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Superconductivity at metal-antiferromagnetic insulator interfaces
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Magnons in antiferromagnetic insulators couple strongly to conduction electrons in adjacent metals. We show
that this interfacial tie can lead to superconductivity in a trilayer consisting of a metal sandwiched between
two antiferromagnetic insulators. The strength of the induced electron-electron coupling, and consequently the
critical temperature, strongly increases with increasing interface exchange coupling. For a fixed electron-electron
coupling strength, the critical temperature is proportional to the magnon gap, a natural energy scale. However,
the magnon gap also enters in the coupling strength, so that in the weak coupling limit, an enhancement of the
magnon gap reduces the critical temperature. We estimate the critical temperature in MnF2-Au-MnF2 to be on
the order of 1 K. Umklapp scattering at metal-antiferromagnet interfaces leads to d-wave pairing, in contrast to
p-wave superconductivity mediated by magnons in ferromagnets.
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I. INTRODUCTION

Antiferromagnetic insulators (AFIs) offer several advan-
tages over ferromagnets, such as higher operating frequencies
and the absence of stray magnetic fields [1,2]. Spin waves and
their quanta, magnons, in AFIs couple strongly to electrons in
adjacent normal metals (NMs) [3–5]. Importantly, this enables
electric control of the antiferromagnetic spin dynamics. Even
so, AFIs have received less attention than ferromagnetic insu-
lators (FIs) in spintronics. A standard model for the interfacial
tie is an exchange coupling between the itinerant electrons
and the localized spins [4–6]. In this formalism, the electrons
experience a staggered field and scatter through two different
scattering channels: a regular channel and an Umklapp chan-
nel [4,5].

In this paper, we show that the electron-magnon coupling
at the NM-AFI interfaces can lead to superconductivity. The
magnons in the AFIs mediate the superconductive pairing
of the itinerant electrons in the NM. The strong coupling
between magnons and electrons enhances the superconductive
pairing. The dispersions of the conduction electrons and the
magnons influence the pairing significantly. Choosing differ-
ent combinations of materials and tuning the interface quality
controls the superconductive gap.

Extensive studies on the interplay between antiferromag-
netic ordering and superconductivity have been conducted.
Experiments have shown that the two phenomena can coex-
ist in several different materials [7,8] and even within the
same electron bands [9–11]. Because many high-TC super-
conductors are created from antiferromagnetic insulators by
doping [12], their discovery led to a renewed interest in the
relation between superconductivity and antiferromagnetism.
Even more recently, superconductivity has been found to
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coexist with antiferromagnetism in iron pnictide superconduc-
tors [13–16].

Theory predicts that magnons can mediate superconduc-
tivity in bulk antiferromagnets, with either p-wave or d-wave
pairing symmetry [17,18]. There are also suggestions that
magnons mediate superconductive pairing in iron pnictides
[19,20].

At topological insulator (TI)/FI interfaces, ferromagnetic
magnons are predicted to mediate p-wave pairing of spin-
momentum locked electrons, where the involved electrons
can have equal momenta [21]. For Bi/Ni bilayers, Ref. [22]
developed a similar model, but with a d-wave pairing, to
explain their experimental findings of superconductivity. At
TI/AFI interfaces, there are predictions that magnons mediate
the pairing of spin-momentum locked electrons with either
equal or antiparallel momenta [23].

We consider pairing between spin-degenerate electrons in
a metal. In Ref. [24], we showed that magnons in FIs can
mediate p-wave pairing of electrons with opposite momenta
in FI/NM/FI trilayers. In this paper, we replace the fer-
romagnetic insulators with antiferromagnetic insulators and
consider AFI/NM/AFI trilayers. Magnons in ferromagnets
and antiferromagnets significantly differ, resulting in distinc-
tive magnon-induced pairings. For the AFI/NM/AFI system,
we find d-wave pairing. In such systems, the properties of
magnons and electrons can be controlled independently. This
enhanced flexibility offers new ways of manipulating super-
conductivity.

Our paper is organized as follows. In Sec. II, we introduce
the model describing the metallic layer, the antiferromagnetic
layers, and the interaction between the layers. Sec. III presents
the resulting magnon-mediated electron-electron interaction,
the gap equation, and its solution. We conclude the paper in
Sec. IV. Appendix A provides estimates for material param-
eters. Appendix B considers an alternative superconducting
pairing with a nonzero sum of the electron momenta and
p-wave symmetry. We will see that this pairing is suppressed
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FIG. 1. Trilayer system: normal metal sandwiched between two
antiferromagnetic insulators. (a) Electrons in the NM scatter at
the interfaces, creating or annihilating a magnon. This leads to an
effective electron-electron interaction. The spin of the electron is
flipped in each scattering event. (b) Three-monolayer lattice structure
and coordinate axes x, y, and z.

compared to the d-wave pairing. In Appendix C, we consider
a spin-density wave (SDW) as a potential competing phase to
superconductivity.

II. MODEL

Our model consists of three monolayers: a NM sandwiched
between two identical easy-axis AFIs, as shown in Fig. 1.
We denote the left (right) AFI by � = L (R) and the central
NM by � = C. We assume that all three layers have identical
square lattices with lattice constant d , where node i has the
same in-plane position vector ri in all layers R, C, and L.
We define the unit vectors ŷ and ẑ along the lattice vectors,
and x̂ is transverse to the monolayers. We characterize the
spin directions with the coordinates χ , υ, and ζ , where ζ̂ is
parallel to the easy axis of the AFI. There are Ny lattice nodes
in the y direction and Nz lattice nodes in the z direction. The
total number of sites in the metal layer is N = NyNz. We use
periodic boundary conditions along the y and z directions.

We describe both AFIs using Heisenberg Hamiltonians
with nearest-neighbor exchange interaction J and easy-axis
anisotropy Kζ ,

H�
AFI = J

h̄2

∑
〈i, j〉

S�
i · S�

j + Kζ

h̄2

∑
i

(
S�

iζ

)2
. (1)

Here, h̄ is the reduced Planck constant, SL
i (SR

i ) is the spin at
node i in the left (right) AFI, and 〈i, j〉 is a pair of nearest-
neighbor nodes. Each AFI is divided into two sublattices: A
and B. When the AFI is in its classical ground state, all the
spins on sublattice A (B) point along ζ̂ (−ζ̂ ). We assume that
the matching nodes in the left and right AFIs are in opposite
sublattices so that SL

i = −SR
i in the classical ground state; see

Fig. 1(b).
For the electronic states, we consider two different mod-

els. The plane-wave states cq,σ = ∑
j exp(ir j · q)c jσ /

√
N are

eigenstates of both models, but the energy dispersions differ.
In the first case, the energy dispersion follows from the

tight-binding model (TB). In the second case, we assume that
the electron dispersion is quadratic (Q). The Hamiltonian of

FIG. 2. Dispersion relations along qz = 0 for (a) the conduction
electrons and (b) the magnons, assuming J/Kζ = 10 in the antiferro-
magnets. The quadratic electron dispersion EQ

q is the red dashed line,
and the tight-binding dispersion ETB

q is the blue solid line.

the tight-binding model is

HTB = −t
∑

σ

∑
〈i, j〉

c†
iσ c jσ , (2)

where c jσ (c†
jσ ) annihilates (creates) a conduction electron

with spin σ along ζ̂ at node j. The plane-wave states
are eigenstates of this Hamiltonian with dispersion ETB

q =
2t[2 − cos(qyd ) − cos(qzd )].

For the quadratic model (Q), we assume that the dispersion
is EQ

q = h̄2q2/(2m). Here, m is the effective electron mass.
We assume half-filling in both models. The electron disper-
sion relations are illustrated in Fig. 2(a).

The spins in the AFIs couple to the conduction electrons
via an interfacial exchange coupling JI ,

HInt = −JI

h̄

∑
σσ ′

∑
j

∑
�=L,R

c†
jσ σσσ ′c jσ ′ · S�

j . (3)

Here, σ = χ̂σx + υ̂σy + ζ̂ σz, and σx, σy, and σz are the Pauli
matrices.

We perform a Holstein-Primakoff transformation, treating
the sublattices A and B separately, and we define S�

i± = S�
iχ ±

iS�
iυ . Assuming that the AFIs are close to their classical ground

states, we find, for sublattice A, S�
i+ = S�†

i− = h̄
√

2sa�
i and

S�
iζ = h̄(s − a�†

i a�
i ), and, for B, S�

i+ = S�†
i− = h̄

√
2sb�†

i and

S�
iζ = h̄(b�†

i b�
i − s). Using Fourier and Bogoliubov transfor-

mations, we obtain the magnon eigenstates

a�
k =

√
2

N

(∑
i∈A

uke−ikri a�
i −

∑
i∈B

vkeikri b�†
i

)
. (4)

The expression for b�
k is found by exchanging a and b. The

Bogoliubov constants uk and vk satisfy u2
k − v2

k = 1.
We assume the anisotropy Kζ is substantially smaller than

the exchange J so that [5] uk ≈ −vk ≈ √
εJ/εk/

4
√

2 � 1.
Because the dominant contribution to the superconducting gap
is expected to come from the long-wavelength magnons [24],
we will use this so-called exchange approximation through-
out. In the long-wavelength limit, the magnon dispersion
is εk = 2s

√
2J (2Kζ + Jk2d2). In terms of the magnon gap

ε0 = 4s
√

JKζ and the exchange energy scale εJ = 2
√

2Js, the

dispersion is εk =
√

ε2
0 + ε2

J k2d2.
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FIG. 3. Fermi surfaces for (a) the tight-binding model (blue) and
(b) the quadratic model (red). The Brillouin zone of the conduction
electrons (BZ) is shown in yellow. The reduced (magnon) Brillouin
zone (BZR) corresponds to the interior of the Fermi surface of the
tight-binding model (light blue). The Umklapp momentum qU is
related to q by a reflection across the diagonal of the BZ (dashed
line) and a subsequent reflection in the Fermi surface.

The momenta (q) of the conduction electrons reside in the
Brillouin zone, BZ , of the lattice of the NM. By contrast,
the magnon momenta (k) are defined in the reduced Brillouin
zone of the sublattices, BZR; see Fig. 3(a). At half-filling,
the BZR matches the interior of the Fermi surface of the
tight-binding model.

We disregard terms of second order in the magnon op-
erators from HInt. Then, the total Hamiltonian H = HL

AFI +
HR

AFI + HNM + HInt is given by [5]

H =
∑

�

∑
k

εk
(
a�†

k a�
k + b�†

k b�
k

) +
∑
qσ

Eqc†
q,σ cq,σ (5)

+
∑

�

∑
kq

V̄k
(
a�

k c†
qU ,↓cq−k,↑ + b�

k c†
qU ,↑cq−k,↓ + H.c.

)
,

where

qU = q + qAF with qAF = (ŷ + ẑ)π/d (6)

is the Umklapp momentum of q and V̄k = −√
s/2NJI uk.

Importantly, the interfacial coupling V̄k is enhanced by the
Bogoliubov constants relative to the magnon-electron cou-
pling in ferromagnets [24]. To leading order in the exchange
approximation, the conduction electrons only interact with
magnons through Umklapp scattering. In contrast to NM-
AFI bilayers, the contribution from the normal channel is
negligible because the static spin-dependent potentials from
the two AFIs compensate each other almost completely.

In the electronic tight-binding model at half-filling, the
Umklapp process q → qU can be split into two steps; see
Fig. 3(a). First, there is a reflection across one of the diagonals
of the full Brillouin zone (BZ). Second, there is a reflection
across the Fermi surface. The second reflection occurs at the
surface parallel to the diagonal of the first reflection. For initial
states on the Fermi surface, an Umklapp process takes a state
k to another state kU that is also on the Fermi surface.

Next, we consider the approximate model with quadratic
electron dispersion EQ

q . To retain the main physics of the tight-
binding model, we introduce a modified Umklapp momentum
qMU that contains two analogous consecutive reflections. The

first reflection is across one of the diagonals of the BZ . The
second reflection is across the circular Fermi surface corre-
sponding to the quadratic electron dispersion; see Fig. 3(b).
The definition of qMU depends on the choice of the diagonal
where the first reflection occurs. We remove this ambiguity
by requiring that sgn(qMU

y )sgn(qMU
z ) = sgn(qy)sgn(qz ). How-

ever, for the symmetries of the superconducting gap that we
consider in the following section, all choices for the first
reflection lead to the same results.

In Sec. III A, we will see that the simplifications associ-
ated with the rotational symmetry of the quadratic disper-
sion together with the modified Umklapp process allow for
exploration of a large range of parameters as the angular
dependence of the gap can be treated analytically.

III. GAP EQUATION

Integrating over all the magnons, we find the magnon-
mediated electron-electron interaction

Heff =
∑
qpk

Ṽkqpc†
pU ↓c†

q−k,↑cp−k,↑cqU ↓. (7)

The interaction of Eq. (7) influences all the electrons. We
focus on the possible formation of Cooper pairs. We consider
the scenario whereby the essential terms in Eq. (7) satisfy
p = −qU + k. Then, the two electrons forming a pair have
opposite momenta as in the BCS theory. Another possibility
will be discussed in Appendix B.

The effective interaction simplifies to

H =
∑
qp

Vq,pc†
q↓c†

−q↑c−p↑cp↓, (8)

where the effective coupling is

Vq,p = 32J2
I Js2

NyNz

θqU +p

ε2
qU +p − (Eq − Ep)2

. (9)

Here, we have used the step function θ , where θq = 1 when q
is inside the BZR and θq = 0 otherwise.

We define a spin-singlet gap function


q =
∑

p

Vqp〈c−p↑cp↓ − c−p↓cp↑〉. (10)

The corresponding gap equation is


q = −
∑

q′
Vq,q′


q′

2Ẽq′
tanh

(
Ẽq′

2kBT

)
, (11)

where Ẽq =
√

(Eq − EF )2 + |
q|2, kB is the Boltzmann con-
stant, and T is the conduction-electron temperature.

To determine the symmetry of the gap function, we con-
sider the case where the dominant part of Vq,q′ in Eq. (11)
comes from the long-wavelength magnons qU +q′ ≈ 0, as
in Ref. [24]. Then, we expect that 
−qU ≈ −
q, where the
minus follows from comparing the sign in Eq. (11) with
the BCS theory or Ref. [24]. In the tight-binding model,
these relations are satisfied if the gap function 
 has d-wave
symmetry, i.e., it satisfies


(qy,qz ) = −
(−qz,qy ) = 
(−qy,qz ) = 
(qy,−qz ). (12)
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We assume that the superconducting gap has the same sym-
metry in the quadratic model.

To solve the gap equation, we replace the sum over mo-
menta with integrals over the energy E = Eq and the angle ϕ,
where q = q[sin(ϕ), cos(ϕ)]. We assume that the dominant
contribution to the effective coupling Vq,q′ in Eq. (11) stems
from the regions where qU +q′ lies within the reduced Bril-
louin zone BZR. We therefore set θqU +p = 1 for all q and p
in Eq. (9). We then introduce dimensionless variables in terms
of the magnon gap, ε0, such that δ = 
/ε0, τ = kBT/ε0, x =
(E − EF )/ε0, x̃ = Ẽ/ε0, and ε = ε/ε0. The gap δ = (x, ϕ)
has to satisfy the self-consistent equation

δ(x, ϕ) = −α̃

∫ xB

−xB

dx′
∫ 2π

0
dϕ′ δ(x′, ϕ′)v(x, x′, ϕ, ϕ′)

x̃′ tanh

[
x̃′

2τ

]
,

(13)

with the dimensionless coupling strength α̃ =
2
√

2J2
I sεJ/(πEF ε2

0 ), x̃′ =
√

(x′)2 + |δ(x′, ϕ′)|2, and

v(x, x′, ϕ, ϕ′) = 1

1 + ε2
J |kU+ k′|2d2/ε2

0 − (x−x′)2
∝ Vk,k′ ,

(14)

where we approximate k by k = kF (ŷ sin ϕ + ẑ cos ϕ) and
kF = √

2π/d . The dependence of k on x is disregarded since
x  EF /ε0. This means that the magnon energy depends
solely on the angles: ε = ε(ϕ, ϕ′). We restrict the energy x′
to an interval [−xB, xB], where xB > 1 is chosen such that
|δ(x′, ϕ′)|  maxϕ |δ(0, ϕ)| for all x′ outside the interval.

The remainder of this section is organized as follows. In
Sec. III A, we solve the gap equation for a simplified model. In
this model, we assume a quadratic electron dispersion together
with the modified Umklapp momentum, qMU, introduced at
the end of Sec. II. We explore the dependence of the supercon-
ducting gap on the coupling strength and on the temperature in
the exchange limit where the magnon gap is smaller than the
exchange energy, ε0/εJ  1. The purpose of obtaining these
results is to give a basic understanding of the physics.

In Sec. III B, we solve the gap equation numerically for
the actual Umklapp relation from Eq. (6) and the quadratic
dispersion. Section III C discusses differences in the tight-
binding model compared to the calculations with the quadratic
dispersion.

Finally, in Sec. III D, we will analyze the differences
between the simplified model (Sec. III A), the quadratic
dispersion model (Sec. III B), and the tight-binding model
(Sec. III C).

A. Simplified model: Quadratic electron dispersion
with modified Umklapp relation

Using the modified Umklapp relation is a great simplifi-
cation because we can use the rotational symmetry. The gap
equation has a d-wave solution δ(x, ϕ) satisfying Eq. (12).
At the critical temperature, τ = τc, where the gap approaches
zero, this state takes the form δ(x, ϕ) = f (x) cos(2ϕ), where
f satisfies

f (x) = α

∫ xB

−xB

dx′V (x−x′) f (x′)√
x′2+ f (x′)2

tanh

[√
x′2+ f (x′)2

2τ

]
. (15)

FIG. 4. Numerical results for the energy dependence of the gap
function f (x) according to Eq. (15) at zero temperature (τ = 0),
found by iterations starting with a Gaussian. The small constant CV

was approximated as vanishing, CV = 0. We consider four different
values of the dimensionless coupling constant α = 0.07 (blue solid
line), α = 0.1 (green dashed line), α = 0.13 (orange dotted line), and
α = 0.17 (red dash-dot line).

Here, α = α̃
√

π/2(ε0/εJ ) is the coupling constant, the effec-
tive potential is V (y) ≈ −CV + 1/

√
1 − y2, and the constant

CV = √
2ε0/(

√
πεJ ), which we set to zero in the numerical

calculations.
Note that for τ < τc, x̃′ =

√
(x′)2 + |δ(x′, ϕ′)|2 depends in

general on ϕ′. Consequently, the integration over the angle ϕ′
cannot be separated from the integration over x′ as was done
for the derivation of Eq. (15). Thus, for temperatures below
the critical temperature, using Eq. (15) represents a simpli-
fying assumption compared to solving Eq. (13) for δ(x′, ϕ′).
However, the solution f (x′) to Eq. (15) is approximately
equal to the maximum amplitude of the d-wave gap for a
given energy, maxφ′ {δ(x′, ϕ′)}. Additionally, since Eq. (15) is
valid near the critical temperature, we can use it to calculate
the critical temperature itself. The p-wave gap function of
Appendix B satisfies Eq. (15) at all temperatures, so the results
are also valid for this pairing.

We solve the 1D gap equation, Eq. (15), numerically by
iteration. f is symmetric about the Fermi surface: f (−x) =
f (x). Figure 4 shows the solutions of Eq. (15) for different
coupling constants α at zero temperature. We find a rela-
tively constant behavior around x = 0 and, for small α, a
pronounced peak at |x| ≈ 1.

We compare the α dependence of fmax = maxx f (x) and
f (0) to the standard BCS result f ∼ exp(−1/α); see Fig. 5(a).
The BCS result was derived for a potential V (x, x′) that is
constant V (x, x′) = Vc if |x|, |x′| < 1 and 0 otherwise, for
Vc = π/2 = ∫ 1

−1 dyV (y)/2. The α dependence of the critical
temperature τc is comparable to the one of f (x = 0); see
Fig. 5(b). The ratio f (x = 0)/τc is slightly higher in our model
than in standard BCS theory, where the ratio is approximately
1.76; see Fig. 5(c). Note that the angle dependence is already
integrated out in Eq. (15), and a constant potential would
result in the 1.76 ratio. When we vary the temperature τ , fmax

and f (x = 0) both vanish at τc, as expected. As we see from
Fig. 5(d), fmax and f (x = 0) show similar τ dependencies.

In making the model dimensionless, the magnon gap ε0 is
a natural choice of energy scale. In the resulting gap equation,
the coupling α is inversely proportional to ε0. As we observed
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FIG. 5. Numerical results for α and for the temperature depen-
dence of the gap function defined by Eq. (15) for the potential
with a constant CV again set to be zero. (a) Semilogarithmic plot
of f (x = 0) (black squares) and fmax = maxx f (x) (red circles) for
τ = 0 in the dependence of 1/α. The gray dotted line refers to the
BCS-like consideration of a constant potential V (x, x′) = Vc within
|x|, |x′| < 1, which results in f (x) = 2 exp(−1/(απ )) for |x| < 1.
(b) Semilogarithmic plot of the dimensionless critical temperature τc

as a function of the coupling 1/α. (c) Ratio of f (x = 0) at τ = 0
to the critical temperature τc as a function of α. (d) Temperature
dependence of f (x = 0) (black squares) and fmax (red circles) for
α = 0.15.

in Fig. 5, τc scales similarly to exp(−1/α). Therefore, Tc

might increase by reducing the magnon gap ε0. However, if we
increase α, the system eventually enters a regime where higher
order effects will have to be considered. For FI/NM/FI trilay-
ers, the exchange energy scale εJ plays the same role as ε0

for AFI/NM/AFI trilayers [24]. Because εJ is typically larger
than ε0, Tc should in many cases be higher for AFI/NM/AFI
trilayers than for FI/NM/FI trilayers, assuming that the cou-
pling JI is the same. However, the strong-coupling regime may
set in at lower values of JI for AFIs than FIs since the coupling
constant α is typically larger for AFIs.

We estimate ε0 and α for a MnF2-Au-MnF2 trilayer in
Appendix A. We find ε0/kB = 13 K and the range of values
[0.04–0.36] for α. For the simplified model, the corresponding
critical temperatures are up to the order of one Kelvin. We
assume that JI is similar in magnitude for AFI/NM inter-
faces as for FI/NM interfaces. Similar assumptions have been
made in earlier work [3,4]. In our model, JI represents the
strength of the interfacial electron-magnon coupling. Spin
transport across AFI/NM interfaces has been measured in
several experiments [25–27]. The spin transport between an
FI and a NM can be enhanced by inserting an AFI in between,
indicating that the coupling at AFI/NM interfaces is as strong
as for FI/NM interfaces [28].

FIG. 6. Iterative solution of the gap equation Eq. (13) for the gap
δ as a function of dimensionless energy x and angle ϕ at zero tem-
perature and α = 0.15. The initial guess is δ0(x, ϕ) = f (x) cos(2ϕ),
where f (x) is the solution of Eq. (15) obtained previously. (a) Gap
after ten iterations, δ10(x, ϕ). If the gap δ(x, ϕ) is known for ϕ ∈
[0, π/4) and x > 0, then its values at all other points in k space
follow from symmetry. (b) Gap as a function of x for ϕ = 0. (c) Gap
as a function of x at the angle ϕm = arcsin(π/2−1)/2 ≈ 0.3, where
the Fermi surface and the boundary of the BZR intersect. (d) Gap as
a function of ϕ for x = 0. In panels (b–d), the iterations are j = 0
(black dashed line), and then, j = 1, . . . , 10, shown in light blue
(light gray) to red (darker gray).

B. Quadratic electron dispersion with
the actual Umklapp relation

Now we consider the quadratic dispersion relation together
with the actual Umklapp relation and solve Eq. (13) numeri-
cally.

In Fig. 6, we present iterative results for Eq. (13) for α =
0.15 at zero temperature. The initial guess for the iterations is
the d-wave gap function δ0(x, ϕ) = f (x) cos(2ϕ), where f (x)
is the solution of Eq. (15) with CV = 0.

As we see in Figs. 6(b)–6(d), the gap function converges af-
ter a few iterations. The resulting function is smaller compared
to the initial guess. We find the highest values at the angle
ϕm = arcsin(π/2−1)/2, where the Fermi surface intersects
with the boundary of the BZR. At this point in k space, the
modified Umklapp relation QMU used previously is equal to
the actual Umklapp relation QU .

The gap function δ(x, ϕ) does not have the cos(2ϕ) de-
pendence on ϕ; see Fig. 6(d). The reason is the difference
between the actual Umklapp relation and the simplified one
used previously. We anticipate a similar behavior at finite
temperature, as the simplified Umklapp relation remains only
accurate at ϕ = ϕm.
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For the critical temperature, we find numerically τc =
0.012 and a ratio δ(x = 0, ϕ = ϕm)/τc = 2.1. The ratio is
slightly larger than the results in Fig. 4(c).

To summarize the numerical results for the nonsimplified
model with quadratic dispersion relation, a solution of the gap
equation with opposite-momentum pairing of d-wave type
exists.

C. Specifications of the gap equations in the tight-binding model

We noticed that at half filling, the BZR is identical to the
Fermi surface of the tight-binding model for the electrons.
This means that for the tight-binding model, the Umklapp
process relates one point at the Fermi surface to another point
at the Fermi surface. Therefore, the pairing mechanism is
efficient at the Fermi energy, similar to the simplified model
considered in Sec. III A. However, there are differences in the
tight-binding model compared to the simplified model that can
have a significant impact on the superconductivity. In contrast
to the circular Fermi surface of the quadratic dispersion, the
tight-binding half-filling Fermi surface touches the boundary
of the BZ , implying additional boundary conditions. A d-
wave gap symmetric gap function satisfies the additional
boundary conditions in the sense that it is continuous at the
edges of the BZ . Thus, we conclude that the d-wave gap can
be the dominant contribution to superconductivity; compare
with Appendix B.

We have observed that the d-wave gap is robust in the
two models considered. For the full electronic tight-binding
dispersion, while ε0 remains the natural choice of energy
scale, more aspects need to be considered including a possi-
ble enhancement of the superconductivity due the increased
density of states near the corners of the Fermi surface and
higher-order effects. Importantly, the Fermi surface being
at the boundary of the BZR might yield a SDW as the
ground state of the system, suppressing superconductivity; see
Appendix C. Exploration of the details of competing SDW
and superconductivity and the dependence on the specification
of the Fermi surface is beyond the scope of this initial work.

D. Analysis of the solution of the gap equation

As we see from comparing Secs. III A and III B, the pairing
symmetry depends on the details of the electron dispersion
and its interplay with the Umklapp process, which we will
analyze in the following.

Umklapp scattering dominates the electron-magnon scat-
tering in the scenario that we consider here. This situation dif-
fers when the antiferromagnetic sublattices couple unequally
to the metal layer; see Ref. [29].

From Sec. III B, we see that the opposite-momenta d-
wave gap has the highest amplitude where the Fermi surface
intersects with the BZR. We assume that the same is the case
for all electron dispersion relations.

The energy scale of the superconducting pairing is given
by the magnon gap ε0. This differs from the results obtained
for FI/NM/FI systems, where the relevant energy scale is the
exchange energy between the spins in the FI layers [24]. In
the AFI/NM/AFI system, the exchange energy εJ drops out
of the gap equation completely for the simplest case, as α in

Eq. (15) does not depend on it at all. The reason for this is
an interplay of the Bogoliubov coefficients and the angular
dependence of the gap equation together with the fact that
εJ/ε0  1.

A further difference between the AFI/NM/AFI system
with respect to the FI/NM/FI trilayer is in the dependence
of the size of the superconducting gap and the critical tem-
perature on the dimensionless coupling constant α. Note that
α is quadratic in the interfacial coupling JI (α ∼ J2

I ). For the
FI/NM/FI system, we found a dependence close to f (x) ∼ α2

[24]; we find here a behavior similar to the constant-potential
result f (x) ∼ exp(−1/α). The origin of this difference lies
in the fact that here the width of the gap f (x) is given ap-
proximately by 2ε0, whereas for FI/NM/FI, it was dependent
on α.

IV. CONCLUSIONS

In conclusion, we predict that magnons mediate
superconductivity in antiferromagnetic insulator-metal-
antiferromagnetic insulator trilayers. The exchange
interaction at the antiferromagnet insulator-normal metal
interfaces couples the electrons to the magnons. The influence
of the interaction is, therefore, most potent when the metal
is thin. We find superconducting d-wave pairing of electrons
with opposite momenta. The d-wave pairing dominates over
p-wave finite momentum pairing, considered in Appendix B.
For a Fermi surface identical to the boundary of the BZR,
superconductivity might be suppressed by the formation of a
SDW; see Appendix C. We find that the critical temperature
is closely related to the magnon gap in the antiferromagnets.
We estimate the critical temperature for a combination of
MnF2 and Au to be on the order of Kelvin.
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APPENDIX A: MATERIAL PARAMETERS

As a candidate AFI, we consider a (111)-layer of MnF2.
MnF2 is an AFI with a large uniaxial anisotropy. The s = 5/2
Mn-ions in the (111)-layer form a square lattice with a lattice
constant of 3.82 Å [30]. Based on measurements of the spin-
wave dispersion of MnF2, we find J/kB = 4.1 K and Kζ /kB =
0.39 K [31].

For the normal metal, we consider a monolayer of gold
with the same lattice structure as MnF2. We estimate the
effective mass using m = 2πgShh̄2/EB

F , where gSh = 12 nm−2

[32] is the Sharvin conductance and EB
F = 5.5 eV [33] is

the bulk Fermi energy. We use the quadratic model and the
assumption of half-filling to estimate the Fermi energy of the
monolayer: EF = 1.6 eV.

125432-6



SUPERCONDUCTIVITY AT METAL-ANTIFERROMAGNETIC … PHYSICAL REVIEW B 100, 125432 (2019)

As explained in Sec. III A, we assume that the interfacial
exchange coupling JI is similar in magnitude at AFI/NM
interfaces compared to FI/NM interfaces. We therefore esti-
mate JI using experimental values for the FI/SC interfaces,
where the superconductor (SC) is either aluminum or vana-
dium. Estimates for the exchange coupling [34] within the
range [5–15] meV have been given for several such interfaces
[35–37]. Using α = J2

I /(2EF

√
πJK ), we find a range of

values [0.04–0.36] for α.

APPENDIX B: NON-ZERO-MOMENTUM PAIRING

In this Appendix, we consider an alternative type of su-
perconducting pairing, electron pairs with nonzero total mo-
mentum, where the important terms in Eq. (7) are those with
p = −q + k; then, the Hamiltonian reduces to

H =
∑
qp

VqU ,pc†
qU ↓c†

−q↑c−p↑cpU ↓, (B1)

which means that the sum of the momenta of the paired
electrons is qAF. Here, the gap has a p-wave symmetry.
Electron pairs with a total momentum of qAF were proposed in
Ref. [38] for bulk s-wave superconductors with antiferromag-
netic order.

For the non-zero-momentum pairing, the gap can be de-
fined in two possible ways:


q =
∑

p

VqU p〈c−p↑cpU ↓±c−p↓cpU ↑±c−pU ↑cp↓+c−pU ↓cp↑〉.

(B2)

Here, the spins are in either the singlet or the antiparallel-spin
triplet state. The gap equation reads


q = −
∑

q′
VqU ,q′


q′

2Ẽq′
tanh

(
Ẽq′

2kBT

)
, (B3)

where 
 has to satisfy p-wave symmetry, which means


(qy,qz ) = 
∗
(−qy,qz ) = −
∗

(qy,−qz ). (B4)

This symmetry was used to determine the spin states in
Eq. (B2).

We now consider the simplified conditions of Sec. III A,
where qU is replaced by qMU, and the electron dispersion is
quadratic. The p-wave solution has the form

δ(x, ϕ) = f (x) exp(±iϕ). (B5)

Then, we find that f (x) satisfies Eq. (15) with the potential
V (y) ≈ −ε0/(

√
2πεJ ) + 1/

√
1 − y2. This means that in this

simplified model, the d-wave state considered in the main
text and the p-wave solution discussed in this Appendix lead
approximately to the same critical temperature. The p-wave
symmetry is energetically slightly preferred, as the constant
contribution to the potential V (y) is smaller.

However, when considering quadratic electron dispersion
together with the actual Umklapp process, the non-zero-
momentum pairing is strongly suppressed. This is because the
Umklapp process does not map states on the Fermi surface
to other states on the Fermi surface. Technically speaking, in
Eq. (14), we would need to replace (x − x′) in the expression

for the potential v(x, x′, ϕ, ϕ′) by (xU − x′), where xU ε0 is
the energy at the Umklapp vector kU . As this will be in most
cases far away from the Fermi surface, i.e., xU − EF /ε0 � 1,
there will be only small contributions to the integral on the
right-hand side of the gap equation, Eq. (13).

Regarding the tight-binding model, the p-wave gap func-
tion must be either discontinuous or zero at the corners of
the Fermi surface. We believe that this suppresses the p-wave
solution.

To summarize this Appendix, while the simplified model
seems to allow for the non-zero-momentum p-wave supercon-
ducting pairing, dropping the simplifying assumptions leads
to a suppression of this type of pairing both for the quadratic
dispersion as well as for the tight-binding model.

APPENDIX C: SPIN-DENSITY WAVE

Here, we assess the possibility of a SDW arising from
the electron-electron interaction in Eq. (7) as a potential
competing order for a superconducting state. We consider
interaction terms in the Hamiltonian of the form

c†
q+p,↓cq+pU ,↓c†

q↑cqU ↑. (C1)

The vector qAF takes the role of the nesting vector for the
SDW. We define the SDW mean field as

Wq = −
∑

p

Vqp〈c†
q↑cp↑〉 =

∑
p

Vqp〈c†
q↓cp↓〉, (C2)

leading to the gap equation

Wq =
∑

q′
Vq,q′

Wq′

2
√

(Eq′ − Eq′U )2 + 4W 2
q′

×
[

tanh

(
E+

q′

2kBT

)
− tanh

(
E−

q′

2kBT

)]
. (C3)

The SDW eigenenergies that enter in the gap equation are

E±
q = Eq + EqU

2
±

√
(Eq − EqU )2

4
+ W 2

q , (C4)

and the SDW pairing potential is given by

Vqq′ = 16J2
I Js2θq′−q

NyNz

[
1

ε2
q′−q−(Eq−Eq′U )2

+ 1

ε2
q′−q−(EqU −Eq′ )2

]
. (C5)

Crucially, the electron energies Eq′U and EqU at the Umk-
lapp momenta q′U enter in the denominators in Eq. (C5).
Therefore, the contributions to the right-hand side of the
gap equation, Eq. (C3) are energetically suppressed for most
electron-momenta values. This is similar to the suppression
of the non-zero-momentum p-wave superconductivity that
we found in Appendix B. This suppression occurs when the
magnon energies are smaller than the electron energies. We
expect this energetic suppression to be present for all electron
dispersions except those where the Fermi surface is identical
to the boundary of the BZR.
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However, for the special case of the tight-binding electron
dispersion where the boundary of the BZR is identical to
the Fermi surface, there is no such suppression of the SDW
pairing. Furthermore, the SDW would be of s-wave symmetry,
so that the SDW order parameter Wq is not suppressed at
the corners of the Fermi surface, in contrast to the p-wave

superconducting state. Consequently, for metal layers with
a Fermi surface exactly matching the BZR boundary, we
expect that the SDW pairing is dominant and that it will
suppress d-wave superconductivity. Note that for this Fermi
surface, there is no minimum potential required to form a
SDW [39].
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