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Cosmological models with an inhomogeneous viscous dark fluid, coupled with dark matter in the
Friedmann- Robertson-Walker (FRW) flat universe, are considered. The influence of thermal effects
caused by Hawking radiation on the visible horizon is studied, in connection with the classified type
I and type III singularities which are known to occur within a finite amount of time. Allowance of
thermal effects implies that a transition to a type II singularity can take place, in a finite time. We
take into account a bulk viscosity of the dark fluid, observing the equation of state in the case of
radiation, and find that there is a qualitative change in the singular universe of type I: it may pass
into a singularity of type III, or it may avoid the singularity at all.

I. INTRODUCTION

After it was observed that the universe is exposed to an accelerated expansion, it is of great interest to study the
nature of dark energy which is responsible for this acceleration [1–4]. In the era of dark energy the universe can
be qualitatively described using an exotic effective fluid with negative pressure (more appropriately called a positive
tensile stress), that satisfies an unusual equation of state [5–13]. Dark energy can be characterized by an equation
of state parameter ωeff = peff/ρeff . Depending on the values of ωeff several possibilities of the universe are possible:
for example, phantom behaviour occurs for ωeff < −1, de-Sitter evolution occurs for ωeff = −1, and quintessential
behaviour occurs for −1 < ωeff < −1/3. The experimental value of the parameter of the equation of state is however
determined with insufficient accuracy to be able to unambiguously determine the phase in which our Universe is
located. Today the value of this parameter lies within the following limits ωeff = 1.04+0.09

−0.10 [14].
One of the properties of phantom dark energy is the prediction of a Big Rip singularity (type I) in the future.

For this kind of singularity the scale factor and the Hubble function go to infinity at a finite time, called ts or trip.
This is the most destructive type of singularity [15]. There are several less drastic future singularities, namely soft
singularities classified as type II, III and IV. All these singularities are purely classic in nature.

From a physical viewpoint, an increase in the Hubble function should be expected to lead to an increase in tem-
perature. At high temperatures, especially near the singularity, thermal radiation should appear. Thermal radiation
is associated with Hawking radiation, which effectively should be generated at the apparent horizon of the FRW
universe [16]. Hawking’s radiation is manifested in black holes and is associated with the existence of the visible black
hole horizon, as well as the visible horizon of cosmic events in de-Sitter space. Hawking’s thermal spectrum radiation
should be taken to appear in the late universe at high temperatures shortly before its rupture. Accounting for thermal
radiation will allow a qualitative change in the classical description and give a more realistic picture of the future of
the universe.

Recently, the effect of thermal radiation on future singularities of types I, II, III and IV was studied in Ref. [17].
It was shown that with singular universes of types I and III, as well as for the Little Rip universe, there occurs a
qualitative change in the singularity due to thermal effects. The singularities end up as type II singularities. In
universes of types II and IV there is no qualitative change in the final state.

The model of a non-viscous fluid in cosmology is an idealized case. Dark energy universe with a viscous fluid was
studied in Refs. [18–26]. The cosmic viscosity property was taken into account in connection with the Big Rip type
singularity [27], and also in connection with the singularities of type II, III and IV [28, 29]. Models of dark energy
interacting with dark matter, in which the singularities of one of these four types are formed, were considered in
Ref. [30, 31].

The article [32] studied a combined phantom/fluid model consisting of a viscous dark fluid (dark energy) with a
linear inhomogeneous equation of state and dark matter with a linear homogeneous equation of state in a spatially
flat FRW metric.

The purpose of the present article is to study the influence of thermal radiation, taking into account the interaction
of viscous dark fluid with dark matter. In particular, we will focus on the change of singular behavior of the late-time
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universe.

II. THE EFFECT OF THERMAL RADIATION ON THE FORMATION OF SINGULARITIES IN THE
LATE UNIVERSE

Let us consider a spatially-flat FRW universe

ds2 = −dt2 + a2(t)δijdx
idxj , (1)

where a(t) is the scale factor. We will be interested in the case when the effective parameter in the equation of state
takes values in the vicinity of −1. Then the following kinds of evolution of the accelerating universe are possible :
phantom, quintessence, or a de Sitter expansion. The question arises about how this evolution will end up in the
future. The answer depends on the behavior of the time-dependent parameters of the effective equation of state. We
will be interested in dark energy universes, in which there occur future singularities within a finite, or an infinite, time.
For such universes the Nojiri-Odintsov-Tsujikawa classification was given in Ref. [5] (see also [33]). Singularities arise
when one or more of the central cosmological parameters diverge: the scale factor a(t), the effective (total) energy
density ρeff , the effective (total) pressure peff , or higher derivatives of the Hubble function.

In the limit t→ ts, the following classes of singularities can be distinguished:

� Type I (Big Rip): a → ∞, ρeff → ∞ and peff → ∞. This class of singularities includes the case when ρeff and
peff are finite at t = ts. A Big Rip leads to the decay of gravitationally bound objects large on a cosmological
scale.

� Type II (“sudden” singularity): a→ as , ρeff → ρs and
∣∣peff

∣∣→∞, where as 6= 0 and ρs are constant. That is
a pressure singularity.

� Type III: a→ as, ρeff →∞ and peff →∞. This type singularity is milder than Type I but stronger than Type
II.

� Type IV: a→ as, ρeff → 0 and peff → 0, but the higher derivatives of the Hubble function H diverge. This type
also includes the case where ρeff and/or peff are finite for t = ts.

Here ρeff and peff can be calculated by the following expressions,

ρeff =
3

κ2
H2 , peff = − 2

κ2

(
2Ḣ + 3H2

)
(2)

where κ2 = 8πG and H = ȧ
a is the Hubble parameter. It may be mentioned that the effective energy density ρeff and

the effective pressure peff may include the contribution from the modified gravity.
However, the singularity is not the only possible outcome of the evolution of our universe in the phantom phase. It

was shown in [33–36] that if the cosmic energy density remains constant or monotonically increases, then, depending
on the asymptotic behavior of the Hubble parameter H [33], all possible types of evolution of our universe can be
divided into four categories:

� Big Rip: H(t)→∞ when t = ts <∞.

� Little Rip: H(t)→∞ when t→∞.

� Cosmological constant : H(t) = constant.

� Pseudo Rip: H(t)→ H∞ when t→∞, where H∞ is a constant.

Here we would like to mention that both the Little Rip and Pseudo Rip models are nonsingular.
We will study the cosmological models induced by the inhomogeneous viscous dark fluids coupled with dark matter,

in terms of the parameters appearing in the equation of state (EoS). Let us consider the following formulation of the
EoS of an inhomogeneous viscous fluid in flat FRW space-time [37], namely

p = ω(ρ, t)ρ− 3Hξ(H, t) , (3)

where ξ(H, t) is the bulk viscosity, which depends on the Hubble parameter H and on the cosmic time t. According
to the thermodynamic set up, we naturally assume that ξ(H, t) > 0.
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We will take the following form for the thermodynamic (EoS) parameter ω [37],

ω(ρ, t) = ω1(t)
(
A0ρ

α−1 − 1
)

(4)

where A0 6= 0 and α ≥ 1 are constants. (Note that A0 is nondimensional only if α = 1. If α = 3/2 for instance, the
dimension will be cm2 in geometric units.)

We choose the bulk viscosity as [37],

ξ(H, t) = ξ1(t)
(
3H
)n

(5)

with n > 0.
Let us consider the influence of thermal effects on the change in singularities of types I, taking into account the

viscosity property of a dark fluid and its interaction with dark matter. Since the temperature of the universe increases
near the singularity, thermal radiation is generated, as mentioned above. From statistical physics, the energy density
of thermal radiation is proportional to the fourth power of the absolute temperature. Therefore, near the future
singularity where the Hubble parameter becomes very high, we assume that the thermal energy density has the form
[17]

ρrad = λH4 , (6)

where λ is a positive constant.
Taking thermal radiation into account, the FRW equation is modified as follows [17],

3

κ2
H2 = ρeff + λH4 (7)

From Eq.(7) it follows that when the evolution time of the late universe is much less than the singularity time, the
first term of the equation makes the greatest contribution. While near the singularity time, the second term makes
the largest contribution. We analyze equation (7) further, by solving it with respect to the square of the Hubble
parameter H2

H2 =
1

2λ

[
3

κ2
±
√

9

κ4
− 4λρeff

]
. (8)

In the following, we will apply the cosmological models of a viscous fluid from the article [32].

III. SINGULAR BEHAVIOR OF LATE-TIME UNIVERSE TAKING INTO ACCOUNT THE
VISCOSITY OF A FLUID AND ITS INTERACTION WITH DARK MATTER

We start from the simplest, constant case, namely ω(ρ, t) = ω0 and will consider different forms for the bulk
viscosity.

A. Constant viscosity

Let us consider the case of constant bulk viscosity ξ(H, t) = ξ0 > 0. The Hubble function has the form [32]

H(t) =
ξ0κ

2(
1 + ω0

)(
1−
√
C1 exp

[
3ξ0κ2t/2

]) , (9)

with C1 a nondimensional constant. This model does not so far take into account interactions with dark matter.
Observe that H diverges for t→ ts = − 2

3ξ0κ2 ln
(√
C1

)
, thus a Big Rip singularity appears. Let us now see if the type

of singularity will change if we take into account thermal radiation near the singularity time.
We calculate the scale factor,

a(t) = e
∫
Hdt = a0

(
1− 1√

C1

exp
[
− 3ξ0κ

2t/2
]) 2

3(1+ω0)

, (10)
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where a0 is an integration constant. Then the effective energy density in terms of the scale factor is

ρeff =

(√
3

ρ0

ξ0κ

1 + ω0

)2[
a(t)

a0

]3(1+ω0)

e−3ξ0κ
2t . (11)

Let us return to Eq.(8). Since H2 is a real number, we must have

9

κ4
− 4λρeff ≥ 0 . (12)

We get in this model

9

κ4
− 4λAe−Bt

[
a(t)

a0

]C
≥ 0 , (13)

where A =

(√
3
ρ0

ξ0κ
1+ω0

)2

, B = 3ξ0κ
2 and C = 3(1 + ω0). The above inequality puts a restriction on the scale factor,

a(t) ≤ a0

(
9

4λAκ4

) 1
C

e
B
C t (14)

under the condition C < 0 (ω0 < −1), which corresponds to the case of phantom dark energy.
Taking into account the thermal radiation ρrad, we obtain from Eq. (8) that there exists another upper limit amax

for the scale parameter,

a(t) ≤ amax = a0

(
4λAκ4

9

) 1
3(1+ω0)

, (15)

which corresponds to the instant tmax,

tmax = − 2

3ξ0κ2
ln

{√
C1

(
1− 2κ2

√
Aλ

3

)}
. (16)

This is thus a singularity of another type than that arising from the Hawking radiation.
We calculate the difference between tmax and ts

tmax − ts = − 2

3ξ0κ2
ln

{
1− 2κ2

√
Aλ

3

}
> 0 , (17)

which shows that tmax is larger than ts. In the limit t→ tmax, a→ amax. From Eqs.(2) and (3), one can calculate the
effective energy density ρeff and the effective pressure peff . Then in the limit t → tmax, the effective energy density
and effective pressure become

ρmax = ρeff(tmax) =
9ξ2

0κ
2

(1 + ω0)2

[
1

1 + C1

(
2κ2
√
Aλ

3 − 1

)]2

, (18)

and

pmax = peff(tmax) =

∣∣∣∣ω0ρmax − 3ξ0Hmax

∣∣∣∣ =
3ξ2

0κ
2

(1 + ω0)

{∣∣∣∣ 2ω0−1
1+ω0

− C1

(
2κ2
√
Aλ

3 − 1

)∣∣∣∣[
1 + C1

(
2κ2
√
Aλ

3 − 1

)]2

}
. (19)

respectively. In the general case the values of the scale factor, energy density and effective pressure turn out to be
finite, but higher derivatives of H diverge. Thus, a cosmological finite-time future singularity is not formed. This
behavior is due to the influence from the viscosity of the dark fluid, which compensates for the effect of thermal
radiation. However, if the radiation parameter λ goes to λ0, with

λ0 =
3

C1

(
(C1 − 1)(1 + ω0)

2ξ0κ3

)2

, (20)

then ρmax →∞ and
∣∣pmax

∣∣→∞. This is a type III singularity. It is milder than type I, but stronger than type II.
If ζ0 →∞, then λ0 → 0. Thus, the viscosity weakens the effect of thermal radiation.
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B. Viscosity proportional to the Hubble parameter

Let us consider the case where the viscosity is proportional to the Hubble parameter, ξ(H, t) = 3τH, the constant
τ being positive. The Hubble parameter becomes [32]

H(t) =
κ√
3

{
δγ
√
C1

3θ
√
C1 + exp

[
− η̃t/2

]} . (21)

Here the following designations are introduced:

η = δγ2, γ =
κ√
3

√
1 +

1

r
,

η̃

η
= r, θ = 1 + ω0 − 9τγ2,

where the constant r is associated with the influence of dark matter and is equal to the ratio of the energy density of
dark matter to the density of dark energy. The dimensions are [γ] = cm, [η] = [η̃] = cm−1, [δ] =cm−2, [τ ] = cm−2.
Further, the constant parameter δ is responsible for the interaction with dark matter. If ω0 < −1 + 9τγ2, then θ < 0

and consequently H diverges at t → ts = − 2
η̃ ln

(
− 3θ
√
C1

)
, which leads to the appearance of a singularity of the

type Big Rip. We consider again the behavior of the late-time universe near the singularity, taking into account the
effect of thermal radiation.

Let us calculate the scale factor,

a(t) = a0 exp
[ δγ κt
3
√

3 θ

](
3θ
√
C1 + exp

[
− η̃t/2

]) 2δγ κ

3
√

3 θη̃

(22)

and express the effective energy density in terms of the scale factor as

ρeff = C1

(
δγ
)2[a(t)

a0

]− 2
δ̃

exp
[2α′
δ̃
t
]
, (23)

where α′ = δγκ

3
√

3θ
and δ̃ = 2δγκ

3
√

3θ
. The inequality in Eq.(12) implies the following restriction on the scale factor,

a(t) ≤ a0

(
2δγ κ2

√
λC1

3

)δ̃
eα
′t . (24)

Since θ < 0, then α′ < 0 and scale factor values are limited by the maximum number amax given by

a(t) ≤ amax = a0

(
2δγ κ2

√
λC1

3

)δ̃
, (25)

which corresponds to the instant

tmax =
2

η̃
ln

{
2δγ κ2

√
λC1 − 3

9θ
√
C1

}
, (26)

Let us find the difference between ts and tmax,

ts − tmax = −2

η̃
ln

{
1− 2

3
δγ κ2

√
λC1

}
> 0 . (27)

Hence it follows that ts is larger than tmax. Thus in the limit t→ tmax, the effective energy density and the effective
pressure are given by

ρmax = ρeff(tmax) =
1

θ2

(
δγ − 1

κ2
√
λC1

)2

, (28)

and ∣∣pmax

∣∣ =
∣∣p(tmax)

∣∣ =
∣∣ω0ρmax − 9τH2

max

∣∣ =
∣∣ω0 − 3τκ2

∣∣ρmax , (29)



6

respectively. In the limit when the radiation parameter λ→ λ0 where λ0 is given by

λ0 =

(
3

√
ρ0 δ γ̃ κ2

)2

, (30)

ρmax → 0 and
∣∣pmax

∣∣→ 0. However, the higher derivatives of the Hubble function do not diverge. Thus, the formation
of a singularity of IV type does not occur in this model.

We see that viscosity softens the singularity or avoids it altogether. This is due to a decrease in the pressure of a
viscous fluid due to the viscosity term in the equation of state.

C. Inhomogeneous fluid with variable parameter ω

In this section we will assume that the thermodynamic parameter ω(ρ, t) is a function of the energy density of the
fluid. Let us choose it to have the form

ω(ρ, t) = A0ρ
α−1 − 1 , (31)

where A0 6= 0 is a dimensional constant. The bulk viscosity is taken to be proportional to Hn,

ξ(H, t) = τ
(
3H
)n

(32)

with τ and n positive. In the case n = 2α− 1, the energy density becomes [32]

H(t) = H0

{
ρ0 exp [(α− 1

2
)ηt] +

µ

η̃

} 2
1−2α

, H0 =
κ√
3

√
ρ0, (33)

where µ is a dimensionless constant and α 6= 1
2 . Here t0 is the present time, and ρ0 = ρ(t0), The dimension is

[ρ0] = cm−4.

For α > 1
2 , then at t → ts = 1

η̃
(
α−1/2

) ln

(
− µ

C1η̃

)
, the Hubble parameter diverges and we obtain again the Big

Rip singularity. Further, if we consider the case α = 3/2 the scale factor turns out to be

a(t) = a0

(
1 +

µ

C1η̃
e−ηt

) rH0
µ

(34)

and consequently the energy density in terms of the scale factor becomes

ρeff = ρ0(C1e
ηt)−2

[
a(t)

a0

] 2µ
rH0

(35)

The inequality in Eq.(12) implies the following restriction on the scale factor,

a(t) ≤ a0

(
2κ2
√
λρ0

3C1

) rH0
µ

exp[
rH0ηt

µ
] (36)

Scale factor values are limited by the maximum number amax,

a(t) ≤ amax = a0

(
2κ2
√
λρ0

3C1

) rH0
µ

(37)

which corresponds to the time

tmax =
1

η
ln

3µ

η̃
(
2κ2
√
λρ0 − 3C1)

. (38)

The difference between ts and tmax takes the following form,

ts − tmax =
1

η
ln
(
1− 2κ2

3C1

√
λρ0

)
< 0 . (39)
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It turns out that tmax is larger than ts. Thus, it due to thermal radiation, the time of formation of the cosmological
singularity changes qualitatively. In the limit t → tmax, the effective energy density and the effective pressure are
given by

ρmax = ρeff(tmax) = ρ0

[
η̃

µ

(
1− 3C1

2κ2
√
λρ0

)]
, (40)

and ∣∣pmax

∣∣ =
∣∣p(tmax)

∣∣ =

∣∣∣∣(A0ρ
1
2
max − 1

)
ρmax − τ

(
3Hmax

)3∣∣∣∣ =

∣∣∣∣(A0 − 3
√

3 τκ3

)
ρ

1
2
max − 1

∣∣∣∣ρmax , (41)

respectively. Thereby, the value of the energy density and effective pressure becomes finite, while higher derivatives
of the Hubble function diverge. Consequently, a cosmological singularity is not formed.

IV. CONCLUSION

We have investigated the singular behavior of the dark universe, taking into account the thermal effects caused
by Hawking radiation, the viscosity properties of the dark fluid, and its interaction with dark matter on the visible
horizon of the FRW universe. According to the study carried out in [17] for an ideal fluid, near the singularity it is
necessary to take into account the Hawking thermal radiation, which leads to a change in the type of the singularity.
In a dark universe with singularities of types I and III with a finite formation time, a transition to a type II singularity
occurs.

Models with an inhomogeneous viscous dark fluid interacting with dark matter were considered in [32]. It is shown
that, in our case, a transition from singularity of type I to singularity III type is possible due to the influence of
thermal radiation. Singularities may be absent, due to the viscosity of the dark fluid and its interaction with dark
matter. The absence of a singularity in some models is explained by the fact that both the presence of a bulk viscosity
in the equation of state of a dark fluid, and the presence of a thermal radiation term in the Friedmann equation, are
proportional to a power of the Hubble parameter. As a result, the effect of thermal radiation near the singularity
may be neutralized by a viscous fluid.

As was shown in Ref. [38], taking thermal radiation into account does not weaken the agreement of cosmological
models with astronomical obeservations.
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