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Abstract Magnetic catalysis is the enhancement of a con-
densate due to the presence of an external magnetic field.
Magnetic catalysis at T = 0 is a robust phenomenon in
low-energy theories and models of QCD as well as in lattice
simulations. We review the underlying physics of magnetic
catalysis from both perspectives. The quark-meson model is
used as a specific example of a model that exhibits magnetic
catalysis. Regularization and renormalization are discussed
and we pay particular attention to a consistent and correct
determination of the parameters of the Lagrangian using the
on-shell renormalization scheme. A straightforward appli-
cation of the quark-meson model and the NJL model leads
to the prediction that the chiral transition temperature Tχ is
increasing as a function of the magnetic field B. This is in
disagreement with lattice results, which show that Tχ is a
decreasing function of B, independent of the pion mass. The
behavior can be understood in terms of the so-called valence
and sea contributions to the quark condensate and the com-
petition between them. We critically examine these ideas as
well recent attempts to improve low-energy models using
lattice input.

1 Introduction

The phase diagram of QCD has received a lot of attention
since the first ideas appeared in the 1970s. At that time, it
was thought that QCD has two phases, a hadronic phase at
low temperatures and a deconfined phase of quarks and glu-
ons at high temperatures. In 1984, Bailin and Love [1] sug-
gested that at high density, quark matter should be a color
superconductor. The ideas are analogous to those of ordinary
superconductivity and BCS theory [2], namely the instability
of the Fermi surface to form Cooper pairs under an attrac-
tive interaction. In QCD, an attractive interaction is provided
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by one-gluon exchange in the triplet channel. Since then,
there have been large efforts to map out the phase diagram
of QCD and study the properties of its different phases [3–
5]. The phase diagram has shown to be surprisingly rich
at high baryon density and low temperatures. It includes a
quarkyonic phase [6] as well as a number of superconduct-
ing phases, some of them being inhomogeneous. Most of
these results have been obtained using low-energy models of
QCD, notably the quark-meson (QM) model and the Nambu–
Jona-Lasinio (NJL) model, with or without coupling to the
Polyakov loop. The reason is that lattice simulations are noto-
riously difficult to perform at finite baryon chemical potential
μB due to the sign problem, so that one cannot use techniques
involving importance sampling.

The temperature T and baryon chemical potential μB are
not the only relevant parameters of QCD. For example, one
can introduce a separate chemical potential μ f for each quark
flavor f . For two flavors, this leads to another independent
chemical potential besides μB , namely the isospin chemical
potential μI . For the three flavors, μS = 1

2 (μu + μd − 2μs)

is added. The addition of these chemical potentials gives rise
to pion and kaon condensation. At T = 0, pion condensation
occurs for μI > mπ , while kaon condensation takes place for
|± 1

2μI +μS| > mK (upper sign for charged kaons and lower
sign for neutral kaons). The former is particularly interesting
since finite μI and vanishing μB has no sign problem and is
therefore amenable to lattice simulations.

The final example of an external parameter, which is the
topic of this review, is a (constant) magnetic background.
There are several areas of high-energy physics, where such a
background is relevant. One is non-central heavy-ion col-
lisions, where large, time-dependent fields are generated.
These fields are short-lived and have a maximum value of
approximately eB = 6m2

π [7]. The basis mechanism is sim-
ply that (in the center-of mass frame) the two nuclei represent
electric currents that according to Maxwell’s equations gen-
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erate a magnetic field. Another example where strong mag-
netic fields appear, are magnetars [8]. This is a special class
of neutron stars with relatively low rotation frequencies. It
is believed that the magnetic fields on the surface are 1014–
1015 Gauss, while in the interior they can be as strong as
1016–1019 Gauss.

We consider QCD with an SU (3) gauge group, a global
SU (N f ) vector symmetry and quark masses m f . The QCD
Lagrangian is

LQCD = −1

4
Fa

μνF
μν
a + iψ̄ f γ

μDμψ f − m f ψ̄ f ψ f

+Lgf + Lghost , (1)

where the gluon field strength tensor is Fa
μν = ∂μAa

ν −
∂ν Aa

μ − g f abc Ab
μA

c
ν , f abc are the structure constants the

covariant derivative in the presence of an abelian background
field AEM

μ is

Dμ = ∂μ + iq f A
EM
μ + igAμ . (2)

Moreover, m f is the mass of a quark of flavor f and there
is a sum of flavors in Eq. (1). The nonabelian gauge field is
Aμ = ta Aa

μ, ta = 1
2λa , and λa are the Gell-Mann matrices.

Finally Lgf and Lghost are the gauge-fixing and ghost part of
the Lagrangian, respectively.

The partition function in QCD can be written as

Z =
∫

DAμDψ̄ fDψ f e
−SQCD

=
∫

DAμe
−Sg det(/D(B) + m f ) , (3)

where SQCD is the Euclidean action for QCD. In the second
line, we have integrated over the fermions which can be done
exactly since LQCD is bilinear in the quark fields. Moreover,
Sg is the Euclidean action for the gluons and

/D(B) =
(

0 i X
i X† 0

)
, (4)

i X = D0 + iσ · D . (5)

This yields

det
(
/D(B) + m f

) = det
[
X†X + m2

f

]
. (6)

The last equation shows that the fermion determinant is mani-
festly positive. As in the case of finite isospin chemical poten-
tial, QCD in a magnetic field is also free of the sign problem,
and one can therefore carry out lattice simulations. Interest-
ingly, the combination of finite isospin and magnetic field
is free of the sign problem only if the charges of the u and
d-quark are the same. This is of course not real QCD, but
it offers the possibility to compare lattice predictions with
those of low-energy effective theories and models.

In this review, we will discuss (inverse) magnetic catal-
ysis and the phase diagram of QCD in a strong magnetic

background, paying attention to recent developments. There
are other reviews [9–12] focusing on different aspects of the
field. The paper is organized as follows. In the next section,
we discuss the physics of magnetic catalysis at T = 0. In
Sect. 3, we introduce the Polyakov loop and discuss mag-
netic catalysis in model calculations at nonzero temperature.
In Sect. 4, we review inverse magnetic catalysis on the lat-
tice focusing on the competing sea and valence effects. In
Sect. 5, the improvement of models to incorporate inverse
magnetic catalysis is discussed and in Sect. 6, we summa-
rize. In Appendix A, we discuss renormalization of the quark-
meson model in the on-shell scheme, while in Appendix B,
we show how the parameters of the model are fixed.

2 Magnetic catalysis at zero temperature

Magnetic catalysis can be defined as

1. The magnitude of a condensate is enhanced by the pres-
ence of an external magnetic field B if the condensate
already is present at vanishing field.

2. An external magnetic field induces symmetry breaking
and a nonzero value of a condensate when the symmetry
is intact for B = 0.

The condensate is the expectation value of a field, which
can be either fundamental or composite. The expectation of
a scalar field φ in low-energy models is an example of the
former, while ψ̄ψ is the chiral condensate in e.g. the NJL
model or QCD is an example of the latter. One refers to the
second case as dynamical symmetry breaking by a magnetic
field. We will discuss both cases below. The first papers on
magnetic catalysis at T = 0 appeared three decades ago in
the study of the NJL model in three dimensions [13]. Shortly
thereafter in the linear sigma model [14] and the NJL model
in two dimensions [15–17]. Since then it has been demon-
strated in QED [18], chiral perturbation theory [19–21], in
the Walecka model in nuclear physics [22], and also on the
lattice, see e.g. [23–27].

In this section, we will use the two-flavor quark-meson
model as an explicit example of a low-energy effective model
of QCD that displays magnetic catalysis. The Lagrangian is

L = −1

2
B2 + 1

2

[
(∂μσ)(∂μσ) + (∂μπ0)(∂

μπ0)
]

+D∗
μπ−Dμπ+ − 1

2
m2(σ 2 + π2

0 + 2π+π−)

− λ

24
(σ 2 + π2

0 + 2π+π−)2 + hσ

+ψ̄
[
iγ μDμ − g(σ + iγ 5τ · π)

]
ψ , (7)
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where Dμ = ∂μ + iq Aμ is the covariant derivative σ , π =
(π0, π1, π2) are the meson fields, π± = 1√

2
(π1 ∓ iπ2) , τa

are the Pauli matrices, ψ is a color Nc-plet, a four-component
Dirac spinor as well as a flavor doublet

ψ =
(
u
d

)
. (8)

In the absence of an abelian gauge field in Eq. (7), the
symmetry is SU (2)L × SU (2)R for h = 0, otherwise it
is SU (2)V . In its presence, the Lagrangian Eq. (7) has a
U (1)L ×U (1)R symmetry for h = 0, otherwise it is U (1)V .
The reason is that one cannot transform a u-quark into
a d-quark due to their different electric charges. Defining
Δ± = 1√

2
(σ ± iγ 5π0), the two sets of transformations are

1) u → e−iγ 5αu, d → eiγ
5αd, Δ± → Δ±e±2iγ 5α , and

π± → π±, and 2) u → eiαu, d → e−iαd, Δ± → Δ±, and
π± → π±e±2iα .

After symmetry breaking, the sigma field has a nonzero
expectation value φ0. The classical potential is

V0 = 1

2
B2 + 1

2
m2φ2

0 + λ

24
φ4

0 − hφ0 . (9)

The tree-level relations between the parameters of the
Lagrangian m2, λ, g, and h and the physical masses mσ and
mπ , the pion decay constant fπ , and the quark mass mq are

m2 = −1

2

(
m2

σ − 3m2
π

)
, λ = 3

(m2
σ − m2

π )

f 2
π

, (10)

g2 = m2
q

f 2
π

, h = m2
π fπ . (11)

Using the relations (10)–(11), we obtain

V0 = 1

2
B2 + 3

4
m2

π f 2
π

Δ2

m2
q

− 1

4
m2

σ f 2
π

Δ2

m2
q

+ 1

8
m2

σ f 2
π

Δ4

m4
q

−1

8
m2

π f 2
π

Δ4

m4
q

− m2
π f 2

π

Δ

mq
, (12)

where we have introduced Δ = gφ0. The minimum of the
classical potential is given by Δ = g fπ .

The classical potential has by construction its minimum
at Δ = mq or φ0 = fπ . In the large-Nc limit, the mesons
are included at tree level, while we include the Gaussian
fluctuations of the fermions. Including the one-loop cor-
rections from the fermions using a minimal subtraction
scheme, leaves a renormalized one-loop effective potential
that depends on the renormalization scale Λ. The minimum
of the effective potential therefore depends on Λ. In order to
ensure that the one-loop effective potential has its minimum
at φ0 = fπ for zero magnetic field B, several methods have
been used in the literature. One method is simply to sub-
tract the one-loop contribution to the effective potential for
B = 0. Then the renormalization scale dependence drops

out and the correction to Eq. (12) is a finite B-dependent
term that vanishes for B = 0. However this is inconsistent
since one includes fermion fluctuations in the effective poten-
tial at finite magnetic field, but not for B = 0. Moreover,
it is also incorrect since Eqs. (10)–(11) are tree-level rela-
tions that receive radiative corrections. One can also choose
a specific value for Λ such that the one-loop correction to
the position of the minimum of the effective potential van-
ishes. In this case, one has included quantum fluctuations
also for B = 0, but again, the tree-level relations between the
parameters of the Lagrangian and physical quantities receive
loop corrections. In order to be consistent, the parameters
of the Lagrangian must be determined to the same order in
the loop expansion as one calculates the effective potential.
The solution to the problem is to combine the minimal sub-
traction scheme with the on-shell scheme [28–31]. In this
way one includes loop corrections to Eqs. (10)–(11), while
at the same time ensures that the effective potential has its
minimum at Δ = g fπ . Details of the renormalization of the
one-loop effective potential in the large-Nc limit can be found
in Appendix A and the parameter fixing in Appendix B. It
reads

V0+1 = 3

4
m2

π f 2
π

{
1 − 4m2

q Nc

(4π)2 f 2
π

m2
π F ′(m2

π )

}
Δ2

m2
q

− 1

4
m2

σ f 2
π

{
1 + 4m2

q Nc

(4π)2 f 2
π[(

1 − 4m2
q

m2
σ

)
F(m2

σ ) + 4m2
q

m2
σ

− F(m2
π ) − m2

π F ′(m2
π )

]}

Δ2

m2
q

+ 1

8
m2

σ f 2
π

{
1 − 4m2

q Nc

(4π)2 f 2
π

[
4m2

q

m2
σ

(
log

Δ2

m2
q

−3

2

)

−
(

1 − 4m2
q

m2
σ

)
F(m2

σ ) + F(m2
π ) + m2

π F ′(m2
π )

]}

Δ4

m4
q

− 1

8
m2

π f 2
π

[
1 − 4m2

q Nc

(4π)2 f 2
π

m2
π F ′(m2

π )

]
Δ4

m4
q

− m2
π f 2

π

[
1 − 4m2

q Nc

(4π)2 f 2
π

m2
π F ′(m2

π )

]
Δ

mq

+ 1

2
B2 − 8Nc

(4π)2

∑
f

(q f B)2

[
ζ (1,0)(−1, x f ) + 1

4
x2
f − 1

2
x2
f log x f

+1

2
x f log x f − 1

12
log

m2
q

2|q f B| − 1

12

]
, (13)

where x f = Δ2

2|q f B| and ζ(a, x) is the Hurwitz zeta-function.

Here and in the remainder of the paper, ζ (1,0)(n, x f ) =
∂ζ(n+ε,x f )

∂ε
|ε=0, in Eq. (13), n = −1. Finally, F(p2) and

F ′(p2) are defined in Eqs. (B.29)–(B.30).
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Fig. 1 Effective potential as a function of Δ normalized by f 4
π at T =

0. The black line is the tree-level result, the green and blue lines are the
one-loop result for zero magnetic field and for eB = 10m2

π . See main
text for details

The first four lines of the one-loop effective potential are
independent of the magnetic field and this part was first cal-
culated in Ref. [32]. The last line is the B-dependent correc-
tion to V0+1. Note also that final result is independent of the
renormalization scale Λ.

In Fig. 1, we show the effective potential divided by f 4
π at

T = 0. The black line is the tree-level potential Eq. (12),
while the green and blue lines are the one-loop effective
potential Eq. (13) for |eB| = 0 and |eB| = 10m2

π , respec-
tively. We have used mσ = 600 MeV, mπ = 140 MeV,
fπ = 93 MeV, and mq = 300 MeV. The classical poten-
tial as well the one-loop effective potential with |eB| = 0
have a minimum at Δ = g fπ by construction. Notice, how-
ever, that the latter is significantly deeper. The blue line with
|eB| = 10m2

π , shows that the minimum of the effective
moves to a larger value, i. e. the system exhibits magnetic
catalysis.

While the above clearly demonstrates magnetic catalysis
numerically, we would like to gain insight in the mechanism
behind the effect. Instead of analyzing Eq. (13), we will dis-
cuss the gap equation in the NJL model.

In order to simplify the discussion, we will consider the
NJL model with a single quark flavor and color, N f = Nc =
1 with electric charge q f . In the chiral limit, the Lagrangian
is [33]

L = ψ̄iγ μ∂μψ + G

2

[
(ψ̄ψ)2 + (ψ̄iγ 5ψ)2

]
. (14)

This Lagrangian has a U (1)V ×U (1)A symmetry. We intro-
duce the gap M = −G〈ψ̄ψ〉 and linearize the interac-
tion terms, writing (ψ̄ψ)2 ≈ 〈ψ̄ψ〉2 + 2〈ψ̄ψ〉ψ̄ψ and
(ψ̄iγ 5ψ)2 ≈ 0. M is now an effective quark mass arising
after breaking the axial symmetry spontaneously, i.e. when
〈ψ̄ψ〉 
= 0. In the mean-field approximation, we perform the
Gaussian integral over the fermion field giving rise to the

following one-loop effective potential,

V0+1 = M2

2G
− 2

∫
d4 p

(2π)4 log
[
p2 + M2

]
. (15)

The gap equation for M is found by extremizing V0+1 which
yields

M

4G
= M

∫
d4 p

(2π)4

1

p2 + M2 . (16)

Conventionally, since the NJL model is non-renormalizable,
one has used a three-dimensional or a four-dimensional
momentum cutoff Λ to regulate divergences. If Λ is a four-
dimensional cutoff, the gap equation (16) reads for M � Λ

M

[
4π2

G
− Λ2 + M2 log

Λ2

M2

]
= 0 . (17)

M = 0 is always a solution, however for G > Gc = 4π2

Λ2

there is also a nontrivial solution. Thus for G larger than the
critical value 4π2

Λ2 , quantum fluctuations induce symmetry
breaking in the model.

At finite magnetic field, the partial derivative in Eq. (14) is
replaced by the covariant derivative and we add a term 1

2 B
2

to the effective potential. The gap equation becomes

M

2G
= M

|q f B|
2π

∑
s=±1

∞∑
k=0

∫
d2 p‖
(2π)2

1

p2
0 + p2

z + M2
B

, (18)

where M2
B = M2 +|q f B|(2k+1−s), p2‖ = p2

0 + p2
z and q f

is the charge. The divergences in Eq. (18) can be isolated by
adding and subtracting the right-hand side of Eq. (16). The
right-hand side of Eq. (18) minus the subtracted term is finite
and is conveniently evaluated using dimensional regulariza-
tion in the same way as done Appendix A [34,35]. Finally,
we impose a four-dimensional cutoff on the added term as in
Eq. (16). Factoring out the trivial solution M = 0, this yields
the regularized gap equation

4π2

G
− Λ2 + M2 log

Λ2

M2 − 2|q f B|

×
[
ζ (1,0)(0, x f ) + x f − 1

2
(2x f − 1) log x f

]
= 0 , (19)

where x f = M2

2|q f |B . This equation has only a nonzero M as
solution. For G < Gc, the solution is [33,36]

M2 = |q f B|
π

exp

[
− 1

|q f B|
(

4π2

G
− Λ2

)]
. (20)

In the limit |q f B| → 0, this solution connects to the triv-
ial solution M = 0. In lowest Landau level approximation,
the gap equation has solution M2 = Λ2e−4π2/G|q f B|, which
is reminiscent of Eq. (20) if we identify the cutoff Λ with√|q f B|. We can then think of magnetic catalysis as a 1 + 1
dimensional phenomenon, i.e. a dimensional reduction from
3+1 dimensions has taken place. The functional form of the
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gap equation is the same as for the gap equation in BCS theory
of superconductivity as well as the gap equation found in the
large-N limit of O(N )-symmetric nonlinear sigma model in
1 + 1 dimensions. The 1 + 1 dimensional nature of magnetic
catalysis raises the question of whether this phenomenon is
in conflict with the Coleman theorem, which forbids sponta-
neous symmetry breaking in less than two spatial dimensions
at zero temperature [37]. As pointed out in Ref. [36], the field
ψ̄ψ is neutral with respect to the magnetic field. The neu-
tral pion is the associated Goldstone boson that appears after
breaking the U (1) symmetry. The charged pions are now
massive even in the chiral limit.

There are other ways of regularizing the gap equation (18)
or the fermion contribution to the one-loop effective poten-
tial (A.1), for example Schwinger’s proper time method [38].
Let us illustrate this by computing the corresponding bosonic
functional determinant, which shows up in chiral perturba-
tion theory. It is based on the representation in Euclidean
space

V1 = log det(−DμD
μ + m2)

= −
∫ ∞

0

ds

s
Tr e−s(−DμDμ+m2)

= −|qB|
2π

∞∑
k=0

∫
p‖

∫ ∞

0

ds

s
e−s(p2‖+|qB|(2k+1)+m2)

,

(21)

where the sum over Landau levels k as well the momentum
integral over p‖ is convergent. The result is

V1 = − (eγ EΛ2)ε

(4π)2

∫ ∞

0

ds

s3−ε
e−m2s |qB|s

sinh(|qB|s) . (22)

For ε = 0, the integral is divergent for small s, i.e. for large
momentum. By adding and subtracting the divergent terms,
we can isolate the divergences. One finds

V1 = − (eγ EΛ2)ε

(4π)2

∫ ∞
0

ds

s3−ε
e−m2s + (qB)2

6(4π)2

∫ ∞
0

ds

s1−ε
e−m2s

− (eγ EΛ2)ε

(4π)2

∫ ∞
0

ds

s3−ε
e−m2s

[
|qB|s

sinh(|qB|s) − 1 + (qBs)2

6

]
.

(23)

The integrals in the first line are divergent for ε = 0, while the
last integral is convergent. The divergences show up as poles
in ε. The first term in Eq. (23) is a vacuum energy counterterm
while the second term corresponds to charge and wavefunc-
tion renormalization [38]. The last integral in Eq. (23) can be
calculating exactly and involves the Hurwitz zeta function.
Using the proper time method with the momentum integrals
evaluated in d = 2−2ε dimensions yields the same results as
those obtained by combining dimensional regularization and
zeta-function regularization, as done in Appendix A. Alter-
natively, one can evaluate Eq. (23) with ε = 0 using a cutoff

1/Λ2 as the lower limit of the s-integration in the divergent
integrals.

The regularization methods discussed so far separates
in clean way the B-independent divergences from the B-
dependent terms whether they are finite or divergent. 1 There
are other regularization methods that do not separate this con-
tributions, for example a sharp cutoff imposed directly on the
integral in Eq. (22) or a form factor that is a function of e.g.
p2
z +2k|qB|(2k+1−s). One has to be careful choosing such

regulators since nonphysical oscillations may result [39,40].
The on-shell scheme used to obtain the final result Eq. (13)

has two important virtues as first pointed out in Ref. [41]. By
considering the small-B (large-x f ) behavior of the Hurwitz
zeta-function, one finds that the only contributions at order
B2 comes from the renormalized magnetic field term 1

2 B
2,

ζ (1,0)(−1, x f ) = −1

4
x2
f + 1

2
x2
f log x f − 1

2
x f log x f

+ 1

12
log x f + 1

12
+ 1

720

1

x2
f

+ · · · . (24)

It also ensures that the magnetic-field contribution to the
effective potential and the magnetization vanishes in the limit
mq → ∞. Both properties are expected from a physical point
of view. It leads to a paramagnetic vacuum, in agreement
with the hadron resonance gas model calculations [41] and
lattice QCD lattice simulations [42]. Other renormalization
schemes, such as the (modified) minimal subtraction scheme
are connected to the above by a finite renormalization. How-
ever, the effective potential and the magnetization then grow
logarithmically in the limit mq → ∞. Similar remarks apply
to the (P)NJL model. Regularizing the model by imposing
a UV cutoff Λ on the divergent integrals in the fermionic
version of Eq. (23), the authors of [43] show that it predicts
diamagnetic behavior for low values of B and paramagnetic
behavior for large magnetic fields. By defining a subtraction
procedure that resembles the renormalization of the magnetic
field in the on-shell scheme, their effective potential leads to
paramagnetic behavior as seen on the lattice.

After having discussed magnetic catalysis in models, we
now turn to lattice gauge theory. The first lattice simulations
were carried out for an SU (2) gauge group for magnetic field
strengths up to

√
eB ∼ 3 GeV in the quenched approxima-

tion, i.e. setting the quark determinant to unity [23]. The sim-
ulations confirmed that the quark condensates is enhanced
by the magnetic field and that the enhancement is qualita-
tive linear with eB. The quark condensate itself was calcu-
lated using the Banks–Casher relation [44], which relates
the density of eigenvalues close to zero of the Dirac operator
and the condensate. Their calculations showed a monotonic
increase of the spectral density for typical gauge field config-

1 They are finite in the gap equation Eq. (18), but divergent in the
effective potential, cf. Eq. (23).
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urations. This enhancement induced by the magnetic field can
be considered the basic mechanism behind magnetic catal-
ysis. Below, we will discuss this mechanism further, here it
suffices to add that the enhancement of the spectral density as
a function of B for typical gauge configuration is also seen in
full QCD [45]. Even in the free case, there is a proliferation
of small eigenvalues due to the degeneracy of states, which
in a constant magnetic field is proportional to |qB| [19].

3 Magnetic catalysis at nonzero temperature

In the previous section, we reviewed magnetic catalysis at
T = 0 in some detail. A survey of the literature shows that
it is a robust feature of lattice simulations as well model
calculations: magnetic catalysis does not depend on partic-
ular values of the masses or couplings. Since the conden-
sate increases as a function of the magnetic field, it should
raise the transition temperature for the chiral transition. This
expectation was made explicit a long time ago in Ref. [19].
A number of model calculations have confirmed this expec-
tation, e.g. [13,46–52], although some of them suggest that
the chiral and deconfinement transition split for larger values
of eB.

The effective potential of the quark-meson model in the
large-Nc approximation at finite temperature is

V T
0+1 = V0+1 −

∑
f

2Nc|q f B|
2π

T
∑
s=±1

∞∑
k=0

∫
pz

log
[
1 + e−βE f

]
, (25)

where E f =
√
p2
z + Δ2 + |q f B|(2k + 1 − s) and V0+1 is

given by Eq. (13). In Fig. 2, we show the results of a typi-
cal calculation where the quark-meson model was used. The
curves show the transition temperature for the chiral tran-
sition as a function of |qB|/m2

π in the chiral limit (green
points) and at the physical point (red points). At B = 0, the
gap between the two critical temperatures is approximately
10 MeV, which decreases as |qB| grows. In both cases, it is
clear that the transition temperature increases with the mag-
netic field. Here the transition temperature was defined as the
inflection point of the curve φ0(T ) at the physical point and
φ0(T ) = 0 in the chiral limit. An alternative definition of the
critical temperature is the peak of the chiral susceptibility 2

2 Using the peak of ∂Φ
∂T , where Φ is the Polyakov loop, yields a tran-

sition temperature for deconfinement, which is very close to the chiral
transition temperature.

Fig. 2 Tpc(B) as a function of |qB| in units of m2
π in the quark-meson

model. The green points are in the chiral limit and the red points are at
the physical point. See main text for details Figure taken from Ref. [11]

χ = ∂〈ψ̄ψ̄〉
∂T

. (26)

In QCD, two transitions take place as one increases the
temperature, namely the chiral transition and the decon-
finement transition. Lattice calculations suggest that chi-
ral symmetry is restored at a temperature of approximately
T χ
c = 155 MeV [53–57] though strictly speaking the transi-

tion is only a crossover. The crossover temperature is defined
by the peak of the chiral susceptibility. This temperature is
slightly less than the crossover temperature for the decon-
finement transition, T dec

c = 170 MeV. However this tem-
perature difference is observable dependent. In most cases,
T dec
c has been determined by the behavior of the Polyakov

loop. Recently, it has been defined by the behavior of the
quark entropy and in this case the two crossover tempera-
tures agree within errors [57].

We will next discuss the Polyakov loop and how it can
be incorporated in model calculations. The Wilson line is
defined as

L(x) = P exp

[
i
∫ β

0
dτ A4(x, τ )

]
, (27)

where P denotes path ordering, A4 = i A0 and A0 = ta Aa
0.

The Polyakov loop operator l is the trace of the Wilson
line (27). Together with its Hermitian conjugate, it is defined
as

l = 1

Nc
TrL , l† = 1

Nc
TrL† , (28)

where Nc is the number of colors. The expectation values of
l and l† are denoted by Φ and Φ̄. Under the center group ZNc

of the gauge group SU (Nc), the Polyakov loop transforms as

Φ → e
2π in
Nc Φ with n = 0, 1, 2 . . . Nc − 1. In pure-glue QCD
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it is an order parameter for confinement, while for QCD with
dynamical fermions it is only an approximate order param-
eter [58,59]. Note also that Φ = Φ̄ at zero density, i.e. for
μ f = 0.

For Nc = 3 and in the Polyakov gauge, one can write a
nonabelian background gauge field as

A4 = t3A
3
4 + t8A

8
4 . (29)

Introducing the fields φ1 = 1
2βA3

4 and φ2 = 1
2
√

3
βA8

4, the
thermal Wilson line reads for constant gauge fields

L =
⎛
⎝ ei(φ1+φ2) 0 0

0 ei(−φ1+φ2)

0 0 e−2iφ2

⎞
⎠ . (30)

Since the Polyakov loop is an approximate order parame-
ter for deconfinement, the strategy put forward in Ref. [60]
is to write down a phenomenological effective potential for
Φ, Φ̄ and the chiral condensate that describes the thermo-
dynamics of the system. This potential consists of a gluonic
part U (Φ, Φ̄) as well as a matter part. The term U (Φ, Φ̄)

is constructed such that it reproduces the pure-glue pressure
calculated on the lattice [61]. A number of different forms
of U (Φ, Φ̄) have been proposed [62–65]. In Ref. [62], they
used a Polynomial expansion incorporating the Z3 center
symmetry,

U

T 4 = −1

2
b2(T )ΦΦ̄ − 1

6
b3(T )

[
Φ3 + Φ̄3

]
+ 1

4
b4(ΦΦ̄)2.

(31)

Here the coefficients are

b2(T ) = 6.75 − 1.95

(
T0

T

)
+2.625

(
T0

T

)2

−7.44

(
T0

T

)3

,

(32)

b3 = 0.75 , (33)

b4 = 7.5 , (34)

and T0 = 270 MeV, the transition temperature for pure-glue
QCD [61]. A drawback of the proposed pure-glue potentials
is that they are independent of the number of flavors n f . The
transition temperature for B = 0 depends on the number of
flavors and one should incorporate the back-reaction from
the fermions to the gluonic sector [63]. This is done by using
an n f -dependent T0. Once the coupling between the gluonic
sector and the matter sector has been implemented, the two
transitions take place at approximately the same temperature:
The chiral transition moves to larger temperatures, while
the deconfinement transition moves to lower temperatures.
Finally, the Polyakov-loop potential is coupled to the matter
sector via replacing the partial derivatives in the fermionic
part of the Lagrangian by covariant ones including the con-
stant background gauge field. This is implemented by making
the substitution

Fig. 3 Tpc(B)/Tpc as a function of eB/m2
π in the quark-meson model.

Solid line is the mean-field result and the dashed line is the result from
the functional renormalization group. See main text for details Figure
taken from Ref. [50]

log
[
1 + e−βE f

]

→ 1

6
log

[
1 + 3Φe−βE f + 3Φ̄e−2βE f + e−3βE f

]

+ 1

6
log

[
1 + 3Φ̄e−βE f + 3Φe−2βE f + e−3βE f

]
(35)

in Eq. (25). In the same way, the Fermi-Dirac distribution
function is generalized,

nF (βE f ) = 1 + 2Φ̄eβE f + Φe2βE f

1 + 3Φ̄eβE f + 3Φe2βE f + e3βE f
. (36)

For small values of the Polyakov loop, Φ ≈ 0, Φ̄ ≈ 0
Eq. (36) reduces to a Fermi-Dirac distribution with excitation
energy 3E f , i.e. that of three quarks. For large temperatures,
when Φ ≈ 1, Φ̄ ≈ 1, the excitation energy is E f , which is
the distribution function of deconfined quarks.

To the best of our knowledge, there are no systematic stud-
ies of the transition temperature as a function of the magnetic
field B in various approximations. However, some interesting
results using the quark-meson model exist.

Figure 3 shows the normalized transition temperature
from Ref. [50] in two approximations using the functional
renormalization group (FRG) [66]. In this approach, one
solves a flow equation for the effective potential numeri-
cally by lowering a sliding scale k from an initial UV cutoff
k = Λ (where the effective potential is equal to the classical
potential) down to k = 0. The bare parameters at k = Λ

are tuned such that one obtains the physical values of the
masses and the pion decay constant in the vacuum (i. e. for
k = 0). In this way, all quantum and thermal fluctuations are
included. The black solid line is the mean-field result, i.e.
the bosons are excluded from the flow equation, whereas the
brown line is the result using the functional renormalization
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Fig. 4 Normalized chiral transition temperature Tφ(B) as a function
of |qB| in units of m2

π in the quark-meson model. The green points are
without the Polyakov loop and the blue points are with the Polyakov
loop. See main text for details Figure taken from Ref. [52]

group. Clearly, the addition of bosonic fluctuations increases
the transition temperature significantly.

In Fig. 4, we show the transition temperature at the phys-
ical point using the functional renormalization group [52].
The green points are the results without the Polyakov loop,
whereas the blue points are the results including it. Clearly,
the Polyakov loop lowers the transition temperature for fixed
B, but it is still increasing as we increase the magnetic field.
The above FRG results are obtained in the so-called local-
potential approximation. In Ref. [67], the authors added the
effects of wavefunction renormalization and the curve for the
critical temperature lies between the mean-field approxima-
tion and the local-potential approximation. Thus the coupling
of the Polyakov loop to the chiral sector is not sufficient to
reproduce (qualitatively) the results seen on the lattice.

4 (Inverse) Magnetic catalysis on the lattice

After having discussed magnetic catalysis in low-energy
models and theories of QCD, we next consider QCD lat-
tice simulations. In the past decade, there have been a num-
ber of lattice calculations of QCD in a magnetic field [23–
27,45,68–74], which have improved our understanding of
QCD in a magnetic background.

In order to discuss (inverse) magnetic catalysis as seen on
the lattice, it is advantageous to take a look at the path-integral
representation of a number of expectation values. The QCD
Lagrangian is bilinear in the quark fields ψ f and so one can
integrate over them, giving for the partition function as a path
integral over gauge configurations Aμ

Z(B) =
∫

d Aμe
−Sg det(/D(B) + m) , (37)

where Sg is the Euclidean gluon action and det(/D(B) + m)

is the fermion functional determinant (suppressing flavors).
The operator /D(B) contains the nonabelian gauge field,
which we have suppressed, as well as the abelian background
B that we have indicated. The quark condensate is given by

〈ψ̄ψ〉 = ∂

∂m
logZ(B)

= 1

Z(B)

∫
d Aμe

−Sg det(/D(B) + m)

× Tr(/D(B) + m)−1 . (38)

We can think of P = 1
Z(B)

e−Sg det(/D(B)+m) as a measure
that depends on the gauge-field configuration Aμ, the mag-
netic field, and the quark masses. Note that the B-dependence
is in the functional determinant as well as the trace of the
propagator. In order to study the contributions to the quark
condensate coming separately from the change of the opera-
tor and the change of the measure, it is convenient to introduce
the valence and sea contributions defined as

〈ψ̄ψ〉val = 1

Z(0)

∫
d Aμe

−Sg det(/D(0) + m)Tr(/D(B) + m)−1 ,

(39)

〈ψ̄ψ〉sea = 1

Z(B)

∫
d Aμe

−Sg det(/D(B) + m)Tr(/D(0) + m)−1 .

(40)

This can be thought of as an expansion of the quark conden-
sate around B = 0. A priori, the sum of the two contributions
needs not add up to the total quark condensate unless we are at
small fields. However, it turns out that writing the condensate
as a sum of the valence and sea contribution is remarkably
good. This is clearly demonstrated in Fig. 5 from Ref. [26],
which shows the relative increment r of the valence and sea
contributions, their sum as well as the complete results for the
quark condensate as a function of a dimensionless quantity
b. The relative increment is defined as

r = 〈ψ̄ψ〉B
〈ψ̄ψ〉 − 1 , (41)

where 〈ψ̄ψ〉 is the average of the u and d quark conden-
sates. Within error, the additivity is confirmed for values
of b up to 8, which corresponds to magnetic fields up to
eB = (500 MeV)2 [26]. It is also of interest to notice that
both contributions work in the same direction, namely to
increase the quark condensate as B grows. This is unlike
what happens at temperatures around the critical tempera-
ture Tc, as we shall see below. As pointed out in Ref. [45],
〈ψ̄ψ〉sea can be thought of as the quark condensate of an
electrically neutral fermion flavor coupled to an electrically
charged fermion flavor, since the magnetic field only appears
in the functional determinant and not in the propagator. On
the other hand, 〈ψ̄ψ〉val is reminiscent of the expression of
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Fig. 5 Relative increment of the average of the u and d quark conden-
sates as a function of b. Valence (red points) and dynamical (sea) (blue
points) contributions, the sum of them (open circles), and the full quark
condensate as a function of the dimensionless quantity b. See main text
for details Figure taken from Ref. [26]

the quark condensate in model calculations, except in models
one does not integrate over gauge-field configurations.

Let us now turn to finite temperature. Inverse magnetic
catalysis seems to have two somewhat different meanings
in the literature. The first meaning corresponds directly to
the concept magnetic catalysis discussed above: it simply
means that a condensate, for example 〈ψ̄ψ〉, decreases with
the magnetic field at a fixed temperature. The second mean-
ing is that the transition temperature itself is a decreasing
function of the magnetic field.

The first finite-temperature lattice simulations were car-
ried out in [23,24] for SU (2) gauge theory in the quenched
approximation, focusing on the B-dependence of the chiral
condensate for temperatures below the transition. In two-
flavor QCD, simulations at finite temperature were carried
out for pion masses in the range 200–480 MeV in Ref. [26]
and it was concluded that the chiral and deconfinement transi-
tions take place at the same temperature and that they increase
slightly with the external magnetic field. The increase of
the transition temperature with B is, at least qualitatively, in
agreement with model calculations. Bali et al [27,69] carried
out lattice simulations at the physical point with 2 + 1 flavors,
i.e. for quark masses that correspond to mπ = 140 MeV, and
the result was somewhat surprising: The transition temper-
ature turned out to be decreasing as B increases. The dif-
ferent behavior of Tc is not a consequence of the different
pion masses, rather it results from lattice artefacts and that
the results of [26] were not continuum extrapolated. Today
there is consensus that the chiral transition temperature is a
decreasing function of the magnetic field. This behavior is
illustrated in Fig. 6, which shows the results of a recent lattice
simulation [71], namely the transition temperature in MeV
as a function of the magnetic field eB in GeV for three dif-

Fig. 6 Transition temperature in GeV for the chiral transition as a
function of eB for different values of the pion mass. See main text for
details Figure taken from Ref. [71]

ferent pion masses. The pion mass is 343 MeV (red points),
440 MeV (blue points), and 664 MeV (green points), which
is much larger than the physical pion mass of 140 MeV. The
transition temperature increases as a function of the pion
mass for fixed value of B, which is also known from B = 0
calculations.

In Ref. [45], the authors carried out a thorough analysis
of the quark condensate around the critical temperature to
understand the behavior of the transition temperature, focus-
ing on disentangling the valence and sea effects. The valence
contribution Eq. (39) can also be written as

〈ψ̄ψ〉val = 〈Tr(/D(B) + m)−1〉0 , (42)

where the subscript indicates that the quark determinant is
without a magnetic field. The spectral density of the quark
operator for different values of the magnetic field is shown in
Fig. 7. From the figure, it is evident that there is an increase
in the spectral density around zero with increasing mag-
netic field. The corresponding ensemble was generated at
finite temperature, T = 142 MeV and for vanishing mag-
netic background [45]. The Banks-Casher relation [44] then
implies an increase of the valence contribution.
Defining the quantity

− ΔS f (B) = log det(/D(B) + m) − log det(/D(0) + m),

(43)

the full condensate can be written as

〈ψ̄ψ〉 = 〈e−ΔS f (B)Tr(/D(B) + m)−1〉0

〈e−ΔS f (B)〉0
. (44)

Note that Eq. (44) reduces to the valence contribution Eq. (42)
if one replaces ΔS f (B) by unity. Figure 8 from Ref. [45]
shows a scatter plot of the condensate as a function of the
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Fig. 7 Spectral density of the Dirac operator for three different val-
ues of the magnetic field. See main text for details Figure taken from
Ref. [45]

Fig. 8 Scatter plot of the down-quark condensate as a function of
ΔS f (B). See main text for details Figure taken from Ref. [45]

change in the action ΔS f (B) due to the magnetic field. In
this plot, the magnetic field strength is eB ≈ 5 GeV2 and
T close to the transition temperature. Each point represents
a gauge configuration and they were generated at vanishing
magnetic field. The plot suggests that larger values of the con-
densates correspond to larger values of the weight e−ΔS f (B)

and therefore suppresses the weight of the associated gauge
configuration. As a result, this counteracts the valence effect,
and leads to a decrease in the critical temperature. For pion
masses that are not too large, it also leads to a decrease of
the condensate itself (see discussion below).

In Refs. [71,72], the effects of varying the pion mass on the
quark condensate as a function of the temperature have been
studied in detail (again 2 + 1 flavors). Figure 9 from [71]
shows the difference between the quark condensates as a

function of the temperature at B = 0 and eB = 0.425 GeV2

(blue data points) and eB = 0.85 GeV2 (red points) for
three values of the pion mass. The authors find that the sea
contribution is a decreasing function of B around Tc for the
different values of the pion masses, while the valence con-
tribution is on the other hand an increasing function of the
magnetic field for all temperatures and pion masses. In the
upper panel it is clear that the sea contribution wins the com-
petition around the transition temperature implying inverse
magnetic catalysis in the strict sense of the word. This effect
can barely been seen in the middle panel and is completely
absent in the lower panel. In other words, a decreasing func-
tion of the transition temperature does not imply that the
chiral condensate decreases as a function of temperature and
it is therefore not clear that the latter is the driving mecha-
nism of the former [71]. This nontrivial behavior was also
demonstrated in [72], where the authors fixed the magnetic
field to eB = 0.6 GeV2 and varied the pion mass. In QCD,
there is inverse magnetic catalysis for pion masses up to 500
MeV, and magnetic catalysis for larger values 3

We finally comment on the nature of the chiral transition
and the temperature as a function of B. The simulations have
been done with magnetic fields up to eB = 1 GeV2. They all
show an analytic crossover and that the transition temperature
is a decreasing function of B. However, it has been conjec-
tured that the transition would start increasing again for suf-
ficiently large temperatures, a phenomenon dubbed delayed
magnetic catalysis. In Ref. [70] the author went as high as
eB = 3.25 GeV in the simulations. The transition remains a
crossover (albeit sharper), there is no sign of delayed mag-
netic catalysis, and the chiral and deconfinement transitions
coincide. The sharper crossover suggests that there may be
a critical point for even larger values of the magnetic field.
For asymptotically large fields, QCD can be mapped onto
an anistropic pure-glue theory. This theory was simulated on
the lattice and strong evidence for a first-order transition was
found [70]. This implies the existence of a critical point and
its position was estimated to be at eB � 10 GeV2.

5 Improvements of models

The failure of models to correctly describe the behavior of
QCD around the critical temperature, even after the intro-
duction of the Polyakov loop, has lead to significant efforts
to improve them, see e.g. [75–85]. The temperature T0 that
enters the Polyakov-loop potential depends on the number
of flavors, it is therefore a reasonable assumption that it also
depends on the magnetic field. In Ref. [75], the authors fitted
the strange-quark susceptibilities from their calculations in

3 In Ref. [73], the authors find no sign of inverse catalysis in their
N f = 3 simulations with a pion mass of 280 MeV.
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Fig. 9 Difference between the quark condensates at zero magnetic
field and non-vanishing B for three different values of the pion mass.
See main text for details Figure taken from Ref. [71]

the entangled PNJL model to the lattice results of Ref. [69].
Their ansatz for the field dependence was a simple polyno-
mial in (eB)2 up to quadratic order, giving two fitting param-
eters,

T0(eB) = T0(0) + ζ(eB)2 + ξ(eB)4 . (45)

An interesting feature here is that the model predicts a first-
order transition for magnetic fields larger than approximately
eB = 0.25 GeV2. As mentioned above, such a critical point is
expected in QCD, albeit at much larger magnetic fields [70].

The crossover nature of the chiral transition was a guide for
the authors of Ref. [76], trying to incorporate the decreasing
behavior of the transition temperature in the (Polyakov-loop
extended) two-flavor quark-meson model. In their mean-field
analysis, they allowed the Yukawa coupling to vary with
the magnetic field, g = g(B) using the boundary value
g(0) = 3.3. This value is indicated by the vertical dotted
line in Fig. 10 and corresponds to a fixed quark mass in the
vacuum. The critical temperature as a function of the Yukawa
coupling for three values of the magnetic field is also shown

2 2.4 2.8 3.2 3.6 4

Yukawa Coupling g
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160
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240
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eB = 10mπ2

1
st
order

transition

Fig. 10 Tc as a function of the Yukawa coupling g for various values of
the magnetic field. See main text for details Figure taken from Ref. [76]

in Fig. 10. The region to the right of the vertical solid line
indicates the values of g for which the transition is first order.

However, to obtain a transition temperature which is
decreasing with the magnetic field any curve g(B) must start
at g(0) = 3.3 and successively cross the dashed (red) and
solid (black) curves. One therefore soon enters the region
of a first-order transition in the QM model. Thus a function
g(B) can simply not describe the correct B-dependence of
the transition temperature, while at the same time having a
crossover transition.

Similar approaches have been used in the NJL model
allowing the coupling G to depend on both T and B. For
example, in Ref. [77], the authors fix a set of parameters to
get a reasonable fit to the lattice data for the sum of the light
quark condensates. The form of the B-dependent coupling
was motivated by the running of the coupling in QCD for
strong magnetic fields [86].

One particular appealing idea was recently put forward in
Ref. [87] (see also Refs. [88,89]). Only T = 0 physics from
the lattice is used as input to improve the model. In other
words, there is no fitting to lattice data for Tc or a coupling
that depends both upon B and T . The authors first performed
a determination of the baryon spectrum at the physical point
as a function of magnetic field using lattice simulations. The
authors focused on strong magnetic fields, which are relevant
for the phase diagram. Making the simple assumption that the
baryon masses can be written as the sum of the masses of their
constituents, they derived B-dependent constituent quark
masses. This was used as input in the PNJL model at zero
temperature: Using the gap equation with the B-dependent
quark masses, a B-dependent four-fermion coupling was
obtained. The B-dependent constituent quark masses as well
as G(B) are decreasing functions of the magnetic field. For
B = 0, M2 = 0.097 MeV2 and G(0) = 12.8 GeV−2
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Fig. 11 Normalized average quark condensate in the PNJL model as
a function of eB. See main text for details Figure taken from Ref. [87]

and for the largest magnetic field used (|eB| = 0.6 GeV2),
M2 = 0.079 MeV2 and G(B) = 6.7 GeV−2.

Figure 11 shows the normalized average quark condensate
at T = 0 as a function of the magnetic field. The dashed black
line is obtained from a next-to-leading order (one-loop) cal-
culation in chiral perturbation theory [19,20], the light-blue
points are obtained from the standard PNJL model, while the
green points are obtained from the lattice-improved PNJL
model. Finally, the red band shows the results from lattice
simulations including errors. The plot has several interest-
ing features. Firstly, all low-energy approaches are in good
agreement with lattice results for low values of the magnetic
field. For larger values, both χPT and PNJL underestimate
the quark condensate. This is in contrast with the lattice-
improved PNJL model, which is in quantitative very good
agreement with the simulations. It would be of interest to see
the predictions if one would include the effects of the s-quark
in the model calculations.

We next consider the finite-temperature calculations of
Ref. [87]. Figure 12 shows the quark condensate as a function
of T for different strengths of the magnetic field. The dashed
lines are the predictions from the standard PNJL model with-
out error bands, while the solid bands are the lattice-improved
PNJL model predictions. We first note that quark conden-
sate at T = 0 for fixed magnetic field is higher for the
lattice-improved PNJL model in agreement with Fig. 11.
This behavior persists for low temperature, for larger tem-
peratures, however, the condensate drops faster compared
to that calculated using the standard PNJL model. Thus for
fixed magnetic field, the transition temperature defined as
the inflection point of the quark condensate moves to a lower
value of T compared to the PNJL model. This in itself is not
enough to conclude that we have inverse magnetic cataly-
sis, but the effect is so strong that the inflection point moves

Fig. 12 Quark condensate in the PNJL model as a function of T for
different values of the magnetic field. See main text for details Figure
taken from Ref. [87]

Fig. 13 Normalized transition temperature from the lattice and in the
PNJL model as a function of eB. See main text for details Figure taken
from Ref. [87]

to the left as a function of B so the transition temperature
decreases.

Figure 13 shows the normalized transition temperature for
the chiral transition, as defined by the inflection point of the
quark condensate, as a function of eB in units of GeV2. The
pink band is from the lattice results of Ref. [69]. The width of
the band indicates the errors of the simulations. The light-blue
points are the results of a calculation from the standard PNJL
model showing that the transition temperature increases as
the magnetic field grows. This is in sharp contrast to the
lattice-improved PNJL model, where the results are shown
by the green points including uncertainties coming from the
lattice determination of the baryon masses. Given the large
uncertainties, the results for the transition temperature are in
good agreement with the simulations. Similarly, the analytic
crossover found also agrees with lattice results.
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6 Summary and final remarks

The idea of magnetic catalysis at zero temperature has been
around for 3 decades after its discovery in the NJL model.
It is a robust phenomenon. For large values of the magnetic
field, it can be understood in terms of dimensional reduction
from 3+1 to 1+1 dimensions (or from 2 + 1 to 0 + 1 dimen-
sions). Lattice simulations in the last decade have improved
our understanding of the effect significantly by showing that
both the valence and sea effect contribute in a nontrivial way.
Since the discovery of the the decrease of the chiral transi-
tion temperature with increasing magnetic field, a lot of work
has been devoted to incorporate this feature in models. This
includes T - and B-dependent couplings and Polyakov-loop
potentials. Fitting parameters can be considered an indirect
way of incorporating the sea effect and requires input from
lattice simulations at finite temperature. In our opinion, a
cleaner approach is provided by the work [87], which uses
lattice input at T = 0 only. In much the same way as one uses
experimentally measured meson masses in the vacuum, they
use B-dependent baryon masses measured on the lattice as
input in their PNJL-model calculations, although assuming
that the baryon mass is the sum of its constituents perhaps is
somewhat simplistic.

Acknowledgements The author would like to thank Prabal Adhikari,
Patrick Kneschke, William Naylor, and Anders Tranberg for discussions
and collaboration on related topics. The author would like to thank Mas-
simo D’elia, Gergely Endródi, Eduardo Fraga, and Vladimir Skokov for
permission to use their figures.

Funding Open access funding provided by NTNU Norwegian Univer-
sity of Science and Technology (incl St. Olavs Hospital - Trondheim
University Hospital).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The plot is based
on equation (13) in the paper together with the values of the parameters
given. This is sufficient to generate the plot.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
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Appendix A: Renormalization of the one-loop effective
potential in the quark-meson model

In this appendix, we will discuss renormalization of the one-
loop effective potential in the quark-meson model using the

on-shell scheme. The starting point is the one-loop contribu-
tion to the effective potential of a fermion of mass m f in a
constant magnetic field, which is given by

V1 = −|q f B|
2π

∑
s=±1

∞∑
k=0

∫
p‖

× log
[
p2‖ + m2

f + |q f B|(2k + 1 − s)
]

, (A.1)

where p2‖ = p2
0 + p2

z and the integral is defined in d dimen-
sions using dimensional regularization,

∫
p

=
(
eγEΛ2

4π

)ε ∫
dd p

(2π)d
. (A.2)

and where Λ is the renormalization scale associated with
the MS-scheme. The sum is over spin s and Landau levels
k. The integral over p‖ can be evaluated using dimensional
regularization in d = 2 − 2ε dimensions. The result is

V1 = 2|q f B|
(4π)2 Γ (−1 + ε)

(
eγEΛ2

)ε ∑
s=±1

∞∑
k=0

M2−2ε
B ,

(A.3)

where M2
B = m2

f + |q f B|(2k + 1 − s). The sum over spin s
and Landau levels n can be expressed in terms of the Hurwitz
ζ -function as

∑
s=±1

∞∑
k=0

M2−2ε
B

= 2(2|q f B|)1−ε
∞∑
k=0

[
k + m2

f

2|q f B|

]1−ε

− m2−2ε
f

= 2(2|q f B|)1−εζ(−1 + ε, x f ) − m2−2ε
f , (A.4)

where x f = m2
f

2|q f B| is a dimensionless variable. The effective
potential can then be written as

V1 = 8(q f B)2

(4π)2

(
eγEΛ2

2|q f B|
)ε

Γ (−1 + ε)

[
ζ(−1 + ε, x f )

−1

2
x1−ε
f

]
. (A.5)

We next expand the result (A.5) in powers of ε to order ε0.
This yields

V1 = 1

(4π)2

(
Λ2

2|q f B|
)ε [ (

2(q f B)2

3
+ m4

f

) (
1

ε
+ 1

)

−8(q f B)2ζ (1,0)(−1, x f ) − 2|q f B|m2
f log x f

]
.

(A.6)
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For renormalization purposes, it is convenient to isolate in
Eq. (A.6) the terms in the functional determinant that equal
the B = 0 result, cf. Eq. (B.26). Adding the tree-level poten-
tial V0, setting m f = Δ, and summing over quark flavors
and colors yields

V0+1 = 1

2
B2 + 1

2

m2

g2 Δ2 + λ

24g4 Δ4 − h

g
Δ

+2NcΔ
4

(4π)2

[
1

ε
+ 3

2
+ log

Λ2

Δ2

]

+ Nc

(4π)2

∑
f

2(q f B)2

3

[
1

ε
+ log

Λ2

2|q f B|
]

− 8Nc

(4π)2

∑
f

(q f B)2
[
ζ (1,0)(−1, x f ) + 1

4
x2
f

− 1

2
x2
f log x f + 1

2
x f log x f − 1

12

]
. (A.7)

Equation (A.7) has simple poles in epsilon. The pole pro-
portional to (q f B)2 is eliminated by wavefunction renor-
malization of B and the charge q f such that q f B is invari-
ant. The pole propertional to Δ4 is eliminated by renor-
malization of the parameters in the Lagrangian. The bare
parameters are replaced by the parameters in MS-scheme,
e.g. m2 → m2

MS
+ δm2

MS
and the running parameters given

by Eqs. (B.21)–(B.24) are substituted into the renormalized
expression for the effective potential. The couplings at the
reference scale Λ0 are determined using Eqs. (B.17)–(B.20)
and expressed in terms of physical quantities. The result is
Eq. (13).

Appendix B: Parameter fixing

The mass of a particle is given by the pole of the propagator.
In the on-shell scheme, the sum of the self-energy evaluated
on-shell and the counterterms vanishes,

Σσ,π (p2 = m2
σ,π ) + counterterms = 0. (B.1)

In addition, the residue of the propagator evaluated on shell
is unity. This implies

Σ ′(p2 = m2
σ,π ) + counterterms = 0. (B.2)

The self-energies are

Σσ (p2) = −8ig2Nc[A(m2
q) − 1

2

(
p2 − 4m2

q

)
B(p2)] ,

(B.3)

Σπ(p2) = −8ig2Nc[A(m2
q) − 1

2
p2B(p2)] , (B.4)

where the integrals A(m2) and B(p2) are defined in Eqs.
(B.27)–(B.28). We have omitted the tadpole diagram which is
one-particle reducible. It is cancelled by a counterterm, when

we impose the condition that φ0 = fπ . The counterterms are
given by the expressions

δm2
σ,π = −Σσ (p2)

∣∣∣
p2=m2

σ,π

,

δZσ,π = Σ ′
σ,π (p2)

∣∣∣
p2=m2

σ,π

. (B.5)

This yields

δm2
σ = 8ig2Nc[A(m2

q) − 1

2
(m2

σ − 4m2
q)B(m2

σ )] , (B.6)

δm2
π = 8ig2Nc[A(m2

q) − 1

2
m2

π B(m2
π )] , (B.7)

δZσ = 4ig2Nc

[
B(m2

σ ) + (m2
σ − 4m2

q)B
′(m2

σ )
]

, (B.8)

δZπ = 4ig2Nc

[
B(m2

π ) + m2
π B

′(m2
π )

]
, (B.9)

δt = −8ig2Nc fπ A(m2
q) , (B.10)

where we have added the counterterm δt for the one-point
function. We next need to relate the above counterterms to
the counterterms of the parameters of the Lagrangian. These
relations follow immediately from Eqs. (10)–(11),

δm2
os = −1

2
(δm2

σ − 3δm2
π ) , (B.11)

δλos = 3
(δm2

σ − δm2
π )

f 2
π

− λ
δ f 2

π

f 2
π

, (B.12)

δg2
os = δm2

q

f 2
π

− g2 δ f 2
π

f 2
π

. (B.13)

In the large-Nc limit, δm2
q = 0 implying that δg2

os = −g2 δ f 2
π

f 2
π

.

There is also no loop correction to the quark-pion vertex and
δZψ = 1. This implies that the associated counterterms must
cancel as well, leading to δg2

os = −g2δZos
π . We can therefore

write

δλos = 3
(δm2

σ − δm2
π )

f 2
π

− λδZos
π . (B.14)

The counterterm δhos is found from the one-point function.
At tree level, we have t = h − m2

π fπ = 0, which yields
δt = δhos − δm2

π fπ − m2
πδ fπ = or δhos = δt + δm2

π fπ +
1
2m

2
π fπδZos

π . Finally, we need the counterterm for the elec-
tromagnetic field,

δZos
A = i

Nc

(4π)2

∑
f

4q2
f

3
B(0) , (B.15)

with the integral B(p2) defined in Eq. (B.28). Renormaliza-
tion is then carried out by making the substitution B2 →
B2(1 + δZos

A ). We note that the on-shell scheme is not
well-defined when the fermions are massless. In that case,
the (modified) minimal subtraction scheme may be used.
Since the bare parameters are independent of the renormal-
ization scheme, we can immediately write down the rela-
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tions between the renormalized parameters in the on-shell
and MS schemes. For example g2

MS
+ δg2

MS
= g2

os + δg2
os.

From Eq. (B.9), we find

δg2
os = 4g4Nc

(4π)2

[
1

ε
+ log

Λ2

m2
q

+ F(m2
π ) + m2

π F
′(m2

π )

]
,

(B.16)

where F(p2) and F ′(p2) are defined in Eqs. (B.29)–(B.30).
The counterterm in the MS-scheme is simply the pole part,

δg2
MS

= 4Ncg4

(4π)2
1
ε
. From this, one finds the running coupling

g2
MS

using g2
MS

= g2
os + δg2

os − δg2
MS

and given by Eq. (B.19).
The running parameters are

m2
MS

= − 1

2

(
m2

σ − 3m2
π

) − 2m2
q Nc

(4π)2 f 2
π

×
[(

m2
σ − 3m2

π

)
log

Λ2

m2
q

+ 4m2
q

+
(
m2

σ − 4m2
q

)
F(m2

σ ) − 3m2
π F(m2

π )
]

, (B.17)

λMS = 3
(
m2

σ − m2
π

)
f 2
π

+ 12g2Nc

(4π)2 f 2
π

×
[

2
(
m2

σ − m2
π − 2m2

q

)
log

Λ2

m2
q

+
(
m2

σ − 4m2
q

)
F(m2

σ )

+ (
m2

σ − 2m2
π

)
F(m2

π ) + (
m2

σ − m2
π

)
m2

π F
′(m2

π )

]
, (B.18)

g2
MS

= m2
q

f 2
π

{
1 + 4m2

q Nc

(4π)2 f 2
π

[
log

Λ2

m2
q

+ F(m2
π ) + m2

π F
′(m2

π )

]}
,

(B.19)

hMS = m2
π fπ

{
1 + 2m2

q Nc

(4π)2 f 2
π

[
log

Λ2

m2
q

+ F(m2
π ) − m2

π F
′(m2

π )

]}
.

(B.20)

The running parameters satisfy renormalization group
equations that follow from Eqs. (B.17)–(B.20) upon differ-
entiation with respect to Λ. The solutions are

m2
MS(Λ) = m2

0

1 − 4g2
0 Nc

(4π)2 log Λ2

m2
q

, (B.21)

g2
MS(Λ) = g2

0

1 − 4g2
0 Nc

(4π)2 log Λ2

m2
q

, (B.22)

λMS(Λ) =
λ0 − 48g4

0 Nc

(4π)2 log Λ2

m2
q(

1 − 4g2
0 Nc

(4π)2 log Λ2

m2
q

)2 , (B.23)

hMS(Λ) = h0

1 − 2g2
0 Nc

(4π)2 log Λ2

m2
q

, (B.24)

where m2
0, g2

0, λ0, and h0 are the values of the running mass
and couplings at the scale Λ0 determined by[

log
Λ2

0

m2
q

+ F(m2
π ) + m2

π F
′(m2

π )

]
= 0 . (B.25)

This equation in conjunction with Eqs. (B.17)–(B.20) can be
used to determine the values of the couplings at the scale
Λ0 expressed in terms of physical quantities. For example,

it follows that g2
0 = g2

MS
(Λ0) = m2

q

f 2
π

.

We need a few divergent integrals space in four dimen-
sions. Going to Euclidean space via Wick rotation, we can
use dimensional regularization in d = 4 − 2ε dimensions.
The integrals needed are

∫
k

log
[
k2 + m2

]
= − m4

2(4π)2

(
Λ2

m2

)ε [
1

ε
+ 3

2
+ O(ε)

]
,

(B.26)

A(m2) =
∫
k

1

k2 − m2

= im2

(4π)2

(
Λ2

m2

)ε [
1

ε
+ 1 + O(ε)

]
, (B.27)

B(p2) =
∫
k

1

(k2 − m2
q)[(k + p)2 − m2

q)

= i

(4π)2

(
Λ2

m2
q

)ε [
1

ε
+ F(p2) + O(ε)

]
, (B.28)

where Λ is the renormalization scale associated with the MS
scheme and

F(p2) = 2 − 2r arctan

(
1

r

)
, (B.29)

B ′(p2) = F ′(p2) = 4m2
q

p4r
arctan

(
1

r

)
− 1

p2 , (B.30)

where r =
√

4m2
q

p2 − 1.
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