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Abstract

Background: Extracorporeal shock wave lithotripsy (ESWL) of kidney stones is
losing ground to more expensive and invasive endoscopic treatments.
Objective: This proof-of-concept project was initiated to develop artificial
intelligence (AI)-augmented ESWL and to investigate the potential for machine
learning to improve the efficacy of ESWL.
Design, setting, and participants: Two-dimensional ultrasound videos were
captured during ESWL treatments from an inline ultrasound device with a video
grabber. An observer annotated 23 212 images from 11 patients as either in or out of
focus. The median hit rate was calculated on a patient level via bootstrapping.
A convolutional neural network with U-Net architecture was trained on 57 ultra-
sound images with delineated kidney stones from the same patients annotated by a
second observer. We tested U-Net on the ultrasound images annotated by the first
observer. Cross-validation with a training set of nine patients, a validation set of one
patient, and a test set of one patient was performed.
Outcome measurements and statistical analysis: Classical metrics describing
classifier performance were calculated, together with an estimation of how the
algorithm would affect shock wave hit rate.
Results and limitations: The median hit rate for standard ESWL was 55.2% (95%
confidence interval [CI] 43.2–67.3%). The performance metrics for U-Net were
accuracy 63.9%, sensitivity 56.0%, specificity 74.7%, positive predictive value
75.3%, negative predictive value 55.2%, Youden’s J statistic 30.7%, no-information
rate 58.0%, and Cohen’s k 0.2931. The algorithm reduced total mishits by 67.1%. The
main limitation is that this is a proof-of-concept study involving only 11 patients.
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Conclusions: Our calculated ESWL hit rate of 55.2% (95% CI 43.2–67.3%) supports
findings from earlier research. We have demonstrated that a machine learning
algorithm trained on just 11 patients increases the hit rate to 75.3% and reduces
mishits by 67.1%. When U-Net is trained on more and higher-quality annotations,
even better results can be expected.
Patient summary: Kidney stones can be treated by applying shockwaves to the
outside of the body. Ultrasound scans of the kidney are used to guide the machine
delivering the shockwaves, but the shockwaves can still miss the stone. We used
artificial intelligence to improve the accuracy in hitting the stone being treated.
© 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association of
Urology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Urolithiasis is an increasingly common condition that
imposes a substantial burden on both patients and health
care providers [1,2]. The prevalence of urolithiasis varies
globally, ranging from 4% to 20% [3–5]. Since Chaussy et al
[6] reported extracorporeal shockwave lithotripsy (ESWL)
treatment for urolithiasis in 1980, it has become the
treatment option most utilized. The ability of shockwaves to
fragment stones is the basis for ESWL and the efficacy
depends on shockwaves hitting the stones [7]. ESWL,
percutaneous nephrolithotomy (PCNL), and ureteroreno-
scopy/retrograde intrarenal surgery (URS/RIRS) are the
main treatment options for symptomatic urolithiasis
[8]. Of these, ESWL is the least invasive method with the
fewest complications [9]. A global study covering a period of
20 yr found that the share of total treatments increased by
17% for URS/RIRS, remained the same for PCNL, and
decreased by 14.5% for ESWL [10]. Another study investi-
gating literature trends for urolithiasis treatments revealed
that papers on URS/RIRS and PCNL increased by 171%
and 279%, respectively, while papers on ESWL decreased by
17% [11].

Increases in ESWL efficacy should reduce retreatment
rates, operating room time, anesthesia needs, endoscopic
equipment use, and complication rates, thereby significantly
reducing health care costs.

Since the creation of the computer there has been a
desire to design computers capable of competing with
human intelligence. This is achieved by imitating human
cognitive function, a concept referred to as artificial
intelligence (AI). Machine learning (ML) is a type of AI that
learns through experience [12]. Several non-ML algorithms
for tracking urinary stones have been developed and tested,
but none has been widely adopted in clinical practice. It has
been demonstrated that ML algorithms have the ability to
outperform clinicians in image analysis [13–15].

In supervised learning an algorithm is given labeled data
such as ultrasound images of kidneys with stones and
without stones to train it to differentiate “stone” images
from “no stone” images [16,17]. Popular ML algorithms
inspired by biological neural circuits include artificial neural
networks (NNs) (Fig. 1A). The first layer in an NN is called
the input layer, and its role is to distribute the original input
data to the next layer [18]. The output layer modifies input
into the final output for the whole network, deciding
whether an image contains a urinary stone or not in our
example. Between the input and output layers there are
“hidden” layers that are composed of weights that can be
taught to handle complex problems [18]. How the
connections and layers are structured defines the architec-
ture of the NN [12,16].

NN training is typically achieved using an optimizer that
seeks to minimize a loss function through backpropagation.
The role of the loss function is to measure the ability of the
algorithm to model the given data (eg, to identify renal
stones) and its value is used to update the network weights
in order to minimize the error. To investigate the
generalizability of the NN, it should be validated using
different data from the data used for training. The validation
loss is monitored during training: as the network improves,
the validation error decreases with the training error.
However, a common problem during training is overfitting
(Fig.1B), which is typically a result of the model memorizing
the training data [19]. The result is a model that does not
learn generalizable features, often identified by divergence
of the validation loss. To prevent this, different training
strategies are employed, such as early stopping and
regularization. More importantly, a third independent data
set, often referred to as the test set, is needed and used after
the training procedure. The test set is used to measure the
ability of the network to solve its task for unseen
independent data.

A convolutional NN (CNN) is preferred for complex
image analysis [20]. CNNs are built to first identify features
of low complexity, and then find features of higher
complexity in deeper layers [20]. Convolution operations
identify the essential features of the input (eg, lines or
circles) and give outputs called feature maps. Pooling
operations then downsample (reduce the resolution) of the
feature maps to reduce the need for computational power in
subsequent operations. Two of the pooling operations most
often used are maximum pooling and average pooling, as
explained in Figure 1C. When an algorithm performs
segmentation of an image, it partitions it into semantic
objects [20], such as determining which part of an image
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Fig. 1 – (A) Example of the architecture of simple neural network
comprising an input layer with two nodes, a hidden layer with three
nodes, and an output layer with two nodes. Created with Inkscape. (B) A
graph describing overfitting. The training error continually decreases
during training, eventually reaching zero if the model is trained for long
enough. When overfitting starts, the validation error will start to increase
because the model is getting worse at generalizing. The optimal stopping
time is the lowest point on the validation curve. Based on a graph by
Tretyakov [25]. (C) Image from Yani et al [26] (Creative Commons
Attribution 3.0 license) showing that maximum pooling and average
pooling downsample the input. In maximum pooling, the input is divided
into parts and the highest value for each part gives the output. In average
pooling, the average value for each part gives the output.
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depicts a urinary stone [16]. Different CNNs have been
constructed for segmentation purposes, one example of
which is U-Net [20]. The first U-Net stage is downsampling,
in which convolutional layers identify image features, while
maximum pooling operators downsample the feature
maps. In the last stage, which is upsampling, the feature
maps are upsampled by upsampling operators and
combined with copies of symmetric feature maps from
the downsampling stage [20]. With these crossover
connections, high-resolution features are preserved, as
demonstrated in Figure 2.

2. Patients and methods

Two-dimensional ultrasound images were analyzed to estimate the hit
rate for operator-controlled ESWL and test the U-Net performance. To
obtain images, a frame-grabber was attached to the ESWL machine
(PiezoLith 3000, Richard Wolf GmbH, Knittlingen, Germany) for capture
of inline real-time ultrasound images during ESWL. Each video was
30 min long and 5-min video sequences were randomly chosen for
annotation. The annotator extracted ultrasound samples to label each
frame as either “focus” when the stone was in the focal zone (FZ) or “out
of focus” when the stone was not in the FZ (Fig. 3A). This process was
carried out using an annotation tool (Fig. 3B). As a stone is usually in the
FZ or out of the FZ for more than two consecutive frames, the annotation
process was simplified by labeling only the transition points for intervals
of frames. For example, if the first frame is labeled as in focus and the
transition to out of focus occurs in the tenth frame, then all frames from
the start until the tenth frame are classified as in focus.

During annotation we found that some stones were not visible in the
ultrasound images, and these patients (cases 1, 3, and 9) were not
included in the analysis of the hit rate for operator-controlled ESWL. In
total, 731 frames were annotated directly, leading to a total of
23 212 frames. As the ultrasound device captures 15 frames/s, we
ended up with 26 min of annotated ultrasound video, representing an
average of 3.2 min for each patient. In addition, a second annotator
delineated the kidney and renal stones in arbitrary frames for all
patients. This resulted in binary masks for kidneys and kidney stones
from a total of 57 images.

To test a standard U-Net convolutional network in kidney stone
segmentation, it was trained using the delineated images. For training
and validation of the network, we provided annotations of both the
kidney and the kidney stone. Marking the kidney gave the algorithm a
reference point or contextual information for where the stone should be,
as a kidney stone remains approximately in the same position inside the
kidney throughout the treatment. We conducted patient-based cross-
validation. A total of 11 models were created by training on frames from
nine patients and validating on frames from one patient. Of these
11 models, eight were tested on the same 23 212 frames annotated as in
focus” or out of focus in eight patients.

The first outcome we wanted to investigate was the hit rate for
operator-controlled ESWL continuously firing 90 pulses/min. The hit rate
refers to the percentage of shockwaves that hit the stone, in this study
defined as a shot for which more than 50% of the stone is in the FZ. To
calculate this we needed to know the number of frames in which the
stone was in focus out of a certain number of frames. Each frame was
manually assigned a label of 0 (out of focus) or 1 (focus) by one observer
and the sum of the labels gives the number of frames for which the stone
is in the FZ. Using the R environment for statistical programming (www.
r-project.org), the median hit rate for each patient with 95% confidence
interval (CI) was estimated using bias-corrected and accelerated
bootstrapping to evaluate the robustness of the results beyond sample
estimates. The hit rate distribution among patients was examined by
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Fig. 2 – The original U-Net architecture created by Ronneberger et al [27]. Blue rectangles represent feature maps, while white rectangles represent
feature maps copied via crossover connections. The arrows denote operators (dark and light blue = convolution; grey = crossover connection;
red = maximum pooling; green = upsampling).
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producing a histogram, boxplot, and a normal Q-Q plot in SPSS, and by
performing a Shapiro-Wilk test and analysis of kurtosis and skewness.
A x2 test for goodness of fit was performed manually to determine
whether the hit rates were uniformly distributed and to ultimately
decide whether pooling was appropriate or not. A p value <0.05 was
regarded as statistically significant and would lead to rejection of the
null hypothesis that the hit rate distribution is uniform. The median hit
rate with 95% CI was calculated on a frame level if pooling was
appropriate, or on a patient level if pooling was inappropriate. The
overall median hit rate with 95% CI was estimated via bias-corrected
and accelerated bootstrapping.

To estimate the performance of the U-Net algorithm, the data were
input to R to create a confusion matrix (Table 1) for which the ground
truth was the annotated data. Frames for which the algorithm did not
detect a stone were not included in the confusion matrix. R was then
used to calculate classical metrics for the performance of classification
models: accuracy, sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), prevalence, detection
rate, detection prevalence, balanced accuracy, Youden’s J statistic,
the no-information rate, and Cohen’s k. An explanation of the values
is provided in Table 2. We then estimated the treatment time for
U-Net-controlled ESWL relative to operator-controlled ESWL by
dividing the number of frames annotated as in focus by the number
of true positives. By multiplying the relative treatment time by the
number of true negatives and dividing this by the number of frames
annotated as out of focus, we estimated how U-Net would affect the
number of mishits. Hits per minute was calculated for both operator-
controlled ESWL and U-Net-controlled ESWL given a shockwave rate
of 90/min. The median hit rate and 95% CI were calculated for each
patient via bias-corrected and accelerated bootstrapping of
5000 samples of frames in R (Table 3).
Written permission to use anonymized ultrasound videos down-
loaded from patient records was obtained after evaluation by the
regional ethics committee (reference number 2014/2261).

3. Results

The hit rate among patients was normally distributed,
as shown in Figure 4A–D. This was supported by analysis
of skewness (z = �0.005) and kurtosis (z = 1.73), and a
Shapiro-Wilk test (p > 0.05). A x2 goodness-of-fit test was
then performed manually and controlled afterwards in R.
The expected hit rate for each patient was calculated by
multiplying the total number of frames for that patient by
the pooled mean hit rate (50.12%). A x2 value of 927.4 with
seven degrees of freedom gave a p value <0.05, meaning the
null hypothesis of a uniform distribution among
the patients was rejected and the data should therefore
not be pooled. By bootstrapping the median hit rates for
eight patients with 3000 samples in R, we found a median
hit rate of 55.2% (standard deviation 18.6%, 95% CI
43.2–67.3%). We chose to bootstrap with 3000 samples
on the basis of a convergence analysis of the 95th percentile,
as explained in Figure 4D.

The algorithm was unable to find a stone in 20.6% of the
frames, so they were not included in the analysis. For
the remaining 18 440 frames, the degree of overlap between
the predicted stone area and the FZ was calculated. Overlap
of �50% was considered “in focus”. The test results were



Fig. 3 – (A) Example of a frame for which the model reported that the stone was in focus, as �50% of the predicted stone (red) was within the focal
zone (yellow). (B) Screenshot of the annotation tool. The ultrasound video with crosshairs is shown to the right, and a slider is used to go through the
frames. To annotate a frame, the annotator clicks “Select frame for annotation” and chooses to label the frame as either “focus” or “out of focus”. If
the stone is in focus for this frame, the annotator then continues the video and stops to label the first frame for which the stone goes out of focus.
The frames between these two labels are automatically labeled “focus”. The green and red rectangles represent the frames labeled by the annotator.
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organized in a confusion matrix in R using the annotator as
the ground truth and the performance was calculated
(Table 1). The algorithm found that 58.0% (prevalence) of
the frames had stones in focus (Table 4). The accuracy of the
algorithm was 63.9%, meaning that it correctly classified
63.9% of the frames as either “in focus” or “out of focus”. Of
the frames with stones in focus, the algorithm was able to
classify approximately half as “in focus”, as the sensitivity
was 56.0%. The algorithm was better at classifying the
stones that were “out of focus”, with specificity of 74.7%. The
PPV (the number of frames that the algorithm correctly
classified as “in focus”) was 75.3% and the NPV (the number



Table 1 – Confusion matrix design and test data (images annotated as in focus or out of focus) organized in a confusion matrix

In focus (annotator) Out of focus (annotator) Total

Design
In focus (AI) TP FP TP + FP
Out of focus (AI) FN TN FN + TN
Total TP + FN FP + TN TP + FP + FN + TN
Test data
In focus (AI) 5987 1961 7948
Out of focus (AI) 4700 5792 10 492
Total 10 687 7753 18 440

AI = artificial intelligence; TP = true positive; FP = false positive; FN = false negative; TN = true negative.
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of frames the algorithm correctly classified as “out of focus”)
was55.2%. Note that the PPV corresponds to the hit rate if
the lithotripter fires shockwaves in accordance with the
algorithm. The detection rate was 32.5%, while the detection
prevalence was considerably higher at 43.1%, indicative of a
substantial number of false positives (when AI classifies a
frame as “in focus” when the stone is actually “out of
focus”). With a Youden’s J statistic of 30.7% (criterion: >0),
Cohen’s k of 0.2931 (criterion: >0), and a no-information
rate of 58.0% (lower than accuracy), the algorithm
performance is better than randomly guessing whether
stones are in or out of focus, suggesting that it can
correctly track kidney stones in ultrasound images. The
treatment time relative to operator-controlled ESWL was
1.94 (11 633/5 987), while the mishit rate was 32.9%
([1.94 �1961]/[23 212 – 11 633]) of the rate for operator-
controlled ESWL. Operator-controlled ESWL hits the stone
45 times per minute (90/min � 11 633/23 212), while
U-Net-controlled ESWL hit the stone 23 times per minute
(90/min � 5987/23 212).
Table 2 – Overview of the most important statistics describing
performance of a classifier

Statistic Definition

Accuracy TPþTN
TPþFPþTNþFN

Sensitivity TP
TPþFN

Specificity TN
TNþFP

Positive predictive value (PPV) TP
TPþFP

Negative predictive value (NPV) TN
TNþFN

Prevalence TPþFN
TPþFPþFNþTN

Detection rate TP
TPþFPþFNþTN

Detection prevalence TPþFP
TPþFPþFNþTN

Balanced accuracy SensitivityþSpecificity
2

Youden’s J statistic Sensitivity þ Specificity � 1

No-information rate:

If TP þ FNð Þ > ðFP þ TNÞ TPþFN
TPþFPþFNþTN

If FP þ TNð Þ > ðTP þ FNÞ FPþTN
TPþFPþFNþTN
4. Discussion

Our findings suggest that there is significant potential to
optimize the ESWL hit rate, as we estimated an operator-
controlled hit rate of 55.2% could be improved to 75.3%
using a U-Net neural network to control ESWL and the total
number of shockwaves missing the stone would be reduced
to approximately one-third, ultimately making the
procedure safer for patients.

There are several limitations and weaknesses to the way
in which we estimated the hit rate. First, the annotator
(a medical student) was inexperienced in ultrasound image
interpretation; and second, identifying the exact borders of
the stone was difficult because of low image resolution,
which we experienced as a significant issue during
annotation. The resolution was low because of the quality
of the probe-scanner system itself and because the probe
had to be retracted during shockwave firing. A future
solution could be to register pre-intervention computed
tomography (CT) images with the ultrasound images, which
would probably make it easier for the annotator to make
correct annotations by suggesting the stone position
relative to the kidney.

Another problem is that the ultrasound images we
sampled were from the first 5 min of treatment. During
treatment the stone is progressively fragmented and
therefore becomes more difficult to identify (also true for
fluoroscopy) and to subsequently hit, so the samples we
used are not representative of the whole treatment course.
However, when a stone becomes too difficult to identify it is
not relevant for our analysis, as the annotator cannot decide
whether the stone is in focus or not. Estimated hit rates
between patients were normally distributed, suggesting
that they are representative. Our definition of a shockwave
hit as 50% overlap between the stone and the FZ may not be
optimal, as marginal hits may also contribute to fragmen-
tation, resulting in underestimation of the hit rate. A bias
might have been introduced when we excluded patients 1,
3, and 9 because of the lack of visibility of their stones on
ultrasound. For operator-controlled ESWL, the operator
would also not be able to localize their stones on ultrasound,
so periodic fluoroscopy would be needed. Consequently, the
operator has less control of the real-time location of a stone
and it would probably spend more time out of focus. When



Table 3 – Median hit rates for operator-controlled extracorporeal shockwave lithotripsy for each patient as estimated via bootstrapping

Patient Frames in focus (n) Total frames (N) Median hit rate, % (95% CI)

1 – – –

2 1588 2974 53.4 (51.6–55.1)
3 – – –

4 1414 2397 59.0 (57.0–61.0)
5 1774 2798 63.4 (61.6–65.2)
6 1851 3382 54.7 (53.0–56.4)
7 1697 3544 47.9 (46.2–49.5)
8 2082 3926 53.1 (51.5–54.6)
9 – – –

10 789 3699 21.3 (20.0–22.7)
11 438 492 89.0 (86.2–91.7)
Total 11 633 23 212 55.2 (43.2–67.3)

CI = confidence interval.
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images from these patients are left out, the operator-
controlled hit rate might be overestimated.

The training and performance testing of the algorithm
also have several limitations and weaknesses. The algorithm
was trained and validated on data without crosshairs
annotated by a second inexperienced observer. Thus, the
training set might contain false-positive stones, limiting
the potential of the algorithm to learn stone-tracking
correctly. Some of the training and validation annotations
were performed on ultrasound images in which the stone
was difficult to identify (including patients 1, 3, and 9),
increasing the probability of false-positive stones.

The algorithm was only trained on 57 images from a total
of 11 patients. The training set was clearly not large enough
for optimizing the algorithm efficacy, and the algorithm has
significant potential for improvement if more patients are
included and an experienced radiologist uses CT to provide
accurate annotations. As in the estimation of the operator-
controlled hit rate, estimation of overlap is also an issue in
the performance test. The test set was annotated by a
medical student who assessed whether the stone was in
focus or not via a semi-subjective visual evaluation of the
stone and FZ overlap. By contrast, the algorithm was trained
on images in which the stones were delineated. When the
stone edges are marked by hand, computer software can
calculate the stone and FZ overlap much more accurately
than a human visually evaluating the overlap. As a result,
although the test set annotator and the algorithm might be
in perfect agreement over the location of a stone in a test set
image, they might estimate different degrees of stone-FZ
overlap, resulting in disagreement on whether a stone is in
focus or not. This especially relates to stones that are close to
50% within the FZ. In these cases, even small differences in
estimation of the overlap might influence the decision on
“in focus” versus “out of focus”. This results in more
uncertainty in the metrics describing the algorithm
performance.

Using two different inexperienced annotators has some
additional weaknesses. The algorithm first learns what one
of the annotators interprets as stones and is then tested on
what the other annotator interprets as stones. One problem
here is interobserver variability, which we confirmed was
significant: comparison of the two annotators revealed a
mismatch rate of 37.5%. This means that the algorithm will
never perform perfectly on the test set, as the annotators for
the training and test sets disagreed over the definition of
stone borders. In fact, accounting for interobserver
variability instead of only using one observer strengthens
the confidence in our metrics indicating that the algorithm
has stone-tracking ability.

Should the algorithm become better than the test set
annotator at identifying stones, the metrics would under-
estimate the performance of the algorithm. To see if the
algorithm performed significantly better than the metrics
implied, we visually examined several of the ultrasound
videos of algorithm-predicted stones and tested the trained
algorithm on the same type of annotations used in the
training set. After reviewing the results, the idea that
the algorithm clearly outperformed the test set annotations
was rejected.

We discussed treating frames in which the algorithm
did not detect a stone as though the algorithm reported
that the stone was “out of focus”. This would lead to
improvements in all the AI performance parameters except
for a decrease in sensitivity (51.2%). Most notably, we saw
increases in accuracy to 67.0%, specificity to 83.0%, and
Youden’s J statistic to 34.2%. The argument for analyzing
the data in this way is that stones that are not detected will
not be shot at, resulting in a lower risk of treatment
complications. Having said that, we chose not to do this, as
we could not control for whether frames in which stones
were not detected by the algorithm had stones or not,
which would have resulted in over-rating of the tracking
ability of the algorithm. In addition, it would not affect the
PPV, which is arguably the most important parameter
when analyzing the algorithm performance at the current
state of the project.

We were able to identify three studies that estimated
ESWL hit rates between 40% and 60% [13,21,22]. Our
estimated hit rate of 55.2% is at the higher end of range
compared to the other studies, but our wide 95% CI
(43.2–67.3%) fits well with their observations. Different
definitions of the hit rate and small sample sizes limit the
generalizability of these studies.



Fig. 4 – (A) Histogram of the hit rate for operator-controlled
extracorporeal shockwave lithotripsy (ESWL). The distribution
resembles a normal distribution, albeit with a degree of kurtosis.
However, the kurtosis z value was not statistically significant. (B)
Boxplot of the hit rate (y-axis) for operator-controlled ESWL (x-axis),
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To date there are no publications on ML algorithms used
to localize urinary stones in ultrasound images for ESWL
treatment. Singla et al [23] tried to localize urinary stones
using fluoroscopy during ESWL treatment with RetinaNet
and achieved precision of 70% � 10% using a different ML
algorithm.

Our algorithm can be implemented by stopping the
lithotripter from firing shockwaves when the stone is out
of focus. An algorithm similar to that used by Singla et al
[23] could also be added to create a pipeline that uses
both ultrasound and fluoroscopy, which could potentially
further improve stone-tracking ability. It has been shown
that treatment pulse rates of 60–90 yield the best stone-
free rate, but it should be noted that this rate is based on
testing of different constant rates, regardless of whether
the stone is within the focal zone or not [24]. Current
ESWL treatment routines use approximately 3000–4000
pulses per treatment at a hit rate of 50%, resulting in
approximately 2000 hits. Algorithm-controlled ESWL
may only require 2000 shockwaves, which would thus
lead to a reduction in treatment time. In fact, shockwave
rates could be increased so that when the stone passes
through the focal zone it could be hit multiple times.
Previous unpublished findings by our group showed that
the stone is relatively stationary at the end of expiration
(Fig. 5) [25]. This physiological fact could be much better
utilized in algorithm-controlled ESWL, with shockwaves
fired at a higher rate while the stone is stationary inside
the focal zone at the end of each expiration. The
algorithm accounts for the entire kidney image, and
not just the stone itself, so another potential benefit of
algorithm-controlled ESWL is that the hit rate can be
maintained in the later stages of the treatment course
when the stone often becomes unclear on both ultra-
sound and fluoroscopy. Before the algorithm is
implemented in clinical practice it should be trained
and tested on more and higher-quality annotations,
preferably by a uroradiologist using information from
pretreatment CT. Annotation of training sets should also
be carried out at several different institutions to improve
the generalizability of the ML algorithm.
showing an approximately symmetrical distribution consistent with a
normal distribution. Patients 10 and 11 are outliers. (C) A normal Q-Q
plot of the hit rate for operator-controlled ESWL. The points are close to
the line, which typically indicates a normal distribution. Nevertheless,
there seems to be a trend for how the points are organized around the
line, suggesting the distribution might not actually be normal. (D)
Convergence of the 95th percentile for the hit rate. The relative
difference between two consecutive values tends towards zero as the
number of bootstrapping iterations increases. It is only possible to
extract 6435 different samples from the original sample size of eight.
This limits how many samples we can bootstrap, as increasing the
number of bootstrap samples increases the likelihood of extracting the
same sample multiple times. To find the optimal number of bootstrap
samples, we explored how many bootstrap samples it would take to
stabilize the 95th percentile. This is shown in the graph, with number
of bootstrap samples on the x-axis and the change of the 95th
percentile in percentage on the y-axis. It is evident that the change is
<1% after bootstrapping of 2000–3000 samples, indicating that the
optimal number of bootstrap samples is 2000–3000.



Table 4 – Calculated performance statistics for a U-Net model
when tested on ultrasound images annotated as in or out of focus

Statistic Value

Accuracy (%) 63.9
Sensitivity (%) 56.0
Specificity (%) 74.7
Positive predictive value (%) 75.3
Negative predictive value (%) 55.2
Prevalence (%) 58.0
Detection rate (%) 32.5
Detection prevalence (%) 43.1
Balanced accuracy (%) 65.4
Youden’s J statistic (%) 30.7
No-information rate (%) 58.0
Cohen’s k 0.2931

Fig. 5 – A graph by Kragset [28] demonstrating the three-dimensional
movement of a urinary stone during one respiratory cycle. Each dot
represents the stone’s location at a specific time point. When lines
between the dots are long, the movement is large. The dots at the end
of expiration are very close to each other, meaning the stone is almost
standing still – this is the optimal time interval to target the stone.
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5. Conclusions

We estimated an operator-controlled ESWL hit rate of
55.2% (95% CI 43.2–67.3%), which means that approxi-
mately half of the shockwaves applied miss the stone.
Algorithm-controlled ESWL increased the hit rate to
approximately 75.3% and reduced the total number of
shockwaves missing the stone by approximately 67.1%. Our
results indicate that a U-Net neural network trained and
tested on better annotations will be able to improve ESWL
efficacy.
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