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a b s t r a c t

Natural systems, including the dynamics of engineered structures, are often considered
complex; hence, engineers employ different statistical methods to understand these
systems better. Analyzing these systems usually require accurate derivative estimations
for better understanding, i.e. a measured displacement can be used to estimate the forces
on a cylindrical structure in water by using its velocity, and acceleration estimations. In
this study, we use a nonlinear method based on embedding theory and consider the
time-delay coordinates of a signal with a fixed lag time. We propose a new method
for estimating the derivatives of the signal via redefining the delay matrix. That is, the
original signal is updated with the second principal component of the delay matrix in
each derivation. We apply this simple method to both linear and nonlinear systems and
show that derivatives of both clean and/or noisy signals can be estimated with sufficient
accuracy. By optimizing the required embedding dimension for the best derivative
approximation, we find a constant value for the embedding dimension, which illustrates
the simplicity of the proposed method. Lastly, we compare the method with some
common differentiation techniques.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Data collection and processing is a standard engineering practice used by industry and academia to understand the
dynamics of a system in a given environment. These dynamics are usually complex; hence, engineers employ different
statistical methods to understand the data better. For example, if the dynamical system is not known a priori and/or it is
not possible to collect enough measurements to represent it, the time-delay coordinates of a single variable allow us to
extract additional information (variables). The method of delays to study dynamics of experimental data was first proposed
by Packard et al. [1]. Takens [2] improved the method and proved that the dynamics in the time-delay coordinates produce
a new attractor with a similar topology. This is very important because it shows that it is possible to reconstruct the
state–space from a low-dimensional time series, and when the dimension is high enough, reconstruction is always an
embedding. For example, recently, Yu and Li [3] have used delay coordinates where the aircraft accidents for a certain
time period have been reconstructed using chaos analysis.

In an earlier work, Broomhead and King [4] combined principal component analysis (PCA) with the method of delays
and studied the effect of lag time on the reconstruction to eliminate linearly dependent coordinates and accurately
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estimate the phase portrait, hence the underlying dynamics. They showed that when the time series has some Gaussian
noise embedded in the signal, PCA is the optimal linear coordinate transformation and can reduce noise. Similarly, Shang
et al. [5] developed a smoothing algorithm that is based on Chaotic Singular-Value Decomposition, which essentially
relies on the use of delay coordinates and PCA. It should be noted that PCA is also known as the Karhunen–Loeve
decomposition, proper orthogonal decomposition (POD) or singular-value decomposition (SVD), which has been widely
used in all engineering areas to find coherent structures (or dominant modes), e.g., Kerschen et al. [6]; Gedikli et al. [7,8].
Therefore, we use PCA and SVD interchangeably throughout the paper.

Gibson et al. [9] studied PCA and the method of delays in depth and derived a closed-form solution to PCA in the limit of
small window widths. They demonstrated that with the exception of the first principal component, the resulting principal
components are qualitatively equivalent to average time derivatives. In addition, they identified the relationships between
delays, derivatives, and principal component analysis and showed that eigenvectors of the system resemble Legendre
polynomials. They derived a discrete set of Legendre polynomials and found stable estimates of derivatives using these
polynomials.

In this paper, we investigate the method of delays combined with PCA to find reliable estimates of the derivatives.
In this method, we create a Hankel matrix of a single variable (a single time-dependent measurement) and compute its
principal components. We relate the second principal component of the data to the first derivative of the signal using
an analytical formula. Then, instead of analytically estimating higher-order derivatives using Legendre polynomials, we
treat the first time derivative of the signal as new signal. Therefore, we create a new Hankel matrix of the first derivative,
compute the second principal component of the new matrix and estimate the second derivative. We also use the same
approach to estimate the higher-order derivatives and find a constant value for the required embedding dimension that
best approximates derivative by optimization. In addition, we show that our proposed method works better in estimating
higher-order derivatives than Legendre polynomial approximations proposed by Gibson et al. [9] when the signal has
a certain level of noise. Also, our new approach only requires one simple function as opposed to the use of different
polynomial functions for different derivatives as in Gibson et al. [9]. Moreover, the new approach does not require tuning
of any parameters to get reliable derivative estimations. Further, we show that we can handle the intrinsic inability of
PCA to deal with traveling motions by mirroring the signal before applying our method.

We test the new method (with and without prior mirroring) by applying it to data from both numerical simulations
(including 33 low-dimensional chaotic flow systems as in Sprott [10]) and experimental signals and compare the results.
We show that the higher-order derivatives of both linear and nonlinear systems can be estimated with sufficient accuracy,
and in some cases, the noise is reduced. For example, we apply the new method to analyze data from an experiment that
was carried out in an ice tank. In the experiment, ice floes were marked with Qualisys markers and using motion tracking,
the positions of the points were recorded. In addition, accelerometers were placed on some of the floes. Hence, the
accuracy of the derivatives could be compared with direct measurements. When compared with the direct measurements
(measured acceleration is compared with the estimated acceleration from displacement measurements), the proposed
time-delay-based differentiation yields very close results, showing the accuracy of the method. To further increase the
confidence in our proposed method, we compare results obtained by our method for signals collected in the ice tank with
other 7 various differentiation methods. Comparison suggests that our method gives comparable/similar results with those
from the other methods. In addition, the proposed method is applied on 17 electrocardiogram (ECG) experimental signals.
Results show that our new method produces equivalent estimates with other common differentiators.

In Section 2, the new method of the time-delay-based differentiation or, in short, the TDD is described. In Section 3,
the applications of the TDD method to different numerical and experimental systems are presented in more detail. These
systems include the following: Case 1 is a quasi-periodic signal; Case 2 is a nonlinear mass–spring–dashpot system as
in Chatterjee [11]; Case 3 is a nonlinear Chi-Chi earthquake system; Case 4 is a hysteretic Bouc–Wen system; and Cases
5–6 are experimental systems that consist of wave-induced ice floe collisions. In Section 4, the optimization results to
find the embedding dimension and required shifting are presented. In Sections 5–7, we investigate the performance of
the proposed TDD method and its variant on clean and noisy simulated signals and experimental signals, and illustrate
the results of higher-order derivative estimations. In the end, summary and conclusions are provided in Section 8.

2. Time-delay-based differentiation (TDD)

TDD method is inspired by the idea of state–space reconstruction using a time-delayed signal. Previously, Gibson et al.
[9] proposed the use of Legendre polynomials to estimate derivatives of the signals where one need to calculate different
coefficients with increasing complexities for increasing order of derivatives. Although such a method gives good estimates
of derivatives, it becomes highly time consuming as the required order of derivatives increase. In this study, we pose
the following question: if we can create the state–space representation of a given signal using the combined SVD and
method of time delays, can we also estimate the higher-order derivatives using this dynamic measurement considering
the directional behavior of the signal? In other words, when the SVD of a Hankel matrix is considered, does the second
principal component of the signal help us to estimate higher-order derivatives (i.e., second, third and so on)? If so, how
can we relate the second principal component to higher-order derivatives?
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Fig. 1. Illustration of the TDD method.

Consider a signal with a time history of x ∈ Rn×1. We stack x to form a Hankel matrix H ∈ R(n−r)×r , which yields

H =

⎡⎢⎢⎢⎢⎣
x1 x2 x3 · · · xr
x2 x3 x4 · · · xr+1
x3 x4 x5 · · · xr+2
...

...
...

...
...

xn−r xn−r+1 xn−r+2 · · · xn−1

⎤⎥⎥⎥⎥⎦ (1)

where the subscript represents the time instant when the entry of x is sampled, n is the length of the signal, and r is the
embedding dimension and specifies the number of columns in H that are populated by the delayed x.

H can be decomposed into three matrices by utilizing SVD:

H = USV T (2)

where columns of U ∈ R(n−r)×r are the left orthonormal singular vectors of H , columns of V ∈ Rr×r are the right
orthonormal singular vectors of H , and S ∈ Rr×r is the singular value matrix with its diagonal elements in descending
order. In this decomposition, U includes temporal modes, and V contains spatial modes. In addition, only diagonal
elements of S , i.e., sii, contain units since column vectors of U and V are normalized.

In the following, we use ui to denote the ith column vector of U and vii to denote the ith diagonal elements of V counted
from the left upper corner. By using components of U , V and S , the ith mode approximation of x can be computed as
follows:

xdi = uisiivii i = 1, 2, . . . , r (3)

where superscript d means that the quantity is estimated by means of the method based on time delay. When i = 1, xd1
is the reconstruction of x.

Assuming the first time derivative of x can be best estimated with the second mode approximation, as in Eq. (3), we
show that the first time derivative ẋd and the second time derivative ẍd can be estimated as follows

ẋd = x(1),d = xd2Fs (4)

ẍd = x(2),d = xd3F
2
s (5)

where Fs is the sampling frequency, and xd2 and xd3 represent second and third modes, respectively. Although higher-order
estimates of the derivatives can be approximated by higher subspace dimensions of SVD (x(k),d = xd(k+1)F

k
s , where x(k) is the

kth time derivative), error in the estimation increases significantly as the subspace dimension increases because most of
the energy in the signal is embedded in the lower subspace dimensions. We call this estimation SVD-based differentiation
to illustrate how it differs from the TDD method.

In the TDD method we ask: if SVD-based differentiation using the method of time delays, as shown above, produces
reliable phase portraits (e.g., Gibson et al. [9], Broomhead and King [4]), can we repeat this process to estimate higher-
order derivatives? For example, can we treat the first derivative of a signal as our new signal and estimate the second
derivative; then, after estimating the second derivative, treat the second derivative as the new signal and estimate the
third derivative and so on. If so, how accurate would the estimated derivatives be?
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Fig. 2. Illustration of shifting for the SVD-based differentiation method when r = 5. Nk=1 and Nk=2 are the length of ẋd and ẍd , respectively.

Fig. 3. Illustration of shifting for the TDD method when r = 5. Nk=1 and Nk=2 are the length of ẋud and ẍud , respectively.

In order to answer these questions, we propose the TDD method, which updates the original signal in the Hankel
matrix with the estimated derivative and finds one higher-order derivative with the same approach (see Fig. 1 for the
illustration of the TDD method). In other words, we only need Eq. (6) to estimate the second time derivatives in TDD:

ẍud2 = x̄2Fs (6)

where x̄2 represents the second mode approximation using the updated Hankel matrix. It should be remembered that
SVD-based differentiation and the TDD method yield the same results for the first derivatives since the first column of
the Hankel matrix is the original signal in both methods. However, we update the Hankel matrix for each derivative in
the proposed TDD method, whereas we directly use higher subspace dimensions to estimate the higher-order derivatives
in SVD-based differentiation (or higher-order derivatives can also be estimated using SVD-based differentiation if they
are combined with Legendre polynomials as in Gibson et al. [9]).

Takens [2] proved that if the dimension of the underlying dynamical system DF is known, r > 2DF generally guarantees
an embedding. In other words, when the dimension is sufficiently high, a reconstruction is almost always an embedding
from the perspective of state–space reconstruction. There are many studies devoted to finding the minimum embedding
dimension of a dynamical system for a reliable state–space reconstruction such as Kennel et al. [12], Cao [13], Kennel and
Abarbanel [14], Maus and Sprott [15], Chelidze [16].

In our study, we use required embedding dimension that best approximates the derivatives, which is different from the
minimum embedding dimension. Therefore, we create an optimization scheme to find the required embedding dimension
that approximates the derivatives best (see Section 4).

Since our time-delay-based derivatives are shorter than the original signal, shifting of the signal is necessary to carry
out the optimization. We show in Section 4 that the required embedding dimension (r̃) and the required shifting (ξ̃k−1) for
the TDD method are 5 and 2k, respectively, where k is the order of the time derivative. For the SVD-based differentiation,
we show that r̃ = 5 and the required shifting (ξ̃k=1 − 1) = (ξ̃k=2 − 1) = 2. Figs. 2 and 3 illustrate r̃ and (ξ̃k − 1) for the
SVD-based differentiation and TDD method, respectively. As can be seen, the required shifting for the first two derivatives
in the TDD method are (ξ̃k=1 − 1) = 2, (ξ̃k=2 − 1) = 4, respectively.
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3. Applications of TDD in numerical and experimental systems

To test the performance of the TDD method, we use various numerical and experimental systems. First, we test the TDD
method by applying it to a quasi-periodic signal (Case 1), and then, we apply it to various dynamical systems (Cases 2–6).
Dynamical systems include numerical systems, such as the nonlinear mass–spring–dashpot system in Chatterjee [11] (Case
2), the nonlinear Chi-Chi earthquake system (Case 3) and the hysteretic Bouc–Wen system (Case 4), and experimental
systems, such as the wave-induced ice floe collisions (Cases 5 and 6). Note that the six cases presented here are single-
variable cases, i.e., each case describes a single variable. We also applied the TDD method to 33 different chaotic systems
in Sprott [10] to test the performance of the method (not shown).

To illustrate the quality of the time derivatives, we compute the normalized root mean square error (NRMSE) as follows:

NRMSE =

√∑Nk
i=1 (a2k+i − bi)2

Nk
(amax − amin)−1 (7)

In Eq. (7), a represents the analytical, numerical or measured time derivatives of the signal, and b represents the
estimated derivatives using the TDD method. amax and amin are the maximum and minimum values of a, respectively. Nk
is the length of the kth time derivative (see Figs. 2 and 3).

3.1. Numerical systems

3.1.1. Case 1 — Quasi-periodic time series
We consider a quasi-periodic signal that is obtained by superimposing seven sinusoids with incommensurate frequen-

cies. Eqs. (8), (9) and (10) show the analytical description of the signal with its corresponding first and second time
derivatives, respectively. In this system, the sampling frequency is chosen as 50 Hz, and the signal is generated between
0 and 600 s.
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Fig. 4 shows the original signal with its estimated derivatives and the corresponding phase plane plots of second time
derivative versus first time derivative using both SVD-based differentiation and the TDD methods. As seen, SVD-based
differentiation fails to estimate the second time derivative of the signal (see Fig. 4c), obtaining an NRMSE value of 14.9%;
on the other hand, TDD successfully estimates the second time derivative, achieving an NRMSE value of 0.0446% (see
Fig. 4d). One can also compare the derivatives by observing their phase plane plots. In this case, Fig. 4e also shows that
SVD-based derivative estimation fails to reconstruct the phase plane, whereas TDD-based derivative estimation (Fig. 4f)
successfully reconstructs the desired phase plane.

3.1.2. Case 2 - A simple one-dimensional nonlinear mass–spring-dashpot system
We utilize the nonlinear mass–spring-dashpot system presented in Chatterjee [11] to examine the applicability of

SVD-based differentiation and TDD for a nonlinear system. Fig. 5 shows the sketch of this nonlinear system. Each mass
from m1 to m10 is subjected to a force from a linear spring with stiffness k, a force from a linear dashpot with a constant
coefficient of c and an external forcing function F (t). Additionally, a nonlinear force from a hard spring kh is exerted on
mass m5. This mass–spring-dashpot system moves on frictionless surface.

The equations of motion for this system can be written as follows:

mẍ1 + 2cẋ1 + 2ksx1 = F (t) + ksx2 + cẋ2 (11)

mẍi + 2cẋi + 2ksxi = F (t) + ks (xi+1 + xi−1) + c (ẋi+1 + ẋi−1) (12)
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Fig. 4. Case 1. (a) represents the time history of quasi-periodic signal x. (b) is the first time derivative ẋ. (c)–(d) illustrate the second time derivative
ẍ using SVD-based differentiation and TDD, respectively. (e)–(f) illustrate phase-plane plots using SVD-based differentiation and TDD, respectively.
In the figures, the blue line represents analytical results, the red dashed line represents the results obtained using SVD-based differentiation, and
the magenta dashed line represents the results obtained using TDD. Phase planes are plotted for 0 ∼ 270 s.

Fig. 5. Case 2. Schematic of the mass–spring-dashpot system with a nonlinear spring.
Source: Adapted from [11].

mẍ5 + 2cẋ5 + 2ksx5 + H(−x5)khx35 = F (t) + ks (x6 + x4) + c (ẋ6 + ẋ4) (13)

mẍ10 + cẋ10 + ksx10 = F (t) + ksx9 + cẋ9 (14)

where H(x) is the Heaviside function, the subscript represents different masses, i stands for mass 2, 3, . . . , 9 excluding
5, and F (t) = A sinωt is the external force. Here, m1 = m2 = · · · = m10 = 1, ks = 1, c = 0.3, A = 0.08, ω = 0.2 and
kh = 5, which are the same nondimensional values as in Chatterjee [11]. The sampling rate is chosen as 100 Hz, and the
simulation time is 0 ∼ 600 s.

Fig. 6 shows the original displacement time history of the simple spring–mass–dashpot system with its estimated
derivatives and the corresponding 3-dimensional phase plane plots using both SVD-based differentiation and TDD
methods. Similar to the previous case, SVD-based differentiation once again fails to estimate the second time derivative
of the signal (see Fig. 6c), obtaining an NRMSE value of 3.43%; on the other hand, TDD successfully estimates the second
time derivative, with the NRMSE value of 0.0949% (see Fig. 6d). One can also compare the derivatives by observing their
phase plane plots. In this example, Fig. 6e also shows that SVD-based derivative estimation does not reconstruct the phase
plane accurately, whereas TDD-based derivative estimation (Fig. 6f) successfully reconstructs the desired phase plane with
a high accuracy.

3.1.3. Case 3 — Nonlinear Chi-Chi earthquake system
In this case, we consider a single degree of freedom linear system with a nonlinear force, as presented in Smyth and

Wu [17]. The system represents the Chi-Chi earthquake and can be expressed as follows:

mẍ + cẋ + ksx = −mẍg (15)
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Fig. 6. Case 2. (a) represents the time history of the displacement x5 . (b) represents the time history of the velocity ẋ5 . (c)–(d) illustrate the
acceleration time history ẍ5 of mass 5 using SVD-based differentiation and TDD, respectively. (e)–(f) illustrate 3-dimensional phase-plane plots using
SVD-based differentiation and TDD, respectively. In the figures, the blue line represents simulation results, the red dashed line represents the results
obtained using SVD-based differentiation, and the magenta dashed line represents the results obtained using TDD. Phase planes are plotted for 0 ∼

600 s.

Fig. 7. Case 3. (a) represents the time history of the displacement x. (b) represents the time history of the velocity ẋ. (c)–(d) illustrate the acceleration
time history ẍ using SVD-based differentiation and TDD, respectively. (e)–(f) illustrate 3-dimensional phase-plane plots using SVD-based differentiation
and TDD, respectively. In the figures, the blue line represents simulation results, the red dashed line represents the results obtained using SVD-based
differentiation, and the magenta dashed line represents the results obtained using TDD. Phase planes are plotted for 0 ∼ 25 s.

wherem = 1, c = 0.3, and ks = 9 and ẍg represents the ground acceleration. The system is excited by ground accelerations
measured at 200 Hz at Taichung, Taiwan, during the Chi-Chi earthquake [17]. The data are provided by the Seismology
Center, Central Weather Bureau in Taipei, Taiwan, through the strong motion virtual data center [18].

As in Smyth and Wu [17], velocity and displacement are obtained by using the Newmark method. Thereafter, Eq. (15)
is solved to find acceleration. Simulation is performed for 0 ∼ 160 s.

Fig. 7 shows the original displacement time history of the nonlinear Chi-Chi earthquake system with its estimated
derivatives and the corresponding 3-dimensional phase plane plots using both SVD-based differentiation and TDD
methods. As clearly seen, SVD-based differentiation fails to estimate the second time derivative of the signal (see Fig. 7c&e),
obtaining the NRMSE value of 3.45% and underestimating the nonlinearity in the signal; on the other hand, TDD performs
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Fig. 8. Case 4. (a) represents the time history of the displacement of x. (b) represents the time history of the velocity of ẋ. (c)–(d) illustrate
the acceleration time histories of ẍ using SVD-based differentiation and TDD, respectively. (e)–(f) illustrate 3-dimensional phase-plane plots using
SVD-based differentiation and TDD, respectively. In the figures, the blue line represents simulation results, the red dashed line represents the results
obtained using SVD-based differentiation, and the magenta dashed line represents the results obtained using TDD. Phase planes are plotted for 0 ∼

25 s.

better at estimating the second time derivative, with the NRMSE value of 1.24% (see Fig. 7d&f), where the inherent
nonlinearity in the signal is correctly estimated.

3.1.4. Case 4 — Single degree of freedom hysteretic Bouc–Wen system
The single degree of freedom hysteretic Bouc–Wen system that includes geometric nonlinearity is considered here,

driven by the same earthquake data as in the previous case. The governing equations for this system are as follows:

mẍ + cẋ + ksη = −mẍg (16)

η̇ = ẋ − β|ẋ||η|
α−1η − γ ẋ|η|

α (17)

where η is the Bouc–Wen hysteretic component, m = 1, c = 0.3, ks = 9, β = 2, γ = 1, and α = 2. For more information
regarding this system, readers are also encouraged to read Smyth and Wu [17]. The simulation is conducted for 0 ∼ 160
s, as in Case 3.

The displacement, velocity and acceleration are found first by utilizing the MATLAB built-in function ode45 to solve
the dynamic system equations, Eqs. (16) ∼ (17). Thereafter, the SVD-based differentiation and TDD methods are applied,
and the results are compared as shown in Fig. 8. It is evident that both the SVD-based differentiation and TDD methods
estimate the first time derivatives quite well (see Fig. 8b). The acceleration estimations using SVD-based differentiation
and TDD are very close to the simulated results, as shown in Fig. 8 (c, d, e and f). The quality of the TDD estimation
of acceleration is similar to that of SVD-based differentiation when comparing the NRMSE values, with an NRMSE in
SVD-based differentiation of 0.963% and an NRMSE in TDD of 1.23%.

3.2. Experimental systems

In this section, the quality of the TDD method in estimating derivatives is investigated by examining two different
dynamical systems from experiments. The experimental data utilized here were collected during two experimental test
runs (i.e., test runs #3210 and #3220, respectively) of the LS-WICE project (see Tsarau [19], Cheng et al. [20], Herman
et al. [21], Tsarau et al. [22] and Li and Lubbad [23] for details).

Fig. 9 shows the sketch of the experimental setup, where the wavemaker is capable of generating waves with
different wave frequencies, wave amplitudes and wavelengths (hence various wave steepnesses). In the experiments,
28 (longitudinally) × 6 (transversely) rectangular ice floes with dimension 1.5 m by 1.63 m were produced in total by
cutting a 36 mm thick intact ice sheet. In the tests, ice floes were instrumented with Qualisys markers, and an optical
Qualisys system monitored 3-dimensional spatial positions of 5 ice floes with a frame rate 100 frames/s. To study the
dynamics of wave-induced ice floe collisions, two inertia measurement units (IMUs) were deployed on two ice floes that
provided direct acceleration measurements. Regular waves were generated by the wavemaker and propagated into the
ice field. Two ultrasound sensors were mounted before the leading edge of the ice field to record the produced wave
profiles. In the tests, ice floes moved predominately in the vertical plane under unidirectional monochromatic waves.
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Fig. 9. Simplified sketch of the experimental setup, where S1 and S2 are ultrasound sonars to measure wave elevations. The flow is generated by
the wavemaker and flows to the right. Two markers of interest are highlighted by magenta and light blue color. The ice floes where these two
markers were placed on are assigned with letters C and D, respectively.

Fig. 10. Case 5 (wave steepness is 1.27× 10−2). (a) Comparison between acceleration measurements and estimates, where the blue line represents
the measured acceleration obtained from the IMU, and the red and black lines represent the estimated accelerations from the TDD method and the
DF, respectively. (b) is the magnified view of the part indicated by the black box in (a). (c) shows the phase-plane plots for 20 ∼ 30 s using the TDD
method. In (c), the magenta color indicates the maximum positive acceleration, whereas the red color represents maximum negative acceleration.

In this subsection, the position of the selected marker on ice floe C is analyzed for test runs #3210 and #3220 (wave
steepnesses are 1.27 × 10−2 and 1.56 × 10−2, respectively), where the selected marker on ice floe C is highlighted by
magenta color in Fig. 9. The reason we selected two different runs is because these two different runs caused different
dynamical motions of the ice floes such that different nonlinearities were observed (see Figs. 10c and 11c).

As shown in Fig. 9, the velocity and acceleration of the ice floe under consideration were not measured directly; hence,
a differentiator filter [24, referred as DF henceforth] and the TDD method were both applied to estimate them. It should
be remembered that IMUs and markers were placed on neighboring ice floes, and videos of the experiment showed that
the two neighboring ice floes moved together; therefore, it is expected that similar accelerations will be obtained when
the motion of the two ice floes is compared (see more details in Li et al. [25]).

3.2.1. Case 5 — Wave-induced ice floe collisions (wave steepness is 1.27 × 10−2)
In this case, we apply the TDD method to wave-induced ice floe collisions, where the wave steepness is 1.27 ×

10−2. Fig. 10 shows the measured (blue) and estimated accelerations using the TDD method (red) and the DF (black),
respectively, where we exclude the results from SVD-based differentiation method for clarity. As a result, the resulting
acceleration estimations using both the TDD and DF successfully generate the acceleration signals as expected. However,
it should be pointed out that the amplitudes of the resulting estimations are not the same as the direct measurements.
This is attributed to the interaction between the ice floes (see Fig. 9) and the weight of the IMUs since each IMU is very
heavy compared to the weight of the ice floe (1.5% of the ice floe weight); therefore, a large inertia is produced.

3.2.2. Case 6 — Wave-induced ice floe collisions (wave steepness is 1.56 × 10−2)
In this case, we apply the TDD method to the wave-induced floe collisions when the wave steepness is 1.56 × 10−2.

Similar to the previous case, Fig. 11 shows that the computed accelerations using both the TDD method and the DF yield
similar results. However, one can also observe strong nonlinear interactions in the phase portrait in Fig. 11c, which differs
from the system in the previous case in Fig. 10c.

For application of TDD method on more experimental signals, reader is referred to Section 7.
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Fig. 11. Case 6 (wave steepness is 1.56× 10−2). (a) Comparison between acceleration measurements and estimates, where the blue line represents
the measured acceleration obtained from the IMU, and the red and black lines represent the estimated accelerations from the TDD method and the
DF, respectively. (b) is the magnified view of the part indicated by the black box in (a). (c) shows the phase-plane plots for 33 ∼ 45 s using TDD.
In (c), the magenta color indicates the maximum positive acceleration, whereas the red color represents the maximum negative acceleration.

4. On the required embedding dimension and required shifting

Both SVD-based differentiation and the TDD methods rely on the critical parameter, viz., embedding dimension. The
embedding dimension used in this work differs from the notion of minimum embedding dimensions (e.g., Kennel et al.
[12], Cao [13], Kennel and Abarbanel [14], Maus and Sprott [15], Chelidze [16]), where we optimize the embedding
dimensions to find the best derivative approximations when compared with the analytical/simulated results. The
optimization problem can be solved by minimizing the following function:

εk(r, ξk) =
1

N × Nk

N∑
l=1

i=Nk, j=Nk+ξk−1∑
i=1, j=ξk

|x(k),dl,i − x(k),s,tl, j | (18)

ξk = 1, 2, . . . , τk (19)

τk =

{∑k−1
q=1 r̃q + r for the TDD method

r for the SVD-based differentiation method and k = 1
(20)

Nk = n − τk (21)

where xl and N are the time series of the lth variable and the number of variables in a signal system of interest, respectively;
Nk is the length of the kth time derivatives; subscripts i and j are the indices of entries (used for fidelity assessment) in
the data vectors of x(k),dl and x(k),s,tl , respectively; superscripts s and t denote simulated and theoretical, respectively; r̃
is the required embedding dimension that best approximates the time derivatives; τk is the truncation for the kth time
derivatives relative to the signal because of the time delay; n is the length of the signal; and r is the embedding dimension
tested, ranging from 3 to 20. Note that the SVD-based differentiation method requires the same embedding dimension
and shifting for all orders of time derivatives. Thus, we only perform optimization for k = 1.

According to Eqs. (18) ∼ (21), when εk(r, ξk) reaches the minimum for a signal with different embedding dimensions
r and different shiftings (ξk − 1), it results in the best derivative approximation.

Optimization is applied to 33 low-dimensional chaotic flow systems listed in Sprott [10]. These systems have multiple
variables in the ranges of 2 ∼ 4, i.e., N = 2 ∼ 4, for each system. The MATLAB function ode45 is applied to integrate
the differential equations describing the low-dimensional chaotic systems. For the simulation, sampling frequencies have
been arbitrarily chosen, ranging from 20 ∼ 100 Hz.

In addition to the low-dimensional chaotic systems mentioned above, optimization is further employed on a high-
dimensional chaotic flow system that is described by the Mackey–Glass differential equation in Mackey and Glass [26] as
follows:

ż(t) = −0.1z(t) +
0.2z(t − θ )

1 + z(t − θ )10
(22)

where θ is the time delay and set to 100 herein, as in Cao [13]. The solutions of Eq. (22) are found by the MATLAB function
dde23 and sampled at 100 Hz.

Fig. 12 illustrates the optimization results of the required embedding dimension for the selected systems. In the
analysis, signals including Case 1, Airy function [27], tanh(t) and sech(t) have been simulated up to the fourth order for
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Fig. 12. Required embedding dimension for the best derivative approximation using TDD. Insets show the enlarged view of errors when r = 5.
Each color represents one system or a signal. (a) represents the error of first-order time derivative estimates for 33 low-dimensional chaotic flow
systems and Mackey–Glass delay differential equations. (b) represents the error of second-order time derivatives using the Airy function, the jerk
chaotic system I, Case 1, tanh(t) and sech(t). (c) represents the error of third-order time derivative estimates using the same signals as in (b). (d)
represents the error of fourth-order time derivative estimates using the same signals as in (b) but excluding the jerk chaotic system I due to lack
of a simulated fourth-order time derivative.

simplicity. The 33 low-dimensional chaotic flow systems and the Mackey–Glass differential equation have been omitted
in the higher-order derivatives because higher-order derivative simulations were not possible for these systems. Because
of the same reason, the jerk chaotic system I [28] is only simulated to the third order.

As a result of the optimization, we show that required embedding dimension r̃ = 5 always gives the best
derivative approximation regardless of the systems/signals chosen. Actually, a smaller embedding dimensions result in
underestimated derivatives, whereas higher embedding dimensions lead to overestimated values.

Figs. 13 and 14 show the example optimizations, illustrating the required shifting that minimizes the error in TDD. It
is seen that the required shifting data points are 2, 4, 6 and 8 for the first four orders of time derivatives. Theoretically,
the SVD-based differentiation and TDD methods yield the averaged derivative for each row of the Hankel matrix. When
r = 5, the required shifting for SVD-based differentiation should therefore be 2. Analogously, the same shifting is needed
for Gibson-II as well. Regarding Gibson-I, the embedding dimension is r = 3; therefore, the shifting is 1 for this method.
As a result, we show that the shifting for the TDD method is 2k, where k represents the kth time derivative, which is
in agreement with the optimization results, as shown in Fig. 13. In addition, we employ genetic algorithm to check the
required embedding dimension by varying the shifting between 0 and 19, and embedding dimension from 3 to 20 to
minimize Eq. (18). Results also confirm that the required embedding dimension r̃ is 5 and shifting is 2k.

5. On the performance of the TDD method in estimating derivatives including higher-order derivatives

5.1. Clean signal

In this section, we systematically test the proposed TDD method for selected cases and compare with some common
numerical differentiation techniques, such as the fast Fourier transform (fft) and fourth-order central difference (C4D), and
with Gibson-I and Gibson-II. Methods that are described as Gibson refer to Gibson et al. [9], where they use the method
of delays combined with Legendre polynomials to estimate the derivatives. Gibson-I and Gibson-II differ from each other
based on the two different constant polynomial coefficients p, where Gibson-I refers to p = 1 and Gibson-II refers to p = 2.

Since Gibson-I and Gibson-II are based on the method of delays, the resulting derivatives should also be shifted. As
in the TDD method, we follow the same optimization approach and find the corresponding shifts of 1 and 2 for Gibson-I
and Gibson-II, respectively. Note that Gibson-I is limited to the second time derivative estimation because the Legendre
polynomial exists up to the second order for p = 1. Similarly, Gibson-II is applicable for time derivative estimations up
to the order of 4.

Table 1 illustrates the NRMSE value of the first two derivative approximations for Cases 1 to 4 for clean (without noise)
signals. Because the SVD-based differentiation and TDD methods are the same when the first derivative is considered, they
are indicated in the same row next to each other in Table 1. As seen, the TDD method generally yields comparable results
to the other methods for both the first and second derivative estimations, and the SVD-based second derivative estimation
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Fig. 13. Required shifting for the best derivative approximation using the TDD method, where the required embedding dimension r̃ = r = 5. Each
color represents one system and/or a signal. (a) the error of the first-order time derivative estimates for 33 low-dimensional chaotic flow systems
and Mackey–Glass delay differential equations. (b) the error of the second time derivative estimate (the TDD method) for Case 1, the Airy function,
the jerk chaotic system I and tanh(t) by shifting 0 ∼ 9 data points. (c) the error of the third time derivative estimate (the TDD method) for signals
in (b) by shifting 0 ∼ 14 data points. (d) the error of the fourth time derivative estimate (the TDD method) for signals in (b) excluding the jerk
chaotic system I due to lack of a simulated fourth-order time derivative and shift 0 ∼ 19 data points.

Fig. 14. Required shifting for the best derivative approximation using the SVD-based differentiation method (for the first time derivative only)
and the TDD method when using the required embedding dimension (r̃ = r = 5). Zoomed-in view of Fig. 13 to show the minimum error. Each
color represents one system or a signal. (a) the error of the first-order time derivative estimates for 33 low-dimensional chaotic flow systems and
Mackey–Glass delay differential equations. (b) the error of the second time derivative estimate (the TDD method) for Case 1, the Airy function,
the jerk chaotic system I and tanh(t). (c) the error of the third time derivative estimate (the TDD method) for signals in (b). (d) the error of the
fourth time derivative estimate (the TDD method) for signals in (b) excluding the jerk chaotic system I due to lack of a simulated fourth-order time
derivative and shift 0 ∼ 19 data points.
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Table 1
NRMSEs (in %) of estimates of the first two orders of time derivatives for clean signals.
Derivative Method Case 1 Case 2 Case 3 Case 4

ẋ

C4D 1.76 × 10−6 0.0104 0.0357 0.0321
fft 0.0331 0.0573 0.0363 0.443
Gibson-I 4.74 × 10−3 0.0103 0.0379 0.0348
Gibson-II 0.0161 0.0106 0.0495 0.0493
SVD-based/TDD 0.0358 0.0109 0.0494 0.100

ẍ

C4D 4.89 × 10−6 0.106 0.982 0.887
fft 1.20 × 10−4 0.109 1.03 0.940
Gibson-I 3.16 × 10−3 0.106 1.00 0.912
Gibson-II 0.0140 0.101 1.02 0.952
SVD-based 14.9 3.43 3.45 0.963
TDD 0.0446 0.0949 1.24 1.23

Fig. 15. Comparison between numerical and estimated time derivatives of Case 4. (a–b) represent first- and second-order time derivatives using
TDD, (c–d) represent first- and second-order time derivatives using Gibson-II, (e–f) represent first- and second-order time derivatives using central
fourth-order difference and (g–h) represent first- and second-order time derivatives using fft. The blue lines are the simulated results, the red and
magenta dashed lines are the results from TDD, the orange dashed line represents the result from Gibson-II, the green dashed line represents the
result from the central fourth-order derivative, and the cyan dashed line represents the result from fft.

is usually not as good as the other methods, as expected. In contrast to all of the other cases, the SVD-based approach
produced comparable second-order time derivative estimations only in Case 4 in Table 1.

Fig. 15 shows the comparisons of the first two derivatives obtained by simulation, TDD, Gibson-II, C4D and fft. As can
be seen, no obvious discrepancy exists between the simulated velocity (ẋ) and the estimates from TDD, C4D and Gibson-II
combined. However, because the boundary of the signal (not shown here) is not smooth and periodic, a boundary effect
on the velocity estimates using fft can be clearly seen in Fig. 15g. As a consequence, estimated derivatives have to be
truncated at the beginning and end section to eliminate boundary effects as described in Kutz [29]. The results show that
all tested methods provide estimates of accelerations that generally agree well with analytical and simulated accelerations.

From an engineering perspective, jerk (derivative of the acceleration) and jounce (derivative of the jerk) are very
important parameters (Eager et al. [30], Jazar [31], Smith and Christensen [32]); hence, they should be estimated as
accurately as possible. One can also estimate these parameters using TDD following the steps in Fig. 1 for five different
systems, including Case 1 (quasi-periodic signal), Airy function as in Oliphant [27], jerk chaotic system I as in Sprott [28],
jerk chaotic system II as in Linz and Sprott [33] and the time-varying hyperbolic tangent function.

Table 2 shows the NRMSE value of the third- and fourth-order derivative approximations of the selected cases for clean
(without noise) signals. In the analysis, the sampling frequency of the Airy function, the jerk chaotic system I, the jerk
chaotic system II and tanh(t) are chosen as 100 Hz, 20 Hz, 50 Hz and 40 Hz, respectively.

The results of higher-order derivative estimations show one common behavior that TDD successfully computes the
third-, fourth- and even higher-order derivatives (not shown). In addition, when some level of noise is added to those
signals, as in Table 3, the TDD method performs better at estimating higher-order derivatives.
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Table 2
NRMSEs (in %) of estimates of the higher-order time derivatives for clean signals.
Derivative Method Case 1 Airy Jerk I Jerk II tanh(t)

...
x

C4D 0.0713 2.88 × 10−5 0.743 3.16 4.54 × 10−5

Gibson-II 0.0721 0.0165 0.663 2.87 0.0115
TDD 0.0876 0.168 0.342 1.64 0.0615

....
x

C4D 0.0125 3.62 × 10−5 N/A N/A 9.75 × 10−5

Gibson-II 0.0151 0.0101 N/A N/A 9.18 × 10−3

TDD 0.0751 0.179 N/A N/A 0.0965

Table 3
NRMSEs (in %) of estimates of the first two orders of time derivatives for noisy signals (noise level in %)
Derivative Method Case 1 Case 2 Case 3 Case 4

ẋ

0.1 0.001 0.05 0.01a

C4D 0.733 0.123 0.368 0.205
fft 1.40 0.240 0.701 0.589
Gibson-I 0.547 0.0913 0.275 0.154
Gibson-II 0.244 0.0420 0.132 0.0834
SVD-based/TDD 0.247 0.0420 0.132 0.121
TVRDb 0.0490 0.0301 0.342 0.424
Tikhonovc 0.0615 0.0152 0.0904 0.0666
DF 0.183 0.0424 0.131 0.0597

ẍ

C4D 27.1 8.46 12.8 7.02
fft 107 33.2 50.1 27.4
Gibson-I 59.3 18.4 27.8 15.2
Gibson-II 12.9 4.02 6.16 3.45
TDD 3.45 1.07 2.01 1.51
TVRDb 0.123 0.208 4.11 4.69
Tikhonovc 0.464 0.214 1.46 1.33
DF 3.05 0.431 1.48 1.33

aThis row specifies the noise level in % for each signal.
bAbbreviation of total variation regularized differentiation [34].
cShorthand notation for Tikhonov regularization based differentiation [35,36].

5.2. Effect of noise

It is known that real time series are inevitably contaminated by noise; therefore, we further investigate the TDDmethod
in the presence of low-level Gaussian noise for selected cases, where the selected cases include the first four cases (Cases
1 ∼ 4), similar to Table 1.

Subsets of principal components have maximum variance; therefore, they are also expected to have a maximum signal-
to-noise ratio, meaning that the power of the signal will be much larger than the embedded noise power. It should also
be noted that the TDD method uses a fixed embedding dimension that is found by optimization; therefore, in this sense,
PCA becomes the optimal linear coordinate transformation as described in Gibson et al. [9].

Table 3 illustrates the NRMSE value of the first two derivative approximations for Cases 1 to 4 in the presence of
noise. As seen, all the methods tested give comparable results when the first-order derivative is considered except fft-
based differentiation. For the first two derivatives, TVRD outperforms the other methods in Case 1, whereas Tikhonov
and DF give the lowest NRMSEs in Case 4. In Cases 2 and 3, Tikhonov is in general superior to other methods. TDD
produces similar results with Gibson-II for the first derivative while better results than the latter method for the second
derivative. In comparison with DF, TDD yields similar NRMSEs for Case 1 and Case 3. As a result, TDD generally gives
comparable estimates of first and second-order derivatives. Another important point here is that, the parameters fed to
TVRD (i.e., regularization parameter) and DF (i.e., cut-off frequency and order number of DF) need to be tuned to obtain
comparable results in terms of NRMSE. As for Tikhonov, regularization matrix, such as identity matrix, first order derivative
operator matrix and second order derivative operator matrix [37–40], is data dependent and should be chosen prior to
analysis. Therefore, one need to intuitively know what to expect in the end, which is not always easy. On top of these
limitations, the performance of the TVRD and Tikhonov (solved by using LSQR algorithm [41], because of possible large-
scale problem encountered) are slow when compared with other methods because of the number of iterations involved
to obtain converged results.

Regularization parameter for Tikhonov can be determined by heuristic L-curve method [39,42], generalized cross-
validation [43] or other methods mentioned in Hansen [42]. However, none of the existing methods to determine
regularization parameter perform well for all signals [42].
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Fig. 16. Comparison between numerical and estimated time derivatives of Case 2. (a–b) represent first and second-order time derivatives using
TVRD. (c–d) represent first and second-order time derivatives using TDD, (e–f) represent first- and second-order time derivatives using Gibson-II,
(g–h) represent first- and second-order time derivatives using C4D and (i–j) represent first- and second-order time derivatives using fft. The blue
lines are the simulated results, the turquoise dashed lines are results from TVRD, the red and magenta dashed lines are results from TDD, the orange
dashed line represents the result from Gibson-II, the green dashed line represents the result from C4D, and the cyan dashed line represents the
result from fft.

The significant effect of the noise on the selected signals can also be seen from the corresponding time history plots.
Fig. 16 illustrates the numerical and estimated first- and second-order time derivatives of Case 2 using TVRD, TDD, Gibson-
II, C4D and fft. As seen, TDD produces smoother acceleration signals than the other tested methods except for TVRD that
is not cost efficient; therefore, it also produces clearer phase portraits as described in the earlier sections.

6. On the performance of TDD on chaotic systems with multistability

Recently, two studies were performed to explore the dynamic behavior of chaotic systems with multistability [44,45].
One newly devised system described in Natiq et al. [44] is shown below (referred to as Natiq-I hereafter):

ẏ1 = −y2 (23)

ẏ2 = y1 + ξy2y3 (24)

ẏ3 = σ |f1 (y1) | − βy22 − αy3 − µ (25)

where y1, y2, y3 are state variables; ξ , σ , β , α and µ are system parameters; the control term f1 (y1) = cos (y1).
The second system is a plasma perturbation mathematical model (henceforth denoted as Natiq-II) and is expressed

as [45]:

ẏ1 = y2y3 − y2 − σy1 (26)

ẏ2 = y1 (27)

ẏ3 = β
(
µ − y3 − y22y3

)
+ afi(y1), i = 1, 2. (28)

where y1, y2, y3 are state variables; σ , β and µ are independent system parameters; a is a coefficient; the control terms
f1(y1) = exp

(
−y21

)
and f2(y1) = cos (y1). To simulate the Natiq-I and Natiq-II system, ξ , σ , β , µ, α, a, control terms fi and

initial conditions are selected as those presented in Natiq et al. [44,45], see also Appendix. Here, sampling frequency 100
Hz is used for simulation.

Figs. 17–18 exhibit the mean NRMSE (i.e. mean of NRMSE for ẏ1, ẏ2, and ẏ3) of first time derivative estimates by various
methods for clean signals, which are produced by simulation, relative to simulated derivatives. Generally, C4D and Gibson-
I yield least discrepancy. Gibson-II and TDD give similar results except for Natiq-II cases #21, 22 and 24. However, the
deviation of results by using TDD from simulated derivatives is limited within 0.065%. In most of Natiq-I and Natiq-II cases,
fft produces worst approximation of derivatives, though edge effect is minimized by removing estimations of derivatives
in the vicinity of boundary.

By checking the signals (y1, y2 and y3) for Natiq-II cases #21, 22 and 24, we find that signals jump abruptly near
initial condition and are strongly damped. In order to improve the performance of TDD for these cases, we propose to
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Fig. 17. Mean NRMSE of estimates of first order time derivative for signals produced by simulating Natiq-I system.

Fig. 18. Mean NRMSE of estimates of first order time derivative for signals produced by simulating Natiq-II system.

mirror the signals, i.e. reverse the original signals and append the reversed signals to the original signals. This way, we not
only increase the length of the signal, but also assume that the mirrored signal is periodic. And, after TDD is employed,
one can eliminate the mirrored part and obtain the differentiated signal. This signal mirroring technique is similar to
zero-phase-shift method for causal filters [46]. The combination of TDD with the signal mirroring technique is referred
as mirrored TDD, or simply TDDm hereafter.

Again, as seen in Figs. 17–18, TDDm performs either equivalently with or better than TDD and Gibson-II in estimating
derivatives.

We also apply TDDm to Cases 1 ∼ 4. Applying TDDm on Cases 1 ∼ 4 contaminated by noise (see Table 3), we find that
TDDm yields same or slightly better results when compared with TDD, e.g., NRMSE of ẋ decreases from 0.121% to 0.0857%
for Case 4. When applied to clean signals (see Table 1), TDDm results in that NRMSEs of ẋ and ẍ drop from 0.0358% to
0.00796% and 0.0446% to 0.0194%, respectively for Case 1. NRMSE of ẋ for clean signal of Case 4 after using TDDm reduces
from 0.100% to 0.0520%. For other cases (Case 2 and Case 3), TDDm gives the identical results as TDD.

TDDm reduces NRMSE of ẋ of Case 4 (both clean and noisy signals) due to that x has quasi-linear drift component (see
Fig. 8a) and TDDm manages to handle traveling motions better than TDD (see the reason in Section 7).

In terms of third and fourth order time derivatives (see Table 2), TDDm improves the estimations for Airy function
markedly. More specifically, NRMSE of

...
x decreases from 0.168% to 0.0475% and NRMSE of

....
x declines from 0.179% to

0.0560%. Similar to Natiq-II cases #21, 22 and 24, time histories of second and third derivatives of Airy function are
decaying in time. This is why TDDm gives rise to better estimates of higher order derivatives than TDD for Airy function.
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Fig. 19. NRMSEs (with respect to results obtained by using Tikhonov) of estimating velocities of ice floes C and D in test runs #3210 ∼ #3250.

7. On the performance of TDD and its variant on real experimental signals

Here, we apply TDD and TDDm together with other methods on experimental signals obtained from the same
experimental campaign described in Section 3.2.

Velocities of floes C and D in test runs #3210 ∼ #3250 are quantified by using Kalman filtering (Smyth and Wu
[17],Faragher [47], hereafter Kalman), C4D and DF in a recent study [25].

As Tikhonov in general produces high-quality estimates of derivatives for noisy signals (see Table 3), we compare
results from other differentiation methods with those given by using Tikhonov.

Deviations of the results obtained by using various differentiation methods from those by Tikhonov are summarized in
Fig. 19. For all experimental signals, Kalman gives results that deviate most significantly from those by means of Tikhonov
(NRMSE larger than 1%). The main reason is that the motion of floes C and D differs slightly from ice floes that were
instrumented with IMUs (see details in Li et al. [25]). However, Kalman optimally combines displacement measurements
with acceleration measurements. Hence, the results given by Kalman are quality-assurance for estimates produced by
other methods [25].

TDD yields evidently different estimates of velocities for test runs #3210 and #3220 in comparison with Tikhonov.
This is attributed to quasi-linear drift motion of ice floes C and D in these two test runs (see Figs. 10c and 11c). TDD
is based on SVD, which has inherent caveat for traveling motion signals [48]. In contrast, TDDm improves the estimates
appreciably for test runs #3210 and #3220.

For all motion signals of ice floes studied here, TDDm gives similar estimates of velocities with the methods C4D,
Gibson-I, Gibson-II, Tikhonov, TVRD and DF (NRMSE within 0.65%).

Another set of experimental signals analyzed here are ECG signals [49–51]. These ECG signals include 17 states
measured on 45 patients, and are sampled at 360 Hz with a duration of 10 s [49]. We randomly choose 17 signals and
each of them corresponds with a different state. The results are displayed in Fig. 20. It is seen that results obtained by
means of TDD and TDDm are equivalent and deviate least from those produced by Tikhonov in general (NRMSE less than
1.5%). In contrast, C4D results in estimates that have largest discrepancy from the results given by Tikhonov. The other
methods (Gibson-I, Gibson-II, TVRD and DF) yield derivatives with modest difference from Tikhonov.

8. Summary and conclusion

In this study, we introduced a simple analytical function based on the method of delays with PCA to estimate time
derivatives of a given signal. In the function, we showed that the sampling frequency term scales the derivatives in
PCA correctly and estimates the higher-order derivatives accurately when compared with some common numerical
differentiators.

It is known that time derivative estimations change with the embedding dimension in the delay coordinates; however,
when TDD is considered, we showed that the required embedding dimension that best describes the analytical derivatives
is a constant value, which is equal to 5. This is particularly significant, given the simplicity of the method. In addition,
unlike Gibson et al. [9], TDD does not require creating complex polynomials to estimate higher-order derivatives because
we update the Hankel matrix in each derivation.
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Fig. 20. NRMSE (with respect to results obtained by using Tikhonov) of estimates of first order time derivative for ECG signals.

Using numerical (including 38 different chaotic systems) and experimental cases, we have demonstrated the applica-
bility of TDD to different types of signals in both the absence and the presence of some level of Gaussian noises. At the
end, we have shown that TDD and its variant TDDm produce comparable results in the absence of noise and computes
the derivatives better in the presence of low-level Gaussian noise.

We conclude that there is not a single method that works best in all applications in terms of accurate and fast numerical
differentiation. Depending on the application, noise level and many other parameters, one method might outperform
the other. Therefore, this process is really application dependent. Some methods such as total variation regularized
differentiation (TVRD), Tikhonov regularization based differentiation (Tikhonov), differentiator filter (DF) either need to
be tuned or a regularization matrix should be chosen to obtain comparable or better results; which means, one need
to intuitively know what to expect as a result priori and this is not always easy. Also, the performances of the TVRD
and Tikhonov are slow when compared with other methods that are mentioned in this paper. However, one consistent
result is that the new TDD (and TDDm) method always gives comparable results to estimate the derivatives of a signal
when compared with other well established methods such as central-fourth order difference, TVRD, and Gibson’s Legendre
polynomials and therefore it can be used as a new numerical differentiaton method.
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Table A.1
Parameter values and initial conditions for Natiq-I system [44].
Natiq-I-Case # ξ σ β α µ Initial condition

1 0.63 17 0.47 0.5 0 (2, −2, −1)
2 0.63 17 0.47 0.5 0 (0.5, −2, 0)
3 0.63 17 1.4 0.5 0 (1.8, 0.3, 0)
4 0.63 17 1.4 0.5 0 (−1.8, 0.3, 0)
5 0.63 17 1.4 0.5 0 (0.5, −2, 0)
6 0.63 17 1.93 0.5 0 (2, −2, −1)
7 0.63 17 1.93 0.5 0 (1.8, 0.3, 0)
8 0.63 17 1.93 0.5 0 (0.5, −2, 0)
9 1.82 12 0.1 0 0 (1.8, 0.3, 0)
10 1.82 12 0.1 0 0 (−1.8, 0.3, 0)
11 1.82 12 0.1 0 0 (5, 0, −5)
12 1.82 12 0.1 0 0 (5, 3, −3)
13 0.63 17 0.3 0.63 0.3 (1, −1, 1)
14 0.63 17 0.3 0.63 0.3 (1, −1, −4)

Table A.2
Parameter values and initial conditions for Natiq-II system [45].
Natiq-II-Case # σ β µ a fi Initial condition

1 0.5 0.1 2.2 0 0 (1, 0.5, 1)
2 0.5 0.1 2.2 0.5 exp

(
−y21

)
(−2, 0.01, −1)

3 0.5 0.1 2.2 0.76 exp
(
−y21

)
(−2, 0.01, −1)

4 0.5 0.1 2.2 0.8 exp
(
−y21

)
(−2, 0.01, −1)

5 0.5 0.1 2.2 0.5 cos (y1) (−2, 0.099, −1)

6 0.5 0.1 2.2 0.76 cos (y1) (−2, 0.099, −1)

7 0.5 0.1 2.2 0.85 cos (y1) (−2, 0.099, −1)

8 0.5 0.1 2.2 0.8 exp
(
−y21

)
(−2, 0.7, −1)

9 0.5 0.1 2.2 0.8 exp
(
−y21

)
(−2, 2, −1)

10 0.5 0.1 2.2 0.85 cos (y1) (−2, 0.5, −1)

11 0.5 0.1 2.2 0.85 cos (y1) (−2, 1.2, −1)

12 0.5 0.1 2.2 0.85 cos (y1) (−2, 2, −1)

13 0.5 0.1 2.2 0.85 cos (y1) (−2, 3, −1)

14 0.5 0.09 2.5 0.7 exp
(
−y21

)
(2, 1.6, −2)

15 0.5 0.09 2.5 0.7 exp
(
−y21

)
(2, 1.6, 2)

16 0.5 0.09 2.5 0.72 cos (y1) (2, 4, 2)

17 0.5 0.09 2.5 0.72 cos (y1) (−2, 4, −2)

18 0.5 0.09 2.5 0.72 cos (y1) (−2, 1.5, −2)

19 0.5 0.09 2.5 0.72 cos (y1) (−2, −1.5, −2)

20 0.45 0.6 2 2 cos (y1) (1, 1, 3)

21 0.45 0.6 2 2 cos (y1) (1, 4.4, 3)

22 0.45 0.6 2 2 cos (y1) (1, −3.9, 3)

23 0.45 0.6 2 1.02 cos (y1) (1, 1, 3)

24 0.45 0.6 2 1.02 cos (y1) (1, −3.9, 3)

25 0.5 0.69 1 0.52 cos (y1) (0, 1, 0)

26 0.5 0.69 1 0.52 cos (y1) (0, −1, 0)

27 0.5 0.71 1 0.52 cos (y1) (0, 1, 0)

28 0.5 0.71 1 0.52 cos (y1) (0, −1, 0)

Appendix. Parameter values and initial conditions for chaotic systems with multistability

Parameter values and initial conditions for Natiq-I and Natiq-II system are listed in Table A.1 and Table A.2, respectively.
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