
Machine Learning-based Update-time Prediction for
Battery-friendly Passenger Information Displays

Peter Herrmann, Ergys Puka
Norwegian University of Science and Technology (NTNU)

Trondheim, Norway
{herrmann,puka}@ntnu.no

Tor Rune Skoglund
FourC AS

Trondheim, Norway
trs@fourc.eu

Abstract—Personal Information Displays (PID) at bus stops
help making the usage of public transport more attractive. If
no electric grid is nearby, however, the installation of PIDs is
very expensive due to the high wiring costs. To resolve this
issue, the partners of the R&D project IoT-STOP develop a
novel PID system that will be independent from the access
to power lines. The system uses e-papers as displays that can
be accessed using a cellular network. To prevent long, energy-
intensive idle listening, the network receiver operates only when
the passenger information, in particular, the Expected Times of
Arrival (ETA) of the buses, is updated. Between two updates,
the receiver is switched off such that adjustments after sudden
events are not possible. Therefore, the update periods have to
be carefully selected. In this paper, we introduce a predictor
that estimates time intervals between updates. Our method is
based on linear regression using samples of previous bus rides to
forecast arrival times. Its predictions are applied by an algorithm
to detect areas during the journey of a bus at which its ETA at
a later stop changes with a certain probability. The forecasted
times for passing such areas are then selected to update the PID
at this stop. In addition, we present a number of tests of the
predictor carried out at some bus stops in Bergen, Norway. The
results show that the proposed method indeed predicts sensible
update times of the PID systems.

Index Terms—battery-driven passenger information display;
e-paper; update prediction algorithm; linear regression;

I. INTRODUCTION

Providing public transportation users with sufficient real-
time information is helpful to make this mode of transport
more attractive [1]. That holds particularly for major disrup-
tions like heavy delays of a bus1 [2]. Nowadays, many Public
Transport Authorities (PTA) offer mobile phone applications
and dedicated web-pages that, amongst others, inform a user
about the Expected Time of Arrival (ETA) of a bus at a
certain stop [3]. Many users, however, prefer fixed real-time
Passenger Information Displays (PID) at the stops to both,
mobile solutions and classical paper-based timetables [4]. The
likely reason is that it is easy and quick to figure the next
arriving buses and their ETAs out on the display. In contrast,
starting an application takes time and may cause some trouble
in harsh weather conditions resp. when the user has no hands
free or wears gloves.

This work is supported by Innovation Norway within the R&D project
IoT-STOP.

1Throughout this paper, we refer to buses but, of course, our method works
also for other modes of transport like trains and trams.

On the other side, passengers are not ready for a significant
increase of the ticket fare to finance the use of PIDs and
other means of information. A study presented in [5] reveals
that only 30% of the interviewed passengers are willing to
pay 0.60C more for a ticket in order to get better traffic
information. This is contrary to the fact that the installation of
PIDs is often quite expensive. We interviewed several PTAs
in Norway and found out that providing a bus stop with a
traditional monitor-based PID affords an investment of around
2,500C. In addition, the connection for the power supply has
to be arranged which can be as much as 100,000C when there
are no electric power lines nearby. Further, the maintenance
cost of a system has to be considered as well. Therefore, it is
no surprise that only about 2% of the approximately 115,000
bus stops in Norway are equipped with fixed PIDs.

The consortium of the R&D project IoT-STOP2 intends to
alleviate the connection costs by developing a PID system
that is independent from the electrical grid. It is based on
batteries and uses e-papers [7] as displays. This novel screen
technology has the great advantage that power is only used
when the display is changed but not in between.

Another major consumer of power is the idle listening for
incoming network messages [8]. By switching the network
receiver off between two transmissions, however, we can
disburden this power usage significantly. Yet, the temporary
shutdowns of the receiver pose the risk that, in the meantime,
sudden issues like heavy delays might occur about which the
passengers cannot be promptly informed. Thus, the selection
of useful update times is crucial. To tackle this problem, we
developed a machine learning-based predictor of update times
for PIDs, that is the contribution of this paper.

The article is structured as follows: We sketch the developed
PID system in Sect. II. Thereafter, we introduce the basic
structure of the predictor for update intervals in Sect. III.
This is followed by a discussion of linear regression, the
selected machine learning technology, and its use to forecast
ETAs in Sect. IV. Next, we present an algorithm applied to
determine useful update times of the PIDs in Sect. V. Using

2The IoT-STOP consortium consists of the software development company
FourC [6] (project leader), the university partner NTNU, the major communi-
cation provider Telenor, as well as the Norwegian PTAs Skyss and Kringom.
The project is supported by Innovation Norway within the Environment
Technology (Miljøteknologiordningen) program.

Fig. 1. Demonstrator of an e-paper-based PID.

Fig. 2. Architecture of the planned PID-system.

a simulator for the PID system, we tested different variants
of the update time prediction functions. The results of these
tests are introduced and discussed in Sect. VI. The article
is completed by a look at related work in Sect. VII and a
conclusion with an outlook about future activities in Sect. VIII.

II. A SKETCH OF THE PID SYSTEM

Modern e-papers [7] are realized using electrophoretical
particles that are dispersed in a highly viscous liquid. For each
pixel, a cell containing this alloy is placed behind a transparent
panel. By imposing an electrical field on the alloy, the particles
are either sponged towards the panel or away from it. In
consequence, the optical refraction is changed and the pixel
appears black or white. One can also use two different kinds of
electrophoretical particles that react with a different intensity
on the electrical field. That makes it possible to display a third
color, mostly red. Thanks to the high viscosity of the liquid,
the particles remain stationary if no electrical field is imposed.
Thus, an e-paper only needs power when changes are made.
That makes it suited to the purposes of the R&D project IoT-
STOP. Figure 1 depicts a small e-paper used as a demonstrator
of a PID system in a pre-project of IoT-STOP. It shows the
arrival times of various buses at a bus stop in Trondheim,
Norway. ETAs in red indicate real-time-based arrival times
while those based on the timetable are outputted in black.

TABLE I
POWER CONSUMPTION EXPERIMENTS

Component Activity Consumption
Controller (5.0 V) normal 46 mA
Controller (3.3 V) normal 25 mA

E-paper
sleeping 0 mA
update (mostly) 2 mA
update (peek) 3 mA

Receiver (5.0 V)
initialization 120 mA
normal 85 mA
power-down 88 mA

Receiver (4.3 V)
initialization 140 mA
normal 100 mA
power-down 100 mA

The architecture of the overall system is depicted in Fig. 2.
The local PID-system at a bus stop is linked with an IoT
Cloud service offered by Telenor using Narrowband-Internet-
of-Things (NB-IoT) [9], a variant of the cellular network
standard LTE. Due to the good cellular network coverage of
most public roads in Norway (see [10], [11]), NB-IoT allows
us to place PID systems nearly everywhere. A central server
prepares the data to be displayed as well as the planned time
for the next update and sends them to the PID controller via
the IoT cloud service. The link to this service is performed
using a standard IoT protocol like MQTT [12].

The component introduced in this paper is the predictor that
calculates the update intervals. It will be connected with the
central server using a REpresentational State Transfer (REST)
API. Both, the server and the predictor fetch the necessary
ETA data of relevant buses from the open data source provided
by Entur [13]. This service offers real-time traffic data from
most public transport providers in Norway.

The PID system residing locally at a bus stop, consists of
at least one e-paper, a chipset controlling the system, and an
NB-IoT receiver. For the power supply, high capacity batteries
are used but we also consider power generation technologies
like solar panels or wind-based generators (see [14]).

As already mentioned, the idle listening of network re-
ceivers, which is necessary to fetch the input from remote
peers, is an important consumer of the scarce energy supplies
of small devices [8], [15]. To get evidence, we conducted
tests for a version of the demonstrator using the type of e-
paper shown in Fig. 1, the well-known Arduino board, and
an NB-IoT device that is based on a SIMCOM SIM7000E
chipset. Both boards were tested with different voltages. The
results are listed in Tab. I. One can easily see that the energy
consumption of the e-paper is negligible. More relevant is the
energy consumption of the board. Instead of using an Arduino
or the Raspberry Pi, we applied for our functional tests in the
pre-project, the final system will therefore be based on a more
energy-efficient board from Atmel.

By far the most dominating power user, however, is the
SIMCOM7000E chipset that, depending on the used voltage,
requires between 85 and 100 mA in normal operation. Power-
ing this chipset down needs nearly no additional power while
the (re-)initialization, that lasts for approximately 12 seconds,

TABLE II
UNNECESSARY WAKE UP PERCENTAGES USING A SIMPLE ALGORITHM

Bus stop name Updates Unnecessary
per day updates

Hesthagen 1160 1.5%
Flakkråa 666 37.2%
Solbakken bru 242 54.2%

demands around 40% more. That makes it worthwhile to
power the device down if the waiting time between two
updates is at least 40 seconds. Technically, this is done by the
controller which starts the shutdown directly after completing
a transfer. Using the update interval received with the previous
update data, the controller then re-initializes the receiver
around 15 seconds before the next update is planned, such
that it will be ready in due time.

III. PREDICTING SLEEPING TIMES

Determining suitable update times of a Passenger Informa-
tion Display (PID) system needs to address two main concerns:
• Passengers want to be promptly informed about changes

of the Expected Times of Arrival (ETA) of their buses,
in particular, if the adjustment is major. We consider
an update as major if the ETA changes by at least two
minutes. Most critical, however, is to prevent that overly
large delays are displayed until shortly before the bus
arrives. This is necessary to avoid that passengers leave
the bus stop temporarily, since they expect a major delay,
and thereby miss the bus.

• Public Transport Authorities (PTA) like to minimize the
power consumption in order to avoid replacing the bat-
teries too often. To achieve that, it is crucial to minimize
the number of unnecessary wake ups, i.e., restarting the
receiver for a new message that does not contain any ETA
adjustments at all.

The two aspects are conflicting since by using shorter update
intervals, the promptness of the display is increased but usually
at the cost of more unnecessary wake ups.

During the pre-project, we tested three bus stops in Trond-
heim, Norway, for the percentage of unnecessary wake ups.
For that, we used a simple algorithm which determined the
update time intervals tu depending on the ETA tfb of the first
bus, as follows (in minutes):

tu =


1, if tfb ≤ 25

5, if 25 < tfb ≤ 65

15, if 65 < tfb ≤ 135

60, otherwise.

The results are depicted in Tab. II. Hesthagen is an extremely
busy station close to the city center that, besides of many
residential areas and businesses, serves the main campus of
NTNU. In average, we measured 1160 wake ups per day which
shows that buses arrive nearly continuously. Having to deal
with so many buses leads to constant adjustments of the ETAs
which explains the tiny fraction of unnecessary wake ups. In

contrast, Flakkråa is a station outside the city with moderate
traffic of one or two buses an hour. In consequence, the number
of updates is significantly lower but more than a third of them
were unnecessary since they did not show any ETA changes.
Finally Solbakken bru is a remote bus stop in a rural area from
which only few buses leave every day. Our algorithm led to
far too many wake ups since more than every second one was
unnecessary.

The test results show that the algorithm is adequate for busy
bus stops but leads to an excessive number of unnecessary
wake ups at stops with moderate or low traffic. However, since
such stations are often in rural areas without easy access to
electric grids and therefore predestined for our PID system, a
better method to determine sleeping time intervals has to be
found.

We use a method based on machine learning to detect when
major changes of the displayed ETAs are to be expected.
Unfortunately, we could not resort to the delay predictor used
in the real-time service of Entur since it is a public nationwide
service with limited options to reveal specifics of their internals
to third parties. Therefore, we developed an own solution to
forecast ETAs. For that, we use the planned and effective
arriving and leaving times of a selected line operated by our
project partner Skyss in Bergen, Norway.

We utilize around 70% of the collected data samples for a
route towards a bus stop sPID, at which the PID system is
installed, to train models using the relatively simple machine
learning technique linear regression. The created models corre-
spond to functions fi that describe the forecasted ETA at stop
sPID when the bus passed on its way towards sPID all stops
from its starting point s1 to si. For that, fi takes the effective
leaving times from these bus stops as arguments. Assuming
that stop sPID is the n + 1-st stop, i.e., sPID = sn+1, we
produce the functions f1, . . . , fn by linear regression.

At next, we use the remaining 30% of the collected samples
for analysis. For each sample, we carry out n − 1 different
analysis runs each reflecting the case that the sampled bus
passed stop su but not yet su+1 when the PID was last updated
(1 ≤ u < n). Thus, at this time, the result of function fu
corresponds with the ETA to be displayed on the PID for our
bus. Now, we check for the particular sample also the results
of all functions fi with u < i ≤ n. The values of fi are then
compared with fu. The difference fi − fu corresponds to the
change of the displayed ETA if the next update is carried out
after the bus has left stop si. If this difference is significant,
i.e., by two minutes or more, a counter cui is incremented.

This procedure is repeated for all ts-many testing samples
such that cui /ts corresponds to the share of all samples
that would have been significantly changed, had the first
update after bus stop su been at si. Thereafter, we search
for the earliest stop sifirst

for which this share exceeds a
certain threshold. By doing that for all stops su, we create a
mapping m with m[u] = ifirst. This mapping reflects that the
likelihood of significant ETA changes at all stations between
su and sm[u] is sufficiently low such that we can abstain from
carrying out updates when passing them. That predominantly

happens if the route in between allows for a relatively uniform
traffic such that gained or lost delays can be easily predicted.
At stop sm[u], the likelihood of significant updates, however,
is large enough such that a new update is recommended. This
is usually the case in areas when obstacles like traffic jams
sometimes slow a bus down but at other times not.

The mapping m can now be applied to predict the time for
future updates. Whenever the central server plans to make a
new update, for each bus b to be depicted on the PID, the
predictor picks the stop sub

that b passed at last. Then the
ETA of b should be updated when it passes bus stop sm[ub].
Using an ETA forecaster, the predictor determines the time
tm[ub], at which b likely reaches this stop. This procedure is
repeated for all buses displayed on the PID, and the earliest of
the calculated time points tm[ub] is used as the time to schedule
the next update. By that, we guarantee that this update takes
place not after any of the buses b passed stop sm[ub].

IV. DELAY PREDICTION WITH LINEAR REGRESSION

Using machine learning methods to create a numeric func-
tion f : Rn → R, that forecasts the arrival times of buses at
bus stops, is called regression [16]. The task is also linear since
a delay of a bus b at the n-th bus stop sn can be calculated
as the sum of n different inputs:
• The initial delay with respect to the timetable at which

the bus leaves the first bus stop s1,
• the n−1 delay differences, i.e., the time interval by which

the delay increases or decrases between the stops si−1
and si with 1 < i ≤ n.

For instance, if a bus leaves s1 with a delay of 10 minutes
but makes up for a minute between two adjacent stops, it will
reach the fourth stop s4 with a delay of seven minutes.

The linear nature of our problem makes it possible to use
the relatively simple and well-performing machine learning
technique linear regression, see, e.g., [17]. It allows us to
predict functions of the following form:

f(x1, . . . , xn) =

(
n∑

i=1

wixi

)
+ b

Here, the values xi ∈ R refer to the various arguments of
the function that are called features. By wi ∈ R, we describe
parameters that weigh the features, while b ∈ R is a fixed
constant called bias.

Like other machine learning techniques, linear regression
uses samples of previously collected real-world data from
which the parameters wi and b can be identified by training.
Usually, 70 to 80% of the samples are used to train the
mechanism while the others are checked against the produced
function to determine its quality. If we utilize ts samples for
training and each sample contains n different features, we form
a matrix X with ts rows and n columns such that (X)k,i
contains the value of the i-th feature of the k-th sample.
Further, for each sample, the result y to be reproduced by
function f is used. From the results of the training samples, a
vector y of the size ts is formed. Here, the value (y)k contains

the result value of the k-th sample. As described, e.g., in [16],
the vector w of the weights wi can be computed as follows:

w = (X>X)−1X>y

Here, X> describes the transposed matrix of X while X−1

refers to its inverse. The bias b can be computed by adding
a new feature xn+1 that for each sample is set to the value
1. Then, b is equal to the computed weight wn+1. Altogether,
the linear regression algorithm corresponds to relatively simple
matrix operations such that, in contrast to more complex
machine learning algorithms, it performs well on computers.

Next, we introduce how linear regression is used to create a
forecast function for ETAs. If tei is the effective leaving time
of a bus from stop si and tti the departure time at this stop
according to the timetable, we define the features x1, . . . , xn+1

for data based on n successive bus stops in the following way:
• The value of x1 ← te1 − tt1 is set to the difference

between the effective leaving time and the departure time
according to the timetable at the initial stop s1.

• For all bus stops si with 1 < i ≤ n, the feature xi refers
to the delay change between passing si−1 and si, i.e.,
xi ← (tei − tti)− (tei−1 − tti−1).

• The feature xn+1 ← 1 is set to the value 1 in order to
calculate the bias b.

Further, we take the different traffic situations under ac-
count. Of course, the likelihood of delays, e.g., during the
morning rush hour tends to be different from that in the late
evening. To consider that, we looked at patterns of the average
delays collected for various bus stops in Bergen and could
identify eight separate phases that depend on the time of the
day. Since the behavior on all five weekdays is similar, we
just differentiate between weekdays in general, Saturdays, and
Sundays. The average daily delay for the different delays is
depicted in Fig. 3. The graphs show that on the weekdays,
we can, indeed, distinguish several separate phases, while the
behavior on the weekend is more uniform. Thus, we define
the following eight phases, the first six of which apply to
weekdays only:

1) Early morning before 06:30,
2) morning rush hour between 06:30 and 09:00,
3) forenoon between 09:00 and 13:00,
4) light rush hour in the early afternoon between 13:00 and

14:30,
5) afternoon rush hour between 14:30 and 17:00,
6) evening after 17:00,
7) Saturdays,
8) Sundays.

To integrate also these phases to the linear regression, we
extended the bias by adding eight features xn+2, . . . , xn+9

each representing one phase. For the sample of a bus trip
taking place in phase p, we assign the value 1 to feature
xn+1+p and 10−11 to the other seven features3. The vector y
is produced by assigning each sample the difference between

3We use the vary small value 10−11 instead of 0 to prevent singular
matrices X which cannot be inverted.

(a)

(b)

(c)

Fig. 3. Average daily delay for (a) weekdays, (b) Saturdays, (c) Sundays

the effective arrival time at sPID and the one according to the
timetable.

Using the n+9 features, we can now produce our forecast
function fn by applying the linear regression method explained
above. The function fn can only predict ETAs if the departure
delay data of the first n stops are available. As discussed in
Sect. III, we cope with the increasing number of features due
to passing further bus stops by creating n different functions
f1, . . . , fn. Thus, when a bus passes a stop si and its departure
time ti from this stop is recorded, we can thenceforth apply
function fi instead of fi−1 such that the newly collected
leaving time ti can also be considered.

As a test, we used around 30,000 samples of bus line

5 operating in Bergen. 70% of them were applied to train
the linear regression to produce the forecast functions f1 to
fn and the rest predominantly for the prediction algorithm
introduced in Sect. V. But, of course, the testing samples can
also be used to analyze the quality of the created functions.
Not surprisingly, the forecasts are more precise if the departure
data of more intermediate bus stops are available. For instance,
we checked the bus stop Sandvikstorget of line 5 towards
Loddefjord terminal. It is the 28th stop of the line such that
we produced the functions f1, . . . , f27 by linear regression
using 21,012 training samples. We define a forecast to be
correct, if the predicted time is within a minute to the effective
arrival. The function f1, that considers only the initial delay
towards the timetable at stop s1, prognosticated 35.9% of the
9,005 testing samples at Sandvikstorget properly. For f9, this
percentage was 52.7% while f18 produced 70.0% and f27, that
considered all stops ahead of Sandvikstorget, 99.9% correct
results. The apparent reason for this improvement is that the
potential for disruptions due to, e.g., traffic jams is diminishing
as closer the bus comes to the bus stop sPID.

V. DETERMINING UPDATE TIME INTERVALS

As already discussed in Sect III, the predictor functions f1
to fn are applied to find out the likelihood that a change after
the bus passes a stop si leads to a significant change of its ETA
at the PID system. We consider two types of ETA changes as
significant:
• A major change occurs when progressing from function

fi−1 to fi leads to a change of the ETA at stop sPID by
at least two minutes.

• A critical change takes place if by the switch between
fi−1 and fi a displayed delay is reduced to a point in
time that already elapsed.

We use Algorithm 1 to produce the mapping m that was
introduced in Sect. III. The mapping specifies that, after
updating the PID when the bus passes stop su, the following
update shall be made at latest when the bus reaches stop si.
However, the values of this mapping heavily depend on the
current traffic situation. Therefore, we create an own mapping
mp for each of the eight phases p introduced in Sect. IV.

Algorithm 1 uses two parameters cm and cc that allow us
to determine the thresholds used to detect bus stops at which
significant changes happen:
• cm determines the threshold for the major changes. It

depends on the percentage csiu/ts of changes of two
minutes or more between su and si and the duration
di from si to sPID. A higher value leads to a stricter
updating policy.

• cc is used to define the threshold for critical changes.
It depends on the share csiu/ts of such changes. Higher
values model a less restrictive updating policy.

We discuss typical settings for the two parameters in Sect. VI.
In the first part of Algorithm 1, we specify the creation of

the statistics variables csiu and cciu that are initialized in the
first two lines. With csiu, we count all samples for which an

Algorithm 1: Using the samples of set Samp in phase
p to compute the mapping mp relating a bus stop su,
after which an update was made, to the next stop si
after which the next adjustment should be made.

Parameters: cm ∈ R and cc ∈ R
1: ∀u ∈ {0, . . . , n− 1}∀i ∈ {u, . . . , n} : csiu ← 0
2: ∀u ∈ {0, . . . , n− 1}∀i ∈ {u, . . . , n} : cciu ← 0
3: for all sam ∈ Samp do
4: for u = 0 to n− 1 do
5: for i = u+ 1 to n do
6: if |fi(sam)− fu(sam)| > 120 then
7: csiu ← csiu + 1
8: end if
9: if fu(sam)− fi(sam) > di then

10: cciu ← cciu + 1
11: end if
12: end for
13: end for
14: end for
15: for u = 0 to n− 1 do
16: mp[u]← 0
17: i← u+ 1
18: while i ≤ n and mp[u] = 0 do
19: if di·|Samp|

csiu
< cm or cciu

|Samp| > cc then
20: mp[u]← i
21: else
22: i← i+ 1
23: end if
24: end while
25: end for
26: return mp

update at stop si leads to a major change, while cciu is used
to tell the upcoming critical changes. The outer loop from
line 3 to 14 specifies that all elements sam of the set Samp

containing testing samples from phase p are considered. By
the middle loop between lines 4 and 13 and the inner one
from line 5 to 12, we guarantee that the counters csiu and cciu
are created for all pairs between a bus stop su and a stop si
reached later by our bus. We use the value u = 0 for the case
that no update was made yet and the PID shows the timetable-
based ETA. The first if-statement between lines 6 and 8 checks
if an update causes a major change. For convenience, we note
by fi(sam) that all features of the sample sam until stop si
are used. The function f0(sam) refers to the arriving time of
the sampled bus at sPID according to the timetable. By means
of the second if-statement from line 9 to 11, we do the same
for the critical cases. Here, di describes the average journey
time of buses between stops si and sPID.

The second part of the algorithm describes the creation of
our mapping mp. For each bus stop passed on the way, we
search the first succeeding stop that exceeds at least one of
the two thresholds cm and cc. The outer loop between lines
15 and 25 assures that all the bus stops su are considered,

after which an update can be made. By u = 0, we specify the
case that the PID still depicts the timetable-based ETA. It is
used since we also want to find out after which bus stop the
first real-time value should be displayed. In the lines 16 and
17, we initialize the mapping mp and the counter i.

As expressed by the while-loop from line 18 to 24, we
analyze the stops si following su until we find the first
one exceeding one of the two thresholds expressed by the
parameters cm and cc. That is specified by the condition of
the if-statement between lines 19 and 23. The then-part models
the case that one of the two conditions is fulfilled. Here,
mp[k] is set to the current bus stop si and the while-loop
is terminated. Otherwise, the counter i is incremented. The
while-loop terminates at latest if i is set to n + 1. In this
case, the value of mp[k] remains 0 describing that no further
update of the ETA has to be made before reaching bus stop
sPID. After finishing the outer loop, the algorithm terminates
by returning the mapping mp.

When an update shall be made, our predictor determines
the sleeping time interval as described in Sect. III. Using the
mapping mp for the current phase p, the current positions su
of all the buses are found out and the candidates smp[u] for the
next update are computed. Thereafter, we use either the real-
time predictor of Entur [13] or our own forecasting functions
fi introduced in Sect. IV to determine the time tmp[u], a bus
is supposed to pass smp[u]. After doing that for all relevant
buses, the first of these time points is selected as the new
update time.

VI. TESTING AND DISCUSSION

To test our prediction method, we developed a simulator
of the PID system. It predicts update time intervals based on
the results of Algorithm 1. The real-time predictor provided
by Entur is used to find out the proposed times of passing
the bus stops assigned by mapping mp since it will also be
applied in the final realization of the PID system. We set the
time interval for the next update 30 seconds later than the
point of time computed by our predictor in order to enable
the Entur system processing the incoming departure time of
stop smp[u] first. The simulator collects various statistical data
like the percentage of updates without changing ETAs which
corresponds to unnecessary wake ups of the network receiver
in the PID system. In addition, it records also the numbers of
ETA changes of a certain magnitude.

Using the simulator, we carried out three tests using Algo-
rithm 1 with different settings of the parameters cm and cc
introduced in Sect. V:

• A: This is the most conservative test using cm = 6, 000
and cc = 0.001. The setting of cm means that a bus stop is
selected for an update if the percentage of major updates
in the testing samples exceeds the journey time to sPID

in minutes. Thus, if the journey time is 20 minutes, the
share of major updates must be larger than 20% to select
the stop for an update, while it is only 5% if the remaining
travelling time is just five minutes. Alternatively, a stop

TABLE III
NUMBER OF PID UPDATES PER DAY AND PERCENTAGE OF UNNECESSARY

UPDATES FOR SOME SELECTED BUS STOPS IN BERGEN

Bus stop Test Updates Unnecessary
per day updates

Sandvikstorget
A 251.5 57.0%
B 211.8 62.8%
C 145.7 44.5%

Torget
A 224.6 46.6%
B 179.9 52.8%
C 130.5 32.5%

Lillevågen
A 391.9 62.6%
B 328.4 65.8%
C 202.3 43.6%

Møhlenpris
A 107.3 31.0%
B 79.8 34.3%
C 61.4 8.6%

is selected for an update if more that 0.1% of all delay-
reducing updates measured for the testing samples were
critical changes.

• B: In this intermediate test, we apply the values cm =
4, 000 and cc = 0.0015.

• C: This test is the most progressive one since, here, we
use the settings cm = 2, 000 and cc = 0.002.

We utilize the collected samples of bus line number 5
operated by Skyss in Bergen to carry out our tests. It connects
the city center with two suburban areas at its edges. We
selected the following stops:
• Sandvikstorget is the 28th bus stop in the direction

Loddefjord terminal of altogether 39 stops, that line 5
approaches. It was arbitrarily selected.

• Torget is the 33rd stop in the same direction. It was
chosen since it is close to the terminus with a journey time
of around 32 minutes from the starting point. Moreover,
it is sufficiently close to Sandvikstorget which allows us
to make comparisons between the two stops.

• Lillevågen is the 27th stop in the other direction Åsane
terminal. It was selected since the journey time from the
starting point is about the same as for Sandvikstorget in
the other direction making it possible to compare similar
travelling times over different routes.

• Møhlenpris is the fifth bus stop in the direction Åsane
terminal. We use it since we wanted also to look at
stations with only short journey times from the starting
point.

The three tests lasted for around nine days each.
The average number of updates every day as well as the

percentage of unnecessary updates for the four bus stops and
three tests are listed in Tab. III. It is hardly surprising that
the mean number of updates goes down if we use a more
progressive test since, in this case, Algorithm 1 tends to select
later stops for the next update which leads to larger update
time intervals.

Astonishing, however, is the fact that, for all four stops, the
number of updates for test B is higher than those for test A.
One would expect that the larger intervals leads to a larger
likelihood, that at least one ETA has to be updated. While

this effect is clearly visible in test C, it is apparently not the
case for the other ones. We see two potential reasons for that:
One reason is that there can be a simple testing error. Since
we wanted to collect as many data as possible in a relatively
short amount of time, we did not look at the days of the week,
the tests were carried out. Therefore, we did not recognize that
test A covered only one but test B two weekends. While we
use separate phases for Saturdays and Sundays (see Sect. IV)
which should mitigate this effect, it can be that the algorithm
handles these phases more conservatively than the various
weekday phases. That might have lead to the larger number
of unnecessary updates in test B.

The other reason is a potential accordion effect with respect
to delays. Let us assume that si, sj , and sk are three arbitrary
bus stops on a line with i < j < k, and there is a tendency that
delays grow between si and sj but are reduced between sj and
sk. Then, a more conservative setting might lead the algorithm
to select both, sj and sk for updates. Thus, the displayed ETA
increases after passing sj and again decreases after sk such
that no unnecessary updates take place. In contrast, a more
relaxed setting of the mapping mp might lead to the decision
that the update at sj is not necessary but that sk or another
stop close to it is the location of the next update. The two
delay effects may cancel each other out, and the majority of
buses have the same supposed ETA as at stop si such that the
PID does not need to be updated.

Another interesting effect is that the average of daily updates
for the bus stop Torget is lower than the one of nearby stop
Sandvikstorget. The likely reason is a different degree of
ambiguity on the routes directly ahead the two stops. A general
property of Algorithm 1 is that it uses shorter update intervals
if a bus is nearby. This is reasonable since the displayed ETAs
have to be more precise when the arrival time is close. If,
e.g., bus lanes and synchronized traffic lights ahead of Torget
allow smoother rides, updates will be less often than in areas
where traffic jams and traffic lights might cause varying delays.
Torget is in the center of the city with a lot of traffic calmed
roads such that this effect might be the reason.

The simulation for bus stop Lillevågen uses significantly
more updates than for Torget and Sandvikstorget. Besides the
impact of the immediate route ahead of a stop discussed above,
the whole bus traffic in the direction Åsane terminal seems to
be more ambiguous than in direction Loddefjord terminal. That
leads to the selection of more stops for making updates and,
in consequence, shorter update intervals. In addition, there are
two daily buses more in this direction which operate in the
late evening but that does not explain the magnitude of the
additional updates.

The next aspect, we like to discuss about Tab. III, is that the
general number of updates at Møhlenpris is much lower than
for the other stops. This is easy to explain. Except for the rush
hour times, in which line 5 operates every ten minutes, buses
are just going every 20 or 30 minutes. The journey time of a
bus from the starting point to Møhlenpris is only 11 minutes
according to the timetable. Thus, after passing this stop, there
will be no further updates for nine resp. 19 minutes until the

TABLE IV
MAGNITUDE OF DISPLAY CHANGES FOR THE SELECTED BUS STOPS IN

DIRECTION LODDEFJORD TERMINAL

Sandvikstorget

Test Time to 0 Increase Decrease
bus stop 1 2 > 2 1 2 > 2

A

Start 48.1 19.8 16.0 11.4 4.8 0.0 0.0
Over 20 71.7 17.9 4.6 2.2 3.2 0.0 0.0
15 to 20 73.6 15.7 2.5 1.0 7.0 0.0 0.2
10 to 15 72.5 15.1 3.8 0.6 7.2 0.6 0.3
5 to 10 71.1 18.4 2.1 0.1 7.5 0.4 0.4
Under 5 78.0 10.4 0.3 0.1 9.8 0.9 0.4

B

Start 55.2 16.9 13.7 8.1 6.1 0.0 0.0
Over 20 82.1 10.6 3.8 1.9 1.7 0.0 0.0
15 to 20 74.9 15.2 4.0 0.9 4.5 0.5 0.0
10 to 15 77.4 11.6 4.7 1.0 4.8 0.5 0.0
5 to 10 71.5 16.0 2.4 0.3 8.4 1.2 0.2
Under 5 81.0 8.8 0.6 0.1 8.9 0.4 0.3

C

Start 43.4 29.0 15.2 7.0 5.2 0.0 0.0
Over 20 60.9 24.5 7.8 3.1 3.6 0.0 0.0
15 to 20 67.5 22.4 3.5 2.0 4.3 0.4 0.0
10 to 15 62.6 18.9 8.7 2.5 7.3 0.0 0.0
5 to 10 58.7 20.8 7.6 3.3 8.4 1.3 0.0
Under 5 68.8 15.2 1.8 0.0 12.2 1.7 0.4

Torget

Test Time to 0 Increase Decrease
bus stop 1 2 > 2 1 2 > 2

A

Start 33.2 16.3 8.1 6.4 22.2 13.4 0.2
Over 20 73.8 15.0 3.3 1.2 6.1 0.5 0.2
15 to 20 69.3 16.7 2.9 1.9 8.2 0.8 0.3
10 to 15 70.1 16.5 4.3 0.9 6.8 1.1 0.3
5 to 10 62.8 18.9 1.8 0.7 13.4 1.8 0.7
Under 5 73.0 9.0 0.2 0.1 15.5 1.8 0.3

B

Start 37.1 11.6 6.1 5.3 26.2 13.6 0.2
Over 20 80.0 11.1 2.8 1.7 4.1 0.1 0.0
15 to 20 76.3 10.1 3.5 2.3 7.4 0.4 0.0
10 to 15 71.1 12.7 6.7 1.7 6.3 1.3 0.2
5 to 10 68.5 14.0 3.2 0.2 10.6 3.0 0.4
Under 5 76.4 7.1 0.3 0.3 13.5 2.0 0.3

C

Start 27.3 14.6 5.6 3.0 27.5 21.0 1.0
Over 20 66.6 20.4 3.8 1.1 7.4 0.6 0.0
15 to 20 69.7 9.5 3.5 2.0 14.4 0.5 0.5
10 to 15 63.3 16.7 6.4 2.7 9.8 0.8 0.4
5 to 10 41.4 23.3 15.8 11.6 4.7 2.3 0.9
Under 5 60.7 11.7 1.0 0.0 22.1 3.4 1.2

next bus leaves the starting point. That decreases the number
of updates significantly.

Finally, we like to compare the results of our tests in Tab. III
with those created by the initial algorithm depicted in Tab. II.
The number of daily tours at line 5 in Bergen is somewhere in
between the overall traffic of bus stops Flakkråa and Hesthagen
in Trondheim. Compared to that, we did not manage to reduce
the number of unnecessary updates in our linear regression-
based approach. The reason for that is that updates have often
to be done for all buses since some few of them would lead to
significant changes. For instance, in test A, an update is already
made when just 0.1% of the samples would have led to a
critical change. Since we do not know the situation in advance,
we therefore conduct updates also for many buses for which
the ETA is not changed. However, our algorithm reduces the
overall number of daily updates significantly compared with
the original algorithm. Below, we show that we can use the
values of test B for Torget and C for the other bus stops such

TABLE V
MAGNITUDE OF DISPLAY CHANGES FOR THE SELECTED BUS STOPS IN

DIRECTION ÅSANE TERMINAL

Lillevågen

Test Time to 0 Increase Decrease
bus stop 1 2 > 2 1 2 > 2

A

Start 34.3 21.3 16.9 22.6 4.5 0.2 0.2
Over 20 82.3 10.7 1.6 0.6 4.4 0.4 0.1
15 to 20 80.1 13.2 2.0 0.3 4.2 0.1 0.0
10 to 15 83.0 9.9 0.8 0.1 5.8 0.4 0.0
5 to 10 83.3 9.4 0.6 0.1 6.3 0.3 0.1
Under 5 79.4 13.0 0.9 0.1 6.1 0.5 0.0

B

Start 41.8 19.9 14.4 18.9 4.5 0.3 0.2
Over 20 85.9 7.6 1.7 1.2 3.4 0.1 0.0
15 to 20 84.3 9.6 1.9 0.3 3.6 0.3 0.0
10 to 15 80.2 9.6 1.6 1.0 6.8 0.9 0.0
5 to 10 83.4 8.4 0.5 0.2 7.2 0.3 0.0
Under 5 81.0 11.4 1.2 0.3 5.6 0.3 0.1

C

Start 25.8 32.6 20.7 14.3 6.2 0.0 0.4
Over 20 77.5 12.3 2.6 0.9 6.1 0.4 0.2
15 to 20 71.9 14.1 4.4 0.5 8.4 0.5 0.2
10 to 15 69.8 12.6 5.0 1.3 11.0 0.3 0.0
5 to 10 64.6 15.2 2.4 0.3 16.7 0.9 0.0
Under 5 65.5 19.0 2.4 0.6 10.6 1.5 0.3

Møhlenpris

Test Time to 0 Increase Decrease
bus stop 1 2 > 2 1 2 > 2

A
Start 15.6 0.5 0.2 3.5 1.6 10.1 68.4

Over 5 61.8 1.5 2.9 33.8 0.0 0.0 0.0
Under 5 48.6 32.0 13.4 1.3 4.5 0.0 0.2

B
Start 24.6 0.5 0.0 3.1 1.0 10.3 60.6

Over 5 87.8 0.0 0.0 12.2 0.0 0.0 0.0
Under 5 52.8 26.8 16.5 2.6 1.3 0.0 0.0

C Start 5.7 1.0 0.2 1.5 0.8 15.7 75.1
All 25.8 22.6 12.9 38.7 0.0 0.0 0.0

that there are not more than around 200 updates a day. That is
less than a third compared with the stop Flakkråa and a fifth
of the updates at Hesthagen.

Besides the average number of updates and the share
of unnecessary ones, it is also relevant how our algorithm
influences the adjustments of the ETAs displayed. In Tabs. IV
and V, we depict the nature of the ETA adjustments at the PIDs
for the four bus stops and three tests. Since it can be relevant,
in which distance to bus stop sPID an update takes place, we
created several statistics. This allows us to separate initial from
later updates and consider different remaining journey times
to the stop sPID carrying the PID system. The first statistics
is denominated as “Start”. It contains all cases in which the
timetable-based ETA is replaced by one showing real-time
data. The other statistics refer to updates changing from one
real-time-based ETA to another one. Each one represents a five
minute slot, e.g., “15 to 20” states that the remaining travelling
time to sPID is between 15 and 20 minutes. In column “0”,
we show the percentage that an update did not lead to an
adjustment of the ETA for a bus. The other columns list the
percentages of increasing resp. decreasing the ETA by one
minute, two minutes, or more than two minutes.

For the bus stops Sandvikstorget, Torget, and Lillevågen,
the majority of the updates does not lead to ETA adjustments
which, as discussed above, holds particularly for test B. Factual
increases or, to a lower degree, decreases are by only one

minute. An exception is just the starting phase, in which, some
larger increases are sensed. The reason is that buses sometimes
arrive late at their terminus such that they start already delayed
to their next trip as well. Other larger changes by two minutes
or more are mostly delay increases that result from being
stuck in unexpected traffic jams, etc. In contrast, major ETA
decreases are rare. The only exception is the stop Torget which
quite often leads to a reduction of two minutes when the
timetable-based ETA is replaced by a real-time value for the
first time. The reason may be similar to the one discussed later
for Møhlenpris but since the journey time from the starting
point is 32 minutes according to the timetable, we do not see
a major issue here.

Important is to check the number of critical ETA reductions
close before the bus reaches the bus stop sPID which might
lead to passengers missing it since they saw overly long delay
displays before. In test A, we had one case for both, Sand-
vikstorget and Torget in which the reduction was more than
ten minutes. Our guess is that a bus was so heavily delayed
that it was replaced by another vehicle on the route which
sometimes happen. Neither Entur nor our approach based on
linear regression are able to handle such extreme situations,
at least not for the first bus stops after the replacement.
Otherwise, Tabs. IV and V reveal that ETA decreases close
to the stop are rare and nearly all of the cases were by exactly
three minutes. Of course, with less than five minutes to go,
this is borderline but it happened only once every three or
four days. The Public Transportation Authority (PTA) has to
decide if this low likelihood is acceptable.

Interestingly, the use of the very progressive test C did not
significantly increase the number of critical ETA reductions
for the stops Sandvikstorget and Lillevågen such that the
corresponding setting of Algorithm 1 seems appropriate for the
two stops. However, changing from test B to C quadrupled the
number of delay reductions by three minute reductions close
to the stop Torget. Thus, with 1.2%, the corresponding share
is far too large. It is further striking that the percentage of
increases by one minute or more in the period between five
and ten minutes until the stop is much higher than in the other
two tests. Thus, it seems that the ETA is often increased too
much in this time interval which has then to be corrected in
the next adjustment even closer before reaching the bus stop.
Here, it is advisable to use the settings of the constants from
test B or to apply at least the constant cc for the critical cases.

We separate the discussion of bus stop Møhlenpris since the
simulator results for it are digressive. In around three quarters
of all cases in all three tests, the ETA is reduced by exactly
three minutes during the initial adjustment. That effect holds
not only for the Entur-based real-time prediction but also when
using function f produced by linear regression. Mostly, this
ETA is thereafter kept until the bus passes the stop. The reason
for that could be revealed by looking at some of the samples,
we collected. According to the timetable, the journey time
to Møhlenpris from the preceding stop Lyngbø riksveg is six
minutes while the one from Møhlenpris to Festplassen, the
next stop, is just one minute. In nearly all checked samples,

however, the time from Lyngbø riksveg to Møhlenpris was
around 3.5 minutes and the one to Festplassen 2.5 minutes.
Altogether, the trip from the initial stop Loddefjord terminal
to Møhlenpris needs mostly eight minutes instead of the
eleven minutes it would take according to the timetable. Our
algorithm handled this case correctly by assigning the initial
stop for the first update immediately after leaving the starting
point. That allows the PID system to correct the displayed ETA
as fast as possible. That holds for all tests and all phases of
the day. The apparent solution is to correct the timetable such
that the correct ETAs is already displayed to the passengers
from Møhlenpris even before a bus leaves the first stop.

This case is also a good example to discuss the accordion
effect. The error of the timetable did not effect the behavior
for the stop Lillevågen since all three test cases are sufficiently
progressive to miss the untimeliness that is corrected by
increasing delays at the stops following Møhlenpris. A more
conservative setting of the algorithm, however, might have
detected it, which would have led to more but unproductive
corrections of the ETAs. This example gives evidence that it is
an important task to select suitable settings of the parameters
cm and cc such that the accordion effect is prevented. That
must not come, however, at the cost of a too large number
of critical cases as experienced in the test C for the bus stop
Torget.

VII. RELATED WORK

To our best knowledge, there is, yet, no other work about
predicting the time for updates at PIDs mounted at bus stops
with machine learning technology in order to preserve power.
Nevertheless, there are quite some contributions about using
machine learning for the prediction of real-time ETAs.

In [18], the authors evaluate the influence of both upstream
signalized intersection and surrounding traffic flow on the
prediction of arrival times at bus stops. The change of the
traffic density at different locations is used to detect the
average bus speed, which is constantly updated according
to the traffic density at different locations. The comparison
between the forecasted and the actual arrival times at two bus
stops in Jinan, China, shows that there is a low mean relative
error between them. The authors of [19] used historical data
collected by automated passenger counters (APC) in order to
develop models for predicting bus arrival times at stops along a
route. The computation effort of the proposed model to predict
the arrival time of a bus at a certain stop is low, making it a
potential model also for providing real-time bus-arrivals.

The authors of [20] use GPS data to create a central
server that receives and stores real-time GPS data provided by
Android-based smartphones which are installed in the buses.
The implementation of an arrival time bus stop predictor using
the collected data and the real-time information will be the
next step of the authors. In [21], Kalman filters are applied
to integrate the information about delays into the predic-
tion of bus travelling times. This technique is also utilized
in [22]. Here, the authors divide the bus routes into segments
and use static transit data that represent routing information

like timetables. Moreover, they apply recorded arrival and
departure information at selected transit stops together with
real-time updates and collected data from mobile apps. This
includes anonymous information about the location, when the
passengers get on/off the buses, their walking distances to bus
stops, etc. The authors use the data to predict arrival time
delays using clustering analysis and the Kalman filters.

The position of buses is also considered by the authors
of [23] who apply a kernel regression model to represent the
dependencies between position updates and the arrival times
at bus stops. The data set consists of a collection of real-time
GPS measurements. Furthermore, in order to reduce the size
of historical data sets, the authors propose a strategy based on
interpolation points. They show that their strategy outperforms
the linear regression model and predictions based on the K-
nearest neighbor algorithm.

In [24], a real-time prediction model is proposed which
exploits long-range dependencies across multiple time steps
and heterogeneous measurements. In order to encode het-
erogeneous measurements into a vector space, the authors
introduced the one-hot coding technique. Further, they use
Recurrent Neural Networks (RNN) [25] with Long Short-Term
Memory (LSTM) to exploit long-range dependencies across
multiple time steps. The results of this method were com-
pared with other state-of-the-art machine learning techniques
like linear regression, kernel regression, and support vector
machine. The authors showed that their method offers the best
performance on the considered data set.

Other work discusses the general usefulness of installing
PIDs mounted to bus stops. In [1], [4], the authors present the
results of a study about providing public transport passengers
in Dublin, Ireland, with various kinds of information. The
results show that the use of fixed PIDs is highly appreciated.
However, as mentioned in the introduction, another study
by [5] revealed that the desire for PIDs is far lower if that leads
to a significant increase of the ticket fee by 0.60C or more.
Another study was made about mobile passenger information
systems [3]. It makes clear that the layout of the user interface
has a significant impact on the popularity.

Some papers introduce actual passenger information sys-
tems using fixed PIDs at the bus stops. The approaches
in [26]–[28] present various information systems containing
PIDs that, however, all use power from the electrical grid.
More interesting in the context of the project IoT-STOP is
the work introduced in [29]. Like us, the authors apply a
wireless PID system using e-papers and batteries, albeit based
on LoRaWAN instead of NB-IoT. Unlike us, however, they
concentrate less on power reduction since a more power-
intensive Raspberry-Pi is used for the controller. Further, the
article does not mention any methods to reduce the impact of
idle listening. In consequence, using a battery of 24,000 mAh,
their system can only operate for around 76 hours which is not
useful in practice. An early trial of using e-papers for PIDs in
Birmingham, UK, is introduced in [30]. Here, solar panels are
used as power source and Near Field Communication (NFC)
for data transfer. The system seems to be used for changing

timetable information but not for real-life ETA updates.

VIII. CONCLUDING REMARKS

In this article, we reported on a method to predict update
times. That allows the control units of Passenger Information
Displays (PID) to switch off their network receivers temporar-
ily without spoiling the value of the displayed Expected Times
of Arrival (ETA). In particular, we use linear regression to
forecast arrival times that are used by our predictor to detect
places which call for the update of a PID.

The tests presented in Sect. VI are highly encouraging but,
of course, the predictor still provides potential for improve-
ment. We will continue to test bus stops with varying settings
of the parameters cm and cc in Algorithm 1. Further, we will
test other strategies to determine the thresholds which are used
to decide if an update should be made when a bus passes a
certain bus stop.

The results from [23], [24] indicate that also the machine
learning algorithm used to forecast the delays can be improved.
A major obstacle to be overcome is the state-based nature of
forecasting ETAs based on the leaving times from intermediate
bus stops. When a bus passes a stop and the corresponding
leaving time is recorded, the number of features to be con-
sidered is increasing. Many machine learning methods are not
suited to cope with changing numbers of features (see [16]).
That holds also for linear regression but, at least, it has the
advantage to be well-performing such that a large number
of runs can be executed. So, it is possible to use an own
forecasting function for each bus stop that is passed over the
journey of a bus. Other techniques that sometimes afford hours
or even days for a single run, are too slow to produce the
dozens of models needed to solve our problem. Recurrent
Neural Networks (RNN) [25], however, are suited to systems
with varying spatiotemporal properties. That fits well to ETA
forecasting, and promise the use of only a single model for
Algorithm 1 instead of a whole set of functions f1, . . . , fn.
Therefore, we work also on an RNN-based system and will
report about the results of our experiments in the future.

Another issue to be considered is the scalability of our
approach. The tests revealed that each bus stop is different and
needs a particular setting for the constants used in Algorithm 1.
For instance, test C showed good results for Sandvikstorget
and Lillevågen while Torget should be better operated with
the constants used in test B. For a handful of demonstrators,
the correct setting of the mapping mp for a stop can be done
manually but that would not be practical if the PID systems
shall be used at hundreds of different bus stops. This scalability
problem can be solved by using digital twins [31] of the PID
systems. A simulator not unlike the one applied for our tests
can run in parallel to the real physical system and record
important properties like the magnitude of ETA changes that
were taken. Moreover, various update policies, i.e., mappings
mp, are produced for each PID system with varying degrees
of progressiveness. The simulator can now regularly check the
collected numbers for the quality and use a more progressive
mapping if the numbers seem to be too conservative while

the cumulation of critical results might lead to use a more
conservative policy. Thus, over time, each PID system will
automatically adapt to a policy which is suited to its particular
situation. We plan to develop such a system which also allows
us to update the mappings from time to time to reflect events
like timetable changes or altered traffic routings.

ACKNOWLEDGMENT

We like to show our gratitude to the colleagues from FourC
for their valuable support. Moreover, we thank the other
project partners from Telenor, Skyss, and Kringom for their
contributions as well as Innovation Norway for providing us
with the necessary funding.

REFERENCES

[1] B. Caulfield and M. O’Mahony, “An Examination of the Public
Transport Information Requirements of Users,” IEEE Transactions on
Intelligent Transportation Systems, vol. 8, no. 1, pp. 21–30, 2007.

[2] K. Papangelis, S. Sripada, D. Corsar, N. Velaga, P. Edwards, and J. D.
Nelson, “Developing a Real Time Passenger Information System for
Rural Areas,” in Human Interface and the Management of Information
(HIMI), ser. LNCS 8017. Las Vegas, NV, USA: Springer-Verlag, 2013,
pp. 153–162.

[3] S. Beul-Leusmann, C. Samsel, M. Wiederhold, K.-H. Krempels, E.-M.
Jakobs, and M. Ziefle, “Usability Evaluation of Mobile Passenger Infor-
mation Systems,” in Design, User Experience, and Usability (DUXU),
ser. LNCS 8517. Heraklion, Greece: Springer-Verlag, 2014, pp. 217–
228.

[4] B. Caulfield and M. O’Mahony, “Stated Preference Evaluation of
Passenger Information in Dublin,” in 37th Annual Conference of the
Universities Transport Study Group, Bristol, UK, 2005, p. 12 pages.

[5] I. Politis, P. Papaioannou, S. Basbas, and N. Dimitriadis, “Evaluation of a
Bus Passenger Information System from the Users’ Point of View in the
City of Thessaloniki, Greece,” Research in Transportation Economics,
vol. 29, no. 1, pp. 249–255, 2010.

[6] FourC, “FourC Homepage,” https://www.fourc.eu/, 2020, accessed:
2020-08-29.

[7] M. Wang, C. Lin, H. Du, H. Zang, and M. McCreary, “Electrophoretic
Display Platform Comprising B, W, R Particles,” SID Digest, vol. 45,
no. 59.1, pp. 857–860, 2014.

[8] K. R. Lai, P. K. Sahoo, C. Y. Chang, and C. C. Chen, “Reduced Idle
Listening Based Medium Access Control Protocol for Wireless Sensor
Networks,” in International Conference on Communications and Mobile
Computing, vol. 3, 2010, pp. 329–333.

[9] R. Ratasuk, N. Mangalvedhe, Y. Zhang, M. Robert, and J.-P. Koskinen,
“Overview of Narrowband IoT in LTE Rel-13,” in IEEE Conference
on Standards for Communications and Networking (CSCN). Berlin,
Germany: IEEE, 2016, pp. 1–7.

[10] NPerf, “3G / 4G / 5G Coverage Map,” https://www.nperf.com/, 2020,
accessed: 2020-09-02.

[11] E. Puka, P. Herrmann, T. Levin, and C. B. Skjetne, “A Way to Measure
and Analyze Cellular Network Connectivity on the Norwegian Road
System,” in 10th International Conference on Communication Systems
& Networks (COMSNETS). Bengaluru, India: IEEE Computer, Jan.
2018, pp. 595–600.

[12] MQTT.org, “Message Queuing Telemetry Transport,” http://mqtt.org/,
2020, accessed: 2020-09-02.

[13] Entur AS, “Real-Time Data,” https://developer.entur.org/pages-real-time-
intro, 2020, accessed: 2020-09-02.

[14] K. Axelsson, T. Ekblom, and A. Olsson, “How to Supply Bus Stops with
Electricity without Connecting them to the Electricity Grid,” Bachelor’s
Thesis, Uppsala University, Jun. 2013.

[15] A. Azari and G. Miao, “Energy Efficient MAC for Cellular-based M2M
Communications,” in Global Conference on Signal and Information
Processing (GlobalSIP). IEEE, 2014, pp. 128–132.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[17] X. Yan and X. G. Su, Linear Regression Analysis — Theory and
Computing. World Scientific Publishing, 2009.

[18] H. Zhang, S. Liang, Y. Han, M. Ma, and R. Leng, “A Prediction Model
for Bus Arrival Time at Bus Stop Considering Signal Control and
Surrounding Traffic Flow,” IEEE Access, vol. 8, pp. 127 672–127 681,
2020.

[19] Shaowu Cheng, Baoyi Liu, and Botao Zhai, “Bus Arrival Time Predic-
tion Model based on APC Data,” in 6th Advanced Forum on Transporta-
tion of China (AFTC). Beijing, China: IEEE, 2010, pp. 165–169.

[20] Q. Zhang, Y. Zhang, and J. Li, “EasyComeEasyGo: Predicting Bus
Arrival Time with Smart Phone,” in 9th International Conference on
Frontier of Computer Science and Technology. Dalian, China: IEEE,
2015, pp. 268–273.

[21] R. P. S. Padmanaban, L. Vanajakshi, and S. C. Subramanian, “Automated
Delay Identification for Bus Travel Time Prediction towards APTS
Applications,” in 2nd International Conference on Emerging Trends in
Engineering & Technology. Nagpur, India: IEEE, 2009, pp. 564–569.

[22] F. Sun, Y. Pan, J. White, and A. Dubey, “Real-Time and Predictive
Analytics for Smart Public Transportation Decision Support System,” in
IEEE International Conference on Smart Computing (SMARTCOMP).
St. Louis, MO, USA: IEEE, 2016, pp. 1–8.

[23] M. Sinn, J. W. Yoon, F. Calabrese, and E. Bouillet, “Predicting Ar-
rival Times of Buses using Real-time GPS Measurements,” in 15th
International IEEE Conference on Intelligent Transportation Systems.
Anchorage, AK, USA: IEEE, 2012, pp. 1227–1232.

[24] J. Pang, J. Huang, Y. Du, H. Yu, Q. Huang, and B. Yin, “Learning to
Predict Bus Arrival Time From Heterogeneous Measurements via Recur-
rent Neural Network,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 9, pp. 3283–3293, 2019.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Repre-
sentations by Back-propagating Errors,” Nature, vol. 323, pp. 533–536,
1986.

[26] K. Ganesh, M. Thrivikraman, J. Kuri, H. Dagale, G. Sudhakar, and
S. Sanyal, “Implementation of a Real Time Passenger Information
System,” Computing Research Repository (CoRR), vol. abs/1206.0447,
2012.

[27] R. K. Megalingam, N. Raj, A. L. Soman, L. Prakash, N. Satheesh, and
D. Vijay, “Smart, Public Buses Information System,” in International
Conference on Communication and Signal Processing. Melmaruvathur,
India: IEEE, 2014, pp. 1343–1347.

[28] D. Vakula and B. Raviteja, “Smart Public Transport for Smart Cities,”
in International Conference on Intelligent Sustainable Systems (ICISS).
Palladam, India: IEEE, 2017, pp. 805–810.

[29] T. Boshita, H. Suzuki, and Y. Matsumoto, “Smart Bus Stop using
LoRaWAN and e-Paper,” in 8th Global Conference on Consumer
Electronics (GCCE). Osaka, Japan: IEEE, 2019, pp. 278–282.

[30] G. Scott, C. Wilson, and G. Tyler, “E-paper Public Transport Informa-
tion System,” in Road Transport Information and Control Conference
(RTIC). London, UK: IET, 2014, pp. 1–6.

[31] S. W. Loke, S. Smanchat, S. Ling, and M. Indrawan, “Formal Mirror
Models: An Approach to Just-in-Time Reasoning for Device Ecologies,”
International Journal of Smart Home, vol. 2, no. 1, pp. 15–31, 2008.

