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Abstract

Entity matching (EM) is the task of identifying records from different data sources
that refer to the same real-world entity [1]. Recently, transformer-based language
models such as RoBERTa have been introduced to the task of EM, and proven to
be very effective and achieve state-of-the-art results [2, 3]. However, this success
comes with some limitations, the most important being that the methods require
a significant amount of training data. Transfer learning is a promising technique
to solve the problem with limited data.

This thesis examined the use of transfer learning with RoBERTa by pre-training
the language model on EM benchmark datasets. Traditional machine learning
algorithms based on string similarity metrics have achieved good performance
with few training samples [4]. This thesis also examined if the strengths of hand-
crafted features such as string metrics combined with RoBERTa could improve
the performance with limited data. The models have been evaluated on 12 EM
benchmark datasets from various domains such as citations, product data, music
and restaurants.

RoBERTa with transfer learning consistently outperformed the baseline, which in
this study is a traditional machine learning EM system called Magellan. RoBERTa
with transfer learning achieved a relative high F1-score with very few samples,
and outperformed the baseline with an average F1-score of 30% when less than
200 training samples were used. Further, it achieved an average F1-score of 67.6%
with no training data, with a max of 96.4% and a min of 58.03%. When all avail-
able training data was used, RoBERTa with transfer learning had the highest
F1-score on 7 out of 12 datasets. In the less than 200 training samples range, the
RoBERTa model with handcrafted features was outperformed by the baseline on
9 out of 12 datasets. When using all available training data, both models based
on RoBERTa outperforms the baseline.
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Sammendrag

Entitetsmatching (EM) er det å identifisere dataoppføringer fra forskjellige databaser
som referer til samme entitet [1]. Nylig s̊a har transformer-baserte spr̊akmodeller
blitt introdusert til EM. Disse har vist seg å være svært effektive til å løse EM
problemet [2, 3]. Selv med stor suksess, s̊a kommer disse modellene med utfor-
dringer med at de trenger en betydelig mengde treningsdata. ”Transfer learning”,
det å øverføre kunnskap fra andre datasett, er en lovende teknikk for å løse prob-
lemet med lite treningsdata.

Denne masteroppgaven har sett p̊a ”transfer learning” med den transformer-
baserte spr̊akmodellen, RoBERTa, ved å forh̊andstrene den p̊a EM datasett.
Tradisjonelle maskinlæringsalgoritmer basert p̊a strengmetrikker har ogs̊a vist
seg å være effektive med f̊a treningseksempler [4]. Denne oppgaven s̊a ogs̊a p̊a om
styrkene til h̊andlagde funksjoner, slik som strengmetrikker, kan kombineres med
RoBERTa for å forbedre effektiviteten med f̊a treningseksempler. De beskrevne
modellene har blitt testet p̊a 12 forskjellige datasett fra ulike domener som bib-
liografi, produktdata, musikk og restauranter.

De transformer-baserte modellene slo konsekvent basislinjen, et tradisjonelt maskin-
læringsbasert EM system ved navn Magellan, n̊ar de fikk nok treningsdata. RoBERTa
forh̊andstrent p̊a EM datasett oppn̊adde et sterkt resultat med veldig f̊a tren-
ingseksempler, og overgikk Magellan med en gjennomsnittlig F1-score opp til
30% n̊ar mindre enn 200 treningseksempler var brukt. Videre oppn̊adde den en
gjennomsnitt F1-score p̊a 67.6% med null treningseksempler, med et minimum p̊a
58.03% og maksimum p̊a 96.4%, p̊a datasettene. Den hadde og̊a den høyeste F1-
scoren p̊a 7 av 12 datasett n̊ar all treningsdataen var brukt. N̊ar mindre enn 200
treningseksempler var brukt s̊a klarte basislinjen å sl̊a RoBERTa med h̊andlagde
funksjonenr for 9 av 12 dataset.
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Chapter 1
Introduction

1.1 Motivation

Cognite is a Norwegian company that develops and delivers a data operations
platform aimed towards the industry. This platform receives large amount of
data from industrial companies. The data is processed, analyzed and optimized
by Cognite in order to be able to, amongst other things, predict maintenance,
create 3D models and do simulations. The data that comes into the platform
can be very dirty. The data comes from multiple sources and domains, and can
contain duplicates, have missing data, use different schemas and use different
naming conventions. There is usually no common identifier across the data that
enters the platform. For the data platform to be efficient, it will have to know
which data refers to the same real-world identity. The platform might have to
link time series data from a sensor to a physical device given in an equipment list.
This is difficult when the time series data is stored in one database, and the data
about the physical sensors are stored in another database without any explicit
connection to the time series. This linking has to be achieved with a very low
tolerance of errors, which is challenging.

The aforementioned industrial data linking problem can be cast as an entity
matching problem. Entity matching is the task of identifying records that refer
to the same real-world entity. Table 2.1 gives an example of an entity matching
problem. In the example, it can be challenging to determine which of the follow-
ing four combinations are true matches. Across the records there is no common
identifier, which could have solved the problem easily. Due to a lack of a common
reference, the comparison of records needs to be based on the attribute values.
Different methods such as string comparison metrics exist for doing this. How-
ever, two string that do not refer to the same entity can be as similar as two
strings that do refer to the same real-world entity. Recently, better hardware
and new machine learning based algorithms has allowed us to tackle this problem
from a new direction.

Natural language processing (NLP) techniques, such as transformer-based lan-

1



CHAPTER 1. INTRODUCTION

guage models like BERT, have been introduced to the entity matching task and
received state-of-the-art results [2, 3]. With these methods, there is a need for
a larger amount of labeled data compared to traditional learning based entity
matching algorithms. The process of labeling data is often a time-consuming
task, and in the industry a domain expert is often needed. It is therefore of
great interest to develop entity matching systems that excels on limited amount
of training samples.

Transfer learning is a promising technique to solve the aforementioned problem
where there is a limited amount of available training data [9]. The aim of transfer
learning is to transfer knowledge from one domain to another.

Table 1.1: An example of the entity matching problem, where one want to match one
record from Database A to one record from Database B.

(a) Database A: Product information from Amazon.

ID Title Manufacturer Price

A1 microsoft word 2004 upgrade ( mac ) microsoft 109.99
A2 microsoft word 2004 ( mac ) microsoft 229.99

(b) Database B: Product info from Google.

ID Title Manufacturer Price

B1 microsoft word 2004 209.99
B2 microsoft excel 2004 spreadsheet soft-

ware mac apple & mac software
228.95

(c) Matches.

ID label

A1-B1 no-match
A1-B2 no-match
A2-B1 match
A2-B2 no-match

1.2 Project goal and research questions

The goal of this thesis is to improve on the aforementioned industrial entity
matching problem by utilizing state-of-the-art (SOTA) entity matching tech-
niques. This somewhat broad goal can be summarized in the following research
questions:

1. How does the performance of transformer models compare to traditional ma-
chine learning based methods in a low-resource setting?

2
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The aim of this research question is to examine how well a transformer-
based language model performs when there is a limited amount of labeled
data available. The performance of the transformer model is compared to a
traditional machine learning algorithm that is known for needing less data
and has achieved SOTA results.

2. How is the performance on entity matching affected when combining trans-
formers with transfer learning on entity matching datasets in a low-resource
setting?

Aforementioned, deep learning models are known for being data hungry,
and it is of interest to develop models that perform well with limited train-
ing data. Transfer learning has given promising results when applied in
similar contexts where training data is limited [9]. This research ques-
tion seeks to examine the use of transfer learning applied to the RoBERTa
language model for entity matching by pre-training the model on entity
matching datasets.

3. What is the impact of handmade features in combination with transformers
in a low-resource setting?

Handmade features are in this setting string similarity metrics. String met-
rics measures the distance and/or the similarity between two strings. Tra-
ditional machine learning methods based on string metrics have achieved
SOTA results on structured data. The aim of this research question is to
combine the strength of string metrics on structured data with the strength
of the transformer models which have given good results on dirtier datasets.

1.3 Contributions

The main contributions from this thesis can be summarized as:

• Present a transformer-based language model, RoBERTa, pre-trained on EM
benchmark datasets. The model is called the Transfer learning model and
are fine-tuned on a dataset for the EM task. The main advantage of the
model is with very few samples were it consistently outperforms state-of-the-
art EM solutions with up to 42% in F1-score for 50 samples. It also achieves
a high F1-score of 58-96% with zero samples. With larger sample sizes, the
advantage of the model decreases. To prior knowledge, this thesis is the
first to pre-train a transformer-based model on entity matching datasets.

• This thesis also presents RoBERTa injected with handcrafted features,
called the Hybrid model. The handcrafted features are generated from five
string metrics. The impact of the string metrics are highest with few ex-
amples, where it achieves a score up to 80%, while RoBERTa only achieves
a F1-score of 0%. However, with sufficient data the Hybrid model achieves
a F1-score only 1-4% better than the RoBERTa model.
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1.4 Approach

To answer the research questions, four different models will be trained and uti-
lized. The first of these models is based on Magellan, a state-of-the-art super-
vised learning based EM system, and is used as the baseline. The second model
is a transformer-based language model RoBERTa. The RoBERTa model is pre-
trained on a large corpus of English text data. The third model combines transfer
learning with the RoBERTa model by pre-training it on a set of related datasets.
The last model aims to utilize the strength of traditional machine learning models
based on string metrics by injecting these similarity measures into the RoBERTa
model.

The models were tested and developed on twelve benchmark datasets for EM
from different domains. The datasets can be split into three categories; struc-
tured, textual and dirty. F1-score is used to evaluate the models.

The four models can be summarized in the following list

• Magellan baseline model.

• RoBERTa transformer-based language model.

• RoBERTa transformer-based language model with pre-training (transfer
learning).

• RoBERTa transformer-based language model with handcrafted features/string
metrics (hybrid).

1.5 Results

The results can be summarized by the plots shown in Figure 1.1. The pattern
shown in those two plots is present for all datasets, and the more in-depth re-
sults can be found in chapter 6. It is clear that Magellan is outperformed by
the transformer-based models by a fair margin. Moreover, it is evident that us-
ing transfer learning with RoBERTa makes it easier for the model to perform
well with few training samples. Across all datasets, the transfer learning based
model achieves a high starting point score, with the lowest being a F1-score of
56% with 0 samples. In some cases, the F1 score can be as high as 95%. It
is not immediately clear that adding handcrafted features improves the perfor-
mance of the transformer model. The RoBERTa model was never the best model.

For many of the datasets, the transformer-based models converge when given
enough training samples. What is enough training samples is case dependent and
varies from dataset to dataset.

In addition to F1-score, training time needs to be considered when assessing
performance. The Transfer learning model has the overall longest training time if
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CHAPTER 1. INTRODUCTION

considering the pre-training on EM dataset. However, the pre-training only need
to be performed once. If excluded, the Transfer learning model has the fastest
training time by a few seconds compared to RoBERTa. Of the three transformer-
based language models, the Hybrid model has the slowest training time by an
average of 30 seconds with few samples.
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Figure 1.1: The average F1-score for the four models RoBERTa, RoBERTA pre-
trained on entity matching datasets (Transfer learning model), RoBERTa in com-
bination with handcrafted features (Hybrid model) and Magellan (baseline) for
two datasets representing the results obtained in this thesis.

1.6 Thesis Outline

Chapter 1 - Introduction This chapter includes motivation, research ques-
tions and a summarization of the approach and results obtained.

Chapter 2 - Theory and background This chapter goes through the theory
needed for understanding the development and usage of the models. It
covers string similarity metrics, transformers and transfer learning.

Chapter 3 - Related Work In this chapter the related research as well as re-
lated problems are presented.

Chapter 4 - Data This chapter summarizes the benchmark datasets used with
a focus on the challenges the datasets presents.

Chapter 5 - Method This chapter goes through the practicalities of the devel-
opment, training and testing of the models. It contains a description of the
tools and setup used.

Chapter 6 - Results The Result chapter presents the results from the conduct-
ing experiments.

Chapter 7 - Discussion The seventh chapter gives a discussion of the results
obtained in the light of the research questions provided in this chapter.
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Chapter 8 - Conclusion and further work The last chapters concludes the
work done in this thesis, with a specific focus on the industrial applicability
of the presented models, and provides suggestions for further work
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Chapter 2
Theory and Background

This chapter gives the theoretical background needed to answer the research
questions. It starts out by presenting the entity matching problem more formally,
with a distinct focus on the challenges the entity matching problem phases. This
section is followed by an go through of string matching, which is an important part
of some of the entity matching models. The next section, section 2.3 introduces
transformer models, and section 2.4 introduces the transformer-based language
models BERT and RoBERTa. At last, section 2.5 goes through transfer learning,
which is an important part of research question 2.

2.1 Entity matching

Entity matching (EM) is the task of identifying record pairs from two or more
data sources that refer to the same real-world entity [1, 4]. More mathematically,
the entity matching problem can be defined as: let A and B be two data sources
with the attributes (A1, A2, ..., An) and (B1, B2, .., Bn). The attributes form the
schema of the two data sources. The goal of entity matching is to find all the
record pairs (ai ∈ A, bi ∈ B) that refer to the same real-world entity. If a record
pair does refer to the same real-world entity, it is defined as a true match. If
not, the record pair is defined as a non-match. The attribute values are usually
descriptions of the entities, such as name, date of birth or address [1].

In the literature, entity matching is also referred to as the following, depend-
ing on the domain

record linkage string matching merge/purge problem
link linkage data matching de-duplication
entity resolution reference reconciliation duplicate detection

Duplicate detection is the task of identifying records that refer to the same entity
within one single data source [1], and can be cast as an entity matching problem.
String matching focuses on matching of two strings, an important part of entity
matching.
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2.1.1 The Entity matching problem

The entity matching problem can be challenging for several reasons. Some of the
major challenges for EM are described below.

No unique identifier

Usually, there is no common unique identifier across the datasets to be matched,
such as serial numbers, social security number, an index or a key. On the other
side, even with unique identifier one need to be confident that the identifiers are
not corrupt. The identifiers can change over time and be different across the
data sources. Additionally, one also needs to be sure that there are no duplicates
within a dataset which have different identifiers that refer to the same real-world
entity.

Low quality

Since there is generally no common identifiers in the data, EM often needs to rely
on the attributes. This can be challenging when the data is of low quality. Some
examples of factors that contributes to low quality are

• Missing values. Not all information are inserted into the datasets. This
can lead to not having enough information about an entity as shown in
Table 2.1. For the record in A2, the surname is missing. This means that
the matching only can rely on the first name and the address.

• Wrong information. The information about i.e. a person can change over
time. One can change name after marriage or move to another address.
This leads to incomplete and wrong information about the entities.

• The attribute values have been shuffled. An example of this is given in
Table 2.1.

• Abbreviations. As seen in Table 2.1 William Henry is abbreviated to Bill H.
This can be intuitive to humans, but can be hard to machines to understand.

• Misspellings. The data can have been manually inserted, and due to human
errors misspellings can occur.

The computational complexity

In this thesis, it is assumed that only one record from one database, match to
exactly one record in another database. When matching two databases with
size N , this could potentially lead to N × N comparisons in order to determine
if a record pair refer to the same entity or not. The computational complexity
therefore grows quadratically with larger datasets. At the same time, the amount
of true matches only grows linearly.
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Table 2.1: An example of the entity matching problem, where one want to match
one record from Database A to one record from Database B.

(a) Database A: Product information from Amazon.

ID First name Last name City

A1 William Henry Gates Seattle
A2 Bill Arkansas

(b) Database B: Product info from Google.

ID First name Last name City

B1 William S. Gates New York
B2 Bill H. Gates Seattle

(c) Matches.

ID label

A1-B1 no-match
A1-B2 match
A2-B1 no-match
A2-B2 no-match

Lack of training data

The status of true matches and non-matches are often unknown in many data
matching applications, which means there is no golden standard or dataset to
train on for machine learning based models [1]. Creating datasets consisting of
matches/non-matches can be time consuming and may require domain experts.
In academia, there exists quality assured and different datasets to train on. This
if often not the case in the industry. For example, consider the industrial scenario
where measurements from a pump need to be mapped to a list of equipment for
maintenance. It is critical that the matches are correct, and it can be very time
consuming, ineffective and expensive for a company to perform this mapping
manually.

2.1.2 The entity matching process

The entity matching process is often divided into the two steps; blocking and
matching. However, the process can be further divided into five steps [1] as shown
in Figure 2.1, and this subsection will briefly go through these five different steps.
This thesis focuses mostly on the matching step, which relies heavily on record
pair comparison and classification.
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Figure 2.1: The general entity matching (EM) process of matching two databases.

Data pre-processing

The main purpose of this step is to assure that the format to the two data
sources are the same, and the attributes follow the same structure. The data
sources are also cleaned and standardised in this step. This step is similar to the
pre processing step often done in machine learning.

Indexing/Blocking

After pre-processing, the data is ready to be matched. The näıve approach is
to compare every record from one database to all records in the other database.
Since only one record from one database only matches to one record in the other
database, a large amount of the record pairs are clearly non-matches. This does
not scale well in the long run, as the computational complexity grows quadratic
with the size of the databases [1]. At the same time, the true matches only grows
linearly. This leads to very imbalanced datasets in entity matching with few true
matches compared to non-matches. To reduce this imbalance and the complex-
ity of O(n2), different techniques such as blocking has been applied to the entity
matching task. The resulting dataset after the filtering is called a candidate set.
It is assumed that the candidate set does not include false negatives and only the
records pairs that are likely to be a match based on the blocking technique. The
common goal for all blocking techniques is to maximize the recall for the true
matches.

In the blocking step, candidate sets are often generated with the use of a blocking
key, also known as a blocking criteria. The blocking key splits the dataset into
smaller blocks depending on the criteria to the blocking key. The record pairs
that meet the requirement of the blocking key, and share the same value for the
requirement are inserted into the same block. For example, when matching two
citations databases, the blocking key could be based on having the same Year.
Two publications with different year are obvious non-matches and filtered out
from the candidate set. Only the records in the same blocks, have the same year,
will be compared in the matching step.

Other strategies for blocking are filtering techniques or n-nearest neighbours. Fil-
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tering often use similarity thresholds to apply rules [10]. For example every record
pair with Jaccard score distance less than 0.3 are removed. The nearest-neighbour
technique finds the n-nearest record pairs.

The downside of traditional blocking techniques is that usually the blocking func-
tion need to be specified, often based on domain-knowledge [11]. Recently, block-
ing techniques based on deep learning embeddings have been applied to maximize
recall. Recall is further described in chapter 5.

Record pair comparison

After the blocking step, the record pairs (a, b) ∈ C are compared, resulting in a
comparison vector of numerical similarity values [1]. The comparison vectors are
often the basis of traditional machine learning algorithms.

Traditionally, string similarity has been used to indicate the similarity or dis-
similarity of the two records [12]. It is assumed that the more similar a record
pair is, the more likely it is that the pair refers to the same real-world entity. The
string metrics are often chosen based on the attribute values.

With the rise of deep learning in NLP, new techniques have been applied to the
record comparison step such as word embeddings [2]. The advantage of word em-
beddings is that it removes the need to generate features based on string metrics
which often need to be manually defined.

Classification

The main task in this step is to identify all the true matches in the candidate
set. The simplest model used for classification just sums up the values from the
comparisons vectors obtained. Based on a threshold, all record pairs with a sum
over the threshold is classified as a match.

Traditionally, classification for entity matching used probabilistic models. The
downside with these models is that they only classified each record pair indepen-
dently.

Supervised classification algorithms use the comparisons vectors as feature vec-
tors. The features are employed to train the models, in order to classify the record
pairs into a match or a non-match [1].

As with the record pair comparison, deep learning models have also been applied
to the classification step. Brunner and Stockinger [2] and Li et al. [3] recently
introduced transformer-based language models to the entity matching task. The
pre-trained transformer models has received state-of-the-art result for EM.

Other techniques that also can be used in the classification step are active learn-
ing, transfer learning and unsupervised models.
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Evaluation

The main goal of the classification models mentioned is to achieve a high quality.
To be able to assess the quality a golden standard with known true matches and
non-matches are required. With the help of a variety of evaluation measures, the
performance of the models can be computed [1]. Some data applications has a
very low tolerance of error, so it is important to evaluate the matching.

2.2 String matching

String matching is the problem of finding strings that refer to the same real-
world entity [13]. For example, the string William Gates from one database
refers to the person William H. Gates in another database. In data integration,
string matching plays a critical role to perform for example schema matching
or data matching. The definition of the string matching problem is similar to
entity matching: Given a set X and another set Y , the problem is to find all
string pairs (x ∈ X, y ∈ Y ) such that x and y refer to the same real-world entity
[13]. One of the major challenges in string matching is accuracy, due to the two
string that refer to the same real-word entity may be different. Some reason for
the difference are misspelling of words, abbreviations, different formatting and
shuffling of the characters in the string. A solution to solve the accuracy problem
is to use similarity measures.

2.2.1 Similarity measures

Similarity measures are used to find the similarity score in the range [0,1] between
two strings. The higher the similarity score is, the more likely it is that the two
strings match. Two other terms with the same concept are cost and distance
measures. The smaller the value of the score for these two terms, the higher
similarity of two strings [13].

The similarity measures can be categorized into four groups according to how
the measures treat the input strings. The four categories are:

Sequence-based The sequence-based similarity functions view the input as a
sequence of characters. The main computation of these measures are to
compute the cost of transforming one string into another string. Examples:
edit distance, Needleman-Wunch and Jaro-Winkler measure.

Set-based The set-based measures consider the input as a set or multisets of
tokens. Several methods can be used to generate a set of tokens from the
input string. A method is delimiter, which splits the words by the space
character. Another is q-gram, which split the string into sub-string of size
q, often 2 or 3. Examples: Jaccard, Dice and TF/IDF.

Hybrid The hybrid measures combine components from the sequence-based
measures and the set-based measures. Examples: Monge-Elkan and Gen-
eralized Jaccard.
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Phonetic The phonetic measures look at how the input strings sound, in contrast
to the three other which consider the characters and its place in the strings.
These measures are often used to match names, because names often can
be misspelled. Examples: Soundex.

Edit distance/Levenshtein distance

The basic Edit distance, also known as Levenshtein distance d(x, y), computes
the smallest number of operations that needs to transform string x into string y.
The various operations that can be performed on a character is: delete, insert
or substitute. Since the minimal cost of transforming x to y is the same as the
minimal cost of operations to transform y to x, d(x, y) is symmetric.

To obtain the similarity function s(x, y), the edit distance d(x, y) is converted
as follow:

s(x, y) = 1− d(x, y)

max(|x|, |y|)
. (2.1)

Levenshtein performs better on short strings, than on longer strings, and where
small number of differences is expected. It can computed on longer strings, but
the computational cost is higher, so to speed up the process shorter strings is
smarter.

The Jaro-Winkler measure

The Jaro-Winkler measure is a type of edit distance mainly used to compare
names [1]. The measure is a modification of the Jaro-measure, which was devel-
oped to focus on comparing short strings. The Jaro-score is computed as follows:

jaro(x, y) =
1

3
(
m

| s1 |
+

m

| s2 |
+
m− t
m

), (2.2)

where | si | is the total length of string si, t is the number of transpositions and
m is the number of characters which are matching between s1 and s2. Transpo-
sition is the number of operations needed on characters to transform s1 into s2.
The matching of two characters respectively from s1 and s2 is only counted as
matching if they are the same and are not bmax( |s2||s2|

2
)c–1 characters apart from

each other.

The Jaro-Winkler measure checks if the two strings share a prefix and can there-
fore likely be a match, even though the Jaro-score is low. Jaro-Winkler score is
as follows:

jaro-winkler(x, y) = (1− PL× PW )× jaro(x, y) + PL× PW, (2.3)

where PW is the weight given to a prefix, and PL is the length of the longest
common prefix between the string [13].
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Dice coefficient

The Dice score is a set-based measure that calculates how similar a set of q-grams,
X is to another set of q-grams, Y [1].

The Dice score is as follows:

dice =
2× | X ∩ Y |
| X | + | Y |

. (2.4)

If using true positives (TP), false positives (FP) and false negatives (FP) the Dice
score can be written as:

dice(X, Y ) =
2TP

2TP + FN + FP
. (2.5)

The difference with Dice coefficient from Jaccard is that Jaccard only looks at
true positives when calculating the similarity.

Generalized Jaccard

The Jaccard measure examines the overlapping tokens between two strings s1

and s2 and is computed as:

jacc(x, y) =
|Bx ∩By|
|Bx ∪By|

, (2.6)

where Bx and By is the set of tokens for string x and y respectively. The disad-
vantage of the Jaccard score is that the overlap of tokens are restricted to be the
same to be considered to be the same. The generalized Jaccard measure is an
extension to the Jaccard measure. The benefit of the generalized Jaccard is that
is capture misspellings of the words in the input strings, where the Jaccard score
would not.

The first step to find the generalized Jaccard score is to convert the input strings
into a set of tokens, Bx and By [13]. A similarity measure s is applied to every
pair (xi ∈ Bx, yi ∈ By). Only the scores that are equal to or a above a given
threshold α is kept. The result is a bipartite graph with the sim score s as weights
on the edges between the pairs. The maximum-weight matching M is found and
normalized to get a score in the range [0, 1]. The generalized Jaccard is:

GJ =

∑
(xi,yi)∈M s(xi, yi)

| Bx | + | By | − |M
, (2.7)

where the normalization is the sum | Bx | + | By | −M .

Monge-Elkan

Monge-Elkan measure is a type of hybrid similarity and finds the similarity be-
tween two sets of tokens. The measure was originally developed to compare
strings containing several words [1]. This can occur when matching business
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names or addresses. The first step is to covert the two strings s1 and s2 into
multiple substrings, s1 = A1, A2, ..., An and s2 = B1, B2, ..., Bm [13]. A solution
to achieve the the lists of tokens Ai and Bj are to split the input strings by
whitespace or delimiter. The Monge-Elkan uses a secondary similarity measure
s′, such as Levenshtein or Jaro-Winkler. This secondary similarity function is
used to find the best matching pairs between the tokens from Ai and Bj. The
Monge-Elkan score is computed as:

s(s1, s2) =
1

n

n∑
i=1

m
max
j=1

s’(Ai, Bj), (2.8)

2.3 Transformers

The Transformer is a special type of neural networks first introduced by Vaswani
et al. [6]. Transformers are primarily used in natural language processing (NLP)
tasks [6]. However, it generalizes also well to other tasks such as entity matching.
The Transformer uses self-attention mechanisms to draw global dependencies
between the input and the output. This means that the model is able to learn
the relationships between words in a sentence, regardless of the position of the
word in the sentence. The self-attention mechanism also allows the transformer
to perform calculations in parallel, which has been a bottleneck for Recurrent
Neural Networks (RNN).

2.3.1 The architecture

The Transformer has an encoder/decoder structure heavily based on attention,
which is further described below. Given an input sequence of symbol repre-
sentations (x1, x2, ..., xn), the encoder maps this representation to a sequence of
continuous representations z = (z1, z2, ..., zn). The decoder takes the output from
the encoder, z, and generates an output sequence (y1, y2, ..., ym).

The encoder and the decoder follows the structure shown in Figure 2.2. Both
are composed of a stack of N , often 6, identical layers. Each layer consists of the
two sub-layers: a self-attention layer and a feed-forward neural network layer [6].

Positional Encoding

The be able to know the position of the tokens in the input sequence, positional
encoding are added to the input embeddings. The positional embeddings are
added to both the inputs at the first encoder and to the first decoder in the
stack.

Encoder

The first step is to convert the input sequence into a vector of dimension 512 by
using an embedding algorithm. The list of word embeddings are the input to the
first encoder. Each token in the input sequence flow through the two sub-layers
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Figure 2.2: The model architecture for transformers. The architecture consists of
N encoders and decoders. The encoder and decoder is built with two sub-layers:
attention layer and a feed forward neural network layer. Source [6].

in its own paths. In the self-attention layer, there are dependencies between the
different paths. This layer look at other words in the input sentence as it encodes
a specific word. A further description of how this layer operates are given below.
The output of the attention-layer is then given to the feed-forward neural network.
This layer does not have any dependencies, which makes the transformer able to
operate in parallel. The encoder also has a residual connection around it. This
allows the gradients to flow directly through the network.As shown in figure 2.2
the Residual layer is followed by a normalization layer. This layer normalize the
neurons in the network, in order to reduce the training time. The output of each
sub-layer is:

LayerNorm(x+ SubLayer(x)), (2.9)

where SubLayer(x) is a function in the sub-layer. The last encoder of the stack
transforms the output into a set of attention vectors, K and V , which are passed
to every decoder.
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Decoder

The decoder follows the same structure as the encoder, but it includes a third
layer. The third layer, the encoder-decoder attention performs multi-head atten-
tion on the output from the encoder, see figure Figure 2.2 [6]. The input to
the encoder-decoder attention layer are the set of attention vectors from the en-
coder, containing key vector, K, value vector, V , as well as the queries from the
previous decoder layers in the stack. The benefit of this, is that every position
in the decoder can attend over all the positions in the input sequence [6]. The
self-attention layer in the decoder has been modified compared to the attention
layer in the encoder. The self-attention layer mask future positions, and the out-
put embeddings are shifted one position to the right. Due to the offset and the
masked positions, the predictions of xi can only be dependent on the preceding
outputs. Also, the outputs less than xi.

Similar to the encoder, the decoder also has a residual connection around the
sub-layers in the decoder, followed by a normalization layer. The output of the
decoder stack is a vector of floats.

The linear layer and the softmax layer

The two final layers are the linear layer followed by the softmax layer. Simplified
is the linear layer a fully neural network. This layer takes the output from the
decoder and projects it into a larger vector, called logits vector. If the model
knows 5000 unique Norwegian words, then the logits vector will contain 5000
cells, one cell for each word. Each cell contains a score for the unique word.
The softmax layer turns the scores from the linear layer into probabilities. The
cell that contains the highest probability is chosen, and the associated word is
produced.

Training the transformer model

The training of the transformer model is typically with labeled datasets. The
process of training is the same as the aforementioned techniques. The output of
the training are compared to the correct result.

2.3.2 Self-attention

The idea of self-attention is that a word can be expressed as a weighed combina-
tion of its neighborhood in the input sentence [2]. The language model can then
be able to pay attention to relevant words that are close in its neighborhood,
which can be seen in figure 2.3. For example, the computation of y2 is based on
the comparisons between x2 and the preceding element x1. One way to compute
the comparison is to take the dot product, then normalize it with a softmax func-
tion to get the output y2.
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Figure 2.3: The flow of the input sequence x1, x2, ..., xn. Source [7].

2.3.3 Multi-Head Attention

The different words in a sentence can have multiple relations to other words in
a sentence. With only one single layer of attention it is hard to capture all of
the parallel relations in the input [7]. Transformers solve this with multihead
attention layers. These attention layers, also called heads, runs through several
attention layers in parallel with its own set of parameters. Each head with its
distinct parameters can now learn the different relations between the words.

The input to each head is a set of key, query and value vectors. The output
of the h heads are h vectors with the same length. Since the feed forward net-
work only expects one matrix with a vector for each word, the h matrices are
concatenated into one matrix and linearly transformed to the original dimension.
Figure 2.4 shows the overall structure of the multi-headed attention layer.

Figure 2.4: Multi-head attention consisting of h self-attention layers. Source [6].
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2.4 Language Models

Various deep learning models such as recurrent neural networks (RNN) and long
short-term memory with word embeddings have been used to train a matching
model [14, 15]. Recently, pre-trained language models have proved to be effective
for improving a wide range of NLP task [8], and has achieved state-of-the-art
results in entity matching. Examples of such pre-trained models are BERT [8],
RoBERTa [16], GPT-2 and XLNet. Many of these models are based on deep
neural networks with multiple transformer layers. In surveys conducted by Li
et al. [3] and [2], RoBERTa gave on average the best scor for entity matching and
it is based on the popular transformed-based language model, BERT [2].

2.4.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a language
model (LM) developed by Google in 2019 [2]. It has achieved state-of-the-art re-
sults in various Natural Language Processing (NLP) tasks. BERT is pre-trained
on large text large text corpora such as Wikipedia. There are two steps in the
BERT framework: pre-training on large unlabeled data and fine-tuning on down-
stream tasks with labeled data [8].

BERT architecture

The input to BERT needs to be converted into a tokenized sequence, for it to
be meaningful for the model. BERT uses WordPiece embeddings to tokenize the
input sequence. Segment embeddings are also added to every token, to indicate
which sentence the token belongs to. The position embeddings are used to denote
the position of a token in the sequence. The input representation for the BERT
model is shown in figure 2.5. Two special tokens, [CLS] and [SEP] are also
added to the input. [CLS] is always the first token of the sequence and are used
for classification. [SEP] is inserted at the end of each sentence to separate two
sentences [8].

Figure 2.5: BERT input representation. E indicates the input embedding. Source
[8]

BERT is built with the same transformer structure proposed by [6] with multiple
layers, typically 12 or 24 [3]. As the name implies, BERT is bi-directional. Instead
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of predicting the next word as most unidirectional language models do, BERT uses
both the right and the left context of the query token to predict the masked token,
[MASK] see figure Figure 2.6 [2]. With the masked token, BERT is designed as
a masked language model (MLM). This means that BERT randomly mask a
certain percentage of the tokens from the input sequence [8]. During fine-tuning
of the parameters in the downstream task, [MASK]-tokens are not represented.
To compensate for this, during the pre-training of the parameters not all masked
tokens are replaced with [MASK]. Approximately 10% are replaced with a random
token, and 10% unchanged leaving 80% to be replaced with [MASK]. MLM makes
BERT able to learn to reconstruct the original data by predicting the masked
tokens.

Figure 2.6: BERT use both the left and right context of the masked token,
[MASK]. Source [2].

For some downstream tasks such as NLP and Question/Answering, it is important
to be able to understand the relationship between two sentences. BERT solves
this by introducing another training task named Next Sentence Prediction (NSP)
[2]. When training the model with two inputs, sentence A and B, BERT chooses
B 50% of the time as the actual next sentence and labels it isNext. 50% of
the time BERT chooses a random sentence from the corpus, which are labeled
notNext [8]. This is to make BERT able to predict if a sentence is followed by
the next sentence.

2.4.2 RoBERTa

Robustly optimized BERT approach (RoBERTa) is another language model re-
leased in 2019, and is mainly a modification of BERT. The authors of the RoBERTa
paper [16] meant that BERT was under-trained. The modifications proposed was
[2]:

• More training data. RoBERTa is trained on 160 GB of text, while BERT
is trained on 16 GB.

• Longer training

• Training with larger batch sizes. BERT uses batch size of 256, while
RoBERTa train with batch sizes of 2K and 8K [16].

• Exclude next sentence prediction (NSP). RoBERTa shows that by removing
NSP, the performance of the downstream tasks were slightly improved.
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• Dynamic masking instead of static masking. BERT only performs masking
one time during pre-processing, so the same mask is used for each training
instance. RoBERTa looks at generating masks every time a sequence is fed
into the model. The authors concluded with dynamic masking performed
slightly better than static masking, in addition to be more efficient [16].

2.5 Transfer Learning

Transfer learning seeks to improve the performance on a target domain by trans-
ferring knowledge from a source domain [9]. In this way, the dependence for large
training data for the target domain can be reduced. Therefore, TL is a promising
technique in low resource settings [17]. In recent years, transfer learning has been
used to pre-train models on large corpus of text, such as BERT, in order to use
this pre-trained model to be fine-tuned on specific tasks in another domain.

Figure 2.7: A simple flow of transfer learning from one domain or dataset (Task A)
to another domain or dataset (Task B) compared to traditional machine learning.

Given one or multiple source datasets DS1, DS2, ..., DSn the aim of transfer learn-
ing is to utilize the knowledge from the source and transferring it to the classifier
for a target dataset, DT , with limited training data [18].

Transfer learning can be categorized into the following categories depending on
how much training data the source has compared to the target dataset:

Unsupervised domain adaption The target dataset contains zero training
data. The source dataset contains adequate data. [18].

Supervised domain adaption A second scenario is when there is adequate
labeled training data for the source datasets, but the labeled data in the
target dataset is limited.

Semi-supervised domain adaption The amount of labeled data are limited
for both source and target.
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2.5.1 Instance weights for multiple datasets in source

The same way entity matching suffer from imbalanced datasets, transfer learning
also suffer from this when multiple datasets are used in source. DL

S which is
the number of training labels in the training set for source, is often much larger
than DL

T , which is the number of training labels for the target dataset. Consider
the case where DL

S = 1000, while DL
T = 50 are used for training a model. Then

if this is blindly used for training, the source could in worst case swamp the
target dataset [18]. A solution could be to reduce the datasets for source to get a
balanced dataset, but it is not always the case to just discard 950 samples due to
data scarcity. This limitation can be addressed by applying instance weights to
the training data. The instance weights should be different, with a lower instance
weight to t ∈ DL

S and a higher weight to t ∈ DL
T .

2.5.2 Negative transfer

An important issue to be aware of with transfer learning is negative transfer.
This happens when the transferred knowledge from the source domain lead to
a negative effect of learning for the target domain, also a reduced performance.
This mostly occurs when the source domain and target domain are dissimilar [9].
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Chapter 3
Related Work

Entity matching (EM) has received much attention since Dunn introduced record
linkage in 1946 [1]. Today, it is still a challenge in data management. As a con-
sequence, a lot of studies has been done on the topic. Since, the main topic for
this thesis are on transfer learning, handcrafted features and transformer-based
language models, the three topics will be the focus for the related work in the
field of EM.

Few books have been published on this topic to provide an overview. Chris-
ten [1] covers the data matching process in depth and is a comprehensive source
for EM. Newcombe et al. [19] developed Probabilistic methods and looked at EM
from a statistical perspective. The blocking process, a sub-task in EM, has been
studied by Papadakis et al. [10], Christen [1], Ebraheem et al. [20] and Konda
et al. [4]. The goal of the studies are to reduce the computational complexity for
blocking.

EM systems

The focus in EM has mainly been on developing matching algorithms. However,
some believe that it is important to look at the whole pipeline in EM to advance
in the field [4].

Konda et al. [4] did an extensive research and developed an EM system that cov-
ers the whole EM pipeline called Magellan. The system includes several blocking
techniques and traditional machine learning methods for matching. Magellan has
achieved state-of-the-art (SOTA) results on structured data. The disadvantage
with Magellan is the weak performance on dirty data and text-heavy data.

In recent years, several studies have focused on deep learning methods. Mud-
gal et al. [14] developed DeepMatcher. The DeepMatcher system uses a RNN
architecture for the matching task and compares different methods of attribute
representations from word embeddings. The Hybrid model based on bidirec-
tional RNN and decomposable attention achieved the overall strongest perfor-
mance. Mudgal et al. concluded that DeepMatcher is competitive with Magellan
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on structured data, but Magellan is outperformed by the deep learning models on
textual and dirty data. The disadvantage for DeepMatcher is the long training
time for DL models compared to traditional models.

Following DeepMatcher, Ebraheem et al. [20] presented DeepER that uses DL
methods both for blocking and matching. DeepER are based upon uni- and bi-
directional RNN in combination with LSTM. Also, DeepER outperforms Magel-
lan on some of the datasets.

Transformer-based language models

Two studies have examined pre-trained transformer language models (LM) for
EM. Li et al. [3] presented a novel EM system called Ditto. They define the
EM problem as a sequence-pair classification task and experiments with four pre-
trained LMs, BERT, RoBERTa, DistilBERT and XLNet. Although, they do not
test the LMs in a low-resource setting, as will be tested in this thesis, the LMs
achieve SOTA results with only half of the data. To improve the F1-score of Ditto
and to reduce the size of required labeled data, they presents three optimization
techniques; data augmentation, injecting domain knowledge and summarization
of long strings.

Data augmentation are used to add training data by applying an operator (del,
shuffle, swap) to a span of tokens, to the attributes or to the entries. The second
optimization technique, inject domain knowledge into Ditto to emphasize the po-
tentially important part of the input. This is based on the intuition of humans
that match the data, which often look at key details in the records before making
a decision of match/non-match. The injected domain knowledge is span types
e.g. street number, product IDs, publisher etc or span normalization by rewrit-
ing spans in a string to be syntactically equal. The experiments showed a small
improvement with a F1-score up to 0.74% on four of the dataset. To summarize
long textual values, Ditto use TF-IDF to only remove stopwords an not relevant
information in the entities. The results in F1-score for Ditto improved from 41%
to over 93% for a specific text-heavy dataset.

The results for Ditto shows that it achieves SOTA results and outperforms Deep-
Macther with an average F1-score up to 31%.

The other study by Brunner and Stockinger [2] analyze the same four language
models BERT, RoBERTa, DistilBERT and XLNet for the matching task. In
comparison to Ditto, Brunner and Stockinger focus on dirty and textual data.
The main findings for Brunner and Stockinger are that transformers improve the
score for challenging data up to 35.9% in F1-score compared to classical deep
learning models. The transformers can also be used out-of-the-box for EM and
still improve the performance on small clean datasets.

In both Brunner and Stockinger and Li et al., RoBERTa achieved the overall
best score of the four transformer-based language models evaluated.
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Pre-trained language models, such as BERT has also been applied to a special-
ized EM problem, namely product matching in e-commerce. A study by Peeters
et al. [21] showed that BERT are able to achieve a strong performance with a
F1-score above 90% for unseen product data without fine-tuning it on product-
specific data. This is promising results for language models in the domain of
entity matching.

Transfer learning

So far only studies which look at model optimization has been mentioned. How-
ever several studies have also looked at other techniques in combination with the
matching models. Thirumuruganathan et al. [18] examined transfer learning (TL)
for EM. Similar to this thesis, transfer learning was used from a high resource
setting to a low resource setting. However, as TL is used with transformer-based
LM, Thirumuruganathan et al. used TL with traditional machine learning algo-
rithms. The authors transferred both features and training data, and concluded
that transfer learning for entity matching are feasible and effective.

A disadvantage with TL is that the source dataset and the target dataset may
have different schema, which can influence the transfer of knowledge from the
source to target. Thirumuruganathan et al. [18] solves this by encode the tuples
into a standard feature space of dimension d. To do this they use distributed
word representations such as FastText.

Another study for TL with EM has been conducted by Kasai et al. [15]. They
developed deep learning models for EM through a novel combination of TL and
active learning. Similar to Thirumuruganathan et al. [18] and this work, it was
tested in a low resource setting.

Transfer learning was first used in a setting with a significant amount of la-
beled data. A transferable model are pre-trained on multiple datasets to a target
setting where the transferable model are fine-tuned with active learning. Transfer
learning followed by active learning with deep learning models achieved strong
performance with limited data. Transfer learning in isolation resulted in an un-
reliable and unstable EM solution.

Zhao and He [22] use transfer learning with a pre-trained language model. They
propose an end-to-end entity matching (EM) system called HI-EM. Unlike this
thesis which pre-train on EM bechmark datasets, the model proposed by the
aforementioned authors leverage pre-trained EM models from large-scale knowl-
edge base (KB) data. This system was motivated by real-world application for en-
terprises that wants to match their customers. HI-EM suggests that pre-training
a model makes it effective for EM and outperforms existing solutions.

While there has been several work on transfer learning with EM, there has not
yet been made a publicly pre-trained LM specialized for EM.
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Handcrafted features

Magellan has achieved strong performance on structured data with string simi-
larity metrics. With the rise of NLP, word embeddings have become a beneficial
technique for deep learning models. However, for values without any semantic
meaning, such as numerical values, word embeddings do not provide an accu-
rate result. Chen et al. [23] proposes a hybrid similarity model that combine
word-embeddings with handpicked string similarity metrics for classical machine
learning models. The string metrics are based on the attribute values. The hy-
brid method was evaluated on 3 different datasets with the models; XGBoost,
random forest (RF) and KNN. The result shows that the proposed hybrid method
achieved the highest score on 1/3 datasets for 2/3 models by up to 10% in F1-
score.

The downside with this method is that it requires domain knowledge about the
data to manually choose appropriate string metrics.

Although string metrics combined with word embeddings did not have the overall
best performance, string metrics alone have given comparative results and per-
form well with limited data [4]. The strengths of string metrics have not yet been
tested with pre-trained language models in a low resource setting. This will be
analyzed in this thesis.

Other techniques

Active learning (AL) has become a popular technique for EM. Active learning is
a machine learning technique were a user can interactively label a proposed query
by the model. Meduri et al. [24], Doan et al. [25], Kasai et al. [15] have evaluated
different AL strategies to utilize traditional machine learning algorithms and deep
learning models for EM. The studies have achieved promising results for EM with
limited labeled data.

Motivation

To summarize, the aforementioned traditional machine learning models and deep
learning models have achieved state-of-the-art results in EM. However, there are
some limitations to the models. Magellan, which are based on traditional machine
learning models show weak performance on textual and dirty data. This has been
(to a degree) solved by deep learning models such as Ditto and DeepMatcher,
but the challenge with DL models is the need for a sufficient amount of data
to achieve SOTA results. The labeling process to obtain a sufficient amount
of training data can be time-consuming and expensive for industrial companies,
and a domain expert is often needed due to domain specific names in the data.
Transfer learning as used by [18] and [15] has given good result for EM in a
low resource setting. Transfer learning are therefore used with transformer-based
LMs to developed a model more specialized for EM that can be used in a setting
with low resources. As aforementioned, also string metrics in combination with
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pre-trained transformer-based language models will be tested in a low resource
setting.
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Chapter 4
Data

In entity matching (EM), several benchmark datasets have been generated by
crawling HTML pages from various websites. These has been pre-processed and
are used to evaluate different methods for EM. This chapter gives an overview of
the public datasets used. First, the datasets are introduced. Then, the various
characteristics for the data is discussed. Finally, the taxonomy of the data is
presented.

4.1 The public datasets

The data used in this thesis are the Magellan datasets. They are obtained and
downloaded as CSV-files from the DeepMatcher repository1. The data have been
created by students at UW-Madison by crawling HTML sites from two websites
from various domains such as software, citations and restaurants [26]. The data
have then been pre-processed and blocked. Since the dataset are already blocked,
this thesis does not need to focus on the blocking stage. The blocked data has
been split into a train set, validation set and a test set with ratio 3:1:1. The fixed
split on the datasets makes it easier to compare the results on the data across
different studies who have used the same split.

The datasets presented in Table 4.1 are distributed into the five datasets; record
A, record B, train, validation and test. Record A and record B contain the at-
tribute names and values. Train, validation and test contain ltable id, the id for
a record from record A, rtable id the id for the record from record B and label
which takes the value 1 and 0 corresponding to match or non-match.

The 12 datasets used for the experimental study are summarized in Table 4.1.
The data have varied sizes from 450 to 28,707, origins from different domains and
have different amount of attributes.

1https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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Table 4.1: The 12 public datasets used for the experimental study.

Type Dataset Domain Size True matches Attributes

Structured

BeerAdvo-RateBeer beer 450 68 4
iTunes-Amazon music 539 132 8
Fodors-Zagats restaurant 946 110 6
Walmart-Amazon electronics 10,242 962 5
Amazon-Google software 11,460 1,167 3
DBLP-ACM citation 12,363 2,220 4
DBLP-Scholar citation 28,707 5,347 4

Textual Abt-Buy product 9,575 1,028 3

Dirty

iTunes-Amazon music 539 132 8
Walmart-Amazon electronics 10,242 962 5
DBLP-ACM citation 12,363 2,220 4
DBLP-Scholar citation 28,707 5,347 4

4.2 Dataset characteristics

This section presents the data characteristics that can influence the performance
of the classification.

4.2.1 The three datatypes

The aforementioned datasets have been categorized into structured, textual and
dirty based on the structure of the attribute and the attribute values. These
three types are described below.

Structured EM A dataset is classified as structured when: Record A and
Record B follow the same schema with the attributes A1, A2, .., An. Ev-
ery attribute value contains information associated with the attribute name
and are cleaned values [27]. The attribute can contain text-based attributes
such as product names, but the length is restricted. An example of this can
be found in Table 4.2.

Textual EM The attribute values for Record A and Record B contain long
textual values, such as product information or long descriptions. Table 4.3
shows textual data.

Dirty EM Record A and Record B follow the same schema. However, the at-
tribute values do not necessarily respond to the corresponding attribute
name. The dirty datasets have been made by modifying the corresponding
structured datasets. Attributes values are randomly moved into another at-
tribute. This is to simulate dirty datasets that can occur in the real world,
with missing values and were the attributes values have been shuffled. An
example of dirty attributes are shown in Table 4.4.
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Table 4.2: Structured

Song Name Artist Name Released

Lips are Movin Meghan Trainor 3:01,9-Jan-15

(a) Record A

Song Name Artist Name Released

Lips are Movin Meghan Trainor 3:01,9-Jan-15

(b) Record B

Table 4.3: Textual

description

speck toughskin black case for 4th generation
ipod nano nn4tsblk tough custom-fit protec-
tive case durable shock-absorbing material de-
tachable rotating belt clip openings to all con-
nections and controls black finish

(a) Record A

description

4g nano toughskin black nn4-ts-blk

(b) Record B

Table 4.4: Dirty

Title Brand Price

Macbook Pro 4th gen-
eration Apple

199.99

(a) Record A

Title Brand Price

MacBook Pro 4th gen-
eration

Apple 199.99

(b) Record B

4.2.2 Profiling dimensions

The structuredness and the textuality of the datasets are not always enough to
understand the difficulties in some of the datasets for EM [27]. To understand
the challenges, consider the case where the textual similarity for true matches is
low, but the semantic similarity is close. For Magellan, which is heavily string
based this can be hard to capture. This is because the string metrics typically
look at the syntactic similarity. Therefore, when the records are only semantically
close, the results of the metrics can be negatively affected, since the metrics do
not capture that behaviour as seen in Table 4.5. Further, the result of matching
strings can also differ since only some metrics have been developed to capture
eg. OCR errors, misspellings and long textual values [13]. To better under-
stand the aforementioned problem and the specific data difficulties which may
affect the matching, Primpeli and Bizer [27] did an extensive profiling on some
of the benchmark datasets and proposed several profiling dimension. The most
important dimensions for this thesis are described below.

Textuality The textual values contain long sequences of words [27]. This can be
long descriptions or product titles that may have been divided into multiple
attributes or reside in one attribute.

Corner cases Corner cases describe the case where non-matching pairs have a
high textual similarity, while the textual similarity for true matches is low
[27].

Small sets Small datasets in this case respond to datasets with a size less than
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1000. A challenge with small datasets is that it can lead to the models
overfitting more easily.

Dense vs sparse data Sparsity is the amount of missing values in a datasets.
It is calculated by counting the occurrence of missing values in the dataset.
Missing values can be a challenge for some supervised machine learning
algorithm, and alter their ability to make correctly predictions [27]. Dense
data contain few missing values.

Table 4.5: Examples of corner cases and textual attribute values for two matches
and a non-match. Even though it can be easier for a human eye to match these
records, the Jaccard score of true matches is only 0.52 and 0.16.

Dataset Record A Record B Jaccard
score

Match/no-
match

Amazon-
Google

motu digital performer 5 digital
audio software competitive up-
grade ( mac only )

motu
digital
performer
dp5 soft-
ware music
production
software

0.52 match

Amazon-
Google

norton antivirus 2007 ca antivirus
2007

0.5 non-match

Abt-Buy whirlpool duet wfw9200sq white
front load washer wfw9200swh
4.0 cu . ft. capacity 6th sense
technology quiet wash plus noise
reduction built-in water heater
add-a-garment feature sanitary
cycle 4 temperature selections
white finish

whirlpool
27 ’ duet
washer
horiz axis
wp

0.16 match

4.2.3 Imbalanced datasets

Matching two databases with n = 1000 records each, would lead to n×n = 1 000
000 tuple comparisons. Since only one record from one database matches to ex-
actly one in the other, the majority of the tuple pairs are clearly not matches. To
reduce the amount of tuple pair comparisons and the complexity of the matching,
blocking has been introduced as described in chapter 2. The aim of the blocking
technique is to reduce the size of non-matches, but keep as many true matches as
possible. The challenge with blocking is to not have a too strict blocking criteria
where true matches also gets filtered out. A solution to this challenge is to have
a less strict blocking criteria, where a larger size of non-matches is accepted in
the candidate set.
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This results in skewed datasets in entity matching as seen in Figure 4.1. When
evaluating the models it is important to choose evaluation metrics that captures
the imbalance of matches/non-matches.

Figure 4.1: The distribution of true matches and non-matches for the train sets.
The amount of true matches is much lower than the number of non-matches. S
refers to structured, D refers to dirty and T to textual. The same patterns is
present in the validation and test set.

4.3 Taxonomy

The twelve datasets can be divided into three different groups based on the afore-
mentioned dimensions as presented in Table 4.6. In addition, three datasets are
also categorized as challenging datasets. This is due to longer textual values, a
larger amount of missing values and many corner cases.
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Table 4.6: The dataset are divided into three different groups based on its charac-
teristics. Three datasets are also categorized as challenging due to longer textual
values, missing values and corner cases.

Group Dataset

Small, dense data
Beer
iTunes-Amazon
Fodors-Zagats

Textual, few corner cases
DBLP-ACM
DBLP-Scholar
Walmart-Amazon (challenging)

Textual, many corner cases
Amazon-Google (challenging)
Abt-Buy (challenging)
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Method

Whereas the previous chapters have focused on background and theory, this chap-
ter will go through the four different models and how experiments were ran on
them. First, a summary of the tools and libraries used followed by the experi-
mental setup. Then the implementation of the four models and the evaluation
metrics are discussed.

5.1 Tools and libraries

The Python programming language has been used to implement the experiments.
The major frameworks used are:

Pandas Provides efficient data structures and data analysis tools
in the form of DataFrames. 1

scikit-learn Provide data analysis tools and several classification
and clustering algorithms.2

PyTorch Open-source machine learning framework which pro-
vides tools and algorithms for deep learning. Com-
monly used in NLP and image recognition.3

py stringmatching Provides string similarity and tokenizer tools.4

py entitymatching Provides algorithms for supervised-learning based en-
tity matching.5

Transformers NLP add-on for PyTorch by Huggingface. The library
contains multiple NLP models, such as RoBERTa.6

1https://pandas.pydata.org/pandas-docs/stable/index.html
2https://scikit-learn.org/stable/
3https://pytorch.org/
4https://github.com/anhaidgroup/py stringmatching
5https://github.com/anhaidgroup/py entitymatching
6https://huggingface.co/
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5.2 Experimental Setup

This section provides the experimental setup. The experiments were run 3 and 5
times to validate the results obtained.

5.2.1 Hardware

When training deep learning models one are often dependent on sufficient and
efficient computational resources. The transformer-based models have been per-
formed on the IDUN computing cluster at NTNU [5]. They provide a a high-
availability compute resources with multiple GPUs and CPUs for research con-
ducted at NTNU. The less crowded NVIDIA Tesla P100 GPU with 16 GB mem-
ory on an Intel Xeon CPU with 24 cores was used.

5.2.2 Dataset

The twelve datasets presented in chapter 4 have been used to evaluate the four
models. The datasets origins from various domains and represents different types
of data i.e. structured, textual and dirty. Since, the models are tested on different
types of data the wide applicability of the models are tested.

The models were trained on varied sizes from the training datasets, in order
to examine the performance of the models in a low resource setting.

5.2.3 Hyperparameters

The transformer models were trained with either 3 or 5 epochs. The number
of epochs was based on the experiments conducted by Brunner and Stockinger
[2] which showed that the transformer models mostly converges after 3-5 epochs.
The default value was 3, but for the more challenging datasets it was increased
to 5. However, from the experiments the models was not always able to learn
anything with few samples and resulted in a F1-score of 0%.

The batch sizes used was 8, 16 and 32 due to the varied sizes of training samples.
After a small empirically study a batch size of 8 was used up to 200 samples, 16
up to 1000 samples and 32 with sample sizes larger than 1000. For simplicity the
batch sizes was not individually tuned to the different datasets.

The Adam optimizer was used with a linear learning rate of 3e-5 [3]. The other
hyperparameters were left to their default value.

5.3 The four models

To answer the research questions stated in chapter 1, three experiments were
conducted based on four different models. The models, with their names, is
presented in the list below.
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• Magellan Baseline model based on Magellan using Random Forest.

• RoBERTa model The model is based on the transformer-based language
model RoBERTa published by Liu et al. [16].

• Transfer learning model This model combines the RoBERTa model with
transfer learning by further pre-train the model on entity matching datasets.

• Hybrid model The RoBERTa model combined with handcrafted features.

The following subsections give an overview of each model.

5.3.1 Baseline model with Magellan

The py entitymatching package provides an implementation of Magellan, and this
has been adapted to create baseline models. The package offers several traditional
machine learning algorithms, string similarity metrics and tokenizers to be used
in the Magellan matching process. Magellan is used as the baseline since it has
achieved state-of-the-art results for structured and semi-structured data in entity
matching and are based on supervised traditional machine learning.

In the baseline models created, Random Forest was chosen as the classifier for
Magellan. Random Forest was selected because it gave the best results. The
hyperparameters were left to their default values.

Magellan was chosen as the baseline as it has achieved state-of-the-art results
on structured datasets. Also, on these types of datasets Magellan still outper-
forms some DL models, such as the one provided by DeepMatcher and DeepER
as mentioned in chapter 3. Magellan is easy to use as it provides tools and li-
braries for the whole EM pipeline from data pre-processing to the matching task.
Further, Magellan is a popular baseline in EM and has been used as a baseline by
Li et al. [3], Brunner and Stockinger [2], Mudgal et al. [14], Thirumuruganathan
et al. [18] to mention a few.

Feature generation

Magellan models require features to be made explicitly in the input. The auto-
matic feature generation provided by Magellan was used to obtain the features
from the public datasets. As described in chapter 2, the various similarity mea-
sures use different tokenizers. The features used and the corresponding tokenizer
are shown in Table 5.1.

In Magellan, the corresponding attributes from the two records are compared.
This means that author are matched against author, title against title, and so
on. This is problematic for the dirty datasets, which can contain missing val-
ues, because the aforementioned classifier and features do not work with missing
values. The missing values were imputed by setting the attribute value to zero.
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Table 5.1: The five feature generators and the corresponding tokenizer used in
the Magellan-based baselines.

Type Feature Tokenizer

Sequence based
Levenshtein similarity none
Jaro-Winkler none

Set-based Dice q-grams

Hybrid
Generalized Jaccard q-gram
Monge-Elkan whitespace

5.3.2 RoBERTa

The RoBERTa language model has been thoroughly examined in the previ-
ous chapters, and it was stated that it achieved the overall best results of the
transformer-based language models in experiments conducted by Brunner and
Stockinger [2] and Li et al. [3]. Consequently, RoBERTa has been selected as the
transformer classifier. The language models is present in the Python transformer
library provided by Huggingface. The steps described in this section are based
on Ditto developed by Li et al. [3].

RoBERTa has been pre-trained on a large corpus of English words using masked
language modeling (MLM) as described in chapter 2 [16]. The RoBERTa model
can then be fine-tuned with task-specific datasets. In this case, the language
model is fine-tuned for the EM task using the labeled training data consisting of
known true matches and non-matches.

Serializing the candidate pairs

The transformer-based language models require the input to be a tokenized se-
quence. Therefore, for the candidate pairs to be meaningful for the model, they
are converted into tokens and embedded. Recall that each record pair consists of
entities from record a and record b, so to preserve the information in the entities,
two special tokens [COL] and [VAL] are added to each entity as presented in
Ditto by Li et al. [3]. Each data entry e is serialized as follows:

e = {(attri, vali)}1≤i≤k, (5.1)

serialize(e) ::= [COL]attr1[VAL]val1...[COL]attrk[VAL]valk, (5.2)

where [COL] indicates the start of an attribute name and [VAL] indicates the
start of an attribute value. The candidate pairs e and e′ are then serialized with
[CLS] and [SEP] as described in chapter 2.

serialize(e, e′) ::== [COL]serialize(e)[SEP]serialize(e′)[SEP]. (5.3)
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Each token is added with a positional embedding and a segment embedding. The
embeddings are serialized into one sequence and fed into the model as input.
Figure 5.1 show how the entities are fed into the network.

Fine-tune RoBERTa for entity matching

Whereas the theory section only discussed RoBERTa architecture from a general
point of view, the following will explain how RoBERTa was fine-tuned to fit the
entity matching tasks as done by Li et al. [3] in Ditto.

On top of the pre-trained LM two new uninitialised layers are added. The two
task-specific layers are a linear layer and a softmax output layer used for classi-
fication as shown in chapter 2 and presented by Li et al. [3].

The pre-trained RoBERTa model are fine-tuned with task-specific training data
for EM. The RoBERTa model train on the training set for the data presented in
chapter 4. The result is a pre-trained model fine-tuned for the EM task [3]. The
output of the model is either a match or a non-match.

Figure 5.1: The model architecture used for entity matching with pre-trained
transformer-based language models (LM) (e.g. BERT, RoBERTa). Source [3].

5.3.3 RoBERTa with transfer learning

Transfer learning (TL) has already been applied to RoBERTa by it being pre-
trained on English text. The limitation of RoBERTa is that it need a sufficient
amount of data to perform well. Two studies conducted by Thirumuruganathan
et al. [18] and Kasai et al. [15] have used TL with deep learning models and
traditional machine learning models. The use of TL showed performance im-
provement and a need for less training data. The third model, the Transfer
learning model, utilizes the strengths of TL with RoBERTa, by further pre-train
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it on EM datasets. The motivation behind the model is to develop a pre-trained
transformer-based language model specialized for EM.

The development of the Transfer learning model was done through the follow-
ing steps:

1. The 12 EM datasets presented in chapter 4, except for a target dataset, are
concatenated into one big dataset, the source dataset. The EM datasets
pooled together have already been pre-processed and are candidate datasets
containing known true matches and non-matches. These source datasets are
used to pre-train the RoBERTa model.

2. The RoBERTa model are trained on the source datasets. In each epoch,
the model is trained on a subset of each dataset individually.

3. The pre-trained RoBERTa model are fine-tuned on a target dataset.

Figure 5.2: The pipeline for the Transfer learning model. First, N datasets are
concatenated. Then the RoBERTa model train on the concatenated datasets,
source datasets. The pre-trained RoBERTa model are then fine-tuned on a target
dataset. The output is either a match or a non-match.

TL with different EM scenarios

The Transfer learning model developed are used for three different scenarios in
EM based on the available training data in source and target.

Adequate, nothing In TL this is called unsupervised domain adaption, and can
be looked at as an extreme situation. The training set, DL

T , for the target
domain do not have any training data available, DL

T = 0. The training
dataset, DL

S for source contains an adequate amount of labeled data.
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Adequate, limited The target datasets has a limited amount of training data,
while the training set for source has an adequate amount. This scenario is
called supervised domain adaption in TL.

Adequate, adequate Both DL
T and DL

S contain an adequate amount of training
data.

5.3.4 RoBERTa with handcrafted features - hybrid

The fourth model named the Hybrid model combines the RoBERTa model (with-
out transfer learning on the EM datasets) with handcrafted features. Magellan
has shown strong performance on structured data compared to deep learning
models [14]. Further, Magellan which uses traditionally machine learning meth-
ods need less data [4]. The idea behind this model is to evaluate if a transformer-
based LM in combination with string metrics is able to improve the performance
for EM in a low resource setting.

Feature generation for the hybrid model

The same tokenizers and five string metrics as presented in Table 5.1 are also
used for this model to generate features. In comparison to Magellan, which com-
pares attribute to attribute, this model treated the entire tuple as a single text
string, and therefore ignored the attribute boundaries. This is mostly due to the
dirty datasets where the attribute values are not in their correct cells, but instead
swapped into other attributes.

The features where implemented through the py stringmatching package. The
similarity features were concatenated with the embeddings from RoBERTa, and
injected into the network in the classification layer.

5.4 Evaluation of the models

Evaluation metrics are used to evaluate the performance of the different mod-
els. A challenge in EM, is that the datasets are often imbalanced, meaning
that the distribution of true matches are often smaller compared to the size of
non-matches. In order to evaluate the matching models, it is important to use
evaluation metrics which captures this behaviour [1]. Natural choices for eval-
uation metrics are therefore precision, recall and F1-score. These are described
below.

In EM, predictions can be divided into the categories (also known as a confu-
sion matrix ) seen in Figure 5.3.
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Figure 5.3: Confusion matrix illustrating the four outcomes of a classification
algorithm for matching. The goal of the matcher is to maximize the true matches
and minimize false positives and false negatives. Source: [1].

5.4.1 Precision

Precision is the amount of correctly predicted true matches out of all the predicted
record pairs. It measure the exactness of the classifier. Precision is calculated as

precision =
tp

tp+ fp
, (5.4)

where tp is true positives and fp is false positives. Precision does not include
true negatives. Due to this, precision is robust against class imbalance and is a
good metric for entity matching.

5.4.2 Recall

Recall is the amount of correctly predicted matches from the whole set of actual
true matches. It measures the classifiers completeness and is computed as

recall =
tp

tp+ fn
. (5.5)

Similar to precision, recall does not include true negatives and therefore does not
suffer from imbalanced data [1].

5.4.3 F1-score

In entity matching, when evaluating the matching one often ideally wish to have
a high precision and a high recall. As an example, out of all the predicted records
pairs, you want to be sure that a record pair is correctly predicted (precision),
and captures as many true matches as possible (recall). The F1-score manages
this trade-of.

F1-score combines precision and recall, and is the harmonic mean between the
two. It is calculated as

F1 = 2× precision× recall

precision + recall
. (5.6)
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A high F1-score indicates both a high precision and a high recall. F1-score is
the main metric used to evaluate the aforementioned four models.
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Chapter 6
Results

This chapter presents the results from the conducted experiments, described in
chapter 5, on the different datasets presented in chapter 4. The presentation of
the results is organized in groups, because there is a natural group in the data
and it makes it easier to compare across the groups. In Section 6.1, the similar
datasets are presented first, followed by the challenging datasets, and the small
datasets presented at last.

Then, section 6.2, contains a table expressing the standard deviation and the av-
erage F1-score for each model, dataset and sample size. The last section present
the run time for each model on every dataset.

6.1 Result for the datasets

For each group/subsection below, the results are presented in the form of plots of
each model on each dataset for an increasing sample size. The F1-score displayed
is the average of the 3 or 5 runs for each model.

6.1.1 Textual data, few corner cases

Figure 6.1 shows the average F1-score for DBLP-ACM and DBLP-Scholar. Both
datasets contain textual data with few corner cases. Another similarity between
the two, is that both origin from DBLP (computer science bibliography).

Magellan, the baseline, gives competitive results to Hybrid and RoBERTa on
the structured datasets. On DBLP-ACM, it achieves almost 98% in F1-score,
and on DBLP-Scholar slightly over 90%. On the dirty datasets, Magellan is out-
performed by the three transformer-based LMs by approximately 10-15%.

The Transfer learning model obtains a high starting point on all datasets. With
zero training examples it achieves up to 96% in F1-score. In comparison, RoBERTa
and the Hybrid model need 600-1000 samples before obtaining the same score.
However, the advantage with to the Transfer learning model decreases with in-
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creasing training examples, as it is caught up by RoBERTa and Hybrid.

In the plots for RoBERTa in Figure 6.1a, Figure 6.1b and Figure 6.1c, the score
fluctuates with different sample sizes. For instance, the score for Structured
DBLP-ACM drops from 96% with 400 samples to approximately 93% with 600
samples. The same effect is also present for Dirty DBLP-ACM and Structured
DBLP-Scholar.

In all the cases, the pattern is that the transformer based models converges to
the same F1-score.

0 200 400 600 800 1000
# samples

90

92

94

96

98

100

F1
-s

co
re

 (%
)

RoBERTa
Transfer learning
Hybrid
Magellan

(a) Structured DBLP-ACM

0 200 400 600 800 1000
# samples

80

85

90

95

100

F1
-s

co
re

 (%
)

RoBERTa
Transfer learning
Hybrid
Magellan

(b) Dirty DBLP-ACM

0 200 400 600 800 1000
# samples

82

84

86

88

90

92

94

96

98

100

F1
-s

co
re

 (%
)

RoBERTa
Transfer learning
Hybrid
Magellan

(c) Structured DBLP-Scholar
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Figure 6.1: The reported average F1-score for the 3 or 5 runs for RoBERTa,
Hybrid, Transfer learning and Magellan on DBLP-ACM and DBLP-Scholar. The
main observations from the plots are the high starting points fro Transfer learning
and the weak performance of Magellan on the two dirty datasets.

6.1.2 Textual data, many corner cases (challenging datasets)

Figure 6.2 shows the results with respect to F1-score for Walmart-Amazon, Amazon-
Google and Abt-Buy. The datasets presented contain textual values and/or
many corner cases, and are for this reason considered challenging. The Walmart-
Amazon dataset is also challenging due to textuality as discussed in chapter 4. As
shown in Figure 6.2, the transformer-based LMs need more than 1000 samples
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before the F1-score converges. The plots for the datasets with less than 1000
samples are found in Appendix A.

In Figure 6.2, it is evident that Magellan has a weak performance on the challeng-
ing datasets. The difference between Magellan and the transformer-based LMs is
on average 20%. On Dirty Walmart-Amazon the difference is up to 40% in F1-
score. Moreover, Magellan need less data than Hybrid and RoBERTa before it
converges. For the majority of sample sizes less than 1000, Magellan outperforms
both Hybrid and RoBERTa.
The Transfer learning model achieves strong performance on all datasets, and
achieves a score above 58% for every dataset even with zero samples. After 1000
samples the Transfer learning model are caught up by Hybrid and RoBERTa.
However, for Structured Walmart-Amazon, RoBERTa and the Hybrid model need
more than 5000 samples to catch up with the Transfer learning model.

The difference in score for RoBERTa and the Hybrid model is small. Both fol-
lows each other after given sufficient data of around 1000 samples. The benefit
of the Hybrid model in comparison to RoBERTa is that it have a tendency to
need less samples to get to the score plateau. The Hybrid model achieves a score
above 70% with approximately 400 samples, while RoBERTa needs more than
1000 samples to achieve the same on Abt-Buy.

6.1.3 Small datasets

Figure 6.3 shows the results with respect to the average F1-score for Magellan,
RoBERTa, Hybrid and Transfer learning for the small datasets.

From Figure 6.3, observation shows that Magellan is outperformed on 4/4 datasets.
The margin between Magellan and the three transformer-based LMs is up to an
average of 40 % on Dirty iTunes-Amazon. On the structured datasets, the margin
is much smaller.

The Transfer learning model achieves a high score (> 80%) with zero samples
on all datasets. The plots for Structured Beer, as shown in Figure 6.3c show that
the F1-score drops from approximately 94% to 85% with 100 samples. For the
other datasets, the score for the Transfer learning model is increasing monoton-
ically. Compared to the other models, Transfer learning is the only model that
does not achieve a score of 100% for Fodors-Zagats.

Overall, the RoBERTa model and the Hybrid model need more samples than
Transfer learning and Magellan to achieve the same score as the two aforemen-
tioned models. For iTunes-Amazon, RoBERTa and the Hybrid model have a
similar performance.

To summarize the performance for the four models on small datasets, one can
observe that Transfer learning achieves the highest performance on low resources,
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(c) Structured Amazon-Google
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Figure 6.2: The average F1-score for the 3 or 5 runs achieved by the four models
(RoBERTa, Transfer learning, Hybrid and Magellan) on the challenging datasets
(textual values and corner cases). RoBERTa and Hybrid need a sufficient amount
of data before they converges. Magellan shows weak performance on all four
datasets, but outperform RoBERTa and Hybrid with limited data.

however after 100 samples RoBERTa and Hybrid have the same or a better perfor-
mance than the Transfer learning model. Magellan is the model with the weakest
performance.
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Figure 6.3: The average F1-score of the 3 or 5 runs for the four models for the
small public datasets (all with less than 1000 training samples).

6.2 Variance

Table 6.1 and Table 6.2 show the average F1-score on the 3 or 5 runs, and the
standard deviation for the 12 datasets.

Table 6.1 presents the variance and the average F1-score for the small datasets.
As mentioned, the main advantage of the Transfer learning model is the high
score with few samples, with zero and 50 samples where it achieves a strong per-
formance above 80% in F1-score. The variance for the Transfer learning model
is overall less than the variance for RoBERTa and Hybrid. However, for Dirty
iTunes-Amazon the variance is up to almost 7%. A trend for RoBERTa and Hy-
brid, it that the variance decreases with more samples. However, for the Transfer
learning model the variance is constant or increasing, except for Dirty iTunes-
Amazon.

The variance for the RoBERTa model is decreasing with an increase in sam-
ples. As an example, the variance for Structured iTunes-Amazon is 2.44% for 100
samples, and 0.11% for all (321) samples. The same trend is also applicable to the
Hybrid model. For RoBERTa and the Hybrid model two values stand out with
100 samples, 36.73% for Hybrid on Structured Beer and 42.43% for RoBERTa on
Structured Fodors-Zagats.
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Table 6.2 shows the average F1-score and the standard deviation for the remain-
ing datasets.

In Table 6.2 the variance for the Hybrid model is up to 55% with 50 samples
for all dataset. In comparison, the variance for Transfer leaning is only below
2-3%, except for Dirty DBLP-Scholar where it is 14%.

Overall, the variance decreases drastically with more training data. For Amazon-
Google the variance is as high as 24.4% with 400 samples, whereas with all the
available training data (∼ 6000) the variance is only 0.14%. In comparison, the
variance for Transfer learning is nearly constant. Another observation is the sig-
nificant gap for the challenging datasets. As an example, for Amazon-Google the
gap is 11% between 1000 samples and all samples when only considering the F1-
score. The improvement for the DBLP-ACM and DBLP-Scholar is smaller. The
difference for Structured DBLP-ACM is significantly small, 2%, with all samples
(∼ 7000) used, compared to 1000 samples used.

6.3 Training time

This section presents the training time for the transformer-based LM for each
sample size. The training time could have been affected by the load on IDUN, so
it is important to keep this is mind. The training time for zero samples for the
Transfer learning model represent the time usage to pre-train the model on EM
datasets.

From Table 6.3 it is observed that the Transfer learning model overall has the
shortest training time. However, for Structured Fodors-Zagats and Dirty DBLP-
Scholar it is notably high. Additionally, Transfer learning model has the highest
increase in time from 1000 sample to all samples.

When comparing Hybrid and RoBERTa, the Hybrid model are 20-40 seconds
slower than RoBERTa. The difference in time between the two models increases
with larger sample sizes.
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CHAPTER 6. RESULTS

Table 6.3: The training time (seconds) for each sample size for the models;
RoBERTa, Transfer learning and Hybrid.

Dataset Algorithm Time/sample size [s]

0 50 100 200 400 600 800 1000 All

Structured
DBLP-
Scholar

RoBERTa 0 6 7 17 31 45 88 97 386
Transfer learning 3461 2 5 10 22 32 40 53 681
Hybrid 0 25 27 36 51 65 83 97 1215

Structured
Amazon-
Google

RoBERTa 0 5 7 10 20 33 45 54 178
Transfer learning 3980 1 3 7 13 20 27 33 233
Hybrid 0 24 28 38 59 51 65 76 310

Structured
DBLP-
ACM

RoBERTa 0 0 10 19 40 50 67 81 378
Transfer learning 3479 2 5 12 26 39 52 66 380
Hybrid 0 30 33 42 64 85 104 124 670

Structured
Walmart-
Amazon

RoBERTa 0 6 9 15 30 47 65 56 254
Transfer learning 4101 3 6 11 23 34 46 58 271
Hybrid 0 27 31 44 68 79 102 122 439

Structured
Beer

RoBERTa 0 7 10 21 12
Transfer learning 4382 2 4 8 8
Hybrid 0 37 45 65 54

Structured
iTunes-
Amazon

RoBERTa 0 9 144 28 23
Transfer learning 4228 6 11 22 27
Hybrid 0 28 33 48 74

Structured
Fodors-
Zagats

RoBERTa 0 6 9 18 36 21
Transfer learning 4303 65 69 78 93 88
Hybrid 0 34 31 44 61 63

Textual
Abt-Buy

RoBERTa 0 8 10 21 41 62 82 90 377
Transfer learning 3718 4 9 18 37 55 73 91 383
Hybrid 0 27 35 53 79 112 142 173 675

Dirty
DBLP-
Scholar

RoBERTa 0 6 8 18 30 33 47 55 722
Transfer learning 2455 91 93 97 106 113 122 129 1245
Hybrid 0 26 30 40 55 70 87 104 1209

Dirty
DBLP-
ACM

RoBERTa 0 6 10 20 41 63 87 91 389
Transfer learning 3476 3 7 16 34 50 67 84 390
Hybrid 0 25 36 42 62 83 104 125 687

Dirty
Walmart-
Amazon

RoBERTa 0 5 11 17 34 46 62 59 271
Transfer learning 3840 2 5 11 23 35 46 58 70
Hybrid 0 23 27 34 52 68 88 103 449

Dirty
iTunes-
Amazon

RoBERTa 0 10 14 29 24
Transfer learning 4330 6 12 24 28
Hybrid 0 31 39 53 66
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Chapter 7
Discussion

This chapter starts by going through the training of the models, with a specific
focus on the tuning of the hyperparameters. After this, each of the four different
models is discussed independently. At the end, the usage of the models for a
real-world application is discussed.

7.1 Tuning the hyperparameters

The transformer model contains millions of hyperparameters that can potentially
be analyzed and tuned. Due to the time limit of this thesis, little time has been
used to tune all the hyperparameters. Instead, two hyperparameters have been
focused on: batch size and epochs.

Ideally, more time should have been spent on tuning the hyperparameters. This
could have resolved the issues where the models were unable to give any results.
Then again, developing and training models on such small sample sizes is unlikely
to happen in a real-world setting. The research questions are mostly concerned
about the relative performance of the models. Spending much time improving
the results of each model is unlikely to greatly affect the relative performance of
the models.

Batch size

As mentioned, for the small datasets and with few resources, the model gave 0%
as output F1-score. The batch size was therefore lowered to 8 at most. The
advantage with a small batch size is that the model converges quickly. The
disadvantage is that the quickly convergence comes at a cost of noise in the data,
which can lead to a less accurate performance.

Epochs

Based on the empirical study conducted by [2], which showed that transformer
models RoBERTa, DistilBERT, BERT and XLNet achieved peak performance for
the datasets Textual Abt-Buy, Dirty iTunes-Amazon and Dirty Walmart-Amazon
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CHAPTER 7. DISCUSSION

after 3-5 epochs, number of epochs was set to 3 for the ”easier” dataset and 5
to the more challenging datasets. An increased epochs size could perhaps have
helped the model achieve results in the cases when in achieved a 0% in F1-score.

7.2 Baseline - Magellan

Good or bad performance of a model is relative, and in this case it also differs
for each dataset. It is therefore helpful to have a baseline model to use for
comparison. As an example, everything above a F1-score of 97.5% is considered
good performance on Structured DBLP-ACM, and everything above a F1-score
of 50% on Structured Amazon-Google is considered good performance because it
outperforms the baseline.

7.2.1 Weak performance on challenging and dirty datasets

The baseline, Magellan, was outperformed by the transformer-based models on
almost all datasets. For the structured datasets, it performed particularly bad
for the Walmart-Amazon and Amazon-Google datasets. A reason for the weak
performance for these two structured dataset may be due to the content in the
dataset. Both Structured Walmart-Amazon and Amazon-Google contain product
data, which may include long textual descriptions. The product data also contain
many corner cases which means the attribute values are semantically similar, but
have a similarity distance that is large, as shown in Table 7.1. For instance, for
Amazon-Google, a true match only got a Jaccard score of 0.52, and was classified
as a false negative.

Table 7.1 shows an example from the textual dataset Abt-Buy. The same ar-
guments for Structured Walmart-Amazon and Amazon-Google can be applied to
the textual data. The records in Abt-Buy include long textual blobs which is
hard for Magellan to capture as a true match only got a Jaccard score of 0.16.
One can hypothesize that Magellan has difficulties with summarizing long textual
strings [27].

The weak performance on the dirty datasets may be due to a lot of missing
values and because the attribute values has been moved around. Recall that
Magellan compare attribute to attribute. Magellan is very sensitive to noise like
this in the data.

7.2.2 Strong performance with limited data

The advantage of Magellan is that it needs few examples to achieve a good score.
For most of the experiments, Magellan outperforms the Hybrid and RoBERTa
model for a limited amount of samples.
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CHAPTER 7. DISCUSSION

Table 7.1: Examples of a true matches where the similarity between the attributes
values are low.

Dataset Record A Record B Jaccard
score

Amazon-
Google

motu digital performer 5 digi-
tal audio software competitive
upgrade ( mac only )

motu digital per-
former dp5 soft-
ware music pro-
duction software

0.52

Abt-Buy whirlpool duet wfw9200sq
white front load washer
wfw9200swh 4.0 cu . ft.
capacity 6th sense technol-
ogy quiet wash plus noise
reduction built-in water
heater add-a-garment feature
sanitary cycle 4 temperature
selections white finish

whirlpool 27 ’
duet washer horiz
axis wp

0.16

7.3 The RoBERTa model

The RoBERTa model outperforms the baseline with a good margin on the major-
ity of the datasets, especially on the dirty and textual datasets, when the amount
of training samples get high. Because the model performs well relative to the
baseline on the dirty datasets, it seems more robust against noise such as shuf-
fling of attribute values. One possible reason for the better performance on dirty
and textual data may be because RoBERTa treats the input strings as one, and
do not only compare attribute to attribute as Magellan. Due to this, and the
attention mechanisms, RoBERTa can easier see the dependence between words
and what words it should focus on in the sentence.

For all the models and datasets, RoBERTa never achieves the best performance
when given enough training samples. It also gets the most amount of 0% in F1-
scores, indicating that the model has problems with limited data.

However, it is important to note that RoBERTa is outperformed by the base-
line with limited data available. The difference is for some datasets up to 90%.
Therefore, it is safe to conclude that the baseline is still preferable until RoBERTa
is given sufficient data.

7.3.1 Unstable with few samples

The RoBERTa model has the most cases when the performance drops with more
samples. It also has a high variance from 2-42 % when given limited data. The
main reason for this may be due to overfitting. Another reason can be bad
batches. The n training samples are picked from random every time, and it
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is therefore possible to get a particularly poorly skewed training batch. When
combined with the fact that this model has problems with understanding the data
with few samples, this can lead to these counter-intuitive in performance. Unlike
the other transformer models, the RoBERTa model has no additional matching
mechanism. This can make the model more sensitive. Since the model has a
high variance, is unreliable and unstable with few samples, it is unusable in a low
resource setting.

7.3.2 Data hungry for challenging datasets

Interestingly, for the challenging datasets, as shown in Figure 6.2, the RoBERTa
model shows a tendency to be more data hungry. The model need almost 1000
samples before it starts to learn something from the data to achieve a F1-score
above 60%. Additionally, the model does not converge unless given a sufficient
amount of training samples.

The RoBERTa model achieves a F1-score above 90% for all datasets, except
for the challenging datasets and Structured Beer as shown in Figure 6.1, Fig-
ure 6.2 and Figure 6.3, when given all available data. As mentioned in chapter 4,
the challenging datasets are the most text-heavy datasets. A potential reason
are that long textual values can be hard to capture for language models. This is
because it can be challenging for a language model to understand what it needs
to pay attention to in the matching process [3], when the input strings are too
long, which leads to it needing more data.

7.3.3 Faster runtime

When looking at the training times in Table 6.3, it is evident that RoBERTa has
lower training time compared to the to Hybrid. This is because the model does
not need to generate features.

Low training time and generally good performance are two criteria for a good
baseline model. The RoBERTa model contains this and can therefore be well
suited as a baseline model compared to Magellan for these EM datasets.

7.4 The Transfer learning model

The third model is the RoBERTa model with transfer learning (TL). This model
achieves strong performance for all sample sizes, and does very well with zero
training samples. With such good results for the Transfer learning model, it
would seem like the obvious first choice of the four models. This section will
discuss the results of the TL-based model.
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7.4.1 Smaller advantage with larger sample size

Aforementioned, the Transfer learning model achieves a significantly higher train-
ing score than the other models when there is 0 or few sample. For Structured
DBLP-Scholar it achieves 96.39% in F1-score for 0 samples. This immediately
gives merit to the transfer learning approach. It confirms that the model is able
to learn traits and patterns relevant in the entity matching task from training on
other datasets. As expected from this, the TL model outperforms all the other
models when given 0 samples.

From the result, it is safe to say that the Transfer learning model plateaus fast,
which means that the improvement of the performance faster slows down. There
can be multiple reason for this, one may be that as more training data are uti-
lized, the difference between the source and target gets larger. The Hybrid and
RoBERTa models do eventually catch up with the the TL model. It is clear that
the transfer learning gives the model a head start, and that this advantage gets
smaller with larger sample sizes.

7.4.2 Stable performance

For all the datasets except for Textual Abt-Buy and Dirty DBLP-Scholar, the
performance gain from 0 training samples to maximum training samples is fairly
low for the TL models. Consequently, the variance with sample size remains low.
For that two datasets where there is a strong gain from 0 samples to maximum
samples, the gain is likely caused by specific properties in the target dataset. This
is further discussed in section 7.4.4.

From the variance, it is clear that the TL model is more stable than the RoBERTa
and Hybrid. The additional TL feature gives the model more legs to stand on
when making predictions. Stability is important when applying models in a pro-
duction settings as it makes it easier to minimize the probability for worst case
performance.

However, for zero and very few training samples observations of the models shows
high variance, as seen in Table 6.1 and Table 6.2. The variance are at most 2.84%,
except for Dirty iTunes-Amazon where it is 6.24%. To build a model with reli-
able results that can be used in an entity matching setting, a certain amount of
training examples may be required.

7.4.3 Longer pre-training

From the results, as shown in Table 6.3, it is evident that the Transfer learn-
ing model has the overall longest runtime. The longer training time is naturally
attributed to the fact that the Transfer learning model has to run through the
other datasets first, which takes time. However, the pre-training of a general
transformer-based LM only need to be performed once. Then, the pre-trained
model can be fine-tuned on several downstream tasks.
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The Transfer learning model seems to have a faster runtime for the fine-tuning
task than RoBERTa. Since, it is already pre-trained on related dataset, it appears
that the Transfer learning model generalizes faster. However, the training time
for the Transfer learning model on Structured Fodors-Zagats and Dirty DBLP-
Scholar are on the other hand 60-90 seconds slower. Recall, that the experiments
were run on IDUN, and one explanation for the longer run time for the two afore-
mentioned datasets may be due to the load on the cluster.

It is also worth noting that these long training times for pre-training RoBERTa
with transfer learning occurred when using NVIDIA P100, which is more com-
putation power than most desktop PCs have access to. Training time using
consumer GPUs is likely to be even longer. Extensive computational power can
be hard and expensive to obtain.

For each target dataset, the transfer learning process starts from scratch when
learning from the other datasets. This leads to lots of duplicated learning, which
is very inefficient. The training time could be decreased significantly by caching
the results of running a set dataset through transfer learning, and consequently
reuse that.

7.4.4 Limitations of the Transfer learning model

For the Transfer learning model the knowledge was transferred directly from
source datasets to the target dataset. This is not always ideal, as it can suffer
from an imbalanced datasets or from data specific properties.

Instance weights

As mentioned in section 2.5, different instance weights can be added to the source
dataset and the target dataset. This is because the transfer learning can suffer
from imbalanced datasets, since the source datasets is often much larger than the
target dataset. The source can in worst case swamp the target dataset [18]. In
this thesis, such instance weights have not been added, so it can not be excluded
that the source datasets may have swamped the smaller target datasets.

Data specific properties

As mentioned, the Transfer learning model has a lower starting point compared
to maximum achieved F1-score for Dirty DBLP-Scholar and Textual Abt-Buy.
This can be due to data specific properties. Even though both DBLP-ACM and
DBLP-Scholar contain bibliographic data, the attribute values for author differs.
DBLP-ACM contains the full name of the author, while DBLP-Scholar contains
the first initials and last name. An example of this is given in Table 7.2. Since
Dirty DBLP-Scholar has a low starting point, it seems like the Transfer learning
model do not capture well initials in the start as is does not occur in any of the
other datasets. The Transfer learning model in this thesis has not taken such
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idiosyncratic properties into account and it is a suggestion for further work.

The same can be applied to Textual Abt-Buy. The datasets contain long textual
values, which the model may have a hard time summarizing in the beginning.

Table 7.2: Examples of data-specific properties. Record A and Record B both
include author, but Record A contains full name while Record B contains the
first initials.

Record A Record B

zengping tian , hongjun lu ,
yanlei diao , songting chen

h lu , k tan , s
dao

7.5 Hybrid model

The Hybrid model combines the RoBERTa model with handcrafted features. The
idea behind the Hybrid model is to combine the benefits of state-of-the-art string
metric based methods (Magellan) with transformers (RoBERTa).

7.5.1 The impact of handcrafted features for RoBERTa
with limited data

For all datasets except Structured DBLP-ACM, the Hybrid model outperforms
the RoBERTa model in the small sample range, less than 200 samples. The mod-
els (Hybrid and RoBERTa) converge, and for 9 of the datasets this convergence
occurs before they together converge with the Transfer learning model. The head
start the Hybrid model gets over the RoBERTa gives stature to the idea of uti-
lizing handcrafted features for improving the performance over pure RoBERTa
when there is little samples. For the larger sample sizes, the benefits of using Hy-
brid over RoBERTa are small from a performance perspective, only on average
1-4% better for some of the datasets.

Despite being able to outperform the RoBERTa model when sample sizes are low,
the model is still outperformed by Magellan with few samples, in all datasets. It
seems that the handcrafted features was able to pull the RoBERTa model in the
right direction, but that the pull was not strong enough. Recall, that only five
features were injected into the RoBERTa model. This may have been too few
features to have a significant impact in RoBERTa. A solution for further work is
to insert more features and see if this gives a larger impact.

The training time for the Hybrid model is consistently higher than that for the
RoBERTa model, which is natural given that the Hybrid model contains an ad-
ditional feature for the RoBERTa model. At most, for the Structured Walmart-
Amazon dataset, the training time for the Hybrid model is double that of the
RoBERTa model and the Transfer learning model.
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7.5.2 Very unstable model in a low resource setting

From Table 6.2, it is evident that the Hybrid model has a very high variance in
its F1-score performance within each sample size. This is particularly evident in
the Structured Amazon-Google, Structured DBLP-ACM and Dirty DBLP-ACM
datasets. This high variance can be attributed to the fact the model has a hard
time learning from limited data, which is also a pattern in the pure RoBERTa
model. In many cases where the Hybrid model has a high variance, the RoBERTa
model is not able to learn at all. This future strengthens the idea that the hand-
crafted features pull the RoBERTa model in the right direction, but that the pull
is not strong enough.

From Figure 6.1, Figure 6.2 and Figure 6.3 it apparent that the sample-to-sample
variance for the Hybrid model is less than that for the pure RoBERTa model.
Intuitively, the added handcrafted features smooths the performance.

7.5.3 Best of both worlds?

Research question 3 seeks to understand the impact of handcrafted features in
combination with transformers in a low resource setting. From the discussion in
this section, it is conspicuous that the addition of handcrafted features is able to
improve the performance of the the transformer RoBERTa when the sample size
is low, but not enough to beat the baseline.

One potential reason why the Hybrid model gets beat by the baseline in the low
resource setting is that even though the Hybrid model uses handcrafted features,
it is still mainly a RoBERTa language model. The RoBERTa language model
relies on initial parameters that must be learned by the model, and the fact that
handcrafted features are being fed into the model does not change this. There-
fore, the model still needs some samples before it is able to adjust its parameters
and reflect the nature of the data.

7.6 Application

Whereas the previous sections have focused on the individual models and their
performance, this section will assess the models from a more practical point of
view, focusing on how these models can be used in software applications and in
real-world settings for industrial companies such as Cognite.

In the industry, solid datasets for supervised learning can be hard, time-consuming
and expensive to acquire. Depending on the context, strong domain knowledge
can be required to do this. This is the case for the Cognite data platform. Cog-
nite’s platform gathers data from the industry, and much of the data going into
their system is proprietary, raw and unlabeled. Manually labeling the data that
goes into the platform can be very expensive for Cognite. Models that perform
well with low samples, and systems that make it easier for them to label data,
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could be of great benefit to them.

The TL model proves to work best in the low resource scenario, but it is ex-
pensive both computational and time wise to pre-train. Moreover, the RoBERTa
and Hybrid model are very poor in the same scenario, but the performance catch
up when given enough samples. When given enough samples, the RoBERTa and
Hybrid models are easier to maintain, debug and utilize, all important aspects of
software development. To utilize the best of both worlds, the following setup is
interesting:

Today, there are no pre-trained language model especially developed for the EM
task. TL could therefore be used to train language models on large amount of
related datasets. The pre-trained model could then be used out-of-the-box for
EM. In Cognite’s case, they might have some labeled data that have been hard
to acquire which they want to reuse as much as possible. Utilizing this data more
than once through transfer learning could be very beneficial to them.

One could also use the Transfer learning model to generate potential matches
with a high accuracy for a domain expert. The expert could then label these
matches, which should have a high match rate. Through this process, one should
be able to more quickly get a sample rich dataset which can be used in the other
parts of a software suite. By utilizing even more datasets to train the TL model,
it could be possible to create an even stronger general TL model which could be
used in a variety of entity matching problems. To summarize, the TL model is
suited to work in an unsupervised or semi-supervised entity matching context to
generate potential training data/correct samples.

None of the models developed are ideal, and should therefore not be used in
a settings where false positives or false negatives are detrimental. In settings
where mistakes are allowed, the matches should be presented in a way that does
not undermine the trust in the application.
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Chapter 8
Conclusion

This thesis has tested and evaluated four different models on 12 different datasets
for the entity matching (EM) task. The first model is the baseline model based on
Magellan, a traditional machine learning EM system which have received state-of-
the-art results in EM. The baseline was compared to a transformer-based language
model, RoBERTa. With limited data, the RoBERTa model was outperformed
by the baseline on some of the datasets. To boost the performance of RoBERTa,
this thesis examined transfer learning with RoBERTa by pre-training it on en-
tity matching datasets. In a low resource setting this model outperformed the
other by a large margin with a F1-score up to 30%. The last model combine
handcrafted features with RoBERTa. This model have shown to be unstable
with limited data, and have a high variance, 22-55% with less than 400 samples.
Overall, this model was also beaten by the baseline.

RoBERTa with transfer learning works best in a low-resource setting. For a
real-world application, where it can be time-consuming to label data, transfer
learning can be a good solution in the beginning to label a sufficient amount of
training data. Further, it can also be used with a transformer-based language
model to train on specific data to developed a specialized model for industrial
companies.

Research question 1:

How does the performance of transformer models compare to traditional machine
learning based methods in a low-resource setting?

The RoBERTa model outperforms the baseline on 10 out of 12 datasets when
given enough samples. However, the baseline, Magellan, achieves the best per-
formance of the two with very few samples. The downside with Magellan is the
sensitivity to noise in the data as discussed in chapter 7. The RoBERTa showed
to be more robust and has therefore a wider applicability. The RoBERTa model
is for this reason recommended if compared to Magellan. The trade-off to label
more data can be worth it, due to the stronger performance.
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As discussed in chapter 7 and shown in chapter 6, RoBERTa is never the best
model, and it should therefore be considered to use the Transfer learning model
or the Hybrid model.

Research question 2:

How is the performance on entity matching affected when combining transformers
with transfer learning on entity matching datasets in a low-resource setting?

Transfer learning boosts the performance of RoBERTa with limited data. With
zero samples, the Transfer learning model are able to achieve a F1-score of 58-
96%. Compared to the other models, this model converges faster, but is caught
up by RoBERTa and Hybrid when given sufficient data. However, for all sam-
ple sizes, the Transfer learning model is the most stable model and achieves the
highest score on 7 out of 12 datasets by a margin of 1-2%. The model has shown
to be feasible for the EM task.

Transfer learning model is a good solution for applications that need a high
starting point, and can be used with other models to label data in a low re-
source setting. It is recommended to use a transformer-based language models
pre-trained on related datasets for EM.

As covered in chapter 2, the Transfer learning model did perform as expected
as it achieved a relative high starting point and converged fast compared to
RoBERTa and Hybrid. However, the most surprising observation was that it was
easily caught up by the two other models for several datasets meaning the advan-
tage of TL decreases. However, our experience from the experiments show that
the Transfer learning model do outperform Hybrid and RoBERTa, and should
therefore be considered in high resource settings.

Research question 3:

What is the impact of handmade features in combination with transformers in a
low-resource setting?

The impact of handmade features injected into RoBERTa are highest with a
sample size of 100-800. As discussed in chapter 7 the RoBERTa model did not
always initialize and achieved a F1-score of 0%. In comparison, the Hybrid model,
achieves a F1 score 70-80% above RoBERTa. However, the model shows tenden-
cies to be unstable with variances up to 55% with few samples (< 400).

Also for Hybrid, the advantage of the model decreases with larger sample size.
When given sufficient training data, mostly above 1000 samples, the Hybrid model
achieves a score 1-4% above the RoBERTa model. The efficiency of the model are
also affected. The Hybrid model uses 20-30 seconds longer than the RoBERTa
model, mostly due to the generation of features.
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The Hybrid model did perform slightly worse than expected in the start of this
thesis with limited data. Our thoughts was that string metrics would achieve
more reliable results with limited data. However, this was not the case as seen in
Table 6.2 and Table 6.1.

8.1 Further Work

This section provides suggestions for further work.

• Data interpretation for transfer learning The transferred knowledge
in this thesis was not adjusted or transformed. For further work is suggested
to use instance weights or a feature transformation strategy.

• Appropriate similarity metrics The same five string metrics were used
for every attributes in the datasets. Some metrics are developed to handle
numerical values, misspellings in name etc. A solution for further work is
to apply relevant string metrics for the attribute depending on the format.

• Hyperparameter tuning As described in both chapter 5 and chapter 7
only the batch size and epochs were somewhat tuned. Still, the model was
not always initialized and got 0 in F1-score with few labels, especially for the
RoBERTa model. This can lead to the model being unstable and unusable.
A suggestion for further work is to have an extensive empirical study to
find the most optimal parameters for the pre-trained language model.

• Combine transfer learning with other techniques The transfer learn-
ing model achieved great success on few samples. For other applications
that rely on good initialization and a high starting point, transfer learning
can be a good solution. With the results gotten, transfer learning could be
used with i.e. active learning. Another suggestion is to combine transfer
learning and handcrafted features.

• Public available pre-trained EM model This thesis has shown that
transformer-based language models pre-trained on EM datasets are effective
for EM. A suggestion for further work is to pre-train a language model on
more EM datasets that can be used out-of-the-box to be fine-tuned on
downstream tasks.
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Appendix A
Graphs

This appendix includes the graphs for the challenging datasets with samples less
than 1000. The plots for the datasets show the average F1-score for RoBERTa,
Transfer learning model, Hybrid and Magellan.
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Figure A.1: The average F1-score for RoBERTa, Transfer learning, Hybrid and
Magellan up to 1000 samples.
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Figure A.2: The average F1-score for RoBERTa, Transfer learning, Hybrid and
Magellan up to 1000 samples for Structured Amazon-Google.
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Figure A.3: The average F1-score for RoBERTa, Transfer learning, Hybrid and
Magellan up to 1000 samples for Textual Abt-Buy.
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Appendix B
Tables

This appendix includes the tables for the plots presented in chapter 6.

Table B.1: Dirty iTunes-Amazon

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 82.63 0 0
50 0 85.43 0 27.98
100 79.99 85.29 85.39 41.99
200 94.11 91.66 93.84 46.76
321 90.56 92.59 93.98 49.31

Table B.2: Dirty DBLP-ACM

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 95.67 0 0
50 0 96.09 92.55 83.09
100 88.3 96.8 86.38 79.65
200 88.5 97.04 93.02 86.52
400 95.21 96.94 94.31 85.63
600 95.48 96.33 93.40 86.38
800 92.0 96.76 95.65 87.78
1000 95.2 97.11 96.80 86.46
7417 99 98.77 98.87 90.59
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Table B.3: Dirty DBLP-Scholar

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 62.33 0 0
50 0 68.66 87.95 79.37
100 80.85 86.97 85.71 73.94
200 86.8 90.58 89.76 77.71
400 88.99 89.41 89.33 76.4
600 88.86 90.96 89.82 77.81
800 92.4 92.34 91.28 78.80
1000 91.9 91.58 91.24 79.12
17223 95.6 95.28 95.47 83.21

Table B.4: Dirty Walmart-Amazon

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 66.8 0 0
50 0 69.4 0 32.67
100 0 71.7 0 35.15
200 0 70.87 0.08 39.04
400 0 72.9 35.61 37.74
600 57.3 79.1 45.99 39.99
800 75.3 78.1 58.43 38.31
1000 77.1 78.1 63.38 39.94
2000 78.84 83.56 80.32 40.47
4000 82.84 84.4 84.78 40.27
6144 83.5 86.6 84.84 42.42

Table B.5: Structured Beer

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 88.44 0 0
50 0 87.44 0 76.54
100 0 86.62 77.66 79.04
150 82.35 86.62 77.66 79.04
200 84.51 86.72 84.32 85.19
268 90.32 91.06 82.40 84.48
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Table B.6: Structured Amazon-Google

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 58.24 0 0
50 0 58.05 0 26.7
100 0 57.46 0 25.77
200 0 58.8 16.54 24.55
400 0 59.43 50.03 39.49
600 0 59.19 49.59 41.46
800 48.27 63.06 59.40 41.08
1000 60.5 61.92 60.96 39.93
2000 64.88 64.84 60.22 42.57
4000 65.33 72.05 68.6 49.33
6874 74.3 73.80 71.1 48.409

Table B.7: Strucutred DBLP-ACM

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 96.0 0 0
50 0 96.47 87.19 90.77
100 0 97.29 88.78 95.57
200 93.01 97.17 89.89 96.02
400 95.96 97.52 96.16 96.53
600 93.2 97.53 96.88 97.58
800 93.8 97.1 97.44 97.38
1000 96.88 97.19 97.88 97.5
7417 98.9 99.21 98.87 98.46

Table B.8: Structured Fodors-Zagats

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 95.30 0 0
50 0 95.38 96.86 88.14
100 0 96.05 96.86 95.21
200 98.48 96.19 98.52 98.55
400 98.55 98.48 100 99.26
567 100 99.22 100 100
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Table B.9: Structured DBLP-Scholar

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 95.0 0 0
50 0 95.18 90.64 83.15
100 77.92 95.27 87.7 85.25
200 86.94 94.58 90.31 87.43
400 92.80 93.9 91.13 89.64
600 90.85 93.94 90.1 89.221
800 92.4 94.69 92.32 90.81
1000 93.13 94.64 92.47 90.72
17223 96 95.12 95.45 93.04

Table B.10: Structured iTunes-Amazon

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 84.59 0 0
50 0 87.37 0 84.31
100 81.71 88.43 91.90 87.54
150 94.2 88.43 91.90 87.54
200 93.1 91.64 94.44 89.0
321 94.11 94.57 94.5 89.65

Table B.11: Structured Walmart-Amazon

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 84.55 0 0
50 0 84.79 0 64.12
100 0 85.57 0 66.32
200 0 84.27 0 67.41
400 0 83.63 30.27 66.61
600 0 83.44 53.36 65.79
800 70.98 86.69 62.62 66.09
1000 68.99 84.90 67.34 65.95
2000 73.09 85.25 75.85 66.68
4000 82.08 86.91 82.25 66.46
6144 84.7 85.99 85.64 67.29

73



APPENDIX B. TABLES

Table B.12: Textual Abt-Buy

training examples f1 score f1 score tl f1 score feat f1 score magellan

0 0 65.64 0 0
50 0 66.90 0 29.44
100 0 71.78 0 37.53
200 0 80.11 0 30.84
400 0 81.84 72.34 32.56
600 0 85.89 77.1 40.56
800 0 85.66 81.01 41.82
1000 0 85.46 81.88 40.54
1200 79.82 85.46 81.88 40.54
1400 81.13 85.46 81.88 40.54
2000 84.63 86.42 85.25 48.04
4000 89.33 88.66 89.53 48.56
5747 88.62 90.2 89.96 51.25
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