
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Fredrik Gyllenhammar

Automated Pollen-Grain Counting

Master’s thesis in Computer Science
Supervisor: Professor Keith Downing

June 2021

M
as

te
r’s

 th
es

is

Fredrik Gyllenhammar

Automated Pollen-Grain Counting

Master’s thesis in Computer Science
Supervisor: Professor Keith Downing
June 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

i

Abstract

This thesis explores how a CNN based object detection model may be used to
localize and classify pollen grains using microscopic imaging data. Pollen counting
is a central method in many diverse fields, e.g., criminology, archaeology, and
geology. This is a laborious and very time-consuming task that currently requires
expert knowledge. From the literature, open questions remain with regards
to the complexity needed to solve this problem versus more common object
detection tasks. The effects of sharpness within training examples are also unclear.
Experiments using a Single Shot Multibox Detection model reveal that the problem
is solvable with a fully convolutional model. The regular shape of pollen grains
allows for certain simplifications to the model, but the similarities across classes
cause a loss in accuracy in smaller model configurations. Excluding un-sharp
data from the model’s training data causes the model to fixate on sharpness,
reducing the model’s ability to identify grains that appear less sharp. Training
with un-sharp examples seems to allow for a more robust generalization over the
features encoded in multifocal data.

ii

iii

Sammendrag

Denne oppgaven utforsker hvodan CNN baserte objektdeteksjonsmodeler kan
bruker til å lokalisere of klassifisere pollenkorn ved hjelp av mikroskopisk bilde
data. Telling av pollen er en sentral metode innen mange forskellige felt, f.eks.
krimimalogi, arkeologi, og geologi. Dette er en møysommelig og veldig tid-
krevende oppgave som per nå krever ekspertkunnskap. Fra litteraturen finnes det
åpne spørsmål med hensyn til kompleksiteten som trengs for å løse dette prob-
lemet i forhold til mer vanlige objektdeteksjonsoppgaver. Effekten skarpheten til
treningsekemplene her på modellen er også uklar. Eksperimenter med en ‘Single
Shot Multibox’ deteksjonsmodell viser at problemet er løselig med en fullt konvo-
lusjonell modell. Den regulære formen til pollenkorn tillater visse forenklinger av
modellen, men likhetene på tvers av klassene fører til tap av nøyaktighet i min-
dre modellkonfigurasjoner. Ekskludering av uskarpe data fra modellopplæringen
får modellen til å fiksere på skarphet, noe som reduserer modellens evne til å
identifisere korn som er mindre skarpe en trenings eksemplene. Trening med
uskarpe eksempeler ser ut til å tillate en mer robust generalisering over de ukile
attributtene i multifokale data.

iv

v

Preface

This master’s thesis is written for the Department of Computer and Information
Science at the Norwegian University of Science and Technology. This project is
a continuation of an unpublished specialization project thesis of the same name
conducted in the Fall of 2020, which functioned as the literature review for this
thesis. That project produced draft versions of Chapters 1, 2, and 3.

I want to thank my supervisor Professor Keith Downing for his invaluable guidance
and insightful feedback. I also want to thank Trond Einar Brobakk and The
Norwegian Asthma and Allergy Association for their help and expertise with the
data collection.

Lastly, I would like to thank the Open Source Software community, without which
this project could not exist.

Fredrik Gyllenhammar

Trondheim, June 10, 2021

vi

vii

Contents

1 Introduction 1
1.1 Goals and Research Questions . 2
1.2 Problem Description . 2
1.3 Thesis Structure . 3

2 Background 5
2.1 Pollen Imaging . 5
2.2 Convolutional Neural Networks . 6

2.2.1 Convolution . 7
2.2.2 Spatial pooling . 8
2.2.3 Cross channel pooling . 9
2.2.4 Batch normalization . 9
2.2.5 Data augmentation . 10
2.2.6 Transfer learning . 11

2.3 Recurrent Neural Networks . 11
2.4 Metrics . 11

2.4.1 Precision and recall . 12
2.4.2 Intersection over union . 13
2.4.3 Mean average precision . 13

3 Related Work 15
3.1 Convolutional Neural Networks . 15

3.1.1 Object detection . 15
3.1.2 Single stage detectors . 17

3.2 Automated Pollen Detection . 19
3.2.1 Classical methods . 19
3.2.2 CNN methods . 20

4 Methodology 25
4.1 Data . 25
4.2 Sharpness Measure . 26

4.2.1 Fourier analysis . 26
4.2.2 Measuring sharpness . 28
4.2.3 Evaluating the sharpness measure 30

4.3 Architecture . 31

viii

4.3.1 Model . 32
4.3.2 Default boxes . 33
4.3.3 Training objective . 34
4.3.4 Inference . 35

4.4 Experimental setup . 36
4.4.1 Software . 36
4.4.2 Hardware . 37
4.4.3 Training . 37

4.5 Experiments . 38
4.5.1 Feature extractor . 38
4.5.2 Layer activation . 38
4.5.3 Minimum training sharpness 39
4.5.4 Cross-sharpness inference . 39

5 Results 41
5.1 Baseline model . 41
5.2 Model simplification . 43

5.2.1 Feature extractor . 44
5.2.2 Layer activation . 44

5.3 Sharpness . 45
5.3.1 Minimum training sharpness 45
5.3.2 Cross-sharpness inference . 46

5.4 Summary . 50

6 Conclusion 51
6.1 Future Work . 52

Bibliography 55

ix

List of Figures

1.1 Bounding boxes . 3

2.1 Pollen grain imaging examples using LM and SEM 6
2.2 Basic structure of a CNN . 7
2.3 Convolution operation . 8
2.4 Cross channel pooling architecture . 9
2.5 Intersection over union . 13

3.1 Evolution of object detection models 17
3.2 z-stack of pollen taken at three focal planes 21

4.1 Dataset example . 25
4.2 Aspect ratios in the dataset . 27
4.3 Fourier transform of sinusoid . 28
4.4 Demonstration of the Fourier transform 29
4.5 Fourier spectrum . 29
4.6 Sharpness measure separability . 31
4.7 Distribution of sharpness across entire dataset 32
4.8 Model architecture overview . 33
4.9 Visualizing default boxes . 33
4.10 Default box matching . 34
4.11 Gaussian decay as a function of IoU for various σ 36

5.1 Baseline training procedure . 42
5.2 Detections by type by class for the baseline on the test split 42
5.3 Predictions showing TP overlapped by FP from different class . . . 43
5.4 Sharpness distribution of model predictions in test split by minimum

training sharpness . 47
5.5 mAP across sharpness boundary . 48
5.6 Precision and recall across sharpness boundary 48
5.7 Data sample showing split between sharp and blurry data 49

x

xi

List of Tables

4.1 Class distribution across the dataset 26
4.2 Sharpness dataset distribution . 30
4.3 Class distribution across the final training dataset containing 467

sample images. 38
4.4 Feature extraction networks . 38

5.1 Performance by feature extraction network 44
5.2 Performance when deactivating source layers 45

xii

1

Chapter 1

Introduction

Palynology is the scientific study of palynomorphs, a general term for organic-
walled microscopic plant and animal remains (Askin and Jacobson, 2003). Because
of the resilience of these types of organisms and microfossils, the types of particles
studied cover the entire geological timeline, from the earliest organisms of the
Proterozoic Era to the allergy-educing grass pollens of today.

Possible applications and use cases are equally as diverse. In criminology, soil
samples can place a suspect at a specific location, depending on the composition
of pollen and spores found. Geologists analyze rock layers and use the presence
and disappearance of palynomorphs to place formations in time. Glacial Ice core
samples are analyzed for organic remains to estimate temperature and rainfall
over the past 10,000 years. Finally, and most relevant to this thesis, is counting
the amount of airborne pollen to forecast conditions for people with allergies.

Methods used in palynology vary, but most seek to identify the composition of
palynomorphs in samples taken from nature, be it from glacial ice cores, peat
sections from bogs, rock samples from stratigraphic drilling, or collected airborne
pollen grains. Common for all these methods is the need for human experts to
count and classify palynomorphs with a microscope manually. A single slide can
take hours to analyze, directly affecting the potential amount of data collected
and analyzed.

From a machine learning perspective, the above describes an object detection
task: the general task of locating certain objects within an image and classifying
each object. State of the art within this problem space uses Convolutional Neural
Networks (CNN), a type of neural network especially suited for image analysis
of unprocessed image data. However, research into using this technique to solve
counting pollen is sparse, and as of writing, only one partial example exists in
literature. Microscopy is a relatively unexplored domain for machine learning and
offers unique challenges in need of research. This thesis will explore the varying
methods that have been proposed to automatically count pollen grains, as well
as other domains where modern machine learning methods have been used on
similar tasks.

2 1.1 Goals and Research Questions

1.1 Goals and Research Questions

Many of the major advancements within object detection have happened so
recently that many possible use cases, pollen counting being one, have yet to be
explored. The goal of this thesis can therefore broadly be stated as follows,

Goal To explore the use of Convolutional Neural Networks in automated pollen
counting.

The primary objective is to build a system that can count pollen grains with an
accuracy comparable to that of a human expert. Moreover than just developing a
working system, the project aims to establish whether the modifications that have
been successfully made to detection systems in related domains also may improve
a pollen detection system. This is formalized as the following research question,

RQ1 Can the computational complexity of a Single Stage MultiBox object detection
model be reduced without a loss in precision and recall?

Computational complexity here refers to the number of trainable parameters that
a given model comprises. The Single Stage MultiBox (SSD) model is presented in
Section 3.1.2. It is designed as a general object detector capable of detecting any
number of objects in an image. RQ1 postulates that the task of pollen detection
will require a less generalized model and that this can be realized by simplifying
or removing parts of the model’s architecture.

Recent research in pollen classification has questioned how multifocal data may
be used to improve the accuracy of models operating on microscopic data, i.e.,
images from different focal planes instead of single images. This project will
explore what impact the sharpness of training data has on an object detection
model. This is formalized in the second research question,

RQ2 Can the accuracy and recall of the model be improved by using multifocal data?

1.2 Problem Description

As mentioned, one of the primary activities within palynology is counting pollen
grains. When magnified, only a section of a slide is visible through a microscope.
A sliding window approach must be used to scan the entire surface area of the
sample. The data that is collected varies between different applications. With
airborne pollen, the slide has been prepared such that the location of pollen grains
represents the time interval at which it was collected. In this case, the general
location and taxa are recorded, such that the changes in density throughout the
day are known.

In the context of machine learning, this can be described as an image recognition
task. Image recognition is the general task of deciding if an image contains an
object of interest, where it is located within the image, and to which class the
object belongs. When the main task is to locate one or multiple objects, the task
is often referred to as object detection, which is a joint regression and classification

1 Introduction 3

Figure 1.1: An LM image of four pollen grains with ground truth bounding boxes.
The image contains two species, corylus and alnus.

problem. The location and dimensions of a rectangle, known as a bounding box,
which encloses an object, is regressed and its class is identified. Figure 1.1 shows
a correct solution to this problem.

1.3 Thesis Structure

The remainder of this document is structured as follows, Chapter 2 covers back-
ground knowledge relating to pollen imaging techniques, the composition and
functioning of Convolutional Neural Networks, and metrics for measuring per-
formance in object detection tasks. A literature review covering the usage of
convolutional networks in object detection, as well as the various methods pro-
posed to classify and detect pollen grains, follows in Chapter 3. Chapter 4 describes
the implementation and development of a CNN based object detection system,
a sharpness measurement procedure, and the experimental design used to ana-
lyze the model. The results of these experiments are provided and discussed in
Chapter 5.

4 1.3 Thesis Structure

5

Chapter 2

Background

This chapter covers the main theoretical concepts underlying the problem domain
and proposed solution. Section 2.1 gives a short overview of the current methods
that are in use for pollen counting and the data that is available. Based on this,
Section 1.2 formalizes the task as a machine learning problem. A theoretical
overview of the main building blocks of modern convolutional neural networks
follows in Section 2.2, together with an overview of the metrics used to measure
the performance of object detection models in Section 2.4. A basic understanding
of the operation and components of a standard feedforward fully connected neural
network is assumed for this section.

2.1 Pollen Imaging

There are two main methods of pollen analysis, image-based and non-image-based.
Non-image-based techniques employ a host of alternative sensing methods and
will not be discussed further in this thesis. Within the image-based methods there
are two main imaging techniques.

Light microscopy (LM) describes the method of observing a prepared sample with
an optical microscope using visible light. The sample is fixed to a translucent slide
and is illuminated with a backlight. It can either be observed through an eyepiece
or photographed with an image sensor. An example of a pollen grain is shown
in Figure 2.1. Because the grain is semi-translucent, differences in the surface
texture can be observed, but only some areas are in focus. A consequence of the
high magnification is that the plane of focus is so narrow that only parts of the
grain are in focus.

Scanning electron microscopy (SEM) is a very different approach where a focused
beam of electrons is used to record the surface topology of a sample. It captures
very detailed features of the pollen grain surface but cannot reveal any of the
substructures. Because SEM imaging does not depend on focusing light, all parts
of the image appear in focus, and the resolution is much higher than what LM can
achieve. However, SEM imaging is a more laborious process and requires more

6 2.2 Convolutional Neural Networks

(a) Light Microscopy (b) Scanning Electron Microscopy

Figure 2.1: Aetanthus coriaceus. Imaged with LM (a) and SEM (b). Halbritter
et al. (2018:p. 98) / cropped and rearranged, licensed under CC BY 4.0 URL:
https://creativecommons.org/licenses/by/4.0/

preparation of the sample. SEM is also not suited for large samples where pollen
grains must be observed over the entire slide. This is why LM imaging is the only
viable option when the task is to count pollen grains on a slide.

The current standard method for pollen counting is a sliding window search. A
human expert views a prepared slide through a microscope and systematically
searches for pollen grains within the slide. The slide is often partitioned such
that the size of the searched area is known; this is then used to estimate the
concentration of pollen. A machine learning system should integrate easily into
this existing search-based workflow, but it cannot be assumed to be the most
effective way to perform the overall goal.

2.2 Convolutional Neural Networks

Convolutional Neural Networks have been in active development for three decades,
and the umbrella of what the term encompasses continues to grow. The basic
concepts and building blocks have remained relatively unchanged since they were
first used to predict handwritten digits in LeCun, B. Boser, et al. (1990). An
overview of the basic building blocks will first be given before expanding on each
building block. This section will also cover some of the newer concepts that have
become commonplace additions to the basic model in later years.

A convolutional neural network consists of stacked and layered operations. There
are two types of layers, convolutional, and spatial pooling. The convolutional
layers extract feature maps by applying several trainable filters to the input before
applying a nonlinear activation function to the result. The spatial pooling layers
operate similarly by applying an operation to a receptive field moved over the
input feature map. The operation downsamples the input, reducing its spatial di-
mensions. Figure 2.2 shows an example of a simple CNN model; the convolutional
layers control the depth of the activations while the pooling layers control their
spatial dimensions. The two layers are stacked alternatingly, with the idea that
the complexity of the features extracted increases with the depth of the network.

https://creativecommons.org/licenses/by/4.0/

2 Background 7

64

1

64

1/
2

256

1/
4

512

1/
8 512

1/
16

Figure 2.2: The basic architecture of a CNN. Convolutions create feature maps
(yellow) which are followed by a non-linear activation (orange). The pooling
layers (red) reduce the size of the feature maps. Here, the pooling layers halve
the spatial dimensions of the feature maps. Visualization library (Iqbal, 2018).

2.2.1 Convolution

The central concept of the convolutional layer is the convolution operation. Let
the kernel (w) be a k×k matrix. This kernel will operate on the output of the
preceding layer, x . The output from the convolution can be calculated as follows,

w ∗ x i j =
∑

m

∑

n

wmn x i−m, j−n

Where (m, n) spans the index set of the kernel, which is center originated, i.e.,
w0,0 is the centroid of the kernel. The patch of x involved in the sum at each
step is referred to as the receptive field. As the operation is repeated for every
index of x , the receptive field slides across the input. The resulting output of the
convolution is referred to as a feature map.

Usually, the input to a convolutional layer contains multiple channels, e.g., an RGB
image with three channels representing the red, green, and blue color channels.
A stack of kernels is therefore used, one for each input channel. Each channel is
convolved with its kernel, and the result is added together across the channels,
which produces a single feature map. An example of such a convolution operation
is shown in Figure 2.3. This stack of kernels is referred to as a filter. For a
convolutional layer to produce N feature maps, N filters are needed. It is common
to increase the number of filters as the image is continually downsampled through
the layers on the neural network.

At the edges of x the sum is undefined because the receptive field moves beyond
the bounds of x , causing a reduction in the size of the output. This can be mitigated
by padding the input. When the receptive field moves beyond the bounds of x , a
stand-in value is used instead. This can be visualized as padding the input with
said value. Zero is often used as the padding value.

8 2.2 Convolutional Neural Networks

3 20

3 3

1 18

1 1

Figure 2.3: Visualization of the convolution operation. In red is a filter containing
three 3×3 kernels. The element wise multiplication between the filter and receptive
field and subsequent summation produces a single scaler in the feature map. The
operation is repeated over the index set of the input, producing the complete
feature map.

Dimensionality reduction is also possible using the concept of stride, which refers
to how the receptive field moves across the input relative to the index of the
feature map. In the base case, the receptive field moves by one step for every
element in the feature map. With an increased stride, the receptive field ‘jumps
over’ positions for every step in the feature map, thus shrinking its size.

One of the more essential aspects of convolutions arises from the fact that the
kernel is applied in the same way over the whole image. This parameter sharing
means that features are extracted from the input, regardless of their location
(LeCun, 1989). It also reduces the computational complexity involved in training
the model.

Because convolution is a linear operation, non-linearity must be added if the
network is to be able to approximate a nonlinear function. As with regular fully
connected networks, this is achieved by applying an activation function to the
feature map. The same activation functions that are commonly used in fully
connected networks are also used in CNNs. Because of the depth of the models’
architectures in use today, the rectified linear unit (ReLU), and its variations, are
commonly used.

2.2.2 Spatial pooling

Even though the convolution operation extracts features wherever they exist within
an image, a new problem arises when layers are stacked to extract higher-level
features from the combination of features below. Local variations in the relative
placement of features will significantly impact later filters’ ability to combine
them. This would have to be accounted for by dramatically increasing the number

2 Background 9

of filters. LeCun, Bottou, et al. (1998) presents a simple solution to this problem
with a sub-sampling layer, referred to as a pooling layer today, which reduces the
dimensions of the feature map by applying a local pooling function, similarly to
the convolution operation. Standard pooling functions are maximum and average.
The pooling operation is applied to each channel separately, so only the width
and height are downsampled. Pooling retains the relative placement of features
within the image while allowing the network to ignore smaller variations in the
relative configuration of features across all the channels of the feature map.

2.2.3 Cross channel pooling

As mentioned, it is customary to increase the depth of the feature maps as they
get downsampled throughout the network. This is necessary if the model is to
learn more complex features that may require many layers to be represented in
full. Combining information from multiple channels could help build more rich
feature maps. This is the proposal in Lin, Chen, and Yan (2014). To enhance
model discriminability, they propose a ‘Network in Network’, a fully connected
layer working across the channels. This effectively creates connections between
local features across the channels of the feature maps, as shown in Figure 2.4.

1×1

Figure 2.4: Visualization of a cross channel pooling architecture.This simple
example models a single fully connected layer using a 1×1 convolution.

The technique is however most commonly used as an optimization that removes
computational bottlenecks in deeper networks (Szegedy et al., 2014). By placing
a 1×1 convolution with reduced output depth in front of a larger 3×3 or 5×5
convolution, the computational cost is reduced, which allows for much deeper
networks. For instance, given an input depth of 500, a 3×3×500 convolution
requires 2,250,000 parameters, but if a 1×1×250 is used first, the total number of
parameters in both layers is only 1,250,000. The technique is now commonplace
and featured in all deep CNN architectures.

2.2.4 Batch normalization

As the network trains, the parameters in each layer change. This causes the
distribution of each layer’s output to shift. As the distribution from previous layers

10 2.2 Convolutional Neural Networks

changes, this shift is propagated through to the layers downstream, and so each
layer must deal with ever-changing input distributions. To overcome this, lower
learning rates and careful parameter initialization is required.

A much more effective solution has been proposed by Ioffe and Szegedy (2015)
called Batch Normalization (BN). The proposed solution for convolutional net-
works is to normalize the layers from each convolution independently. Given a
layer activation with d feature maps a =

�

a(1), . . . , a(d)
�

, each feature map (k) is
normalized (pre activation) as follows,

ba(k) =
a(k) − E

�

a(k)
�

q

Var
�

a(k)
�

where Var [·] and E [·] are respectively the batch variance and batch mean over
both the mini-batch and spacial locations of the feature map, thus maintaining
the convolutional property of spatial invariance within feature maps. However,
this normalization could be undesirable in certain circumstances. For instance, if
the inputs of a ReLU activation are normalized, roughly half of the features will be
truncated at 0. To account for this, the normalized values are scaled and shifted
before activation. Two parameters, γ(k) and β (k) are introduced for each feature
map, and the normalized values are scaled and shifted as follows,

y(k) = γ(k) ba(k) + β (k)

The parameters are learned together with the original filters and restore the
representative power of the layers. By allowing the filters to only focus on learning
features, instead of adapting to constantly shifting input distributions, training is
accelerated, allowing for higher learning rates.

2.2.5 Data augmentation

Deep learning in general, and deep convolutional networks in particular, require
a large amount of data to generalize to a solution properly. Data augmentation
is a technique whereby the size of a dataset is artificially increased by applying
transformations to the existing data. This has been an important regularization
technique and a critical component of many established models, such as ResNet
(He et al., 2015) and AlexNet (Krizhevsky, Sutskever, and Hinton, 2017). It is
argued by Hernández-García and König that data augmentation alone is more
beneficial to training than using explicit regularization such as dropout or weight
decay (Hernández-García and König, 2019).

Many different transformations can be applied to image data. Lighter augmenta-
tions include flipping an image either horizontally or vertically or translating the
image by some vector. Heavier augmentations include more affine transformations,
such as rotating, sheering, scaling the image, or adjusting the image’s contrast,
brightness, and hue.

2 Background 11

Augmentations are limited only by the fact that they must preserve the necessary
information that the model needs to make a prediction and by the computational
cost they impose on the training procedure. In object detection, augmentations
must also transform the ground truth labels, which also incurs additional costs.

2.2.6 Transfer learning

A different approach to solving for small datasets is the concept of transfer learning.
There is a generally accepted assumption in machine learning that the training
and testing data must be sampled from the same distribution and share the same
feature space. Transfer learning challenges this assumption (Pan and Yang, 2010).
A successful knowledge transfer can lead to a better generalization in a new
domain with less data by training a model for one task in a domain with an
abundance of data.

Transfer learning is widely used in the models presented in Chapter 3, both those
used in pollen classification and general object detection. The source is usually
an image classification model trained on a large dataset, such as the previously
mentioned ResNet and AlexNet architectures. With object detection systems, the
pre-trained model functions as a feature extractor for the detection architecture.
In the domain of pollen classification, transfer learning has been shown to improve
accuracy in CNN based classifiers, even though the source and target domain are
vastly different.

2.3 Recurrent Neural Networks

Recurrent neural networks are not a major part of this thesis, but are used closely
related work, so understanding the basic workings of this class of neural networks
is needed.

A recurrent neural network is a special type of network used to process sequences
of information, e.g., signals, text, or time-series. It adds working memory to the
layers such that the activation of previous elements in a sequence are ‘remembered’.
Given an input sequence X= {x1, . . . , xn}, each element is activated in turn, but
when processing element xn, the activation of xn−1 is added.

2.4 Metrics

An essential step towards building a model is defining how to measure its perfor-
mance. Implicitly, this is done through the construction of a Loss function. The
models examined in this thesis do not employ novel Loss functions, so delving into
their construction is not warranted. However, the metrics used when measuring
the performance of object detectors, specifically, are of interest.

Object detection is a multi-task problem incorporating both the localization and
classification of objects. Throughout this thesis, when referring to a detection
made by an object detection system, this refers to a proposed boundary that the

12 2.4 Metrics

system believes encloses an object of a particular class. Every detection encodes
both a localization and a class label. A correct detection refers to a detection that
matches a ground truth, i.e., a predicted boundary with a particular class matches
that of a ground truth of the same class.

2.4.1 Precision and recall

The precision and recall of a model refer to its ability to correctly locate and label
the objects within an image. Before defining precision and recall, the following
quantities must be introduced,

True Positive (TP): Number of objects correctly located and labelled.

False Positive (FP): Number of incorrect predictions.

True Negative (TN): Correct non-prediction, not usually relevant.

False Negative (FN): Number of objects missed by model.

Precision measures the model’s accuracy, i.e., how many of the positive predictions
are correct. Recall measures howmany of the positive instances themodel correctly
labels. They are computed from the above quantities as follows,

precision= T P
T P + F P

recall= T P
T P + FN

These two metrics are the basis for how all object detection models are evaluated,
and there is usually a tradeoff between the two. For instance, a model can have
a very high recall, meaning it correctly identifies most potential objects, but the
precision is reduced if it also identifies many other non-objects. Inversely, a model
could be sure that it returns correctly identified objects at the cost of ignoring
objects it is unsure about.

A popular accuracy measure that derives from the precision and recall values
is the F1 score, and it may also be referred to as the dice score. It is defined as
follows,

F1 = 2
precision · recall
precision+ recall

The F1 score measures the balance between precision and recall values and is
useful in cases where both measures are equally important performance indicators.

2 Background 13

2.4.2 Intersection over union

The correctness of a detection has been defined as ‘a detection that matches a
ground truth’. Classification has a simple binary solution; two classes are either
the same or different. A positive solution to a binary localization problem would
require pixel-perfect similarity between the predicted boundary and ground truth,
which would be an extremely high bar to clear. For a more lenient approach, one
could instead assign a localization score to the predicted boundary based on how
well it matches the ground truth. A positive solution could then be defined as a
boundary with a localization score above some threshold.

Most object detection systems use intersection over union (IoU) to score the match
between boundaries. As the name indicates, it is defined as the ratio between the
intersection and union of two boundaries,

IoU= area of intersection
area of union

intersection union

Figure 2.5: Visualization of the intersection over union of two boundaries. The
named region is shaded.

The definition of what is considered a correct prediction (TP) can then be defined.
Given prediction X̂ with label X̂ l and bounding box X̂u. X̂ is considered a True
Positive if there exists a ground truth Y , where Yl = X̂ l and IoU(X̂u, Yu)≥ µ. Where
µ is some threshold value, often 0.5.

2.4.3 Mean average precision

Mean average precision (mAP) is a popular metric for measuring the performance
of object detection models. It is computed by taking the mean of the average
precision values for each class.

From a list of all detections made for a class, ranked in ascending order of confi-
dence, each is labeled either true positive or false negative. In cases where multiple
predictions match the same ground truth, only the highest-ranking prediction is
considered a true positive. The cumulative precision and recall are computed from
the ordered list of predictions, and from these values, a precision-recall curve is
drawn. This shows how precision changes as recall rises over the range [0,1] as
more and more detections from the ranked list are included in the precision/recall

14 2.4 Metrics

calculations. The AP describes the shape of the precision-recall curve and can
be calculated in a few different ways. This thesis will use the definition of AP
specified in the evaluation procedure for the VOC2007 image detection challenge.
For convenience, the definition of AP, as given in Everingham et al. (2010) is
repeated below.

AP is measured by taking the mean of precision values taken at 11 evenly spaced
recall values as follows,

AP =
1

11

∑

r∈{0,0.1,...,1}

pinterp(r) (2.1)

Because the precision-recall curve often times is quite erratic, the precision value
at a given recall level, r, is interpolated by finding the maximum precision value
at any recall level exceeding r,

pinterp(r) = max
r̃:r̃≥r

p(r̃)

This section has detailed the current methods employed for automated pollen
counting and the foundational building blocks of a CNN. Most research and
application of CNN based methods is regarding classification, which only solves
part of the problem of counting pollen. A subcategory of deep CNNs capable
of predicting both classes and locations is required to automate the task fully.
The next chapter will detail how object detection can be solved using a CNN by
detailing how they have been used to solve tasks similar to pollen counting. The
available literature relating to other attempts at solving the problem of counting
pollen will also be given.

15

Chapter 3

Related Work

Object detection using CNNs is a relatively new area of study, and as such, its
application in the domain of pollen counting lacks in literature. Therefore, exam-
ining related work requires a broader field of view and must explore how similar
methods have been used to solve similar problems. This chapter is broken into two
main sections. Section 3.1 will examine the various object detection frameworks
and their use within microscopy. Section 3.2 will detail the various methods that
have been employed with regards to the specific domain of automated pollen
counting.

3.1 Convolutional Neural Networks

Before CNNs, the task of classifying images was usually highly dependent on
the problem domain. Careful feature engineering was used to extract a set of
parameters classified using a statistical model. A CNN fundamentally changes
this landscape by removing all manual feature engineering. Over the last ten
years, CNNs have risen to prominence as state-of-the-art in image processing. Raw
images are classified directly, with little consideration of the specific domain. The
trade-off is the nearly insatiable thirst these models have for labeled training data
required to train them.

3.1.1 Object detection

With the quality of image classifiers rising, focus has been given to the more
complex task of object detection, where the model must identify the location of
objects within an image and their class. Work on this problem was kickstarted by
Girshick et al. (2014) with the proposed method: Regions with CNN features (R-
CNN). This three-stage system first identifies ‘regions of interests’ within an image
before classifying them using a CNN and statistical classifier. They later proposed
Fast R-CNN and Faster R-CNN, which improved the learning and inference time
and the robustness of the original model.

16 3.1 Convolutional Neural Networks

R-CNN has three main modules. First, bounding boxes are proposed using selective
search, an algorithm where different similarity measures are first used to segment
the image into a myriad of small sections before these are then selectively grouped
into larger regions of interest. Each region is then resized and fed into a CNN,
the second stage, which produces a feature embedding which is finally classified
using a Support Vector Machine (SVM), the third stage. An SVM is a supervised
learning model for classification which attempts to maximize the margin between
a decision boundary the training data (B. E. Boser, Guyon, and Vapnik, n.d.).
A major computational bottleneck was having to process each region proposal
independently through the second and third stages.

Fast R-CNN removes the second and third stages and replaces them with a new
CNN, which considers both the whole image and the region proposals from the
selective search. The CNN generates classifications for all region proposals with
one forward pass, dramatically reducing the computational cost of this stage
compared to R-CNN, where each region is classified in turn. This new second
stage also predicts offsets for the proposed boxes, allowing it to refine the proposals
from the first stage.

Faster R-CNN replaces the first stage with a Region Proposal Network (RPN), a fully
convolutional deep neural network which produces a fixed number of bounding
boxes together with an ‘objectness’ score for each box. The RPN introduces
anchors, which are points in the image used to regress bounding boxes. After a
set of convolutional layers, a n×n feature map is outputted. Imagining a set of
anchor boxes imposed upon the image, which are centered on each cell of the
feature map, the dimensions of regions of interest are computed by producing
regressions of the anchor boxes by running a convolution over the feature map
with a small kernel. At each step of the convolution, one parameter of an anchor
box centered at the middle of the receptive field is produced. With four filters,
the center point, height, and width of an anchor box can be regressed to a region
of interest in proximity to the anchor. Using an RPN allows for training of both
stages of the detector, significantly increasing the performance. Following the
release of Faster R-CNN, the amount of research attempting to automate various
object detection tasks has increased.

In many domains, there is usually a positive correlation between the cost of data
and its quality. Often, methods that are proposed become prohibitively expensive
because they use higher quality data only available to the researchers. CNN based
methods have shown that high-quality models can be created using lower quality
data. M. El-Melegy, Mohamed, and T. El-Melegy (2019) gave a good example of
this. A Faster R-CNN method is proposed for detecting tuberculosis bacilli in LM
slides. The proposed model can outperform all previous traditional models, many
of which use higher quality imaging methods. The types of images the model uses
are challenging to diagnose manually but are by far the most available in the field.
The model also solves an issue present in most of the previous work, namely, how
to automate diagnosis. Previous work uses pre-segmented images, which are then
classified, requiring a human expert.

3 Related Work 17

3.1.2 Single stage detectors

Common to the R-CNN family of methods is the use of two separate stages: one for
identifying regions of interest in an image and classifying objects in those regions.
This adds considerable complexity in that both systems require separate training
and hyper-parameter tuning. These methods have been successfully utilized in
many domains, including the only published attempt at pollen grain detection by
Gallardo-Caballero et al. (2019). However, the inference speed is prohibitively
slow for tasks that require real-time performance. Overall, there is a noticeable
trend in the evolution of the two-stage systems where a CNN replaces stages. This
trend continues to its logical conclusion with the development of the Single Stage
Detector (SSD).

Selective
SearchRegion Proposal

R-CNN Fast R-CNN Faster R-CNN SSD

Feature Extraction

Classification

Non-Neural Neural Convolutional

CNN CNN CNN

SVM Fully
Connected

Fully
Connected

Selective
Search RPN

CNN

Figure 3.1: Object detection models show a gradual shift towards all tasks being
performed by a CNN

This class of model comprises only a single CNN, responsible for both localizing
and classifying objects. These models can be trained in one pass and feature
inference speeds orders of magnitude faster than Faster R-CNN. One of the first
methods was the Single Shot Multibox Detector (SSD), proposed by Wei Liu
et al. (2016), which is the model implemented in Section 4.3. It was one of the
first systems to demonstrate that a single fully convolutional model could vastly
improve inference speeds without compromising accuracy.

The architecture resembles the RPN from Faster R-CNN. Like an RPN, SSD predicts
bounding box offsets for a fixed number of default bounding boxes. Boxes with
a predefined aspect ratio and size are centered on each cell of a feature map
and a small-kernelled convolution predicts regression parameters for the position
and size of these boxes. A separate but identically configured convolutional layer
produces class confidence scores for each default box. Thus, the output of the
network is both regression parameters and class confidence scores for a fixed
number of default bounding boxes.

SSD makes predictions from multiple feature layers, and the default boxes are
scaled up as the depth of the feature map in the network increases. This allows the
network to predict objects at different scales in the image. The training objective
for SSD is created by matching default boxes with overlapping ground truth boxes

18 3.1 Convolutional Neural Networks

based on their IoU score. This match is then used to produce a target for the
regression parameters and class for every positively matched default box. The
model is trained by a linear combination of two separate loss functions, one for
the bounding box regressions and one for the class confidences. Most default
boxes are not matched to any ground truth box, which causes an imbalance in
the loss function. To balance out the ratio of negative and positive examples in
the training objective, only the negative examples with the highest loss values are
included in the final loss calculation.

As of writing, there are no published attempts of using a single stage detector to
count pollen grains, but there are examples of its use in similar domains. W. Liu,
Cheng, and Meng (2018) uses an SSD model to detect brain slices used in an
automatic sample preparation system. The model was chosen for its speed and
accuracy, both important in real-time detection. The model was simplified with
a smaller range of default box scales because the domain is less varied than the
training data for the standard SSD model. This simplification could also prove
relevant to a pollen detection task where grains are similar in size and shape.
Because of SSD’s structure, this simplification is achieved by removing layers from
the model, thus removing predictions from those scales. Results show that the
simplified model increased both accuracy and speed over the original.

You Only Look Once (YOLO) is a very popular single stage model, its release closely
following SSD (Redmon et al., 2016). As with R-CNN it has been released in many
versions with iterative improvements. It is similar to SSD in that it also predicts
box offsets and class scores for a fixed number of bounding boxes. Specifically,
YOLO divides an input image into a grid and then predicts box offsets for a fixed
number of bounding boxes centered in each grid square (but not regressed from
default boxes) and class confidences for each grid square (not each bounding
box). Both SSD and YOLO use transfer learning in the form of an initial feature
extractor transferred from a pertained classification model. The later versions
of YOLO also feature multiple extraction layers, which improve predictions for
smaller objects, which was one of the significant weaknesses of the initial version.

Recently, multiple papers using YOLOmodels have been published showing promis-
ing results in areas similar to pollen counting. Chibuta and Acar (2020) used a
modified version of the third iteration of YOLO to screen blood smears for malaria.
Diagnosing malaria is very costly because it requires manual analysis of blood
samples. As with Tuberculosis, the areas with the highest prevalence of the disease
are those where the primary screening technique uses light field microscopy. The
presented model uses a smaller feature extractor and fewer extraction layers to
optimize for speed on basic hardware. The model has ' 99% fewer parameters
than the standard YOLOv3 implementation and still performs at the same level as
human experts and its unoptimized equivalent.

Another area of study of relevance to this thesis is blood cell counting. A complete
blood count is a test that is often requested when evaluating general health and
involves a manual count of blood cells within a sample. The current standard
process requires human expert analysis and is prone to error. Islam and Alam

3 Related Work 19

(2019) proposed a YOLO model which accurately localizes and classifies blood
cells using standard LM images of a blood smear. The YOLO model has not
been modified apart from changing the number of classes to 3 (Red, White, and
Platelets). However, they do change the inference routine to optimize the count
for each of the three cell types. As with the aforementioned RPN, YOLO predicts
an objectness score for each bounding box and usually considers a box to be a
positive match if the score exceeds a threshold. Islam and Alam show that, rather
than using only one threshold value for all classes, higher overall accuracy can be
reached by filtering boxes for each class independently with different thresholds.
This points towards a larger issue of choosing the algorithms used to filter the
predictions made by these models and their hyperparameters. The difference
between how many raw predictions a model makes and the number of objects
an image contains is usually many orders of magnitude. The method used to
filter the predictions is therefore crucial to the model’s performance and highly
dependent on the domain.

3.2 Automated Pollen Detection

There have been many attempts at pollen grain classification over the last three
decades. These have been nicely summarized by Sevillano and Aznarte (2018).
Most are statistical classifiers using selected features from pollen images. The
earlier attempts can be grouped into three categories. The first focuses on mor-
phological features such as shape, size, and symmetry. The second type uses
the texture of the grain surface as the discriminating feature. The last group
uses a hybrid approach that combines morphological and texture features. These
methods have successfully classified pollen to a degree comparable to human ex-
perts, but all rely on careful feature engineering. Of the earlier methods, the most
successful utilize images taken through SEM, which is a much more expensive
imaging technique than standard LM imaging.

3.2.1 Classical methods

As a precursor to the newer systems, it is pertinent to cover the earlier attempts
at solving the task of automated pollen counting. The first attempt, by Langford,
Taylor, and Flenley (1990), used greyscale SEM images of the surface texture
on pollen grains. Based on a Grey-tone spatial dependence analysis, six feature
measures were then produced and classified using Linear Discriminant Analysis
(LDA). This technique was successful but required manual analysis for each class,
making it challenging to apply to new datasets or other pollen taxa.

Other attempts were made over the next decade, some using morphological
features instead of surface texture, but they follow the same basic procedure
of feature engineering followed by a statistical classifier. The next significant
contribution was made in Li and Flenley (1999), in which very high accuracy
was achieved using LM images. The major disadvantage of LM imaging was the
shallow depth of field, causing only portions of the pollen grains to be in focus.

20 3.2 Automated Pollen Detection

This reduction of image quality caused a loss in the accuracy of the LDA-based
methods. The new method exchanged the classifier with a Multi-Layer Perceptron
and achieved higher scores than previous methods using a simpler feature measure.
The main limitation was the lack of processing power at the time, which meant
that the method could not scale to larger sets of images.

As computational power rose, there were also attempts made at localizing grains.
France et al. (2000) presented a hybrid solution featuring both classical and neural
methods. The localization is handled by a K-means classifier coupled with a shape
and size filter, producing segments of the image likely to contain pollen. A trained
classifier is then used to classify the grains. The results were promising, but the
system was also very limited. Firstly, it was very sensitive to focus and could only
work with grains perfectly within the depth of field. Secondly, the segmentation
algorithm only worked on sparse images with a certain amount of space between
grains. These same issues also create problems for modern systems, albeit not to
the same extent.

Convolution has been an important tool in image processing since before CNNs
gained traction. Using hand-crafted filters, many essential features such as edges
can be extracted from an image. This technique was employed by Amar Daood,
Eraldo Ribeiro, and Mark Bush (2016) with good results. The system used an SVM
for the final classification but demonstrated the viability of using convolutional
filters as feature extractors. In some ways, the system bridges the gap towards
the CNN models but crucially lacks the ability the learn which features should be
extracted. This is the fundamental deficiency common to all the classical methods:
they rely on human expert knowledge to adapt each method for use in the specific
domain.

3.2.2 CNN methods

CNNs have taken over as the standard in image classification, and this is also
the case in pollen detection. Recently all the proposed methods involve a deep
convolutional neural network as the primary feature extractor. Comparing the
different models that have been presented is very challenging. Most use self-
collected datasets that vary in size, both with respect to the number of classes
and examples per class. There is also an inherent difference in the difficulty of
separating instances within any given dataset because some types of pollen are
much more similar than others. Meaningful comparisons are therefore challenging
to make. However, a performance comparison is not strictly relevant to this thesis,
seeing as they are all classifiers, which cannot be used to locate pollen grains.

A. Daood, E. Ribeiro, and M. Bush (2016) presented a CNN method that was
used on both an LM and SEM dataset and compared the results with many of
the classic statistical methods, showing the clear benefit of using a CNN model.
A second network was also implemented that used transfer learning to improve
accuracy further. Data augmentation was used to combat the small size of the
dataset, which has been a pervading issue for most of the presented solutions.
Although a higher accuracy was obtained on the SEM data, the paper showed that

3 Related Work 21

the models were fully capable of achieving good results using LM images. Both
transfer learning and data augmentation are featured in most of the subsequently
published papers.

Sevillano and Aznarte (2018) later gave more evidence for the supremacy of
CNN methods by applying three different convolutional models on a publicly
available dataset POLENE23E, which at that point only had been classified using
classic methods. All three models used a CNN as the feature extractor. They
all performed well, doubling the precision over the state-of-the-art. The results
also show that there are only insignificant improvements when using a linear
discriminant classifier on top of the CNN.

Common to all the mentioned methods is that the data they rely on is LM images
of a single grain. This ignores two important factors. Firstly and most obvious
is that none of these models can be used directly to count pollen grains, only to
classify pre-segmented images of singular grains. This also leads into the second
important factor of dealing with LM images of pollen grains at different focal
planes.

Grains of pollen on a slide are not distributed across one focal plane and are not
oriented in the same direction. Grains are scattered across all three axes and,
because of the narrow depth of field of the microscope, are only partially visible
when in focus. The depth of field is so shallow that only parts of the surface
ornamentation appear clear. This is not a problem for a human operator as the
focus can be adjusted to reveal the entire grain. However, with static images,
dealing with this lack of complete information is an open question. Figure 3.2
shows an example of this and shows a grain observed at three different focal
planes.

Figure 3.2: z-stack of a pollen grain taken at three focal planes. The focal plane
moves down from the top (left) to the bottom (right). With finer adjustments,
many more images can be produced from a single grain.

For the models we have covered, this means that they potentially are missing out
on features because they only rely on an image of a single focal plane. In the case
of classification, one possible remedy for this is to use a stack of images, named a
z-stack, taken at different focal planes and process the stack as one unit. Amar
Daood, Eraldo Ribeiro, and Mark Bush (2018) uses this approach. The model they
propose takes as input a sequence of 10 images taken of pollen grains spanning

22 3.2 Automated Pollen Detection

the whole grain and classifies it using a network that combines a recurrent neural
network (RNN) and a convolutional neural network. The model first uses a CNN
to create a feature embedding for each frame independently, and an RNN then
classifies the sequence. The result is a reportedly 100% accurate model over a
dataset with ten classes.

The main conclusion is that the z-stack benefits from being processed as a sequence
and not as independent samples. However, the results show only minor improve-
ments from using the RNN over a majority-vote system using classifications from
the CNN directly. There is also no clear strategy for extending the system for grain
detection, which limits its utility.

The last model we will look at is the only published work attempting to use a CNN
to localize pollen grains in slide images. Gallardo-Caballero et al. (2019) uses
Faster R-CNN to detect pollen grains of various types within unaltered LM images
of pollen grains. The model does not classify the grains it localizes. They report
very high values for precision and recall but use a slightly modified definition of IoU
when calculating these values. Multifocal data is only used when running inference
by combining the detections from the entire z-stack as one single prediction.

The dataset they use was created by filming the slide while moving the focal plane
across the pollen grains. Based on an auto-focused keyframe, ten frames were
extracted before and after the keyframe, creating a 21-frame z-stack. From this,
two datasets were created. In the first one, the pollen grains were labeled in
the frame where they appeared sharpest and ignored in all other images. In the
second dataset, the grains were labeled in all images throughout the sequence.

The model’s performance was calculated by stacking the individual predictions
from all focal planes together and then performing a standard filtering algorithm.
The reported results are excellent, but the results are probably inflated due to the
elimination of class predictions from the problem. The definition of IoU is also
changed so that comparison to other object detection models is impossible. The
effect this has on the values for recall and precision is not declared.

Two trials were run to compare the performance obtained from the two datasets,
and values for recall and precision were high for both (above .98), with the non-
blurred trial having slightly higher precision. The authors conclude that there do
not seem to be any significant differences in performance between models trained
with or without blurred images. However, their method of using detections from
multiple focal planes in each prediction hides the effects that blur has on the
model hard to pinpoint.

How to utilize the information contained in a z-stack is a very open question.
Both methods presented above using z-stacks achieved good results, but neither
attempts to explain how the models are affected by the different sharpness valued
in the data. Instead, they aggregate information from all images, which hides
how the model responds to each static image. Gathering data on how sharpness
affects the model could provide valuable insight into this relationship.

3 Related Work 23

This section has detailed how CNNs are used to solve object detection problems
and how the field of automated pollen grain analysis has evolved from using highly
specialized hand-crafted feature extractors to being dominated by generalized
CNN based frameworks. Of most significance to this research are the modifications
that have been successfully made to CNN models used in similar fields to pollen
grain counting and the different techniques that have been used to make use of
multifocal data.

24 3.2 Automated Pollen Detection

25

Chapter 4

Methodology

The goals of this research require the development of several components, chiefly
among them a pollen dataset and object detection model. Section 4.1 covers the
data collection and Section 4.3 details the model architecture. As a prerequisite
for being able to analyze sharpness, an objective sharpness measure is needed. A
theoretical background for this is given in Section 4.2. Finally, the experimental
setup as well as the experiments themselves are explained in Sections 4.4 & 4.5,
respectively.

4.1 Data

Figure 4.1: Example from the dataset with ground truth bounding boxes drawn.
The image contains two classes: corylus, and alnus.

The results presented in Chapter 5 are trained on data sourced from the Norwegian
Asthma and Allergy Association, which has, since 1980, tracked the amount of air-
born pollen in Norway. Pollen is collected with traps where the air is continually
sucked through a small slit and is redirected over an adhesive strip. The strip is

26 4.2 Sharpness Measure

moved across the slit, exposing different sections throughout the day. Pollen grains
and other air-born particulates adhere to the strip, which is then analyzed under
a microscope. Only pollen grains from a subset of species are actively tracked.

Three microscope slides have been imaged using a digital optical microscope
producing a set of 701 raster images with a size of 1080×1920 pixels and three
channels; red, green, and blue. The resolution of each image is 0.183µmpixel−1.
Each image has been labeled in collaboration with the experts to produce valid
and correct ground truths. In total, three different species have been classified,
namely poaceae, corylus, and alnus, known in English as Grasses, Hazel, and Alder,
respectively. A labeled example is given in Figure 4.1. A summary of the dataset
is given in Table 4.1.

Table 4.1: Distribution of class labels across the 701 sample images of the pollen
dataset.

Poaceae Corylus Alnus

Number of labels 5600 262 522
Proportion 87.7% 4.1% 8.2%

Many images are taken from the same viewpoint but with the focal plane set to
different grains. The ground truth labels are drawn for all present pollen grains,
regardless of how blurred they appear. This is done so that the dataset may be
modified to analyze sharpness and model performance in regards to RQ2.

As opposed to more general object detection tasks, where there is a significant
variance in both the apparent size and shape of objects within an image, this
dataset is much more regular. Looking at Figure 4.2, the grains are mostly circular
and between 100 and 150 pixels wide.

4.2 Sharpness Measure

Analyzing how the sharpness of pollen grains affects detection performance re-
quires an objective sharpness measure. This section details the chosen method
of measuring the local sharpness of pollen grains within sample images. The
measure is based on Fourier analysis, and its performance has been tested on the
training data.

4.2.1 Fourier analysis

Fourier analysis describes the general method of utilizing the Fourier transform
to analyze the component frequencies present in some signal. For the purpose
of Fourier analysis, imagine the image as a collection of signals, each of which
describes the change in brightness value when traveling across the image in some
direction. For an M×N image, the two-dimensional Discrete Fourier Transform is
defined as follows,

4 Methodology 27

0 50 100 150 200 250
Short length [px]

0

50

100

150

200

250

Lo
ng

le
ng

th
[p

x]
1:11:21:3

Edge contact
Free standing

Figure 4.2: The dimensions of all ground truth boxes are plotted, longest against
shortest. The lines denote the three aspect ratios used in the default boxes of the
SSD model. Grains marked ‘Edge contact’ are in direct contact with the edge of
the image and are most likely partially cropped out of frame. The grains are all
quite regular in both shape and size

F(u, v) =
M
∑

m=0

N
∑

n=0

f (m, n) e−i2π(u m
M +v n

N) (4.1)

e−i2π(ux+v y) = cos 2π (ux + v y) + i sin2π (ux + v y)

where f (m, n) is the spatial domain of the image, and the exponential term is the
basis function at each point of F(u, v) in the Fourier domain. Taking the Fourier
transform of an image then produces a 2-dimensional matrix where the intensity
of each element represents a the coefficient of a 2-dimensional sinusoid basis
function of the image. Figure 4.3 visualizes what the basis functions can look like
and demonstrates exactly what is encoded in the Fourier spectrum.

Figure 4.4 shows the Fourier transform of various inputs. The transforms are
shifted, such that F(0,0) is in the center of the transform. The maximum frequency
representable in the spatial domain is a 2-pixel wide stripe pattern going from
minimum to maximum brightness. u and v represent the number of oscillations
in each direction of the basis function, so the maximum frequency gives M/2
and N/2 oscillations, respectively. The directionality of the Fourier transform is
demonstrated in the first two examples. Squares decompose into a set of sinusoids,
all moving in the same two directions. The coefficient of each component is

28 4.2 Sharpness Measure

N(0,0)

M

N(0,0)

M

0

0

M
2

M
2

N 2 N 2

0

0

M
2

M
2

N 2 N 2

Spatial Domain Fourier Domain

Figure 4.3: The figure shows two 2D sinusoid basis functions and their Fourier
transform. The active components in the transform have been enlarged to make
them visible in print. When unmodified, only a single pixel and its reflection about
the origin is active.

encoded in the intensity of the pixel. In all the examples, the lower frequency
components dominate, which lights up the center region. The last two examples
demonstrate how blurring an image eliminates the higher frequencies from the
Fourier domain.

Using the Fourier spectrum to measure sharpness follows from the realization
that a strong relationship exists between the sharpness of an image in the spatial
domain and the distribution of frequency components in the frequency domain.
Sharp features produce high frequencies while blur smooths out the changes in
brightness, lowering the frequencies. Figure 4.5 shows three different pollen
grains, captured with progressively more blur. By visual inspection, it is clear that
as the perceived blur increases, high-frequency components also decrease.

4.2.2 Measuring sharpness

The problem then is to decide how to encode this change in frequency distribution
as a scalar sharpness measure. De and Masilamani propose a simple method that
counts the number of components in the Fourier spectrum having a value above a
certain threshold. The operation is described in Equation (4.2).

4 Methodology 29

Sp
at
ia
lD

om
ai
n

Fo
ur
ie
rD

om
ai
n

N 2N 2

M
2

0

0 N 2N 2

M
2

M
2

0

0 N 2N 2

M
2

M
2

0

0 N 2N 2

M
2

M
2

0

0

N(0,0)

M

N(0,0)

M

N(0,0)

M

N(0,0)

M

M
2

Figure 4.4: Demonstration of the Fourier transform. The bottom row shows
the center-shifted discrete Fourier transform of the corresponding image in the
top row. The Fourier spectra mapped to grayscale values with a truncated linear
amplitude mapping which is scaled to compensate for the otherwise dominating
center component.

Sp
at
ia
lD

om
ai
n

Fo
ur
ie
rD

om
ai
n

M
2

N 2N 2

M
2

0

0 N 2N 2

M
2

M
2

0

0 N 2N 2

M
2

M
2

0

0

N(0,0)

M

N(0,0)

M

N(0,0)

M

Figure 4.5: Pollen grains and their corresponding centered Fourier spectrum. The
Fourier spectra are log scaled so that the higher frequencies become visible.

30 4.2 Sharpness Measure

X= F(a), a ∈ ZM×N

TH =
∑

x∈X

[x ≥ µ], µ=
maxX
1000

S =
TH

M · N

(4.2)

Here F is the discrete Fourier transform operating on an input image a, which is
a M×N matrix of integers. The phase component of the complex-valued output is
ignored, leaving X to contain only the magnitude of the frequency components.
The scaling factor of the threshold value, µ, was found to produce good results on
the data without modification. S is the sharpness measure.

Validating the sharpness measure is an important task. The weight of any argument
made based on analysis using this measure is predicated on its soundness. There
are many different approaches to this, one of which is to compare the objective
measure with subjective measurements of perceived sharpness on a subset of the
training data.

4.2.3 Evaluating the sharpness measure

The basis of the evaluation is a new dataset created from a small random subset
of the training examples. Each ground truth is then given sharpness scores
based on perceived sharpness and the objective measure. Determining perceived
sharpness of a pollen grain with high fidelity was found to be highly subjective and
non-reproducible with repeated independent scoring, so a simple classification
was instead performed. Images were separated into three classes representing
perceived sharpness. Figure 4.5 gives examples of the classes, with the top left
image being the sharpest (class 3) and the top right image being the blurriest
(class 1). A total of 316 pollen grains were evaluated; the distribution of their
classes is given in Table 4.2

Table 4.2: Distribution of classes across the sharpness evaluation dataset.

blurry [1] partly [2] sharp [3]

Number of labels 108 93 115
Share .34 .30 .36

Figure 4.6 shows a clear correlation between the mean of the distribution and the
perceived sharpness. The overlap is to be expected, given the mapping from a
continuous predictor onto a categorical label. To further evaluate the performance
of the sharpness measure, a very simple decision tree model is constructed, and
its ability to differentiate between the classes is tested. The model achieved a test
accuracy of 83.5%.

Figure 4.7 shows the computed the sharpness of every ground truth in the dataset
in a density plot, visualizing the approximate distribution. As expected, most

4 Methodology 31

1 2 3
Labeled sharpness

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Sh
ar

pn
es

s
m

ea
su

re

(a) Box plot

0.000 0.025 0.050 0.075 0.100 0.125 0.150
Sharpness measure

0

5

10

15

20

25

30

35

D
en

si
ty

1
2
3

(b) Density plot

Figure 4.6: The sharpness measure grouped by class label. There is a large
overlap between adjacent classes, but the IQRs in (a) are clearly separated. The
correlation between perceived and measured sharpness is also clear.

ground truths fall into the sharpest category, but there is a spread, allowing for
the analysis of the relationship between sharpness and model performance.

4.3 Architecture

The model that has been implemented is the Single Shot Multibox Detector, a brief
explanation of which was given in Section 3.1.2. This section gives amore thorough
explanation of the model and its implementation, focusing on the changes made
from the original. Most of these changes are motivated by more recent research
featured in newer models. The reasoning behind choosing a relatively old model
framework is based chiefly on its architecture, which lends itself to alteration and
simplification.

The implementation is based on an implementation by NVIDIA1, the basic structure
is shown in Figure 4.8. The implementation can be divided into four parts. A
feature extraction network first transforms the input image into a set of high-level
feature maps, which are then fed into an auxiliary structure which gradually steps
down the dimensions of the feature map and, in the process, creates a set of source
feature maps. Two detection structures then consume the source feature maps,
which produces the final predictions. One set of filters produces class confidence
scores, and one produces bounding box regressions.

1Released under the Apache 2.0 License, URL:
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD

https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD

32 4.3 Architecture

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Sharpness measure

0

2

4

6

8

10
D

en
si

ty

1 2 3

Figure 4.7: Density plot showing the sharpness of all pollen grains in the dataset
(N = 6384). The shaded sections indicate the distribution of sharpness classes if
the dataset is classified with the evaluation model. As expected, most grains fall
into the sharpest category.

4.3.1 Model

The model comprises three distinct parts, a feature extraction network transferred
from a pre-trained model, an auxiliary structure that creates a set of feature maps,
and a detection structure that creates the bounding box regressions and class
predictions. The model is purely convolutional with no fully connected layers.

The feature extractor can be any classification network that can produce a feature
map of the correct dimensions. In the original paper, the VGG-16 network is
used (Simonyan and Zisserman, 2015) without any particular justification as to
why. ResNet-34 is used in the baseline configuration. The main reason for this
is its superior performance over VGG and the ease with which it integrates with
the auxiliary structure (He et al., 2015). ResNet-34 is the largest of the ResNet
family that fits on the GPU used for most of the experimentation. PyTorch offers
implementations of the most popular pre-trained models as part of their API.

The auxiliary structure is implemented as a sequence of blocks where the output
of each block is a feature map consumed by the detection structure. Each block
contains two convolutional layers, as specified in Figure 4.8. Batch normalization
is used after each convolution, and ReLU is used as the activation function.

The detection structure is implemented as a sequence of distinct layers, each of
which runs over one of the intermediate feature maps from the auxiliary structure.
Each localizing layer has four filters per default box, one for each of the regression
parameters. Similarly, the class prediction layers have C filters per box, one for
each class with an additional layer for the background.

When executing the forward pass through the model, the input is first passed
through the feature extractor. It is then passed through each block of the auxiliary
structure, saving each feature map. The final output is then generated by running

4 Methodology 33

19

19

19

19

3x3x18
Kernel

Localization

Classification

3x3x24
Kernel

300

3

300

38

256

1x1x128
3x3x256-s1

1x1x128
3x3x256-s1

conv: 3x3 x 6(C+4)

1x1x128
3x3x256-s2

1x1x256
3x3x512-s2

1x1x256
3x3x512-s2

Detection Example
3 classes
6 default boxes per cell
19x19 source feature map

512 512 256 256 256

38

19

19

10

10

5

5

1
3
3

ResNet-34
through conv4_6

conv: 3x3 x 4(C+4)
Detection:

Image

Extra Feature Layers

D
et
ec
tio
ns
:8
73
2
pe
r
Cl
as
s

24

18
Localization
4 parameters per box
24 output channels

Classification
3 classes per box:
18 output channels

Figure 4.8: Overview of the model, inspired by the figure given in the original
paper. However, it has been modified to reflect the alterations made and highlight
how bounding box and class predictions are calculated with convolution. The
horizontal lines denote the detection structure comprised of 3×3 convolutions for
class confidences and bounding box regressions. C is the number of classes.

each feature map through the corresponding localization and classification block.
All the outputs from the localization and classification layers are concatenated,
producing two output tensors.

4.3.2 Default boxes

Figure 4.9: 4 default boxes
on a 5×5 feature map.

The fundamental objective of the model is to evalu-
ate a predefined set of default boxes. Each location
of a feature map forms the basis for a small number
of default boxes of fixes size and aspect ratio. In
Figure 4.9 the four default boxes shown are eval-
uated when the receptive field is centered on the
marked square. The default boxes are scaled inde-
pendently from the size of the feature map, but there
is a correlation. Because of the depth of the feature
extraction network leading into the feature layers,
the receptive field of all elements in every feature
map is the entire input. As designed, the SSD model
is made to handle a wider distribution of sizes than
is present in the pollen dataset. The sizes of the default boxes have been adjusted
so that they cover the distribution of sizes present. Even with adjustments, the
range of default box sizes is so large that it is questionable if all six feature maps
are necessary.

34 4.3 Architecture

4.3.3 Training objective

Because of the default boxes, each ground truth box needs to be matched to one
or more default boxes so that target values for the regression and confidences can
be created for the loss function. For each training example, a matching strategy is
applied that finds default boxes that overlap with each ground truth.

SSD has a generous matching strategy where ground truths and default boxes are
matched if their IoU is above a certain threshold. Figure 4.10 shows the result
of the matching strategy being applied to a training example. Every red box in
the image is a default box that has been matched with a ground truth, shown
in green. For the purposes of training, these are the default boxes that the loss
function expects the model to have correctly labeled and regressed. This ensures
that there are multiple positive examples for each ground truth.

Figure 4.10: The result of the matching procedure. All default boxes which
are matched to the ground truth are drawn with dashed red lines. Here, 19
default boxes are matched to the ground truth (IoU ≥ 0.5). This example has
been handcrafted for clarity by setting the bounding box equal to a default box,
causing a more symmetrical match.

The loss function, as given by Wei Liu et al. (2016), is calculated as follows,

L(x , c, l, g) =
1
N

�

Lcon f (x , c) +αLloc(x , l, g)
�

(4.3)

where x = {1, 0} is a binary mask denoting a match between a default box (d) and
ground truth (g), N is the number of positive examples, in the case of N = 0 the loss
is set to 0. α is a weight term set to 1, showing little to no effect on performance.
Here, positive example refers to default boxes which are matched to a ground truth,
Figure 4.10 shows an example with N = 19. Lloc is the summed Smooth L1 loss
between predicted boxes (l) and ground truth parameters (g), while Lcon f is the
SoftMax loss over multiple class confidences (c), both are standard loss functions
provided by PyTorch.

4 Methodology 35

As the target for the Smooth L1 loss, ĝ defines the regression from the center
(cx , c y) of the default box (d) and its height (h) and width (w) to a matched
ground truth.

ĝ cx = (g cx − d cx)/dw

ĝw = log
�

gw

dw

�

ĝ c y = (g c y − d c y)/dh

ĝh = log

�

gh

dh

�

A problem that this and many similar models face is the gross imbalance between
positive and negative training examples. Out of the 8732 default boxes, only
a small subset can be matched to any given ground truth. For the localization
loss, this has no impact as only the matched boxes are counted towards the loss.
However, for the confidence loss, the overwhelming majority of predictions are
negative matches (matched to background). To counteract this imbalance, SSD
uses hard negative mining to balance out the negative and positive examples. As
the name suggests, this technique aims to focus training on particularly ‘hard’
examples and ignore the others. All negative training examples are sorted by the
confidence loss, which ranks them to how badly the model miss-classified them.
Negative examples are counted towards the confidence loss by descending loss
until the ratio between the number of positive and negative examples included in
the total loss is 1:3.

4.3.4 Inference

When the model is working, the raw output it produces is regression values for
many thousands of bounding boxes with class confidence predictions. The model
will most likely produce multiple overlapping bounding boxes in the locations
where an object is present. Ideally, the output would be a one-to-one mapping
between the predicted boxes and objects in the image.

A common filtering technique is called Non-maximum Suppression (NMS). Let B
be a list of bounding boxes and S be their corresponding scores. NMS is then a
simple iterative filtering algorithm where, for each iteration, the bounding box
with the highest score is selected from B. Any bounding boxes that overlap with
the selected box are then pruned from B and S, and the loop is continued until
B is exhausted. Boxes are considered overlapping if their IoU is more than some
threshold Nt .

NMS performs well in most settings but has a particular weakness when the target
boxes of objects overlap. In these situations, NMS will often only return a single
bounding box for one object, ignoring the rest. Given that the data in this project
exhibits this characteristic, the standard NMS algorithm is replaced with a more
modern version, Soft-NMS, introduced in Bodla et al. (2017). The pseudocode for
both algorithms is as follows,

36 4.4 Experimental setup

def NMS(B = {b1, . . . , bN}, S = {s1, . . . , sN}, Nt):

D← {}
while B 6= ;:

m← argmax S
M← bm
D← D ∪M; B← B−M
for bi ∈ B:

if IoU(M, bi) ≥ Nt :
B← B− bi; S ← S − si NMS

si ← sif(IoU(M, bi)) Soft-NMS

return D, S

0.0 0.2 0.4 0.6 0.8 1.0
γ

0.0

0.2

0.4

0.6

0.8

1.0

f

σ = 0.1
σ = 0.2
σ = 0.3
σ = 0.4
σ = 0.5

Figure 4.11: Gaussian
decay as a function of
IoU for various σ

Soft-NMS changes only the colored sections, where it
introduces a rescoring function, f(IoU), which only de-
cays the scores of remaining boxes instead of discarding
them altogether. This allows boxes that overlap with
the selected box to remain in the pool. The rescoring
function f(IoU) applies a Gaussian decay as follows,

f (γ) = e−
γ2

σ

where γ is the IoU as given in the pseudocode andσ con-
trols the rate of decay, as demonstrated in Figure 4.11.
σ = 0.15 was found to produce the best results.

4.4 Experimental setup

This section will present the experiments which have been designed in order
to examine the research questions. Firstly, the software and hardware stack
used in the implementation of the model is presented, together with the training
procedure used for the experiments. A run-down of the experiments that have
been performed will then be given.

4.4.1 Software

All the software for this project is written in Python, which is among the most
established languages for deep learning. This project relies entirely on the exten-
sive use of the high-quality open-source data science ecosystem created within
Python. The model implementation, training, and evaluation procedures are
written using the 1.7 release of the PyTorch library (Paszke et al., 2019). PyTorch
is an extensive machine learning framework and provides APIs covering the entire
model pipeline.

4 Methodology 37

4.4.2 Hardware

All experiments have been run on a desktop computer using consumer grade
components. The relevant specifications are as follows,

• CPU: AMD Ryzen 5 3600X, 6 cores @ 3.8 GHz.
• GPU: Nvidia GTX 1070, 8 GB GDDR5 VRAM,
1920 CUDA cores @ 1506 MHz, 6.463 TFLOPS (32 bit).
• Memory: Corsair Vengeance, 32 GB DDR4 @ 2166 MHz.

With a batch size of 32, each forward/backward pass requires approximately 410
ms to complete. Adding the time to read data from disk and run augmentations,
one full iteration takes 812 ms, bringing the total time for one experimental run
of 2000 iterations to 27 minutes. The final model produces detections at a rate of
182 FPS, measuring only inference time.

4.4.3 Training

All the experiments were run using the same training setup. The model is trained
using Stochastic Gradient Decent (SGD) with a mini batch size of 32, learning
rate of 10−3, 0.9 momentum, and 5× 10−4 weight decay. In testing, test mAP
converged after 2000 iterations in the baseline configuration.

The dataset contains three classes, but these are not equally distributed between
the 701 images. Corylus and Alnus both release together and are found together
in samples. Poaceae appears as the only class in the samples where it is present;
it is also much more prevalent than the other species, meaning the density of
pollen grains is much higher on average in these samples. This also causes the
very uneven distribution of classes in the dataset. The Poaceae class is therefore
under-sampled when creating the final dataset. 467 samples are included in the
final dataset; the class distribution is given in Table 4.3. The final dataset is then
divided into a training and test split with an 85% / 15% ratio.

Augmentations are necessary to allow the model to train for many enough itera-
tions without overfitting on the training set. Augmentations artificially increase
the size of the dataset, by producing thousands of variations of each example. The
following augmentations are employed,

1. Horizontal flip.
2. Vertical flip.
3. Color adjustment (brightness, hue, saturation, contrast).
4. Shuffle RBG channels.
5. Random crop.

All the augmentations except cropping, independently, have a 50% chance of
being applied to each sample. The random crop also resizes the sample input into
a 300×300 square, so it is needed for every image. The cropping algorithm also
ensures that each sample contains at least one pollen grain.

38 4.5 Experiments

Table 4.3: Distribution of classes across the training dataset

Poaceae Corylus Alnus

Number of labels 518 262 522
Share .40 .20 .40

4.5 Experiments

Four experiments are designed, two targeting each research question. With the
goal of developing a system for automated pollen counting, the aim is to explore
how the peculiarities of this domain interact with the more established methods
that have been developed for object detection. For each experiment, its rationale
and setup are given.

4.5.1 Feature extractor

The largest section of the model is the feature extraction block, so with the goal
of decreasing computational complexity, shrinking this block would have the most
significant impact. Because this dataset differs so much from the common datasets
used to pre-train the feature extractors, it is difficult to predict the impact of using
a smaller network. On the one hand, the dataset is more uniform, with similar
backgrounds for every image. On the other hand, all pollen grains look similar, so
depth might be necessary to differentiate between them. In the first experiment,
the model is trained with three different pre-trained feature extraction networks.
The selected networks are given in Table 4.4

Table 4.4: Chosen feature extraction networks and relative size calculated by
number of trainable parameters

Network Relative size

ResNet 34 1.00
ResNet 18 0.34
MobileNet V2 0.02

4.5.2 Layer activation

The auxiliary structure also has opportunities for simplification. The primary
rationale for SSD’s multiple stacked feature maps is to allow for predictions at
multiple scales in the image. However, pollen grains appear very uniform in size
and shape throughout the dataset. The hypothesis is that some or most of the
source feature maps can be removed from the model without any performance
degradation. To test this, the model will be trained in multiple configurations
where certain feature maps from the model are removed for each configuration.
In practice, only the detection blocks fed by the feature maps are deactivated so

4 Methodology 39

that layers can be arbitrarily deactivated without disturbing successive layers of
the model.

4.5.3 Minimum training sharpness

As observed, the dataset contains a wide variety of grains spanning many levels
of blur. It remains unclear what impact blurry data has on the training of fully
convolutional object detection systems. This experiment aims to explore if there
is a correlation between the distribution of sharpness in the training data and
model predictions. The model’s performance is not of interest, but rather how
the distribution of sharpness values in the training data changes the distribution
of sharpness in the predictions. Sharpness can be measured both on the model’s
predictions and on the ground truths it does or does not detect.

For the experiment, the model is trained on various versions of the same dataset.
Each model will be trained on a subset of the ground truth labels using a sharpness
filter that prunes any ground truth below a certain threshold. Raising the threshold
limits the model to only those pollen grains sharper than the threshold. Five
thresholds are used, spanning a range from 0 to 0.08, which covers the lower half
of sharpness values contained in the dataset.

4.5.4 Cross-sharpness inference

The final experiment aims to further explore what ability the model has to gener-
alize outside of the sharpness values it is exposed to and whether or not a trained
model can be transferred to different sharpness ranges. Similar to the previous
experiment, the model is trained on a subset of ground truths, one with only
the sharp ground truths and one with only the blurry ground truths. The same
partition is also applied to the testing split. Together with a baseline containing
all ground truths, three models and three test splits are created. Each of the
three models will be tested on each of the three test partitions, creating a kind of
sharpness confusion matrix.

40 4.5 Experiments

41

Chapter 5

Results

This section will present and discuss the results from the experiments presented
in Section 4.5. The modified SSD model presented in Section 4.3 is trained ac-
cording to the training procedure given in Section 4.4. Section 5.1 presents the
performance of the baseline model. The results and discussion of the experiments
pertaining to RQ1 and RQ2 are presented in Section 5.2 and Section 5.3 respec-
tively. Unless specified otherwise, all performance metrics given in this section
are measured on the test split of the dataset. For measuring mAP, AP is computed
according to Equation 2.1 with an acceptance threshold of 0.5 IoU.

5.1 Baseline model

The training procedure for the model is given in Figure 5.1 and exhibits a stochas-
tic variation that is characteristic of mini-batch training. The confidence loss
component accounts for most of the total loss throughout the training process.
The components of the loss function (Equation 4.3) are independent, meaning
their ratio does not indicate a difference in performance at the two different
tasks. Regardless, the model does perform better at localization than classification.
Logically this follows from the realization that pollen grains are all more easy to
distinguish from the background than they are to classify. Therefore, the model
can discriminate between background and pollen with relative ease but has a
more challenging time classifying species.

The baseline model achieves a mAP of 95.2% and an F1 score of 86.8%. Looking
at predictions overall, the recall is very high at 99.1%, while precision is quite a
bit lower at 77.2%. Figure 5.2 breaks down all the detections made by the model;
the main observation is that false-positive predictions are almost the only source
of error. 37% of false positives are spurious localizations, i.e., an unlabeled entity
is identified as a pollen grain. These entities are either non-pollen particles or
pollen grains from unlabeled species. The remaining 63% of false positives are
misclassifications, i.e., the bounding box does overlap a ground truth, but the
predicted class is incorrect.

42 5.1 Baseline model

0 500 1000 1500 2000
Iteration

0

2

4

6

8
Lo

ss

Conf loss
Loc loss
Total loss
Loss: 0.496

Figure 5.1: Training procedure for the baseline model over 2000 iterations. The
iterations given on the horizontal axis represent one forward-backpropagation run
with one mini-batch, while the mini-batch averaged loss is given in the vertical
axis. The raw total loss values are shown with semi-transparent green points. The
solid lines show the moving means for the two individual loss components. The
green line shows the confidence loss component, while the blue line shows the
localization loss component. The mini-batch with the lowest total loss is annotated
with a green circle and occurs after the 1800th iteration with a loss of 0.496.

Poaceae Corylus Alnus
0

10

20

30

40

50

60

70

C
ou

nt

43

19

54

43

19

53

8

9

17

51

28

70
Ground Truth TP FP

Figure 5.2: Breakdown of predictions by class. For each label, the first column
gives the number of ground truth labels in the test split. The second column
gives the number of predicted boxes for that class, broken down into true positive
matches in green, and false negatives in red. The difference between ground
truths and true positives is the number of false negatives.

5 Results 43

C26A89 C71A42

Figure 5.3: Two predictions with GT in green, TP in red, and FP in pink. The
labels give the first letter of the class and the prediction confidence in the range
[0,100]. In the left image, an FP box is predicted with lower confidence than the
TP. In the right image, the FP Corylus prediction has higher confidence than the
TP Alnus prediction.

Figure 5.3 shows two test samples containing overlapping true and false positive
predictions. This is due to the NMS filtering algorithm being run for each class
independently, which causes double predictions in cases where predictions for
multiple classes are produced for the same pollen grain.

A remedy was implemented and tested where NMS was applied to all detections
after the initial per-class NMS. The results from this were ambiguous; The precision
did improve due to the decreased number of FP predictions, but the decrease in TP
predictions caused a similar decrease in recall. In Figure 5.3 (right) for example,
the correct prediction would get filtered out.

With the small number of classes in the dataset, the problem of double predictions
is relatively small. However, a larger dataset could suffer more from this issue
when there are more classes that all share characteristics. For the purposes of
counting, it might not be preferable to prune these overlapping predictions but
rather include and quantify the resulting overestimation as a part of the overall
estimate.

5.2 Model simplification

The first two experiments aim to explore ways in which the computational com-
plexity of the model can be reduced without sacrificing performance. In the first
experiment, the feature extraction network is substituted with lightweight alter-
natives. In the second, the amount of default boxes is reduced by deactivating
source feature maps.

44 5.2 Model simplification

5.2.1 Feature extractor

Table 5.1 gives the results from training the network with different feature ex-
traction networks. As with the baseline, all the networks are designed for and
trained on image classification datasets. Larger networks, such as the deeper
ResNet versions, could not be tested due to the memory limitations of the GPU.
There is a clear decrease in performance when using smaller networks, and we
observe monotonically decreasing values for all performance metrics.

Interestingly, the recall remains almost unchanged, meaning that the model’s
ability to localize pollen grains is largely maintained. The error is in the form of
noise being added on top of the correct predictions. The performance degradation
is therefore primarily due to increased classification error, creating redundant,
poor predictions. A possible explanation for this is that localization, in terms of
feature requirements, only needs the model to learn simple features relating to
the general shape and color of a pollen grain, while classification involves more
complex features that the smaller networks are not able to capture.

This experiment helps reveal the apparent inequality between the two tasks
that the model is learning, namely localization and classification. Localization
seems to be a much easier task to learn, given how invariant the model is to the
changing extractor while suffering a markedly higher degradation in classification
performance.

Table 5.1: Summary of experimental results from testing various small feature
extraction networks. The localization score refers to the share of detection that
correctly localizes a GT, regardless of class. For each network, the number of
trainable parameters for both the feature extractor and the whole model is given.

Network Performance Parameters

mAP Precision Recall Loc. Extractor Total

ResNet 34 95.2 82.7 99.1 95.0 8.2× 106 1.2× 107

ResNet 18 92.6 81.9 97.4 92.8 2.8× 106 6.7× 106

MobileNet V2 90.4 67.9 98.3 86.3 1.3× 105 9.6× 105

5.2.2 Layer activation

In the next experiment, parts of the extra structure (shown as arrows in Figure 4.8)
responsible for generating the detections at various scales are deactivated. The
results are given in Table 5.2 and do not point towards any strong trend. The
last three layers of the model are larger than almost all grains in the dataset, and
even with cropping, it is likely that their predictions do not contribute to the loss
because the default boxes they encode rarely, if ever, get matched with a ground
truth. Their inclusion might result in parameters that do not get adequately
trained, leading to those layers only producing noise instead of actual predictions.

5 Results 45

For the models using only the first three layers, an improved mAP is observed, but
the statistical significance is questionable. However, this does call into question
the importance of the larger feature maps and strengthens the initial belief that
the SSD model can be simplified without compromising performance.

Other object detection tasks may also have certain differences in the distribution
of size and shape of objects between classes. The multiple layers then allow for
specialization where some layers become better at detecting particular objects
than others. With pollen, there again is a much more uniform dataset where
size differences between classes are negligible, which might also explain why
there does not seem to exist any strong relationship between layer activation and
performance. This is compounded by the limited number of classes and could
change if a larger, more diverse dataset was used.

Table 5.2: Summary of experimental results when deactivating various source
layers. The source layers are ordered 1–6 with layer 1 being the most granular
38×38 feature map.

Source layer activation Performance

1 2 3 4 5 6 mAP Precision Recall

Ø Ø Ø Ø Ø Ø 95.3 84.6 99.1
Ø Ø Ø Ø Ø 95.5 77.4 99.1
Ø Ø Ø Ø 95.3 81.2 98.7
Ø Ø Ø 96.4 79.3 99.1
Ø Ø 95.6 80.4 98.7
Ø 96.3 83.6 99.1
Ø 95.7 85.5 99.1

5.3 Sharpness

The following two experiments look at how the sharpness of the ground truth
data impacts model performance. In the first experiment, the blurry grains are
filtered from the training set to see the effect this has on the inferences made by
the model. In the second experiment, the dataset is split based on sharpness and
measure the models’ ability to make inferences across this sharpness boundary.

5.3.1 Minimum training sharpness

Our first experiment aims to explore how the sharpness of the training data affects
the predictions that the model can make. The results indicate that the model
struggles with making inferences on grains with lower sharpness when such grains
are filtered out of the training data. Figure 5.4a breaks down the ground truth
labels into true positives and false negatives, which reveals that the model is failing

46 5.3 Sharpness

to predict pollen grains that have a sharpness below the minimum sharpness of
the training data.

Looking at the sharpness of the predictions made by the model, there is a corollary
trend in the false positive predictions. Figure 5.4b shows that restricting the
training data creates what seems to be a threshold, below which the model does
not make predictions. This indicates that the model loses the ability to localize
blurry pollen grains, becoming blind to their existence. It seems clear that the
features being learned from sharp images do not transfer to less sharp samples.

It is important to note that the sample size, especially in the case of false negatives,
is relatively small, which weakens arguments made based on their distributions.
The observed pattern could also be described as a type of ‘overfitting’ where the
model will not generalize outside of the sharpness bound of the training data, but
the implications this has for a hypothetical production system are unclear.

5.3.2 Cross-sharpness inference

The final experiment aims to explore how well the model can generalize to a
sharpness range that differs entirely from its training data. The method expands
upon the previous experiment by filtering both training and test data into sharp
and blurry partitions. Figure 5.5 gives a summary of the experimental procedure.
As might be expected, the model performs best in the scenarios where it is trained
and tested on grains in the same range of sharpness, and it performs worse when
there is no overlap between test sharpness and training sharpness.

Interestingly, the model responds differently to being trained on only blurry data
(the ‘blurry’ model) than being trained on only sharp data (the ‘sharp’ model).
Seemingly, the blurry model outperforms the sharp model both when tested on
the whole dataset and when tested across the sharpness boundary. It seems as
though the same kind of overfitting observed in the previous experiment is not
taking place for the blurry model, which is learning features from the blurry data
that it can use to detect sharp pollen grains.

Figure 5.6 shows the precision and recall values separately and gives more insight
into the differences between the two models. Looking at recall, the sharp model
performs worse than the blurry model when tested across the sharpness boundary.
Looking at precision, the opposite is true, however to a lesser degree. This shows
that the models are underperforming for different reasons. The sharp model
maintains its classification performance but fails to localize pollen grains that are
too blurry. In contrast, the blurry model maintains its ability to localize all pollen
grains but struggles with classifying them.

Similar to how simplifying the feature extractor leads to worse classification
performance while localization is maintained, the same response is seen when
the granular features are smoothed out by blur. What this implies for further
development of this system is difficult to say and depends on the requirements
of the system. In a scenario where the model only needs to work on sharp data,
excluding blurry data could improve overall performance. However, one can easily

5 Results 47

TP FN
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Sh
ar

pn
es

s

> 0.00

TP FN

> 0.02

TP FN

> 0.04

TP FN

> 0.06

TP FN

> 0.08

(a) Sharpness distribution of ground truths by prediction result in test split by minimum
training sharpness

TP FP
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Sh
ar

pn
es

s

> 0.00

TP FP

> 0.02

TP FP

> 0.04

TP FP

> 0.06

TP FP

> 0.08

(b) Sharpness distribution ofmodel predictions by prediction result in test split by minimum
training sharpness

Figure 5.4: Five experimental runs are shown, ground truth labels are filtered
out of the training set by the sharpness requirement given in the plot header. In a,
sharpness is measured on original images using ground truth bounding boxes.
In b, sharpness is measured on the resampled 300×300 pixel patches. This affects
the scaling of the sharpness measure, and sharpness values from the two figures
are therefore not directly comparable.

48 5.3 Sharpness

All Sharp Blurry
Testing

All

Sharp

Blurry

Tr
ai

ni
ng

95.5 84.7 73.6

74.8 98.9 42.0

77.7 47.6 84.3

Sharpness boundary µ̃= 0.0953

20

30

40

50

60

70

80

90

100

m
A

P

Figure 5.5: The confusion matrix shows the result from training and testing the
model on three versions of the dataset. The median sharpness value, µ̃, is used as
a boundary and the dataset is divided into a sharp (> µ̃) and a blurry (< µ̃) data
set. The same training/testing split is still used. The horizontal axis denotes the
version of the dataset used when computing mAP, while the vertical axis denotes
the dataset used when testing. Two quadrants stand out with significantly lower
scores; these represent the scenarios where the model is trained on either the
sharp or the blurry data and tested on the opposite.

All Sharp Blurry
Testing

All

Sharp

Blurry

Tr
ai

ni
ng

81.4 65.3 60.6

92.9 82.5 63.6

76.7 50.5 69.0

Precision

All Sharp Blurry
Testing

99.1 100.0 95.5

84.5 100.0 67.2

94.0 90.9 95.5

Recall

50

60

70

80

90

100

50

60

70

80

90

100

Figure 5.6: Breakdown of precision and recall values for cross-sharpness training.
See Figure 5.5 for detailed explanation.

5 Results 49

imagine a system that could benefit from being able to localize outside the current
focal plane, e.g., in a search-based system that explores a slide live similar to the
current manual method, the model could localize a blurry grain and refocus the
microscope to classify it.

(a) Sharp labels (b) Blurry labels

Figure 5.7: Sample from the dataset. Ground truths in the sharp partition are
drawn in blue, while the blurry are drawn in green.

While it seems to follow logically from the presence of more granular and detailed
features in sharp data that the sharp model is more precise than its blurry coun-
terpart, it is less obvious why it seemingly loses all ability to localize blurry grains.
One possible explanation becomes apparent when looking not at the labeled data
but at everything else the model is asked to ignore.

As a result of the data collection procedure, where at least one pollen grain is
entirely in focus in every sample, the sharpest object in any given sample is always
a pollen grain. Figure 5.7 shows an example of the split, and reveals that all
in-focus objects are labeled ground truths. This trend holds over the entire dataset,
where almost every object that appears in focus is a labeled ground truth. The
inverse assumption that everything out of focus is not a ground truth does not
hold, except in the sharp training split. So while the sharp model can rely almost
entirely on the presence of sharp features when learning ‘what is a pollen grain?’,
the blurry and baseline models must also learn to differentiate between out of
focus pollen grains and out of focus background.

The boundary value is set to the median sharpness value over the total training
split. This was done to give each model the same number of ground truths. While
this is a valid decision, looking at Figure 5.7, many pollen grains in the blurry
category seem pretty sharp to the naked eye. With a larger dataset, it would
be preferable to run this experiment with multiple splits. The optimal sharpness
distribution remains unknown, although evidence has been presented to support
the claim that excluding blurry data causes the model to fixate on only the sharp
features in images.

50 5.4 Summary

5.4 Summary

The final model performs well at both localizing and classifying pollen grains
but tends to return multiple bounding boxes for some pollen grains. However,
as part of a counting system, this might not be a significant issue. The model is
able to identify almost every grain in the test set, which is promising for further
development.

The experiments reveal that while identifying pollen grains is quite an easy
task, discriminating between species is considerably more difficult. The model’s
classification performance is highly dependent on the quality of the features
produced by the feature extractor.

Most interesting is the impact training data sharpness has on the model. Exclud-
ing un-sharp data from the model’s training data causes the model to fixate on
sharpness, reducing the model’s ability to identify grains that appear less sharp.
Including blurry samples seemingly forces the model to learn a broader range of
features.

51

Chapter 6

Conclusion

In regards to the two initial research questions posed in this thesis and based
upon the results of the experiments presented in Chapter 5, the following is given
as the main conclusions of this work,

1. For the task of differentiating pollen grains, reducing the size of the network
negatively affects precision. However, the uniformity of the objects in the
dataset allows for a reduction in the number of detections made by the
model without any apparent performance effects.

2. Excluding multifocal data from training causes a fixation on sharp features,
inhibiting the model from localizing pollen grains only slightly outside the
focal range of the training data.

3. Excluding multifocal data creates a more precise model with lower recall
than a model trained on multifocal data.

The solution presented is a fully convolutional deep neural network capable
of locating and classifying pollen grains from microscopic imaging data from
a standard stereoscopic microscope. The performance of the presented model
supports the more general claim that locating pollen is well suited for a CNN
based solution. This first attempt using a CNN model shows that both the task
of localizing and classifying pollen grains is solvable with a fully convolutional
model. An adapted SSD model was used for this project, but future work may
find that other single shot models, such as YOLO could provide better results. The
trained model is by itself not a major contribution of this work but a proof of
concept of the general approach.

The limits of this method are unknown, but the results presented indicate that
localization is a far simpler task than classification, which could be the limiting
factor in the scaling of this model to a wider set of classes.

This work makes two main contributions to the joint fields of palynology and
machine learning:

1. A new, relatively large, pollen detection dataset totaling 701 sample images

52 6.1 Future Work

and 6384 ground truth labels of Norwegian air-born pollen. As of writing, a
dataset with both localizations and class labels has not been presented in
the literature.

2. Evidence showing a benefit to using un-sharp data in the training of con-
volutional object detection models in domains using microscopic imaging
data.

6.1 Future Work

The most important contribution is in reference to the use of unfocused data
when training detection models, which to the knowledge of the author, is a novel
discovery. Based on this and the weaknesses of this thesis, multiple paths can be
explored in future work, which builds on this work.

Extending the dataset

The size of the dataset could pose a threat to the external validity of the model’s
performance. The results show that the model performs better at localization than
at classification in a dataset containing three distinct classes. Within a domain
where most potential classes share similar features, it is unknown how the model
would perform with a dataset containing more classes and if it could maintain
its ability to label classes correctly. Therefore, it cannot be concluded that the
model would perform at a similar level of precision in datasets with more classes.
Extending the number of classes in the dataset with more samples is the only way
to verify this.

A different way of extending the existing dataset is by using synthesized data,
which could significantly improve performance. New sample images could be
artificially generated by rearranging ground truths and moving them in the focal
plane.

Multifocal input

The results assume a link between perceived sharpness and focal planes in the
sample images without a direct correlation being shown. This perceived sharpness
is used to validate the sharpness measure, which in turn is used to analyze the
model in relation to data sharpness. To an extent, this assumption does hold; when
the focal plane lies above or below a pollen grain, perceived sharpness changes
with the focal plane. However, on a more granular level, how the sharpness
measure corresponds to the location of the focal plane when it lies within a pollen
grain is less clear. From observation, maximum sharpness does seem to occur at
the center of the pollen grain when the diameter of the grain is largest.

Using stacks of images frommultiple focal planes as the input to the model, instead
of a single image, could enhance performance by providing the model a detailed
view of the entire surface of each pollen grain.

6 Conclusion 53

Counting algorithm

Turning the model’s raw output into an accurate pollen grain count for an entire
microscopic slide is a non-trivial task. Pollen grains may be placed directly over
one another, only distinguishable by running the model over all focal planes. One
possible approach is to use video streams from a microscope, taken while it slides
its focal plane across a microscope slide and, from all the individual detections
and sharpness values, create a 3D positional model of every detected grain. This
would enable counting in three dimensions and could require the creation of a
novel filtering algorithm that extends the concept of overlapping predictions into
three dimensions.

Live counting

A second possibility for a functioning counting system is to embed the model in a
live system that controls the motion of a microscope along all three axes, similar to
the current manual method with human operators. The model’s output could be
used to guide a new search algorithm that moves over a slide, building a complete
detection model for the entire slide in all three axes.

54 6.1 Future Work

55

Bibliography

Askin, R. and S. Jacobson (2003). “Palynology”. In: Encyclopedia of Physical Science
and Technology. Journal Abbreviation: Encyclopedia of Physical Science and
Technology, pp. 563–578. doi: 10.1016/B0-12-227410-5/00930-3.

Bodla, Navaneeth et al. (2017). Soft-NMS – Improving Object Detection With One
Line of Code. arXiv: 1704.04503 [cs.CV].

Boser, Bernhard E, Isabelle M Guyon, and Vladimir N Vapnik (n.d.). “A training
algorithm for optimal margin classifiers”. In: Proceedings of the 5th Annual
ACM Workshop on Computational Learning Theory, pp. 144–152.

Chibuta, S. and A. C. Acar (2020). “Real-time Malaria Parasite Screening in Thick
Blood Smears for Low-Resource Setting”. In: Journal of Digital Imaging 33.3,
pp. 763–775. doi: 10.1007/s10278-019-00284-2.

Daood, A., E. Ribeiro, and M. Bush (2016). “Pollen grain recognition using deep
learning”. en. In: Advances in Visual Computing. Lecture Notes in Computer
Science. Cham: Springer International Publishing, pp. 321–330. doi: 10.1007/
978-3-319-50835-1_30.

Daood, Amar, Eraldo Ribeiro, and Mark Bush (2016). “Pollen Recognition Using
a Multi-Layer Hierarchical Classifier”. In: IEEE International Conference on
Pattern Recognition (ICPR). doi: 10.1007/978-3-319-50835-1_30.

— (2018). “Sequential Recognition of Pollen Grain Z-Stacks by Combining CNN
and RNN”. In: Proceedings of the International Florida Artificial Intelligence
Research Society Conference, FLAIRS, Melbourne, Florida, USA. May 21–23.
Published by The AAAI Press, Palo Alto, California.

De, Kanjar and V. Masilamani (2013). “Image Sharpness Measure for Blurred
Images in Frequency Domain”. In: Procedia Engineering 64. International
Conference on Design and Manufacturing (IConDM2013), pp. 149–158. doi:
10.1016/j.proeng.2013.09.086.

Everingham, Mark et al. (2010). “The pascal visual object classes (voc) challenge”.
In: International journal of computer vision 88.2, pp. 303–338. doi: 10.1007/
s11263-009-0275-4.

France, I et al. (2000). “A new approach to automated pollen analysis”. en. In:
Quaternary Science Reviews 19, pp. 537–546. doi: 10.1016/S0277-3791(99)
00021-9.

Gallardo-Caballero, Ramón et al. (2019). “Precise pollen grain detection in bright
field microscopy using deep learning techniques”. In: Sensors (Basel, Switzer-
land) 19. doi: 10.3390/s19163583.

https://doi.org/10.1016/B0-12-227410-5/00930-3
https://arxiv.org/abs/1704.04503
https://doi.org/10.1007/s10278-019-00284-2
https://doi.org/10.1007/978-3-319-50835-1_30
https://doi.org/10.1007/978-3-319-50835-1_30
https://doi.org/10.1007/978-3-319-50835-1_30
https://doi.org/10.1016/j.proeng.2013.09.086
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1016/S0277-3791(99)00021-9
https://doi.org/10.1016/S0277-3791(99)00021-9
https://doi.org/10.3390/s19163583

56

Girshick, Ross et al. (2014). “Rich feature hierarchies for accurate object detection
and semantic segmentation”. In: arXiv: 1311.2524 [cs.CV].

Halbritter, Heidemarie et al. (2018). “Methods in Palynology”. In: Illustrated Pollen
Terminology. Springer International Publishing, pp. 97–127. doi: 10.1007/978-
3-319-71365-6_6.

He, Kaiming et al. (2015). “Deep Residual Learning for Image Recognition”. In:
arXiv: 1512.03385 [cs.CV].

Hernández-García, Alex and Peter König (2019). “Further Advantages of Data
Augmentation on Convolutional Neural Networks”. In: CoRR abs/1906.11052.
arXiv: 1906.11052.

Ioffe, Sergey and Christian Szegedy (2015). “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: arXiv: 1502.
03167 [cs.LG].

Iqbal, Haris (2018). HarisIqbal88/PlotNeuralNet. Version v1.0.0. doi: 10.5281/
zenodo.2526396.

Islam, M. and M. Alam (2019). “A Machine Learning Approach of Automatic
Identification and Counting of Blood Cells”. In: Healthcare Technology Letters
6. doi: 10.1049/htl.2018.5098.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2017). “ImageNet Clas-
sification with Deep Convolutional Neural Networks”. In: Commun. ACM 60.6,
pp. 84–90. doi: 10.1145/3065386.

Langford, M., G. E. Taylor, and J. R. Flenley (1990). “Computerized identification
of pollen grains by texture analysis”. en. In: Review of Palaeobotany and Paly-
nology. The Proceedings of the 7th International Palynological Congress (Part
I) 64, pp. 197–203. doi: 10.1016/0034-6667(90)90133-4.

LeCun, Yann (1989). “Generalization and network design strategies”. In: Connec-
tionism in perspective. Ed. by R. Pfeifer et al. Elsevier.

LeCun, Yann, Bernhard Boser, et al. (1990). “Handwritten digit recognition with
a back-propagation network”. In: Advances in neural information processing
systems 2, pp. 396–404.

LeCun, Yann, Léon Bottou, et al. (1998). “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86.11, pp. 2278–2324. doi:
10.1109/5.726791.

Li, Ping and J. R. Flenley (1999). “Pollen texture identification using neural
networks”. In: Grana 38, pp. 59–64. doi: 10.1080/001731300750044717.

Lin, Min, Qiang Chen, and Shuicheng Yan (2014). “Network In Network”. In:
arXiv: 1312.4400 [cs.NE].

Liu, W., L. Cheng, and D. Meng (2018). “Brain slices microscopic detection using
simplified SSD with Cycle-GAN data augmentation”. In: Neural Information
Processing. Lecture Notes in Computer Science. Cham: Springer International
Publishing, pp. 454–463. doi: 10.1007/978-3-030-04212-7_40.

Liu, Wei et al. (2016). “SSD: Single Shot MultiBox Detector”. In: Lecture Notes in
Computer Science, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.

El-Melegy, M., D. Mohamed, and T. El-Melegy (2019). “Automatic detection of
tuberculosis bacilli from microscopic sputum smear mmages using faster R-
CNN, transfer learning and augmentation”. In: Pattern Recognition and Image

https://arxiv.org/abs/1311.2524
https://doi.org/10.1007/978-3-319-71365-6_6
https://doi.org/10.1007/978-3-319-71365-6_6
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1906.11052
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.1049/htl.2018.5098
https://doi.org/10.1145/3065386
https://doi.org/10.1016/0034-6667(90)90133-4
https://doi.org/10.1109/5.726791
https://doi.org/10.1080/001731300750044717
https://arxiv.org/abs/1312.4400
https://doi.org/10.1007/978-3-030-04212-7_40
https://doi.org/10.1007/978-3-319-46448-0_2

57

Analysis. Lecture Notes in Computer Science. Cham: Springer International
Publishing, pp. 270–278. doi: 10.1007/978-3-030-31332-6_24.

Pan, Sinno Jialin and Qiang Yang (2010). “A Survey on Transfer Learning”. In:
IEEE Transactions on Knowledge and Data Engineering 22.10, pp. 1345–1359.
doi: 10.1109/TKDE.2009.191.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance
Deep Learning Library”. In: arXiv: 1912.01703 [cs.LG].

Redmon, Joseph et al. (2016). “You Only Look Once: Unified, Real-Time Object
Detection”. In: arXiv: 1506.02640 [cs.CV].

Sevillano, V. and J. L. Aznarte (2018). “Improving classification of pollen grain
images of the POLEN23E dataset through three different applications of deep
learning convolutional neural networks”. en. In: PLOS ONE 13. doi: 10.1371/
journal.pone.0201807.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: arXiv: 1409.1556 [cs.CV].

Szegedy, Christian et al. (2014). “Going Deeper with Convolutions”. In: arXiv:
1409.4842 [cs.CV].

https://doi.org/10.1007/978-3-030-31332-6_24
https://doi.org/10.1109/TKDE.2009.191
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1506.02640
https://doi.org/10.1371/journal.pone.0201807
https://doi.org/10.1371/journal.pone.0201807
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.4842

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Fredrik Gyllenhammar

Automated Pollen-Grain Counting

Master’s thesis in Computer Science
Supervisor: Professor Keith Downing

June 2021

M
as

te
r’s

 th
es

is

	Introduction
	Goals and Research Questions
	Problem Description
	Thesis Structure

	Background
	Pollen Imaging
	Convolutional Neural Networks
	Convolution
	Spatial pooling
	Cross channel pooling
	Batch normalization
	Data augmentation
	Transfer learning

	Recurrent Neural Networks
	Metrics
	Precision and recall
	Intersection over union
	Mean average precision

	Related Work
	Convolutional Neural Networks
	Object detection
	Single stage detectors

	Automated Pollen Detection
	Classical methods
	CNN methods

	Methodology
	Data
	Sharpness Measure
	Fourier analysis
	Measuring sharpness
	Evaluating the sharpness measure

	Architecture
	Model
	Default boxes
	Training objective
	Inference

	Experimental setup
	Software
	Hardware
	Training

	Experiments
	Feature extractor
	Layer activation
	Minimum training sharpness
	Cross-sharpness inference

	Results
	Baseline model
	Model simplification
	Feature extractor
	Layer activation

	Sharpness
	Minimum training sharpness
	Cross-sharpness inference

	Summary

	Conclusion
	Future Work

	Bibliography

