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ABSTRACT The authors focus on a model for system operators that uses centralized scheduling of multiple
flexibility assets and services to minimize the cost of managing problems with grid congestion, voltages, and
losses. The model schedules flexibility assets using stochastic optimization for AC optimal power flow in an
active distribution network. The novelty of the contribution lies in its focus on how the dynamic capabilities
of the flexibility resources are defined with regard to how uncertainty is resolved in the model. The impact
of uncertainty is studied by using well-known quality measures from stochastic programming, such as the
value of the stochastic solution. Moreover, the authors introduce a new measure related to the impact of
representing uncertainty and flexibility when considering reactive power. By changing the time attributes of
flexibility assets, the authors show the impact of uncertainty and time structure on a scheduling problem.
The uncertainties considered are price and load levels. The findings reveal that the quality of the scheduling
of each flexibility resource depends on using a stochastic model with a rigorous consideration of time and
uncertainty.

INDEX TERMS Flexibility, active distribution networks, optimal power flow, scheduling, stochastic
programming, uncertainty.

NOMENCLATURE

Abbreviations:

ADN Active Distribution Network
CB Shunt capacitor banks
DER Distributed Energy Resource
DSO Distribution System Operator
DVSS Deviated value of stochastic solution
EEV Expected value of expected solution
FSP Flexibility Service Provider
ICT Information-communication technologies
LV Low-voltage
MV Medium-voltage
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approving it for publication was Shihong Ding .

OLTC On load tap changer
PV Photo-voltaic module
RP Recourse problem
SDP Semi-definite programming
SO System operator
SOP Soft open point
SOS2 Special Ordered Sets of type 2
SVC Static VAR compensators
TSO Transmission System Operator
VoLL Value of lost load
VSS Value of stochastic solution

Parameters:

βs,t Power price from the grid parameter
ηc, ηd Battery charge and discharge coefficients

parameters
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σk The percentage of load considered in corre-
spondence of breakpoint k

Lps,i,t Active load demand from node i, at time t ,
in scenario s

Lqs,i,t Reactive load demand from node i, at time t ,
in scenario s

Pmaxg ,Pming Upper and lower limits of active power pur-
chase from the grid.

Qmaxg ,Qming Upper and lower limits of reactive power pur-
chase from the grid.

Rs Probability of the occurrence for a scenario
SoCmax Parameter for maximum state of charge in

batteries
VCk Variable cost of load shifting parameter
Zi Multiplying parameter for minimum battery

capacity

Sets:

g ∈ G Set of generators with index g
i ∈ I Set of buses in network with index i
j ∈ J Set of buses in network with index j
k ∈ K Set of breakpoints with parameter index k
s ∈ S Set of scenarios with index s
t ∈ T Set of periods with hourly resolution with

index t
tshift ∈ T Load shifting time index

Variables:

δi,t , θs,i,j,t Voltage angles between buses i and j
εt+1 Prediction error
L̂t+1 Forecasted load level
λs,i,t,k Continuous variable between 0 and 1
φm, α AR(N)-process coefficients
AFs,i,j,t Active power flow between nodes i and

j
Bi,j Line reactance value in DC-OPF model
Cs,i,t ,Ci,t Costs of load shifting
DP+s,g,t , DP

−
s,g,t Active power import or export from an

external grid
DQ+s,g,t , DQ

−
s,g,t Reactive power import or export from

an external grid
Lt+1 Historical load data for forecasting
Pchars,i,t ,P

dis
s,i,t Charging and discharging amount of a

battery
Psheds,i,t Amount of active power curtailment

Pshifts,i,tshift Amount of active power shift
Ps,g,t , Qs,g,t Active and reactive of scheduled pro-

duction from a generator
Qsheds,i,t Amount of reactive power curtailment

Qshifts,i,tshift Amount of reactive power shift
RFs,i,j,t Reactive power flow between nodes i

and j
Si,j Current flow between nodes i and j
SoCi,t State of charge for a battery

Vs,i,t Voltage magnitude
Ys,ij Impedance value in AC-OPF model

I. INTRODUCTION
The penetration of Distributed Energy Resources (DER),
located close to where electricity is consumed, e.g., house-
holds or commercial buildings is increasing considerably in
the last years. However, due to the often-intermittent nature
of DERs, as well as variations in demand, such developments
can also cause several problems in low-voltage (LV) grid
designs such as voltage variations (drops/rises), grid con-
gestion, and network losses. Increases in electricity load are
likely to continue in the future [1]. To solve these problems at
grid level, distribution system operators (DSOs) have shifted
from traditional passive and unidirectional distribution net-
works to bidirectional active distribution networks (ADNs).
An ADN can be described as a network system with

control over its distributed generation resources. Some of
the enabling technologies for ADNs are storage resources,
demand-response programs, dynamic line ratings, and volt-
age/power control technologies [2].
In this regard, flexibility refers to the ability of a power sys-

tem to respond to changes in demand and supply [3]. Based on
recent developments in ICT, different levels of demand-side
flexibility resources based on demand response programs and
technologies could contribute to the efficiency of the ADNs
by activating end users and their flexibility assets [4]–[6].
In this paper, we focus on the grid-relevant issues, including
network congestion, voltage variation problems, and network
losses, and investigate the impact of time and uncertainty on
the activation of required flexibility services.
Several studies have reported on the traditional use of

active management resources, such as on-load tap changers
(OLTCs), static VAR compensators (SVCs), shunt capaci-
tor banks (CBs), and standard operating procedures (SOPs),
to deal with grid operational challenges(e.g., [7]). How-
ever, traditional solutions require significant investments in
grid infrastructure and therefore flexible electricity resources
can contribute to deferral of such investments. In this
study, we focus on flexible electricity resources such as
demand-response programs, change in supply, and batteries,
which do not require additional investments in grid infrastruc-
ture and technology [8].

A. RESEARCH METHOD
In a traditional power market, grid congestion, voltage vari-
ations, network losses, and frequency deviations are han-
dled by a system operator (SO) using ancillary services.
Recent developments in DERs and demand-side flexibil-
ity (response) programs [9], [10] suggest that low-voltage
grid issues resulting from high demand or high levels of
local power generation could be dealt with at the distribu-
tion networks level [11]. In this context, traditional passive
distribution networks are transformed into ADNs. Different
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flexibility assets, such as demand-side flexibility resources,
batteries, and DERs are considered local flexibility assets in
the ADN. Most of the aforementioned resources are stochas-
tic in nature [12], but they can still play a crucial role in
demand-side management and low-voltage grid operation.
This is particularly the case when central operators have the
possibility to shift or curtail loads over a particular period or
to use energy storage or batteries when necessary. Therefore,
the SO needs to assess possible future developments in terms
of uncertainties and time.

In this paper, we study the impact of time and uncertainty
on the decision processes of SOs in ANDs [13]. An SO uses
centralized scheduling of multiple flexibility assets and ser-
vices to minimize the cost of managing problems relating to
network congestion, voltage variations, and network losses.
A number of authors have studied uncertain parameters such
as price, load, renewable generation, and fault situations in
distributional grids in connection with optimal response to
system or market conditions [14]. The novelty in this paper
is our focus on how the dynamic capabilities of the flexi-
bility resources (e.g.,) time are defined, how uncertainty is
resolved in our optimal scheduling model, and the charac-
teristics of the flexible assets. Two important parameters for
optimal decision-making at the operational level are activa-
tion (response) time and duration of the flexibility provided
by the assets. Fig. 1 shows the characteristics of a flexibility
resource (asset), in which the SO procures a certain amount
of flexibility from flexibility service providers (FSPs).

FIGURE 1. Characteristics of a flexibility resource base for time and
power [15].

To study the impact of uncertainty representation when
scheduling flexible assets in ADN management, we use
well-known quality measures from stochastic programming,
including the value of the stochastic solution. We also intro-
duce a new measure related to uncertainty and flexibility
when considering reactive power. By varying the character-
istics relating to activation time and duration of flexibility
provision from these assets, our analysis shows that the pre-
sentation of uncertain information regarding load and price

in a model is very important when considering the value of
flexibility.

A stochastic two-stage AC optimal power flow (AC-OPF)
model is used in the analyses. The results can be generalized
to a multistage setting. However, two stages are deemed suffi-
cient to illustrate the importance of the information structure
of the model, namely the time when uncertainty is resolved
and how that affects decisions and the representation of flex-
ibility in the available assets regarding activation time and
duration of the flexibility supply. In peak load situations in
which voltage drops and/or network congestion problems
occur, the SO implements dynamic scheduling of a portfo-
lio of flexible assets. The primary objective is to present
the impact of uncertainty representation and timing on both
active and reactive power. Accordingly, a moving interval
approach is used, whereby both the first stage decisions and
the recourse decisions in the second stage of the stochastic
model are affected by the response and duration times of the
assets. Fig. 2 shows the moving interval method, which uses
load shifting for flexibility.

FIGURE 2. Timeline of the moving interval method.

B. LITERATURE REVIEW AND CONTRIBUTIONS
Authors in [16] investigated time aspects of flexibility pro-
vision through a qualitative survey-based study of different
companies. They found that timing-based business models
could perform in very short time intervals to complement
traditional power generation capabilities when managing
changes in generation or consumption plans.

An SO needs to choose between grid upgrades and using
flexibility products by considering the time dimension of the
network configuration and demand-side flexibility. Different
factors such as response time, duration, and power amount of
the demand-side flexibility, affect the ability to use flexibility
assets to replace or delay network upgrades [8].

The time characteristics of some flexibility assets (tech-
nologies) could enable the assets to provide value in multiple
time intervals. The authors in [15] conducted a survey to
evaluate different flexibility technologies with respect to their
time dimension and found that for optimal valuation and
usage of flexibility resources, the decision-maker (in our case
the SO) needs to know the time characteristics of the sched-
uled flexible asset before physical delivery of the flexibility
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services. The literature provides examples of stochastic mod-
els for scheduling flexible assets at the level of microgrids,
DSOs, and transmission system operators (TSOs), based on
central control [17], [18]. Often, such modeling approaches
are based on optimal power flow models for scheduling and
flexibility procurement [19], [20]. The importance of duration
and activation times for flexibility assets (time characteris-
tics) are discussed by [15], [21], but the authors do not present
quantitative studies of flexibility in grid operations and the
impact of uncertainty on flexibility services and assets. To our
knowledge, no studies to date have used stochastic program-
ming to examine both uncertainty and characteristics of flex-
ibility (e.g., duration, activation time, and their relationships)
in a dynamic schedule. This article makes a contribution in
this respect.

In the case of ADNs, some studies present methods to deal
with DERs and uncertain loads in cases of network conges-
tion and voltage variation problems. Besides active manage-
ment resources in ADNs, an SO or centralized management
could use economic incentives and market-based approaches
to mitigate such problems. As one approach, [22] present
a congestion management strategy with a market-based
mechanism and SOPs. Since original SOP-based conges-
tion management is a non-convex problem, they applied
convex relaxation, namely semidefinite programing (SDP).
They specifically did not use demand-side flexibility such
as load shifting and shedding. In another approach, authors
in [23] used flexible demand and storage systems for an
ADN with dynamic OPF modeling. Their results showed
the efficiency of the use of flexible demand and storage
systems for ADNs. In a recent study, [24] present a method
for two-stage hierarchical congestion management in ADNs
with SOPs, tie switches, DERs, and a microgrid. They used
SOPs and switches as direct controlmechanisms, while DERs
contributed through a market. The above-discussed studies
demonstrate the efficiency of flexibility in ADN manage-
ment, but without emphasizing the impact of time and uncer-
tainty in scheduling and decision making.

The authors in [25] and [26] discuss reactive power provi-
sion from DERs via market designs (optimal reactive power
dispatch). Both sets of authors state the importance of uncer-
tainty from the DER perspective. However, they do not
discuss the provision of reactive power from demand-side
flexibility assets for grid operations according to the time
dimension. Our stochastic flexibility provision framework,
which is the second contribution of this paper, includes the
reactive power component.

Recent research on flexibility usage has focused on
demand uncertainty [27], uncertainty in renewable resource
generation [28], PV generation and ambient temperature
uncertainties [17], and uncertain reserves from demand
response [29]. In this paper, we mainly discuss uncertainties
regarding resources and their availability in a binary manner
(i.e., the power resource is either available at a certain level
or not), rather than representing duration and time lags for
activation (response).

The contributions of this paper are summarized as follows:

• We investigated the impact of uncertainty in decision-
making and the importance of how to represent the time
dimension (i.e., duration and activation (response) time)
when scheduling flexibility assets and services as well
as how uncertainty is resolved in optimal scheduling
model.

• A new quality measure is introduced to evaluate the sig-
nificance of representing uncertainty about availability
of the usage in different assets, with a focus on reactive
power.

• The impact of uncertainty and time when scheduling
each flexibility asset is examined by applying two vari-
ants of our optimal scheduling model.

Our evaluations use both this new quality measure and tra-
ditional ones such as theValue of the Stochastic Solution [30].

The paper is structured as follows. Section II discusses the
concept and the different flexible assets. Section III describes
the mathematical model. Section IV explains the representa-
tion of stochasticity and scenario generation. Section V intro-
duces a case study from Norway and the results of optimal
scheduling. Section VI explains quality measures and the
impact of how uncertainty is represented with regard to the
activation time and the duration characteristics of the flexible
assets.

II. FLEXIBILITY ASSETS AND SERVICES
Our study includes two primary demand-side flexibility
resources: demand response in terms of load curtailment and
load shifting; demand response in terms of storage.

A. DEMAND-SIDE FLEXIBILITY SERVICES-
LOAD SHIFTING AND CURTAILMENT
Load curtailment is defined as a reduction in the maximum
load (peak shaving) for a predefined duration and payment
for a prosumer/consumer. As a flexibility asset, load curtail-
ment is prepared for immediate use by the central system
operator. The cost of using load curtailment could be too
high in some circumstances and therefore the duration of this
asset is less than other assets. However, the response time is
shorter than that of other measures due to an immediate cut
in consumption.

Load shifting differs from load curtailment in terms of cost,
duration, and activation time. The main condition for shifting
any flexible load is that it is possible to meet total demand
after the shift. An SO or asset owner could shift the consump-
tionwithin a time interval for specific load volumes. The load
profile can be changed, but the total energy delivered over the
planning horizon must be preserved. Alternatively, the whole
load profile can be shifted. In this paper, we discuss the first
approach with load preservation within a planning horizon.
For a further discussion of the load shifting, see [31].

The duration and response time of load shifting, time
dimensions illustrated in Fig. 1, are important attributes
concerning its timing. The provision for flexibility through
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load shifting needs careful consideration, as it must include
enough time to shift the volume as well as to meet the total
power demand. Moreover, the load shifting should remain
in the solution process for sufficient time for cost-efficient
solution (duration).

Demand-side flexibility assets such as load shifting and
load curtailment include uncertainty about their duration
response time and load amount. Any changes in the time
dimensions of these assets will also change the degree of
uncertainty during the flexibility usage for grid problems.

B. STORAGE FLEXIBILITY- BATTERIES
The use of batteries allows for flexibility without incurring
any operating costs. The reactive power compensation capa-
bility of PV inverters can be used to regulate the voltage
magnitude [32]. In this paper, we discuss only active power
sourced from batteries.

Batteries are flexible with respect to timing and managing
uncertainty. An SO can plan exactly how long a battery
should remain in flexibility usage process and batteries can
be activated whenever the SO needs them to provide power.

C. SYSTEM ARCHITECTURE
Our proposed power system architecture has a central SO
that can procure flexibility services from flexibility assets
connected to an LV grid within limits defined by bilateral
contracts with the asset owner. The contracts specify how
the load can be shifted or curtailed within predefined limits
and how batteries can be used to address grid operational
issues. The central SO procures flexibility from the FSPs at
a pre-agreed cost that reflects the batteries’ disutility. The
assets are located in residential areas, but the flexibility is
controlled by the operator. The architecture of the suggested
solution is shown in Fig. 3.

FIGURE 3. Proposed power system architecture.

1) COSTS OF FLEXIBILITY ASSETS
In the studied case from Norway, load curtailment is a vol-
untary action. Therefore, the cost is set at 1500 EUR/MWh,
which is lower than the normal value of lost load (VoLL).
The disutility cost [31] used for load shifting is shown as a
piecewise-linear cost curve. The shifting is based on volun-
tary actions and therefore the cost is assumed to be lower than
the VoLL, but it will increase with volume.

FIGURE 4. Piecewise-linear cost curve with four increments.

The disutility cost curve for load shifting includes four
increments and five breakpoints on the cost curve, as pre-
sented in Fig. 4. Breakpoints in the cost function, as well as
other details, are defined based on studies of variable costs of
end-user appliances [33], [34].

III. MATHEMATICAL MODEL: STOCHASTIC TWO-STAGE
AC OPTIMAL POWER FLOW
In this section, we present the stochastic two-stage AC-OPF
model with demand-side and storage flexibility. The back-
ground information on load shifting was sourced from [31],
whereas the AC-OPF model is based on the work of [35].
For comparison, both in terms of solution times and solution
quality, we consider an AC formulation and an alternative DC
relaxation formulation of power flow for the second-stage of
the stochastic model.

We used a two-stage stochastic program to model the
uncertainty in demand and prices [36]. The two stages,
the uncertainties, and the decision-making process are all
shown in Fig. 5. In the first 10 periods, all scheduling and
load/supply balances are performed without knowing which
of the scenarios will occur at t = 11 hence without knowing
the realizations of load and prices from that point until the end
of the problem’s time horizon. Before t = 11, the parameters
such as load and prices are deterministic. At t = 11 one of
the scenarios will be realized and scheduling of flexible assets
will be scenario-contingent from thereon. The main purpose

FIGURE 5. Two-stage decision-making structure with uncertainties.
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of the stochastic program is to minimize the expected costs
for all periods, considering the uncertainty process.

A. OBJECTIVE FUNCTION
The objective function in (1) aims to minimize the total sys-
tem cost. There are four terms in the expression. The first two
represent the deterministic first-stage decisions. The third and
fourth terms represent exactly the same costs in the second
stage and therefore variables are scenario-dependent, indexed
by s, and the terms are multiplied by probability Rs. The
first term includes the cost of electricity imported from the
medium-voltage (MV) grid. DP+g,t , DP

−
g,t are active power

import and export from external grid and βt is the electricity
price. The second term consists of the active power load
curtailment Pshedi,t as well as the cost of load shifting at time t
in bus i, Ci,tshift .

minimize
∑
t∈T

∑
g∈G

[
DP+g,tβt + DP

−
g,tβt

]
+

∑
i∈I

∑
t∈T

[
VoLL ∗ Pshedi,t + Ci,tshift

]

+

∑
s∈S

Rs

∑
t∈T

∑
g∈G

[
DP+s,g,tβs,t + DP

−
s,g,tβs,t

]

+

∑
i∈I

∑
t∈T

[
VoLL ∗ Psheds,i,t + Cs,i,tshift

]]
(1)

B. CONGESTION CONSTRAINTS
To prevent grid congestion, the equation 2 is added to the
optimization problem with active power flow AF2

s,t,i,j, reac-
tive power flow RF2

s,t,i,j and upper limit of the line usage,
S2ij , between buses i and j.

AF2
s,t,i,j + RF

2
s,t,i,j ≤ S

2
ij (2)

In the variant model with DC power flow, grid congestion
is modeled in (3). The equation provides an upper limit for
active power flow between buses i and j. The impacts of
equations (2) and (3) are discussed in Section VI.

AFs,t,i,j ≤ Sij (3)

C. IMPORT AND EXPORT CONSTRAINTS FROM AN
EXTERNAL GRID
These import and export constraints in equations (4) and (5)
represent the imported active power, Ps,g,t , and imported
reactive power, Qs,g,t , from the external grid. In our case
study, the external grid is connected to the first bus in the
LV grid and can be considered as a source of an external
flexibility asset.

Ps,g,t = DP+s,g,t − DP
−
s,g,t (4)

Qs,g,t = DQ+s,g,t − DQ
−
s,g,t (5)

D. POWER FLOW CONSTRAINTS
The AC power flow constraints enforces the active and reac-
tive power balance at each bus in the LV grid for voltage
regulations, Vs,i,j,t , at each bus.

AFs,i,j,t = V 2
s,i,tYijcosθs,ji
−Vs,i,tVs,j,tYijcos

(
δs,i,t − δs,j,t + θs,ij

)
(6)

RFs,i,j,t = V 2
s,i,tYijsinθs,ji
−Vs,i,tVs,j,tYijsin

(
δs,i,t − δs,j,t + θs,ij

)
−
bV 2

i,t

2
(7)

In some the following formulations we use a DC optimal
power flow equation in case we want to see the impact of
uncertainty on just the active power balance (without consid-
ering voltage regulations):

AFs,i,j,t = Bi,j
(
θs,i,t − θs,j,t

)
(8)

E. LOAD BALANCE CONSTRAINTS
For each bus in our grid topology, equations (9) and (10) rep-
resent net demand, including flexibility for active and reactive
power from all flexibility assets in the grid. In equation (9),
we obtain active power from batteries, demand-side assets
and services, and the main grid. In equation (10), we obtain
reactive power from demand-side assets and the main grid
only. The last two equations (11 and 12) show the upper and
lower limits of purchases from the MV grid.

AFs,t,i,j =
∑
g∈Gi

Ps,i,g,t +
(
Pdiss,i,t − P

chr
s,i,t

)
+Pshifts,i,t,tshift − L

p
s,i,t + P

shed
s,i,t (9)

RFs,t,i,j =
∑
g∈Gi

Qs,i,g,t

+Qshifts,i,t,tshift + Q
shed
s,i,t − L

q
s,i,t (10)

Pming ≤ Ps,t,g ≤ Pmaxg (11)

Qming ≤ Qs,t,g ≤ Qmaxg (12)

F. BATTERY CONSTRAINTS
Equations (13)–(16) represent the state of charge (SoC) in the
batteries (SoCs,i,t ), the limits of the SoC, and the maximum
and minimum charging capacities, respectively.

SoCs,i,t = SoCs,i,(t−1) + Pchars,i,t ∗ ηc −
Pdiss,i,t
ηd

(13)

SoCmin
≤ SoC ≤ SoCmax (14)

0 ≤ Pchari ≤ Zi · SoCmax
i (15)

0 ≤ Pdisi ≤ Zi · SoC
max
i (16)

G. LOAD CURTAILMENT CONSTRAINTS
In equations (18) and (19) the amount of load curtailment
is limited by Lps,i,t for active power demand, and Lqs,i,t for
reactive power demand in each bus (the power factor in (17)
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is assumed to be constant at each bus).

Qsheds,i,t = Psheds,i,t tan(θs,i) (17)

0 ≤ Psheds,i,t ≤ L
p
s,i,t (18)

0 ≤ Qsheds,i,t ≤ L
q
s,i,t (19)

H. LOAD SHIFTING CONSTRAINTS
The load shifting formulation is based on [31] and states
that the total load volume could be reallocated in any period

within the planning horizon: tshift ∈
[
tdownshift , t

up
shift

]
⊂ T .

Within tshift , our model is obliged to satisfy all demands at
each bus.

Four equations represent the convex cost function of load
shift, and in Fig. 4 they are depicted as the cost curve. The
reference equation (20) gives the amount of load shifting
(Pshifts,i,tshift ), and equation (21) gives the cost of load shift-
ing (Cs,i,tshift ) as the function equation. The convexity equa-
tion (22) creates a convex combination of auxiliary variables
λs,i,tshift ,k with one of the variable’s immediate neighbors. In a
minimization problem with a convex and piecewise linear
cost curve, such a formulation leads to an exact formulation
without resorting to the formulation of Special Ordered Sets
of type 2 (SOS2) variables. Equation (23) is used to calculate
the load profile balance, which ensures that the shifted load
is energy preserving at the end of the interval. Equation (24)
calculates the shifted reactive power load.

Pshifts,i,tshift =
∑
k∈K

λs,i,tshift ,kL
p
s,i,tσk (20)

Cs,i,tshift =
∑
k∈K

λs,i,tshift ,kL
p
s,i,tσkVCk (21)

∑
k∈K

λs,i,tshift ,k = 1, 0 ≤ λs,i,tshift ,k ≤ 1 (22)∑
tshift

Pshifti,tshift +
∑
tshift

Pshifts,i,tshift = 0,

tdownshift ≤ tshift ≤ t
up
shift (23)

Qshifts,i,t = Pshifts,i,t ∗ tan(θs,i) (24)

where σk represents the percentage of load considered in cor-
respondence of breakpoint k . After exceeding 10% and 90%
respectively of the total load in each bus, different variable
costs and increments in the cost function are activated. Con-
cerning the λs,i,tshift ,k value, reference row increments will be
activated and will give the cost of a load shift according to the
related variable cost, γk . For the 10% shift and 90% shift, are
EUR 10/MWh and EUR 50/MWh respectively based on [33].

I. VOLTAGE ANGLE AND MAGNITUDE LIMITS
The following equation (25) gives the magnitude limits for
voltages:

0.9 ≤ Vs,i,j,t ≤ 1.1 (25)

IV. STOCHASTICITY AND SCENARIO GENERATION
The main analysis is performed with a two-stage stochastic
model in which load and electricity power prices are deter-
ministic to describe scenarios representing the second-stage
uncertainty, a scenario generation algorithm based on a
combination of forecasting and moment-matching of resid-
uals [37], [38] is used. This is similar to the approach
used by [39]. Our method, which is based on articles by
[37]–[39], collects the historical data, establishes (parame-
terizes) an autoregressive forecast model for load in the buses
and prices, and combines estimated realizations for these into
a scenario tree representing the realizations.
Probability distributions for the errors (residuals) in the

load and price forecasts are used as a basis for model-
ing the uncertainty. For each error distribution, we estimate
moments such as mean, variance, skewness, and kurtosis.
Next, we use an algorithm for moment-matching scenario
generation to estimate joint error distributions for prices and
the 80 buses for all periods in the second stage. The approach
captures both temporal correlations (through the forecasts)
and inter-variable correlation (through the moment match-
ing). The main feature of the scenario generation algorithm
is to combine the time series information for the load in the
80 buses and price with the generated error distributions from
the moment matching, thus enabling us to capture both the
time correlation and inter-variable correlation. The scenario
generation method is convenient to use in short-term scenario
tree constructions [40], as described in the following six
steps:
Step 1: Forecast the load in each bus. For each bus, use an

Nth order, AR(N)-process to forecast load:

L̂t+1 = α +
N∑
m=1

φmLt+1−m + εt+1 (26)

where Lt+1 is the historical load data, L̂t+1 is forecasted load
level, εt+1 is the residual or prediction error and φm and α are
AR(N)-process coefficients. This is parameterized based on
historical data.
Step 2: Calculate the historical residuals of the forecasted

parameters. This residual distribution will be the basis for all
scenarios in all periods as the error processes are stationary.
Step 3: Calculate the statistical properties of the error

distributions. Calculate the mean (ε̄t+1 ∼), variance
(Var(εt+1 ∼)), skewness (Skew(εt+1 ∼)), and kurtosis
(Kurt(εt+1 ∼)) and correlations between the residual series
(Corr(εt+1))
Step 4: Create a joint error distribution. It should be noted

that this is valid in all periods because the errors are station-
ary. Use Høyland et al.’s moment-matching algorithm [37]
to create a discrete joint scenario tree with error distribution
for price and load in all the buses. The joint distribution
approximates the four moments and correlations using s out-
comes for the residuals (εst+1). In our case, the number of
scenarios in the distribution is s = 80. The spatial (inter-
variable) correlations of variables in scenarios are captured by
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the moment-matching algorithm. It should be noted that our
algorithm captures the correlation of forecast model residu-
als, not the variables themselves.
Step 5:Create the first stage of the scenario tree. A scenario

tree can be made by first using the forecasting methods
directly for the first t1 periods in a rolling window approach
where in if t is the last observed period and t + 1 is the first
forecasted period, we will have

L̂t+1 = α +
N∑
m=1

φmLt+1−m (27)

Then, proceed with

L̂t+2 = α + φ1L̂t+1 +
N∑
m=2

φmLt+2−m (28)

until

L̂t+t1 = α +
N∑
m=1

φmL̂t+t1−m (29)

Step 6: Create the second stage of the scenario tree. For
each second stage scenario s, we follow the same procedure,
but, add the term εst , which is a sample of the error in period
t used in scenario s. It is sampled from the s outcomes from
Step 4 (without replacement), such that all S outcomes are
used in a scenario within a period. This is then repeated for
t = t1, . . . , t2. The variables in each of the second stage
scenarios can then be represented as

L̂st+1 = α +
N∑
m=1

φmLt+1−m + εst (30)

L̂st+2 = α + L̂
s
t+1 +

N∑
m=2

φmLt+2−m + εst (31)

until

L̂st+t2 = α +
N∑
m=1

φmL̂st+t2+1−m + ε
s
t (32)

where s = 1, . . . , S.
Without loss of generality, the above assumes that m ≤ t1

and m ≤ t2.
In our research, we parameterize 17 different (S)ARIMA

loadmodels, one for each bus in the grid. The same procedure
is used to generate separate scenarios for the grid power
price. Thereafter, the load and price scenarios are combined
randomly, so that on expectation the expected correlation
between the load and price is zero. We generate 80 joint
scenarios for loads at every bus and the grid price. We capture
the spatial correlation of model residuals because the load
profiles of each variable are located in the same place, and
they have similar time-series patterns. Furthermore, variables
do not affect the national grid prices. Our model calculates
in-sample accuracy simultaneously while generating scenar-
ios at out-of-sample.

V. CASE STUDY FROM SOUTHERN NORWAY
In this section, we analyze the results of our case study of
the islands that constitute Hvaler Municipality in southern
Norway, in January 2016. The municipality has approxi-
mately a population of 4100, in 2016, whereas on warm
summer days there can be ca. 40,000 people due to the
number of second homes [41]. Consumers locate in the area
are commercial buildings, two- to four-family houses, and
Norwegian holiday homes. In addition to the second homes,
there are two-family and to four-family residential buildings
and commercial buildings.
The 22kV and 230V radial grid structure in this study is

synthetically generated based on Hvaler Municipality, and it
contains 26 buses, of which 17 buses have electricity demand
and they represent households. The network is an LV grid and
therefore we expect to see voltage problems and congestion.
The radial topology of the grid is presented in Fig. 6. Red
buses are end users with demand-side flexibility capacities.
The first bus is the connection point to the MV grid with a
transformer. Therefore, possible congestion might occur on
the line between buses 1 and 26.

FIGURE 6. Radial grids structure based on Hvaler Municipality.

The anonymous data and demand-side flexibility parame-
ters were provided by a distribution system operator (DSO).
The data are observations of the grid participants and include
the load profiles of 17 end users from January 1, 2014 to
December 31, 2016. We used MATPOWER1 to conducted
power flow analysis in order to identify existing voltage and
congestion problems on a predetermined day. Based on power
flow analysis, the active and reactive power demands from
each bus are represented in Fig. 7 and Fig. 8, respectively.

There are five batteries with 14 kW capacities connected to
buses 6, 10, 13, 18, 23 (battery sites). In cases of immediate
load curtailment, the system operator pays the VoLL to end
users.

We use two main approaches in this research for opti-
mal scheduling of flexibility assets. First, by using histori-
cal data, we solve a deterministic AC-OPF problem. Later,

1https://matpower.org/
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FIGURE 7. Fixed active power demand from each bus (MW).

FIGURE 8. Fixed reactive power demand from each bus (MVAr).

FIGURE 9. Congestion level on the predetermined sample day (hourly) in
the case study.

to observe the impact of uncertainty in load and prices,
we apply the two-stage stochastic AC-OPF model. The prob-
lems are solved using KNITRO and GAMS on a computer
with Intel(R) Core(TM) i7-7500U processor at 2.70GHz and
with 16GBRAM. The total run time for the deterministic case
is 33 seconds, and for the stochastic case is 15 minutes.

A. GRID PROBLEMS
1) CONGESTION PROBLEM
Congestion in an LV grid results from pushing the physical
limits of network lines, such as voltage limits, stability limits,
and thermal limits [42]. The level of congestion in the case
study on the predetermined sample day is presented in Fig. 9.

2) VOLTAGE VARIATIONS
If there is insufficient reactive power from system partici-
pants, a voltage variation problem will occur [42]. In our case
study, the problem was a voltage drop due to high demand on
the sample day (see Fig. 10).

FIGURE 10. Voltage profiles on the sample day (hourly) in the case study.

B. DETERMINISTIC RESULTS
For the deterministic part of our study we used a single sce-
nario AC-OPFmodel to schedule flexibility assets to keep the
voltage within the required interval. In equations (6) and (7)
buses are kept within the voltage interval, and grid congestion
at the MV/LV transformer is prevented with Eq. (2). The
results of the imported power from the MV grid, the state of
charge (SoC) of the batteries, and the load shifting amount
are respectively presented in Fig. 11, Fig. 12, Fig. 13.

FIGURE 11. Power from the main grid (MWh).

FIGURE 12. Battery SoC in the deterministic solution (MWh).

1) DISCUSSION OF DETERMINISTIC RESULTS
The deterministic case observes a significant impact of flex-
ible assets when managing peak load hours. The main obser-
vation from Fig. 11 and Fig. 12 is that the feed from the main
grid is used for charging batteries until 06:00 in the morn-
ing. Until peak hours start, the batteries are fully charged.
As shown in Fig. 9, heavy congestion starts at 06:00. Between
06:00 and 21:00, load shifting is used to resolve voltage and
congestion problems (see Fig. 13).
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FIGURE 13. Load shifting in the deterministic solution (MWh).

FIGURE 14. Load factor in the grid for 80 scenarios.

FIGURE 15. Battery state of charge at the first stage of AC-OPF (MWh).

C. STOCHASTIC RESULTS FOR WINTERTIME
The stochastic case includes 80 scenarios at the second stage
for loads and prices. The results of the scenario genera-
tion are presented in Fig. 14 as load factor in the grid,
i.e.,

(
peak load

max. poss. load

)
, with an assumption of constant maxi-

mum load for every bus.
In the stochastic case, theAC-OPFmodel with all scenarios

provides different results from the deterministic case. The
peak period or increase in demand starts at 06:00. During the
first stage of our AC-OPF model, the observations presented
in Fig. 15 show that batteries are charging themselves from
the main grid, and load shifting occurs at the same time
(Fig. 16).

For the second stage, starting at 10.00, we observe load
shifting (Fig. 17), load curtailment (Fig. 18), and battery
power (Fig. 19). All these assets are contribute to grid
operations.

1) DISCUSSION OF STOCHASTIC RESULTS
The 80 scenarios at the second stage of our AC-OPF model
represent different paths in our LV grid. The results contain
individual scenario responses to the uncertainty in load and

FIGURE 16. Load shifting at the first stage of AC-OPF (MWh).

FIGURE 17. Load shifting at the second stage of AC-OPF (MWh).

FIGURE 18. Load curtailment at the second stage of AC-OPF (MWh).

FIGURE 19. Battery state of charge at the second stage of AC-OPF (MWh).

price levels. Similar to the deterministic case, we observe that
batteries are charging until 06:00 and discharging after that
(see Fig. 19) In addition, we also see load shifting in the active
and reactive power balance at the first stage Fig. 16.

In the second stage, the discharging process in the bat-
teries to provide active power to the grid can be observed
(Fig. 19), The load shifting shown in Fig. 17 shows different
load patterns between peak hours (06:00–21:00) and off-peak
hours (after 21:00). Moreover, load curtailment is observed
(see Fig. 18). Although it is not substantial at each hour,
it increases the cost of the solution compared with in the
deterministic case.
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The use of load curtailment is related to the interval used
for load shifting. Load shifting is available between peak
load hours, 06:00 to 21:00, and spans both stages. When the
applied model cannot shift enough load to off-peak hours,
the next option is to curtail the load. The difference between
the deterministic and the stochastic cases will become more
visible during the use of load curtailment. When uncertainty
both occurs and is non-negligible, the system will require
additional flexibility assets and services (i.e., additional to
batteries) in order to fix voltage drops and congestion prob-
lems, such as load curtailment and shifting. In the next
section, we discuss the relationship between uncertainty,
time, peak loads, and reactive power.

VI. THE IMPACT OF UNCERTAINTY AND TIME
In this section we study the effect of time structures on our
model’s solution. Wemeasure the effect of varying time char-
acteristics of demand response assets. Moreover, we inves-
tigate how the timing of uncertainty is resolved and affects
flexible scheduling.
The value of the stochastic solution (VSS) measures the

expected difference between using the deterministic model
(replacing uncertainty with expected values) and the stochas-
tic model when the stochastic model is considered the true
model. We calculate the expected value of the expected value
solution (EEV). We start by replacing all stochastic variables
with their mean and solve the deterministic model. The EEV
will be the expected value of using this deterministic first
stage solution in the true stochastic model, and the corre-
sponding optimal second-stage responses are calculated. VSS
is the difference between the optimal solution value for the
stochastic model (recourse problem-RP) and the EEV [30].

Besides VSS, we define another measure in order to dis-
cuss the impact of uncertainty related to the relevance of
modeling reactive power: deviated value of stochastic solu-
tion (DVSS). To calculate DVSS, we first need to model an
AC/DC model that is a two-stage OPF model with AC-OPF
first stage andDC-OPF second stage. For this purpose, we use
equation (8) instead of equation (6). As is the case with VSS,
we start to calculate DVSS first by solving the AC/DC model
(model M1). Then, we solve the AC/AC model with fixed
first-stage decision variables (model M2) corresponding to
M1. Next, we solve the regular AC/AC model (model M3)
and calculate DVSS as the difference between the objective
function values of models M3 and M2. If DVSS is small
enough, it will be possible to use the two-stage AC/DC
model and obtain faster results, also allowing for decom-
position methods, such as Benders’ decomposition method
(e.g., [43]), and utilizing the fact that the second stage is
convex.

Furthermore, to see the relationship between the recourse
actions, load shifting/curtailment, and uncertainty in load and
prices, we apply amoving intervalmethod to study load shift-
ing. The availability interval of the load shifting changes in
every instance of a problem in themoving interval. The begin-
ning of the load shift interval changes between 01:00 and

10:00, but we keep the end of the interval at 24:00 as a fixed
point, as shown in Fig. 2.

Furthermore, we investigate the VSS and DVSS values
for two different instances in order to observe the impact on
flexibility assets individually. In Variant 1, we use both types
of flexibility assets (i.e., demand-side flexibility and storage)
simultaneously in the solution process of the grid operations.
Table 1 presents the changes in the values for VSS and DVSS
as a result of a change in the uncertain parameters.

VSS increases in particular instances when load curtail-
ment is a major part of the EEV, since the deterministic
solution is not able to meet the load in some scenarios, mainly
after 05:00. For both EEV andRP, the cost of load shifting and
the cost of purchase from the main grid to charge batteries are
almost the same. The main cost difference between RP and
EEV is due to load curtailment. The SO activates the load
curtailment if there is not enough time to shift the load in the
available time interval for load shifting, thus demonstrating
the importance of load shifting interval width. When the load
shifting interval is too short, the applied model needs to shed
load to deal with load uncertainty. The opposite case is also
true: if the load shifting time interval is long enough, the cen-
tral optimizer will not need to activate load curtailment and
the cost of flexibility procurement will be lower than using the
deterministic solution, hence the VSS will be lower. In that
case, the value of using the stochastic model will be higher
when solving a problem in which there is less flexibility.

DVSS measures the error of using the AC/DC model
instead of AC/AC. When this value is small enough, it is
possible to use AC/DC approximation instead of the AC/AC
model. Table 1 shows that, as in VSS, DVSS is mainly
impacted by load curtailment. In this case though, when
the load shifting interval is longer, the value of using an
AC/AC model will increase, and the AC/DC approximation
will not represent the flexibility adequately. It is important to
represent the AC power flow to utilize flexibility efficiently.
The difference between the two approaches indicates the
importance of reactive power and the impact of uncertainty.
Similar to the VSS results, the DVSS results indicate that to
fix voltage problem or insufficient reactive power problem at
the grid, SO should consider the time of availability for reac-
tive power flexibility resources. Otherwise, reactive power
provision could cost more than usual for the SO due to lack
of the activation time.

TABLE 1. The impact of uncertainty and time in Variant 1.
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TABLE 2. The impact of uncertainty and time in Variant 2.

In Variant 2, we observe that the VSS and DVSS values
change when demand-side flexibility, such as load shifting
and load curtailment assets, is possible. We observe a similar
result without the use of batteries. In the absence of batteries,
that are controllable, demand-side assets such as load shifting
and curtailment provide a solution to grid problems with
regard to their availability time and uncertainty. These results
are presented in Table 2.

In both variants of the case study fromNorway, it is critical
for the quality of the solution that the hour when uncertainty
is resolved (the second stage starts) is within the load shift-
ing interval, rather than at the beginning of the peak load
hours. Then, load shifting will be the only flexibility asset
with a recourse possibility. If the load shifting interval does
not involve a stage break, both VSS and DVSS values will
erroneously indicate that the impact of uncertainty will be
insignificant. For an SO, this will require careful consider-
ation of the time structure of the stochastic model, the related
uncertainty structure, and, importantly, the representation of
time characteristics of the flexibility assets.

VII. CONCLUSION AND OUTLOOK
In this paper we have studied the scheduling of a portfolio
of flexibility assets to solve voltage variation and grid con-
gestion problems in an ADN. The main results indicate the
importance of considering the timing of decisions, the time
characteristics of the flexibility assets, and the represen-
tation of uncertainty in the stochastic AC-OPF model in
this research. Representation of flexibility assets, especially
demand-side flexibility assets, must include information on
duration and activation (response) times for those assets to
have optimal impact on flexibility provision. In order for the
assets to be effective for flexibility provision, the load shifting
interval of an asset must be seen in relation to the time when
uncertainty is resolved.

There are three main observations. First, if the available
load shifting capacity is available in a wide enough time
window to overlap with both the first and second stages of our
model, the stochastic model will be better than the determin-
istic model. Second, the narrower the duration time interval,
the more important the use of a stochastic model will become.
Third, we observe that the greater the amount of flexibility
available in the duration of the load shifting interval, the more
important it will be to use an AC model, also for the second
stage, to capture the value of this flexibility.

Future research topics for optimal flexibility scheduling
under uncertainty might include risk-neutral or risk-averse
actors in a power market setting to investigate the efficiency
of the usage of the flexibility assets for grid operations.
Another approach would be to include the use of active
management technologies such as soft open point, on load tap
changer, and static VAR compensators in an integrated way
with flexibility assets. Furthermore, value could be added by
including the customer’s perspective in a market design in
cases where more solar power and wind power are available.
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