployment of the DNN architectures. However, field-
programmable logic (FPGA) can be considered as a soft DPU (DNNProcessingUnit) suitable for deployment
of a diversity of quantized DNN (QNN) architectures. However, for some applications (i.e. portable
ultrasound devices) it is desirable to have a small footprint and perform the inference operations with a
minimal power budget.

The aim of the proposed MSc thesis is to compare the performance of standard deep learning networks
such as view classification and/or segmentation, having as input 2D cardiac ultrasound images. Further-
more, the project will investigate what accuracy, performance and latency are achievable in an embedded
solution, under power budget and footprint limitations. Xilinx MPSoC FPGA Zynq Ultrascale+ is selected
as target technology. Comparison of inference times between Xilinx FPGA and Nvidia GPUs should also be
considered.
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Abstract

In recent years the field of deep learning and deep neural networks (DNNs) has evolved and matured as a
consequence of better technology in the form of better processing platforms, and more available and bigger
datasets. Asmore research is put into deep learning, more complexmodels evolve, very oftenmeaning deeper
models with more weights and layers. This, in turn, results in more computationally intensive inference,
often resulting in lower throughput, higher power consumption, and higher latency for each computed output.
This report outlines the implementation of a U-net architecture on a Xilinx XCZU7EV field programmable
gate array (FPGA) using quantized weights of 8 bit. The intended application is segmentation of cardiac
ultrasound images. The model was trained on several image resolutions to obtain the best trade-off between
accuracy and performance. The networkwas also implemented on central processing unit (CPU) and graphics
processing unit (GPU) for comparison in terms of performance and accuracy. The FPGA implementation
yielded a maximum speedup of 30x compared to an Intel Core i7 CPU and a maximum speedup of 2.6x
compared to an Nvidia GeForce GTX 1060 GPU. The FPGA achieved a latency of 0.07x compared to the
CPU and 0.68x compared to the GPU latency. The FPGA model utilizes quantized 8-bit integer weights,
whereas the CPU and GPU uses 32-bit floating-point weights. The FPGA implementations resulted in a
maximum accuracy reduction of 1% compared to the floating-point models, with all the models optimized
for different resolutions achieving Sørensen-Dice coefficients higher than 89%.
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Sammendrag

I de siste årene har dyp læring og dype nevrale nettverk utviklet seg som en konsekvens av bedre teknologi
i form av bedre plattformer for prosessering og mer tilgjengelige, og større datasett. I takt med at det
forskes mer på dyp læring, utvikles det stadig mer komplekse og bedre modeller, hvilket i mange tilfeller
betyr dypere modeller med flere lag og vekter. En konsekvens av dette er at propageringen av data gjen-
nom nettverket blir veldig beregningskrevende, og dette fører til lavere utførelseshastighet (eng:throughput),
høyere energiforbruk og lengre ventetid (eng:latency). Denne rapporten sammenfatter en implementasjon
av en U-net arkitektur på en Xilinx XCZU7EV FPGA ved bruk av 8-bits kvantiserte vekter. Det tiltenkte
bruksområdet er segmentering av kardiologiske ultralydbilder. Modellen er trent for ulike bildeoppløs-
ninger for å finne det beste kompromisset mellom nøyaktighet og ytelse. For å kunne sammenligne ytelse
og nøyaktighet ble nettverket også implementert på en CPU og en GPU. FPGA-implementeringen gir en
maksimal hastighetsøkning på 30x sammenlignet med en Intel Core i7 CPU og en maksimal hastighetsøkn-
ing på 2.6x sammenlignet med en Nvidia GeForce GTX 1060 GPU. FPGA-implementeringen oppnår en
ventetid på 0.07x sammenlignet med CPUen og en ventetid på 0.64x sammenlignet med GPUen. FPGA-
implementeringen bruker kvantiserte 8-bits heltallsvekter, i motsetning til CPUen og GPUen som bruker
32-bits flyttalsvekter. FPGA-implementeringen resulterte i en maksimal reduksjon av nøyaktighet på 1%

sammenlignet med flyttalsmodellene, hvor alle modellene optimalisert for de ulike bildeoppløsninger oppnår
en Sørensen-Dice koeffisient større enn 89%.
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Preface

A common practice in the programming community is that when one encounters a bug, someone has likely
encountered the same bug before and has requested help in a forum online. In most cases, they got a good
answer. Similarly, if one wants to solve a great problem, there is a great probability that someone attempted to
solve the same problem. During the different phases of my master thesis, I have been through both scenarios
multiple times. What this means in practice is that parts of the codebase presented in this report are either
inspired by, heavily inspired by, or borrowed from other developers. I recognize their tremendous effort in
solving these problems and I have done my best to acknowledge and make reference to other developers’
source code and contributions.

To begin with, I would like to thank my three supervisors who have led me through this thesis and offered
great help all along the way. First, I would like to thank Tormod Njølstad for his unique eagerness to achieve
great results and his dedication through weekly meetings with me. Furthermore, I would like to thank Per
Gunnar Kjeldsberg for reviewing my report and giving great pointers and advice on both doing and writing
a master thesis. Finally, I would like to thank Gabriel Kiss, who provided a handful of useful insights on
the AI side of things, reviewed the theory section of my thesis, as well as ideas for the implementation, and
introduced me to useful snippets of code.

Lastly, I would like to use this opportunity to mention a good friend and former classmate, Anders
Austlid Taskén. He provided me with excellent knowledge and insights regarding implementation of DNNs
in Python, as well as helped me by pointing out a good direction regarding training strategy.
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1 Introduction

Ultrasound imaging is extensively used in medical diagnosis, disease monitoring, treatment planning, and
prognosis. One of the most prominent reasons for this is the fact that ultrasound offers a non-invasive
qualitative and quantitative assessment [1]. Segmentation of cardiac ultrasound images is a principal first
step in several medical applications [1]. Segmentation can be explained as classifying subregions in an
image by assigning each pixel a class, considering for example an application segmenting a car from the
background, the network will assign each pixel one of two classes depending on whether the network believes
the pixel belongs to the car or the background. Automating the task of segmenting cardiac ultrasound images
with high accuracy could be beneficial and free up time and effort as these tasks are performed manually
by specialists [2]. Introducing artificial intelligence (AI) into the cardiac ultrasound pipeline could also
make less trained professionals able to perform such tasks. The segmentation masks can be utilized in the
estimation of various cardiac indices such as the left ventricle volume [2].

This report will describe the implementation of a convolutional neural network (CNN) for a real-time
application trained on segmenting cardiac ultrasound images. For an implementation to be suited for real-
time applications, there are a number of characteristics to keep in mind during the design phase. For the
design to be a viable option, the design should focus on minimizing latency, power consumption and size,
while maximizing throughput [3][4]. In addition to this, we introduce downsampling and upsampling as
part of the pre- and post-processing which will add additional speedup [5]. Pre- and post-processing refers
to manipulating images before and after they are fed to the network. The importance of these metrics
is relatively straightforward. The power consumption is vital due to both the environmental impact and
maximizing battery life for battery powered systems, such as a handheld ultrasound device. A real-time
system requires a satisfactory degree of responsiveness from the user, which is related to throughput and
latency. If, for example, the CNN is part of the data flow in a real-time ultrasound image application, the
resulting segmentation should be produced so that the user can respond to the provided output within a
reasonable time. In order to fulfill the mentioned criterion, one could implement the CNN on an FPGA as
the compute platform. This is due to a combination of the ability to generate specialized hardware, good
power efficiency, and the possibility of reprogramming.

1.1 Objectives and limitations

The goal of this report is to speed up inference of a CNN using an FPGA as inference engine using
quantization of weights. The aim is to implement a model with performance comparable to a GPU, with as
low accuracy reduction as possible. We wish to obtain a network with high accuracy before quantization.
We intend to obtain a qualitative measure of the different compute platforms and investigate whether FPGA
is a viable option as compute platform for DNN for ultrasound segmentation applications.

The intended application is DNN inference, andwewill therefore not include the pre- and post-processing
in the benchmarks as these are run on CPU in all the implementations. Both stages could have easily be
implemented in hardware on the FPGA.
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1.2 Main contributions

The findings in this report are summarized in the list below:

• An approach towards finding a suitable DNN model for FPGA inference

• An implementation of the U-net architecture suited for cardiac ultrasound segmentation, with perfor-
mance comparable with a GPU.

• Investigation of the impact on accuracy when using input downsampling and quantization as means of
acceleration.

1.3 Report structure

In Chapter 2 we provide a thorough theoretical background of neural networks in general before narrowing
towards more relevant theory regarding the implementation as well as DNN inference on alternative com-
puting platforms. In Chapter 3 we present the background and previous work done in the field of cardiac
ultrasound segmentation as well as FPGA inference of DNNs. The resulting implementation is presented in
Chapter 4, and its performance and accuracy compared to CPU and GPU are presented in Chapter 5. The
results and their relevance to the given application are then further discussed in Chapter 6 before we finally
present the conclusions of the findings in Chapter 7.
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2 Theory

This report outlines the implementation of a CNN for segmenting cardiac ultrasound images in a real-time
system. Both CNNs and the segmentation application will be discussed in greater detail throughout this
chapter. This chapter begins by offering basic theory of AI and machine learning (ML) before providing a
more in depth description of DNNs, CNNs, cardiac ultrasound, FPGA inference of DNNs, and qualitative
evaluation of DNN models on different computing platforms.

2.1 Artificial intelligence

During the past hundreds of years, inventors have dreamed about creating machines able to think and learn.
With today’s technology and knowledge, this is feasible through what is popularly called AI. In recent years
the field of AI has grown substantially as a consequence of better technology, and larger and more available
datasets [6]. AI has several practical applications. Intelligent software is used to automate routine labor,
understanding complex data such as images and speech, natural language processing, medicine, support
scientific research, finance, vision, image classification, and automated driving [6][7][8].

This report will cover several topics within AI, so in order to better understand how the major topics are
connected, we refer the reader to Figure 2.1. The main topic of discussion in this report will be CNNs.

Convolutional Neural
Network (CNN)

Deep Neural
Network
(DNN)

Machine Learning (ML)

Artificial Intelligence (AI)

Figure 2.1: Realtion between AI topics

2.2 Machine learning

The field of ML is a part of computer science. ML can be described as algorithms which are optimized to
perform a given task by providing them with large amounts of data which the given algorithm uses to train
on [5][8], we will go into greater detail on training in Section 2.5.

Machine learning algorithms are made to detect patterns in data using statistical models, and use the
knowledge learned during training to make decisions on unseen data [5]. There are several types of ML
algorithms to chose from depending on the application. Some examples include: decision trees, K-means
clustering, support vector machines, k-nearest neighbor, and neural networks [9].

3



2.3 Neural Networks

One type of machine learning algorithm which has become very common is neural networks. It is also
sometimes referred to as multilayer perceptrons, or feedforward networks [5][6]. The applications for these
types of machine learning algorithms are almost unlimited and vary greatly, proving how these models are
good at generalization over many different applications and, in some cases, also exceeding human-level
performance [6][8].

In order to explain how a neural network works, we will consider a relatively simple neural network
topology shown in Figure 2.2. The nodes in the graph represent the neurons containing intermediate values
in each layer; the first column represents the input, and the last representing the output. There are several
hidden layers in between the input and output, here represented as one layer of nodes. The edges between
the nodes illustrate weights and biases, where the biases are denoted with subscript 0 and are located at the
bottom in the figure. If we were to use such a network on image classification, one would have one input node
for each pixel, i.e., for an image of size 128x128 one would need D = 1282 = 16, 384 input nodes [5][6].
The output will be a target vector with K entries containing probabilities of the given input to belong to a
given class. As an example, we will consider a neural network classifying handwritten digits, for example,
by using the famous MNIST dataset [5][10]. The dataset contains 60,000 images of handwritten digits of
size 28x28 [10]. If the example network were to classify digits based on the MNIST dataset, we would have
28x28 = 784 input nodes and ten output nodes, one for each class k = 0, 1, ..., 9. The ten resulting outputs
will indicate the probability of the input image being of that specific digit, and one would intuitively classify
the input image to the class of highest probability.

Using the neural network topology from Figure 2.2 as an example, the model is a small, fully connected
neural network, meaning that all the nodes in two adjacent layers are connected [5]. The first layer creates
M linear combinations of the inputs x1, x2, ..., xD, whereM is the number of nodes in the first hidden layer
and is an arbitrary number chosen during the design of the neural network architecture, andD is the number
of input nodes. The inputs are propagated to the next layer using Equation 2.1.

aj =

D∑
i=0

w
(1)
ji xi + w

(1)
j0 (2.1)

We will treat the hidden layers as one, though this is seldom the case. Each node in the hidden layer
gets its input from the activations from the previous layer. The activation is the obtained value after the
linear combination from the preceding layer. The input activation to node j in the hidden layer is denoted
as aj in Equation 2.1. The term wji is the weight on the edge from node i to node j in the following layer,
whereas wj0 is the bias term [5]. The superscript (1) denotes that the weights belong to the first layer. In
order to better understand how a neuron works, we refer the reader to Figure 2.3. The inputs are multiplied
by the weights, and the bias is added, as expressed in Equation 2.1, after that the activation is run through an
activation function.

The activation aj are not always directly propagated to the succeeding neurons in the next layer, in many
cases an activation function is deployed [5][6]. When using an activation function the resulting value is
computed using aj defined Equation 2.1 as shown in Equation 2.2.
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ZM

ZM-1

Z1

XD

XD-1

X1

X0

Z0

Y1

YK-1

YK

Hidden layers

Inputs Outputs
WMD(1) 

W10(n)

WKM(n)

Figure 2.2: Example of a simple neural network topology. Modified from [5].

zj = h(aj) (2.2)

Activation functions are used in order to transform the activation levels of a neuron to an output [11], it
enables the model to make sense of non-linear mappings between the inputs and the corresponding outputs
[12]. There are several options regarding which activation functions to use. One of the most common is the
sigmoid function shown in Equation 2.3.

σ(a) =
1

1 + exp (−a)
(2.3)

The sigmoid is a rather complex function that is not always necessary and could, in some cases, require a
longer training time. A more recent and simpler activation function is the rectified linear unit (ReLU) shown
in Equation 2.4 [8].

R(a) = max(0, a) (2.4)

The ReLU is becoming more common as it is both less computationally complex and is known to converge
faster during training than the sigmoid [8]. There are several other options to which activation function to
chose; we will only mention the sigmoid and the ReLU. The distinct layers can also have different activation
functions.
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hx2

x1

x3

aj

wj3
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Inputs Weights

wj0

Bias Activation 
function

Output

Figure 2.3: Visualization of how a neuron works.

In order to produce the result, the activations from the hidden layers are finally propagated to the output
layer. The output is computed from the activations from the last hidden layer using Equation 2.5.

ak =
M∑
j=0

w
(n)
kj zj + w

(n)
k0 (2.5)

In this equation ak denotes the activation of the input to be of class k = 1, 2, ...,K, where K is the
total number of classes in the given application, which in turn, in most cases is processed by an activation
function before outputted as a probability. Similarly to Equation 2.1 the variable wkj denotes the weight
used to process the value from node j to k and the weight wk0 represents the bias term for class k. M is
the number of nodes in the last hidden layer, and zj is the output from the activation function from the jth
node in the previous layer. Here each output neuron will produce a probability for whether or not the input
belongs to the given class k [5].

The termDNN refers to neural networks with many layers and weights. These have becomemore popular
in recent years due to a general increase in the availability of processing power [6]. These networks have
proven to produce good results and are therefore growing in popularity in the machine learning community.
However, training large networks requires enormous amounts of data in order to gain sufficient invariance to
generalize on data [5][6].

2.4 Convolutional neural networks

The term convolutional neural network suggests the use of convolutional operations. CNNs are neural
networks that use convolution instead of the more general matrix multiplication at least in one of its layers
[6]. The convolutional operation used can be expressed as in Equation 2.6.

ai,j =

L−1∑
m=0

L−1∑
n=0

km,n · xi+m,j+n (2.6)

The term ai,j is the activation in a feature map at index i, j. xi,j is the input at index i, j and k is the
convolutional kernel, and L is the kernel size, which will be described in greater detail further down in this
section. CNNs are commonly used in image-based deep learning or similar applications. This is due to its
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unique ability to quantify patterns using the convolutional layers, thus making it ideal for image applications
[5].

CNNs exploit the fact that nearby pixels tend to be correlated. The CNN extracts local features by
analyzing subregions of the image [5][6]. These local features are searched for through the whole image
and thereafter merged in later stages of the inference to detect higher-order features in the image. As a
consequence of this, the CNN becomes much more robust against translation, scaling, small rotations, and
elastic transformations, which might not have been seen during the training phase [5]. As an example, we
will consider the aforementioned MNIST dataset used to classify handwritten digits. Even though a digit
might be shifted a bit, mildly rotated, or changes size, it should, in most cases, be classified as the same digit.

There are mainly three mechanisms that contribute to this robustness in CNNs; sparse interactions,
weight sharing, and subsampling [5][6]. We will go into further detail into all three, starting with the sparse
interaction and receptive fields.

Fully connected neural networks use a matrix with separate weights for each connection of nodes, CNNs
however, use what is called sparse weights. This is done by making the kernel smaller than the input image.
An input image might, for example, consist of thousands of pixels, but it is still possible to detect meaningful
features such as edges by using a 3x3 kernel [6]. This significantly reduces the number of weights needed
to be stored compared to a fully connected network [6]. In the case of a 3x3 kernel, one would store ten
weights, including the bias term [5]. In addition to this, the network requires fewer operations to produce
the output [6]. There are typically a number of such kernels extracting features into what are called feature
maps. This is shown in Figure 2.4 where M kernels of size kxk, smaller than the input HxW extracts
feature to theM feature maps. The depth D in Figure 2.4 would typically be the number of channels in an
image application, for example, RGB in a color image.

D

k

k

W

H

M

p

p

M = # feature maps
p = pooling height and width

H = input height
W = input width
D = input depth
k = kernel height and width

Convolution of kxkxD kernel 
and region of input feature map Pooling over pxp region

Input feaure map Convolution output Pooling

Figure 2.4: Graphical simplification of convolution and pooling. Modified from [13].

In a fully connected layer, each weight is used precisely once per input. It is multiplied by one element
of the input and thereafter not used before a new input is computed [6]. On the other hand, in a convolutional
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neural network, each entry in a kernel is used at every position of the input, except boundary pixels depending
on the CNN architecture [6]. As a consequence of the weights being shared, the network does not have to
learn unique weights for each input location, which reduces the storage requirements [6]. This is visualized
in Figure 2.5, where the edges between the nodes represent weights. First and foremost, we see that the
number of weights is much lower due to the sparse weights. In addition to this, the weights going out from
each node in the bottom layer in the convolutional layer are equal for each node, whereas they are all unique
in the fully connected layer [6]. Furthermore, for each input node, there are fewer output nodes affected in
the convolutional layer compared to the fully connected layer, as visualized by the green nodes in Figure
2.5. This is also useful when regarding image applications, one would, for example, detect vertical edges in
the first layers of the image, but the image will typically have multiple vertical edges throughout the whole
image frame [6], therefore making it beneficial to share the weights detecting the edges on the whole input
frame.

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

Fully connected neural network

Convolutional neural network

Figure 2.5: Fully connected compared to weight sharing. Modified from [6].

Finally, subsampling contributes to CNNs being robust against translations. This is because the convo-
lutional operation is equivariant to translations, meaning that if a feature in the input is shifted, the resulting
feature will be equally shifted in the resulting feature map. This equivariance and the subsampling make
the network less prone to error when input images are slightly translated. This is visualized in Figure 2.6,
where the outputs are subsampled using a max-pooling operation. Here the output of several nearby pixels
is combined [6]. Pooling can be explained as a summary of statistics of nearby outputs [6]. There are
several options as to how the pooling is performed. The most common methods include max-pooling, which
reports the maximum output within a rectangular area, average pooling, and weighted average based on the
distance from the central pixel within a rectangular area [5][6]. The pooling of outputs makes the network
approximately invariant to small translations in the input, meaning that if the features in an image are slightly
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moved, the change in the outputs can be considered negligible [6]. This is visualized in Figure 2.6a and 2.6b.

1.0 1.0 1.0

0.1 1.0 0.1 0.2

0.2

(a)Max pooling done form four values.

1.0 1.0

0.1 0.10.1 1.0

1.00.1

(b) Max pooling done from the same values shifted one
entry to the right.

Figure 2.6: Visualization of translation and pooling. Modified from [6]

The different types of layers are often defined by hyperparameters, such as the already mentioned kernel
size, kernel type, padding, and activation function. An important example of a hyperparameter is the
stride. Stride refers to the distance between two consecutive positions of a kernel [14], for example, during
convolution or pooling. Strides can also act as a form of subsampling and can be viewed as how much of
the input is retained [14]. This is shown in Figure 2.7 where a 3x3 window is computed; this could, for
example, be a convolution kernel. The input is zero-padded with one layer of zeros. We see that the input of
5x5 retains its size in the case of the unit stride while using a stride of two results in an output of size 3x3.

(a) Unit stride (b) Stride of two

Figure 2.7: Visualization of different strides. Modified form [14].

A convolutional layer usually consists of three stages, namely convolution, detection, and pooling. The
first stage entails the already mentioned convolution in order to produce a set of linear activations using
several kernels [6]. Then, similar to the fully connected neural network the activations are run through an
activation function, most often a ReLU. This stage is often referred to as the detection stage [6]. The detected
features are thereafter pooled using, for example, max pooling. This flow is visualized in Figure 2.8 where
we could, for example, have three kernels detecting different variations of the digit ’5’, and depending on
the input image, the kernels would obtain different activations. However, after pooling, the activation for the
digit ’5’ would end up in the same pooling unit and produce a high probability.

It is, of course, possible to use a fully connected DNN on an image application. However, this would
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Figure 2.8: Max pooling [6].

require much more training to achieve similar levels of accuracy [5].

2.5 Training

Before going deeper into the learning algorithms, we will discuss the principles used during training and
to qualitatively evaluate the obtained weights. There are several different approaches to learning, such as
supervised-, unsupervised- and reinforcement learning. Supervised learning refers to learning where the
training data consists of inputs and corresponding targets. On the other hand, Unsupervised consists of
inputs without targets, where the goal is to discover groups of similar examples within the data. Finally,
reinforcement learning is concerned with finding suitable actions to take in a given situation [5]. This report
uses the approach of supervised learning.

We will continue using the example of digit classification. During training, the network is fed training
data along with the labels for each sample. In the context of digit classification, this would be a number of
images and a corresponding label telling which digit is in the given image so that the network is able to verify
whether the output is correct or not while continuously trying to minimize the error [6]. The interesting
metric to obtain here is not how good the model performs on the training data, but how good it performs
on unseen data [6][10]. Therefore we use an additional dataset containing similar samples as in the training
set, but we do not feed them to the model during training. This is called the testing dataset, and it is used
afterward to quantify how good the accuracy is on unseen data samples [10]. Theory and experiments have
shown that the accuracy gap between the data in the training and testing set is decreased with an increased
number of samples in the training set [5][6][10]. Additionally, when training DNNs it is necessary to take
out some samples from the training dataset to use for validation. During training, the weights obtained are
evaluated using the validation dataset to find the best set of weights [6].

We will not go into great detail on how the training is done mathematically, as most of these algorithms
can be easily implemented using different libraries. The method most widely used to train DNNs is called
statistical learning and is done by using a method called backpropagation [5]. The main idea behind
backpropagation is to obtain an error function E(w) where w denotes the weights and biases. The goal
of backpropagation is to minimize this error function [5]. The backpropagation algorithm consists of two
stages. The first stage entails an evaluation of the derivatives with respect to w, thereafter the obtained
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derivatives are used to find a suitable adjustment for the weights in each layer, for example, by using gradient
descent [5]. There are several different methods to train ML applications depending on what model is used;
as we are mainly concerned with DNNs we will limit this section to describe theory relevant to this. In
order to better understand the concepts of training, we refer to Figure 2.9 for a visualization of the training
procedure.

Neural network

...

Training batch

...
...

...

Output

...
...

Compare:
J(θ)

...

Targets

...
...

Weight adjustments

Figure 2.9: The process of training.

To optimize the accuracy of the model, we use a cost function J(θ) to quantify the error of the estimated
outputs compared to the target output, also sometimes referred to as ground truth [6]. Thereafter the weights
are slightly altered based on the gradient of the cost function, and the procedure is repeated [5][6]. The loss
function will be chosen based on the application. Nearly all deep learning algorithms are optimized using
what is called stochastic gradient descent [6]. The cost function is evaluated as a the sum of the per sample
loss for the whole training set [6].

An alternative to computing the gradient descent using per sample loss is to use batches of training
samples [5]. When optimizing using training data, one typically chose a number of input samples to forward
when evaluating the gradients. This could either be one sample at a time, meaning a batch size of 1, which is
often referred to as stochastic training [6]. It is also possible to use larger batch sizes to compute the gradient.
The main limiting factor to the size is the memory of the system the training is performed on, which depends
on what type of input is used. The batch size can be defined as the number of images used to train a single
forward and backward pass of the network. Training on small images requires less memory, which means
one can use larger batch sizes during training [6]. There are several reasons as to why one would use both
larger and smaller batch sizes. Larger batch sizes provide a more accurate estimate of the gradient but with
linear returns. It is also beneficial to use batches in multi-core architectures as the training is performed
faster as they can often be computed in parallel [6]. In addition to this, a larger batch size results in higher
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recognition accuracy and generalization [15], though this is also highly dependent on the optimizer used as
well [16]. In some cases, smaller batch sizes allow for better finetuning and can also have a regularizing
effect on the training [6][16].

2.5.1 Data Augmentation

In order to avoid overfitting CNNs rely on large datasets. However, this is not always available, especially in
medical imaging, the available data is very limited [17]. Overfitting is explained as the case where a model
learns a function with high variance so that it performs exceptionally on the training data, but not on the
testing data [17]. In order to avoid overfitting and generalize better on the training data, one can deploy a
technique called data augmentation on the training data. Data augmentation refers to several techniques that
enhance the size and quality of the training dataset [17][18]. Simply put, data augmentation creates fake data
based on existing samples and adds it to the training dataset [6]. Data augmentation is not applicable to any
application but is highly relevant for image applications. This is because images are highly dimensional and
have a vast range of variations, which in many cases is easy to simulate. For example, translating the image
will increase generalization even though the model is designed to handle these variations using convolution
and pooling [6]. We will look closer at a selection of data augmentation algorithms taken from Shorten and
Khoshgoftaar [17] below.

A very simple data augmentation algorithm is flipping the input and might be the simplest augmentation
algorithm. The most common way is to do horizontal flipping. Another simple data augmentation algorithm
is random cropping; this refers to cropping the image randomly while preserving the most important contents
of the image frame. This will provide an effect similar to translation. The translation augmentation shifts the
image in some direction in order to reduce positional bias. Themain difference between random cropping and
translation is that the cropping algorithm does not preserve the spatial dimensions. Other popular techniques
include random rotation, this simply entails rotating the image randomly some angle between±θmax, where
typical values are θmax ≤ 20°. Noise infusion is a data augmentation algorithm that consists of adding an
array of the same size as the image containing noise drawn from a Gaussian distribution; this is shown in
Equation 2.7.

Xnoisy = X +w, (2.7)

wherew ∼ N (0, σ2) is zero-meanGassianwhite noise with variance of σ2. The last augmentation algorithm
we will present is the gamma augmentation. Gamma augmentation adjusts the brightness of the image using
Equation 2.8:

Xgamma = c ·Xγ , (2.8)

where c and γ are coefficients adjusting the intensity in the image. These augmentation methods mentioned
above are usually employed randomly in the training set, and one might also choose to use several of these on
one sample. Furthermore, these augmentations will be deployed independently over the epochs of training,
meaning that for a given sample, the augmentation algorithms used will be different from epoch to epoch.
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An epoch refers to the number of passes of the training dataset during training.
One has to take precautions when utilizing such algorithms. The resulting augmented samples should

make sense afterward [6]. Consider the digit classification application; if one were to use rotation as an
augmentation algorithm, one should not use too great of an angle. For example, the digit ’6’ could become
a ’9’ and vice versa if rotated close to 180°. Furthermore, it does not make sense to use augmentations
mirroring the samples as these are no longer valid digits in most cases. When using data augmentation in
segmentation algorithms, one must also consider that augmenting the input sample might render the ground
truth segmentation incorrect. In that case, one has to perform the augmentation on both the sample and the
ground truth; for example, if rotating an image, the ground truth segmentation must be rotated equally. In
contrast to this, if for example, inducing noise in the sample, one should not add noise to the ground truth.

2.5.2 Preprocessing

After data augmentation and before data are fed into the network, the samples are typically preprocessed.
A typical step in the preprocessing of input samples is to perform downsampling to have smaller images to
achieve a faster inference, as the number of pixels to process per second decreases [5]. In addition to this,
the dataset might consist of images of varying sizes, for example, such as the Camus dataset [2]. There
are several methods for downsampling an image. We will not go into greater detail on this except for some
standard interpolation techniques. There exist several libraries which do this elegantly, such as, for example,
OpenCV [19].

There are a number of ways to downsample an image. If we consider the OpenCV library, the three most
common interpolation methods include linear, cubic, and nearest neighbor and are used for both up- and
downsampling images. The differences between the interpolation techniques are visualized in Figure 2.10.
Which method is the ideal is highly dependent on the given application [19] and is beyond the scope of this
report.

Figure 2.10: Interpolation techniques. [20]

In order to make the model more robust against variation in the data samples, it is common to either
standardize or normalize the images [21]. Normalization refers to scaling the input to the range of [0, 1].
This is shown in Equation 2.9.
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Xnormalized =
X −Xmin

Xmax −Xmin
(2.9)

X is the input image before normalization, and themax andmin subscripts refer to the smallest and largest
intensity value in the image. An alternative to normalization is standardization, shown in Equation 2.10.

Xstandardized =
X − µ
σ

(2.10)

TheX denotes the input, µ and σ are the mean and standard deviation ofX respectively. The standardization
also helps to reduce the impact of variations from the data acquisition and to improve the reproducibility
[21].

2.6 U-Net

Ronneberger, P.Fischer, and Brox [18] implemented a CNN called U-net. The name comes from its signature
shape as shown in Figure 2.11. U-net is a well known CNN architecture used to segment images, and has
proven to be well suited for segmentation of ultrasound images [18].

Figure 2.11: The original U-Net architecture. [18].

The left side of the architecture shown in Figure 2.11 is referred to as the contracting path. Each step in
the contraction is built up by two 3x3 convolutions, each followed by a ReLU [18]. After that, the output is
downsampled to half its size using a max-pooling layer with a stride of two. For each step down, the number
of feature maps is doubled, which is controlled by the number of kernels in the preceding layer [5]. On the
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right-hand side of the network, we find the expansive part, which upsamples the feature maps. The feature
maps are upsampled using transposed convolution. The transposed convolution can be thought of as the
convolution required to go the opposite way [14], as an example, we refer to Figure 2.12 where Figure 2.12a
shows a convolution of a 5x5 input with a kernel of size 3x3 and a layer of zero-padding around the input.
The input is convoluted using a stride of two resulting in an output of 3x3. The transposed convolution
will then become what is shown in Figure 2.12b, a 3x3 convolution of an input of 3x3, which is padded
with zeros around each value. The effective stride used is equal to one, resulting in an output of 5x5. This
is simply an emulation of how the transposed convolution works; adding rows and columns of zeros is not
computationally efficient [14]. More precisely, the transposed convolution works by changing the forward
and backward passes of a convolution [14].

(a) Convolution of 5x5 input using 3x3 kernel padded with
a stride of two.

(b) The transposed convolution of 2.12a.

Figure 2.12: 3x3 convolution and its transposed. Modified from [14].

After the transposed convolution, the resulting feature maps are concatenated with the cropped feature
maps from the contracting path followed by two 3x3 convolutions and ReLUs in a similar fashion as in the
contracting path. The output is then 1x1 convoluted to produce the desired amount of classes for the given
application, which is 2 in the case of Figure 2.11.

2.7 Cardiac ultrasound

Analyzing cardiac structures from 2D echocardiographic images is a prevalent clinical task when establishing
a diagnosis and measuring the cardiac morphology [2]. Using cardiac ultrasound images, one can estimate
various clinical indices, often extracted from segmented images. A typical example could be to estimate
the ejection fraction of the left ventricle. This requires an accurate delineation or segmentation of the left
ventricular endocardium in both end-diastole and end-systole [2], which refers to the state where the volume
is largest and smallest respectively [22]. The ejection fraction is used clinically to assess systolic cardiac
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capability [22]. The areas of the heart relevant to this report are labeled in Figure 2.13, the white arrows in
the figure denote the direction of blood flow.

Right
atrium

Right
ventricle

Left 
atrium

Left
ventricle

Myocardium

Figure 2.13: A diagram of the different regions of the heart. Modified from [23].

The process of segmenting cardiac ultrasound images can be challenging, especially obtaining high levels
of accuracy. This is due to a variety of properties regarding both the anatomy of the heart and the ultrasound
technique itself. We will not go into great detail but only mention some of the challenges. The images
are prone to weak contrast between the myocardium and the blood pool, and there are several brightness
inhomogeneities, variation in speckle pattern along the myocardium due to the orientation of the probe
with respect to the tissue, presence of muscles with intensities similar to the myocardium, significant tissue
echogenicity variability within the population. Finally, there is variation in shape, intensity, and motion of
the heart structures across patients and pathologies [2].

Using DNNs instead of simpler ML based algorithms on ultrasound data is beneficial for many reasons.
First and foremost, DNNs does not require feature engineering or prior knowledge to achieve satisfactory
accuracy [1]. What this means in practice is that the simpler ML based algorithms need extraction and
processing of features before the algorithm can process them, and in some cases, one also needs to know the
prior distribution of the data [1].

The Camus (Cardiac Acquisitions for Multi-structure Ultrasound Segmentation) dataset is a publicly
available dataset for cardiac ultrasound segmentation [2]. The dataset is part of a competition, where the idea
behind the competition is to perform inference on the testing set and submit the results, and the organizers
of the competition quantify the result to rate the participants. As a consequence of this, only the training
set includes the ground truth targets for verification. It is not possible to qualitatively measure a model’s
performance without the ground truth in the testing dataset. An alternative is therefore to take out some of
the samples in the training dataset and use these as the testing dataset.

The dataset contains a training set with 450 patients, where each patient sample includes two- and
four-chamber views. Two- and four-chamber views refers to which areas are visible in the image. The
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different areas are labeled in Figure 2.13. A two-chamber view contains the left ventricle and left atrium,
and myocardium, while four-chamber views also contain the right ventricle and right atrium. We see an
example of an ultrasound image of the two-chamber view in Figure 2.14a, while Figure 2.14b shows the
corresponding ground truth segmentation. The ultrasound image is taken looking upwards, so the ultrasound
image will therefore be depicted upside-down relative to Figure 2.13. The segmentation task intended using
the Camus dataset is segmentation of four different areas in the cardiac ultrasound image. The four classes
are background, left ventricle, myocardium, and left atrium. Figure 2.14c labels the different areas in Figure
2.14b. Three independent cardiologists have performed the segmentation in the ground truth images [2].

(a) Cardiac ultrasound image (b) Corresponding ground truth image

Myocardium

Left ventricle

Background

Left atrium

(c) Labels in the
ground truth image

Figure 2.14: Sample from testing dataset.

The dataset consists of clinical exams of 450 patients. The available samples are highly heterogeneous
in terms of image quality and pathological cases [2]. The dataset contains images of varying quality, where
about 35% are of good quality, 46% of medium quality, and 19% of poor quality [2].

2.8 Evaluation

There are several important benchmarks relevant to this report. We will focus on evaluating accuracy and
performance in terms of speed. We are mainly concerned with the inference on FPGA, and will therefore
only focus on the inference and not on pre- and post-processing.

During training we can for example use cross-entropy loss to optimize the model, as this is common
practice [6]. To quantify the obtained results, we could use the Sørensen-Dice Coefficient to calculate the
accuracy of the network on the testing dataset using another metric than the one used to train the network.
The Sørensen-Dice coefficient is defined in Equation 2.11. The coefficient gives an indication of the degree
of shared values in the output and the ground truth image [24] and is therefore well suited to evaluate a
segmentation application qualitatively.

d =
2|X ∩ Y |
|X|+|Y |

(2.11)

In Equation 2.11 the d is the Sørensen-Dice coefficient, X is the estimated segmentation and Y is
the ground truth segmentation. In contrast to an image classification application which outputs a target
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vector, a network such as the mentioned U-net architecture outputs a segmentation mask. A consequence
of downsampling the input image is that the corresponding output will be of a smaller size than the ground
truth segmentation. In order to get a good estimate of the model’s accuracy, we need to upsample the
output segmentation mask. If one were to downsample the ground truth segmentation, one would lose
much information, rendering the accuracy estimate less relevant as they would also be different for each
input resolution, making it easier to obtain high accuracy for small image resolutions as they contain less
information.

In order to compare the performance of the different computing platforms, we typically measure the
latency and throughput of the system. These metrics can be obtained by using, for example, software
counters in the code and thereafter be averaged over a number of inference runs. The latency estimate
reports the time from an input is fed to the network before the results are produced, whereas the throughput
tells us how many inputs are processed per second, typically in terms of frames per second (fps) in image
applications.
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3 Previous work and background

This section will present some of the previous work done on DNN inference on FPGA and other relevant
subjects. The idea of using FPGA as an inference engine is not new, and there are options on how to do this
using existing technologies and frameworks. This section will briefly discuss some of the ideas behind these
and what important aspects to keep in mind during the design phase.

3.1 Accuracy

Leclerc et al. [2], which also provided the Camus dataset, has surveyed different DNNmodels on segmenting
images from the dataset. The highest obtained accuracies in terms of the Sørensen-Dice coefficient is, in
this case, ∼ 95% and was done with a U-net model optimized for accuracy and is called U-net 2 [2]. The
accuracy is given per class, whereas we use the average over all classes, so we therefore consider the average
of the state of the art to estimate what accuracy is achievable. Though the U-net 2 achieved the highest
accuracy Leclerc et al. [2] concluded, among other things, that the U-net architecture was the most effective
considering the trade-off between the number of parameters and achieved performance. The U-net achieved
a Sørensen-Dice score about∼ 0.3% lower than the U-net 2 model. The U-net 2 model contained in this case
18 million trainable parameters in contrast to U-net, which only contained 2 million [2], hence providing
great relief in terms of memory footprint with a small reduction of accuracy.

3.2 Computing platforms

Inference of DNN is most commonly performed on either a CPU or a GPU if the amount of processing is very
compute heavy. However neither the CPU or GPU is optimized for neural network inference. In other words,
there is room for improvement by utilizing more specialized processing units. There are several options as to
how this can be done. The most common examples include using an application-specific integrated circuit
(ASIC), FPGA or a more general deep learning processing unit (DPU) [1].

CPU and GPU both have a higher theoretical peak performance than FPGA, however the hardware on
the two computing platforms are not optimized to perform the arithmetic operations associated with DNN
inference, in contrast to the reconfigurable FPGA where one can simply generate dedicated hardware [25].
FPGA is able to offer orders of magnitude higher performance, and with the ability to be reconfigured in
contrast to ASIC [25]. ASIC is in general better than an FPGA when it comes to energy efficiency and
performance, however the design is locked as the ASIC cannot be changed after production. The gap between
the two is closing as FPGAs are becoming better [25].

GPUs achieve their performance because of their ability to process large image batches in parallel.
However, in some applications such as video streams where the output latency should be minimized, the
videomust be processed frame by frame. In some cases, the power consumption can also limit the deployment
of a GPU, such as in an embedded system [8].

Diminishing returns from technology scaling has resulted in the research community focusing on spe-
cialized accelerators. Utilizing ASICs yields the best results, but they are however not able to cope with
the changing DNN architectures [7]. The development cycles and costs of ASIC implementation is also
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significantly higher [7]. The design cycles of FPGA implementations are also longer than CPU, and GPU
implementations as these have a wide variety of well-established frameworks to use. However, there are
emerging new frameworks for FPGA inference which is promising.

Tu et al. [26] investigated the use of heterogeneous computing platforms for DNN inference. More
precisely, the use of a combination of GPU and FPGA. In their initial benchmarks they used floating-point
precision for the CPU and GPU, and 16 bit fixed-point precision for the FPGA. They compared a Xilinx
Artix-7 FPGA with an Nvidia GTX1080 GPU and an Intel E5-2609 CPU on a VGG16 implementation,
which contains both convolutional and fully connected layers. They found that the GPU offered a speedup
of 31.2x over the CPU, while the FPGA achieved a speedup of 9.7x. However, considering the energy
efficiency, they found the GPU to be 26x more energy efficient than the CPU, whereas the FPGA yielded
a 65x improvement in energy efficiency. They suggested an architecture where parts of the inference are
performed on a GPU and FPGA. The authors concluded that one could perform convolutional operations on
the GPU and fully connected layers on a FPGA, as the GPU offered higher degrees of parallelism and FPGA
can be better optimized for sequential processing.

3.3 Inference acceleration

One of the main challenges when using an FPGA as an accelerator is the limited preset on-chip memory
and limited off-chip bandwidth [7][27][28][29]. DNNs tend to have a substantial memory footprint. One
widespread approach to lighten the memory footprint is utilizing weights and activations of lower precision.
This could, for example, be done by using 8-bit integers instead of 32-bit floating-point values [28]. In some
cases, the weights can be quantized down to as much as 1-bit weights. However, this comes at the cost of
accuracy [27][28]. The reduction of accuracy is comparably small, so the level of quantization works as a
trade-off between performance in terms of speed and accuracy [28]. Some real-time requirements might not
be possible to fulfill with floating-point precision [25]. In addition to this, the choice of architecture should
also reflect the fact that the inference will be performed on an FPGA. This entails choosing an architecture
with the possibility of a high level of parallelism and relatively simple operations which can be mapped onto
FPGA fabric.

Miyama [30] implemented a U-net architecture on FPGA, using a quantization down to three bits. The
inference engine was implemented as a dedicated hardware architecture for a slightly lightened version of
the U-net network. The target application was segmenting the Cambridge-driving Labeled Video Database
(CamVid), an on-vehicle image dataset [30]. The network was made lighter by reducing the number of
contraction- and expansion steps in the U-net architecture from three to two [30]. This resulted in a
framerate of 123 fps and was compared with a Vitis AI implementation of a similar network which achieved
a resulting throughput of 32 fps. This was done using an image resolution of 256x256 on a Xilinx Alveo
U200 FPGA. The Vitis AI implementation was run using 8-bit weights [30].

Borkovkina et al. [31] implemented a U-net architecture for GPU, which utilized a less complex model
of the U-net architecture as well as specialized GPU hardware and Nvidia’s TensorRT. TensorRT optimizes
networks for inference by for among other things quantizing the weights. The model was trained on an
application segmenting retinal layers in optical coherence tomography. Using the techniques mentioned
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above and quantizing the weights to 8-bit, they achieved a speed up during inference of 21x compared to a
similar network with 32-bit floating-point weights on GPU.

There are several options when designing inference engines for DNNs on FPGA. One could, for example,
utilize end-to-end compilers such as, for example, the Finn framework made by Xilinx. This framework
converts high level specifications of DNNs into an FPGA bitstream. Themodels are typically quantized down
to 1 to 2 bits, but it supports an arbitrary number of bits [27][28]. Using such high levels of quantization allows
even simpler arithmetic operations, resulting in increased throughput. Similarly it is possible to implement
a DNN using high-level synthesis (HLS) to generate hardware description language (HDL) code [1]. These
approaches tend to increase the design cycles. All the mentioned alternatives require hardware synthesis,
which is a very time-consuming procedure. In the best case, this is only performed once. However, if the
network topology is slightly altered, this would, in most cases, require the hardware to be synthesized over
new. Considering the end-to-end compilers, these are in most cases very academic and under development
and are therefore more specialized, less stable, and are much harder to use.

3.4 PyTorch

Implementing DNNs can be easily done using for example Tensorflow, Caffe, Keras, or PyTorch. The
frameworks differ slightly, but many of the concepts are similar. PyTorch is a framework focused on
balancing both high usability and speed [32]. The framework enables simple implementation of complex
models using its simple API to implement distinct layers and modules. PyTorch runs on an efficient C++
code, resulting in high performance and bypasses Pythons global interpreter lock, which prevents multiple
threads running at once [32]. PyTorch also has support for GPU acceleration and needs minor alterations in
the code in order to work with Nvidia’s CUDA framework to run asynchronously on a GPU [32].

The PyTorch framework is typically used to implement DNN for CPU and GPU. The framework provides
an API to construct the different layers, their operations, and connections [32]. The model can either be
implemented by hand or imported as a pre-trained model. An example of how a fully connected network can
be implemented is shown in Listing 1. The code describes a simple, fully connected neural network similar
to the one in Figure 2.2, with 6 input nodes, 12 nodes in the second layer, and 10 output nodes. The forward
function defines how the data is passed through the network.

1 import torch.nn as nn

2 import torch.nn.functional as F

3

4 class Example_Net(nn.Module):

5 def __init__(self):

6 super(Example_Net , self).__init__()

7 self.fc1 = nn.Linear(6, 12)

8 self.fc2 = nn.Linear(12, 10)

9

10 def forward(self, x):

11 x = self.fc1(x)

12 x = F.relu(x)

13 x = self.fc2(x)
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14 output = F.log_softmax(x, dim=1)

15 return output

Listing 1: Example implementation of small fully connected neural network

The PyTorch framework also providesmany functions to ease the implementation of high-level constructs,
such as data loaders, more complex layers, training algorithms, and more [32].

3.5 Vitis AI

Vitis AI is a frameworkmade byXilinx for converting high-level descriptions of DNNs to amodel compatible
with the corresponding Vitis AI DPUs to speed up inference. A DPU is a pre-synthesised compute platform
for FPGA. The framework converts a high level descriptions of a DNN to the instruction set architecture
(ISA) for a target DPU. Vitis AI supports TensorFlow 1.x and 2.x, Pytorch, and Caffe [4]. The model is
implemented and trained on either a CPU or GPU, and there is therefore no need to implement complex
training algorithms on the FPGA.

In order to meet the requirements of high throughput and low latency, the application requires high
memory bandwidth. An elegant way to optimize for this is to use quantization of weights and activations.
The Vitis AI framework quantizes the model’s weights and activations using its built-in quantizer, which
converts the models weights from 32-bit floating-point to fixed-point precision, for example, 8-bit integers.
This is explained in further detail throughout Section 3.5.1. This increases the performance and reduces the
power consumption of inference [4]. The training is done using the 32-bit floating-point implementation to
obtain high levels of accuracy and is thereafter quantized to the target bit width, which reduces the complexity
with little loss of accuracy.

The Vitis AI quantizer takes in a floating-point model and performs a set of preprocessing algorithms to
optimize the model before quantization. After the weights and activations are quantized, the quantizer runs
several iterations of inference to calibrate the activations using a calibration image dataset. The calibration
does not perform backpropagation, meaning it does not evaluate the outputs, so the calibration dataset does
not need to be labeled [4]. The quantizer returns a DPU deployable model, which the compiler can compile
to run on a target FPGA.

The compiler translates the model into an intermediate representation in the form of a control- and
dataflow graph optimized by fusion of computation nodes and efficient instruction scheduling by exploiting
parallelism and data reusage to maximize on-chip memory usage.

The Vitis AI framework is still under development and therefore still lacks the support of some arithmetic
operations. More precisely, the DPU does not support arbitrary zero padding, meaning that zero-padding as
part of operations such as convolution and pooling is supported, whereas zero-padding, in order to meet a
target resolution, is not. Consequently, the image sizes have to be a multiple of 16 to be able to concatenate
correctly between the contracting and expanding layers in a U-net architecture.
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3.5.1 Quantization

The Vitis AI framework uses the quantization method described in [33], we will not go into great detail
on how the quantization is deduced mathematically, refer to [33] a more detailed description. Quantizing
weights, biases, and activations introduces quantization noise, which can lead to reduced model performance
in terms of accuracy [33]. The model is quantized per channel as the range of weights can be of varying
size, consider for example two channels where one channel has weights in the range of [−128, 128] while
the other channel has 〈−0.5, 0.5〉, the latter will be quantized to zero. The quantization is done in four steps;
cross-layer equalization, bias absorption, quantization, and bias correction.

Cross-layer equalization can simply be explained as factoring the weights and adjusting the bias so that
the weight ranges become more equal between layers in order to prevent small weights from being quantized
to zero similarly as the case explained in the paragraph above. When using for example a ReLU, which is
described in Equation 2.4, it is simple to see that the scaling equivariance h(sx) = sh(x) holds. It can also
be shown that this holds for any piece-wise linear activation [33]. Using a fully connected neural network
with two layers as an example, the outputs from the first layer can be expressed as: z = h(W (1)x+W

(1)
0 ),

and y = h(W (2)z +W
(2)
0 ) for the output layer. Using the scaling equivariance we can write this as:

y = h(W (2)h(W (1)x+W
(1)
0 ) +W

(2)
0 ) (3.1)

= h(W (2)Sh(S−1W (1)x+ S−1W
(1)
0 ) +W

(2)
0 ) (3.2)

= h(Ŵ (2)h(Ŵ (1)x+ Ŵ
(1)
0 ) +W

(2)
0 ) (3.3)

where W is the weights from the layer denoted with the superscript, W0 is the bias, h is the activation
function, x is the input and y is the output. The factor S = diag(s) is a diagonal matrix where the value
Sii is the scaling factor si for the ith neuron. If for example the neurons in the first layer contains much
larger values than in the second layer, this would then allow us to scale the weights and biases by using
Ŵ (2) = W (2)S, Ŵ (1) = S−1W (1) and Ŵ (1)

0 = S−1W
(1)
0 , thus making the weights more similar so that

the obtained weight induces less quantization noise.
Bias absorption entails moving large biases to subsequent layers. If a layer has a great bias the range

of the activation quantization will increase, resulting in a lower accuracy [33]. Using the same example as
above, we can write:

y = h(W (2)z +W
(2)
0 ) (3.4)

= h(W (2)h(W (1)x+W
(1)
0 + c− c) +W

(2)
0 ) (3.5)

= h(W (2)h(W (1)x+ Ŵ
(1)
0 + c) +W

(2)
0 ) (3.6)

= h(W (2)ẑ + Ŵ
(2)
0 ) (3.7)

where Ŵ (2)
0 = W (2)c +W

(2)
0 , ẑ = z − c and Ŵ (2)

0 = W (2) − c, and c is found using the distribution
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of the pre-bias activation. This relation can be used if for example the bias terms in the first layer are much
greater than in the second layer. One can equalize this by moving c to the bias in the second layer, thus
reducing the bias and making the activation ranges in the two layers more equal.

After quantization the bias is corrected, denoting the floating point precision weights and biases asW
and the corresponding quantized weights and biases as W̃ , we can write the outputs as y = Wx and
ỹ = W̃x respectively. From this we can write:

ỹ = y + εx, (3.8)

where ε is the quantization induced error [33]. The quantizer adjusts for this error by using the relation:

E[y] = E[y] + E[εx]− E[εx] (3.9)

= E[ỹ]− E[εx] (3.10)

Thus, by subtracting the expected error, the mean is preserved. The expected error is estimated by comparing
the expected activation before and after quantization [33].

3.5.2 DPU

The DPU is a programmable computation engine optimized for DNN inference, which runs the instructions
generated by the Vitis AI compiler. It consists of a group of parameterizable cores pre-implemented to
a given FPGA architecture, meaning it does not require the time-consuming place-and-route algorithm.
It is designed to accelerate typical workloads in DNN inference such as image and video classification,
semantic segmentation and object detection, and object tracking [4]. This is done through parallelization
of the computation and custom processing engines. Additionally, the DPU supports multi-threading for
parallelization of inference of multiple inputs [4]. The multi-threading is easily deployed using standard
multi-threading libraries in Python. A visualization of one of the architecture is shown in Figure 3.1.
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Figure 3.1: DPU hardware architecture [4].

The architecture shown in 3.1 is one of many different available pre-made architectures in the Vitis AI
framework, this particular DPU architecture is optimized for the Xilinx XCZU7EV FPGA. The XCZU7EV
is an edge FPGAs and is therefore relatively small, larger FPGAs has larger area of FPGA fabric, effectively
meaning that they have room for larger and more complicated DPUs [4].

A consequence of the DPUs being pre-synthized is that not all arithmetic operations are supported by
default as these might not be implemented. The DPUs supports the most common operations, but this might
not be sufficient in all cases. If one were to run inference of a network containing one or more unsupported
arithmetic operations, there are some alternatives to bypass this. By default, the arithmetic operations that
are not supported by the DPU are reassigned to the onboard CPU. Alternatively, the DPU architectures can
be adjusted to support operations missing by implementing these and adding them to the ISA [4].
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4 Implementation

This chapter will describe the work done as part of the research in this report. The whole codebase can
be found in [34]. The goal of the implementation is to investigate whether FPGA is a viable option as
compute platform in DNN inference of cardiac ultrasound images. The models resulting accuracy is of
course important, though we recognize that achieving the state of the art accuracy is beyond the scope of this
project. The main goal regarding the models accuracy is to implement a DNN on an FPGA with as small
loss of accuracy compared to CPU and GPU as possible. The loss of accuracy is mainly induced by the fact
that FPGA inference is optimized using quantization. The weights are quantized from 32-bit floating-point
to 8-bit integers in order to minimize the memory footprint. Further, we evaluate inference with different
image resolutions to investigate the trade-off between accuracy and throughput.

4.1 A novel design approach

This design approach was developed as part of the implementation done during this report. It is a suggestion
towards choosing a DNN suitable for FPGA inference. We will consider a real-time, embedded system used
for segmentation of cardiac ultrasound images. First and foremost, the model itself should be able to perform
adequately with regards to the application of segmenting the ultrasound images. Furthermore, the system
should fulfill real-time requirements. The system should be able to support a typical framerate of a standard
video stream of approximately 50 fps with a latency lower than 100 ms in order to be responsive.

Using the approach described in this report, we need to take several things into account when choosing
the DNN architecture. Basing the design choices on using the Vitis AI library, there are some important
aspects to consider when choosing the network model for inference. These decisions are summarized in
Figure 4.1.

Supported
arithmetic

operations?

Quantizable?

Large memory
footprint?

Suited for given
applications?

Improved
throughput

and/or latency

Deploy
model

No

Yes Yes

No

YesYes

No

NoPotential
Model

Figure 4.1: Decision tree for chosing an architecture for FPGA inference.

Starting on the left side of Figure 4.1 with a potential model. The most important choice entails choosing
a model that is well suited for the given application in order to obtain satisfactory accuracy. Quantizing
the model will not lead to higher accuracy, so the initial accuracy must be acceptable. The remaining
conditions are more specific to FPGA implementation. The first involves verifying that the selected network
model contains supported arithmetic operations. Vitis AI and similar frameworks do support most common
arithmetic operations used inDNNs inference. However, some networkmodels could contain very specialized
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instructions which might not be natively supported or implemented in the DPU overlays. Further, using
Vitis AI, some built-in functions in the supported frameworks, i.e. PyTorch, TensorFlow, and Caffe, are
not supported and should be avoided though the underlaying arithmetic operations are supported. Vitis AI
bypasses the unsupported arithmetic operations by moving these from the accelerator back to the onboard
CPU. This is of course in some cases a viable option, but it will act as a bottleneck as the CPU will not be
able to achieve the same levels of parallelism as the FPGA, and the transfer of data could add some overhead.

The main bottleneck for FPGA inference is the memory bandwidth. Ideally, all the weights and biases
should fit in on-chip memory. This might be problematic using DNN models as these tend to contain a large
number of weights and biases. It is possible to cope with this using quantization. However, in some cases
with very large networks, it could require very high levels of quantization, in some cases to as much as one
bit [28]. This might not always be feasible since most applications aim to maximize accuracy. Off-chip
memory access should beminimized in order to relieve thememory bandwidth. Networks with largememory
footprint should therefore be avoided. Quantizing the weights for FPGA inference could, in most cases, be
performed regardless of the memory footprint in order to speed up inference.

Intuitively, there is no reason to deploy the model on an FPGA if there is no improvement in either
throughput or latency, making the FPGA inference redundant. In some cases, depending on the initial
compute platform, the FPGA could be more energy efficient in its inference of DNNs, this is especially the
case if compared with a GPU, which was discussed in Section 3.2. Considering an embedded real-time
system employing a GPU might not feasible because of high power consumption.

4.2 Network implementation

As discussed in Section 4.1, the first step towards finding a well-suited network for FPGA inference is to find
a model with high initial levels of accuracy. As described in Section 2.6, the U-net network is well suited
as it achieves high accuracy on ultrasound and medical imaging applications. Furthermore, the network
consists mainly of very standard arithmetic operations well suited for FPGA inference. The most notable
abnormality being the concatenation of feature maps, which in turn is a straightforward arithmetic operation
that can easily be done in hardware and is supported by the Vitis AI DPU. Though the network consists of 23
layers containing trainable parameters, they are all convolutional layers, meaning they have sparse weights
as discussed in Section 2.4, thus making a smaller memory footprint compared to a fully connected network
of similar size and depth. The U-net model therefore fulfills the suggestions from Section 4.1, which likely
makes this a good choice for FPGA inference.

This section will describe the implementation of the U-net architecture as well as the pre- and post-
processing stages. The model used is based on [18] with some alterations and is described in further detail
in Section 4.2.2. The model will be evaluated in terms of throughput, latency, and accuracy. The network
will mainly be measured during inference, using samples from the Camus dataset as input data. As there is
no ground truth in the original testing dataset, we create our own testing dataset by replacing the samples
in the testing dataset with samples from the training dataset. We will go into more detail on this in Section
4.2.3.
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4.2.1 Preprocessing

As mentioned in Section 3.5, the Vitis AI lacks support for zero-padding. As a result, the images used
during training and inference should be of a resolution which is a multiple of 16, in order to support the
concatenation operations in the U-net model.

The samples in the Camus dataset are of varying sizes; we therefore choose to implement a pipeline
where the images are preprocessed before each run so that the system itself supports different input sizes
and codecs without extensively altering the codebase. Alternatively, we could have made a preprocessed
training dataset, making the need for preprocessing redundant. Keeping the data in its original form and
preprocessing the data for each run, we create a more scalable solution that can easily be altered to fit a wider
selection of applications and easily benchmark different resolutions by parsing the dimensions as arguments
to the model. As the primary goal of this report is to speed up the inference, the preprocessing will not
be part of the benchmarks, assuming that in an application-specific implementation, we would infer on the
given input or alternatively implement the preprocessing in another intellectual property (IP) such as a video
block on the FPGA.

The different stages of the preprocessing are visualized in Figure 4.2. The samples in the training set are
of varying size and dimensions, so we convert them to a quadratic form before feeding them to the network.
The first stage entails rescaling the image towards the target dimension TxT . In the rescaling block, we
scale the sample so that the largest dimension becomes the target size T while preserving the aspect ratio as
shown in Equation 4.1. The size in the equation refers to a tuple [Wnew, Hnew], namely the new width and
height.

size =

[T ·WH , T ], W < H

[T, T ·HW ], W ≥ H
(4.1)

Raw
image
[HxW]

Rescale

Rescaled
image
[Txt]

H > W

True

Rescaled
image
[txT]

False

Standardize

Pre
processed

image
[TxT]

Zero pad and
center

t=T*W/H

t=T*H/W

Figure 4.2: Visualization of the preprocessing stages

Thereafter the image is intensity standardized to reduce the impact of variations from the data acquisition
using Equation 2.10 as discussed in Section 2.5.1. Finally, to obtain a square image, the image is padded
with zeros in the shortest dimension so that the image ends up with a resolution of TxT . We also trained
the network using normalization as defined in Equation 2.9. However, this yielded lower accuracy than
standardization.
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As an example of the preprocessing pipeline, we consider an image of the resolution [W,H] = [200, 400]

and a target dimension T = 200. This is also shown in Figure 4.3. When rescaling, the height H will be
rescaled to 200, and the width to W = 200 · 200/400 = 100. Thereafter the image is standardized using
Equation 2.10 and finally padded with 50 zeros on both sides in the horizontal direction to obtain an input
size of [200, 200].

200x400 100x200 200x200

Initial image Rescaled Standardized 
and

Zero padded

Figure 4.3: Visualization of preprocessing example

4.2.2 The network

The network was implemented using PyTorch 1.4.0, mainly because PyTorch is easy to use and supports all
the layers in the U-net model and is compatible with Vitis AI. To begin with, the codebase was built up using
TensorFlow, but this was quickly changed to PyTorch. The two frameworks are pretty similar; however,
PyTorch is much simpler to use.

The implemented network is a modified version of the U-net network described in Section 2.6 and [18],
and is shown in Figure 4.4. The main difference is that the original U-net uses cropping before concatenation
and does not employ zero-padding in the convolutional layers, whereas we do, thus making an architecture
producing the output of equal size as the input image.
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Figure 4.4: The modified version of the U-Net architecture, here shown with an input size of 128x128.
Modified from [18].

In order to emulate an application processing a video stream, we preprocess all the inputs before inference.
Thereafter, the network is fed one image at a time, in contrast to inferring a batch of images. The reason
for this is that in an application processing a video stream, one will in most cases need to process frame by
frame in order to keep the latency to an acceptable level. If one for example were to process the frames
in batches of five, the system would have to wait for all frames to be ready before starting the inference,
therefore inducing latency. Batching is commonly used to for example speed up GPU inference because it
allows even higher utilization.

4.2.3 Training

In order to train the implemented network we use the Camus dataset described in Section 2.7 and [2].
As mentioned in Section 2.7 only the training dataset includes ground truth segmentations. We therefore
construct our testing dataset using samples from the training dataset. Since the training dataset only consists
of 450 samples, we want to separate only a small subset of these to the testing set so that there is as little
impact on accuracy as possible while still having enough testing data to obtain a good estimate of the model’s
accuracy as discussed in Section 2.5. We chose to extract 50 samples from the training dataset to the testing
set as a good compromise.

We only train on two-chamber views since the primary objective regards improving the speed and
obtaining the resulting accuracy reduction, in contrast to obtaining the highest possible accuracy. Training
on only two-chamber viewsmakes it far simpler to obtain a good initial accuracy as the network needs to learn
fewer variations. We train the application to segment out four different classes in the image; background, left
ventricle, myocardium, and left atrium, as discussed in Section 2.7. We train the network using 50 epochs
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and a batch size of five for all the image resolutions except 512x512. In the case of 512x512, the system
used for training did not have sufficient RAM to train with a batch size larger than one.

The implementation described in this report is not intended to be part of the competition. This is because
the resulting network will not be able to compete with the state of the art networks due to the quantization,
and the main goal is not to obtain the state of the art accuracy but to speed up the inference time. However,
the Camus dataset is readily available and relatively large and is therefore an excellent place to start.

4.2.3.1 Data augmentation

The number of samples in the Camus dataset is limited with a total of 450 samples of varying quality. In
order to make the model more robust and invariant to slight differences of input, we use data augmentation to
synthetically make the training set larger as described in Section 2.5.1. This means taking samples from the
training dataset and perform transformations on the data to create similar but different data. As discussed in
Section 2.5.1 data augmentation has proven to increase the accuracy on small datasets.

The augmentation algorithms are triggered randomly during training with a probability of 33% for a
given algorithm. The dataset is reloaded to the model in each epoch, and the images are preprocessed over
new. For each preprocessed sample, there is a 33% chance that a given augmentation algorithm will be
performed, considering for example the first sample in the training dataset, the first epoch one might see
a version free of augmentation, whereas in the next epoch it might be slightly rotated and infused with
noise. The augmentations are deployed independently for each sample and are performed directly on a
sample within an epoch, which means that if a sample is augmented, the network is only presented with the
augmented sample in that given epoch. The network will therefore see both augmented and original samples
as these will vary throughout the epochs, but never an augmented and its original within one epoch. The
augmentation algorithms used in our implementation are summarized in Table 4.1.

Table 4.1: Augmentation algorithms used and their parameters

Augmentation Arguments
Random cropping Crop ratio = 0.1
Random rotation θmax = 15°
Random blackout Max blackout = 100
Noise infusion σ2 = 0.05

Gamma augmentation c = 1, γ = 0.35

The arguments used during the augmentation are found empirically, and the obtained accuracy will be
different between runs of the training algorithm, which is not only because of the statistical method of training
but also that these algorithms are deployed randomly. The idea behind each of these algorithms is explained
in Section 2.5.1. We will only explain the parameters used in this section.

The cropping ratio limits the random cropping. The ratio dictates the maximum portion of the image
frame that can be cropped out. The actual cropped area is a random value between 0 and the cropping
ratio. In the random rotation augmentation, the θmax refers to the maximal rotation angle that can be used.
The max blackout argument refers to the largest area that can be blacked out. Since these augmentation
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Figure 4.5: Error estimates during training for 128x128

algorithms are performed before preprocessing, this will not be affected by the resulting image size, whereas
if they were to be applied afterward, one should employ this as a ratio where the area is dependent on the
image size. The arguments in the two last augmentation algorithms are explained in Section 2.5.1.

4.2.3.2 Loss functions

In order to qualitatively measure the accuracy of a set of weights during training, we use a loss function
as described in Section 2.5. There are several options as to which loss functions can be used. In this
implementation, we use cross-entropy loss during training to optimize the model. Figure 4.5 shows the error
as a function of time in terms of epochs of training. The graph shows the error from the training of the
128x128 model. The training error refers to the error compared to the ground truth for the training dataset,
whereas the validation error is the error on the validation set. Both the training and validation errors are
declining as the number of epochs increases, indicating that the network is learning and generalizing on the
features in the dataset. If, for example, the training error were to decrease while the validation error was
increasing, it would be a sign of overfitting. The training algorithm will evaluate the obtained weights and
save them if they have a lower validation error than the previous best set of weights.

When comparing the trained model during inference on CPU, GPU and FPGA we quantify accuracy
reduction of quantization. This is done by calculating the Sørensen-Dice coefficient described in Section 2.8
on the obtained bitmask from the inference of the testing dataset.

4.2.4 Post processing

The network outputs four bitmasks of the same size as the input image, TxT , one for each of the four classes.
Each bitmask encodes a probability for whether a pixel belongs to the given class or not. In order to measure
the model’s Sørensen-Dice coefficient, we merge the four bitmasks into one so that the resulting mask is of
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the same format as in Figure 2.14b. Each pixel is labeled with a class C = 0, 1, 2, 3 based on the on which
masks yield the highest probability, as shown in Figure 4.6. This results in one mask with equal size as the
input image, TxT .
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Figure 4.6: Merging segmentation masks using argmax

As discussed in Section 2.8 the segmentation mask will be of a different resolution than the ground truth
segmentation and should therefore be upsampled. In order to quantify the outputted segmentation mask, it
needs to be converted back to the initial resolution. In practice, this means reversing the preprocessing stages.
The segmentation mask is outputted in a quadratic form due to the zero-padding in the preprocessing stage.
Before upsampling the image, we remove zero padding. This procedure is similar to that of the zero-padding
since we know the target dimensions from both the original input and the ground truth.

We used OpenCV’s resize function [19] to upsample the image to the target resolution once the zero-
padding is removed. As briefly discussed in Section 2.5.2 the OpenCV library contains different interpolation
techniques. For upsampling, we use the nearest-neighbor interpolation. This was found using trial and error.
The pixel value in the segmentation mask should be integers from 0 through 3, so using linear interpolation
and thereafter quantizing the result back to integers would effectively be equal to the nearest neighbor
interpolation.

4.3 Porting PyTorch network to FPGA

Converting a high-level Python implementation to amodel compatible with FPGA inference requiresmultiple
steps. The Vitis AI framework implements an OpenCL-like dataflow where the FPGA acts as an accelerator
to a code running on a CPU, this is visualized in Figure 4.7. The data flow of the program consists of a
preprocessing which is performed on a CPU, the preprocessed images are then inferred on an FPGA before
the resulting output from the FPGA is post-processed on the CPU. This means that the porting mainly entails
converting the inference network to the FPGA.
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Figure 4.7: Visualization of dataflow

One major bottleneck in the inference of DNNs is the memory bandwidth. As an effort to relieve the
memory footprint and thereby the memory bandwidth, the weights obtained during training are quantized
from 32-bit floating-point precision down to 8-bit integer precision. This is described in Section 3.5.1 and
[33]. The quantized model is saved into an intermediate representation containing information about both
the weights and the model’s structure. The final step of the porting process is to compile this intermediate
representation to a target FPGA architecture. The compiled model can be imported into a Python script
running on the FPGA, and inputs can be asynchronously be assigned to the accelerator, using Xilinx runtime
API. The Vitis AI runtime API does not support high-level objects such as data loaders and tensors, so the
preprocessing algorithms have to be implemented using arrays.

The FPGA runs a Linux distro provided by Xilinx called Petalinux, where all the dependencies are
pre-installed. For an easier setup we chose to use Petalinux as provided by Xilinx, the distro runs on the
FPGA’s onboard CPU, but for simplicity we will hereafter refer to the FPGA-CPU as the FPGA. One should
pay great attention to which libraries are used when implementing the model for the CPU and GPU, and
the implementation for FPGA, as these should ideally be the same. To begin with, we used two different
libraries for downsampling, namely, scikit on the CPU and GPU for training and OpenCV on the FPGA. This
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alone resulted in much lower accuracy as the two behaved differently. The limiting factor for the deployment
of libraries is the FPGA as it simply does not have as wide support in its operating system like Ubuntu or
Windows. The CPU implementation should therefore cater to the FPGA implementation in terms of the
libraries used in for example pre- and post-processing.

4.4 Optimizating DPU

Using the U-net implementation described in Section 4.2 we do not need to alter the DPU in order to meet
the requirements in terms of arithmetic operations. There is a possibility to adjust the DPU architecture.
However, we chose not to do this in this implementation because of the limited time available during the
master thesis, as the implementation and synthesis of hardware are very time-consuming. It is possible
to adjust the parameters in the DPU to for example optimize for parallelization of a given application. In
addition to this, one could give more area to the arithmetic operations the model employs in order to utilize
the FPGA even more.
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5 Results

This sectionwill present the obtained results in this report. Wewill start this section by looking at the accuracy
before and after quantization for different image resolutions. We will thereafter look at the performance of
the implemented model on CPU, GPU and FPGA for different image resolution. The hardware used in the
following benchmarks is summarized in Table 5.1.

Table 5.1: The hardware used to obtain benchmarks.

Platform Device
CPU Intel Core i7-8650U
GPU Nvidia GeForce GTX 1060
FPGA Xilinx XCZU7EV

In order to evaluate the different models and compute platforms, we run inference on the constructed
training set. The accuracy is estimated using the Sørensen-Dice coefficient, and the throughput and accuracy
are computed using software timers. In order to get a good estimate, we run through the whole testing
dataset twice so that the estimate is based on 100 runs. To measure the latency, we measure the time spent
from an input is fed into the network until a result is ready, whereas the throughput is measured by timing
the network from the dataset is ready to all the frames has been inferred, then dividing by the number of
samples. The results include an evaluation of models using input sizes of 64x64, 128x128, 256x256 and
512x512, running on CPU, GPU and FPGA.

5.1 Accuracy

The obtained accuracies are shown in Table 5.2. We see that the obtained accuracy for the CPU and GPU
is highest for the 128x128 model, with the 256x256 having a very similar level of accuracy. The 64x64

and the 512x512 obtain similar accuracies but lower than the two former. The accuracy for the FPGA are
similar to that of CPU and GPU, with a small reduction in accuracy. There are several things to note from
the accuracy of the implemented models. Since both the CPU and GPU implementations both run the same
PyTorch model, their accuracy will be equal. The first and most important is that the accuracy reduction
as a consequence of quantizing the weights is relatively small for all the models. The biggest difference
in accuracy can be found in the model trained on images of resolution 512x512, where the Sørensen-Dice
coefficient is reduced by 1.12% when quantizing. Furthermore, observing the initial accuracies of the
different models, we see that the model trained for images of resolution 64x64 yields the lowest accuracy,
but more noticeably, the 512x512 yields the second-lowest accuracy. The fact that the model trained with
the most information achieves the second-lowest accuracy can be due to several different effects. During
training, the backpropagation searches for the minimum error, but in some cases, the algorithm might end
up in a local minimum without being able to escape, therefore yielding a suboptimal result. Furthermore,
the 512x512 model was trained using a batch size equal to one, whereas the other models were trained with
a batch size of five. This is due to the fact that the models were trained on a system with 10 GB of RAM, so
in the case of 512x512, the amount of memory was not sufficient for any batch size larger than one. This
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(a) 64x64 (b) 128x128 (c) 256x256 (d) 512x512

Figure 5.1: Computed segmentation mask from the sample in Figure 2.14 inferred on the FPGA

might have an impact on accuracy as described in Section 2.5.

Table 5.2: Model accuracy

Resolution CPU & GPU[%] FPGA[%] ∆

64x64 90.14 89.93 -0.21
128x128 92.61 92.61 0.00
256x256 92.33 92.18 -0.05
512x512 90.23 89.11 -1.12

It is also worth noting that there is very little difference in accuracy between an image resolution of
128x128 and 256x256, meaning that the obtained accuracy is comparable though the input data is reduced
to 25% of its size. This in turn yields a pretty significant speedup as we will see in Section 5.2. Looking at
the results for 64x64 we see some loss in accuracy, but it should be noted that there is much information lost
during the downsampling compared to the inherent resolution of the input data. However, we can view this
as an interesting trade-off for applications where the throughput is more important than high accuracy.

In Figure 5.1 we see the impact of the different input resolutions. At 128x128, one can see the impact of
the low resolution in the form of a pixelated image, which in turn is even more apparent in the 64x64 image.
These masks are the estimated masks of the cardiac ultrasound image in Figure 2.14a and with the ground
truth shown in Figure 2.14b, which is used to compute the Sørensen-Dice coefficient. The estimated masks
in Figure 5.1 are obtained from inference on the FPGA.

5.2 Performance: throughput and latency

To benchmark the performance, we measure the throughput of the system in terms of fps as well as the
system’s latency. The results in terms of throughput and latency are summarized in Table 5.3 and 5.4
respectively. Due to limited amounts of RAM the benchmarks were not possible to perform using four
threads when using an input resolution of 512x512.
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Table 5.3: Model throughput

Resolution CPU [fps] GPU [fps] FPGA [fps]
1 thread 2 threads 3 threads 4 threads

64x64 9.02 76.25 123.78 186.76 185.32 201.61
128x128 2.95 56.78 42.74 77.31 66.39 83.77
256x256 0.78 27.54 11.16 21.57 17.54 23.34
512x512 0.18 9.08 2.80 5.47 4.35 -

From Table 5.3 we see that the obtained throughput is highest for the FPGA using a resolution of 64x64

using four threads, the FPGA yield the highest framerates up to a resolution of 128x128, thereafter the GPU
yields the highest framerates. Considering the resulting framerates in Table 5.3 we see that the models
generally perform better using four threads, whereas using three in all cases yielded worse results than using
two. This could indicate the FPGA not being able to run more than two threads concurrently, resulting in
a lowered framerate when sharing resources between three threads instead of four. Looking at the obtained
framerates, this would make sense assuming there is some overhead. Comparing the resulting framerate of
the FPGA with the CPU we can observe an increase for all configurations.

In Table 5.4 we see the latency of the different implementations. We see that the lowest latency is
obtained using an FPGA with one thread and a resolution of 64x64, thereafter the GPU yields the lowest
latency for the remaining resolutions. Similar to the throughput, the latency is also lowest for the lower
amount of threads. Comparing with the CPU we see that the FPGA has a lower latency in all cases, while
in comparison with the GPU the latency is higher for all cases except small image sizes. This could be a
consequence of the higher memory bandwidth in the GPU, in addition to more processing power. There is a
remarkable increase in latency when going from two to three threads, which might be a consequence of the
aforementioned degree of utilization, where the FPGA is likely limited to two concurrent threads, therefore
the ltency is increased as a consequence of resource sharing.

Table 5.4: Model latency

Resolution CPU [ms] GPU [ms] FPGA [ms]
1 thread 2 threads 3 threads 4 threads

64x64 115 13 8 9 14 18
128x128 320 16 23 24 37 45
256x256 1,103 34 88 89 141 166
512x512 4,107 105 349 354 555 -

In Table 5.5 we see a comparison of the obtained results. We are comparing the highest achieved results,
meaning that for throughput, we base the speedup on the implementation using four threads, whereas the
latency is compared using the implementation running one thread. Comparing the benchmarks with the CPU
we see that the obtained speedup is larger than 22x and 30x with the heaviest workload when using an FPGA,
and 50x when using an GPU. The latency on the FPGA is about 0.07x of the CPU latency. Comparing with
the GPU yields less favorable results. For small image sizes, the FPGA obtains a higher throughput, with a
2.64x speed up compared to the GPU in the case of 64x64, which is also the only implementation where the
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FPGA yields a lower latency than the GPU. This is due to a combination of the mentioned gap in computing
power as well as memory bandwidth compared to the GPU. In addition, the developed framework used in
GPU inference is also a lot more mature than Vitis AI, which could also explain the gap in both throughput
and latency.

Table 5.5: Performance comparison relative to the CPU implementation

Resolution Throughput Latency
CPU GPU FPGA CPU GPU FPGA

64x64 1x 8.45x 22.35x 1x 0.11x 0.07x
128x128 1x 19.25x 28.40x 1x 0.05x 0.07x
256x256 1x 35.31x 29.92x 1x 0.03x 0.08x
512x512 1x 50.44x 30.39x 1x 0.03x 0.08x

Looking at the obtained performance metrics, we see that there is a possible trade-off between latency
and throughput in the FPGA implementations for a given resolution. An increase in throughput through
more threads results in an increase in latency and vice versa. Take for instance the implementation with an
input resolution of 128x128. We see that the lowest latency is obtained with one thread, which also yields
the lowest throughput for the given image resolution. Increasing the number of threads to four yields an
increase in both throughput and latency. This is most likely a consequence of the limited memory bandwidth,
meaning that a system with high throughput will process larger amounts of data, requiring more off-chip
memory access, thus resulting in higher latency.
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6 Discussion

The FPGA obtained a level of throughput superior to that of a CPU and with comparable performance to a
GPU without any notable deprecation of accuracy for either quantization or reduction in image resolution.
In this chapter we discuss the findings in this report more generally, starting with the impact of quantization
in terms of accuracy, throughput and latency. Finally discuss possible applications and the relevance of the
findings.

6.1 Accuracy impact

Considering the obtained results presented in Chapter 5 we see that the quantization had little impact on
the accuracy of the model. This is true for all the different resolutions evaluated in this report. However,
the accuracy reduction between the quantized 8-bit integer implementation and the 32-bit floating-point
implementation might be artificially small as a consequence of the suboptimal initial accuracy, meaning that
if the 32-bit floating-point model would have had a higher initial accuracy, one could perhaps see a larger
gap in accuracy as more information might be lost during quantization. Further experiments are needed
to determine this however. Though the accuracy is lower than what can be obtained when comparing to
the state of the art models discussed in Section 3.1, the obtained accuracy is most likely high enough to be
utilized in some applications.

We see that the obtained results suggest that there is little reduction of accuracy when using smaller input
sizes, while there is much speed to gain from it. It is considered common practice to downsample the inputs,
but in this report, the degree of downsampling is in some cases extensive. In addition, we do not provide
any means of optimization in terms of accuracy regarding the downsampling but use this as a technique to
speed up inference.

The means of accelerations provided in this report could to some extent be application-specific. Some
of the techniques used to obtain the highest levels of performance have a larger impact on accuracy, meaning
that they are in general best suited for applications in which the need for high throughput is more important
than accuracy. The reduction of accuracy is still relatively low, so it might still act as a viable option given
high initial accuracy.

6.2 Computing platform

In Table 5.5 the FPGA implementation is compared to the CPU and GPU implementations. When comparing
the FPGA with the CPU, the FPGA is better both in terms of throughput and latency for all the implemented
models. This is however not surprising, seeing that a CPU is not suited to perform DNN inference as
there is little room for parallelization compared to both the FPGA and GPU. When comparing the FPGA
implementation to the GPU implementation, there is some difference in terms of performance. We see
that the GPU tend to perform better both in terms of throughput and latency, except for the model using
64x64 inputs. As mentioned in Section 5.2 this is due to the much higher computational power as well as
parallelization and higher memory bandwidth. When using small image sizes, there is less pressure on the
bandwidth, and the FPGA is able to benefit from the parallelization and that the arithmetics on fixed-point

41



are simpler compared to floating-point operations. In addition to this, there is some overhead associated
with the GPU acceleration as the data has to be transferred to the GPU memory before inference. As briefly
discussed in Section 3.2, the authors of [26] found that in their benchmarks that the FPGA they utilized
was about 2.5x more energy efficient during inference than the GPU they used. This might indicate that the
FPGA could be a viable option for embedded real-time systems with limited power.

This report outlines several results on throughput and latency comparing an FPGA with a GPU, however
in our benchmarks only the FPGA utilizes quantized weights. Considering the findings discussed in Section
3.2, Borkovkina et al. [31] quantized the weights for the GPU implementation which yielded a speedup of
21x compared to a 32-bit floating-point model on the same GPU. The method of quantization could also
have been deployed on the CPU and GPU models in our benchmarks, which likely would have resulted in
far higher throughput in both cases. This would make the gap in performance between the FPGA and GPU
even larger, and most likely result in the GPU having the highest throughput for all image resolutions.

The obtained results in this report are comparable to the findings made by Miyama [30] with their Vitis
AI implementation. The model is approximately 2/3 the size of the model implemented in this report, and
its throughput is 32 fps on 256x256 in comparison to our model, which achieved a throughput of 23 fps.

6.3 Applications

In the context of embedded real-time systems there are several important measures to keep in mind during
the design. First and foremost, it is desired to keep the power consumption to a minimum, especially if
the system is battery-driven. Inference of DNNs entails billions of arithmetic operations which in turn
means a comparably high power consumption if the means of processing is not optimized for the application.
Furthermore, it is highly beneficial to strive for as low latency as possible. This is especially the case for
real-time systems where the user is dependent on the output of the system in order to interact. If the outputs
are produced with a latency in the order of seconds, there might not be possible for a user to react intuitively
to the output.

It is also important to obtain a level of throughput high enough so that the system does not induce any
bottlenecks, meaning for example that the rate of input is higher than the rate of output. In this case, one
would need large buffers in order to process all the inputs and rely on the fact that the feed at some point will
stop so that the remaining contents of the buffers can be processed. If this is not the case, one would overfill
the buffer and lose potentially important information and induce high levels of latency. One option in this
case would be to drop frames systematically to equalize the input rate to that of the throughput. However,
if the throughput is high enough to process the data at a rate equal to or higher than the input rate, such a
bottleneck will not occur.

The implementations made in this report show great potential for various applications. Considering a
real-time system as we described in Section 4.1, certain specifications should be upheld. For instance, to
provide an acceptable degree of responsiveness, the latency of the system should not be greater than 100
ms. Furthermore, the obtained throughput should be high enough to support the frame rate of the intended
application in order to be able to segment all the frames in the video stream. This limits the deployment
of the implemented models to the models with image resolutions lower than 256x256. Considering our
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specification, a model with performance between the models using a resolution of 128x128 and 256x256,
for example, with a resolution of 192x192 would be best suited. This configuration also adheres to the
resolution constraint. As already discussed, using a higher resolution could improve accuracy through more
available information, which could mean that though we in this report find similar accuracies, there could
be applications where a resolution of for example 192x192 would offer a higher accuracy than 128x128.
Furthermore, interpolating the throughput and latency metrics, we see that the performance is sufficient to
what we assume would be required in a real-time ultrasound application, namely providing a throughput
close to 50 fps and a latency lower than 100 ms.

However, though the given resolution is a multiple of 16, it does not work with the implemented network,
which most likely is a consequence of the compiler setting the number of inputs to a power of two, which
will result in a mismatch in the number of inputs and input data. This could either be a design choice made
by Xilinx or simply a consequence of the Vitis AI framework still being under development. A possible way
to bypass this would be to upsample the image to 256x256. However, this would be counter-intuitive taking
the objectives of this report into account. However, extrapolating the accuracies obtained in this report, we
see that in our case, there is nothing to gain from choosing the 192x192 model over the 128x128 model.

We base the rest of the discussion on the implementation trained on 128x128 input images as this imple-
mentation has good levels of both throughput and latency. The number of threads used in an implementation
is dependent on the data rate at the input. Using an ultrasound transducer as an example, the implementation
at hand yields a minimum of 42 fps which is sufficient to process a video stream of standard quality. If this
should not be sufficient, the number of threads could be increased at the price of latency. Using the maximum
amount of threads, which will introduce the highest latency, the resulting system will have a framerate of 83
fps and a latency of 45 ms, which is more than sufficient for the discussed application.

If the obtained results in terms of performance are unsatisfactory, an option could be to deploy an even
smaller image resolution at the price of accuracy or alternatively implement a different model with fewer
layers so that the inference will be less computationally intensive. An example could be to use a U-net
architecture with two steps in the contracting and expansive path as done in [31]. The FPGA used in
this implementation, namely the Xilinx XCZU7EV, is an edge computing platform, and one can therefore
increase the performance by utilizing a more powerful FPGA at the cost of power consumption. Another
option could be to generate an application specific hardware configurations for the given model. This can
either be done by hand, using a framework converting a high-level description, such as the Finn framework,
or using HLS as mentioned in Section 3.3.
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7 Conclusions

The main goal of this report was to speed up the inference of a DNN using an FPGA. We successfully
implemented a U-net architecture for CPU and GPU using PyTorch, and for FPGA using Vitis AI. We
trained the U-net architecture on segmenting cardiac ultrasound two-chamber views with four different image
resolutions; 64x64, 128x128, 256x256, and 512x512, obtaining a minimum Sørensen-Dice coefficient of
89%. The maximal reduction in accuracy as a result of quantizing a floating-point model was 1% for the
512x512 model. Using the Xilinx XCZU7EV FPGA and optimizing the U-net model by quantizing the
32-bit floating-point weights to 8-bit integers, the maximal obtained speedup was 30x compared to an Intel
Core i7 CPU and 2.6x compared to an Nvidia GeForce GTX 1060 GPU. The FPGA achieved a latency 0.07x
the CPU latency, and a maximal latency reduction of 0.68x the GPU latency. Utilizing an FPGA for DNN
inference yield superior results compared to an CPU, effectively achieving higher throughput and lower
latency for all implemented models. The FPGA achieved comparable results to a GPU when limiting the
size of the input data. The FPGA obtained higher levels of throughput than the GPU for image resolutions
of 64x64 and 128x128, and lower latency for 64x64. The implementations were trained and evaluated using
four different input sizes to investigate input size as an additional method of performance optimization. This
showed that low input resolutions are able to obtain comparable accuracies while speeding up inference.
In conclusion, the resulting network performed with high accuracy on small input sizes while achieving
great speedup, hence proving that FPGA can be considered a viable option for DNN inference of cardiac
ultrasound images in real-time systems.
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Appendix

A Workflow of generating FPGA models

The code provided along with this project can simply be run using the tutorial presented here.

Training the model

There are several arguments that can be parsed, use --h to display the options. To train the model with a
dimension of 128x128 simply run:

$ python3 unet.py --train --dim 128 --input PATH_TO_DATASET/

Quantizing the model

Running the following steps of the pipeline requires use of the docker prvided in Vitis-AI. From inside the
Vitis AI folder simply run the command:

$ ./docker_run.sh xilinx/vitis-ai:latest

Installing the dependencies is done by running:

$ pip3 install -r requirements.txt

As we have implemented the U-net class with the training algorithm as part of the class we simply use a
script containing an identical model and omitting the training function; models.py. When the accuracy of
the model is satisfactory the model can be quantized to int8 by running:

$ python3 models.py --input PATH_TO_DATASET/ --model TRAINED_MODEL.pth --dim 128 --

quant_mode calib

To test the impact on accuracy of the quantized model simply run:

$ python3 models.py --input PATH_TO_DATASET/ --model TRAINED_MODEL.pth --dim 128

--quant_mode test

To deploy simply add the deploy flag:

$ python3 models.py --input PATH_TO_DATASET/ --model TRAINED_MODEL.pth --dim 128

--quant_mode test --deploy

Compiling the model:

In the Vitis-AI docker compile the model from the previous step by running:

$ vai_c_xir -x quantize_result/unet_int.xmodel -a /opt/vitis_ai/compiler/arch/

DPUCZDX8G/ZCU104/arch.json -o quantize_result/ -n unet_deploy_128

which in this case is compiled for the ZCU104.
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Running the deployed model on FPGA:

Use the serial connection to set the FPGAs ip-adress, thereafter transfer the generated files and datasets to
the FPGA using scp commands. Simply run the quantized model on the FPGA using:

$ ./run.sh

make sure that the arguments within the shell script is correct.
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