Mikkel Nygard
@yvind Samuelsen

Active Learning with Transformer
Pre-trained Language Models for
Entity Matching

Master’s thesis in Computer Science
Supervisor: Jon Atle Gulla
Co-supervisor: Nils Barlaug

June 2021

2
4
=
P

°
o
C

c
]

'_

©
C
(8]
[0}
9]
C

o
(&)

(V2]

Y
o

2
(%]
—
[}

2
C

o)
C

ke
Bo
:
o

zZ

0y
£e
o Y
[Te]
£wun
DOL
c g
w S
= a
SE
S O
oo
D«
w2
T C
ca
=
85
S g
80)
_CD
o}
|_
c
o
=1
©
€
_
L
£
Y
S)
=]
o
©
[N

@ NTNU

Kunnskap for en bedre verden

Mikkel Nygard
@yvind Samuelsen

Active Learning with Transformer Pre-
trained Language Models for Entity
Matching

Master’s thesis in Computer Science
Supervisor: Jon Atle Gulla
Co-supervisor: Nils Barlaug

June 2021

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Kunnskap for en bedre verden

Abstract

Entity matching refers to the problem of finding which records refer to the same real-
world entity. Recently, thanks to the rise of Transformer pre-trained language models
(TPLMs), the field of entity matching has seen new development and state-of-the-art so-
lutions. However, the need for a significant amount of training data remains a challenge.
Active learning is a machine learning methodology seeking to minimize the required
labeling effort while maintaining the quality of the model. This thesis explores how
combining active learning with TPLMs performs for entity matching. Several active
learning query strategies have been compared against a baseline of random sampling, in-
cluding uncertainty sampling and partition based methods. The experiments have been
performed on public entity matching datasets, concerning consumer product data and
citation data.

We found all active learning strategies consistently outperformed the non-active learning
baseline, with an iteration time of 2.5-8 minutes. Even when the baseline was trained
on all available data, several query strategies surpassed its Fl-score with an order of
magnitude fewer labeled examples. For the best performing strategy, Partition-2, this
happened on average after only 9.1% of the total training data was queried. Hybrid-
Partition-2 is a novel active learning technique, which combines the speed of classical
machine learning models, and performance of TPLMs. We found that this technique
resulted in an often significantly higher initial recall. This resulted in a 0.011-0.345 higher
initial F1-score across 5 datasets. The method does however require extra overhead with
the fact that two separate iterations of active learning need to be run.

In the end, we have recommended further work in the area of developing more novel
active learning query strategies specifically made for entity matching with TPLMs, in
addition to a benchmark framework for selecting appropriate hyperparameters when
performing this task.

ii

Sammendrag

Entitetsmatching refererer til problemet med a finne ut hvilke data som refererer til den
samme virkelige entiteten. Nylig, takket veere fremveksten av ferdigtrente Transformer
sprakmodeller (TPLMs), har entitetsmatching sett ny utvikling og moderne lgsninger.
Imidlertidig er behovet for en betydelig mengde treningsdata fremdeles en utfordring.
Aktiv leering er en maskinlaeringsmetodikk som har som mal & minimere den ngdvendige
mengden med treningsdata, samtidig som kvaliteten pa modellen opprettholdes. Denne
oppgaven utforsker hvordan aktiv leering fungerer sammen med TPLMs for entitets-
matching. Flere aktiv leeringsstrategier har veert sammenlignet mot en basisstrategi av
tilfeldig utplukk, inkludert usikkerhets-utplukk og partisjonsmetoder. Eksperimentene
har veert utfort pa offentlig tilgjengelig entitetsmatching-datasett, bestaende av forbruk-
erproduktsdata og siteringsdata.

Vi fant at alle aktiv leeringsstrategiene konsekvent gjorde det bedre enn den ikke-aktiv
leering basisstrategien, med en iterasjonstid pa 2,5-8 minutter. Selv nar basisstrategien
ble trent pa all tilgjengelig data, fikk flere aktiv leeringsstrategier hgyere F1-poeng med en
storrelsesorden faerre treningsdata. For den beste spgrre-strategien, Partition-2, skjedde
dette etter gjennomsnittlig bare 9,1% av all treningsdata var spurt. Hybrid-Partition-2 er
en ny aktiv leeringsstrategi som kombinerer hastigheten til klassiske maskinlaeringsmod-
eller og ytelsen til TPLMs. Vi fant ut at denne teknikken resulterte i en ofte betydelig
hgyere initiell tilbakekalling. Dette resulterte i 0,011-0,345 hgyere initiell F1-poeng pa
de 5 datasettene. Denne metoden krever imidlertidig ekstra arbeid fra det faktum at
den ma kjgre to separater iterasjoner med aktive leering.

Til slutt har vi anbefalt videre utvikling av nye aktiv leeringsstrategier spesielt laget for
entitetsmatching med TPLMs, i tillegg til et testrammeverk for a velge hyperparametere
nar man utfgrer denne oppgaven.

iii

Preface

The thesis has been submitted as a master’s thesis at the Norwegian University of Science
and Technology (NTNU), Department of Computer Science (IDI). It has been part of
a collaboration project between NTNU, Cognite, and The Norwegian Open Artificial
Intelligence Lab.

We would especially like to thank our supervisor Nils Barlaug for continuous support,
motivation, and valuable feedback all throughout the project. In addition we thank pro-
fessor Jon Atle Gulla for facilitation and supervision of the project, along with valuable
feedback.

We would also like to thank friends and family for support in our studies.

Mikkel Nygard, Qyvind Samuelsen

Trondheim, June 13, 2021

v

Table of Contents

Abstract

Sammendrag

Preface

Table of Contents

List of Figures

List of Tables

Abbreviations

1 Introduction
1.1 Motivation e e
1.2 Goals and Research Questions
1.3 Approach L
1.4 Results. e
1.5 Thesis Outline e

2 Background Theory

2.1 Entity Matching
2.1.1 History e
2.1.2 The Entity Matching Problem
2.1.3 The Entity Matching Process

2.2 Active Learning
2.2.1 The Active Learning Process
2.2.2 Query Scenarios oo o e e
2.2.3 Query Strategies

2.2.4 Challenges with Active Learning

ii

iii

vii

viii

ix

Table of Contents vi
2.2.5 Alternatives to Active Learning 21

2.3 Transformer Pre-trained Language Models 21
2.3.1 Attention e 21

2.3.2 Transformers e 22

2.3.3 Models 23

2.4 Performance Measures 24
2.4.1 Precision e 25

2.4.2 Recall e 25

243 Fl-score e 25

3 Related Work 27
4 Data 31
4.1 Public Datasets 31

5 Method 35
5.1 Tools o . o 35
5.2 Experimental Setup 36
5.2.1 Hyperparameterso 36

5.2.2 Tokenization e 37

5.3 Experiments - Query Strategieso 38
5.3.1 Baseline e 38

5.3.2 Partition Sampling o oo 40

53.3 Hybrid. e 41

5.3.4 Uncertainty Sampling 42

6 Results 43
6.1 Fl-score e 43
6.1.1 Max Fl-score e 45

6.2 Variance e e e 48
6.3 Time Usage« . . 48

7 Discussion 50
7.1 Query Strategies 50
7.1.1 Partition Sampling oo 50

7.1.2 Pre-selection of Initial Train Data 51

7.2 Limited Environment oo 53
7.2.1 Faster Convergence i 53

7.2.2 Time and Resource Limitations 55

7.3 Challenges e 56
7.3.1 Unsupervised Labeling 56

7.3.2 Choosing a Model 57

7.3.3 Review of Practical Application 57

7.3.4 The Need of an Interactive Expert 58

Table of Contents vii
7.3.5 Interpretability o 58

7.4 Alternatives 59

8 Conclusion and Future Work 60
8.1 Conclusion e 60
8.2 Is Active Learning a Viable Strategy for Entity Matching? 62
8.3 Future Work 62
8.3.1 Comprehensive Benchmark 62

8.3.2 Practical Application. 63

8.3.3 Training Set Distribution and Query Strategies 63

8.3.4 Optimized Query Strategies 63

8.3.5 Special Made Language Model 64

8.3.6 Combine Active Learning with Other Strategies. 64
Bibliography 65
Appendices 70

List of Figures

1.1

2.1
2.2
2.3
2.4

5.1

6.1
6.1
6.2
6.3

7.1
7.2

Fl-scores Amazon-Google 4
EM process 12
Active learning iteration o 14
Traditional ML classification process 15
Uncertainty sampling vs density-weighted methods 16
Comparison of query strategies 39
Results with respect to Flscore, 46
Results with respect to Flscore 47
Fl-score variance Walmart-Amazon 48
Iteration time Amazon-Google 49
Train set positive rate Walmart-Amazon 53

Extended Fl-score comparison for Walmart-Amazon 54

List of Tables

1.1 Introductory EM example from Abt-Buy 2
2.1 Cconstructed EM example 11
4.1 Datasets overview L 32
4.2 Positive rate in the datasets 32
4.3 Examples from the datasets 34
5.1 Example of tokenization L 0 0o 37
6.1 Initial Fl-score e 44
6.2 Final Fl-score. e 44
6.3 Max Fl-score train size 45

7.1 Fl-score comparison to DITTO 55

List of Tables

Abbreviations

AL

DL
EM
ML
RF
TPLM

Active Learning

Deep Learning

Entity Matching

Machine Learning

Random Forest

Transformer Pre-trained Language Model

Chapter

Introduction

This chapter presents the motivation and goals of the thesis, our approach and main
results, and an outline for the rest of the thesis.

1.1 Motivation

The world is becoming more and more digitalized. With new advances in technology,
companies are starting to realize the potential of harvesting previously unused data and
information. A production company may be interested in predicting when any of their
machines are going to fail, so they can schedule and optimize the downtime. Similarly,
an oil company could have all sensors and equipment on an oil platform inside a digital
platform. When any equipment breaks down, they could e.g. visualize the location in a
3d-platform and pass it to the engineers who are going to fix the equipment.

The different use-cases for digitalization are broad. Common for all are that raw data,
often from a wide variety of different sources, need to be combined and transformed. A
challenge when integrating all this diverse data is the fact that they might come from
systems which do not share a common data format, such as names and other identifiers.
An example is a pump at the oil platform may store pressure data in one system, while
the temperature is part of a different system. A problem arises if the two systems do not
refer to a specific pump with the same unique identifier. If the company in the future
want to store all data in one place so they can do e.g. data mining to predict the optimal
pump parameters, they have to manually find and combine all pressure and temperature
sensor data that belong to the same pump. With potentially thousands of sensors and
equipment, this can be an extremely time consuming, but required, data integration job.

Introduction 2

Entity matching (EM) refers to the problem of finding which records refer to the same
real-world entity. In Table 1.1, determining which of the four possible combinations
refer to the same entity is hard as there are no obvious unique keys, and all relevant
information is merged into the same string. The problem would not be present if the
tables had an attribute column named ”key”, with unique identifiers which were shared
between matching records. In the example, ”sp-320”, ”ep-320” and could be such iden-
tifiers, however these do not exist for all records in the tables. Furthermore, two records
can share these strings without being matches. In the example, only the record Al and
B2 refer to the same real world entity, and can be labeled as a match.

Table 1.1: An example of an entity matching problem from the public dataset ” Abt-
Buy”. Only A2 and B2 refer to the same entity, likely a gas grill.

Dataset A: Abt

Id Name

A1l weber spirit sp-320 stainless steel liquid propane gas outdoor grill 3730001
A2 weber stainless steel genesis s320 lp grill 3780001

Dataset B: Buy

Id Name

Bl weber genesis ep-320 blue Ip gas grill
B2 weber summit sp-320 stainless Ip gas grill

Matches

Id Matching
A1-B1 False
A1-B2 True
A2-B1 False
A2-B2 False

Traditionally, EM has been tackled with the use of probabilistic methods, and approx-
imate string similarity measures combined with classic machine learning models (e.g.
Random Forest), and lately deep learning methods [1]. With the rise of Transformer
pre-trained language models (TPLMs) such as BERT, EM has seen recent advances in
the last couple of years and new state-of-the-art solutions [2, 3, 4]. However, TPLMs
still require a large amount of training data in order to perform at its best.

Active learning (AL) is an iterative and interactive machine learning strategy used to
tackle this problem. In AL, the machine learning model itself tries to find only the most
informative unlabeled examples, and query an Oracle, a human domain expert, to label
them. The idea is by only training on informative examples, the model can train on
fewer examples while still performing at an optimal level.

Combining EM with TPLMs and AL have the potential to make practical applications

Introduction 3

of EM more attractive for companies, by reducing the required time-use significantly.
This will only become more important in the future as companies are digitalizing their
business.

1.2 Goals and Research Questions

Goal FEvaluate active learning with Transformer pre-trained language models for entity
matching.

The goal of this thesis is to evaluate using active learning with Transformer pre-trained
language models as a strategy for doing entity matching, in order to improve the F1-
score while having a low labeling cost. In order to reach this goal, we have defined three
main research questions that will be answered.

Research question 1 What active learning query strategy for Transformer pre-trained
language models results in the highest F1-score?

We wish to find the AL query strategy which yields the highest F1-score. Several strate-
gies exist, and some might work better for EM with TPLMs than others.

Research question 2 How does active learning with Transformer pre-trained language
models perform for entity matching with respect to time consumption?

TPLMs are larger than classic machine learning models, and require more training time.
This research question aim to answer how TPLMs perform under stricter resource limi-
tations, when it is not allowed to train for an unlimited time.

Research question 3 What are the challenges with combining active learning and Trans-
former pre-trained language models for entity matching?

Lastly, we wish to detail challenges related to using AL with TPLMs for EM. This is
useful to help focus further work in this field of research.

1.3 Approach

The goal of this thesis is to evaluate how active learning, in combination with TPLMs,
perform for entity matching. The experiments conducted test different AL query strate-
gies and how they perform in respect to Fl-score and time use. The query strategies

Introduction 4

include a classical AL sampling method called uncertainty sampling, along with the more
recent strategies Partition-2 and Partition-4, specifically made for AL with deep learn-
ing models. In addition, we test novel strategies that use a combination of a classical
Random Forest model and TPLM to select and match examples.

The experiments have been performed on different public datasets commonly used to
benchmark EM systems. The results were compared to a baseline where examples were
randomly selected, instead of using AL strategies.

1.4 Results

The results in Figure 1.1 show that the AL strategies yielded better results than randomly
selecting examples. More specifically, Hybrid-Partition-2 and Partition-2 were the best
performing query strategies in our experiments, consistently achieving the highest F1-
score among all datasets. On average, they achieved a 0.06 higher Fl-score compared
to the baseline across the 5 datasets after 1000 labeled examples.

Amazon-Google

O > <y~ Sy — == ===y
0.6
L
3 0.5 1
%
&
0.4 Baseline
——- Baseline-Max (6874)
——- Baseline-1/2 (3437)
0.3 1 Hybrid-Partition-2
— Partition-2
200 300 400 500 600 700 800 900 1000

Labeled examples

Figure 1.1: Iterative Fl-score for Hybrid-Partition-2 and Partition-2, along with Base-
line on Amazon-Google dataset. RoOBERTa has been used as the TPLM. The red dotted
line of Baseline-Max and Baseline-1/2 show the Fl-score after all and 50% of the avail-
able data was labeled, the actual amount is in parenthesis. All experiments started with
200 randomly sampled examples, and each query strategy tried to label 40 examples
in each iteration, with a maximum of 1000 examples over 20 iterations. One can see
that both strategies significantly outperforms Baseline, with Hybrid-Partition-2 having
a higher initial score, but is surpassed by Partition-2 after 600 examples are labeled.
Partition-2 reach the maximum F1l-score of Baseline after only around 740 examples
have been labeled, compared to Baseline requiring 6874 to reach the same score.

Introduction 5

The automatic labeling strategy of Partition-2 managed to select a balanced set of
high-confidence and uncertain examples. The quality of the automatically labeled high-
confidence examples was sufficient to make up for the fact that it was susceptible to
label examples wrong.

In the figure one can see Partition-2 surpassing Baseline after only around 730 examples
had been labeled, when Baseline was trained on all 6874 available examples. This was a
repeating pattern on all the other datasets. On average it happened after only 9.1% of
all training data was queried and labeled.

By combining Hybrid and Partition-2 into the novel Hybrid-Partition-2 AL strategy,
recall was significantly increased in the first iterations, yielding a higher initial F'l-score.
In the first iteration it achieved an F1l-score from 0.011-0.345 higher across 5 datasets,
averaging on 0.157 higher than the Baseline. Hybrid-Partition-2 surpassed Baseline’s
Fl-score at 1000 examples while only requiring 27.4% of the training data on average.

We found that even when using a larger TPLM it was possible to select hyperparameters
which resulted in a iteration time of only 2.5-8 minutes. Combined with using an order
of magnitude fewer labeled examples than the baseline, AL with TPLM could prove to
be a realistic option when doing EM in practice.

However, we also found that a big challenge is to choose which TPLM to use, combined
with selecting its optimal hyperparameters.

1.5 Thesis Outline

The thesis consists of 8 chapters. Each chapter is presented shortly below.

1. Introduction presents the motivation and goals of the thesis, as well as a descrip-
tion of the thesis.

2. Background provides the background theory and terminology related to entity
matching, active learning, and Transformer pre-trained language models in order
to understand the rest of the thesis and the results.

3. Related Work provides a summary of papers directly related to our thesis.

4. Data provides information about the data the public datasets used in the experi-
ments in this thesis.

5. Method provides the necessary information about the experiments in order to
reproduce the results.

6. Results provides the main results from the experiments.

Introduction 6

7. Discussion provides an interpretation and discussion of the results.

8. Conclusion and Further Work provides a summary and short conclusion of
the thesis with respect to the research questions outlined in the introduction. In
addition, recommendations for further work is presented.

Chapter

Background Theory

This chapter will give an introduction and background theory to the field of entity
matching, active learning, Transformer pre-trained language models, and the current
state-of-art in EM and AL.

2.1 Entity Matching

Entity matching (EM) is the problem of identifying records which refer to the same real-
world entity [5, 1, 3]. EM is commonly a necessary step when doing data integration,
which is the process of creating a unified view of often heterogeneous data originating
from different sources, such as databases, data warehouses, and data lakes [1]. EM
is a challenging task, especially concidering the fact that huge amounts of data can
be involved. If dataset A has N records and dataset B has M records, there exist
N x M possible matches, however most of these matches are in fact negative (non-
matches). Luckily, the field of EM has developed strategies to handle this extreme
imbalance of positive and negative matches, commonly called blocking [1]. Blocking
effectively removes many obvious negative matches, while having a high recall of positive
matches. After blocking, the actual matching step can be done, typically by training
a machine learning model on a (small) set of labeled data, and predicting unlabeled
records if it is a match or non-match. A closer look at the EM process is presented in
subsection 2.1.3.

Background Theory 8

2.1.1 History

EM has a rich history, stemming from even before computers existed with statisticians
and public health researches wanting to match records from a single or multiple databases
[1]. One example was the need to collect all health information about patients in a single
place, however issues arising from reasons such as hand-written data became apparent.

In 1946, Halbert Dunn defined the term record linkage when he described the idea of a
book of life, containing all information about a person [6]. The book would start and end
with the birth and death record, and in-between all information related to a person and
their interactions with the health and social security systems. He believed this would be
of extreme value to both authorities and statisticians, but also recognized the complexity
in dealing with data quality issues such as common names, errors, and variations in the
data.

To solve this, Newcombe and Kennedy [7] proposed matching data with probabilistic
record linkage approaches, automated with computers. One approach was to use a
phonetic sound algorithm to encode attributes such as surnames to overcome minor
name variations. Based on the distribution of these values, match and non-match weights
could be computed and used to decide if two records match or not. A few years later,
Fellegi and Sunter [8] published a paper proving that an optimal probabilistic decision
rule can be found. It defined the common assumption that each attribute used in the
comparison is independent of the other attributes. This theory have been the basis
for several later works, and for EM systems and software products that are still in use
today [1]. Probabilistic record linkage is for example the basis for the use of fuzzy
(approximate) string methods and frequency based measures for match weights [9].

Concurrently, similar work in the database community focused on removing duplicate
records in a single database [1]. This is an important part in the data cleaning process
to improve the quality of the database. Duplicate detection is a specialized problem of
EM, where one in practice has two identical datasets to be matched. Instead of using
probabilistic methods, work went into how to sort the data based on their attributes such
that similar records were grouped together in the same physical space in the database.
String comparison functions could then be used to find duplicates.

State-of-the-Art

Since the early 2000’s, EM has seen an increasing focus in the computer science research
domain [1]. Especially in fields like data mining, information retrieval, machine learning,
and database and data warehousing. With companies and organizations collecting larger
and larger amounts of data, data quality has been recognized as an important challenge
to effectively utilize the data.

Background Theory 9

Until very recently, the state-of-the-art in entity matching has been to use different classic
machine learning models for matching, combined with strategies like active learning and
crowd sourcing [10, 11]. Development of simpler, more explainable rule based methods
has also been in focus.

Recently more development has gone into deep learning methods like neural networks
[12]. They can sometimes perform better, but require an order of magnitude amount
more training examples compared to classic ML models. Today, the current state-of-the-
art is to use Transformer pre-trained language models, and the first paper to detail and
compare the use of BERT and similar models was only in 2020 [2]. Compared to neural
networks, TPLMs require less data, and perform better. Compare to classic machine
learning models, TPLMs use significantly longer time to train.

The sub field of blocking has focused on key-based partition methods, filtering rules, and
hashing among others. They have the downside of requiring manual fine tuning of hy-
perparamteres, and novel techniques include performing this process more automatically
by employing DL methods [13, 14]. Another recent challenge for blocking is the rise of
big semi-structured datasets, requiring blocking methods to work in a schema agnostic
manner. For an extensive review of blocking we refer to [15].

2.1.2 The Entity Matching Problem

When merging databases unique identifiers (keys) link records together making it pos-
sible to compare records simply by comparing keys. When these do not exist or are
corrupted the problem is much harder, as the actual contents of the records will have to
be compared in order to determine which are linked together. When doing such a com-
parison of records, the potential number of matching records is quadratic. All records
from one database could be a match with all records in the other database. As a result,
entity matching can be a very computationally expensive problem when the databases
are large.

Table 2.1.2 showcase a fabricated EM example from a product database of phones from
two online stores. There are 3 different entities across the two dataset, where ” A2” and

"B2” refer to the same entity. From this example one can see some of the challenges in
EM:

No common Id: Each dataset use their own custom ”Id” field as primary keys, such
that no item can be automatically joined across the datasets. This is the backdrop
for EM.

Quadratic number of matches: Even though there are only two items in this sim-
plified example, there is already 4 possible matches, where only 1 is a true match.

Background Theory 10

With 2x the number of examples in each dataset, the number of possible matches
would increase by 4x, to 16.

No unified schemas: Records to be matched can have differently named attributes
containing similar information. In Table 2.1.2 the attributes ”Name” and ” Phone”
correspond to similar values, however their names are different. Making it neces-
sary to detect which attributes correspond.

Combined attributes: Information which is split into several attributes in one dataset
can be combined in the other. As can be seen in the example, the ”Phone” attribute
in B contains information which is split into ”Name”, "Model” and ”Mfr.” in A.

Same attribute name, different values: Attributes across datasets can have the same
name but contain different values. As can be seen in the "Type” attributes in
dataset A and B.

Different attribute types: Both datasets have a ”Price” field, but Dataset A use a
float type, while Dataset B use integer.

Missing information: There is often a lot of missing values within the data sets,
making the matching harder. In some cases so much information can be missing
that it is not possible to tell whether the records are matching or not. An example
of a missing value can be seen in the column ”Price” of record A2.

2.1.3 The Entity Matching Process

Figure 2.1 shows the traditional EM workflow with its 5 major steps [5, 1].

Preprocessing

Since data from different sources often vary both in format, structure, and content, it
is necessary to preprocess it before it can be used for downstream tasks. Data prepro-
cessing is often an important step in many data integration tasks [16]. For EM, this
includes converting the two raw source datasets to the same format. This might include
normalizing attribute values, handling missing values, removing unwanted characters,
and more [1, 16].

Schema Matching

Schema matching is the task of finding out which attributes can be compared to one
another. It can be viewed as a separate task to EM, however is in practice often done

Background Theory 11

Table 2.1: The two datasets A and B contain information about phones and their
prices. A2 and B2 describe the same phone, even though the entity is represented in
two different ways.

Dataset A
Id Name Model Mfr. Price Type

Al Pixel XL Google £70.00 Mobile Phone
A2 iPhone X Apple NA Mobile Phone

Dataset B
1d Phone Price Type

Bl Google Pixel OG $600 Smartphone
B2 Apple iPhone 10 $749 Smartphone

Matches
Id Matching

A1-B1 False
Al1-B2 False
A2-B1 False
A2-B2 True

as part of the preprocessing [1]. By analyzing both the name and content of attributes,
correlating attributes can be found. In this step it might be necessary to e.g. split one
attribute into several separate attributes, in order to have attributes that conform to
one another. An example is to split an address field into ”city”, ”street”, and ”house
number”.

Blocking

After the data has been cleaned and corresponding attributes between datasets have
been found, the matching process could potentially begin. However, since every single
record in Dataset A could be a potential match to every record in Dataset B, some
further preprocessing is necessary. Blocking, is a term used for different techniques
used to reduce this quadratic amount of possible matches [1, 15, 17]. Common for all
techniques is that they have as goal to remove as many negative matches as possible,
while having a high recall of true positive matches. The end result is a candidate set of
possible matches, small enough to do record pair comparison and matching.

Traditionally, blocking has referred to techniques that split the dataset into separate
blocks consisting of similar records, based on some blocking criteria [1]. Only records

Background Theory 12

Preprocessing
Data A

A

} Blocking >) »{ Classification
matching comparison

Y

A4
Schema- 4 4| Record-pair - "

A

Preprocessing
Data B

Figure 2.1: The traditional entity matching process as illustrated in [5]. First the
data from the two sources are preprocessed, where it is cleaned and transformed into
the same format. The second step is schema matching, where related attributes in the
two datasets are found. The third step is blocking, where the quadratic complexity is
reduced by filtering out obvious non-matches. In the fourth step, record-pair comparison,
typically static string metrics are computed for all the candidate pairs. The actual
decision if a record-pair is a match or non-match happens in step five, classification.
This traditional view of EM does not consider human-in-the loop workflows like AL or
when using TPLM.

in the same block are later used to create the set of candidate matches. Examples
of traditional blocking are standard blocking, q-gram blocking, and sorted neighborhood
blocking.

Another blocking strategy is known as filtering, which uses (simple) string similarity
metrics and a threshold value to remove negative matches. An example is to use Jaccard
similarity with a threshold value of 0.4.

A downside to the strategies mentioned above is that they require the user to manually
set the blocking rules. Ramadan and Christen [18] have looked at how blocking keys can
be selected in an unsupervised manner, and [4] use the encodings from a deep learning
model to find possible matches.

Record Pair Comparison

After the number of possible matches has been reduced to the candidate set of matches,
more computationally expensive similarity measures can be computed between pairs of
records. The end result is a similarity vector, consisting of numerical values which each
represents how similar two specific attributes from each record are [1]. The choice of
which attributes to compare is done in the schema matching step, and ideally the number

Background Theory 13

of attributes compared is greater than in the blocking step.

Even after the data has been cleaned and standardized, it can still be the case that two
attribute values which represents the same entity do not have the same value. Therefore,
it is necessary to employ approximate similarity functions [1]. The similarity value is
generally a normalised value between 0 and 1, describing no similarity and an exact
match, respectively. Typically, several different string similarity measures are used on
each pair of attributes. Depending on the attribute value type (e.g. date, age, time,
location), other more specialized similarity measures can be used as well.

Libraries such as Magellan (see chapter 5) can help in automatically finding suitable
similarity measures based on the attribute type. For strings it can select measures
suitable for the specific length of the string.

Classification

In the classification step, candidate record pairs are classified either as a match or non-
match, based on their similarity vector. A very simple strategy is to sum up all the
values in the (normalised) similarity vector, and classify it based on the sum and a fixed
threshold. For example, a record pair having a vector with 10 entries could potentially
be a match if the sum was greater than 8. However, this method does not take care of
the situation where the significance of different attribute similarity scores might differ.
When comparing two mobile phone records, the fact that the attribute representing the
model number is similar should probably be of more importance than the color attribute
being similar.

More elaborate methods is therefore necessary, such as the aforementioned probabilistic
record linkage approach. This method puts less significance to attributes that are com-
mon among all candidate record pairs. It also finds potential matches. These matches
are too difficult for the model to predict, and are passed to manual review.

In recent years, matching algorithms exploiting rules, supervised and unsupervised ma-
chine learning techniques, active learning, and crowdsourcing have been developed [17, 1].
An important focus of the research is to improve the accuracy and reduce run time costs.

2.2 Active Learning

Active learning is motivated by the key idea that a machine learning model can achieve
improved performance with fewer labeled data points, if the model itself is able to choose
what data it is going to learn from [19]. AL can be especially effective in a situation
when the availability of unlabeled data is high and easily obtained, but acquiring labeled

Background Theory 14

data is difficult, time-consuming, expensive, or it is difficult to identify a suitable set of
labeled data [19, 20, 10].

A perfect example of such a situation is in EM, where it is easy to gather unlabeled
examples, however the data can be heavily dominated with negative matches. Intuitively
one can imagine that the model’s rate of improvement from having more labeled examples
will diminish along with the increase in the number of labeled examples, especially if
many of those examples have almost the same properties. In addition, some properties
could be easier to learn for the model. E.g. for EM, this could be teaching the model
that a candidate match with no similar features is a negative match. However, the
opposite could be true as well; some properties could be harder for the model to learn.

The goal of AL is in this sense to select the examples from which the ML model will
learn the most, namely the most informative examples, such that the model can achieve
the highest accuracy with fewest labeled examples.

2.2.1 The Active Learning Process

Active learning is an iterative process where in each iteration a set of data points,
known as examples, are added to the set of labeled data and then used to train a new
ML model. This is depicted in Figure 2.2. A traditional ML classification process is
depicted in Figure 2.3.

Model training

The model is trained
on all available
labeled data

Labeted Unlabeled
data data-pool
Labeling Query selection
The oracle labels the The active learner
example which is <€—— decides which
added to the set of labeling instance to
labeled instances query the Oracle

Figure 2.2: Active learning iteration: In each iteration a ML model is trained on the
set of labeled data, then the AL algorithm employs a query strategy to select examples
which are passed to the Oracle for labeling, lastly the new labeled data is added to the
training set and the model retrains. This continues until a stopping criteria is met.

Before the first AL iteration it is necessary to have a ML model that can make predictions
about the unlabeled data. This is typically achieved by training a ML model on a small

Background Theory 15

Untabeted
data-pool

l

Model training Class Predictions

Previously T e (5 et The finished trained Finished
labeled —— > 1 ilabl —— > model predicts which ——— labeled d
data on all avafaie class the data abeled data
labeled data

belongs to.

Figure 2.3: A traditional ML classification process. We start with an initial set of
labeled data in which the model is trained on, then the model makes predictions for the
class of the remaining unlabeled data.

seed, a set of randomly sampled data, however, a pre-trained model can also be used
[1, 19, 21]. The initial model will likely have a low accuracy, but can still be used by
the AL algorithm, the learner, in a query strategy. The query strategy selects a set
of unlabeled examples to be labeled by an Oracle, a human annotator. Different query
strategies exists, some of which will be detailed in the next section. One popular strategy
is called uncertainty sampling, where the examples in which the model is most uncertain
of are selected. The newly labeled examples are then added to the set of labeled data,
which is used to train the model again. This process can repeat until a stop criteria is
met, which could be a time limit, exceeding maximum number of iterations, a certain
matching quality is met, or there are no more unlabeled data available [1].

2.2.2 Query Scenarios

There are different scenarios in which a learner can use a query strategy to select exam-
ples for the Oracle to label. The most common in academia and in real-world problems
is pool-based sampling [19]. In a pool-based sampling situation there exist a large set
of unlabeled data U, and a smaller set of labeled data £. This is also the case in EM,
where the set of candidate matches is the unlabeled pool, and labeled matches is L.
When selecting examples to be labeled, the learner evaluates the whole set U before
finally selecting its queries for the Oracle. In the later sections pool-based sampling can
be assumed if not otherwise specified.

Another scenario is Stream-based selective sampling, where the learner scans through a
set of data sequentially, and decides individually if it should query the Oracle with the
example [19]. An assumption is that retrieving an unlabeled example is inexpensive,
while querying the Oracle is not. The learner must therefore be able to compute if the
example is informative "enough”, either by an informativeness measure, or by computing
if the example lays outside the model’s region of uncertainty, the part of the instances
space that is ambiguous to the learner.

In Membership query synthesis the learner itself can generate examples and query them

Background Theory 16

OOOO
©)

O
OO o

Figure 2.4: Blue line: decision boundary, green: uncertainty sampling, yellow: density-
weighted methods. A simplified example of the difference between density-weighted
methods and uncertainty sampling. Uncertainty sampling might be at a disadvantage
as it might not pick the most informative example. Figure inspired by [23].

to the Oracle for labeling. A downside to this strategy is that it can be hard for a human
Oracle to label an artificially created example [19].

2.2.3 Query Strategies

In each AL iteration, the learner needs to select one or more example(s) for the Oracle
to label, and this strategy for selection is called a query strategy. Traditionally, examples
have been selected based on some informativeness-score or measure, however with the
rise of deep learning new strategies have been developed to cover DL specific needs such
as the importance of more data [19, 20, 10, 21]. Some common query strategies are
detailed below. The experiments presented in chapter 5 use a query strategy based of
uncertainty sampling, which arguably is one of the simpler methods. Diversity-based
strategies are not presented, as they are used when one have multiple Oracles labeling
at the same time. For a comprehensive review of deep learning query strategies not
commonly used for EM, we refer to [22].

Uncertainty Sampling

In uncertainty sampling, the most informative example is the example the model is the
least certain of [19]. The key idea is that the model would learn more from knowing
the label of the uncertain ”difficult” example, than if a more certain ”easier” example
was labeled. In a binary classification setting (such as EM), a probabilistic model would
predict an uncertain example to be positive with a probability score close to 0.5. Con-
sequently, the negative class also has a probability of close to 0.5. The query strategy
would then sample the example with the positive probability score closest to 0.5. This
methods is also called least confidence sampling, and can also be used in a multiple class
setting, as described below. In Figure 2.4 the uncertain example is the one on the blue
line, also known as the decision boundary, the line representing a 0.5 probability score. A
positive certain example would have a score close to 1. Uncertain and certain examples

Background Theory 17

are also known as low-confidence and high-confidence examples, respectively.

When in a multiple class setting, uncertainty sampling still query the most uncertain
example, however there are more ways to compute the uncertainty based on the different
class probabilities. Note that in a binary classification setting, all methods detailed below
reduce to least confidence sampling.

Least confidence sampling simply queries the Oracle with the example, where among
all the example’s class predictions, the most confident class has the lowest prediction
score compared to all other examples. Formally, this is defined as:

Least_Confidence = argmax 1 — Py(y|z)
x

where § = argmax, 1 — Py(y|z), the class label with the highest probability under model
0. y ranges all possible class labels, and x ranges all unlabeled examples. Another way
to look at this strategy is the model’s expected 0/1-loss, or how likely the model believe
it will mislabel the example z. One major disadvantage of this query strategy is the fact
that the model only considers the one most probable class, and discards information
about all the others.

Margin sampling is similar to least confidence, however it considers the difference
between the two most confident classes. If an example has a large margin, the model is
able to easily differentiate between the two most likely classes, however if the margin is
low, the classes are more ambiguous and therefore uncertain. Margin sampling is defined
as:

Margin = argmax Py(j1|z) — Py(fale)
X

where g1 and ¢ are the two most confident classes. A generalization of margin sampling
that have the advantage that it considers all possible class probabilities is entropy
sampling;:

Entropy = argmax — Z Py(yi|z) loga Py(y;|x)
xX .

)

where y; goes over all possible classes. Even though the three uncertainty query strategies
above are similar, there is no one best, and empirical experiments suggest that the choice
of strategy may be application-dependent [19].

Background Theory 18

Query-By-Committee

A different query strategy called query-by-committee (QBC), use several machine learn-
ing models to find the most informative example [19, 24]. All models are trained on
the same set £, but instantiated slightly differently such that they have competing hy-
potheses. The main idea is that the most informative example is the example the most
models disagree on. E.g. in a binary classification setting, a committee of 2 models,
QBC(2), will find informative examples where one model says the example is positive
and the other model says it is negative. There is no one best committee size, but even
small sizes such as 2-3 has shown to work well [24], and further increasing the number
of members does not significantly increase the performance [25].

As mentioned above, each model in the committee needs to be instantiated with a
different hypothesis, and there exists several ways to do this. If this is not done, one
would end up with exactly similar models, and the goal behind QBC is lost because there
is no disagreement. One way is to bootstrap each model separately [19, 10]. If £ has n
instances, bootstrap will randomly select n examples with replacement as the training
set. Since each model most likely ends up with a different training set, they will also
build different model hypothesises, which result in different predictions. Other methods
of creating a committee exists, such as randomly sample models from a distribution, by
partitioning the feature space and training models that considers only specific features,
or randomly selecting model hyperparameters [19, 25].

After the different model hypothesises have been made, they can be used to measure
their disagreement. A common way is to use entropy in a method called vote entropy
[19]:

Ent - _E i log —¥¢)
ntropy arginax C og C

i

where y; again goes over all possible classes, and V) is the number of positive match
labels for class i. Instead of using the class label, it is also possible to use each models
probability score, and this is know as consensus entropy.

Several other committee based methods based on QBC exists, however we will not detail
them here, and refer instead to [19] for a more comprehensive introduction. Common
for all committee based methods is that there is a potential for an significantly increased
run-time overhead when creating and querying the committee members. Compared to
the arguably simpler uncertainty sampling (which only use one model), QBC(n) has to,
for every iteration, create the committee by re-training n models, use them to predict
the class labels in U, and finally compute the disagreement among the predictions. [10]
saw a difference in run-time between QBC and uncertainty sampling by 10-100x, even
though the final Fl-score was similar. With more data and complex models, such as in

Background Theory 19

DL, QBC might therefore not be a suitable method due to the significantly increased
run-time.

Expected Model Change

The key idea behind the query strategies in expected model change (EMC) is to select
the examples, that when the model knew its labels, would make the greatest change
to the current model’s hypothesis parameters [19]. One such query strategy is expected
gradient length (EGL), which can be used when any gradient-based ML model is used,
such as with neural networks. EMC can work well in practice, however is computationally
expensive as it has to re-train the model for every unlabeled example to be able to find
the candidate query examples [26]. [27] found EGL to use an iteration time of over 10x
the time an uncertainty based method used.

Density-Weighted Methods

A drawback of uncertainty, QBC, and EGL based methods is that they are prone to
select outliers that potentially does not improve the model, or even worsens it [19]. This
is due to the fact that the outliers are not representative of the rest of the data. The
reason they select these examples is because they only consider examples in isolation,
i.e. they do not make the query decision based on how the example compare or relate
to the rest of the data.

Density-weighted methods tries to fix this by incorporating into the selection strategy
a measure of how representative each example is. An informative example must, in
addition to being uncertain, also have unlabeled examples that are similar to itself. In
other words, it is preferred if it belongs to a dense cluster of other examples. Settles [19]
show that if the densities are pre-computed, density-weighted methods can be almost
equally as fast as e.g. plain uncertainty sampling.

2.2.4 Challenges with Active Learning

Theoretically, AL sounds like a promising strategy to reduce the number of labeled
examples while performing at a similar level, however there are some challenges related
to it.

Background Theory 20

Feature Extraction and Explainability

Depending on the choice of machine learning model, carefully crafted feature extraction
might be necessary [28]. Classical ML models such as RandomForest is dependent upon
numerical features, e.g. it can not use textual features directly. Before AL can be
started, there is therefore a high initial cost related to generating meaningful features.
In the case of EM, there exists tools such as Magellan! which can help do some of this
feature extraction and generation automatically. What one ends up with are different
similarity features such as Jaccard or edit distance. However, for a human Oracle to
directly use these numerical features to decide if an examples is a match or not might
be hard, and they would likely need to look at the original text representation to make
a decision if it is a match or not. Comparing and using the numerical features with the
raw text might not be straightforward, and it might be hard to reason why the model
believes it is a match or not.

Feature extraction is not necessarily needed in the case of DL, which can use raw text
directly. An example of this is with TPLMs. The problem of explainability of why a
model believes an example is a match or not still persists [5].

Oracle and Time Use

The availability of a person to act as the Oracle is an essential requirement for AL to
take place at all, and depending upon the dataset, a domain expert might be needed. In
practice, the Oracle can not be expected to wait for a long time between each iteration
for the model to re-train and select examples for labeling. In other words, there is an
arbitrary time limit on how long the AL algorithm can use in each iteration. This puts
a restriction of what combination of ML model, dataset size, and hardware that can be
used.

Complexity

There is also simply a need for more programming to set up the environment, especially
related to handling the output and input to and from the Oracle, along with re-training
the ML model. The Oracle has to visually see the examples it is to label, and have the
possibility to label it accordingly. The new labeled examples have to be added to the
rest of the labeled examples £, and a new model trained from this updated dataset.
Some frameworks such as modAL? exist to handle some of this complexity, however it
is still arguably not as easy as to just train a model once on one set of data, as with

!github.com/anhaidgroup/py _entitymatching
*https://github.com/mod AL-python/modAL

Background Theory 21

supervised learning.

Overall, AL can be a more complex activity and requires more effort to set up and
perform compared to e.g. standard supervised learning. In supervised learning all the
training data is labeled only once and there is only one ” AL iteration” of building a
model and using it for e.g. classification.

2.2.5 Alternatives to Active Learning

An alternative to AL that do not use an Oracle is transfer learning (TL), where a ML
model is trained on source dataset(s) before being applied to the target dataset [21]. TL
can suffer from dataset specific properties, meaning that the model learns relationships
in the source datasets that do not hold in the target dataset. However, if the source
datasets are already labeled, there is no need for an Oracle.

A closely related area of research to AL is that of semi-supervised learning, where a
model tries to make use of both the set of labeled and unlabeled data in its training
[19]. In a technique called self-training, a model trains on a small set of labeled data
and then (unsupervised) adds the most confident examples from the unlabeled data to
its training set. It can then repeat this process.

2.3 Transformer Pre-trained Language Models

With the increase in popularity of deep learning it has also become more popular in the
field of entity matching. The last few years Transformer pre-trained language models
(TPLMs) have seen an increase in popularity, achieving state-of-the-art results, while
having other advantages such as no need for hand crafted features.

To limit the scope of the thesis we will not write about other NLP and DL architectures,
however we will focus on what is of interest related to the experiments performed.

2.3.1 Attention

Before TPLMs, seq2seq and encoder/decoder architectures applying Recurrent Neural
Networks (RNNs) were popular in the Natural Language Processing (NLP) field [2].
Traditional encoder-decoders applies an encoder to encode a target sentence to a fixed-
length vector. The decoder takes this fixed-length vector as input and generates an
output sentence (often a translation).

However, as described by [2], some key issues with these approaches led to the develop-

Background Theory 22

ment of attention mechanisms and TPLMs: RNNs are hard to parallelize due to being
mainly sequential, which gives them a time disadvantage due to the inability of paral-
lelization. Another problem is the possibility of information loss when information is
passed through many recurrent connections in the RNN. The decoder takes as input a
fixed-length vector which makes representing all relevant information of long sentences
hard, this is known as the bottleneck problem. Approaches like LSTMs and GRU archi-
tectures tries to allow RNNs to learn the context of words far apart in sentences, however
these dependencies are still hard for RNNs to learn.

Bahdanau et al. [29] presumes the fixed-length vecture to be a performance bottleneck
and proposes allowing the model to pay attention to the parts of the sentence which
are most relevant to the prediction of the next word. Consequently, self-attention was
introduced as a mechanism to master the bottleneck problem. Intuitively self-attention
can be understood as the brains ability to understand which words are relevant to other
words in a sentence. It represents a word as a weighted combination of the words in
its proximity. This makes it possible for the model to pay attention to the parts of the
input with the most relevant information. Using this positional information of the most
relevant words in the source sentence the model tries to predict the next word in the
target sentence.

2.3.2 Transformers

As mentioned, previous deep learning approaches to NLP tasks have had two main issues
that Transformers seek to mitigate. Previous approaches like LSTMs seek to reduce the
problem, however it still remains. These approaches are of a sequential nature which
makes utilizing the parallel advantages of newer hardware not possible. These problems
have been the drivers of the research and development of Transformers.

Transformers as introduced by [30] utilizes attention mechanisms to overcome the information-
loss disadvantages of previous approaches. They were introduced as an architecture not
using RNNs and only using attention. RNNs were replaced by multi-head-attention
layers while keeping the encoder/decoder structure.

The words in the input sentence is represented by word embeddings in combination with
positional embeddings. Positional embeddings are used to represent ordered, sequential
inputs as they do not use recurrence as in RNNs. This mechanism makes it possible
for the Transformer to utilize positions of and distances between words in a sentence.
This approach makes it possible to overcome the bottleneck-problem aswell as allow for
parallelization during training.

Background Theory 23

2.3.3 Models

After the release of [30], several implementations of Transformers have been released.
They vary in the amount of training data in which they have been pre-trained, size
and implementation. In this section the relevant Transformer models of this thesis
are introduced. The reasoning behind why RoBERTa and DistilBERT were chosen is
described in chapter 5.

BERT - Bidirectional Encoder Representations from Transformers

In 2018 Devlin et al. [31] introduced BERT, a Transformer pre-trained language model
(TPLM) which achieved state-of-the-art performance on several natural language pro-
cessing (NLP) tasks, showing the potential of TPLMs. BERT is shortly introduced here,
as it creates the basis for the models introduced below.

BERT trains by trying to predict words that are randomly excluded from sentences. It is
bidirectional meaning instead of using just the context on one side of a word (the words
to the left or right of the word to predict) it considers the entire sentence (technique
called MLM - Masked LM). Which means it looks at the entire sentence at once.

Even though Transformers consists of an encoder and a decoder, BERT only makes use
of the encoder. A sequence of tokens is used as input for the encoder. [CLS] marks
the beginning of a sentence and [SEP| marks the end. Markers are used to separate
between sentences and positional embeddings are used to mark the position of a word
in the sentences. MLM is a technique used during training which replaces 15% of words
with a [MASK] token. The sentences are then run through the encoder and the masked
words are predicted. However, to make the model predict words even if the token is
not present, 10% of the mask tokens are replaced with random tokens and 10% of the
masked tokens remain unchanged (not masked).

RoBERTa

Several models have been released after the initial publishing of BERT, generally trying
to improve on its performance by doing various optimizations. Liu et al. [32] presents
the challenge of interpreting which elements of subsequent models which actually lead
to their respective performance gains. These challenges were caused by limited tuning
possibilities due to computationally expensive training, as well as training data being
private. Suggesting BERT was significantly undertrained, they present the Robustly op-
timized BERT approach (RoBERTa), which is a model resulting from a more optimized
training approach of BERT. They conclude that training BERT in this manner will yield
competitive results to BERTSs more recent alternatives.

Background Theory 24

DistilBERT

Other approaches seek to create lighter and faster models while retaining as much of
the performance advantage of heavier models as possible. Sanh et al. [33] introduces
DistilBERT, a pre-trained version of BERT which aims to be faster, cheaper and lighter
than BERT. They utilize knowledge distillation, a method in which a smaller model is
trained to reproduce a larger models behaviour, during pre-training. They manage to
hold on to 97% of BERTSs language understanding capabilities, while being 60% faster
and reducing the model size by 40%.

2.4 Performance Measures

In order to quantify the performance of an EM system, some common performance
measure are used, namely precision, recall, and F1 [1]. These are not unique to EM,
but have their origin from the field of information retrieval. In order to evaluate the
performance, or quality, of an EM system it is often a requirement to have a set of gold
standard data. This is a set of labeled data that are known to be correct, normally
made by manual labeling. In practice, if the gold standard is of sufficient size and
of a representative distribution, it can be used to evaluate an EM system on a larger
target dataset. However, it is important to keep in mind that even the manually labeled
gold standard is likely to contain labeling errors [1]. The quality of the gold standard
will therefore also have implications for the quality of the matching system, and its
performance measures.

The performance measures mentioned below are given as a standardised value p, where
p € [0,1]. A higher value indicates a higher performance in the respective measure.

A record prediction can be put in one of four different categories:

True positives (TP). An actual match (true match) is correctly predicted as a
match. The two records in the candidate match refer to the same entity.

e False positives (FP). An actual match is wrongly predicted as a non-match. The
two records in the candidate match refer to the same entity, however the classifier
did not manage to predict the correct label.

e True negative (TN). An actual non-match (negative match) is correctly predicted
as a non-match. The two records in the candidate match refer to two different
entities.

e False negative (FN). An actual non-match is wrongly predicted as a match. The
two records in the candidate match refer to two different entities, however the
classifier did not manage to predict the correct label.

Background Theory 25

An arguably naive way to measure the performance of an EM classifier is to look at how
many correct predictions it made:

B TP +TN
TP+TN+FP+FN

acc

This is the accuracy of the classifier. Since EM is typically an imbalanced classification
task, the accuracy of a classifier can give the wrong impression of its performance, given
certain conditions. Imagine a situation where 10% of the candidate matches are true
positive. By predicting all examples as negative matches, the classifier would have an
accuracy score of 0.9, however 0 matches were actually found. The measures below
are more appropriate for EM [1], where there typically is a significant imbalance of
positive/negative matches.

2.4.1 Precision

Precision is a measure of how precise the classifier is in predicting true matches. It does
not suffer from the imbalance problem of accuracy, by not incorporating the number of

true negative matches.
TP

TP+ FP

Precision give insight into how many of the true matches were correctly classified. A
high precision is necessary if a requirement of the EM system is to not wrongly label
matches.

precision =

2.4.2 Recall

Recall is a measure of how many of all the true matches were classified correctly.

TP

l=—"
reca TP—|—FN

A low recall means that the classifier had many matches it could not ”find”, and wrongly
labeled those matches as negative.

2.4.3 F1l-score

It is possible to have a high precision and low recall, and vice-versa. If a classifier is
only predicting a few examples as matches, but all those examples are true matches, it
has a high precision. However, if many true matches are left wrongly labeled as non-
matches, the recall is low. Ideally, one wish to have both a high precision and recall. In

Background Theory 26

this situation a high percentage of the predicted true matches are correct, and few true
matches are wrongly labeled.

Fl-score (also known as f-measure) combines precision and recall as a weighted measure,
and is the harmonic mean between them [1].

precision X recall

Fl1=2x

precision + recall

A high Fl-score means both precision and recall is high.

In recent years, the use of measures that incorporates imbalance, like precision, recall,
and Fl-score, has become more predominant in computer science literature over accu-
racy [1]. In recent EM literature, Fl-score is commonly used to measure the overall
performance of an EM system, while recall is used to measure the performance of a
blocking strategy [17, 10, 15]. Depending on the goal of the EM system, using precision
might sometimes make more sense. This is especially the case if there is no acceptance
for wrongfully labeled positive matches.

Chapter

Related Work

This thesis is mainly concerned with the fields of AL, EM and DL. In this chapter we
will present related work in the AL and DL field separately as well as in combination,
specifically focusing on the task of EM. We will also shortly present related work focusing
on AL with classical machine learning methods for the field of EM.

Transformer Pre-trained Language Models for Entity Matching

Brunner and Stockinger [2] was among the first papers to put Transformer pre-trained
language models up against traditional machine learning and deep learning for en-
tity matching. They showed how several popular models can be used without any
task-specific architecture, and still achieve state-of-the-art Fl-scores. They found that
TPLMs outperformed previous state-of-the-art DL models by an average of 27.5%.
Among the models tested, RoBERTa got the best results, while DistilBERT was the
fastest, using only around half the training time of ROBERTA. Although their work is
focused on EM with TPLMs, AL and EM in low-resource environments is not a consid-
eration in their work.

Peeters et al. [34] further optimize the BERT model for EM by having one more training
step before fine-tuning the model for the target EM dataset. This extra training step
works much in the same way as the original training of the BERT model, however the
data are from EM datasets. In this way the model is more specialized for EM and
they achieve higher F1-score, but there is an increased need for labeled data, processing
power, and time.

Li et al. [3] presents a system for EM, DITTO, where pre-trained Transformer based
language models are employed for EM. Although their work is not primarily focused

Related Work 28

on EM in a low-resource scenario, they achieve previous state-of-the-art results with no
more than half the training data. In addition to train the language models for EM tasks,
DITTO uses three methods to improve the F1 score and reduce the size of necessary
training data.

The first method makes it possible to manually insert domain knowledge in the training
data, in order to highlight to the model which features are especially significant. The
intention is that the model will pay more attention to these features. The two types of
domain knowledge that can be inserted are span typing and span normalization. Span
typing can let the model differentiate between numeric values such as street numbers,
years, or product ids. Span normalization allows for standardization of values and at-
tribute names. For example, 717.00%” and ”17%” are equal, using span normalization
these can be rewritten as ”17%”.

The second methods aims to preserve only the most important information in records
that are too long for the language model. This is done by removing stop words and
preserving frequent words. The third method use data augmentation techniques to create
more training examples. Examples of record augmentations employed are to delete or
shuffle both spans and attributes. In order to circumvent the possibility of making a
match into a non-match, e.g. by deleting an important attribute, they also employ a
recent NLP data augmentation technique called MixDA [35].

The results show that the optimizations improve the Fl-score compared to previous
state-of-the-art on public datasets. In addition to performing well on small datasets with
few training examples, it requires less labeled examples to perform similar to previous
state-of-the-art on big datasets. Their work is similar to ours in that their method
is evaluated against partitions of the training data, and transformer architectures are
applied for EM. However, we evaluate generalized AL strategies and do not apply domain
knowledge, data augmentation or string summarization. A disadvantage of DITTO is
the need of specific dataset knowledge required by a domain expert in order to insert
domain knowledge, and longer train time when doing data augmentation.

Active Learning for Entity Matching

Meduri et al. [10] test combinations of AL strategies and classical machine learning
models on common public EM datasets. Aiming to provide a framework for researchers
detailing which combinations work well for EM. Their results show uncertainty sampling
and QBC performing on par, with uncertainty sampling consistently using less iteration
time. Their best result was obtained using an implementation of QBC with Random
Forest. Their experiments includes rule-based classifiers which achieved lower F'1-scores,
however were much more interpretable. Their approach with uncertainty sampling is
very similar to ours, however they do not combine these with TPLMs.

Related Work 29

Deep Active Learning

Perhaps most similar to our work is Kasai et al. [21] which targets the common setting
where the availability of labeled target data is low. The main difference being their use
of transfer learning and the fact that they do not use TPLMs. In addition, we evaluate
combining the use of AL with traditional ML methods and AL with TPLMs to speed
up the labeling process.

By using TL followed by AL with traditional DL methods, they achieve similar or better
results with less data than previous state-of-the-art methods. Their TL approach require
access to other similar datasets which are labeled. However, their TL and AL techniques
are independent, and the AL approach can be used individually if datasets for TL are
unavailable. They create a neural network architecture which learns from labeled source
datasets, then apply AL to find examples from the target dataset which the network
can train on. Their approach is evaluated on common public benchmarking datasets for
EM.

They use an AL algorithm specialized for DL models and the EM task, by trying to select
a balanced set of positive and negative examples. They split the predicted examples into
groups predicted to be matches (prediction > 0.5) and non-matches (prediction < 0.5).
For both groups they calculate the entropy for each example based on the predictions
given by the model. For each group they select the k£ examples with the highest entropy.
These are named likely false positives and likely false negatives (LFP/LFN), depending
on which group they are selected from. These samples are labeled by the Oracle. They
also select the k pairs from each group with the lowest entropy, named high-confidence
positives and negatives (HCP/HCN). The high-confidence examples use their label from
the predicted label, i.e, they are labeled in an unsupervised manner.

This algorithm makes it possible to supply the model with twice as much training data
as the Oracle has labeled. The reasoning behind this method being that traditional DL
models are known for requiring huge amounts of training data to build a usable model
from ’scratch’. Even though some predicted labels might be wrong the advantage of
having more training data might be greater than the disadvantage of some labels being
wrong. HCP/HCN examples are selected to prevent the network from overfitting to
select uncertain examples ([36]), LFP/LFN to improve precision and recall ([37]).

Active Learning with Transformer Pre-trained Language Models

Ein-Dor et al. [27] tests AL strategies for the problem of binary text classification using
TPLMs. They use a variety of query strategies, covering uncertainty sampling, QBC,
density-weighted and EGL based methods. In addition, they use a method presented
in [38] originally created for image classification, Core-Set. They evaluate AL in three

Related Work 30

scenarios differing in the positive/negative balance of the training set. Their results
show that AL works better than random sampling, but there is not one single query
strategy that consistently performs well. In addition, they show that the AL strategies
can quickly generalize the model and increase recall as a result. They also recommend
trying a combination of AL strategies which excel in choosing representative (density-
weighted) and diverse (core-set) examples for further work.

Active Learning with Transformer Pre-trained Language Models for Entity
Matching

Jain et al. [4] utilizes AL for EM and proposes including the blocker in the AL loop. A
traditional EM process do blocking before the matching step. However, they suggest the
blocker and the matcher can concurrently benefit from the newly labeled matching-pairs
during each AL iteration. As a result, their approach consists of an integrated blocker
and matcher named DIAL. DIAL uses TPLMs and their method is evaluated on several
public datasets, receiving significant improvements over several previous state-of-the-art
results for both blocking and matching.

Their paper was submitted in April of 2021 and their work is very similar to ours in many
ways. As we have done, they test AL with TPLMs for EM. However, they include the
blocking step in the AL loop while we disregard blocking. They use a novel QBC-based
indexing query strategy, and while it performs well, it also required more processing
power and iteration time. In contrast, we evaluate a combination of classical ML with
AL and TPLMs as a method to speed up the process.

Chapter

Data

This chapter presents the datasets used for the experiments in the thesis. In addition to
detail the structure of the datasets, examples of matches and non-matches are presented.

4.1 Public Datasets

The datasets used in this thesis are a selection of some of the most common public
datasets used for EM benchmarking [17], shown in Table 4.1. These datasets exists in
several different versions in different papers, with different pre-processing being done,
with and without fixed splits.

We have chosen to use a selection of datasets from the DeepMatcher project! [28], similar
to [3, 4]. This specific distribution has dataset specific pre-processing and blocking.
There are fixed splits for train, validation, and test set with a ratio of 3:1:1. The fact
that the datasets are already blocked means that we do not have to think about the
blocking stage in the EM process, and can solely focus on matching. The datasets fixed
splits and the fact that they are already blocked makes it easier to compare our results
to others who used the same datasets.

Mudgal et al. [28] contributed a categorization of EM datasets in order to interpret in
which EM problems DL accelerate. They divide the relevant datasets in two categories;
Structured EM and Textual EM. Structured datasets have properly aligned attribute
values and textual attributes only of short lengths. Its entries are regarded as relatively
clean. Textual datasets have only textual attributes.

"https://github.com/anhaidgroup/DeepMatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/DeepMatcher/blob/master/Datasets.md

Data 32

Table 4.2 shows the number of positive examples in each of the datasets respective
train/test/validation splits. These numbers can be important, because when using cer-
tain AL strategies, the model might run out of positive examples during the AL iteration.

Table 4.1: The datasets in our project, as provided by DeepMatcher. NA 4 and NAp
represents the number of missing values in records_a and records_b respectively. E.g.
for Amazon-Google Amazon has 4.87% missing values, while Google has 29.65%. WC
denotes the average number of words in A and B, when all attributes are concatenated
and numerical values are ignored.

Name Domain Size Attr. NAy4 (%] NAp %] WCs WCp
Amazon-Google Software 11,460 3 4.87 29.65 8.1 8.2

Abt-Buy Products 9,575 3 20.44 28.79 471 17.1
Walmart-Amazon Electronics 10,242 5 2.33 9.41 14.2 15.2
DBLP-ACM Literature 12,363 4 0.0 0.15 18.3 21.8
DBLP-GoogleScholar Literature 28,707 4 4.1 19.37 16.2 18.8

As previously stated all datasets used in the project are common public EM datasets
often used for benchmarking EM solutions. All of these are originally created from exist-
ing websites containing data of software, electronics, consumer products and academic
literature The datasets consists of five tables: records_A (A), records_B (B), train, test
and val. A and B represent entities from two different sources, e.g. in Walmart-Amazon
A contains products from Walmart and B contains products from Amazon.

Train, Test and Validation each contain three columns: ltable_id, rtable_id and label.
Itable_id and rtable_id are referring to records in A and B respectively. Label can either
be 1 or 0 depending on whether the two records from A and B are regarded as matching
or not. As shown in Table 4.2 each Train/Test/Validation split is in the ration of 3:1:1.
The table showcase how many examples are in each split, and how many of those that
are positive matches.

Examples of record-pairs from the five datasets are shown in Table 4.3. Amazon-Google
is concerned with software products. Google containing a lot more missing values than
Amazon. The dataset is not very textual with pretty short sentences. DBLP-ACM

Table 4.2: Size and number of positive examples in the dataset-splits of the datasets.

Dataset Matches Train Test Validation Total
[%Pos| [Pos/Tot] [Pos/Tot] [Pos/Tot] [Pos/Tot]
Amazon-Google 10.17 699/6874 234/2293 234/2293 1167/11460
Abt-Buy 10.73 616/5743 206/1916 206/1916 1028/9575
Walmart-Amazon 9038 576/6144 193/2049 193/2049 962/10242
DBLP-ACM 17.96 1332/7417 444/2473 444/2473 2220/12363

DBLP-GoogleScholar 18.62 3207/17223 1070/5742 1070/5742 5347/28707

Data 33

has almost no missing values, but is more textual than Amazon-Google, however quite
similar to Walmart-Amazon and DBLP-GoogleScholar. DBLP-GoogleScholar is slightly
less textual, however has significant amounts of missing values. Walmart-Amazon has
some missing values and slightly longer sentences. Abt-Buy has significant amounts of
missing values, and is the most textual dataset. However, the sentence length difference
between Abt and Buy is large.

"https://github.com/anhaidgroup/DeepMatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/DeepMatcher/blob/master/Datasets.md

Data

34

Table 4.3: An overview of what the rows in the five datasets can look like, as well as
examples of matches/non-matches. Note that some of these examples are difficult, and
therefore more likely to be false negatives/positives.

Amazon-Google

Match Table Title Manufacturer Price
A peachtree by sage complete accounting 2007 sage software 269.99
True
B sage software peachtree complete accounting 2007 software for windows finance software 249.95
tax
hoyle card games (jewel case) jungle software 399.0
False
B encore software 10027 hoyle board games (win 98 me 2000 xp) NA 7.47
DBLP-ACM
Match Table Title Authors Venue year
A storage technology : raid and be- garth a. gibson sigmod conference 1995
yond
True
B tutorial on storage technology : garth a. gibson international conference on 1995
raid and beyond management of data
A 0-0 , what ’s happening to db2 7 richard swagerman , nel- sigmod conference 1999
son mendon¢a mattos ,
False .
mich(...)
B 0-o0 , what have they done to db2 (...)ielau , richard swager- very large data bases 1999
? man , nelson mendon (...)
DBLP-GoogleScholar
Match Table Title Authors Venue Year
True A application servers and associated technologies NA NA 2002
B advanced technology seminar : application servers and asso- ¢ mohan 19 thiee(...) NA
ciated technologies
A hector garcia-molina speaks out m winslett nan 2002
False
B hector garcia-molina speaks out regarding startups , how life m winslett sigmod 2002.0
is getting harder , delta papers , cs in record ,
Walmart-Amazon
Match Table Title ModelNo Category Brand Price
A samsung clp-500rb opc drum clp-500rb printers samsung 199.88
True
B samsung opc drum for clp-500 clp-500rb / xaa NA samsung 156.44
series clp-500rb xaa
A hon 600 series two-drawer lateral 6821p stationery & office hon 449.94
file black machinery
False
B hon 582lp - 500 series two-drawer NA NA hon NA
lateral file 36w x28-3 8h x19-1 4d
black
Abt-Buy
Match Table Name Description Price
True A garmin 010-10823-00 black nuvi 660 ve- garmin 010-10823-00 black nuvi 660 vehi (...) 46.0
hicle suction cup mount 0101082300
B garmin suction cup mount 010-10823- NA 24.84
00
) A sony silver cyber-shot digital camera sony silver cyber-shot digital camera dscw150 8.1 NA
False
dscw150
B sony cyber-shot dsc-w150 digital cam- NA NA

era black dscw150/b

Chapter

Method

This section gives an overview of tools and libraries used, the experiments conducted
and their respective method, as well as justification for methodical choices.

5.1 Tools

Different python libraries have been used to load and manipulate data, and to perform
EM with the use of TPLM and AL.

Magellan (py_entitymatching)! is the library made by the Magellan project ([17]). It
contains a wide range of entity matching methods, from blocking, sampling, generating
similarity features, debugging, and matching using machine learning models. In our
experiments, Magellan is used to automatically generate string similarities for the Hybrid
approach described in subsection 5.3.3.

modAL? is an active learning framework, built on top of scikit-learn. In Hybrid it is
used to assist in the implementation of the AL iterations.

scikit-learn? is a popular machine learning library, with different algorithms for classifi-

cation and data processing. We utilize scikit-learn’s Random Forest Classifier in Hybrid.

huggingface! is a popular Transformer framework, making developing Transformer

"https://pypi.org/project /py-entitymatching/
https://github.com/mod AL-python/modAL
3https:/ /scikit-learn.org/stable/
“https://huggingface.co/

Method 36

architectures easier. In our experiments it is used for a variety of tasks which has to do
with the Transformer models, like loading the TPLMs models, tokenization of records,
and the final training and testing.

pytorch-lightning® is a framework on top of the deep learning library pytorch. It
streamlines and simplifies writing and running DL experiments. pytorch-lightning is
used in conjunction with huggingface to preform the experiments.

5.2 Experimental Setup

To validate the results, each experiment has been run 3 times, and in chapter 6 the
average of the three runs are reported. Each run of each experiment used the same
random seed, such that all experiments can be reproduced later. In other words, the
first run of each experiment used ”1” as the random seed, the second run used ”2”, and
the third used ”3”. The experiments were run on a single Nvidia V100 GPU with 16
GB of memory, on an Intel Xeon CPU with 28 cores.

In our preliminary experiments, RoOBERTa [32] and DistilBERT [33] were both evalu-
ated as TPLMs. RoBERTa received in most cases higher F1-scores, with slightly higher
iteration time compared to DistilBERT. Brunner and Stockinger [2] analyzed recent
transformer architectures for EM and RoBERTa received the highest Fl-scores in gen-
eral, and Li et al. [3] chose RoOBERTa for the same reasons. By using the same model
as the closest related work, we can more easily compare out result to theirs. Due to
these factors RoOBERTa has been the TPLM of choice in the experiments. Implications
of using different TPLMs for AL is further discussed in chapter 7.

5.2.1 Hyperparameters

The TPLM in each experiment was trained on 12 epochs, with a batch size of 16. Li et al.
[3] used a variable amount of epochs (10, 15, or 40) depending on the size of the dataset
being tested on, and Kasai et al. [21] used 20. However, because of different hardware
being used and our wish to simplify the experimental setup, we did not change the
model parameters between experiments. 12 epochs was chosen empirically by testing the
RoBERTa model with 200 randomly sampled examples. Fewer epochs often resulted in
an initial F1-score of zero, making it futile to use the model in a query strategy, as it could
not give any useful predictions. Using more epochs gave better initial results, however
resulted in longer training times. Consequently, we chose to run all experiments on all
datasets with 12 epochs, as the trade-off between longer running time and prediction
performance seemed reasonable.

https://www.pytorchlightning.ai/

Method 37

The batch size of 16 is the same as [21]. Choosing a larger batch size resulted in errors
during training due to the (sometimes) small amounts of training data. The optimization
algorithm was Adam [21], with a linear learning rate of 3e-5 [3, 2].

More hyperparameters can be tweaked, and the fact that there is no benchmark to use
when doing AL or EM with TPLM is a recommendation for further work, see chapter 7.

5.2.2 Tokenization

TPLMs take a token embedding as input, where the token has to be encoded from a
single string. Therefore, one challenge is to convert a candidate record pair consisting of
record a and record b, to one meaningful representation the language model can work
with. At the same time preserving some of the inherent information in the data, such
as the attribute name and value.

Following [3], we have serialized (s(e)) each record example (e) in the following manner:

s(e) = [COL]attr; [VAL]valy ... [COL]attry [VAL|valy, e = {(attr;,val;) h<i<k

[COL] and [V AL] are tokens which have been used to indicate to the model that the
next value is the start of an attribute name or value respectively. Table 5.1 shows an
example of such a tokenization of an example match from Walmart-Amazon.

Table 5.1: Example of a tokenization of the Walmart-Amazon example match presented
in Table 4.3

Table Encoded string

Walmart COL title VAL samsung clp-500rb opc drum COL category VAL printers COL
brand VAL samsung COL modelno VAL clp-500rb COL price VAL 199.88

Amazon COL title VAL samsung opc drum for clp-500 series clp-500rb xaa COL cate-
gory VAL nan COL brand VAL samsung COL modelno VAL clp-500rb / xaa
COL price VAL 156.44

To tokenize two serialized candidate pairs, we have used AutoTokenizer from the hug-
gingface library. This tokenizes the records specifically for the language model being
used. In the case of RoBERTa it adds a special < s > token to the beginning of the
token to indicate to the model that it is a classification task.

Method 38

5.3 Experiments - Query Strategies

Detailed below is the different query strategies representing the different experiments
performed. The result of each query strategy can be viewed in chapter 6.

With the exception of Hybrid and Hybrid-Partition-2, all other strategies was initialized
with an initial training set, £;, of 200 randomly sampled examples from the train set of
the respective dataset. As these have been chosen randomly for each run, the rate of
positive examples approximates the positive rate found in the training set, see Table 4.2.

Each active learning strategy started by training the TPLM on £;. The query strategy
then chose new examples from the unlabeled pool U, which were labeled by the Oracle.
The new examples were then removed from U, and added to L£;, from this point just
called £. The TPLM model was then discarded, and a completely new model trained
on L. The query strategy could then select new examples with the updated model.

For each iteration the model was asked to predict the test set, the results of these
predictions are reported in chapter 6. This prediction step of the test set is independent
of the AL loop and only performed in order to be able to report results for each iteration.
The test set was never changed.

Like this the iterations continued until a stopping criteria was met, which in our ex-
periments have been the number of iterations necessary to reach 1000 labeled exam-
ples, given the model is able to select K examples in each iteration. This amount to
(1000 — 200) /40 = 20. The number 1000 have been chosen in order to make the running
of all experiments finish within a reasonable amount of time.

Common for all experiments was that K = 40 examples have been labeled manually in
each iteration. This value was chosen empirically following [21], and from computational
time limitations. By decreasing this value, a higher amount of iterations, and therefore
a longer total runtime, would be needed to complete the experiments. The Oracle have
in our experiments been the ”matching” column of the specific dataset’s gold standard.
I.e. when an example has been labeled "manually” by the Oracle, the specific example’s
gold standard label was used. The "matching” field was not visible for the model when
doing prediction.

5.3.1 Baseline

We have implemented Baseline as an equivalent to a standard supervised strategy of
randomly labeling examples. In this way we can compared the performance of an AL
strategy, to see if there are any improvements over random sampling. The baseline
results have been retrieved by labeling and training on a random selection of examples,

Method

39

(a) Partition-2.

Unlabeled Pool, U

Unlabeled Pool, U
Id | Prediction HCP
9 | 0.998 HCcP
HCN
6 | 0.995 HCN
7 |0.778 \
N
5 | 0.665 > LcP
N
0 | 0478 — LCP
~—> LCN
8 | 0.450 p Y LCN
1 | 0.097
3 | 0.011

(b) Partition-4. HCP/HCN and LCP/LCN are all labeled by the Oracle.

Id | Prediction
9 |0.998

HCP
6 |0.995 HoN
7 | o778
5 | 0.665 —) Lcp
0 |0478 —— LCN
8 | 0.450
1 | 0.007
3 | 0.011

Unlabeled Pool, U
Id | Prediction
9 | 0.998
LCP
6 | 0.995 LCP
7 o778 LCN
LCN
5 | 0.665
0 | 0.478
8 | 0.450
1 10.097
3 | 0.011

True
True
False

False

Qracle

Labeled instances, L

7

Id | Match
9 | True
6 | True
1 | False
3 | False
7 | True
5 | False
0 | False
8 | True
correct, i.e.

HCP/HCN predictions are assumed to be
matches/non-matches respectively. LCP/LCN are labeled by the Oracle.

Labeled instances, L

Id | Match
9 | True
3 | True
5 | False
0 | False

Labeled instances, L

Id | Match
7 | True
5 | False
0 | False
8 | True

(c) Uncertainty. Only LCP/LCN predictions are labeled by the Oracle.

Figure 5.1: Comparison of Partition-2, Partition-4, and Uncertainty sampling. For
each strategy in the example above, k = 4 examples are labeled by the Oracle. Partition-

2 additionally labels 4 examples unsupervised. In the full experiment k£ = 40.

Method 40

using Numpy’s random.choice() method without replacement. This method initially
trains on L;, then chooses 40 random examples which are labeled by the Oracle and
added to £;. The model can now train on its updated labeled set £. This continues in
each iteration, and simulates the query strategy of naively labeling random examples.

5.3.2 Partition Sampling

In January of 2021 when we started this thesis Kasai et al. [21], see chapter 3, were one of
few which had conducted experiments using AL with DL for EM. As their query strategy
was one of few specifically aimed for DL and EM, we wished to include their strategy
in our experiments. They argued that by selecting both high-confident and uncertain
examples, the model would be more resistant to overfitting while improving precision
and recall. In the following sections this strategy is referred to as Partition-2. Figure 77
shows an example of the two partition-strategies as well as uncertainty sampling.

Partition-2

Partition-2 tries to select a balanced set of examples comprised of k& high-confidence
positive (HCP), k high-confidence negative (HCN), k low-confidence positive (LCP),
and k low-confidence negative (LCN). In our experiments k£ = 20. Note that low-
confidence examples are also know as uncertain examples, and this terminology might
be used interchangeably.

Partition-2 works by partitioning each example in U into one of two subsets, based on
whether the model predicts the example to be a positive or negative match. From each of
these subset k high-confidence and low-confidence examples are selected. This results in
the four partitions HCP, HCN, LCP, and LCN. The confident examples are the examples
the model was most certain about in its prediction, while the opposite is true for the least
confident examples. In practice, the two subsets can be sorted based on the prediction
score. The k topmost and bottom examples are the high-confidence and low-confidence
examples, respectively. HCP and HCN were automatically labeled in an unsupervised
manner, while LCP and LCN were labeled manually by the Oracle. This results in 40
examples which are manually labeled, and a total of 80 labeled examples.

Partition-4

We have implemented a similar query strategies which only differ in how it handles the
high-confidence partitions. While the low-confidence examples are manually labeled by
the Oracle, Partition-2 use the model’s predictions to label the high-confident ones. This

Method 41

means it is prone to label data wrong, however it doubles the number of labeled data
returned for each iteration.

The Partition-4 query strategy’s implementation have been almost equal to that of
Partition-2 however the HCP and HCN examples have been labeled manually by the
Oracle. To accustom this, k is set to 10 instead of 20. This means that the strategy
is not prone to label examples incorrectly, however it only labels half the amount of
training data in each iteration. We chose to include both experiments to compare the
effect of labeling examples in an unsupervised manner.

5.3.3 Pre-select Examples With Traditional Machine Learning and Ac-
tive Learning

One of the experiments completed in this thesis have been to test whether classic machine
learning methods can be used to improve and speed up the initial labeling effort required
when training a Transformer model such as BERT. In the following sections this strategy
is referred to as Hybrid Active Learning, or Hybrid for short.

Even though TPLMs such as BERT can give correct predictions out-of-the box without
any specialized training, this is not true in many cases.

This can be a problem if one are to use a TPLM in the AL iterations, when using query
strategies which are dependent on the predictions of the model. If the model is not
performing at a sufficient level, it is not able to make predictions that can be used by
the query strategy [27]. One example of such a situation is when the model predicts all
examples as e.g. negative matches. The query strategy can not choose positive matches
to be labeled, thus likely resulting in an even more unbalanced training set. To fix this,
the TPLM needs to be trained on an initial set of labeled examples.

Deep learning models require large amounts of training data [21], while traditional ML
models often can perform well with much less. The motivation is therefore to use a
traditional ML model and AL to choose a balanced, but at the same time varied training
set for the transformer model. This might make The transformer model achieve a higher
Fl-score initially, as a result giving more accurate predictions and the following query
strategies will hopefully be more successful.

The motivation is somewhat similar to the Imbalanced-practical scenario in Ein-Dor et al.
[27], where a user "manually” tries to sample a set of positive examples from a highly
imbalanced dataset. Whereas they use simple regex rules, which ultimately result in a
sample of very similar examples, this thesis use AL with a classical ML model.

Method 42

Hybrid

Hybrid is the name we have given the strategy of using a Random Forest (RF) model
with Partition-4 to create the initial training data for the TPLM, £;. The method does
AL with an RF model, starting with an initial random labeled set which is an order of
magnitude smaller than what is normally required when using a TPLM. In a practical
scenario, the domain expert acting as an Oracle would use this method to label as
many examples as they have time for. When stopping, the updated set £; would then
be used to train a TPLM which would predict 4. The next paragraph introduces the
implementation in detail.

For each dataset, the most discriminating field is manually selected, e.g. "name” in a
product dataset, and Magellan is used to generate string similarity features automatically
for this field. 10 random examples are labeled and used to train the initial Random
Forest model, and removed from the unlabeled pool U. Next, the labels of all remaining
examples in U are predicted by the model, and 4 examples are selected and labeled
according to Partition-4, however here K = 4 and not 40. The labeled examples are
saved, and later used as training data for the TPLM. The iterations continue until all
examples are labeled. To be able to compare this method to the other strategies, this
method has been tested for the same iterations as the rest.

Hybrid-Partition-2

Hybrid-Partition-2 is a combination of Partition-2 and Hybrid. The initial training
examples are selected from the first 200 Hybrid examples, while the next iterations use
normal Partition-2 with the TPLM to select new examples to label. The motivation
behind the implementation of this experiment was hypothesizing that the improved F1-
score of Hybrid with 200 examples could help the query strategy choose better examples
during AL. In turn further improving the model, its predictions and its F1-score.

5.3.4 Uncertainty Sampling

Uncertainty sampling is a common query strategy in AL, and is described in detail in
chapter 2. For each iteration the query strategy selects the K most uncertain examples,
based on the models prediction of the unlabeled set L. The chosen examples are the
K examples closest to 0.5 in the models prediction. In previous work, particularly
considering AL with classical ML. methods like RF, uncertainty is usually one of the
most popular and best performing strategies [10]. Consequently, evaluating uncertainty
sampling in our AL experiments with TPLMs seemed natural. In addition, Uncertainty
is very similar to Partition-4 and Partition-2 making it possible to discuss the differences
in their results.

Chapter

Results

In this section the results of the experiments are presented, along with a brief comparison.
As mentioned in chapter 5, all experiments have been run 3 times, and the average result
is what is presented.

First the results of the different experiments with respect to F1-score are presented, then
some selected results with respect to time usage and standard deviation are presented.
The results are discussed in detail in chapter 7.

All query strategies, except Hybrid and Hybrid-Partition-2, have been deterministically
seeded with the same seed and were therefore initially trained on the same randomly
sampled examples. They therefore started with the same Fl-score, as can be seen in
the figures. In later iterations the query strategies selected different examples to label,
and their scores will consequently differ. As explained in chapter 5, Hybrid and Hybrid-
Partition-2 get their examples from the classical Random Forest model, and therefore
start at a different score.

6.1 Query Strategies Compared With Respect to F1-score

Figure 6.1 show the result of the experiments with respect to Fl-score over an increasing
number of labeled examples. The number of labeled examples is equal to the size of the
training set for all experiments, except Partition-2 and Hybrid-Partition-2 where the
training set is comprised of supervised and unsupervised labeled examples, as explained
in chapter 5. For all plots, Baseline show the random query strategy in blue. The red
stippled Baseline-Max line show the score when all available training data have been
used to train the TPLM. Since this is the maximum score this model can achieve, it is

Results 44

also the target Fl-score for the AL strategies.

Table 6.1: Initial Fl-score at 200 labeled examples. Highest score is highlighted. One
can see that pre-selecting examples results in a higher initial Fl-score. Hybrid and
Hybrid-Partition-2 use this strategy, while the other query strategies select the initial
training set randomly, same as Baseline

Dataset Baseline Hybrid
Amazon-Google 0.249 0.528
Abt-Buy 0.497 0.631
Walmart-Amazon 0.258 0.603
DBLP-ACM 0.954 0.970

DBLP-GoogleScholar 0.903 0.914

Table 6.2: Final Fl-score after 1000 labeled examples for Baseline and all query strate-
gies. Highest score is highlighted. One can see that Partition-2 and Hybrid-Partition-2
have the highest final F1-scores. HP-2 = Hybrid-Partition-2, P-4 = Partition-4.

Dataset Baseline Partition-2 HP-2 Uncertainty P-4 Hybrid
Amazon-Google 0.591 0.706 0.696 0.679 0.665 0.645
Abt-Buy 0.833 0.914 0.897 0.893 0.889 0.864
Walmart-Amazon 0.793 0.866 0.873 0.572 0.851 0.768
DBLP-ACM 0.977 0.990 0.990 0.988 0.987 0.981
DBLP-GoogleScholar 0.938 0.953 0.951 0.950 0.948 0.930

From the figures one can see that all query strategies performed similar or better than the
random baseline. Overall, Hybrid-Partition-2 and Partition-2 were the best performing
ones, and had consistently among the highest F1-scores.

Partition-2 had on average a 0.06 higher F1l-score compared to Baseline after 1000 ex-
amples, ranging from 0.013 to 0.115 higher Fl-score across the 5 datasets. The final
Fl-score for all the strategies can be seen in Table 6.2.

Hybrid always started with a higher initial F1-score, but was quickly surpassed by the
other strategies, and ended up at a lower score. In Walmart-Amazon it had a 0.35
higher F1-score than the other query strategies at the initial starting point of 200 labeled
examples, however ended up 0.10 behind Partition-2 at 1000 examples. In all datasets,
except DBLP-GoogleScholar and Walmart-Amazon, Hybrid performed better than the
random baseline after 1000 labeled examples.

Hybrid and Hybrid-Partition-2 started on average with a 0.16 higher F1l-score across
all datasets, with an initial F1-score ranging from 0.011-0.345 higher than the others.
Table 6.1 showcase the initial F1-score for the two starting strategies.

Results 45

Uncertainty sampling often reached a high Fl-score, but at the same time had a higher
variance, especially in Walmart-Amazon and Abt-Buy. Partition-4 consistently had a
lower F1l-score than the others, but it seemed to be the most stable strategy with the
lowest variance.

Also from the graphs one can see that Partition-2 and Uncertainty initially improved
the Fl-score quicker, while the rest had a slower improvement.

6.1.1 Max F1l-score

Notably from the experiments was the fact that several strategies reached the Baseline’s
max Fl-score after only a fraction of the examples had been labeled. For Partition-2,
this happened after only 9.1% of the data was labeled on average. These numbers are
presented in Table 6.3

Table 6.3: The table show when the Partition-2 query strategy reached or surpassed
the Fl-score of Baseline when Baseline was trained on the entire train set. TS = Train
Size.

Dataset Baseline [Max TS] Partition-2 [T'S] Partition-2 [% of max TS]
Amazon-Google 6874 730 10.6
Abt-Buy 5743 576 10.0
Walmart-Amazon 6144 662 10.8
DBLP-ACM 7417 640 8.6
DBLP-GoogleScholar 17223 960 5.6

The following are plots displaying F1-scores for every method on all datasets.

Results

46

Amazon-Google

0.7
0.6
()
3054
g
LT‘.‘ —— Baseline
==~ Baseline-Max (6874)
0.4 1 ——— Partition-4
—— Hybrid
—— Hybrid-Partition-2
0.3 1 — Uncertainty
—— Partition-2
200 300 400 500 600 700 800 900 1000
Labeled examples
(a)
Abt-Buy
(IR Sy iy gy Sy gy gy ey g
0.8
0.7 1
)
8
% 0.6
= Baseline
— == Baseline-Max (5743)
0.5 1 ——— Partition-4
—— Hybrid
0.4 —— Hybrid-Partition-2
——— Uncertainty
—— Partition-2
0'3 L T T T T T T T T - T
200 300 400 500 600 700 800 900 1000
Labeled examples
(b)
Walmart-Amazon
0.8
0.7
0.6
2
g
E' 051 —— Baseline
==~ Baseline-Max (6144)
044 ——— Partition-4
—— Hybrid
0.3 1 —— Hybrid-Partition-2
——— Uncertainty
0.2 1 —— Partition-2

600 700 800

Labeled examples

(c)

Figure 6.1: (figure continues on the next page)

200 300 400 500

900 1000

Results 47

DBLP-ACM
0,994 =TT T T L T T T T T e T e]
0.98
0.97 A
i
8
S\I))
a‘ 0.96 - Baseline
— =~ Baseline-Max (7417)
——— Partition-4
0.95 A ——— Hybrid
—— Hybrid-Partition-2
—— Uncertainty
0.94 7 —— Partition-2
T T T T T T T T T
200 300 400 500 600 700 800 900 1000
Labeled examples
(d)
DBLP-GoogleScholar
0.95 A
0.94 A
e
§ 0.93 A
E‘ Baseline
—=—=- Baseline-Max (17223)
0.92 7 ~——— Partition-4
—— Hybrid
—— Hybrid-Partition-2
0.91 1 —— Uncertainty
Partition-2
T T T T T T T T T
200 300 400 500 600 700 800 900 1000
Labeled examples
(o)

Figure 6.1: Iterative Fl-score for different active learning query strategies with
RoBERTa as the TPLM, on all datasets. All experiments started with 200 sampled
examples, and each query strategy tried to manually label 40 examples in each iteration,
with a maximum of 1000 examples over 20 iterations. The red stippled line of Baseline-
Max shows the Fl-score of the model trained on the maximum amount of available
examples in the training set (show in parenthesis).

Results 48

6.2 Variance

Figure 6.2 shows the Fl-score standard deviation for the Walmart-Amazon dataset.
Uncertainty and Baseline have higher values which varies a lot more. The effect of this
is also visible in the F1l-scores, where both are susceptible to scores that moves a lot
between iterations. The reason for this is discussed in chapter 7. The Hybrid strategies
have a consistently lower initial variance compared to the other datasets. More variance
results can be found in the Appendix.

Walmart-Amazon

Fl-score (std)

Baseline
Partition-4

Hybrid
Hybrid-Partition-2
Uncertainty

b —r "D Partition-2
T

200 300 400 500 600 700 800 900 1000
Labeled examples

Figure 6.2: Fl-score standard deviation for different active learning query strategies
with RoBERTa as the TPLM, on the Amazon-Google dataset. The standard deviation
have been computed from 3 test runs. The query strategies respective Fl-score can be
seen in Figure 6.1c.

6.3 Time Usage

Figure 6.3 shows the iteration time usage for the different query strategies with the
Transformer model on the Amazon-Google dataset. The other datasets showed similar
results. Unfortunately the time usage depended on the current load in the test environ-
ment, so the results have to be interpreted with this in mind. As an example, all the
AL strategies were expected to have the same initial iteration time, however there was
a difference of around 60 seconds.

From the graph one can see that all strategies seem to increase linearly with the number
of labeled examples, however the Partition-2 strategies increase at a higher rate.

As described in chapter 5, Hybrid has already selected its examples using Random Forest

Results 49

Amazon-Google

240 A

220 A

o

o

o
1

Baseline
Partition-4

Hybrid
Hybrid-Partition-2
Uncertainty
Partition-2

—

o

o
1

Tteration time

160

140 A

T T T T T T T T
200 300 400 500 600 700 800 900 1000
Labeled examples

Figure 6.3: Iteration time for different query strategies with RoOBERTa as the TPLM,
on the Amazon-Google dataset. Each experiment ran in a different hardware environ-
ment, so the iteration times can not be directly compared. This is further explained in
chapter 5.

as the model in the query strategy. RF was found to use around 1-2 seconds to query
examples, for all datasets. This is not depicted here due to the fact that compared to
the other strategies it is significantly smaller and would make the graph harder to read.
More iteration time results can be found in the Appendix.

Chapter

Discussion

This chapter discusses the main findings from the results chapter.

7.1 Query Strategies

The first research question is about what AL query strategy for TPLM results in the
highest Fl-score. As one can see from the results, all query strategies performed on
average better than the baseline, however some consistently did better than others. In
the next section the results of the different query strategies will be discussed. We will
highlight that Partition-2 and Hybrid-Partition-2 performed best with respect to F1-
score per labeled example, but had different strengths and weaknesses related to how
they work.

7.1.1 Partition Sampling

From the results in chapter 6 one can see that the query strategy Hybrid-Partition-2
and Partition-2 performed best. Hybrid-Partition-2 had the highest initial scores, while
Partition-2 slightly outperformed it in the last iterations. As described in chapter 5, the
partition sampling strategy used by both splits the unlabeled pool into 2 partitions of
positive and negative matches, based on the model’s prediction. It then labels the most
confident examples in an unsupervised manner, while the Oracle manually labels the
uncertain examples.

After 1000 labeled examples they have the highest F1-score among all the query strate-
gies, for all datasets. One can reason from the results that even from its first iterations,

Discussion 51

partition sampling manages to select a balanced set of informative examples which make
its Fl-score increase rapidly while maintaining a low variance compared to the other
strategies.

Unsupervised Labeling

It is interesting to compare Partition-2 to both Partition-4 and Uncertainty, which are
two very similar query strategies, except they do not label examples automatically in an
unsupervised manner.

Partition-4 also selects uncertain and high-confidence examples, however all examples are
manually labeled, whereas Partition-2 only manually labels the uncertain ones. Including
the unsupervised labeled examples, Partition-2 can train on twice as many new examples
in each iteration. KEven though some of the unsupervised labeled examples are labeled
incorrect, from the results one can see that this drawback is less significant than the
positive side of more labeled examples.

Uncertainty is similar to Partition-2 in that only the uncertain examples are labeled.
They both have the highest initial increase in F1-score, suggesting that this is the main
reason for the improvement. However, Uncertainty seems to be susceptible to very
varying results, as can be seen in Figure 6.2. One possible reason for this is that it
selects too many difficult, non-representative outliers, and learn patterns that do not
hold for the rest of the data. In some iterations the Uncertainty model was not able to
make correct predictions, and ended up with an Fl-score of 0. This can for example
be seen in Abt-Buy at the 600 mark. This highlights the improvement in selecting a
balanced set, including the high confidence examples.

7.1.2 Pre-selection of Initial Train Data

Two of the experiments use a hybrid form of AL, where the initial training examples
are selected by using AL with a classical ML model (AL-ML), rather than by randomly
sampling examples. Common for both Hybrid and Hybrid-Partition-2 is the fact that
they initially have a higher F1-score compared to the other methods. One possible reason
for this is that the AL-ML model has managed to select informative examples for the
Transformer, and essentially kick-started the AL process for the TPLM.

If this was true then it could mean that there is no need for AL with a TPLM (AL-
TPLM), one could just use the simpler and an order of magnitude faster AL-ML strategy
to select examples for the Transformer. In the end, both the AL-ML and AL-TPLM
have the same pool of unlabeled examples, and could end up selecting the same ones.
The Transformer would then train with those examples, and perform similar to the AL-

Discussion 52

TPLM strategies. This is what the Hybrid experiment test, however from the results we
can see that this hypothesis does not hold, it consistently under-performs compared to
the AL-TPLM strategies. This suggests that the improvement one can see compared to
e.g. Baseline could come from some other factor like an increase in positive examples to
learn from.

Hybrid-Partition-2

Hybrid-Partition-2 use the same query strategy as the other best performing strategy,
Partition-2, the only difference between them is that the initial 200 examples have been
pre-selected by the AL-ML strategy. From the results one can see the Hybrid-Partition-2
consistently had a higher F1-score in the first couple of iterations, before being caught
up to by Partition-2. The initially higher F1-score is mainly a result of higher recall, see
Appendix 8.3.6.

Since the AL-ML query strategy behaves much like Partition-4, it tries to select an even
amount of positive and negative examples. This means the initial 200 examples for
Hybrid-Partition-2 normally have a higher distribution of positive examples compared
to Partition-2. This positive distribution ranges from 25-50% and 10-20%, respectively.
Figure 7.1 show how the rate of positive examples in the train set develops in each
iteration for Partition-2 and Hybrid-Partition-2.

By starting with a more balanced initial train set, Hybrid-Partition-2 can achieve a
higher recall in the first iterations. However, Partition-2 achieves the same F1l-score
after 2-10 iterations, even with a smaller ratio of positive examples in its training set.

In a few cases Partition-2 slightly surpasses Hybrid-Partition-2 in the later iterations.
This suggest that a higher rate of positive examples might not be beneficial when the
amount of training data is higher. What can be seen in the Figure 7.1 is that Hybrid-
Partition-2 often have more positive examples and a more balanced distribution in its
training set, whereas Partition-2’s distribution is closer to the source data. When the
training data is more abundant, this discrepancy between the training and test set
distribution could be an unwanted side effect of starting with a balanced initial set. A
possible mitigation to this problem is to use a specialized query strategy which selects
more negative than positive examples.

A significant downside to using Hybrid-Partition-2 is the fact that it has extra overhead
related to performing two separate AL iterations. It is however possible to reduce the
time by using EM libraries such as Magellan. Magellan can do a lot of the heavy work
of e.g. selecting suitable string similarity measures and generating features.

Discussion 53

Walmart-Amazon

0.40

e e o
o w o
S S g
L L L

Train Positive Rate

—— Baseline

Hybrid-Partition-2
0.10 —— Partition-2
T T T T T T T T T
200 300 400 500 600 700 800 900 1000

Labeled examples

Figure 7.1: Train set positive rate for Hybrid-Partition-2, Partition-2, and Baseline on
the Walmart-Amazon dataset. One can see that Hybrid-Partition-2 has a significantly
higher positive rate in the beginning. The reduction in positive rate at 700-800 is from
the fact that the query strategy has exhausted the positive examples it manages to find
in the pool Y. The result is that it starts to draw more negative examples, and the train
positive rate drops.

7.2 Using Active Learning As A Strategy for Entity Match-
ing with Transformers In a Limited Environment

Research question 2 is about how AL with TPLM performs with respect to time con-
sumption. This section will highlight how AL-TPLM improves Fl-score significantly
faster than random labeling of examples, and that this will reduce the time consump-
tion simply from the fact that less examples needs to be labeled to achieve an equal
performance. In addition, this section will discuss how one can reduce the time con-
sumption further.

7.2.1 Faster Convergence

Figure 7.2 compares the result of Partition-2, Hybrid-Partition-2, and AL-ML against an
extended test of the random labeling strategy Baseline on the Amazon-Google dataset.
In addition to showing the result after training on 100% of the data, it also show how the
TPLM performed after 50% and 25% of the data was labeled. The results can be seen
in the stippled line of Baseline-1/2 and Baseline-1/4, respectively. Both query strategies
beat Baseline’s 1/4-score before 300 examples were labeled, which is 16.3% of the 1718
examples for Baseline. Partition-2 beat Baseline-1/2 at 720 (21.9%), and Baseline at

Discussion 54

Abt-Buy
I s
0.6 1
[
=04 roberta_ Baseline
—== roberta_ Baseline-Max (5743)
=== roberta_Baseline-1/2 (2871)
0.2 === roberta_Baseline-1/4 (1435)
’ roberta_ Hybrid-Partition-2
——— roberta_ Partition-2
—— ml ML-RF
0.0 == T T T T T
0 200 400 600 800 1000

Labeled examples

Figure 7.2: Fl-score comparison for Walmart-Amazon. The red lines indicate the F1-
score for Baseline, when labeling 25%, 50%, and all the training data. The bottom line
is for 25%, the middle for 50%, and the topmost is 100% of the data. ML-RF show the
score from the classical RandomForest model trained in the Hybrid model’s pre-step, as
explained in chapter 5.

750 (10.9%).

Comparison to State-of-the-Art in Non-Active Learning

Table 7.1 compares Partition-2 to current state-of-the-art in EM, DITTO [3]. DITTO
does not employ AL, but employs other strategies such as data augmentation, manual
knowledge injection, and token summarization. The results are taken after 1000 exam-
ples have been labeled. On average, Partition-2 has a 0.095 higher F1-score, or 13.7%
better result. This suggest that currently, the strategies employed by DITTO do not
outperform AL. Like AL, knowledge injection is also a manual process. The time spent
doing knowledge injection might therefore be better spent doing AL.

TPLMs have recently managed state-of-the-art performance in many deep learning tasks,
and lately in the field of EM. The results presented above strongly suggest that AL can
be an effective way to quickly improve the prediction performance when doing EM with
TPLMs. This is especially the case when there is a lack of labeled training data, or
even improve a model if more unlabeled data is available. The high increase in F1-score
in the first iterations suggest that only performing a few iterations will yield significant
improvements for the model. In the end, AL with TPLMs can help reduce the need
of labeled examples by an order of magnitude compared to only using TPLMs. In a
practical setting, the faster convergence of AL directly results in less time spent labeling

Discussion 55

Table 7.1: Fl-score comparison of Partition-2 to state-of-the-art in EM, DITTO [3].
The table shows F1l-scores after 1000 examples have been labeled and trained on. Note
that DITTO is not an AL framework, but do data augmentation, manual knowledge
injection, and token summarization. They use the same TPLM (RoBERTa), with a
maximum of 40 epochs.

Dataset DITTO Partition-2
Amazon-Google 0.608 0.706
Abt-Buy 0.793 0.914
Walmart-Amazon 0.654 0.866
DBLP-ACM 0.979 0.990
DBLP-GoogleScholar 0.922 0.953

for the researcher.

7.2.2 Time and Resource Limitations

The experiments in this thesis emulate an environment where there are time and resource
limitations. More specifically, there is a requirement that the experiment do not take
"too long” time. In a human-in-the-loop situation such as AL, it is preferable that the
Oracle, the human domain expert, must maximise his or her time use. In a real-life
situation the expert is likely an expensive asset for a company, with a high salary and
many other tasks on their schedule. To keep him or her doing manual entity matching
labor, which could be a very trivial task for the expert, is not desirable. For this reason,
the time between each labeling iteration must be short.

As described in chapter 5, 12 epochs was chosen empirically as it resulted in a reasonable
iteration time, averaging from around 2.5 minutes to 8 minutes in the experiments, and
the model often received a high, stable Fl-score. With more up-to-date hardware the
running time can be shorter, or optionally by using fewer epochs, the running time can
be reduced significantly.

Smaller Transformer Model

Another way to reduce the iteration time is to use a smaller TPLM. As reported in
Brunner and Stockinger [2], RoOBERTa had a running time double of the smaller TPLM
DistilBERT.

One important difference in the experiments done in this thesis versus the above paper
is the number of training data in each experiment. While they use the full training set,

Discussion 56

this thesis only use up to 1000 examples in the active learning iterations. In the smallest
dataset Abt-Buy, this is 17.4% of the total training examples. Less training data result
in a shorter training time for the TPLM. This might make it so that the actual time
difference makes up for the relative difference between the two models.

For example, in an AL situation, allowing a bigger model to train for 4 minutes could
be preferable to a smaller model training for 2 minute, if the performance gain was big
enough. Even though the bigger TPLM in this case use double the time, 2 minutes might
not matter much when doing AL in practice. On the other side, this situation might
change if the dataset is significantly bigger, and the time difference is e.g. 10 minutes
against 20 minutes or more.

Preliminary tests in this thesis suggested the time improvement could be significant,
however the F1-score decreased with the smaller TPLM. In Amazon-Google DistilBERT
used from 60-110 seconds less time in each iteration, however then final F1-score was 0.05
lower than RoBERTA. Increasing the number of epochs could reduce this gap somewhat,
however the running time would increase as well.

In the end, the decision of which TPLM to use in practice is a trade-off between prediction
performance and training time. Exploring trade-offs between different TPLMs and model
parameters for AL is discussed further in the future work section.

7.3 Challenges

The third research question is related to the challenges of combining AL with TPLM
for EM. Some important challenges we found are discussed below. In addition, other
challenges we faced when doing EM and AL is also discussed.

7.3.1 Unsupervised Labeling

The best performing query strategy Partition-2 has an innate issue with how it handles
the high-confidence examples. In a practical real-life situation those examples cannot
be treated as a gold standard, as it most likely contains incorrectly labeled examples.
Depending on how strict the EM requirements are, they might have to be handled as
part of the rest of the unlabeled data. However, if the EM requirements are less strict,
and some false positives are accepted, this might not be a problem.

It might also perform worse when the availability of data is low. In a situation where the
dataset is small and very imbalanced, incorrectly labeling a positive example could have
a big impact on the model. This comes from the fact that there would be few positive
examples to learn from.

Discussion 57

7.3.2 Choosing a Transformer Pre-trained Language Model

An important decision when doing AL-TPLM is to decide which TPLM to use, and what
hyperparameters to use for that specific TPLM. There exists an increasing number of
different TPLMSs, pre-trained for different objectives. E.g. SciBERT [39] and BioBERT
[40] are TPLMs trained on scientific and biology corpora, respectively. Currently the
open source library hugging face has a collection of over 9,000 different TPLMs'.

To the best of our knowledge, there are no TPLM specifically made for EM, and while
some small efforts have been made to benchmark different TPLMs on the EM task [2],
it is not comprehensive, or performed with AL in mind. TPLMs can have a wide variety
of sizes, which closely correlates to training and inference time, where a smaller model
will in general be faster. DistilBERT is e.g. 40% smaller and 60% faster than BERT
[33].

Consequently, new applications of AL-TPLM for EM have no solid data to base the
choice of TPLM and hyperparameters on. A comprehensive benchmark of different
TPLMs and hyperparameters, in addition to the creation of a TPLM specifically for
EM, is suggested as future work.

7.3.3 Review of Practical Application

A related topic is how using AL compares to non-AL strategies in practice. This thesis
have showcased how AL can improve the Fl-score, and suggested AL likely decrease
the total labeling time in practice. However, a more detailed review and comparison of
practical applications of EM strategies could help focus further work in the EM field.

This can be related to total labeling time, but other considerations are relevant when
EM is applied. In a setting where e.g. a company need to be absolutely certain that all
matches are correct and non are missed, a ”black-box” solution like TPLM might not be
an option. It might be a requirement for the company that an expert actually reviews
and validates all matches. This setting is especially fit for AL solutions, and open new
opportunities and challenges.

One possible optimization that can be done is to have the expert label several examples
at once. Instead of the model querying the Oracle to label single examples, it could
query the Oracle to label suggestions for regular expressions for matches. If the Oracle
validates the regular expression, the model would then run that expression on all the
unlabeled examples and label them accordingly. An example for a regular expression
could e.g. be that every candidate record pair which share ”"MBR-10" in the attribute
"name” is a match.

"https://huggingface.co/models

Discussion 58

Depending on the EM setting, there might exist a restriction that there is a one-to-one
match between two records. In other words, only one record in dataset A can match
one record in dataset B. The situation that a single record is not matched with several
records need to be handled. The EM task would then include finding a record’s most
likely match, and remove all its other candidate pairs. This problem could easily be
translated into an active learning setting. The Oracle would not be queried with single
examples to label, but with all the possible matches for a given record.

These are just two situations that need to be handled in a practical application of EM,
however many more likely exists, with different implications and restrictions. Preferably
the review would incorporate a test framework, such that current and future strategies
could be compared. A detailed review of practical applications of EM is suggested as
future work.

7.3.4 The Need of an Interactive Expert

As mentioned in the previous section, depending on the dataset, a domain expert might
be needed as the Oracle. Not everyone can label a domain specific dataset, but the
availability of an expert is probably one of the biggest hindrances for AL. Without
someone who can label the data correctly, AL is not a suitable strategy.

There is also an added complexity inherent in AL that comes along with the interactive
element. In practice one needs a sort of ”test station”, where the Oracle can sit in front
of a screen and do the labeling. There also needs to be some sort of application which
in a suitable way presents the examples, handles the actual labeling, and passes the
new examples to the TPLM in each iteration. This complexity might be off-putting for
companies, compared to the arguably simpler way of training a TPLM once with all
available training data and use the resulting model.

In relation to this it would be useful to have a comprehensive review of practical applica-
tions of EM, such that both researches and companies can have a better understanding
of the trade-offs related to different strategies.

7.3.5 Interpretability

When the Oracle is labeling examples, an interpretable model could help him or her to
understand why the model is uncertain about a given example. However, deep learning
models are known to be difficult to interpret [5]. A solution could be to explain what
the model is uncertain about in a given candidate record pair. Some work has gone into
developing EM explanation frameworks from general purpose deep learning explanation
tools, such as LIME [41]. By having the model explain what it is uncertain about, it

Discussion 59

could help the Oracle label examples quicker by highlighting the important parts in the
record pair.

7.4 Alternatives

One alternative to AL is Transfer Learning (TL), where a ML model is trained on
different labeled source datasets and then applied on the target dataset. With TL there
is no need for a human expert. However, as reported by Kasai et al. [21], combining TL
with AL can yield an additional increase in performance compared to only using TL.
To our knowledge, a combination of TL, AL, and TPLM for EM has not yet been done,
and we suggest this as a recommendation to future work.

A second alternative is to use unsupervised data augmentation methods, as in Li et al.
[3]. By augmenting examples with known labels, one can further (artificially) increase
the amount of labeled data. In this way one can improve the result when data is scarce,
however, it requires additional computational time.

Chapter

Conclusion and Future Work

In this chapter the conclusion and recommendations for future work are presented. In
addition, we present final remarks for using active learning for entity matching.

8.1 Conclusion

Through experiments conducted on several public entity matching datasets we have
tested combining active learning strategies with Transformer pre-trained language mod-
els. When using active learning our results show significant reductions in required train-
ing set sizes in order to achieve state-of-the-art Fl-scores. Of the query strategies tested,
Partition-2 performed best on all datasets. However, all strategies achieved higher F1-
scores than the random baseline, showcasing the potential of AL. When the labeling
budget was only a few hundred examples, using AL with a classical ML model to obtain
an initial training set for the TPLM yielded the best results. While there is a need of a
domain expert, the time usage of each AL iteration can be small enough such that using
AL with TPLMs in practice is a valid option to consider.

Research question 1 What active learning query strategy for Transformer pre-trained
language models results in the highest F1-score?

From the experiments, we found that the best performing query strategy was a partition
sampling strategy of manually labeling uncertain examples, and unsupervised labeling
of high-confidence examples. In this way, the model can train on a balanced set of
informative examples, while receiving a large set of ”free” automatically labeled training
data. This is how Partition-2 and Hybrid-Partition-2 queries for new examples.

Conclusion and Future Work 61

Hybrid-Partition-2 yielded a higher initial recall compared to Partition-2. By selecting
the initial training set by using AL with a Random Forest model, it could start the AL
iteration with a more balanced training set. On average this resulted in a 0.1 higher
initial Fl-score. However, after 3-10 iterations Partition-2 caught up and performed
with a similar F1l-score.

Research question 2 How does active learning with Transformer pre-trained language
models perform for entity matching with respect to time consumption?

The current state-of-the-art in EM is to use TPLMs, which are more versatile and
improve the Fl-score on public datasets significantly compared to previous machine
learning methods. Our experiments have shown that when using AL with TPLMs, one
can achieve the best performance of a baseline TPLM with an order of magnitude fewer
labeled examples. Having to label significantly fewer examples means that employing
AL with TPLM in practice would likely lead to a shorter total time spent doing EM.
However, we leave it to future work to test and compare how an application of AL with
TPLM would actually perform in practice.

The experiments have shown that using a relatively large model does not necessarily lead
to an unmanageable AL iteration time, with iteration times spanning from 2-8 minutes.
In addition, it is possible to further reduce the time spent labeling by using a smaller
TPLM, reducing the amount of epochs, and/or by using faster hardware. This might be
necessary when working with larger datasets.

Research question 3 What are the challenges with combining active learning and Trans-
former pre-trained language models for entity matching?

As described in chapter 7, one important challenge with using a TPLM with AL is
the choice of both TPLM and its parameters. There are many models available to
use, and currently none is specifically made for EM. It might be difficult to know what
combinations work best on a specific dataset, and one would likely have to spend time
to empirically test different combinations before one can decide. Choosing a wrong
combination might lead to either an unstable and unusable model, or too long iteration
time.

In addition, it can be difficult for the Oracle to understand how the TPLM ”thinks”.
Using explainable EM could help the Oracle in his or her labeling process.

Conclusion and Future Work 62

8.2 Is Active Learning a Viable Strategy for Entity Match-
ing?

Both AL and EM are in practice interactive, iterative processes, and from this reason
they fit well together. In AL, an Oracle interactively labels new examples which are
used to iteratively train a machine learning model. In an EM situation this process is
often naturally conducted.

As an example, if a company has data they want to do EM on (without AL), they could
label a portion of the candidate set of matches and train a ML model. They would then
apply the model on the unlabeled data, however the model is likely not good enough and
would have some wrongly labeled examples. By manually finding some of the mislabeled
examples they could then feed these new correctly labeled examples to the model, and
train it again on the updated train set. With the new examples it is likely to perform
better than before. This process could continue until the company is satisfied with the
model’s performance, or they are sure all matches have been found.

By using an AL strategy, the company would not need to manually find the examples
the model has a hard time predicting, the model could find the examples for them. This
could save valuable time when doing EM. There is an extra overhead when initially
setting up an AL pipeline, however AL can be a highly modular and decoupled process
by using a model agnostic query method (like uncertainty sampling). After a company
has implemented the AL pipeline once, it can be reused across different ML models and
datasets. As an example, using a model which is pre-trained using transfer learning
requires no special implementation from an AL perspective.

For Cognite, we recommend looking further into using AL for EM, especially combined
with TPLMs. From our results and experience doing AL and EM, we believe AL can
(potentially with little effort) integrate into Cognite’s existing EM solutions, and speed
up the matching process significantly.

8.3 Future Work

In this section recommendations for future work are presented.

8.3.1 Comprehensive Benchmark

A comprehensive benchmark of TPLMs for AL on EM datasets, similar to what has been
done in [10] with classical ML models, could standardize best practices for selection of
TPLMs, hyperparameters, and query strategies. With AL-TPLMs this could especially

Conclusion and Future Work 63

be useful when selecting a model, to be able to compare trade-offs between expected
time use and prediction capability.

8.3.2 Practical Application

Similarly, an in depth review of how EM strategies work in practice could be useful for
later applications of EM. It would be necessary to compare more classical models like
Random Forest up against deep learning models like RoOBERTa and DistilBERT, both
with and without using AL. In this setting, we believe a standardized test framework
for EM could be of use. Currently it is difficult to directly compare an application of
non-AL EM and AL-ML. The test framework would need to incorporate total labeling
time into its evaluation strategy.

8.3.3 Training Set Distribution and Query Strategies

A closer look at how the distribution of positive and negative examples in the initial
training set affects the AL query strategy along with the final Fl-score, could help the
development of future query strategies and test methods. Our preliminary experiments
suggest that this can heavily affect the performance of the same query strategy, and
therefore needs to be considered both when conducting experiments, and when develop-
ing query strategies.

8.3.4 Optimized Query Strategies for Transformer Language Models

A recommendation is to explore further improvements to Partition-2, e.g. what the
optimal size of the uncertain and high-confidence partitions is. In this thesis an equal
amount of high-confidence and uncertain examples are chosen, but this could potentially
be tweaked for a higher F1-score.

As presented in chapter 3, some work has been done to look at how more complex and
potentially more optimized AL query strategies, originally made for traditional neural
networks, work with TPLMs [27]. The development of novel query strategies which
more closely use properties of TPLMs could potentially perform better than the model
agnostic query strategies used in this thesis. As a reminder, the query strategies in the
experiments presented in chapter 5 only use the model predictions to select the next
examples to label. Jain et al. [4] suggest using the TPLM’s encodings directly when
selecting examples to label. We believe further work in this direction could lead to
improvements for AL with TPLMs for EM.

Conclusion and Future Work 64

8.3.5 Special Made Language Model

A special made TPLM for EM, such as what SciBERT is for scientific text, could poten-
tially both increase F1l-score and decrease training time. In addition a smaller version,
such as DistilBERT, could be made for use in an AL situation.

8.3.6 Combine Active Learning with Other Strategies

Combining active learning with transfer learning and data augmentation, all of which
are methods known to improve F'l-score in a resource limited environment with low data
availability [3], have to the best of our knowledge not yet been done before with TPLMs.
Combining all above methods could lead to state-of-the-art results.

Bibliography

1]

Peter Christen. Data Matching: Concepts and Techniques for Record Linkage, En-
tity Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer-Verlag, Berlin Heidelberg, 2012. ISBN 978-3-642-31163-5. doi: 10.1007/
978-3-642-31164-2. URL https://www.springer.com/gp/book/9783642311635.

Ursin Brunner and Kurt Stockinger. Entity Matching with Transformer Ar-
chitectures - A Step Forward in Data Integration, 2020. URL https://
openproceedings.org/2020/conf/edbt/paper_205.pdf. Version Number: 1
type: dataset.

Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan. Deep
Entity Matching with Pre-Trained Language Models. Proceedings of the VLDB
Endowment, 14(1):50-60, September 2020. ISSN 2150-8097. doi: 10.14778/3421424.
3421431. URL http://arxiv.org/abs/2004.00584. arXiv: 2004.00584.

Arjit Jain, Sunita Sarawagi, and Prithviraj Sen. Deep Indexed Active Learning for
Matching Heterogeneous Entity Representations. arXiv:2104.03986 [cs, stat], April
2021. URL http://arxiv.org/abs/2104.03986. arXiv: 2104.03986.

Nils Barlaug and Jon Atle Gulla. Neural Networks for Entity Matching.
arXiv:2010.11075 [cs], October 2020. URL http://arxiv.org/abs/2010.11075.
arXiv: 2010.11075.

Halbert L. Dunn. Record Linkage. American Journal of Public Health and the
Nations Health, 36(12):1412-1416, December 1946. ISSN 0002-9572. URL https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC1624512/.

Howard B. Newcombe and James M. Kennedy. Record linkage: making maximum
use of the discriminating power of identifying information. Communications of
the ACM, 5(11):563-566, November 1962. ISSN 0001-0782. doi: 10.1145/368996.
369026. URL https://doi.org/10.1145/368996.369026.

https://www.springer.com/gp/book/9783642311635
https://openproceedings.org/2020/conf/edbt/paper_205.pdf
https://openproceedings.org/2020/conf/edbt/paper_205.pdf
http://arxiv.org/abs/2004.00584
http://arxiv.org/abs/2104.03986
http://arxiv.org/abs/2010.11075
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1624512/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1624512/
https://doi.org/10.1145/368996.369026

Bibliography 66

8]

[10]

Ivan P. Fellegi and Alan B. Sunter. A Theory for Record Linkage. Journal of
the American Statistical Association, 64(328):1183-1210, 1969. ISSN 0162-1459.
doi: 10.2307/2286061. URL https://www. jstor.org/stable/2286061. Publisher:
[American Statistical Association, Taylor & Francis, Ltd.].

US Census Bureau. An Application of the Fellegi-Sunter Model of Record Linkage
to the... URL https://www.census.gov/library/working-papers/1991/adrm/
rr91-09.html. Section: Government.

Venkata Vamsikrishna Meduri, Lucian Popa, Prithviraj Sen, and Mohamed Sarwat.
A Comprehensive Benchmark Framework for Active Learning Methods in Entity
Matching. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’20, pages 1133-1147, Portland, OR, USA,
June 2020. Association for Computing Machinery. ISBN 978-1-4503-6735-6. doi:
10.1145/3318464.3380597. URL https://doi.org/10.1145/3318464.3380597.

Barzan Mozafari, Purna Sarkar, Michael Franklin, Michael Jordan, and Samuel
Madden. Scaling up crowd-sourcing to very large datasets. Proceedings of the
VLDB Endowment, 8:125-136, October 2014. doi: 10.14778/2735471.2735474.

V. Christophides, V. Efthymiou, Themis Palpanas, G. Papadakis, and K. Stefanidis.
End-to-End Entity Resolution for Big Data: A Survey. ArXiv, 2019.

Wei Zhang, Hao Wei, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos, and
Davd Page. AutoBlock: A Hands-off Blocking Framework for Entity Matching. In
Proceedings of the 13th International Conference on Web Search and Data Mining,
WSDM 20, pages 744-752, New York, NY, USA, January 2020. Association for
Computing Machinery. ISBN 978-1-4503-6822-3. doi: 10.1145/3336191.3371813.
URL https://doi.org/10.1145/3336191.3371813.

Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad Ouz-
zani, and Nan Tang. DeepER — Deep Entity Resolution. arXiv:1710.00597 [cs],
November 2019. doi: 10.14778/3236187.3236198. URL http://arxiv.org/abs/
1710.00597. arXiv: 1710.00597.

George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Pal-
panas. A Survey of Blocking and Filtering Techniques for Entity Resolution.
arXiv:1905.06167 [cs], August 2020. URL http://arxiv.org/abs/1905.06167.
arXiv: 1905.06167.

AnHai Doan, Alon Halevy, and Zachary G. Ives. Principles of data integration.
Morgan Kaufmann, Waltham, MA, 2012. ISBN 978-0-12-416044-6.

Pradap Konda, Jeff Naughton, Shishir Prasad, Ganesh Krishnan, Rohit Deep, Vi-
jay Raghavendra, Sanjib Das, Paul Suganthan G. C., AnHai Doan, Adel Ardalan,

https://www.jstor.org/stable/2286061
https://www.census.gov/library/working-papers/1991/adrm/rr91-09.html
https://www.census.gov/library/working-papers/1991/adrm/rr91-09.html
https://doi.org/10.1145/3318464.3380597
https://doi.org/10.1145/3336191.3371813
http://arxiv.org/abs/1710.00597
http://arxiv.org/abs/1710.00597
http://arxiv.org/abs/1905.06167

Bibliography 67

[18]

[21]

[24]

Jeffrey R. Ballard, Han Li, Fatemah Panahi, and Haojun Zhang. Magellan: to-
ward building entity matching management systems. Proceedings of the VLDB En-
dowment, 9(12):1197-1208, August 2016. ISSN 21508097. doi: 10.14778/2994509.
2994535. URL http://dl.acm.org/citation.cfm?doid=2994509.2994535.

Banda Ramadan and Peter Christen. Unsupervised Blocking Key Selection for
Real-Time Entity Resolution. In Tru Cao, Ee-Peng Lim, Zhi-Hua Zhou, Tu-Bao
Ho, David Cheung, and Hiroshi Motoda, editors, Advances in Knowledge Dis-
covery and Data Mining, Lecture Notes in Computer Science, pages 574-585,
Cham, 2015. Springer International Publishing. ISBN 978-3-319-18032-8. doi:
10.1007/978-3-319-18032-8_45.

Burr Settles. Active Learning Literature Survey. Technical Report, University
of Wisconsin-Madison Department of Computer Sciences, 2009. URL https://
minds.wisconsin.edu/handle/1793/60660. Accepted: 2012-03-15T17:23:56Z.

Arvind Arasu, Michaela G6tz, and Raghav Kaushik. On active learning of record
matching packages. In Proceedings of the 2010 international conference on Man-
agement of data - SIGMOD ’10, page 783, Indianapolis, Indiana, USA, 2010.
ACM Press. ISBN 978-1-4503-0032-2. doi: 10.1145/1807167.1807252. URL
http://portal.acm.org/citation.cfm?doid=1807167.1807252.

Jungo Kasai, Kun Qian, Sairam Gurajada, Yunyao Li, and Lucian Popa. Low-
resource Deep Entity Resolution with Transfer and Active Learning. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages
5851-5861, Florence, Italy, 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1586. URL https://www.aclweb.org/anthology/P19-1586.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang
Chen, and Xin Wang. A Survey of Deep Active Learning. arXiv:2009.00236 [cs,
stat], August 2020. URL http://arxiv.org/abs/2009.00236. arXiv: 2009.00236.

Burr Settles. Active Learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 6(1):1-114, June 2012. ISSN 1939-4608. doi: 10.2200/
S00429ED1V01Y201207AIMO018. URL https://www.morganclaypool.com/doi/
abs/10.2200/S00429ED1V01Y201207AIM018. Publisher: Morgan & Claypool Pub-
lishers.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Annual
Workshop on Computational Learning Theory: Proceedings of the fifth annual work-
shop on Computational learning theory; 27-29 July 1992, pages 287—-294. Associa-
tion for Computing Machinery, Inc , One Astor Plaza, 1515 Broadway, New York,
NY, 10036-5701, USA, [mailto:SIGS@acm.org|, [URL:http://www.acm.org/], 1992.
ISBN 978-0-89791-497-0. doi: http://dx.doi.org/10.1145/130385.130417. URL
https://search.proquest.com/docview/314921127pg-origsite=summon. Num
Pages: 8.

http://dl.acm.org/citation.cfm?doid=2994509.2994535
https://minds.wisconsin.edu/handle/1793/60660
https://minds.wisconsin.edu/handle/1793/60660
http://portal.acm.org/citation.cfm?doid=1807167.1807252
https://www.aclweb.org/anthology/P19-1586
http://arxiv.org/abs/2009.00236
https://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018
https://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018
https://search.proquest.com/docview/31492112?pq-origsite=summon

Bibliography 68

[25]

[26]

[29]

[30]

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active
learning. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’02, pages 269-278, New York, NY,
USA, July 2002. Association for Computing Machinery. ISBN 978-1-58113-567-1.
doi: 10.1145/775047.775087. URL https://doi.org/10.1145/775047.775087.

Punit Kumar and Atul Gupta. Active Learning Query Strategies for Classification,
Regression, and Clustering: A Survey. Journal of Computer Science and Technol-
09y, 35(4):913-945, July 2020. ISSN 1860-4749. doi: 10.1007/s11390-020-9487-4.
URL https://doi.org/10.1007/s11390-020-9487-4.

Liat Ein-Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem
Choshen, Marina Danilevsky, Ranit Aharonov, Yoav Katz, and Noam Slonim. Ac-
tive Learning for BERT: An Empirical Study. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pages
7949-7962, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.638. URL https://www.aclweb.org/anthology/
2020.emnlp-main.638.

Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. Deep
Learning for Entity Matching: A Design Space Exploration. In Proceedings of
the 2018 International Conference on Management of Data - SIGMOD ’18, pages
19-34, Houston, TX, USA, 2018. ACM Press. ISBN 978-1-4503-4703-7. doi: 10.
1145/3183713.3196926. URL http://dl.acm.org/citation.cfm?doid=3183713.
3196926.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. arXiv:1409.0473 [cs, stat], May
2016. URL http://arxiv.org/abs/1409.0473. arXiv: 1409.0473.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need.
arXiv:1706.03762 [cs], December 2017. URL http://arxiv.org/abs/1706.03762.
arXiv: 1706.03762.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805 [cs], May 2019. URL http://arxiv.org/abs/1810.04805.
arXiv: 1810.04805.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs], July 2019. URL
http://arxiv.org/abs/1907.11692. arXiv: 1907.11692.

https://doi.org/10.1145/775047.775087
https://doi.org/10.1007/s11390-020-9487-4
https://www.aclweb.org/anthology/2020.emnlp-main.638
https://www.aclweb.org/anthology/2020.emnlp-main.638
http://dl.acm.org/citation.cfm?doid=3183713.3196926
http://dl.acm.org/citation.cfm?doid=3183713.3196926
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692

Bibliography 69

[33]

[36]

[39]

[40]

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT,
a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv:1910.01108
[es], February 2020. URL http://arxiv.org/abs/1910.01108. arXiv: 1910.01108.

Ralph Peeters, C. Bizer, and Goran Glavas. Intermediate Training of BERT for
Product Matching. In DI2KG@VLDB, 2020.

Zhengjie Miao, Yuliang Li, Xiaolan Wang, and Wang-Chiew Tan. Snippext: Semi-
supervised Opinion Mining with Augmented Data. Proceedings of The Web Con-
ference 2020, pages 617-628, April 2020. doi: 10.1145/3366423.3380144. URL
http://arxiv.org/abs/2002.03049. arXiv: 2002.03049.

K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin. Cost-Effective Active Learning
for Deep Image Classification. IEFEE Transactions on Circuits and Systems for
Video Technology, 27(12):2591-2600, December 2017. ISSN 1558-2205. doi: 10.
1109/TCSVT.2016.2589879. Conference Name: IEEE Transactions on Circuits and
Systems for Video Technology.

Kun Qian, Lucian Popa, and Prithviraj Sen. Active Learning for Large-Scale Entity
Resolution. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, pages 1379-1388, Singapore Singapore, November 2017.
ACM. ISBN 978-1-4503-4918-5. doi: 10.1145/3132847.3132949. URL https://dl.
acm.org/doi/10.1145/3132847.3132949.

Ozan Sener and Silvio Savarese. Active Learning for Convolutional Neural Networks:
A Core-Set Approach. arXiv:1708.00489 [cs, stat], June 2018. URL http://arxiv.
org/abs/1708.00489. arXiv: 1708.00489.

Iz Beltagy, Kyle Lo, and Arman Cohan. SciBERT: A Pretrained Language Model
for Scientific Text. arXiv:1903.10676 [cs], September 2019. URL http://arxiv.
org/abs/1903.10676. arXiv: 1903.10676.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho
So, and Jaewoo Kang. BioBERT: a pre-trained biomedical language representation
model for biomedical text mining. Bioinformatics, 36(4):1234-1240, February 2020.
ISSN 1367-4803. doi: 10.1093/bioinformatics/btz682. URL https://doi.org/10.
1093/bioinformatics/btz682.

Vincenzo Di Cicco, Donatella Firmani, Nick Koudas, Paolo Merialdo, and Di-
vesh Srivastava. Interpreting deep learning models for entity resolution: an ex-
perience report using LIME. In Proceedings of the Second International Work-
shop on Exploiting Artificial Intelligence Techniques for Data Management, aiDM
19, pages 1-4, New York, NY, USA, July 2019. Association for Computing Ma-
chinery. ISBN 978-1-4503-6802-5. doi: 10.1145/3329859.3329878. URL https:
//doi.org/10.1145/3329859.3329878.

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/2002.03049
https://dl.acm.org/doi/10.1145/3132847.3132949
https://dl.acm.org/doi/10.1145/3132847.3132949
http://arxiv.org/abs/1708.00489
http://arxiv.org/abs/1708.00489
http://arxiv.org/abs/1903.10676
http://arxiv.org/abs/1903.10676
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1145/3329859.3329878
https://doi.org/10.1145/3329859.3329878

Appendices

Additional Results

The appendix include raw numbers from the graphs presented in chapter 6 and chapter 7,
including a selection of additional results referred to in the thesis but not included in
the main text.

F1l-score

Following are the raw F1-scores from the graphs in the results section. Note that they are
presented with respect to the active learning iteration, and not by the number of labeled
examples. This comes from the fact that at each iteration different query strategies
could potentially have different number of labeled training examples. In iteration 0, all
have 200 examples in their training set. In iteration 20, the maximum examples possible
are 1000. For more details on this, see chapter 5.

Table 1: Raw numbers for Fl-score on Amazon-Google.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty Partition-2

0 0.249 0.249 0.528 0.528 0.249 0.249
1 0.406 0.438 0.560 0.544 0.482 0.443
2 0.476 0.384 0.579 0.588 0.538 0.528
3 0.393 0.443 0.577 0.596 0.554 0.564
4 0.487 0.466 0.588 0.602 0.557 0.563
5 0.425 0.489 0.578 0.611 0.574 0.571
6 0.503 0.525 0.583 0.633 0.595 0.600
7 0.518 0.529 0.567 0.638 0.624 0.630
8 0.327 0.540 0.599 0.648 0.647 0.616
9 0.446 0.586 0.603 0.670 0.634 0.646
10 0.498 0.570 0.604 0.660 0.620 0.660
11 0.424 0.599 0.645 0.681 0.636 0.678
12 0.544 0.604 0.639 0.686 0.643 0.675
13 0.535 0.591 0.662 0.685 0.640 0.686
14 0.501 0.620 0.448 0.670 0.651 0.712
15 0.556 0.621 0.648 0.694 0.683 0.701
16 0.530 0.642 0.648 0.688 0.675 0.689
17 0.535 0.643 0.633 0.684 0.684 0.700
18 0.554 0.648 0.641 0.691 0.569 0.698
19 0.386 0.628 0.639 0.681 0.663 0.699
20 0.591 0.645 0.645 0.696 0.679 0.706

Table 2: Raw numbers for Fl-score on Abt-Buy.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty Partition-2

0 0.497 0.497 0.631 0.631 0.497 0.497
1 0.354 0.443 0.780 0.788 0.603 0.654
2 0.444 0.640 0.808 0.805 0.640 0.747
3 0.635 0.749 0.815 0.823 0.775 0.810
4 0.737 0.767 0.813 0.843 0.791 0.843
5 0.625 0.772 0.818 0.852 0.800 0.848
6 0.703 0.818 0.831 0.876 0.798 0.866
7 0.669 0.825 0.831 0.870 0.826 0.870
8 0.765 0.832 0.847 0.889 0.877 0.881
9 0.746 0.829 0.815 0.892 0.865 0.884
10 0.763 0.840 0.851 0.898 0.575 0.901
11 0.666 0.853 0.831 0.884 0.885 0.895
12 0.759 0.856 0.843 0.906 0.600 0.894
13 0.748 0.854 0.842 0.910 0.582 0.901
14 0.773 0.870 0.839 0.907 0.898 0.898
15 0.801 0.869 0.839 0.905 0.587 0.908
16 0.532 0.868 0.846 0.909 0.896 0.901
17 0.806 0.873 0.854 0.901 0.874 0.899
18 0.813 0.869 0.856 0.888 0.592 0.904
19 0.823 0.886 0.850 0.899 0.296 0.906
20 0.833 0.888 0.864 0.897 0.893 0.898

Table 3: Raw numbers for Fl-score on Walmart-Amazon.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty Partition-2

0 0.258 0.258 0.603 0.603 0.258 0.258
1 0.309 0.416 0.618 0.619 0.404 0.234
2 0.206 0.463 0.611 0.652 0.629 0.660
3 0.151 0.577 0.637 0.730 0.626 0.699
4 0.450 0.659 0.634 0.794 0.411 0.786
5 0.603 0.646 0.680 0.759 0.716 0.823
6 0.216 0.763 0.753 0.802 0.762 0.822
7 0.512 0.783 0.733 0.833 0.488 0.850
8 0.552 0.779 0.748 0.838 0.804 0.817
9 0.433 0.811 0.685 0.842 0.785 0.842
10 0.682 0.836 0.710 0.834 0.826 0.843
11 0.648 0.814 0.740 0.841 0.544 0.819
12 0.466 0.803 0.755 0.847 0.809 0.864
13 0.660 0.838 0.720 0.848 0.847 0.864
14 0.606 0.830 0.703 0.867 0.542 0.856
15 0.547 0.841 0.761 0.879 0.809 0.861
16 0.686 0.817 0.780 0.870 0.819 0.872
17 0.767 0.825 0.791 0.878 0.545 0.869
18 0.628 0.834 0.774 0.880 0.549 0.862
19 0.722 0.844 0.771 0.870 0.695 0.868
20 0.793 0.844 0.768 0.873 0.572 0.866

Table 4: Raw numbers for Fl-score on Walmart-Amazon.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty Partition-2

0 0.954 0.954 0.970 0.970 0.954 0.954
1 0.936 0.968 0.966 0.984 0.975 0.974
2 0.950 0.974 0.943 0.989 0.977 0.987
3 0.958 0.987 0.970 0.989 0.981 0.988
4 0.965 0.983 0.962 0.990 0.986 0.986
5 0.967 0.986 0.977 0.990 0.987 0.989
6 0.963 0.988 0.984 0.989 0.988 0.989
7 0.968 0.989 0.986 0.991 0.989 0.988
8 0.963 0.988 0.987 0.989 0.989 0.988
9 0.980 0.988 0.986 0.989 0.989 0.987
10 0.972 0.987 0.982 0.989 0.989 0.989
11 0.964 0.989 0.981 0.990 0.988 0.991
12 0.975 0.988 0.986 0.990 0.989 0.990
13 0.980 0.989 0.980 0.989 0.988 0.988
14 0.977 0.988 0.982 0.989 0.988 0.990
15 0.977 0.987 0.984 0.990 0.988 0.988
16 0.974 0.988 0.985 0.989 0.990 0.989
17 0.971 0.988 0.987 0.988 0.989 0.991
18 0.976 0.988 0.982 0.990 0.989 0.990
19 0.977 0.990 0.981 0.988 0.987 0.989
20 0.977 0.989 0.981 0.990 0.988 0.990

Table 5: Raw numbers for Fl-score on DBLP-GoogleScholar.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty Partition-2

0 0.903 0.903 0.914 0.914 0.903 0.903
1 0.915 0.927 0.910 0.930 0.930 0.920
2 0.913 0.931 0.912 0.937 0.922 0.932
3 0.914 0.938 0.920 0.934 0.937 0.936
4 0.919 0.932 0.920 0.942 0.935 0.929
5 0.921 0.939 0.922 0.942 0.938 0.945
6 0.921 0.939 0.926 0.944 0.937 0.944
7 0.930 0.943 0.928 0.941 0.945 0.944
8 0.924 0.943 0.923 0.945 0.941 0.945
9 0.928 0.944 0.925 0.944 0.945 0.941
10 0.929 0.942 0.927 0.946 0.946 0.946
11 0.934 0.940 0.932 0.947 0.934 0.946
12 0.934 0.943 0.929 0.945 0.949 0.946
13 0.932 0.943 0.934 0.949 0.947 0.950
14 0.930 0.941 0.928 0.946 0.944 0.949
15 0.928 0.945 0.928 0.950 0.944 0.952
16 0.926 0.944 0.933 0.949 0.945 0.949
17 0.934 0.943 0.928 0.949 0.949 0.951
18 0.931 0.943 0.931 0.948 0.947 0.951
19 0.930 0.948 0.927 0.951 0.949 0.953
20 0.938 0.942 0.930 0.951 0.950 0.953

Standard Deviation

These are the raw numbers for the standard deviation graph in the results chapter.

Table 6: Raw numbers for standard deviation on Walmart-Amazon.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty = Partition-2

0 0.231 0.231 0.069 0.069 0.231 0.231
1 0.235 0.154 0.010 0.069 0.248 0.262
2 0.192 0.296 0.005 0.024 0.084 0.025
3 0.213 0.111 0.032 0.060 0.019 0.085
4 0.180 0.029 0.038 0.013 0.187 0.029
5 0.058 0.054 0.041 0.098 0.090 0.026
6 0.365 0.105 0.048 0.040 0.031 0.009
7 0.145 0.050 0.041 0.016 0.403 0.016
8 0.256 0.030 0.019 0.021 0.021 0.028
9 0.378 0.016 0.018 0.029 0.017 0.018
10 0.052 0.015 0.048 0.015 0.025 0.015
11 0.114 0.015 0.034 0.022 0.471 0.014
12 0.335 0.031 0.021 0.027 0.032 0.016
13 0.048 0.031 0.041 0.020 0.025 0.009
14 0.172 0.006 0.050 0.010 0.470 0.022
15 0.303 0.018 0.009 0.013 0.022 0.015
16 0.048 0.015 0.067 0.002 0.028 0.003
17 0.064 0.032 0.027 0.003 0.473 0.006
18 0.201 0.017 0.038 0.020 0.476 0.012
19 0.032 0.012 0.031 0.023 0.223 0.019
20 0.044 0.013 0.030 0.010 0.496 0.020

Time Use

These are the raw numbers for the iteration time graph in the results chapter.

Table 7: Raw numbers for time use on Amazon-Google.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty = Partition-2

0 156.5 151.6 193.4 140.2 128.7 164.3
1 173.2 160.1 194.1 155.6 137.4 172.1
2 167.2 163.7 196.5 163.2 146.4 178.3
3 171.0 169.7 198.1 168.7 147.7 182.3
4 167.5 168.8 200.1 167.8 147.9 186.0
5 174.8 173.4 201.9 170.1 155.6 191.8
6 176.2 168.6 201.8 180.4 154.4 197.9
7 187.1 177.7 200.4 181.6 152.6 200.9
8 176.3 177.4 205.7 183.9 154.6 203.6
9 183.7 177.1 206.3 185.1 161.2 206.9
10 191.2 176.8 209.5 193.4 160.8 210.3
11 192.1 186.9 211.8 196.9 160.8 215.6
12 185.5 185.8 216.1 199.1 165.3 220.1
13 194.0 186.9 214.3 200.0 172.2 225.8
14 188.7 190.8 216.5 210.8 168.1 224.2
15 187.7 192.9 217.3 214.0 171.9 229.6
16 208.7 197.5 220.2 218.4 178.6 242.4
17 204.8 192.9 225.6 219.4 177.5 244.7
18 207.7 197.1 224.8 225.1 176.8 247.8
19 209.0 200.4 229.4 225.2 178.3 248.3
20 207.5 198.7 232.9 231.0 184.7 257.7

7

Pool Positive Rate

These are the raw numbers for the rate of true positive examples in the pool, from the

graph in the discussion chapter.

Table 8: Raw numbers for time use on Amazon-Google.

Iteration Baseline Partition-4 Hybrid Hybrid-Partition-2 Uncertainty Partition-2
0 156.5 151.6 193.4 140.2 128.7 164.3
1 173.2 160.1 194.1 155.6 137.4 172.1
2 167.2 163.7 196.5 163.2 146.4 178.3
3 171.0 169.7 198.1 168.7 147.7 182.3
4 167.5 168.8 200.1 167.8 147.9 186.0
5 174.8 173.4 201.9 170.1 155.6 191.8
6 176.2 168.6 201.8 180.4 154.4 197.9
7 187.1 177.7 200.4 181.6 152.6 200.9
8 176.3 177.4 205.7 183.9 154.6 203.6
9 183.7 177.1 206.3 185.1 161.2 206.9
10 191.2 176.8 209.5 193.4 160.8 210.3
11 192.1 186.9 211.8 196.9 160.8 215.6
12 185.5 185.8 216.1 199.1 165.3 220.1
13 194.0 186.9 214.3 200.0 172.2 225.8
14 188.7 190.8 216.5 210.8 168.1 224.2
15 187.7 192.9 217.3 214.0 171.9 229.6
16 208.7 197.5 220.2 218.4 178.6 242.4
17 204.8 192.9 225.6 219.4 177.5 244.7
18 207.7 197.1 224.8 225.1 176.8 247.8
19 209.0 200.4 229.4 225.2 178.3 248.3
20 207.5 198.7 232.9 231.0 184.7 257.7

78

Recall

Presented below are the recall graphs from the experiments.

Amazon-Google

0.65 A
0.60 A
0.55 A
— 0.50 1
=
g
/5 0.45
Baseline
0.40 1 Partition-4
Hybrid
0.35 Hybrid-Partition-2
0.30 4 Uncertainty
Partition-2
200 300 400 500 600 700 800 900 1000
Labeled examples
Abt-Buy
0.9 A
0.8 A
0.7 A
06+
[
0.5 4 Baseline
: Partition-4
Hybrid
0.4 1 Hybrid-Partition-2
Uncertainty
034 Partition-2

200 300 400 500 600 700 800
Labeled examples

Figure 1: (Figure continues on next page).

900 1000

79

Walmart-Amazon

——— Partition-4
—— Hybrid
—— Hybrid-Partition-2

Baseline

Uncertainty
Partition-2

200 300 400 500 600 700 800
Labeled examples

900 1000

DBLP-ACM
0.99 A
0.98 A
0.97 A
20.96 -
Baseline
~——— Partition-4
0.95 7 —— Hybrid
—— Hybrid-Partition-2
0.94 - —— Uncertainty
— Partition-2
200 300 400 500 600 700 800 900 1000
Labeled examples
DBLP-GoogleScholar
0.96 A
0.95
0.94 A
FS 0.93 A
g0
o Baseline
0.9 ——— Partition-4
—— Hybrid
0.91 4 —— Hybrid-Partition-2
—— Uncertainty
0.90 4 / —— Partition-2

T
200 300 400 500 600 700 800
Labeled examples

T T
900 1000

Figure 1: Iterative recall for a selection of different active learning query strategies

with RoBERTa as the TPLM, on all datasets.

Precision

Presented below are the precision graphs from the experiments.

Amazon-Google

0.8
0.7 A
0.6
]
S
&
& 0.5 1
Baseline
~——— Partition-4
0.4 1 —— Hybrid
—— Hybrid-Partition-2
—— Uncertainty
0.3 —— Partition-2
200 300 400 500 600 700 800 900 1000
Labeled examples
0.9 1
0.8 A
0.7 A
2
-z
o
£0.6 4
a
—— Baseline
0.5 1 ~——— Partition-4
—— Hybrid
—— Hybrid-Partition-2
0.4 —— Uncertainty
—— Partition-2
v
200 300 400 500 600 700 800 900 1000

Labeled examples

Figure 2: (Figure continues on next page).

81

Walmart-Amazon

0.9 A
0.8 A
0.7 A
5
% 0.6 1
>
&
o0
0.5 Baseline
~——— Partition-4
0.4 A —— Hybrid
—— Hybrid-Partition-2
—— Uncertainty
0.3 1 —— Partition-2
200 300 400 500 600 700 800 900 1000
Labeled examples
DBLP-ACM
0.99 A
0.98 A
0.97 A
0.96 A

Precision
o
=}
(S
)

0.94 Baseline

~—— Partition-4
0.93 A —— Hybrid

—— Hybrid-Partition-2
0.92 1 U .

— Uncertainty

0.91 A —— Partition-2

200 300 400 500 600 700 800 900 1000
Labeled examples

DBLP-GoogleScholar

0.94 A

= 0.93 4
S
2
153
£
0-92 1 Baseline
~——— Partition-4
0.91 4 —— Hybrid
—— Hybrid-Partition-2
—— Uncertainty
0.90 1 —— Partition-2

T T T T T T T T
200 300 400 500 600 700 800 900 1000
Labeled examples

Figure 2: Iterative precision for a selection of different active learning query strategies
with RoBERTa as the TPLM, on all datasets.

82

Comparison to Classic Machine Learning

Presented below are the F1-score graphs from the experiments comparing classic machine
learning and TPLMs when performing active learning.

Amazon-Google

{8 s oo e e s e e s s gy — N —, =~~~ —y =P —p—
0.6
0.5 1
£0.4
E
;‘ roberta_ Baseline
031 === roberta Baseline-Max (6874)
=== roberta_Baseline-1/2 (3437)
027 === roberta_Baseline-1/4 (1718)
——— roberta_ Hybrid-Partition-2
0.1 1 —— roberta_ Partition-2
—— ml_ML-RF
0.0 === T T

0 200 400 600 800 1000
Labeled examples

Abt-Buy
0.6
)
n roberta_ Baseline
= 0.4
=== roberta_Baseline-Max (5743)
=== roberta Baseline-1/2 (2871)
02 === roberta_Baseline-1/4 (1435)
) ~——— roberta_ Hybrid-Partition-2
—— roberta_ Partition-2
—— ml_ML-RF
0.0 17== T T T T T
0 200 400 600 800 1000

Labeled examples

Figure 3: (Figure continues on next page).

83

Walmart-Amazon

084 i
0.7 1
0.6 4
£0.5
E
: 0.4 1 roberta_ Baseline
=== roberta_Baseline-Max (6144)
0.3 1 === roberta_ Baseline-1/2 (3072)
02 - === roberta_Baseline-1/4 (1536)
’ ——— roberta_ Hybrid-Partition-2
0.1 —— roberta_ Partition-2
—— ml ML-RF
0.0 4+ T T T T T
0 200 400 600 800 1000
Labeled examples
DBLP-ACM
1.0 -------:-}W—_W.
0.8 A
0.6 1
14
E
EI —— roberta_ Baseline
0.4 1 === roberta_Baseline-Max (7417)
=== roberta_Baseline-1/2 (3708)
=== roberta Baseline-1/4 (1854)
0.2 1 ——— roberta_ Hybrid-Partition-2
——— roberta_ Partition-2
—— ml ML-RF
0.0 4+ T T T T T
0 200 400 600 800 1000

Labeled examples

DBLP-GoogleScholar

0.6 1

—— roberta_ Baseline

roberta_ Baseline-Max (17223)
=== roberta_Baseline-1/2 (8611)
—==- roberta_Baseline-1/4 (4305)
0.2 7 ——— roberta_ Hybrid-Partition-2
—— roberta_ Partition-2

—— ml ML-RF

Fl-score

=

'S
L

1

1

1

0.0 - T T T T T T
0 200 400 600 800 1000

Labeled examples

Figure 3: Iterative F-score for a selection of different active learning query strategies
with RoBERTa as the TPLM compared to Random Forest, on all datasets.

84

DistilBERT vs RoBERTa

Presented below are the Fl-score and iteration time of the preliminary experiment of
testing DistilBERT against RoBERTa.

F1-score
Amazon-Google
0.7 A
0.6
0.5 A
i
5 0.4 1
7
F0.3
021 roberta_ Baseline
——— roberta_ Partition-2
0.1 —— distilbert_ Baseline
—— distilbert_ Partition-2
00 - T T T T T
200 400 600 800 1000
Labeled examples
Abt-Buy
0.8 1
0.6
&
g
= 0.4
024 roberta_ Baseline
. ——— roberta_ Partition-2
—— distilbert_ Baseline
—— distilbert_ Partition-2
0.0 -

200 400 600 800 1000
Labeled examples

Figure 4: (Figure continues on next page).

85

Walmart-Amazon

0.8 A
0.7 A
0.6
£ 0.5 1
o
7
B 0.4 1
03 /\/—\
0.2 roberta_ Baseline
——— roberta_ Partition-2
0.1 —— distilbert_ Baseline
—— distilbert_ Partition-2
0.0 - T T T T T
200 400 600 800 1000
Labeled examples
DBLP-ACM
1.0 — ————]
0.8 A
0.6
I}
<]
7
= 0.4
roberta_ Baseline
024 roberta_ Partition-2
—— distilbert_ Baseline
—— distilbert_ Partition-2
0.0 - T T T T T
200 400 600 800 1000
Labeled examples
DBLP-GoogleScholar
— e — e —
0.8 A
0.6 1
i
g
7
0.4
roberta_ Baseline
0.2 7 roberta_ Partition-2
—— distilbert_ Baseline
—— distilbert_ Partition-2
0.0 - T

T T T T
200 400 600 800 1000
Labeled examples

Figure 4: Iterative Fl-score for a selection of active learning query strategies with
DistilBERT as the TPLM.

86

Tteration Time

Amazon-Google

240
220 A
g 200 A
5180 1
E
= 160
140 A roberta_ Baseline
——— roberta_ Partition-2
120 A —— distilbert_ Baseline
—— distilbert_ Partition-2
100 F T T T T
200 400 600 800 1000
Labeled examples
Abt-Buy
550
500 A
© 450 1
£
B
= 400
=
3
350 A - —_—
—— roberta_ Baseline
——— roberta_ Partition-2
300 —— distilbert_ Baseline
—— distilbert_ Partition-2
200 400 600 800 1000
Labeled examples
Walmart-Amazon
450 A
400 A

Iteration time
w
&
(=)
L

/\/

300 1 ——— roberta_ Baseline
——— roberta_ Partition-2
—— distilbert_ Baseline

250 —— distilbert_ Partition-2

200 400 600 800 1000
Labeled examples

Figure 5: (Figure continues on next page).

87

DBLP-ACM

450 A

400

o

&t

S
L

300 1

Iteration time

P a—— —_
250 —— roberta_ Baseline

~—— roberta_ Partition-2
—— distilbert_ Baseline

200 A
—— distilbert_ Partition-2
200 400 600 800 1000
Labeled examples
DBLP-GoogleScholar
600
550
500 A
i)
£
= 450
8
K
£400 A
s
350 —— roberta_ Baseline
——— roberta_ Partition-2
300 —— distilbert_ Baseline
—— distilbert_ Partition-2

200 400 600 800 1000
Labeled examples

Figure 5: Progressive iteration time for a selection of active learning query strategies
comparing DistilBERT and RoBERTa as the TPLMs.

@ NTNU

Kunnskap for en bedre verden

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Motivation
	Goals and Research Questions
	Approach
	Results
	Thesis Outline

	Background Theory
	Entity Matching
	History
	The Entity Matching Problem
	The Entity Matching Process

	Active Learning
	The Active Learning Process
	Query Scenarios
	Query Strategies
	Challenges with Active Learning
	Alternatives to Active Learning

	Transformer Pre-trained Language Models
	Attention
	Transformers
	Models

	Performance Measures
	Precision
	Recall
	F1-score

	Related Work
	Data
	Public Datasets

	Method
	Tools
	Experimental Setup
	Hyperparameters
	Tokenization

	Experiments - Query Strategies
	Baseline
	Partition Sampling
	Hybrid
	Uncertainty Sampling

	Results
	F1-score
	Max F1-score

	Variance
	Time Usage

	Discussion
	Query Strategies
	Partition Sampling
	Pre-selection of Initial Train Data

	Limited Environment
	Faster Convergence
	Time and Resource Limitations

	Challenges
	Unsupervised Labeling
	Choosing a Model
	Review of Practical Application
	The Need of an Interactive Expert
	Interpretability

	Alternatives

	Conclusion and Future Work
	Conclusion
	Is Active Learning a Viable Strategy for Entity Matching?
	Future Work
	Comprehensive Benchmark
	Practical Application
	Training Set Distribution and Query Strategies
	Optimized Query Strategies
	Special Made Language Model
	Combine Active Learning with Other Strategies

	Bibliography
	Appendices

