

Emil Stubsjøen

Deep Learning analysis of the LV myocardium in
CCTA for identification of patients with significant
coronary artery stenosis

Trondheim, June 2021

M
as

te
r’s

 th
es

is
N

TN
U

N
or

w
eg

ia
n

U
ni

ve
rs

ity
 o

f S
ci

en
ce

 a
nd

 T
ec

hn
ol

og
y

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D

ep
ar

tm
en

t o
f S

tru
ct

ur
al

 E
ng

in
ee

rin
g

Department of Structural Engineering
Faculty of Engineering
NTNU - Norwegian University of Science and Technology

MASTER THESIS 2021

SUBJECT AREA: Biomechanics DATE: 10.06.2021 NO. OF PAGES: 98

TITLE:

Deep Learning analysis of the LV myocardium in CCTA for identification of
 patients with significant coronary artery stenosis

BY:

Emil Stubsjøen

RESPONSIBLE TEACHER: Leif Rune Hellevik

SUPERVISOR(S): Fredrik Eikeland Fossan and Jacob Sturdy

CARRIED OUT AT: Department of Structural Engineering

SUMMARY:

For patients affected by coronary artery stenosis of intermediate severity, the significance of the stenosis has to be
determined. In clinical practice, measuring the fractional flow reserve (FFR) is one of the most commonly utilized
methods. In this procedure FFR measurements are conducted during invasive coronary angiography (ICA), which has a
small health risk associated with it.

In order to automatically identify patients with functionally significant coronary artery stenosis, a pipeline composed of
several stages has been developed. To begin with, the left ventricular (LV) myocardium is segmented using a
Convolutional Neural Network (CNN). Subsequently, the LV myocardium is characterized from encodings of an
unsupervised/semi-supervised Convolutional Autoencoder (CAE). As changes in the tissue of the LV myocardium are
anticipated to occur locally, the obtained automatic segmentation is split into 500 spatially connected clusters. Two
different methods were employed for computing the patients features using statistics of the encodings. At last, patients
are classified based on the presence of functionally significant stenosis using a FFR cut-off value of 0.8 for separating
the negative and positive samples.

ACCESSIBILITY

 i

Abstract
For patients affected by coronary artery stenosis of intermediate severity, the significance of
the stenosis has to be determined. In clinical practice, measuring the fractional flow reserve
(FFR) is one of the most commonly utilized methods for evaluating the severity of the
disease. In this procedure FFR measurements are conducted during invasive coronary
angiography (ICA), which has a small health risk associated with it. In Zreik et al. (2017), a
non-invasive method that uses Deep Learning to extract myocardial properties from coronary
computed tomography angiography (CCTA) has shown that it may be possible to get accurate
predictions on determining functionally significant stenosis [4]. This is accomplished by
segmenting and extracting structural features from the left ventricle (LV) myocardium. This
thesis aims to reproduce and extend the methods proposed in Zreik et al. In particular an
automatic pipeline was implemented which consists of three main steps: 1) automatic
segmentation, 2) characterization of the LV myocardium through clustering and autoencoding
and 3) final classification of patients with functional significant CAD based on features
extracted in step 2. Moreover, several aspects of all three steps were explored.

A dataset of 66 CCTAs from patients that underwent invasive FFR measurements was
utilized, where manually performed segmentations of the LV myocardium was available for
28 of the patients. In step 1 we evaluated three different CNN architectures for automatic
segmentation of the LV myocardium via 3-fold cross-validation experiments. The best results
were obtained with the U-Net Standard and DSL which obtained an average DSC of 0.89
across all three folds, which is comparable with results reported in Zreik et al. (DSC: 0.91).
Furthermore, increasing the complexity of the CNN did not yield improved results. In step 2
several sub-tasks were performed. First a K-means algorithm which divides the myocardium
into 500 sub-regions was implemented. Further, the data within each cluster were compressed
by application of an unsupervised/semi-supervised Convolutional Autoencoder (CAE) which
was trained to reproduce CCTA patches (2D sub-region of an image) associated with the
clusters. We found that the performance of the CAEs was best for smaller patch sizes, which
also provided best results in the classification (step 3). Finally, the information from the
encodings of all clusters were combined into a vector of features characterizing the
myocardium. Here, we evaluated the approach suggested by Zreik et. al and propose an
alternative approach. In step 3 the classification was performed with both K-Nearest
Neighbors (KNN) and Gaussian Process Classifier (GPC). We were not able to reproduce the
results for patient classification presented by Zreik et. al (AUC ~0.74) by applying (our
understanding of) their method directly. The best results were obtained with the GPC
classifier by applying our new approach for combining/extracting features and by including
an additional layer of feature-selection, which achieved an AUC of ~ 0.70. However, a
shortcoming of this approach is related to the random ordering of clusters/features and the
inability to consistently select features with high amounts of information in unseen
populations. As a proof of concept, we show that high classification (AUC ~ 0.90) is possible
if feature selection is performed on the entire dataset.

 ii

Sammendrag
For pasienter med innsnevring av moderat alvorlighetsgrad i koronararteriene må betydningen
av innsnevringen defineres. I klinisk praksis gjøres dette vanligvis gjennom å måle FFR
(Fractional Flow Reserve). I denne prosedyren måles FFR under invasiv koronar angiografi
(ICA), som har en liten helserisiko knyttet til seg. I Zreik et al. (2017) har en ikke-invasiv
metode som bruker dyp læring på CCTA (Coronary Computed Tomography Angiography)
bilder for å hente «features» fra venstre ventrikkels (VV) myokard vist seg å gi gode
predikasjoner i sammenheng med å avgjøre alvorlighetsgraden til en innsnevring [4]. Dette er
blitt gjort ved å først segmentere, for så å hente ut strukturelle «features» fra VV myokard.
Denne masteroppgaven sikter seg inn på å reprodusere og videreutvikle metodene foreslått i
Zreik et al. En automatisk «pipeline» har blitt implementert, som består av tre overordnede
steg: 1) automatisk segmentering, 2) karakterisering av VV myokard gjennom clusteranalyse
og autoencoding og 3) endeling klassifisering av pasienter med koronar hjertesykdom av
funksjonell signifikans basert på «featurene» hentet ut i steg 2). Videre har flere aspekter
vedrørende alle de tre stegene blitt utforsket.

Et datasett bestående av 66 CCTA bilder av pasienter som gjennomgikk invasive FFR-
målinger har blitt brukt, hvor manuelle segmenteringer av VV myokard var tilgjengelig for 28
av pasientene. I steg 1 har tre ulike CNN arkitekturer for automatisk segmentering blitt
evaluert gjennom 3-fold kryssvaliderings eksperimenter. Best resultater ble oppnådd for U-
Net Standard med DSL, som resulterte i en gjennomsnittlig DSC på 0.89 på tvers av alle
folds. Dette er sammenlignbart med resultatene rapportert i Zreik et al. (DSC: 0.91). Videre
viste resultatene at introduksjon av en mer kompleks CNN arkitektur ikke ga forbedrede
predikasjoner. I steg 2 ble flere underoppgaver gjennomført. Først ble en K-means algoritme
som deler myokard inn i 500 del-regioner (clusters) implementert. Videre ble data innenfor
hver «cluster» komprimert gjennom anvendelse av en konvensjonell auto-encoder (CAE) som
var trent opp til å reprodusere CCTA «patches» (2D sub-region av et bilde) knyttet til
«clusterene». De beste resultatene for auto-encoderen ble oppnådd for mindre patch-
størrelser, som videre også ga de beste klassifiserings resultatene (steg 3). Til slutt ble
informasjonen fra kodingene produsert av auto-encoderen og «clusterene» fra K-means
algoritmen kombinert til en vektor av «features» som en karakterisering av myokard. Her
evaluerte vi metoden foreslått i Zreik et al., tillegg til å foreslå en ny alternativ metode. I steg
3 ble klassifiseringen gjennomført ved å bruke både K-Nearest Neighbors (KNN) og Gaussian
Process Classifierr (GPC). Vi greide ikke å reprodusere resultatene fra klassifiseringen av
pasienter presentert i Zreik et al. (AUC ~ 0.74) ved å anvende (vår tolking av) metoden deres
direkte. Best resultater ble oppnådd for GPC klassifisering gjennom å anvende den nye
foreslåtte metoden for å kombinere/hente ut «features» og ved å inkludere et nytt ledd med
«feature selection», noe som resulterte en AUC på ~ 0.70. En svakhet ved denne metoden er
relatert til den tilfeldige rekkefølgen av clusters/features og metodens manglende evne til å
konsistent hente ut «features» med en høy mengde informasjon for en usett populasjon. Som
et bevis på dette, viser vi til at høy klassifiseringsytelse (AUC ~ 0.90) er mulig dersom
«feature selection» blir gjennomført basert på hele datasettet.

 iii

Preface
This thesis is written as my master thesis for the Departments of Structural Engineering at the
Norwegian University of Science and Technology (NTNU). It extends the work done in my
specialization project, where most of the methods and theory are still relevant.

I would like to thank my two supervisors Fredrik Eikeland Fossan and Jacob Sturdy for the
excellent gradience and good advice throughout the process. Furthermore, I want to my
supervisors for the opportunity to work on this exciting field, and for the opportunity to learn
all the new things which were necessary in order to write this thesis.

 iv

Table Of Contents

Abstract ... i

Sammendrag ... ii
Preface ... iii

Table Of Contents ... iv

List of Figures ... vii

List of Tables .. xi
Abbreviations .. xii

Chapter 1 Introduction .. 1

1.1 Motivation ... 1
1.2 Project Goals ... 2
1.3 Contribution .. 3
1.4 Outline ... 3

Chapter 2 Basic Theory ... 5

2.1 LV Myocardium ... 5
2.1.1 Structure and Functionality ... 5
2.1.2 Coronary Artery Disease ... 5
2.1.3 Fractional Flow Reserve (FFR) ... 6

2.2 Coronary Computed Tomography Angiography (CCTA) ... 6
2.3 Deep Learning ... 7

2.3.1 Artificial Neural Networks (ANNs) .. 7
Artificial Neurons .. 7
Neural Network Structure ... 8
Activation Function ... 9

2.3.2 Optimization .. 10
Problems with optimization .. 12

2.3.3 Data Processing ... 13
Preprocessing ... 13

Pixel Intensity Normalization ... 13
Resampling ... 13
Pixel Intensity Clipping .. 14

Data Augmentation .. 14
Patch-wise and Full Image Analysis ... 14
Batch Management .. 15

2.3.4 Evaluation ... 15
Train/Test Split .. 15
Cross-Validation .. 16

2.3.5 Regularization ... 16
Early Stopping ... 17
Dropout .. 17
Batch Normalization .. 18

2.3.6 Convolutional Neural Networks (CNNs) .. 18
Convolutional Autoencoder (CAE) ... 19

Chapter 3 Methodology ... 21

 v

3.1 Technical Tools ... 21
3.2 Dataset ... 22

3.2.1 NIfTI Data I/O ... 22
3.2.2 Data Exploration ... 22

3.3 Implementation ... 24
3.3.1 Automatic Segmentation ... 25

Architecture ... 25
3D-UNet Standard .. 26
3D-UNet Residual .. 26
3D-UNet Dense .. 27

Preprocessing ... 27
Training ... 28
Evaluation metrics ... 28
Loss Function .. 30
Postprocessing ... 30

3.3.2 Myocardial Characterization ... 31
Clustering .. 31
CAE ... 32

Training .. 32
Loss Function ... 33
Architecture .. 33

Feature Extraction ... 35
Methods for building the patient feature vector ... 36

3.3.3 Classification ... 37
Feature Selection ... 37
Normalization .. 39
Classification Methods .. 39

Gaussian Process Classifier .. 39
K-Neighbors Classifier ... 40

Evaluation metrics ... 41

Chapter 4 Results ... 43

4.1 Automatic Segmentation .. 43
4.1.1 Experiment 1: 3D U-Net Standard and DSL ... 44
4.1.2 Experiment 2: 3D U-Net Standard and TL ... 47
4.1.3 Experiment 3: 3D U-Net Dense and TL ... 50
4.1.4 Experiment 4: 3D U-Net Residual and TL ... 53

4.2 Clustering .. 56
4.2.1 Experiment 1: K-means ... 56

4.3 CAE .. 58
4.3.1 Experiment 1: Patch Size 16x16 ... 59
4.3.2 Experiment 2: Patch Size 20x20 ... 60
4.3.3 Experiment 3: Patch Size 24x24 ... 61
4.3.4 Experiment 4: Patch Size 28x28 ... 62
4.3.5 Experiment 5: Patch Size 36x36 ... 63
4.3.6 Experiment 6: Patch Size 48x48 ... 64

4.4 Classification ... 65
4.4.1 Feature Selection ... 66

Method 1 .. 66
Method 2 .. 68

4.4.2 Results ... 69
Method 1 .. 69
Method 2 .. 70

Chapter 5 Discussion ... 74

5.1 Automatic Segmentation .. 74

 vi

5.2 Myocardium Characterization .. 75
5.2.1 CAE ... 75
5.2.2 Clustering .. 76
5.2.3 Feature Extraction ... 77
5.2.4 Classification ... 78

Chapter 6 Conclusion and Future Work .. 81

Bibliography .. 83

 vii

List of Figures

FIGURE 1: ILLUSTRATION OF ARTERY NARROWED BY PLAQUE [12]. ... 5
FIGURE 2: VISUALIZATION OF THE THREE BODY PLANES [43]. .. 6
FIGURE 3: STRUCTURE OF AN ARTIFICIAL NEURON WITH INPUTS (𝑥1, 𝑥2,… 	𝑥𝑛), WEIGHTS

(𝑤1,𝑤2,… 	𝑤𝑛), BIAS 𝑏, ACTIVATION FUNCTION 𝑓, AND THE PREDICTED OUTPUT 𝑦𝑝𝑟𝑒𝑑 . 8
FIGURE 4: ILLUSTRATION OF A FULLY CONNECTED ANN WITH TWO HIDDEN LAYERS. THE

NETWORK HAS TWO NEURONS IN THE INPUT AND OUTPUT LAYER, WHILE THE HIDDEN
LAYERS CONTAIN FOUR NEURONS EACH. .. 8

FIGURE 5: THE SIGMOID ACTIVATION FUNCTION (LEFT) AND ITS DERIVATIVE (RIGHT) 9
FIGURE 6: THE ELU ACTIVATION FUNCTION (LEFT) AND ITS DERIVATIVE (RIGHT) 10
FIGURE 7: THE RELU ACTIVATION FUNCTION (LEFT) AND IT DERIVATIVE (RIGHT) 10
FIGURE 8: K-FOLD CROSS-VALIDATION METHOD [26] ... 16
FIGURE 9: OVERFITTING – THE TRAINING CONTINUOUS WHILE THE MODEL ACCURACY ON THE

VALIDATION SET DECREASES (I.E., THE VALIDATION LOSS INCREASES) 17
FIGURE 10: VISUALIZATION OF AN ANN WITH THREE DROPOUT LAYERS. THE NETWORK TO THE

LEFT REPRESENTS NORMAL STATE OF THE NETWORK, WHILE THE NETWORK TO THE
RIGHT REPRESENTS THE STATE OF THE NETWORK AFTER DROPOUT IS APPLIED. THE
NEURONS WITHOUT EDGES REPRESENT THE DEACTIVATED NEURONS. 17

FIGURE 11: ILLUSTRATION OF A CAE USING TWO CONVOLUTIONAL LAYERS IN THE ENCODER (LEFT
OF THE COMPRESSED REP.) AND TWO TRANSPOSED CONVOLUTIONAL LAYERS IN THE
DECODER (RIGHT OF THE COMPRESSED REP.). .. 19

FIGURE 12: HISTOGRAM OF THE AVERAGE RANGE OF HU OF MYOCARDIUM VOXELS 23
FIGURE 13: OVERVIEW OF THE PROPOSED PIPELINE. THE LV MYOCARDIUM IS FIRST SEGMENTED

USING A 3D CNN AND SUBSEQUENTLY CLUSTERED VIA K-MEANS. ENCODINGS ARE
EXTRACTED FROM THE CLUSTERED LV MYOCARDIUM USING A CAE TO COMPUTE THE
FEATURES [𝑓1, 𝑓2, 𝑓3,… , 𝑓𝑛].	 AT LAST THESE FEATURES ARE USED TO CLASSIFY THE
PATIENTS WITH FUNCTIONALLY SIGNIFICANT STENOSIS (POSITIVE) AND THOSE WITHOUT
(NEGATIVE). .. 24

FIGURE 14: OVERVIEW OF THE PIPELINE UTILIZED FOR AUTOMATIC SEGMENTATION OF THE LV
MYOCARDIUM. THE WORKFLOW STARTS WITH THE DATASETS AND DESCRIBES THE
ORDER OF EACH STEP, ENDING WITH AN EVALUATION FOR EACH FOLD IN THE CROSS-
VALIDATION. FIGURE ADAPTED FROM [8]. ... 25

FIGURE 15: ARCHITECTURE OF STANDARD 3D U-NET. THE NETWORK INPUT IS 3D PATCHES
(CUBOIDS), AND THE OUTPUT IS THE SEGMENTATION OF MYOCARDIUM. CONV:
CONVOLUTIONAL LAYER; RELU: RECTIFIED LINEAR UNIT; BN: BATCH
NORMALIZATION. FIGURE ADAPTED FROM ... 26

FIGURE 16: ANOTHER VIEW OF THE 3D-UNET STANDARD ARCHITECTURE 26
FIGURE 17: VIEW OF THE 3D U-NET RESIDUAL ARCHITECTURE ... 27
FIGURE 18: VIEW OF THE 3D U-NET DENSE ARCHITECTURE ... 27
FIGURE 19: CONFUSION MATRIX FOR EVALUATION ... 29
FIGURE 20: SEGMENTATION WITH SMALL COMPONENTS OUTSIDE THE GEOMETRIC BOUNDARIES OF

THE LV MYOCARDIUM .. 31
FIGURE 21: ONE-LAYER 2D-CAE WITH MAX-POOLING AND UPSAMPLING LAYERS 34
FIGURE 22: TWO-LAYER 2D-CAE WITH MAX-POOLING AND UPSAMPLING LAYERS 34
FIGURE 23: ONE-LAYER 2D-CAE WITH STRIDED CONVOLUTIONS .. 34
FIGURE 24: ENCODER USED TO CREATE A DENSE REPRESENTATION OF MYOCARDIUM PATCHES 35
FIGURE 25: EXTRACTED PATCH AND ITS OVERLAPPING CLUSTER-LABELS. THE PATCH IS ASSIGNED

TO CLUSTER (2) FOR CENTER-SELECTION, WHILE IT IS ASSIGNED TO CLUSTER (3) WHEN
THE HIGHEST SHARE METHOD IS USED. ... 35

 viii

FIGURE 26: THE IQR ILLUSTRATED FOR A PROBABILITY DENSITY FUNCTION OF A NORMAL
DISTRIBUTION .. 39

FIGURE 27: VISUALIZATION OF THE THREE STEPS OF THE KNN ALGORITHM FOR CLASSIFICATION
OF 2D SAMPLES USING THE EUCLIDEAN DISTANCE AND THE NUMBER OF NEIGHBORS
K=3 .. 41

FIGURE 28: FITTING CURVE DURING TRAINING REPRESENTING THE AVERAGE LOSS ACROSS ALL
FOLDS COMPUTED BY GAUSSIAN PROCESS REGRESSION. THE RED AND CYAN LINES
REPRESENT THE TRAINING AND VALIDATION DATA, RESPECTIVELY. THE GRAY AREAS
AROUND REPRESENT THE CONFIDENCE INTERVAL. .. 44

FIGURE 29: RANDOM SLICE FROM CT_FFR_29 WITH THE HIGHEST DSC OF 0.904. 45
FIGURE 30: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_29 WITH THE HIGHEST DSC OF
0.904. .. 45

FIGURE 31: RANDOM SLICE FROM CT_FFR_25 WITH THE LOWEST DSC OF 0.763. 46
FIGURE 32: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_25 WITH THE LOWEST DSC OF
0.763. .. 46

FIGURE 33: FITTING CURVE DURING TRAINING REPRESENTING THE AVERAGE LOSS ACROSS ALL
FOLDS COMPUTED BY GAUSSIAN PROCESS REGRESSION. THE RED AND CYAN LINES
REPRESENT THE TRAINING AND VALIDATION DATA, RESPECTIVELY. THE GREY AREAS
AROUND REPRESENT THE CONFIDENCE INTERVAL. .. 47

FIGURE 34: RANDOM SLICE FROM CT_FFR_29 WITH THE HIGHEST DSC OF 0.912. 48
FIGURE 35: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_29 WITH THE HIGHEST DSC OF
0.912. .. 48

FIGURE 36: RANDOM SLICE FROM CT_FFR_25 WITH THE LOWEST DSC OF 0.788. 49
FIGURE 37: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_29 WITH THE LOWEST DSC OF
0.788. .. 49

FIGURE 38: FITTING CURVE DURING TRAINING REPRESENTING THE AVERAGE LOSS ACROSS ALL
FOLDS COMPUTED BY GAUSSIAN PROCESS REGRESSION. THE RED AND CYAN LINES
REPRESENT THE TRAINING AND VALIDATION DATA, RESPECTIVELY. THE GREY AREAS
AROUND REPRESENT THE CONFIDENCE INTERVAL. .. 50

FIGURE 39: RANDOM SLICE FROM CT_FFR_16 WITH THE HIGHEST DSC OF 0.914. 51
FIGURE 40: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_16 WITH THE HIGHEST DSC OF
0.914. .. 51

FIGURE 41: RANDOM SLICE FROM CT_FFR_26 WITH THE LOWEST DSC OF 0.779. 52
FIGURE 42: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_26 WITH THE LOWEST DSC OF
0.779. .. 52

FIGURE 43: FITTING CURVE DURING TRAINING REPRESENTING THE AVERAGE LOSS ACROSS ALL
FOLDS COMPUTED BY GAUSSIAN PROCESS REGRESSION. THE RED AND CYAN LINES
REPRESENT THE TRAINING AND VALIDATION DATA, RESPECTIVELY. THE GREY AREAS
AROUND REPRESENT THE CONFIDENCE INTERVAL. .. 53

FIGURE 44: RANDOM SLICE FROM CT_FFR_7 WITH THE HIGHEST DSC OF 0.896. 54
FIGURE 45: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_7 WITH THE HIGHEST DSC OF
0.896. .. 54

FIGURE 46: RANDOM SLICE FROM CT_FFR_25 WITH THE LOWEST DSC OF 0.679. 55
FIGURE 47: VISUALIZATION OF GROUND TRUTH (BLUE), PREDICTION (RED), FALSE NEGATIVES

(PINK), AND FALSE POSITIVES (GREEN) FROM CT_FFR_25 WITH THE LOWEST DSC OF
0.679. .. 55

 ix

FIGURE 48: RESULTS OF K-MEANS CLUSTERING FOR TWO DIFFERENT PATIENTS PRESENTED BY
RANDOM SLICES FROM SAGITTAL PLANE (LEFT), CORONAL PLANE (MIDDLE), AND
TRANSVERSE PLANE (RIGHT). ... 56

FIGURE 49: FITTING CURVE FOR THE EXPERIMENT WITH A PATCH SIZE OF 16X16. 59
FIGURE 50: THREE EXAMPLES OF RECONSTRUCTED PATCHES BY THE CAE RANDOMLY SELECTED

FROM THE TEST SET. EACH ROW CONTAINS THE 16X16 ORIGINAL INPUT PATCH (RIGHT),
THE 16X16 RECONSTRUCTED PATCH (MIDDLE), AND THE RECONSTRUCTION ERROR
(LEFT) CALCULATED FROM THE SCALED PIXEL INTENSITIES. ... 59

FIGURE 51: FITTING CURVE FOR THE EXPERIMENT WITH A PATCH SIZE OF 20X20. 60
FIGURE 52: THREE EXAMPLES OF RECONSTRUCTED PATCHES BY THE CAE RANDOMLY SELECTED

FROM THE TEST SET. EACH ROW CONTAINS THE 20X20 ORIGINAL INPUT PATCH (RIGHT),
THE 20X20 RECONSTRUCTED PATCH (MIDDLE), AND THE RECONSTRUCTION ERROR
(LEFT) CALCULATED FROM THE SCALED PIXEL INTENSITIES. ... 60

FIGURE 53: FITTING CURVE FOR THE EXPERIMENT WITH A PATCH SIZE OF 24X24 61
FIGURE 54: THREE EXAMPLES OF RECONSTRUCTED PATCHES BY THE CAE RANDOMLY SELECTED

FROM THE TEST SET. EACH ROW CONTAINS THE 24X24 ORIGINAL INPUT PATCH (RIGHT),
THE 24X24 RECONSTRUCTED PATCH (MIDDLE), AND THE RECONSTRUCTION ERROR
(LEFT) CALCULATED FROM THE SCALED PIXEL INTENSITIES. ... 61

FIGURE 55: FITTING CURVE FOR THE EXPERIMENT WITH A PATCH SIZE OF 28X28. 62
FIGURE 56: THREE EXAMPLES OF RECONSTRUCTED PATCHES BY THE CAE RANDOMLY SELECTED

FROM THE TEST SET. EACH ROW CONTAINS THE 28X28 ORIGINAL INPUT PATCH (RIGHT),
THE 28X28 RECONSTRUCTED PATCH (MIDDLE), AND THE RECONSTRUCTION ERROR
(LEFT) CALCULATED FROM THE SCALED PIXEL INTENSITIES. ... 62

FIGURE 57: FITTING CURVE FOR THE EXPERIMENT WITH A PATCH SIZE OF 36X36. 63
FIGURE 58: THREE EXAMPLES OF RECONSTRUCTED PATCHES BY THE CAE RANDOMLY SELECTED

FROM THE TEST SET. EACH ROW CONTAINS THE 36X36 ORIGINAL INPUT PATCH (RIGHT),
THE 36X36 RECONSTRUCTED PATCH (MIDDLE), AND THE RECONSTRUCTION ERROR
(LEFT) CALCULATED FROM THE SCALED PIXEL INTENSITIES. ... 63

FIGURE 59: FITTING CURVE FOR THE EXPERIMENT WITH A PATCH SIZE OF 48X48. 64
FIGURE 60: THREE EXAMPLES OF RECONSTRUCTED PATCHES BY THE CAE RANDOMLY SELECTED

FROM THE TEST SET. EACH ROW CONTAINS THE 48X48 ORIGINAL INPUT PATCH (RIGHT),
THE 48X48 RECONSTRUCTED PATCH (MIDDLE), AND THE RECONSTRUCTION ERROR
(LEFT) CALCULATED FROM THE SCALED PIXEL INTENSITIES. ... 64

FIGURE 61: DISTRIBUTION CHI2-VALUES FOR A RANDOM K-FOLD SPLIT IN THE 36X36 PATCH SIZE
EXPERIMENT. THE BLUE BINS REPRESENT THE DISTRIBUTION OF SCORES COMPUTED
FROM THE TRAIN SET, WHILE THE ORANGE BINS REPRESENT THE DISTRIBUTION OF
SELECTED FEATURES. .. 67

FIGURE 62: DISTRIBUTION CHI2-VALUES FOR A RANDOM K-FOLD SPLIT IN THE 36X36 PATCH SIZE
EXPERIMENT. THE BLUE BINS REPRESENT THE DISTRIBUTION OF SCORES COMPUTED
FROM THE TEST SET, WHILE THE ORANGE BINS REPRESENT THE SELECTED FEATURES
(BASED ON THE TRAIN SET) COMPUTED FROM THE TEST SET. .. 67

FIGURE 63: DISTRIBUTION OF MI-VALUES (LEFT) AND CHI2-VALUES (RIGHT) FOR A RANDOM K-
FOLD SPLIT IN THE 20X20 PATCH SIZE EXPERIMENT. FIRSTLY THE 150 BEST MI-
FEATURES ARE SELECTED, AND SUBSEQUENTLY THE 30 BEST CHI2-FEATURES ARE
SELECTED FROM THE MI-REDUCED SAMPLES. THE BLUE BINS REPRESENT THE SCORES
COMPUTED FROM THE TRAIN SETT, WHILE THE ORANGE BINS REPRESENT THE SELECTED
FEATURES. ... 68

FIGURE 64: DISTRIBUTION OF MI-VALUES (LEFT) AND CHI2-VALUES (RIGHT) FOR A RANDOM K-
FOLD SPLIT IN THE 20X20 PATCH SIZE EXPERIMENT. FIRSTLY THE 150 BEST MI-
FEATURES ARE SELECTED, AND SUBSEQUENTLY THE 30 BEST CHI2-FEATURES ARE
SELECTED FROM THE MI-REDUCED SAMPLES. THE BLUE BINS REPRESENT THE SCORES
COMPUTED FROM THE TEST SET, WHILE THE ORANGE BINS REPRESENT THE SELECTED
FEATURES (BASED ON THE TRAIN SET) COMPUTED FROM THE TEST SET. 69

FIGURE 65: AVERAGE ROC CURVES FOR CLASSIFICATION OF PATIENTS FROM CAE-MODEL P16
USING METHOD 2 TO BUILD THE FEATURE VECTOR. THE FFR CUT-OFF VALUE IS SET TO

 x

0.8 AND THE SHADED AREA REPRESENTS A 95 % ASYMPTOTIC CONFIDENCE INTERVAL
OF THE SENSITIVITY. ... 70

FIGURE 68: AVERAGE ROC CURVES FOR CLASSIFICATION OF PATIENTS FROM CAE-MODEL P20
USING METHOD 2 TO BUILD THE FEATURE VECTOR. THE FFR CUT-OFF VALUE IS SET TO
0.8 AND THE SHADED AREA REPRESENTS A 95 % ASYMPTOTIC CONFIDENCE INTERVAL
OF THE SENSITIVITY. ... 71

FIGURE 67: AVERAGE ROC CURVES FOR CLASSIFICATION OF PATIENTS FROM CAE-MODEL P24
USING METHOD 2 TO BUILD THE FEATURE VECTOR. THE FFR CUT-OFF VALUE IS SET TO
0.8 AND THE SHADED AREA REPRESENTS A 95 % ASYMPTOTIC CONFIDENCE INTERVAL
OF THE SENSITIVITY. ... 71

FIGURE 66: AVERAGE ROC CURVES FOR CLASSIFICATION OF PATIENTS FROM CAE-MODEL P28
USING METHOD 2 TO BUILD THE FEATURE VECTOR. THE FFR CUT-OFF VALUE IS SET TO
0.8 AND THE SHADED AREA REPRESENTS A 95 % ASYMPTOTIC CONFIDENCE INTERVAL
OF THE SENSITIVITY. ... 71

FIGURE 69: AVERAGE ROC CURVES FOR CLASSIFICATION OF PATIENTS FROM CAE-MODEL P36
USING METHOD 2 TO BUILD THE FEATURE VECTOR. THE FFR CUT-OFF VALUE IS SET TO
0.8 AND THE SHADED AREA REPRESENTS A 95 % ASYMPTOTIC CONFIDENCE INTERVAL
OF THE SENSITIVITY. ... 72

FIGURE 70: AVERAGE ROC CURVES FOR CLASSIFICATION OF PATIENTS FROM CAE-MODEL P48
USING METHOD 2 TO BUILD THE FEATURE VECTOR. THE FFR CUT-OFF VALUE IS SET TO
0.8 AND THE SHADED AREA REPRESENTS A 95 % ASYMPTOTIC CONFIDENCE INTERVAL
OF THE SENSITIVITY. ... 72

 xi

List of Tables

TABLE 1: DATA EXPLORATION FOR THE ENTIRE DATASET OF 66 IMAGES AND THE 28 IMAGES WITH
MANUAL SEGMENTATION ... 23

TABLE 2: OVERVIEW OF PARAMETERS FOR THE CNN AUTOMATIC SEGMENTATIONS EXPERIMENTS. . 43
TABLE 3: OVERVIEW OF AVERAGE RESULTS ACROSS ALL THREE FOLDS FOR EACH CNN

EXPERIMENT. THE MODEL FROM THE SECOND FOLD OF EX1 WAS UTILIZED TO OBTAIN
AUTOMATIC SEGMENTATIONS FOR THE ENTIRE DATASET USED FOR CLUSTERING AND
FEATURE EXTRACTION IN THE NEXT STEP OF THE TOTAL PIPELINE. 43

TABLE 4: AVERAGE RESULTS FROM 3-FOLD CROSS-VALIDATION REPRESENTED BY THE DICE
SIMILARITY COEFFICIENT (DSC), SENSITIVITY, SPECIFICITY, AND ACCURACY FOR
SEGMENTATION OF LV MYOCARDIUM USING 28 CCTAS. .. 44

TABLE 5: AVERAGE RESULTS FROM 3-FOLD CROSS-VALIDATION REPRESENTED BY THE DICE
SIMILARITY COEFFICIENT (DSC), SENSITIVITY, SPECIFICITY, AND ACCURACY FOR
SEGMENTATION OF LV MYOCARDIUM USING 28 CCTAS. .. 47

TABLE 6: AVERAGE RESULTS FROM 3-FOLD CROSS-VALIDATION REPRESENTED BY THE DICE
SIMILARITY COEFFICIENT (DSC), SENSITIVITY, SPECIFICITY, AND ACCURACY FOR
SEGMENTATION OF LV MYOCARDIUM USING 28 CCTAS. .. 50

TABLE 7: AVERAGE RESULTS FROM 3-FOLD CROSS-VALIDATION FOR REPRESENTED BY THE DICE
SIMILARITY COEFFICIENT (DSC), SENSITIVITY, SPECIFICITY, AND ACCURACY FOR
SEGMENTATION OF LV MYOCARDIUM USING 28 CCTAS ... 53

TABLE 8: OVERVIEW OF THE PARAMETERS USED IN EACH OF THE CAE EXPERIMENTS.
ABBREVIATIONS: CNV = NUMBER OF CONVOLUTIONAL LAYERS IN ENC/DEC, DS =
DOWNSAMPLING, US = UPSAMPLING, S = STRIDES, MP = MAX-POOLING, USL =
UPSAMPLING LAYER, FS = FILTER SIZE, PO = PATCH OVERLAP, NR = NORMALIZATION
RANGE, CL = CLIPPING, RE = RESAMPLING, MLV = MINIMUM LABELED VOXELS, NP =
TOTAL NUMBER OF PATCHES (TRAINING + VALIDATION + TESTING). 58

TABLE 9: OVERVIEW OF THE CLASSIFICATION PARAMETERS FOR THE CAE MODELS. THE
PARAMETERS ARE GIVEN FOR THE TWO METHODS USED TO BUILD THE FINAL FEATURE
VECTOR, I.E., METHOD 1 (LEFT) AND METHOD 2 (RIGHT). ADDITIONALLY, THE
PARAMETERS ARE FINE-TUNED ACCORDING TO THE FEATURE SELECTION APPROACH, I.E.,
TRAIN VS WHOLE. .. 65

TABLE 10: OVERVIEW OF THE PATIENT CLASSIFICATION RESULTS USING METHOD 1 TO BUILD THE
FEATURE VECTOR. THE RESULTS ARE OBTAINED USING TWO DIFFERENT CLASSIFICATION
METHODS WHICH INCLUDE GAUSSIAN PROCESS (GPC) AND K-NEAREST NEIGHBORS
(KNN). .. 69

TABLE 11: OVERVIEW OF THE PATIENT CLASSIFICATION RESULTS USING METHOD 2 TO BUILD THE
FEATURE VECTOR. THE RESULTS ARE OBTAINED USING TWO DIFFERENT CLASSIFICATION
METHODS WHICH INCLUDE GAUSSIAN PROCESS (GPC) AND K-NEAREST NEIGHBORS
(KNN). .. 70

 xii

Abbreviations
FFR = Fractional Flow Reserve
ICA = Invasive Coronary Angiography
CAD = Coronary Artery Disease
LV = Left Ventricle
CCTA = Coronary Computed Tomography Angiography
CAE = Convolutional Autoencoder
CNN = Convolutional Neural Network
ANN = Artificial Neural Network
TL = Tversky Loss
DSL = Dice Similarity Loss
DSC = Dice Similarity Coefficient
GPC = Gaussian Process Classifier
KNN = K-Nearest Neighbors
SVM = Support Vector Machines
ROC = Receiver Operating Characteristics
AUC = Area Under Curve
TP = True Positive
FP = False Positive
TN = True Negative
FN = False Negative
CV = Cross Validation

 1

Chapter 1 Introduction

1.1 Motivation
Measuring the fractional flow reserve (FFR) is a commonly used method for determining the
functional significance of coronary artery stenosis of intermediate severity. This method
involves an invasive surgical procedure (invasive coronary angiography - ICA), that has a
small health risk associated with it. Coronary artery disease (CAD) is the most frequent type
of heart disease [1]. When one or more of the coronary arteries that are responsible for
supplying blood to the heart are narrowed causing stenosis, it is an obstructive CAD. The
narrowing happens as a result of plaque buildup in the inner wall of the arteries. The stenosis
is said to be a functionally significant if it significantly restricts the supply of blood to the LV
myocardium to a level that causes myocardial ischemia.

To reduce CAD morbidity, it is necessary to treat a functionally significant stenosis [2].
However, treating stenosis that is not functionally significant has been shown to do more
harm than benefit. For that reason, an estimation of the severity of coronary artery stenosis’
influence on LV myocardium perfusion is required. This is typically done by measuring FFR
during ICA. FFR works as a quantitative marker of the stenosis’ significance and is defined as
the pressure measured distal (after) the stenosis relative to the pressure measured before
(proximal to) the stenosis [3]. The result is an absolute number that has an ideal value of 1.0
(corresponding to no obstruction). Even though FFR is currently the standard technique used
to determine the significance of coronary stenosis, the FFR cut-off value is not completely
standardized. The cut-off value is the value that separates the functionally significant from
non-significant stenosis. In clinical settings, values ranging from 0.72 to 0.80 have been
utilized [4]. If a FFR measurement performed over a stenosis, lies below the cut-off-value, the
stenosis is defined as functionally significant. Coronary CT angiography is a frequently used
method to identify suspected CAD with high sensitivity (i.e., true positive rate). Although this
method detects CAD with high sensitivity, it has restricted specificity in determining the
functional significance of the stenosis [5][6]. Because of the poor specificity related to CCTA
results, many patients then have to undergo invasive coronary angiography (ICA). As a result,
roughly 22 - 52 % of patients unnecessarily undergo ICA and the risk associated with it [5].

As an alternative method to the invasive FFR measurements, previous work has shown that it
is possible to get accurate results on detecting functionally significant stenosis (i.e., stenosis
where the FFR measurement lies below the cut-off value) in the coronary artery using
quantitative coronary analysis (QCA). In QCA the focus is on the geometry of the stenosis
and does not look at the myocardium in general. Computational FFR is a non-invasive
method presented for detecting functionally significant stenosis, which uses simulations of the
blood flow to predict the pressure drop [7]. This method uses computational fluid dynamics
and requires an accurate segmentation of the arteries and determination of boundary
conditions.

 2

Furthermore, another non-invasive method that uses myocardial properties from CCTA has
shown to achieve accurate predictions [4]. This is accomplished by segmenting and extracting
geometric features from the left ventricle (LV) myocardium, and then subsequently predict
the significance of the stenosis using a Convolutional Autoencoder (CAE). As this removes
the necessity for an invasive procedure, it can reduce the costs and risks associated with ICA.

Based on prior work, it would be expected to get accurate automatic segmentations utilizing a
CNN model, choosing the right hyperparameters and architecture [4]. In Zreik et al. an
average dice coefficient of 0.91 was achieved for the predicted segmentations. The segmented
myocardium was subsequently encoded utilizing a CAE. The encodings were then further
used to classify the occurrence of functionally significant stenosis in the coronary arteries
based on a reference obtained during invasive FFR measurements. An average accuracy,
sensitivity and specificity of 0.71, 0.70 and 0.71 were achieved, respectively. These results
indicate that it is possible to use extracted features of the LV myocardium from CCTA-scans
and get promising values of predictability of functionally significant stenosis compared to
FFR measurements done during ICA.

1.2 Project Goals
The main goal of this thesis was to reproduce the pipeline for identification of patients with
significant disease proposed by Zreik et al. and evaluate the methods on a novel dataset. This
consists of three separate tasks. To be able to make use of myocardial properties associated
with functionally significant stenosis, a pipeline including the following steps have been
developed:

(1) A CNN model for automatic segmentation of LV myocardium
(2) Characterization of the segmented LV myocardium via clustering and CAE
(3) Classifying the presence of functionally significant stenosis based on these features

Secondary goals were to evaluate the effect of different choices necessary within each of
these tasks (see contribution). The CNN model for automatic was trained on a limited dataset
consisting of 28 CCTA-scans with a belonging manual segmentation of the LV myocardium,
which was utilized as a variation database. Extensive data augmentation was used to
overcome the sparsity of the training data, as well as several preprocessing methods. The
model was trained utilizing different versions of the 3D U-Net architecture, which include U-
Net Standard, U-Net Residual, and U-Net Compact. All of these have shown to provide state-
of-the-art results for automatic segmentation of 3D images over the last years [8][9][10]. Two
different loss functions were tested to overcome the issue of class-imbalance, which include
the Tversky Loss and Dice Similarity Loss. The evaluation of each experiment was performed
via 3-fold cross-validation. The best CNN model was used to obtain automatic segmentations
of the entire dataset of 66 CCTA-scans.

In step (2) of the pipeline, the obtained automatic segmentations were clustered by the K-
means algorithm. A Convolutional Autoencoder (CAE) was trained on extracted myocardium

 3

patches from the 28 CCTAs with manual segmentations. Multiple patch-sizes, architectures
and preprocessing techniques were explored. The trained CAE model and the clustered LV
myocardium was used to extract features from all the 66 patients. Finally, in step (3) the
patients were classified based on a FFR cut-off-value of 0.8 using multiple machine learning
methods.

1.3 Contribution
The pipeline proposed in Zreik et al. consists of several steps, where certain aspects regarding
the different steps were not evaluated in detail. Consequently, this thesis aims to explore some
of those aspects.

The first contribution of this thesis is to find the optimal CNN hyperparameters for
developing a model for automatic segmentation of the LV-myocardium. This includes the
architecture, loss function and preprocessing techniques.

Next, it explores the impact of the CAE hyperparameters and preprocessing techniques for
encoding of myocardium patches. Two methods for building the final patient feature vector
from the CAE encodings have been explored. The first method utilized is a new method
proposed in this thesis, whereas the second method is an interpretation of the method
proposed in Zreik et al. The last contribution consists of finding the optimal model for the
final patient classification of the extracted features.

1.4 Outline
This section gives a brief overview of the structure of the thesis.

Introduction
This chapter begins with an explanation of the main motivation for developing a pipeline for
predicting functionally significant coronary artery stenosis. Furthermore, it covers the main
goals, research questions, and the contribution of the thesis. At last, the overall structure of
the thesis is presented.

Background
The background chapter starts with a clarification of some basic medical terms used in this
thesis, which include the structure and functionality of the LV myocardium, CCTA images
and FFR. Subsequently, an overall introduction to the most important deep learning
techniques is presented.

Methodology
In this chapter the methods used for performing the different steps of the total pipeline are
presented. It starts with a detailed explanation of the properties of the dataset, which is taken
into consideration when developing the different steps of the pipeline. Furthermore, the
training strategies, architectures, evaluation metrics and preprocessing techniques are

 4

presented for the CNN and the CAE models. An explanation of the k-means clustering
algorithm is presented, as well as the methods used for the final patient classification.

Results
The result chapter contains results of the different experiments completed, which includes the
CNN for automatic segmentation, k-means clustering, CAE, and finally patient classification.
The evaluation metrics are presented in tables, and visualizations are included for the CNN
and CAE models.

Discussion
In the discussion chapter the results obtained for the experiments of different steps of the
pipeline are discussed.

Conclusion and Future work
The final chapter gives a conclusion of the results and discussion and finishes with
suggestions for improvements and future work for the different steps of the pipeline.

 5

Chapter 2 Basic Theory
This chapter firstly explains some important medical terms in section 2.1 and 2.2 in order to
get a deeper comprehension of the motivation and the dataset. Next, important concepts
regarding deep learning will be described in section 2.3, touching a large proportion of
techniques implemented for the different steps of the pipeline.

2.1 LV Myocardium
The dataset in this thesis is composed of CCTA-scans of the LV myocardium. The overall
anatomy and general functionality of the LV myocardium are described in subsection 2.1.1.
Coronary artery disease is explained in subsection 2.1.2, and the definition of FFR is given in
in subsection 2.1.3.

2.1.1 Structure and Functionality
The heart consists of three layers: Endocardium as the innermost layer, myocardium as the
middle layer, and epicardium as the outmost layer. The myocardium is the strongest of the
three layers and contributes to the shape and functionality of heart [11].

In a human heart there are a total of four chambers, two of them being the left ventricle and
the right ventricle. They operate in a double circulatory system, where the right ventricle
pumps blood into the pulmonary arteries of the lungs. The left ventricle is supplied with
oxygen-rich blood from the lungs (via the left atrium), and its functionality is to pump this
blood through the aorta further to all regions of the human body via the systemic circulation.
The wall thickness of the myocardium varies between the different sections and depends on
the specific function of the section. The pressure in the left ventricle is higher compared to the
other chambers, which makes it thicker compared to other sections of the heart. The coronary
arteries depart from the aorta directly after the aortic valve and they provide oxygen-rich
blood to the muscle tissue of the myocardium surrounding the left ventricle.

2.1.2 Coronary Artery Disease
Coronary artery disease (CAD) is the most frequent type of heart disease. When one or more
of the coronary arteries that are responsible for supplying blood to the heart are narrowed
causing a stenosis, it is an obstructive CAD. As illustrated in Figure 1, the narrowing happens
as a result of plaque buildup in the inner wall of the arteries. The stenosis is said to be
functionally significant if it significantly restricts the supply of blood to LV myocardium
causing myocardial ischemia.

Figure 1: Illustration of artery narrowed by plaque [12].

 6

2.1.3 Fractional Flow Reserve (FFR)
FFR is a method used to determine the severity of a stenosis in the coronary arteries given by

𝐹𝐹𝑅 = 	
𝑃&!"#$%&
𝑃'()*+,%&&&&&&&&&&&&&

(2.1)

where 𝑃&!"#$%& 	is the averaged pressure downstream the stenosis and 𝑃'()*",%& is the averaged
pressure in the Aorta. Both measurements are determined by averaging over a cardiac cycle.
The pressure downstream can be quantified with a sensor-wire, while the pressure in the
Aorta can be quantified by means of a catheter. The FFR measures the percentage of the
remaining degree of blood flow that supplies areas of the myocardium downstream of the
stenosis. If the FFR is measured to i.e., 0.8, the blood supply to the myocardium is 80% of
what it would have been if there was no stenosis present. The cut-off value is the value that
separates the functionally significant from non-significant stenosis. In clinical settings, values
ranging from 0.72 to 0.80 have been utilized. If FFR measurements done over a stenosis lie
below the cut off-value, the stenosis is defined as functionally significant, and an
intervention/surgery is typically required.

2.2 Coronary Computed Tomography Angiography
(CCTA)
Coronary Computed Tomography Angiography (CCTA) is a non-invasive method that uses a
combination of X-rays and modern computer technology to obtain high-resolution images of
the coronary arteries. The scans are stored in DICOM-format, but can be converted to
different formats. In particular the NIfTI-format (Neuroimaging Informatics Technology
Initiative)[13] stores data as a 3D image matrix with additional metadata, e.g., the thickness of
CT slices.

Figure 2: Visualization of the three body planes [43].

 7

A CCTA-scan is performed by a radiographer, and it is used for visualization of organs,
vessels or other tissues of the human body. The scan is performed on a patient lying on an X-
ray sensitive plate, which is encircled by sensors. The X-ray source is also encircled by these
sensors, and the scan is performed by rotating the source together with the sensors around the
patient. Throughout this process of rotation, the X-ray goes through the patient and into the
sensors on the opposite side of the source. A 2D slice of a delimited area is constructed when
one rotation has been completed and the source is back at its starting point. A complete
CCTA scan is created by stacking several 2D slices together[14]. This is done in one of the
three body planes, illustrated in Figure 2.

The greyscale in medical CCTA imaging is recorded in Hounsfield Units. In order to increase
the visibility of the arteries, an injection of a contrast medium is performed on the patient. The
scale ranges from -1024 HU (black) to 3072 HU (white), where different tissue types have
distinct values on the HU-scale. Water is centralized on the scale and is represented by 0 HU.
Air has the lowest intensity of 1024 HU, while the maximum intensity of 3071 HU is
produced by the densest tissue, i.e., bones or tooth enamel. Other tissue is somewhere
between these two points on the scale. Fat is represented by approximately -100 HU, while
muscles have an intensity of around 100 HU. From this point on, the term CCTA image is
used when referring to a CCTA-scan.

2.3 Deep Learning
Deep Learning is a subfield of machine learning, which is an application of Artificial
Intelligence (AI). In the field of machine learning, computers are able to learn patterns from
data without being programmed explicitly. Artificial Neural Networks (ANNs) aim to mimic
a biological brain, motivated by its structure and function. In this section, the fundamentals of
ANNs are firstly presented in subsection 2.3.1, followed by an explanation of how the
network learns patterns through optimization in subsection 2.3.2. Next, some common data
processing techniques are described in subsection 2.3.3. Some common evaluation methods
for machine learning models are presented in subsection 2.3.4. Concepts of regularization are
explained in subsection 2.3.5. This chapter ends with a description of Convolutional Neural
Networks (CNNs) and Convolutional Autoencoders (CAEs) in subsection 2.3.6.

2.3.1 Artificial Neural Networks (ANNs)
ANNs contain input and output layers, and normally also one or more hidden layers in
between. The hidden layers are composed of what is known as artificial neurons, which aims
to mimic the functionality of a human brain.

Artificial Neurons
The hidden layers are composed of components that transform the input into something the
output layer can utilize. In a biological brain, neurons are cells that get signals from dendrites,
which is a tree-like extension in the beginning of the neuron. The input values 𝑥" of an
artificial neuron can be viewed as features for which the neuron predicts an output value 𝑦.
The strength of a connection between two neurons, i.e., how much a given input should count,

 8

is controlled by the weight 𝑤. A summation function binds the inputs and weights and
calculates the total sum. In addition, a bias is added to the result of the summation before it is
sent to the activation function 𝑓, which calculates the activation of the neuron, 𝑦'(-!. The bias
is added to shift the activation function to the left or right, in order to get a better separation of
the data. The overall structure of an artificial neuron is illustrated in Figure 3.

Figure 3: Structure of an artificial neuron with inputs (𝑥!,𝑥#, …	𝑥$), weights (𝑤!,𝑤#, …	𝑤$), bias 𝑏,

activation function 𝑓, and the predicted output 𝑦%&'(

Neural Network Structure
ANNs are constructed of connected neurons in three different types of layers. The first layer
is the input layer, which is the initial data for the network to predict. The intermediate layers
are hidden layers, where all the computations take place. At last, the results from the hidden
layers are sent to the output-layer. The network is called a fully connected network if all the
neurons within a layer are connected to all the neurons in the next layer. An example of a
fully connected ANN is given in Figure 4 below.

Figure 4: Illustration of a fully connected ANN with two hidden layers. The network has two neurons in the

input and output layer, while the hidden layers contain four neurons each.

A forward pass in the context of ANNs refers to the calculation process, i.e., when the input
has traversed through all neurons in the network and a prediction is provided from the output
layer. The network is learning by utilizing a loss function, which is calculated from the output

!!

!"

!#

!$

!

"!

""

"#

"$

.

.

.

.

.

.

Inputs

Weights # Bias

!

Activation
Function

$%&'(
Output

 9

values. The loss function is a measurement of the model’s ability to predict the expected
outcome. The main goal in all machine learning problems is to minimize or maximize this
function. The next step is to adjust the weights of the network through a backward pass,
which is called optimization. This is done by utilizing an optimization algorithm, where
computations are made by traversing from the last layer to the first layer. One forward- and
backward pass together makes one iteration. An iteration typically consists of a pass of a
mini-batch, which is a subset of the utilized dataset. An epoch is defined as one pass of the
entire dataset.

Activation Function
The output of a neuron in a neural network is given by the activation function. At the neuron
the weighted sum of all the inputs is calculated, and the activation function takes this result
added with the bias of the neuron as input. Three common activation functions are 𝑠𝑖𝑔𝑚𝑜𝑖𝑑,
𝐸𝐿𝑈 and 𝑅𝑒𝐿𝑈, characterized by:

 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = 	

1
1 + 𝑒./

(2.2)

 𝐸𝐿𝑈(𝑧) = : 𝑧, 𝑧 > 0

𝛼 ∙ (𝑒/ − 1), 𝑧 ≤ 0 (2.3)

 𝑅𝑒𝐿𝑈(𝑧) = B𝑧, 𝑧 > 0

0, 𝑧 ≤ 0 (2.4)

Sigmoid takes a real value 𝑧 as input and transforms it to a value between 1 and 0. The fixed
output range makes it suitable for probability distribution in binary classification problems. A
disadvantage of sigmoid is that the gradient becomes very small towards both ends of the
function. This causes a very small response in output 𝑦 to fluctuations in input 𝑧. This is
known as the problem of vanishing gradients, which is further explained in subsection 2.3.2.

Figure 5: The Sigmoid activation function (left) and its derivative (right)

!"#$%"& !"#$%"& '()"*+,(

 10

ELU (Exponential Linear Unit) includes an extra non-negative constant 𝛼, which makes it
different from other activation functions. Unlike sigmoid, ELU is non-saturating, which
solves the problem of vanishing gradients. Previous research has revealed that it tends to
converge cost to zero faster and produces more accurate results [18]. For positive input
values, the function returns the same value. The function becomes smooth gradually until its
output equals −𝛼.

ReLU (Rectified Linear Unit) is identical to ELU for non-negative inputs. All negative inputs
are eliminated by setting them to zero, and the function therefore smoothens sharply. ReLU
also solves the problem of vanishing gradients [19]. Because ReLU can produce dead neurons
(i.e., neurons that always output zero), it should only be used within the hidden layers of a
Neural Network.

Figure 7: The ReLU activation function (left) and it derivative (right)

2.3.2 Optimization
ANNs learn by utilizing an optimizer to update the weights and biases for the neurons through
a backward pass. Depending on the loss function, the optimization process involves either
finding the global maximum or global minimum. In the context of neural networks, the loss
function is a non-convex function. In a non-convex optimization problem, there exists
multiple local optima and only one global optimum. The aim is to minimize the prediction
error of the dataset by finding this global optimum on the surface of the loss function. An

!"#$!"#$ %"&'()*"

!"# (!=1) ELU %&'()*+& (!=1)

Figure 6: The ELU activation function (left) and its derivative (right)

 11

optimizer uses the delta rule to update the weights and biases in the neurons. The delta rule is
characterized by

 𝜃 = 𝜃 +	∆𝜃

(2.5)

where 𝜃 represents the weights and the biases and ∆𝜃 is varying depending on the optimizer
utilized. Two popular optimization techniques are SGD and Adam, which are further
explained below.

Stochastic Gradient Descent (SGD) is an iterative technique for optimizing the objective
function, where ∆𝜃 is given by,

 ∆𝜃 = −𝜂𝑔

(2.6)

In this equation 𝜂 represents the learning rate, which decides how much the network should
learn from the error of each batch that is processed. In machine learning problems, the
training data is typically divided into batches. The mean gradient of the loss function 𝑔 is
calculated for each batch of size 𝑚, and is given by

𝑔 =
1
𝑚∇0G𝐿(𝑧")

,

"12

(2.7)

When all the samples (i.e., individual instances of the whole dataset) in a batch have traversed
through the network in a forward pass, the next step is to calculate the gradients of the
network. This is done through backpropagation, which is a backward pass where the gradient
of the loss function is found for all weights and biases by utilizing the chain rule.

One of the challenges with SGD optimization is to find the best parameters that prevent the
algorithm from getting stuck at a local optimum. Furthermore, the learning rate is a parameter
which has a great impact on the convergence of the network. Setting this too high may result
in the algorithm missing the global optima [16]. A momentum can be employed to accelerate
the learning process of SGD optimization. This is done by including the gradient of the
previous iteration

 ∆𝜃$ = 𝛼∆𝜃$.3 − 𝜂𝑔$

(2.8)

In this equation ∆𝜃$.3 represents the gradient from the previous iteration, ∆𝜃$ is the new
gradient, and 𝛼 is the momentum constant determining how much the previous gradient
should count in the current update.

 12

Adam is an adaptive optimization technique designed to specifically suit the needs of deep
neural networks [17]. The method is adaptive because it computes individual learning rates
for the different parameters in the gradient update. The learning rate is adapted for each
weight in the network by making use of estimations of the first moment and second moments
of the gradient. These two momentums are initialized to zero and updated by

 𝑚$ =	𝜂3𝑚$.3 + (1 − 𝜂3)𝑔$

(2.9)

 𝑣$ = 𝜂4𝑣$.3 + (1 − 𝑣4)𝑔$4	

	
(2.10)

In these equations 𝑚$ and 𝑣$ represent the first and second momentum for the current
iteration, 𝑚$.3 and 𝑣$.3 represent the first and second momentums for the previous iteration,
and 𝜂3 and 𝜂4 are the learning rate parameters. The gradient is the same as for SGD, given by
equation (2.7). The next step is to make estimations of the two momentums, which is given by

 𝑚$I =	

𝑚$

1 − 𝜂3$
 (2.11)

 𝑣$J = 	

𝑣$
1 − 𝜂3$

	

(2.12)

where 𝑡 represents the current epoch. Finally, the momentums are used to update the weight
by scaling the learning rate individually for each parameter

 ∆𝜃$ = 𝛼∆𝜃$.3 − 𝜂

𝑚$

L𝑣$J + 𝜖
 (2.13)

The small constant 𝜖 is used to prevent division by zero. Adam has shown promising results
compared to SGD in terms of speed of training and sensitivity to other chosen
hyperparameters [17].

Problems with optimization
A common problem when developing deep learning models is the problem of vanishing
gradients. This happens as the derivative of the of the gradient approximates to zero, and as a
result the weights of the network are not being updated [15]. This problem is solved by
avoiding the sigmoid activation function in the hidden layers. Both ReLU and ELU can be
used instead, as the derivative of these function do suffer from the problem of vanishing
gradients.

During training of deep learning models, the goal of the optimizer is to find the global
minimum of the loss function. Sometimes however, it gets stuck at a local minimum. This can
be solved by using an adaptive optimizer such as Adam, which is described above.

 13

2.3.3 Data Processing
In this subsection, common data processing techniques in the context of deep learning are
described. This includes preprocessing, data augmentation, full-image and patch-wise
analysis, and batch management.

Preprocessing
Preprocessing describes each of the transformations applied to the raw data prior to the actual
training of the model. This is a crucial step when developing machine learning and deep
learning models, as it can accelerate the training process. Some common preprocessing
techniques on medical imaging data are described in this subsubsection, which includes pixel
intensity normalization, resampling and clipping.

Pixel Intensity Normalization
There are many factors that may influence the signal intensity ranges of biomedical imaging
data. The use of different image formats, diverse instruments/hardware, and biological
variation are some of the elements that make the signal intensity range highly heterogeneous
across datasets [20]. This inconsistency can radically influence the performance of
segmentation algorithms [21]. Moreover, machine learning methods used for image
segmentation normally perform much better on detecting patterns for features that follow a
normal distribution. In order to homogenize the dataset, the images must be scaled. A
commonly utilized method is normalization, which is done by rescaling the data to a
predefined range, usually between [0,1] or [0, 255]. The normalization of a pixel 𝑥 in an
image array to a range of [0,1] is given by,

 𝑥5)(,%&"/-! =

𝑥 − 𝑥,"5
𝑥,%* − 𝑥,"5

(2.14)

Z-score standardization is another popular rescaling technique, which aims to rescale the data
to a range which gives a mean of 0 and a standard deviation of 1. The standardized value for
each pixel is given by

 𝑧 = 	

𝑥 − 𝜇
𝜎

(2.15)

where 𝜇 represents the mean value and 𝜎 is the standard deviation of the pixel values in the
dataset.

Resampling
Resampling is a technique used to alter the width, height and depth of an image which results
in a new image having a modified quantity of voxels. A voxel in a 3D image represents a
compressed part of the raw image provided by the CCTA-scanner. The size of this
compression ratio is defined as the voxel spacing. Because the raw images provided by the
scanners are resized into a shape of (512, 512, z), the images might be somewhat stretched or
compressed in the z-axis when they are compared with each other. This is the case because
the original raw images have different sizes. Neural Networks have big problems with

 14

recognizing patterns from images with a varying voxel spacing. Thus, a normalization of all
samples to a common voxel spacing is required. This is accomplished by calculating a
distinctive new shape for each image, which is done by first calculating the spacing ratio

 𝑟𝑎𝑡𝑖𝑜 = 	

𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑠𝑝𝑎𝑐𝑖𝑛𝑔
𝑛𝑒𝑤	𝑠𝑝𝑎𝑐𝑖𝑛𝑔

(2.16)

In order to reshape the image, the ratio is applied to the current shape of the image through
interpolation. The required GPU memory for both training and prediction can be reduced by
downsampling the images to a smaller size.

Pixel Intensity Clipping
Clipping is another popular preprocessing technique used in medical image analysis. In
computer tomography it is expected that pixel intensities for the same organs lie within a
specific range, even when the images are derived from different scanners. Comparable to
pixel intensity normalization, clipping is accomplished by clipping the intensities into a
particular range. The pixel intensities outside this range are set to the maximum or minimum
value of the specified range.

Data Augmentation
In machine learning, data augmentation is a technique to increase the amount of training data
by adding modified copies of the already existing data. In medical imaging, this is normally
applied when only a small number of samples are available. The images can be altered with
numerous methods, and the intent is to produce variants of the pattern that is desired, which
will help prevent overfitting [22]. Techniques that have been utilized by the winners of the
most recent medical image processing challenges include spatial translation, brightness,
contrast, elastic deformation, scaling, rotation and gamma & noise (Gaussian noise) [23][24]
[25].

Patch-wise and Full Image Analysis
Based on the image resolution of medical images, accessible GPU-hardware plays an
important part in 3D image segmentation. It is not feasible to fully fit CCTA images with a
size of 512x512x347 (mean value from the dataset used in this thesis) into the CNN without
applying any preprocessing techniques on the data. This is a consequence of very high GPU
memory demands required for 3D images of such size. Because of this, the 3D images may be
sliced into smaller cuboid patches or examined slice by slice. It is also possible to resample
the images in order to fit the entire image in the CNN, i.e., full image analysis.

As to completely use the information of all three axes (as opposed to using 2D slices), a 3D
image analysis approach was utilized for the CNN automatic segmentation in this thesis. Both
a patch-wise and full image analysis were tested in preliminary experiments. Choice of the
input size of the network depends on the requirements of utilized architecture and the
available GPU. The U-Net Standard is a common CNN architecture utilized for medical
image segmentation, which requires all axes of the input size to be divisible by 26.

 15

Additionally, the images (or patches) also have to fit into the GPU. A common choice of input
size is therefore e.g., 160x160x80.

Batch Management
When the preprocessing and data augmentation are finished, sets of patches are bundled into
batches. A batch comprises several prepared patches that are processed in a single step by the
CNN. The batches can then be processed in parallel by the GPU. For every batch that is
processed through a single step, the internal weights of the neural network are updated
sequentially based on a predefined learning rate. The batch size, i.e., the number of
images/patches inside a single batch, is highly dependent on the GPU memory and needs to
be configured properly.

In order to allow for continued access throughout the training process and dramatically reduce
training time, the batches are saved and stored to disk. The time consumed for calculations is
then reduced because of the avoidance of unnecessary recurrent batch processing. For
extremely large datasets, this strategy is not ideal as it requires high demands for disk space.
However, the dataset utilized in this thesis is relatively small, which makes this approach
suitable.

Furthermore, the storage of prepared batches on disk also facilitates a parallelizable
processing approach. To reduce the variance of the neural network during fitting, the
sequence of batches is shuffled at the end of each epoch. If the order of the data within each
epoch is the same, the model may use this information to reduce the training loss. This is a
type of overfitting, which is solved by shuffling the data. This can either be done by shuffling
the whole dataset and create new batches, or only shuffle the processing sequence of batches.

2.3.4 Evaluation
Evaluation is an important step when developing deep learning models. The two main
evaluation techniques utilized in this thesis are described in this subsection, which includes
Train/Test split and cross-validation.

Train/Test Split
In training and evaluation of machine learning models, the data is often split into subsets for
training, testing and validating. For this approach, the data is first broken up into two parts,
which typically consist of 90 % for training and 10 % for testing. The training set is then
normally divided further into a split consisting of 90 % for training and 10 % for validating.
The performance of the model on the validation set during training is used to monitor the
generalization error. This is the error produced by the model when predicting unseen data.
Validating the performance during training makes it much easier to detect occurrence of
overfitting, which is further explained in subsection . The testing data from the first split is
used to measure the final performance of the trained model. If the validation set is used to
select the final model, it is not suited to evaluate the final performance of the model. This is
the case because this data is no longer unseen by the model and will lead to an error rate
estimation that has potential bias, i.e., an error rate that is smaller than the true error.

 16

Cross-Validation
Cross-validation is a widely utilized statistical model for estimating the performance of deep
learning and machine learning models. It provides the opportunity to compare trained models,
and then pick the model with best performance. It is well suited for evaluation of machine
learning models on a limited dataset, and it normally provides a lower bias than other
methods.

In this thesis a K-fold cross-validation has been employed, which is illustrated in Figure 8. In
this method the data is divided into k folds, and then the model is trained k-times with a
different fold being the validation/test each iteration. This process is continuing until all folds
have been used as validation/test set exactly once. There does not exist any formal rule for
choosing the number of groups to split the data in, but usually k is set to 5 or 10. For larger
values of k, the size difference between the training data and resampling subsets (i.e., number
of folds) is decreasing. As this size difference gets smaller, the bias of the model is reduced
along with it. The main problem with choosing a larger value for k is the computation
requirements, as a k-fold cross-validation includes training k independent models [27].

2.3.5 Regularization
Overfitting is a common issue when training deep learning models. The model is said to be
overfitted if the model is learning the characteristic patterns for the training set, rather than
generalizing to unseen data. When modifications are made to the model with an intent to
reduce the generalization error, and not the training error, it is known as regularization [16].

Figure 8: K-fold cross-validation method [26]

 17

Figure 9: Overfitting – the training continuous while the model accuracy on the validation set decreases

(i.e., the validation loss increases)

Early Stopping
Early stopping is used to prevent overfitting (see Figure 9) by monitoring the generalization
error during training. The training is terminated if there is no decrease in the validation error
for a 𝑥	number of epochs. This parameter is called patience and has to be specified before
starting the training [16].

Dropout
Another regularization technique that addresses the issue of overfitting is dropout, which is
illustrated in Figure 10. Dropout regularization is employed by adding dropout layers to the
model, which is initialized with a dropout probability. The neurons in these layers are
randomly deactivated with a probability of p, while the weight of the active neurons is scaled
down by multiplying it with p-1 [16].

When a node is dismissed, it is temporarily removed from the network, along with its ingoing
and outgoing edges. As a result, the view of the configured layer is different for every update
of the network. As a consequence of dropout regularization, the training procedure becomes
noisy, and some nodes are forced to carry more or less responsibility for the inputs. As
dropout layers mimic a sparse activation of the layer, it also encourages the network to learn
sparse representation of the data [28].

Figure 10: Visualization of an ANN with three dropout layers. The network to the left represents normal

state of the network, while the network to the right represents the state of the network after dropout is
applied. The neurons without edges represent the deactivated neurons.

 18

Batch Normalization
Batch normalization is a technique that can accelerate and stabilize the training process of
deep neural networks by adding additional layers. These layers perform a normalization of the
output data from the previous layer, and output values between 0 and 1 [16]. As the name
indicates, the normalization is done over a batch processed by the network.

2.3.6 Convolutional Neural Networks (CNNs)
Convolutional Neural Networks is a subclass of ANNs, which is suited for capturing local
information from images. A neural network is classified as a CNN if it has one or more
convolutional layers. The mathematical formula for a 2D convolution is given by,

 𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = 	GG𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛)

5,

 (2.17)

where 𝐼 represents the input matrix of size 𝑚	𝑥	𝑛, 𝐾 represents the filter matrix of size 𝑖	𝑥	𝑗,
and 𝑆 is the feature map containing the detected features. The size of the filter is crucial for
the properties of the features that are discovered. A larger filter has the ability to detect more
general features, whereas a smaller filter is more suited to detect subtle features. These
features can typically be corners or a variation in the pixel intensity strength. The filter matrix
at a convolutional layer represents the weights assigned to the pixel values, which is updated
for a batch during training.

One of the main benefits of CNNs is that it has the property of being invariant to affine
transformation. This means that the neural network is able to recognize objects even if the
location of the object changes. This characteristic is due to shared weights, spatial
subsampling, and local receptive fields [29]. The neurons within a layer in a CNN receive its
inputs from corresponding neurons in a related section from the previous layer, whereas the
neurons within a layer in an ordinary fully connected neural network are connected to all the
neurons in the previous layer. As a result, the neurons in a CNN get the responsibility for
specific regions of the input image, which is called local receptive fields. The weights are
shared across the local receptive fields of the neurons in a specific layer. The sharing of
weights happens as the filter moves through the image. As a result, when the CNN detects an
important feature to learn in a specific region of the image, it treats the feature as equally
important to learn in other parts of the image. Shared weights also help reduce the
computational cost when training the network [16].

The feature map that is produced by the convolutional layer will often contain subtle details
which might not be useful for solving the task. A common method to solve this problem is to
down sample the output from the convolutional layer, which is typically done by adding a
pooling layer after a convolutional layer. This is a normal pattern for CNN architectures, and
is often repeated several times. The pooling layer creates a lower resolution version of the
input signal, with an objective to create new signals that still includes the most significant
components, while removing the subtle details. A normal procedure is to reduce the feature

 19

map by a factor of 2. The pooling operation is specified in the creation of the architecture,
where two of the most common operations are maximum pooling and average pooling. These
methods differ in how they replace a specified location with the summary of the nearby
inputs. Maximum pooling uses maximum values, while average pooling uses the average
values. The result is a summary of the features detected. In addition to local receptive fields
and shared weights, the usage of pooling layers strengthens the characteristics of invariance to
affine transformations [16].

Both upsampling and downsampling can be made learnable by introducing strided
convolutions. This increases the expressiveness of the model, but also the number of trainable
parameters. Previous work has shown that the usage of strided convolutions may improve the
overall accuracy of the CNN model [30]. In that case, transposed convolution is used for
upsampling. This is done by translating the convolutions into matrix operations between the
flattened input 𝐼 of size 𝑁𝑥1 and the filter 𝐾 of size 𝑀𝑥𝑁 [31].

Convolutional Autoencoder (CAE)
An autoencoder is a unique kind of neural network which aims to reproduce the input data in
the output layer. Because the autoencoder uses the input values as the target value, it is
classified as unsupervised/semi-supervised learning. An autoencoder is convolutional if it
contains one or more convolutional layers.

Figure 11: Illustration of a CAE using two convolutional layers in the encoder (left of the compressed rep.)

and two transposed convolutional layers in the decoder (right of the compressed rep.).

The CAE reduces the dimensionality of the input data in the hidden layer and tries to
reproduce the input from this decomposed representation. The number of neurons in the
hidden layer is therefore much smaller than the original size of the input data. A good
reproducibility, i.e., a small difference between the original input and the reconstructed data,
indicates that the compressed representation in the hidden layer contains essential features of
the input values. The structure of a CAE forces the hidden layers to learn crucial patterns and
dismiss information that is redundant. This is achieved by designing the CAE architecture
using hidden layers with smaller dimensions compared to the input and output layers.

2D input image

!"#$2&

!"#$2D

2D reconstructed image

Compressed representation

()*#+!"#$2D

()*#+!"#$2D

 20

 21

Chapter 3 Methodology
In this chapter, the methods used to accomplish the required steps of the pipeline are
described. It consists of three main tasks, including:

(1) Automatic segmentation of LV myocardium from CNN
(2) Myocardial characterization by means of k-means clustering and feature extraction via

CAE encodings of 2D patches
(3) Classification of features extracted from the LV myocardium using GPC (Gaussian

Process Classifier) and KNN (K-Nearest Neighbors)

This chapter clarifies the details regarding the implementation of the various experiments
performed for each of the steps listed above. The technical tools utilized in the experiments
are given in section 3.1, and the dataset is described in section 3.2. The overall
implementation details are presented in section 3.3. The automatic segmentation is presented
in subsection 3.3.1, followed by the myocardial characterization in subsection 3.3.2. At last,
the methods used for the final patient classification are presented in subsection 3.3.3.

3.1 Technical Tools
In this section the most important technical tools utilized for the required steps are listed.

GPU Cluster A cluster/collection of computational nodes that can have one or more

Graphic Processing Units (GPUs) connected to it. In this thesis NVIDIA
Tesla P100 GPUs with 16 GB were utilized in the training of the CNN and
CAE. The training of deep learning models is a process that is highly
parallelizable, which makes the usage of GPUs speed up the calculations
and shorten the overall training time. All computations were performed on
resources provided by the NTNU IDUN/EPIC computing cluster [44]

TensorFlow An end-to-end open-source platform for developing machine learning

models.

Keras A high-level deep learning library that runs on top of either TensorFlow,

CNTK, or Theano. In this thesis TensorFlow is utilized as backend for the
various models. Most of the functionality provided by Keras is known as a
black box, which means that how the network updates its parameters is not
explicitly programmed, and only the hyperparameters and the training data
has to be specified by the user.

MIScnn An API framework for instant setup of state-of-the-art deep learning

models and CNNs for medical image segmentation with Keras and
TensorFlow as backend. The framework offers a complete pipeline for

 22

preprocessing, data augmentation, patch cutting, and batch creation.
MIScnn also gives the user the choice to switch between multiple modern
CNN-models, as well as the opportunity to add custom version
architectures. Furthermore, multiple different loss-functions and evaluation
metrics are available.

sklearn An open-source machine learning library that provides efficient tools for

predictive data analysis. This includes methods such as features selection,
data normalization and classification algorithms.

3.2 Dataset
The dataset used in the project consists of a total of 66 CCTA images, described in section
2.2. The images have a shape of (512, 512, z). The z-value is the number of slices in the
transverse plane, which is varying between the different patients. The number of slices in the
coronal- and sagittal plane are fixed to 512, which constitutes the height and width for an
image slice from the transverse plane.

3.2.1 NIfTI Data I/O
The data that is used are in NIfTI-format (Neuroimaging Informatics Technology Initiative),
which is supported by MIScnn API. The NIfTI-file stores information about the 3D image
matrix and diverse metadata, e.g., the thickness of CT slices.

3.2.2 Data Exploration
From Table 1 we can observe that the mean and median number of slices in the transverse
plane for the entire dataset are 346.9 and 329.5, respectively. There is some variation in the
voxel spacing for different images, and the mean/median value is approximately (0.42, 0.42,
0.35).Manually performed semantic segmentations of the LV myocardium were available for
28 of the CCTA images as an associated binary matrix. The data exploration for these images
revealed almost identical results as for the entire dataset, which is given in Table 1. The aim
of a sematic is to label each pixel in an image to a corresponding class, which in our case is
background or myocardium [32]. The segmentation matrices have the same shape as the
belonging image, where corresponding voxels are a part of myocardium if it has the value 1 in
the segmentation matrix, and 0 if not. All the 28 images with an associated manual
segmentation were used in the training and prediction of the CNN and CAE. All of the 66
patients in the dataset were utilized in the classification step of the pipeline, i.e., clustering,
feature extraction and classification of automatic segmented images.

An unbalanced dataset is a common issue in medical image segmentation, where the semantic
annotations include a strong bias in the class distribution towards the background class. This
is also the case for our dataset, and a class distribution of 97.1% background and 2.89%
myocardium was revealed in the data exploration.

 23

Table 1: Data Exploration for the entire dataset of 66 images and the 28 images with manual segmentation

 Entire dataset With manual seg.
X-Axes Mean 512.0 512.0
X-Axes Median 512.0 512.0
Y-Axes Mean 512.0 512.0
Y-Axes Median 512.0 512.0
Z-Axes Mean 346.5 347.9
Z-Axes Median 329.5 344.0
Voxel spacing (0.42, 0.42, 0.35) (0.38, 0.38, 0.3)
Background 0.971 0.971
Myocardium 0.029 0.029

Figure 12: Histogram of the average range of HU of myocardium voxels

The histogram in Figure 12 was obtained by analyzing the Hounsfield Units of pixels labeled
as myocardium in the manual segmentations. From this one can observe the following results

Þ 95 % of the pixels lies in the range of [-11, 274]
Þ 99 % of the pixels lies in the range of [-72, 478]
Þ 99.5 % of the pixels lies in the range of [-99, 559]
Þ 99.9 % of the pixels lies in the range of [-200, 851]

When a CCTA-scan is performed, the patient is injected with a contrast medium in the blood
flow. This gives a higher intensity for the blood flow, which usually lies in a range from 300
up to 800 depending on the scanner. The left LV myocardium is muscle mass, which means
that it does not get any direct contrast from the medium. It is therefore reasonable to assume

 24

that pixels with a higher intensity than around 300 are incorrectly labeled as myocardium.
This is most likely the case on the borders between the blood and myocardium, such as in the
chamber of the left ventricle.

3.3 Implementation
In this section, the implementation details for the methods used to solve the required steps are
presented. This includes, among other things, the preprocessing approaches and training
strategies for the deep learning and machine learning models. A method for automatic
segmentation of the LV myocardium via 3D CNN using 28 CCTA images is first presented.
Subsequently, the best of the trained models is used to obtain automatic segmentations of the
LV myocardium for the entire dataset, i.e., 66 CCTA images. Each segmentation is split into
regions via k-means clustering, and a trained autoencoder is subsequently used to extract
features from the clusters. Finally, the patients are classified through comparison of two
different classification algorithms, including GPC (Gaussian Process Classifier) and KNN (K-
Nearest Neighbors). An illustration of the total pipeline implemented in this thesis is given in
Figure 13 below.

Figure 13: Overview of the proposed pipeline. The LV myocardium is first segmented using a 3D CNN and
subsequently clustered via k-means. Encodings are extracted from the clustered LV myocardium using a
CAE to compute the features [𝑓!, 𝑓#, 𝑓), … , 𝑓$].	 At last these features are used to classify the patients with
functionally significant stenosis (positive) and those without (negative).

 25

3.3.1 Automatic Segmentation
The automatic segmentation was done utilizing a CNN through multiple 3-fold cross-
validation experiments. Extensive data augmentation was employed to increase the amount of
training data, which includes all the techniques described in subsection 2.3.3. Spatial
augmentation was achieved by elastic deformations, rotations, mirroring and scaling. For
color augmentations, brightness, contrast and gamma variation were utilized. At last, noise
augmentation was obtained by adding Gaussian Noise. An overview of the pipeline for the
automatic segmentation is presented in in Figure 14.

The images were saved and stored as batches in order to efficiently parallelize the training
process by utilizing one or more GPUs. In this section the technical properties of the utilized
CNN are discussed, including the architecture, preprocessing, training, loss function,
evaluation metrics, post processing and architecture.

Figure 14: Overview of the pipeline utilized for automatic segmentation of the LV myocardium. The
workflow starts with the datasets and describes the order of each step, ending with an evaluation for each
fold in the cross-validation. Figure adapted from [8].

Architecture
The selection of CNN architecture and its hyperparameters is a critical step in the pipeline of
medical image segmentation. There are many different architectures to choose from and each
has different advantages and disadvantages. Three different architectures were tested, which
include 3D-UNet Standard, 3D-Unet Dense and 3D-UNet Residual. A view of the U-Net
Standard is shown in Figure 15.

For all architectures upsampling was attained by using transposed convolution, whereas
downsampling was attained using maximum pooling. At its highest resolution, the
architectures used 32x32-feature maps, while 512x512 feature maps (i.e., the whole image in

3-fold cross-validation

Dataset: 28 CCTA
images

Neural Network
• U-Net Standard
• U-Net Dense
• U-Net Residual

 26

the coronal/sagittal plane) were used at its lowest resolution. The U-Net architecture consists
of two paths; the analysis path (left part of the network model illustration) and the synthesist
path (right part of the network model illustration). In the analysis path, the convolutions for
the upsampling and downsampling were applied with a kernel size of 2x2x2 in a stride of
2x2x2. For the rest of the layers, convolutions were applied with a kernel size of 3x3x3 in a
stride of 1x1x1.

Figure 15: Architecture of standard 3D U-Net. The network input is 3D patches (cuboids), and the output
is the segmentation of myocardium. Conv: Convolutional layer; ReLU: Rectified linear unit; BN: Batch
normalization. Figure adapted from

3D-UNet Standard
Compared to more complex architectures, e.g., U-Net Residual and the U-Net Dense, the U-
Net Standard has fewer parameters. Therefore, by utilizing a U-Net Standard, we will prevent
a significant increase in parameters that comes with utilizing a more complex architecture
[9][33][34]. This makes the training faster and requires less GPU RAM. Another view of the
3D U-Net Standard is shown in Figure 16.

Figure 16: Another view of the 3D-UNet Standard Architecture

3D-UNet Residual
Previous work has shown that it may be possible to improve the segmentation results by
utilizing this residual variant of the U-Net standard [9][35]. It uses an additional add layer

 27

after each convolutional block (2x convolutional layers). The 3D-Unet Residual has a
significant increase in trainable parameters compared to the 3D U-Net Standard, and therefore
requires more GPU RAM and increases the total training time. The view of the 3D U-Net
Residual is shown in Figure 17.

Figure 17: View of the 3D U-Net Residual architecture

3D-UNet Dense
The dense version of the U-Net architecture has also shown improved results compared to U-
Net Standard [10]. The difference is that it uses multiple concatenate layers in each
convolutional block of two convolutional layers. The concatenate layers are placed after each
convolutional layer in each block of convolutions. The extra concatenate layers give a
significant increase in trainable parameters, and therefore requires more GPU RAM and
increases the training time. The view of the 3D U-Net Dense is shown in Figure 18.

Figure 18: View of the 3D U-Net Dense architecture

Preprocessing
We analyzed the effect of various preprocessing techniques on the performance of automatic
segmentation on the left ventricle myocardium. Intensity clipping was decided based on
percentiles of intensities of myocardium voxels from manual segmentations. As mentioned in
subsection 3.2.2, it may be reasonable to assume that pixels with a higher intensity than
around 300 most likely are labeled wrong. Based on this assumption, a clipping range
between the 95 % case to the 99 % case from Figure 12 was used in the various experiments.

 28

Furthermore, pixel intensity scaling and resampling were applied to the imaging data in all
experiments. These methods are explained in detail in subsection 2.3.3. The data was scaled
by means of z-score standardization, as this outperformed scaling the data in the range [0,1],
independent of the other parameters and methods utilized.

The common voxel spacing used for resampling was found through initial exploration.
Further, both a patch-wise approach and a full-image approach was tested in preliminary
experiments. Data exploration revealed a relatively low mean voxel spacing of (0.42, 0.42,
0.35). As a consequence, it was possible to fit whole images in the CNN, which also proved
to outperform a patch-wise analysis approach in preliminary experiments. As a result, the full-
image approach was used for all the CNN experiments presented in this thesis.

A suitable voxel-spacing of (1.24, 1.24, 1.42) was found via experimenting, which gave a
median image size close to the desired input size of 160x160x80. The desired input size was
chosen with respect to the GPU limitations and CNN architectures which all require the input
size to be divisible by 24. Finally, all the images were resized by interpolation to the desired
input size of 160x160x80.

Training
K-fold cross-validation was used to evaluate the performance of the CNN models, where a k-
value of 3 was used for all the experiments. The number of epochs was set to 200 for all the
models. The number of iterations per epoch was set to 150, and the batch size for each
iteration was set to 1. One epoch is then defined as an iteration over 150 batches. This
allowed for an improved fitting process for randomly generated batches in which the dataset
acts like a variation database [8]. One GPU was utilized for training each model.

An adaptive learning rate optimization was utilized during model fitting by applying Adam
optimization with initial weight decay of 1e-3. The dynamic learning rate was reduced by a
factor of 0.1 if no improvement in the validation loss was achieved over 15 subsequent
epochs. To prevent the learning rate from becoming too small, a lower limit of 1e-5 was set.
To further reduce the risk of overfitting, an early stopping technique with a patience of 30
epochs monitored on the validation loss was employed. Because of the limited size of the
dataset with only 28 CCTA images, the validation data was also used to evaluate the final
performance of the model. This could lead to overfitting on the test set, as this also was used
to monitor the early stopping condition. However, this should not be a big issue as it does not
affect the final classification results directly.

Evaluation metrics
The predicted outcome of the trained model was evaluated using multiple evaluation metrics.
The output of the model is binary, where the predicted value for a voxel can either be true
positive (TP), false positive (FP), true negative (TN), or false negative (FN). These terms are
explained in Figure 19. As our segmentation problem is binary, it consists of labeling the
voxels as either background class or myocardium class.

 29

True Negative
(TN)

Predicts that the voxel does not
belong to the given class, when it
does not belong to the given class

False Positive
(FP)

Predicts that the voxel belongs to
the given class, when it does not

belong to the given class

False Negative
(FN)

Predicts that the voxel does not
belong to the given class, when it

does belong to the given class

True Positive
(TP)

Predicts that the voxel does
belong to the given class, when it

does belong to the given class

Figure 19: Confusion matrix for evaluation

Data exploration revealed a class distribution of 97% for background and 3% for LV
myocardium. To address the issue of class imbalance when evaluating the performance of the
trained model, the Dice Similarity Coefficient (DSC), Sensitivity, and Specificity were
utilized as evaluation metrics. These are based on the confusion matrix from Figure 19, and
measure the segmentation overlap between prediction and ground truth.

DSC The DSC is a metric that takes the issue of class imbalance into consideration by

measuring the relative overlap between prediction and ground truth. This is done
by calculating the intersection over union, which makes it more suited for
imbalanced data compared to metrics that evaluate on individual pixels.

𝐷𝑆𝐶 =
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

(3.1)

Sensitivity The sensitivity measures the proportion of actual positive pixels (i.e., pixels that
are classified as a particular class) that were predicted as positive.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(3.2)

Specificity The specificity is similar to the sensitivity, but instead of measuring the
proportion of positive samples, it measures the proportion of actual negative
pixels that got predicted as negative.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(3.3)

 30

Loss Function
In order to solve the problem of class imbalance during training, the Tversky Loss (TL) and
the Dice Similarity Loss (DSL) was utilized as loss functions [36].

DSL The Dice loss is a popular choice of loss function for training deep learning model

for binary segmentation of medical images. It is given by

𝐿789 = 1 − 𝐷𝑆𝐶(𝑇, 𝑃)

(3.4)

 where 𝐷𝑆𝐶(𝑇, 𝑃) is given in equation (3.1). Compared to other loss functions, like
the cross-entropy, the Dice loss uses the predicted probabilities directly rather than
thresholding and transforming them into a binary mask.

TL The Tversky loss is a multi-class adaption for the Tversky index, which is an

asymmetric indicator used to quantify the overlap of the segmented area with the
ground truth. It is a generalization of the Dice coefficient and Jaccard index, and is
given by

𝐿:;-(#<= = 𝑁 −	G
𝑇𝑃>

𝑇𝑃> + 𝛼 ∙ 𝐹𝑁> + 	𝛽 ∙ 𝐹𝑃>

?

>13

(3.5)

 where 𝑇𝑃>, 𝐹𝑁>, and 𝐹𝑃> represent the true positive, false negative and false
positive rate, respectively. The sum of parameters 𝛼 and 𝛽 is 1. By setting 𝛼 > 𝛽,
the false negatives are panelized more.

Postprocessing
As the myocardium is a compact structure, it should be possible to improve the results of the
obtained automatic segmentations by removing components that are lying outside the
geometric boundaries of myocardium. Such types of components are illustrated in Figure 20.
This is a crucial step in the total pipeline presented in this thesis, as the CNN model is used to
obtain automatic segmentations for images that should be clustered in the next step of the
pipeline. It is reasonable to assume that segmentation containing components that do not
belong to myocardium will result in inaccurate clustering results across the different
segmentations.

The postprocessing step consists of removing small components from the obtained automatic
segmentations that are not attached to myocardium. This is done by removing all except the
biggest of the connected components in the binary segmentation matrix. In the process it is
assumed that the myocardium is the biggest component, which was verified by inspecting all
the obtained automatic segmentation visually before they are clustered.

 31

Figure 20: Segmentation with small components outside the geometric boundaries of the LV myocardium

3.3.2 Myocardial Characterization
Once an automatic segmentation is obtained the next step is to extract relevant information
from the myocardium. In this section the steps and methods used for the feature extraction
part of the pipeline are explained in detail. This includes clustering of LV myocardium,
training and validation of CAE, and implementation details on how the features were
extracted from the clusters utilizing the trained CAE.

Clustering
The trained CNN was utilized to obtain automatic segmentations of all the 66 available CCTA
images. In order to detect presence of inhomogeneity in the LV myocardium tissue, the
segmentations were first divided into connected clusters using a vectorized implementation of
k-means.

K-means is an unsupervised learning algorithm for dividing data into clusters. It follows a
number of simple steps which aims to classify the data into a specified 𝑘 number of clusters.
The first step of the algorithm is to initialize 𝑘 centers in 3D space, i.e., one for each cluster.
In the next step, all the datapoints are assigned to the nearest center based on the spatial
location. When this is completed, 𝑘 new centroids are calculated from the new datapoints that
are assigned to the clusters. A new binding is then performed, and the datapoints are assigned
to clusters based on the newly calculated centroids. This is the loop of the k-means algorithm,
which is repeated until the location of the centroids stays the same from one iteration to the
next. The main aim of the algorithm is to minimize the sum of squared distances between the
datapoints in each cluster. This is done by minimizing the objective function, which is given
by,

𝐽 =GGd𝑥"
(A) − 𝑐Ad

4
5!

"13

<

A13

(3.6)

 32

where 𝑘 is the number of clusters, 𝑛A is the number of datapoints in the 𝑗$C cluster, 𝑥"
(A) is the

𝑖$C datapoint of cluster 𝑗, and 𝑐A is the center of cluster 𝑗. The difference that is summed over
is known as the Euclidean distance, which in our case is a span in 3D space.

In this process, the metadata of the CCTA images stored in NIfTI-files was used to transform
voxel-indices to spatial coordinates, i.e., to a cartesian coordinate system. The Euclidean
distance was then calculated from these transformed coordinates of myocardium voxels.

CAE
Different preprocessing techniques were utilized prior to the training of the CAE. The best
results were obtained using pixel intensity normalization in the range [0,1], which was used
for all experiments. Clipping of pixel intensities was performed for all the trained models.
Multiple clipping ranges were explored, which includes the range between the 95 % case to
the 99 % case from Figure 12. The effect of resampling was also explored to detect if it could
have any impact on the final classification results.

Training
The CAE was trained and validated using the same data as for the automatic segmentation,
which included 28 CCTA images with a corresponding manual annotation of the LV
myocardium. Patches used for training were extracted from the LV-myocardium based on two
main requirements, which is defined by,

Center Voxel The center voxel of the patch must be a part of myocardium, i.e.,

the segmentation mask must cover this voxel.

Min Labeled Voxels The minimum share of labeled voxels must be higher than a given
percentage. If this is set to 0.6, the patch has to consist of a
minimum of 60% labeled voxel to be included in the training.

The extracted patches were first divided into a train/test split, where 90 % were randomly
selected for training the CAE, and the remaining 10 % was used for testing. The training set
was then further divided into training and validation sets, where 90 % was used for training
and the remaining 10 % was used for validation.

The total number of patches used for training each CAE model was varying based on the
specific patch size, minimum labeled voxels and a specified patch overlap. The number of
patches was aimed to be in a range of 200 000 to 400 000 in order to reduce the time spent on
training. All the models were trained for 700 epochs, where each epoch consisted of an
iteration of a minibatch of size 500. The batches were prepared prior to training, which
drastically decreased the total training time of each model. Random shuffling was performed
on the processing sequence of batches each epoch, which is further explained in subsection
2.3.3.

 33

An adaptive learning rate optimization was utilized during model fitting by applying Adam
optimization with initial weight decay of 1e-3. The dynamic learning rate was reduced by a
factor of 0.1 if no improvement in the loss value was achieved over 25 subsequent epochs. To
prevent the learning rate from getting too small, a lower limit of 1e-6 was set. To further
reduce the risk of overfitting, an early stopping technique with a patience of 50 epochs
monitoring the loss on the validation data was applied. The test set was set aside during
training and was used to evaluate the final performance of the model.

Loss Function
The mean squared error (MSE) was utilized as loss function for all the CAE experiments. It
measures the mean of the squared error between the input patches and the reconstructed
patches, and is defined by,

𝑀𝑆𝐸 =
1
𝑁𝑀	GG(𝐼"̅A − 𝐼"A)4

D

A

?

"

(3.7)

where 𝐼"̅A and 𝐼"A represent the reconstructed patch and the input patch, respectively. The error
is calculated for each pixel in the processed image, i.e., the scaled and/or resampled image.
The MSE was also used as metric for evaluation of the final performance of the model on the
test set.

Architecture
Multiple architectures were tested in each CAE patch reconstruction experiment. This
includes varying the number of convolutional layers, different methods for upsampling and
downsampling, and varying number of filters for each convolutional layer. All convolutions
were performed with a kernel size of 2x2. Furthermore, upsampling and downsampling was
performed with a size of 2x2 for all the utilized architectures. The number of dense layers was
consistent for all the architectures, which was set to two. The first consisted of 512 units,
while the second was dependent on patch size for the particular experiment. For all
experiments, batch normalization was performed after each convolutional layer except for the
output layer. ELU was used as activation function for the hidden layers (i.e., for the dense
layers and the hidden convolutional layers). For the output layer multiple activation functions
were tested, with the best results obtained using sigmoid.

The simplest architecture utilized is shown in Figure 21. It consists of one convolutional layer
in the encoder, and one convolutional layer in the decoder. Downsampling is performed via
max-pooling, while in the decoder an upsampling layer was used to increase the size of the
compressed representation.

 34

Figure 21: One-Layer 2D-CAE with max-pooling and upsampling layers

Two convolutional layers in the encoder and decoder were also tested. For this approach two
max-pooling layers were used in the encoder, while two upsampling layers was used in the
decoder. The structure of the two-layer architecture is shown in Figure 22.

Figure 22: Two-Layer 2D-CAE with max-pooling and upsampling layers

For the third approach, strided convolutions were utilized. This has the same effect as the
max-pooling and upsampling layers used in the models above, which is to compress and
decompress the data. While max-pooling and upsampling-layers are fixed operations, strided
convolutions on the other hand are learned during training. The advantage of strided
convolutions is that the model may learn certain properties in the process of
compressing/decompressing. Even though the number of layers in the network are reduced
with strided convolutions, the total amount of trainable parameters increases and therefore
also the computational cost. The architecture of the CAE with one strided convolution in both
the encoder and decoder are shown in Figure 23.

Figure 23: One-Layer 2D-CAE with strided convolutions

 35

Feature Extraction
Features were extracted from all of the 66 CCTA images using the clusters of the LV
myocardium obtained via k-means in the previous step. To get the compressed representation
of extracted image patches the decoder is removed from the CAE, which is illustrated in
Figure 24 below.

Figure 24: Encoder used to create a dense representation of myocardium patches

The patches were preprocessed with the same techniques and parameters as were used to train
the particular CAE model. This includes the minimum number of labeled voxels (requirement
used to extract patches), clipping range, normalization approach, and voxel spacing used for
resampling. For each patient, the image patches were assigned to a specific cluster through
two different methods given by,

Center The patch is assigned to the cluster which is labeled at the center of the patch.

Highest Share The patch is assigned to the cluster which has the highest share of labeled
voxels.

Figure 25: Extracted patch and its overlapping cluster-labels. The patch is assigned to cluster (2) for

center-selection, while it is assigned to cluster (3) when the highest share method is used.

 36

After a particular patch has been assigned to the belonging cluster, the next step is to encode
it. This is done by sending it through the encoder, which outputs a compressed vector of 512
units. Two methods were utilized to obtain the final feature vector for each patient, which are
explained in detail below.

Methods for building the patient feature vector
After performing the previous step (encoding of myocardium patches), two different
approaches for building the final patient feature vector from the clustered encodings were
implemented. The first method is an interpretation of the method used in Zreik et al., while
the second method is a new method introduced in this thesis.

Let 𝑥 denote the coordinates/indices of a specific voxel in 2D space. Let 𝑃(𝑥) denote the
patch centered at 𝑥. Let 𝐸𝑛𝑐 denote the encoder and 𝐷𝑒𝑐 denote the decoder. Let 𝑁- denote
the number of units/encodings in the compressed output vector from the encoder and let 𝑁<
denote the number of clusters. The vector of encodings for a particular patch at location 𝑥 can
then be expressed as 𝑦(𝑥) = 𝐸𝑛𝑐f𝑃(𝑥)g.

Method 1 In the first method the sets 𝑌"<{𝑦"(𝑥)	|	𝑥	𝜖	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘} are collected for 𝑘 =

1,2,3…𝑁<, where 𝑦"(𝑥) then represents the 𝑖$C encoding of the vector of
encodings 𝑦(𝑥) and 𝑖 = 1,2,3…𝑁- . The standard deviation 𝜎"< = 𝑠𝑡𝑑(𝑌"<) is
then computed and subsequently 𝑓- = 𝑚𝑎𝑥"𝜎" is extracted to build a vector 	

 𝑓 = (𝑓3				𝑓4				𝑓E…	𝑓?") (3.9)

Let 𝑦"A(𝑥) denote the 𝑖$C encoding of the 𝑗$C vector of encodings at location
𝑥	𝜖	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘. First the standard deviation is computed for each encoding in
cluster 𝑘 by the following matrix operations

p
𝑦33 ⋯ 𝑦3A
⋮ ⋱ ⋮
𝑦"3 ⋯ 𝑦"A

t →	v
𝜎(𝑦33, … , 𝑦3A)	

⋮
𝜎(𝑦"3, … , 𝑦"A)

w → p
𝜎3	
⋮
𝜎"
t

Subsequently the maximum standard deviation for each encoding 𝑦" over all
clusters is extracted

 	

v
𝜎33 ⋯ 𝜎3<
⋮ ⋱ ⋮
𝜎"3 ⋯ 𝜎"<

w → v
𝑚𝑎𝑥(𝜎33, … , 𝜎3<)	

⋮
𝑚𝑎𝑥(𝜎"3, … , 𝜎"<)

w → v
𝑓3	
⋮
𝑓?"
w

This results in a feature vector with the same size as the original vector of
encodings extracted from the patches.

 37

Method 2 In the second method the sets 𝑌A<x𝑦A(𝑥)	|	𝑥	𝜖	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘y are collected for 𝑘 =
1,2,3…𝑁<, where 𝑦A(𝑥) represents the 𝑗$C vector of encodings for a particular
cluster. The standard deviation 𝜎A< = 𝑠𝑡𝑑(𝑌A<) is then computed and
subsequently 𝑓< = 𝑚𝑎𝑥A𝜎A< is extracted to build a vector

 𝑓 = (𝑓3				𝑓4				𝑓E…	𝑓?#) (3.8)

Let 𝑦"A(𝑥) denote the 𝑖$C encoding of the 𝑗$C vector of encodings at location
𝑥	𝜖	𝑐𝑙𝑢𝑠𝑡𝑒𝑟	𝑘. The computation of the final feature value 𝑓< for a particular
cluster 𝑘 is then given by the matrix operations

v
𝑦33< ⋯ 𝑦"3<
⋮ ⋱ ⋮
𝑦3A< ⋯ 𝑦"A<

w → v
𝜎(𝑦33< , … , 𝑦"3<)	

⋮
𝑦3A< , … , 𝑦"A<)

w → 𝑚𝑎𝑥 v
𝜎3< 	
⋮
𝜎A<
w → 𝑓<

This method computes the maximum standard deviation of any vector of
encodings within a cluster, and results in a feature vector with the same size as
the number of clusters.

3.3.3 Classification
The final vector of extracted features was used to classify the patients with functional
significant stenosis. Two methods for classification were utilized, which includes Gaussian
Process Classifier (GPC) and K-Neighbors Classifier (KNN). Classification was performed
for all the CAE models presented in section 0. For each of the models, experiments were done
for both method 1 and method 2 for defining the final vector of features. For both these
methods, feature selection was tested on the train set and for the entire dataset. All the
experiments were performed via 10-fold cross-validation. In this section the preprocessing
approaches of the extracted features are described, as well as the details concerning the two
different classification algorithms. Finally, the evaluation metrics used to evaluate the final
performance of the model is presented.

Feature Selection
Both methods used to define the final vector of features provided a vector of a size around
500 features. The first method, i.e., method 1, results in a feature vector of size 512, which is
the same as the method used in Zreik et al. However, this is a relatively large size for a vector
that is meant to be used for classification purposes. In preliminary experiments low
predictability was revealed from using the whole vector of features as input to the
classification algorithms. This may be a result of the fact that the feature vector is containing
irrelevant features, i.e., features that do not contain any information about the “unhealthiness”
of the LV myocardium tissue. To solve this problem, feature selection can be applied as a
preprocessing step, which compresses the vector of features before it is sent to the
classification algorithm.

 38

Univariate feature selection was used to extract the most relevant features from each CAE
model. Multiple univariate statistical tests were performed on the vector of features, which
works by comparing each feature to the target value in order to detect whether there is any
statistically significant relationship between them. The selection is univariate as each feature
is isolated, i.e., the other features are ignored in the analysis of the relationship. A test score is
computed for each feature and the features with the highest scores are selected according to a
specified threshold. Best results were obtained using a combination of chi-squared statistics
(chi2) and mutual information statistics (MI). For non-negative features, the chi2-score is
given by,

𝒳>
4 =GG

(𝑂"A − 𝐸"A)4

𝐸"A

5

A13

,

"13

(3.10)

where 𝑂 represents the observed value, 𝐸 represents the expected value, and 𝑐 is the degree of
freedom. As our features are computed using standard deviation, the features are continuous
and non-negative. Therefore, a chi2 statistic adapted for continuous features provided by
sklearn was utilized [37]. This method computes the group sum of each non-negative feature
value 𝑓 given each possible target value 𝑦. In our classification problem the target is binary,
i.e., a patient does either have a significant stenosis (1) or not (0). The algorithm therefore
computes two sums for each feature value, which is the observed value. The observed values
are then compared to the probability-weight grand total of the feature 𝑓 given the target value
𝑦, which is the expected value. The observed and expected values are then compared by
computing a p-value using the chi2 test with a degree of freedom equal to (𝑘 − 1), where 𝑘 is
the number of possible values for the target 𝑦. A chi-score and a p-value is obtained for each
feature from this comparison.

The mutual information (MI) statistic is a non-negative value and estimates the mutual
information for a discrete target variable and each individual feature. It measures the amount
of information one can obtain from one random variable given another [39]. It uses the
entropy, which is a quantitative estimate of how much information there is in a variable. For a
discrete variable 𝑋 and a continuous variable 𝑌, the mutual information is given by,

 𝐼(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) (3.11)

where 𝐻(𝑋) represents the entropy for 𝑋, 𝐻(𝑌)	is the entropy for 𝑌, and 𝐻(𝑋, 𝑌)	is the
entropy for 𝑋 and 𝑌. It relies on entropy estimation from k-nearest neighbors’ distance [40].
Higher MI-values indicates higher dependencies between the variables, whereas a MI equal to
zero implies that the two variables are independent.

In this thesis feature selection was performed in two stages, using a combination of MI-
statistics and chi2-statistics. Firstly, the K-best MI features were selected, and subsequently
the K-best chi2 features were selected based on the subset defined by the MI feature selection.
The K-value for both methods was found through experimenting and is listed in the beginning

 39

of section 4.4. The best K-value was found for both methods used to build the feature vector,
i.e., method 1 and method 2. Additionally, feature selection was performed on both the entire
dataset and the train set. This was done in order to detect the amount of information that
might be stored in the features. Varying K-values for these two approaches was also found
through experimenting. A combination of MI-statistics and chi2-statistics were only used to
select features for most of the experiments in classification of features extracted via method 2.
In classification of features extracted via method 1, only chi2-statistics were utilized to extract
the most relevant features.

Normalization
Multiple normalization approaches were tested on the features in preliminary experiments.
Best results were obtained utilizing a robust scaler provided by sklearn, which uses statistics
of the features which are robust to outliers [41]. It eliminates the median and scales the
features in line with the interquartile range (IQR). The IQR ranges from the 1st quartile (Q1)
to the 3rd quartile (Q3) which is illustrated in Figure 26 below.

Figure 26: The IQR illustrated for a probability density function of a normal distribution

Using this method, the features are centered and scaled separately by calculating the relevant
statistics. These statistics were obtained by fitting the scaler on the training data in each
classification experiment. Subsequently, the testing data was scaled based on the median and
interquartile saved in the fitted scaler.

Classification Methods
Multiple classification methods were tested in preliminary experiments. Best results were
obtained using Gaussian Process Classifier (GPC) and K-Neighbors Classifier (KNN)
provided by sklearn. Other methods such as SVM and Deep Learning were tested, but
provided lower classification results and were slower compared to GPC and KNN. GPC and
KNN were utilized for all classification experiments. Both methods are considered to be non-
parametric, which means that there are no underlying assumptions of the distribution of the
data. Details regarding the two methods are given below.

Gaussian Process Classifier
A Gaussian Process Classifier (GPC) uses a Gaussian Process (GP) in order to perform
probabilistic classification of the features. This means that the final predictions on the test
data is obtained by means of class probabilities, which in our case is the probability of a
binary target value.

 40

A GP is a generalization of the Gaussian probability distribution. While the Gaussian
probability distribution functions encapsulates the distribution of random variables, a GP on
the other hand encapsulates the properties of the functions [42]. It requires a specification of a
kernel, which regulates how samples relate to one another. This is known as the latent
function 𝑓 and characterizes the covariance function of the features and the target values [42].
This function holds the properties of a nuisance function, which means that we do not observe
the values of 𝑓 directly, but only the inputs 𝑋	and target values 𝑦 [42]. As the kernel regulates
how the model distinguishes the samples, it is a crucial step for a GP model. The latent
function 𝑓 is removed via integration during prediction of the test-data. Multiple kernels were
tested in preliminary experiments, where the best results were obtained using the Radial basis
function (RBF) and Dot-Product (DP). The RBF is a stationary kernel defined by,

𝑘(𝑥" , 𝑥A) = exp	 p
𝑑f𝑥" , 𝑥Ag

4

2𝑙4 t

(3.12)

where 𝑙 represents the length scale of the kernel and 𝑑f𝑥" , 𝑥Ag

4 is the Euclidean distance
between 𝑥" and 𝑥A. For all experiments 𝑙 was set to 1.0. The DP kernel on the other hand, is a
non-stationary kernel. It is defined by,

 𝑘f𝑥" , 𝑥Ag = 𝜎24 + 𝑥" ⋅ 𝑥A (3.13)

where 𝜎2 is used for parameterization and controls the inhomogeneity of the kernel. The value
of 𝜎2 was set to 1.0 for all experiments. As the Gaussian Process originally is used for
regression, some important adjustments are made for it to work as a classifier. For binary
classification, the model uses a function that interprets the internal representation and predicts
the class probability of the features. This function is also known as a link function, which
“squashes” its input into a range of [0,1] in order to obtain the probabilistic classification [42].
The Sigmoid function is a function that holds this property and is used in the GPC
implantation provided by sklearn.

K-Neighbors Classifier
Neighbor-based classification is simpler and easy to understand compared to GPC. It is within
the scope of instance-based learning algorithms, which means that it is non-generalizing. In a
non-generalizing learning approach, the goal is to obtain classification of unseen data by
storing instances of the training data. This is different from the GPC where a general internal
model is constructed. In the KNN algorithm features are classified through a straightforward
computation of the majority vote of the k-nearest neighbors of each datapoint. This happens
as each feature of the k-nearest neighbors “votes” for its class and the class with the most
votes are used as the prediction. All the training data was used to obtain classification for a
new data point, where the Euclidean distance was utilized as the distance measure.

 41

Figure 27: Visualization of the three steps of the KNN algorithm for classification of 2D samples using the
Euclidean distance and the number of neighbors k=3

The choice of k-value is highly data dependent. A lower value of k will make the predictions
more sensitive to noise. A higher k-value on the other hand reduces this sensitivity but can
make the classification boundaries less distinct. The k-value was found through
experimenting, where a value between 3 and 5 was chosen as this provided the best
classification results.

Evaluation metrics
Three evaluation metrics were used to evaluate the performance of the classification models,
which includes Sensitivity, Specificity, ROC, and AUC. The definitions of Sensitivity and
Specificity can be found in subsection 3.3.1, given in equations (3.2) and (3.3), respectively.

ROC (receiver operating characteristic) curve is a graph that visualizes the performance of a
classification model at all thresholds. It plots two parameters, including the True Positive Rate
(Sensitivity) and the False Positive Rate (1 – Specificity). AUC is strongly linked to the ROC
and stands for “Area Under Curve”. It measures the two-dimensional area under the ROC
curve, which is an integral from (0,0) to (1,1). It summarizes the model performance across
all the classification thresholds. It has an ideal value of 1, which is obtained for a model that
classifies all the positive and negative samples correctly.

Sensitivity, Specificity and AUC is used for evaluation metrics of all the classification
experiments. This includes all models used to classify features obtained via both method 1
and method 2 for defining the feature vector. The ROC curve is only visualized for method 2
classification, as this method provided the best results. All curves are visualized with an 95 %
asymptotic confidence interval of the average sensitivity given by,

 𝐶𝐼 = 	𝜇	 ± 	1.96

𝜎
√𝑛

 (3.14)

where 𝜇 represents the average sensitivity, 𝜎 is the standard deviation of the average
sensitivity, and 𝑛 is the number of samples.

?

New sample to classify

(1) Initial Data (2) Calculate EC distance

? ?k=3

(3) Finding neighbors

Class A
Class B

Class A
Class B

Class A
Class B

 42

 43

Chapter 4 Results

4.1 Automatic Segmentation
In this section results from the automatic segmentation experiments are presented. All the
models were evaluated using 3-fold cross-validation. Full-image analysis was chosen over a
patch-wise crop as the resolution of the images were low. To be able to fit whole images into
the network, the images were first resized by means of resampling to a common voxel-
spacing that gave a median image size near to the desired input size, i.e., 160x160x80. A
suitable voxel spacing of 1.24x1.24x1.42 for this purpose was found in preliminary
experiments. Early stopping with a patience of 30 epoch monitoring the validation loss was
used for all experiments. All models were scaled through z-score normalization and were set
to train for 200 epochs.

Four different experiments were performed, where Table 2 provides an overview of the
parameters for each experiment, and Table 3 shows the summary statistics for each
experiment. The different experiments are presented in more detail below.

Table 2: Overview of parameters for the CNN automatic segmentations experiments.

 Analysis U-Net CV Input size Norm. Clipping Resampling Loss Epoch
EX1 Full-image

3D
Standard 3-fold 160x160x80 z-score (0, 275) 1.24x1.24x1.42 DSL 200

EX2 Full-image
3D

Standard 3-fold 160x160x80 z-score (0, 275) 1.24x1.24x1.42 TL 200

EX3 Full Image
3D

Dense 3-fold 160x160x80 z-score (0, 275) 1.24x1.24x1.42 TL 200

EX4 Full Image
3D

Residual 3-fold 160x160x80 z-score (0, 275) 124x1.24x1.42 TL 200

Table 3: Overview of average results across all three folds for each CNN experiment. The model from the

second fold of EX1 was utilized to obtain automatic segmentations for the entire dataset used for clustering
and feature extraction in the next step of the total pipeline.

 Background Myocardium
 DSC Sens. Spec. Acc. DSC Sens. Spec. Acc.
EX1 0.996 0.996 0.892 0.993 0.887 0.892 0.997 0.993
EX2 0.997 0.997 0.866 0.993 0.881 0.868 0.997 0.994
EX3 0.996 0.996 0.868 0.993 0.872 0.868 0.996 0.993
EX4 0.996 0.996 0.868 0.993 0.872 0.868 0.996 0.993

 44

4.1.1 Experiment 1: 3D U-Net Standard and DSL
A single GPU was used for this experiment. The models in each CV-split were set to train for
200 epochs. Overfitting started to occur at approximately 30 epochs for all the models, which
resulted in termination of the training due to the early stopping condition. The model with the
lowest validation loss was used to obtain the predictions which were used to evaluate the final
model performance. All additional information about the specific parameters used in the
experiment can be found in Table 2.

The predictions revealed a strong performance for background, as well as reasonably good
results for myocardium. From Table 4 we can observe that the average DSC of 0.887 was
achieved for myocardium, while an average DSC of 0.996 was achieved for the background.
Furthermore, an average sensitivity of 0.892 and average specificity of 0.997 was obtained for
myocardium voxels. Additional information about the inference performance and predictions
are recorded in Table 4.

Table 4: Average results from 3-fold cross-validation represented by the Dice similarity coefficient (DSC),

Sensitivity, Specificity, and Accuracy for segmentation of LV myocardium using 28 CCTAs.

 Background Myocardium
Fold DSC Sens. Spec. Acc. DSC Sens. Spec. Acc.

1 0.996 0.997 0.871 0.994 0.889 0.871 0.997 0.994
2 0.997 0.997 0.901 0.993 0.891 0.901 0.997 0.993
3 0.996 0.996 0.905 0.992 0.882 0.905 0.996 0.992

AVG 0.996 0.996 0.892 0.993 0.887 0.892 0.997 0.993

Figure 28: Fitting curve during training representing the average loss across all folds computed by

Gaussian Process Regression. The red and cyan lines represent the training and validation data,
respectively. The gray areas around represent the confidence interval.

 45

Figure 30: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_29 with the highest DSC of 0.904.

Figure 29: Random slice from CT_FFR_29 with the highest DSC of 0.904.

 46

Figure 32: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_25 with the lowest DSC of 0.763.

Figure 31: Random slice from CT_FFR_25 with the lowest DSC of 0.763.

 47

4.1.2 Experiment 2: 3D U-Net Standard and TL
A single GPU was used for this experiment. The models in each CV-split were set to train for
200 epochs. All models terminated at about 80 epochs due to the early stopping condition. No
signs of overfitting on the training data were detected. The model with the lowest validation
loss was used to obtain the predictions which were used to evaluate the final model
performance. All additional information about the specific parameters used in the experiment
can be found in Table 2.

The predictions revealed very similar results compared to the first experiment. An average
DSC of 0.881 was achieved for myocardium, which is slightly lower compared to the
experiment with DSL. Furthermore, an average sensitivity of 0.868 was achieved for
myocardium voxels, which also is lower compared to using the DSL. Additional information
about the inference performance and predictions are recorded in Table 5.

Table 5: Average results from 3-fold cross-validation represented by the Dice similarity coefficient (DSC),

Sensitivity, Specificity, and Accuracy for segmentation of LV myocardium using 28 CCTAs.

 Background Myocardium
Fold DSC Sens. Spec. Acc. DSC Sens. Spec. Acc.

1 0.997 0.998 0.860 0.993 0.881 0.858 0.998 0.994
2 0.997 0.997 0.890 0.994 0.893 0.899 0.997 0.994
3 0.996 0.997 0.848 0.993 0.870 0.848 0.997 0.993

AVG 0.997 0.997 0.866 0.993 0.881 0.868 0.997 0.994

Figure 33: Fitting curve during training representing the average loss across all folds computed by

Gaussian Process Regression. The red and cyan lines represent the training and validation data,
respectively. The grey areas around represent the confidence interval.

 48

Figure 35: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_29 with the highest DSC of 0.912.

Figure 34: Random slice from CT_FFR_29 with the highest DSC of 0.912.

 49

Figure 37: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_29 with the lowest DSC of 0.788.

Figure 36: Random slice from CT_FFR_25 with the lowest DSC of 0.788.

 50

4.1.3 Experiment 3: 3D U-Net Dense and TL
A single GPU was used for this experiment. The models in each CV-split were set to train for
200 epochs. All models terminated at about 70 epochs due to the early stopping condition. No
signs of overfitting on the training data were detected. The model with the lowest validation
loss was used to obtain the predictions which were used to evaluate the final model
performance. All additional information about the specific parameters used in the experiment
can be found in Table 2.

An average DSC of 0.869 was achieved for myocardium, which is slightly lower compared to
both the U-Net Standard experiments. Furthermore, an average sensitivity of 0.881 was
obtained for myocardium voxels, which is higher than what was achieved for the U-Net
Standard with Tversky Loss, but lower compared to the U-Net Standard with DSL. Additional
information about the inference performance and predictions are recorded in Table 6.

Table 6: Average results from 3-fold cross-validation represented by the Dice similarity coefficient (DSC),

Sensitivity, Specificity, and Accuracy for segmentation of LV myocardium using 28 CCTAs.

 Background Myocardium
Fold DSC Sens. Spec. Acc. DSC Sens. Spec. Acc.

1 0.996 0.996 0.895 0.992 0.862 0.895 0.995 0.993
2 0.997 0.998 0.879 0.993 0.874 0.879 0.998 0.993
3 0.995 0.996 0.868 0.991 0.870 0.870 0.996 0.991

AVG 0.996 0.997 0.881 0.992 0.869 0.881 0.997 0.992

Figure 38: Fitting curve during training representing the average loss across all folds computed by

Gaussian Process Regression. The red and cyan lines represent the training and validation data,
respectively. The grey areas around represent the confidence interval.

 51

Figure 40: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_16 with the highest DSC of 0.914.

Figure 39: Random slice from CT_FFR_16 with the highest DSC of 0.914.

 52

Figure 42: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_26 with the lowest DSC of 0.779.

Figure 41: Random slice from CT_FFR_26 with the lowest DSC of 0.779.

 53

4.1.4 Experiment 4: 3D U-Net Residual and TL
A single GPU was used for this experiment. The models in each CV-split were set to train for
200 epochs. All models terminated at about 50 epochs due to the early stopping condition.
Some signs of overfitting on the training data were detected. The model with the lowest
validation loss was used to obtain the predictions which were used for evaluation of the final
model performance. All additional information about the specific parameters used in the
experiment can be found in Table 2.

An average DSC of 0.872 was achieved for myocardium, which is slightly higher compared
to the U-Net Dense experiment, but lower than what was achieved in both the U-Net Standard
experiments. Furthermore, an average sensitivity of 0.868 was obtained for myocardium
voxels, which is lower than what was achieved for all the other experiments. Additional
information about the inference performance and predictions are recorded in Table 7.

Table 7: Average results from 3-fold cross-validation for represented by the Dice similarity coefficient
(DSC), Sensitivity, Specificity, and Accuracy for segmentation of LV myocardium using 28 CCTAs

 Background Myocardium
Fold DSC Sens. Spec. Acc. DSC Sens. Spec. Acc.

1 0.996 0.996 0.877 0.993 0.867 0.877 0.996 0.993
2 0.996 0.996 0.861 0.993 0.869 0.861 0.996 0.993
3 0.996 0.997 0.866 0.992 0.879 0.866 0.997 0.992

AVG 0.996 0.996 0.868 0.993 0.872 0.868 0.996 0.993

Figure 43: Fitting curve during training representing the average loss across all folds computed by

Gaussian Process Regression. The red and cyan lines represent the training and validation data,
respectively. The grey areas around represent the confidence interval.

 54

Figure 45: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_7 with the highest DSC of 0.896.

Figure 44: Random slice from CT_FFR_7 with the highest DSC of 0.896.

 55

Figure 47: Visualization of ground truth (blue), prediction (red), false negatives (pink), and false positives

(green) from CT_FFR_25 with the lowest DSC of 0.679.

Figure 46: Random slice from CT_FFR_25 with the lowest DSC of 0.679.

 56

4.2 Clustering
In this section the results from the k-means clustering of the automatic segmented images are
presented.

4.2.1 Experiment 1: K-means
The algorithm was set to run for 100 iterations. The number of clusters was set to 500, and
random seed initialization was used to initialize the centroids prior to the first iteration. The
utilized random seeds were different for each patient.

Figure 48: Results of k-means clustering for two different patients presented by random slices from sagittal plane (left), coronal
plane (middle), and transverse plane (right).

 57

 58

4.3 CAE
In this section the CAE experiments are presented. Different patch sizes were explored in
relation to the other CAE parameters, which include the CAE architecture, filter size, patch-
overlap, normalization approach, resampling, and the minimum number of labeled voxels.
Upsampling via both max-pooling and strided convolutions was tested. Downsampling was
either performed by means of an upsampling layer or strided convolutions. The number of
convolutional layers were explored, where either one or two layers for encoder/decoder were
employed. Resampling to a common voxel-spacing was tested on some of the models.
Clipping was performed for most of the models where a varying threshold was explored.

A number of experiments were performed in preliminary experiments, where the one for each
patch size that provided the best classification results are presented in this section. All the
specific parameters for each model are listed in Table 8.

Table 8: Overview of the parameters used in each of the CAE experiments. Abbreviations: CNV = number
of convolutional layers in enc/dec, DS = downsampling, US = upsampling, S = strides, MP = max-pooling,
USL = upsampling layer, FS = filter size, PO = patch overlap, NR = normalization range, CL = clipping,
RE = resampling, MLV = minimum labeled voxels, NP = total number of patches (training + validation +
testing).

 CNV DS US FS PO NR CL RE MLV NP
P16 1 S S 16 12 [0,1] (0,275) (0.8, 0.8, 0.8) 0.5 450 000
P20 1 S S 32 8 [0,1] (0, 275) None 0.7 272 000
P24 1 S S 16 12 [0,1] (0, 275) None 0.5 475 000
P28 2 2xMP 2xUSL 64→32 14 [0,1] (0, 275) None 0.7 215 000
P36 1 MP S 32 18 [0,1] (-1000, 400) None 0.7 250 000
P48 1 MP S 32 18 [0,1] (-1000, 400) None 0.7 250 000

 59

4.3.1 Experiment 1: Patch Size 16x16
MSE

Training 1.589-4
Testing 1.691-4

Figure 49: Fitting curve for the experiment with a patch size of 16x16.

Figure 50: Three examples of reconstructed patches by the CAE randomly selected from the test set. Each

row contains the 16x16 original input patch (right), the 16x16 reconstructed patch (middle), and the
reconstruction error (left) calculated from the scaled pixel intensities.

 60

4.3.2 Experiment 2: Patch Size 20x20
MSE

Training 4.367-4
Testing 4.513-4

Figure 51: Fitting curve for the experiment with a patch size of 20x20.

Figure 52: Three examples of reconstructed patches by the CAE randomly selected from the test set. Each

row contains the 20x20 original input patch (right), the 20x20 reconstructed patch (middle), and the
reconstruction error (left) calculated from the scaled pixel intensities.

 61

4.3.3 Experiment 3: Patch Size 24x24
MSE

Training 7.235-5
Testing 8.590-5

Figure 53: Fitting curve for the experiment with a patch size of 24x24

Figure 54: Three examples of reconstructed patches by the CAE randomly selected from the test set. Each

row contains the 24x24 original input patch (right), the 24x24 reconstructed patch (middle), and the
reconstruction error (left) calculated from the scaled pixel intensities.

 62

4.3.4 Experiment 4: Patch Size 28x28
MSE

Training 9.180-4
Testing 9.710-4

Figure 55: Fitting curve for the experiment with a patch size of 28x28.

Figure 56: Three examples of reconstructed patches by the CAE randomly selected from the test set. Each

row contains the 28x28 original input patch (right), the 28x28 reconstructed patch (middle), and the
reconstruction error (left) calculated from the scaled pixel intensities.

 63

4.3.5 Experiment 5: Patch Size 36x36
MSE

Training 1.109-4
Testing 1.545-4

Figure 57: Fitting curve for the experiment with a patch size of 36x36.

Figure 58: Three examples of reconstructed patches by the CAE randomly selected from the test set. Each

row contains the 36x36 original input patch (right), the 36x36 reconstructed patch (middle), and the
reconstruction error (left) calculated from the scaled pixel intensities.

 64

4.3.6 Experiment 6: Patch Size 48x48
MSE

Training 1.411-4
Testing 1.614-4

Figure 59: Fitting curve for the experiment with a patch size of 48x48.

Figure 60: Three examples of reconstructed patches by the CAE randomly selected from the test set. Each

row contains the 48x48 original input patch (right), the 48x48 reconstructed patch (middle), and the
reconstruction error (left) calculated from the scaled pixel intensities.

 65

4.4 Classification
In this section the final classification results are presented. Features were extracted for each of
the CAE models presented in section 0. The two methods presented in subsection 3.3.2 were
utilized for building the final feature vector, i.e., method 1 and method 2. All models were
evaluated in 10-fold cross-validation experiments, where feature selection was performed for
both the entire dataset and the train set. This was done for both the methods used to build the
feature vector, where the results for each method are presented in two distinct tables.
Additionally, the method 2 experiments are presented with an average ROC curve for each of
the CAE models. In preliminary experiments the two methods used to assign patches to a
specific cluster revealed almost identical results (Figure 25), and center selection was
therefore used to extract features from all the presented models.

Features were selected according to a combination of mutual information statics (MI) and chi-
squared statistics (chi2). Firstly, the K-best mutual information features were selected, and
subsequently the K-best chi2 features were selected. The K value was found through
experimenting. A combination of MI-statistics and chi2-statistics were used to select features
for most of the experiments in classification of features extracted via method 2. In
classification of features extracted via method 1, only chi2-statistics were utilized to select the
most relevant features. This is shown in the overview of the classification parameters in Table
9, where ‘All’ indicates that all of the features were chosen based on MI-statistics (i.e., only
chi2-statistics were utilized to select features.).

Classification was performed via comparison of two methods, which includes Gaussian
Process Classifier (GPC) and K-Neighbors Classifier (KNN). For the Gaussian Process
Classifier, either Radial Basis Function (RBF) or Dot-Product (DP) were utilized as kernels.
For the KNN, the number of neighbors were explored, and the best was selected for each
cross-validation experiment. The feature selection parameters for these two classification
methods were the same within each cross-validation experiment.

Table 9: Overview of the classification parameters for the CAE models. The parameters are given for the
two methods used to build the final feature vector, i.e., method 1 (left) and method 2 (right). Additionally,
the parameters are fine-tuned according to the feature selection approach, i.e., train vs whole.

 Method 1 Method 2
CAE

Model
Feature

Selection
K-best

mut-inf.
K-best
chi2

KNN
neigh.

GPC
kernel

K-best
mut-inf

K-best
chi2

KNN-
Neigh.

GPC
kernel

P16 Train All 25 3 RBF 200 30 4 RBF
Whole All 25 3 RBF 200 25 4 RBF

P20 Train All 300 3 DP 150 30 3 DP
Whole All 300 3 DP 150 20 5 DP

P24 Train All 20 3 DP 150 30 3 DP
Whole All 20 3 DP 150 20 5 DP

P28 Train All 20 3 DP 150 20 3 DP
Whole All 20 3 DP 150 20 5 DP

 66

P36 Train All 25 3 DP All 20 3 DP
Whole All 30 3 DP All 20 3 DP

P48 Train All 30 3 DP All 30 3 DP
Whole All 20 3 DP 200 30 4 RBF

4.4.1 Feature Selection
The characterization of the myocardium as a set of features consists of three steps. First the
myocardium is clustered into 500 regions by means of a k-means algorithm. In the next step
the information from the CCTA image within each cluster is compressed by application of a
CAE. In the final step, the information from the encodings within each cluster is combined to
a single vector of features representing the myocardium. We evaluated two different methods
for performing this last step, where the first approach (method 1) represents our understanding
of the approach presented in Zreik et al. and where the length of the final vector of features is
associated with the number of encodings in the auto encoder (length: 512). However, initial
exploration with such an approach resulted in poor classification. As a consequence, we also
present an alternative approach (method 2). Furthermore, different approaches for reducing
the length of the final vector of features through application of methods of feature selection is
presented.

The feature selection method uses information from the input and output to select a subset of
features which contain the highest amount of information. As in all other aspects of machine
learning, the feature selection should be defined only on input-output data from a train set.
However, in order to highlight strengths and weaknesses of the final classification
and between the methods for generating the vector of features, method 1 and method 2, we
present results also when feature selection was based on the entire dataset. Moreover, to
evaluate potential dataset bias in the feature-selection, distributions of the amount of
information in the selected subset of features are compared with the distribution
corresponding to the full length of features. The distribution of the utilized statistics for a
selected CAE model for both methods used to define the feature vector are given in the
histograms below. In all these figures the train/test split was derived from a random split in
the 10-fold cross-validation experiment of the particular model and the feature selection was
performed based on information in the train split.

Method 1
Feature selection performed on features extracted via method 1 was done by utilizing chi2-
statistics only. The distributions of the scores are shown for the CAE model with a patch size
of 36x36. The number of features selected are the same as used for the final classification of
this particular model which was 25 (see Table 9).

The blue bins in Figure 61 represent the distribution of the chi2-scores computed based on the
input-output data in the train set, where the 25-best features were selected (i.e., the 25 features
with the highest chi2-scores). The orange bins represent the distribution of chi2-scores for
these 25 selected features.

 67

The blue bins in Figure 62 represent the distribution of the chi2-scores based on input-output
data of the test set. Moreover, the distribution of the chi2-scores in the 25 selected features
(found based on train set above) is highlighted (orange bins).

Figure 61: Distribution chi2-values for a random k-fold split in the 36x36 patch size experiment. The blue
bins represent the distribution of scores computed from the train set, while the orange bins represent the

distribution of selected features.

Figure 62: Distribution chi2-values for a random k-fold split in the 36x36 patch size experiment. The blue

bins represent the distribution of scores computed from the test set, while the orange bins represent the
selected features (based on the train set) computed from the test set.

 68

Method 2
Feature selection performed on features extracted via method 2 was done by utilizing a
combination of MI-statistics and chi2-statistics. The distributions of the scores are shown for
the CAE model with a patch size of 20x20. The number of features selected are the same as
used for the final classification of this particular model, which is given in Table 9.

In Figure 63, the blue bins in the histogram to the left represent the distribution of MI-scores
computed based on input-output data in the train set, where the 150-best features were chosen.
The orange bins in the histogram to the left represent the MI-scores of those particular
features. The blue bins in the histogram to the right represent the distribution of chi2-scores of
the subset defined by the MI-reduced selection (i.e., 150 features), where the 30-best were
chosen. The orange bins in the histogram to the right represent the chi2-scores of those
particular features.

In Figure 64, the blue bins in the histogram to the left represent the distribution of MI-scores
computed based on input-output data in the test set. Moreover, the distribution of the MI-
scores of the 150 selected MI features (found from information in the train set) is highlighted
in terms of the orange bins in the histogram to the left. The blue bins in the histogram to the
right represent the distribution of chi2-scores of the subset defined by the MI-reduced
selection (i.e., 150 features). Moreover, the distribution of the 30-selected chi2 features
(found from information in the train set) are highlighted in terms of the orange bins.

Figure 63: Distribution of MI-values (left) and chi2-values (right) for a random k-fold split in the 20x20 patch size
experiment. Firstly the 150 best MI-features are selected, and subsequently the 30 best chi2-features are selected
from the MI-reduced samples. The blue bins represent the scores computed from the train sett, while the orange
bins represent the selected features.

 69

4.4.2 Results
Method 1

Table 10: Overview of the patient classification results using method 1 to build the feature vector. The
results are obtained using two different classification methods which include Gaussian Process (GPC) and
K-Nearest Neighbors (KNN).

 FS train set FS whole dataset
CAE

Model
Classif.
Method

AUC Sensitivity Specificity AUC Sensitivity Specificity

P16 GPC 0.62 (0.23) 0.49 (0.33) 0.64 (0.23) 0.81 (0.18) 0.67 (0.30) 0.81 (0.20)
KNN 0.51 (0.23) 0.60 (0.31) 0.40 (0.23) 0.68 (0.12) 0.76 (0.28) 0.53 (0.25)

P20 GPC 0.52 (0.24) 0.50 (0.33) 0.54 (0.25) 0.55 (0.26) 0.53 (0.34) 0.57 (0.24)
KNN 0.57 (0.21) 0.72 (0.23) 0.32 (0.23) 0.54 (0.22) 0.71 (0.30) 0.40 (0.23)

P24 GPC 0.53 (0.23) 0.52 (0.31) 0.53 (0.24) 0.63 (0.25) 0.21 (0.25) 0.83 (0.19)
KNN 0.47 (0.23) 0.44 (0.37) 0.54 (0.21) 0.47 (0.21) 0.21 (0.21) 0.85 (0.18)

P28 GPC 0.57 (0.21) 0.48 (0.31) 0.62 (0.24) 0.69 (0.21) 0.58 (0.33) 0.70 (0.22)
KNN 0.54 (0.22) 0.47 (0.32) 0.63 (0.24) 0.65 (0.20) 0.54 (0.31) 0.72 (0.22)

P36 GPC 0.61 (0.23) 0.54 (0.33) 0.62 (0.23) 0.72 (0.23) 0.63 (0.32) 0.70 (0.22)
KNN 0.61 (0.21) 0.57 (0.32) 0.62 (0.24) 0.65 (0.22) 0.62 (0.30) 0.64 (0.24)

P48 GPC 0.53 (0.24) 0.54 (0.33) 0.50 (0.26) 0.73 (0.21) 0.65 (0.33) 0.61 (0.24)
KNN 0.63 (0.21) 0.54 (0.30) 0.65 (0.23) 0.68 (0.23) 0.63 (0.33) 0.64 (0.24)

Figure 64: Distribution of MI-values (left) and chi2-values (right) for a random k-fold split in the 20x20 patch size
experiment. Firstly the 150 best MI-features are selected, and subsequently the 30 best chi2-features are selected
from the MI-reduced samples. The blue bins represent the scores computed from the test set, while the orange bins
represent the selected features (based on the train set) computed from the test set.

 70

Method 2

Table 11: Overview of the patient classification results using method 2 to build the feature vector. The
results are obtained using two different classification methods which include Gaussian Process (GPC) and
K-Nearest Neighbors (KNN).

 FS train set FS whole dataset
CAE

Model
Classif.
Method

AUC Sensitivity Specificity AUC Sensitivity Specificity

P16 GPC 0.70 (0.22) 0.405 (0.31) 0.76 (0.22) 0.94 (0.10) 0.74 (0.28) 0.89 (0.16)

KNN 0.69 (0.21) 0.602 (0.33) 0.65 (0.25) 0.94 (0.09) 0.86 (0.22) 0.90 (0.15)
P20 GPC 0.69 (0.21) 0.44 (0.30) 0.75 (0.21) 0.84 (0.14) 0.72 (0.28) 0.76 (0.18)

KNN 0.70 (0.20) 0.69 (0.21) 0.65 (0.24) 0.85 (0.15) 0.78 (0.27) 0.72 (0.27)
P24 GPC 0.69 (0.23) 0.56 (0.32) 0.73 (0.23) 0.95 (0.10) 0.86 (0.23) 0.89 (0.16)

KNN 0.61 (0.22) 0.40 (0.30) 0.73 (0.23) 0.85 (0.15) 0.64 (0.32) 0.82 (0.19)
P28 GPC 0.69 (0.21) 0.56 (0.33) 0.70 (0.23) 0.86 (0.17) 0.66 (0.30) 0.91 (0.14)

KNN 0.65 (0.53) 0.54 (0.31) 0.72 (0.22) 0.78 (0.17) 0.33 (0.30) 0.91 (0.14)
P36 GPC 0.64 (0.25) 0.55 (0.32) 0.66 (0.23) 0.88 (0.14) 0.82 (0.26) 0.83 (0.18)

KNN 0.58 (0.22) 0.56 (0.33) 0.57 (0.26) 0.74 (0.19) 0.74 (0.24) 0.69 (0.14)
P48 GPC 0.68 (0.23) 0.54 (0.33) 0.69 (0.24) 0.95 (0.08) 0.90 (0.19) 0.86 (0.17)

KNN 0.54 (0.23) 0.52 (0.31) 0.52 (0.25) 0.75 (0.19) 0.78 (0.25) 0.61 (0.25)

Figure 65: Average ROC curves for classification of patients from CAE-model P16 using method 2 to build the feature vector.
The FFR cut-off value is set to 0.8 and the shaded area represents a 95 % asymptotic confidence interval of the sensitivity.

 71

Figure 66: Average ROC curves for classification of patients from CAE-model P20 using method 2 to build the feature vector.
The FFR cut-off value is set to 0.8 and the shaded area represents a 95 % asymptotic confidence interval of the sensitivity.

Figure 67: Average ROC curves for classification of patients from CAE-model P24 using method 2 to build the feature vector.
The FFR cut-off value is set to 0.8 and the shaded area represents a 95 % asymptotic confidence interval of the sensitivity.

Figure 68: Average ROC curves for classification of patients from CAE-model P28 using method 2 to build the feature vector.
The FFR cut-off value is set to 0.8 and the shaded area represents a 95 % asymptotic confidence interval of the sensitivity.

 72

Figure 69: Average ROC curves for classification of patients from CAE-model P36 using method 2 to build the feature vector.
The FFR cut-off value is set to 0.8 and the shaded area represents a 95 % asymptotic confidence interval of the sensitivity.

Figure 70: Average ROC curves for classification of patients from CAE-model P48 using method 2 to build the feature vector.
The FFR cut-off value is set to 0.8 and the shaded area represents a 95 % asymptotic confidence interval of the sensitivity.

 73

 74

Chapter 5 Discussion
This chapter discusses the various results for each step of the total pipeline presented in
Chapter 4. It begins with the CNN automatic segmentation experiments of the LV
myocardium, where the effect of CNN architecture and loss function are discussed. Next, the
methods used for characterization of the LV myocardium are considered in relation to the
final patient classification results.

5.1 Automatic Segmentation
Because of the strong imbalance in the dataset between the two classes (i.e., LV myocardium
~2.9 % and background 97.1 %), pixel accuracy is not a good evaluation metric for this
particular segmentation problem. This can be seen through the high accuracy obtained for all
experiments. The DSC on the other hand measures the relative overlap between the prediction
and ground truth and has the same value for small and large objects. It is therefore reasonable
to assume that a high DSC is needed for the clustering results to be accurate. This is also the
case for the sensitivity, which measures the proportion of actual positive pixels that were
predicted as positive. A lower value for the sensitivity may mean that the actual shape of
myocardium isn’t captured in the predictions, which again will lead to inaccurate clustering
results.

The specificity of myocardium voxels was high for all the experiments (0.996 – 0.997). This
can be explained by the class imbalance of the dataset, as the proportion of actual negative
voxels (i.e., background voxels) is much higher than actual positive voxels (i.e., myocardium
voxels). As a result, the specificity does not provide much information about the actual
performance of the different models.

In Zreik et al. an average DSC of 0.914 ± 0.021 was achieved for their CNN-based automatic
segmentation of the LV myocardium. Their dataset consisted of 40 samples (manual
segmentations) where a 50/50 split was utilized for training and testing. In comparison, the
highest average DSC obtained in this thesis was 0.887 which was achieved in the experiment
with U-Net Standard and DSL. However, the overall best result for a single model was
obtained for the second fold in the experiment with U-Net Standard and Tversky loss, where a
DSC of 0.893 was achieved. The highest average sensitivity of myocardium voxels was also
obtained for the experiment with U-Net Standard and DSL, which was measured to 0.892.
The lowest average DSC of 0.869 was obtained for the experiment with U-Net Dense and TL,
with an average sensitivity of 0.881. The single worst prediction was obtained in the U-Net
Residual and TL experiment (Figure 47), with an DSC of 0.679. Additionally, this experiment
also provided the lowest sensitivity of 0.868. These results imply that a more complex
architecture does not improve the automatic segmentation results of the LV myocardium. This
might be related to the small size of the dataset utilized in this thesis

 75

Furthermore, the validation loss for all the models stopped decreasing at a point between 20-
40 epochs, which is shown by the early stopping condition kicking in for all the models.
Furthermore, for all the experiments except the U-Net Standard and TL, overfitting was
detected. This can be seen from the fitting curves of the different experiments (see Figure 28,
Figure 33, Figure 38 and Figure 43). This indicates that it may be possible to improve the
prediction results of the CNN by increasing the size of the dataset.

In Zreik et al. the automatic segmentation was performed in a two-step CNN model. Firstly,
the rough shape of the myocardium was detected, and then smoothing was applied on this
shape. This method might be more suited for this specific segmentation problem and may
explain the overall higher prediction results. However, in Zreik et al. a larger dataset of 40
samples was utilized. Therefore, by increasing the size of the dataset, it may be possible to
improve the results and get closer to what has been achieved in Zreik et al. utilizing the
method proposed in this thesis. The lower performance of the network (compared to Zreik et.
al) could also be an effect of differing image quality or segmentations. The resolution of the
CCTA images utilized in this thesis is low compared to images used in the latest work in the
medical image segmentation field [8][9][10], which was revealed by the small mean voxel
spacing. As a consequence, this might support the need for a “multi-center” study to validate
machine learning based analysis of medical imaging.

To sum up, it is reasonable to conclude that fitting on full-size images through extensive data-
augmentation is efficient when the resolution of the images is low. Furthermore, no
performance gain was detected from introducing a more complex architecture. However, it is
worth mentioning that this may be a result of the low resolution of the images and/or the
limited size of the dataset.

5.2 Myocardium Characterization
In this section, the methods used for characterization of the LV myocardium are discussed.
This includes the CAE, k-means clustering, and the two methods used to build the feature
vector, i.e., method 1 and method 2.

5.2.1 CAE
A number of CAE models were trained for each of the patch sizes in preliminary experiments,
where different parameters were explored (i.e., architecture, clipping, normalization etc.). The
one that provided the best classification results was presented for each patch size. For the
smallest patch-sizes, i.e., 16x16 – 24x24, upsampling and downsampling via strided
convolutions gave the best classification results. For the two largest patch sizes of 36x36 and
48x48, the best classification results were provided by a combination of downsampling via
max-pooling and upsampling via strided convolutions.

For the 28x28 patch size experiment, the best results were obtained for a CAE with two
convolutional layers, where upsampling and downsampling was performed via two max-
pooling layers and two upsampling layers. Why this approach gave the best results for this

 76

specific patch size is hard to say but can be explained by the weaknesses of method 2 for
building the patient feature vector. This is further discussed in subsection 5.2.3.

For the larger patch-sizes, the CAE was not able to fully reproduce the input-patches when
strided convolutions were used for both upsampling and downsampling. This was shown
through a relatively high MSE error (i.e., ~ 0.001) and by visual inspection of the
reconstructed patches produced by the CAE. This can be explained by the fact that strided
convolutions are learnt, as opposed to max-pooling and upsampling which are fixed
procedures. For larger patch sizes, it is reasonable to believe that it is harder for the CAE to
learn these procedures. These results are not included in the thesis, as only the best model for
each patch size was chosen.

Pixel intensity clipping based on the percentiles of intensities of myocardium voxels from the
manual segmentations was tested for all the patch-sizes. However, the CAE was only able to
reproduce its input-patches for the smaller patch sizes, i.e., 16x16 – 28x28, for such a clipping
range. In particular a range of (0, 275) was utilized, including ~ 95 % of the myocardium
voxels (Figure 12). Experiments both without clipping and with wider clipping ranges than
those presented here were performed for the smaller patch sizes, but this resulted in lower
classification results in the final step of this thesis. However, the MSE for these models was
lower compared to the models presented. This can be explained by the fact that the MSE is
measured based on the scaled pixel intensities. This occurred even though the MSE for the
CAE-patches were lower for models without clipping. However, this needs to be seen in
relation with the fact that the MSE value was calculated based on normalized HU-values (i.e.,
intensities were normalized by the difference between the maximum and minimum HU value
within the scan). Hence, application of different ranges of clipping will have an implicit effect
on the MSE-value, where wider clipping ranges will decrease the MSE, since the absolute
value of differences between normalized myocardium voxel intensities will be smaller. The
same effect can also be seen through visual inspection the CAE results from the two largest
patch sizes (Figure 58 and Figure 60) compared to the results from the three smallest patch
sizes (Figure 50, Figure 52 and Figure 54). For all those experiments the MSE is about the
same (i.e., ~ 0.0001), but for the two largest patch sizes where a wider clipping range is
utilized the reconstructed patches look blurrier and contain less structural details of the LV
myocardium tissue.

5.2.2 Clustering
The k-means algorithm uses random seed initialization to split the LV myocardium into 500
spatially connected clusters, resulting in clusters that have a random order if we compare the
obtained clusters across different patients. The numeration of the clusters comparing two or
more patients will then be different (i.e., cluster nr. 10 of one patient will not be the same as
cluster nr. 10 for another patient). This is a weakness of using k-means to divide the LV
myocardium into regions, especially for the features extracted via method 2, which is further
explained in subsection 5.2.3. Furthermore, as the algorithm is initialized via random seeds,

 77

the clustering results for a specific patient is not deterministic if the experiment is performed
multiple times.

5.2.3 Feature Extraction
We evaluated two different methods for performing the feature extraction, where the first
approach (method 1) represents our understanding of the approach presented in Zreik et. al
and where the length of the final vector of features is associated with the number of encodings
in the CAE (length: 512). This method uses the clusters to find the highest standard deviation
of a single encoding from the vector of encodings obtained by the CAE, which should make it
independent of the ordering of the clusters.

We were not able to reproduce the results for FFR-classification obtained in Zreik et. al (AUC
~ 0.74) by directly applying their proposed method. In fact, when the full length of the feature
vector was used in classification, we were not able to achieve AUC values much higher than
0.5 (results not shown here). Since in this approach the length of the feature vector is much
longer (512) than the number of patients/labels (66) in this thesis, we evaluated methods for
reducing the length of the feature-vector through feature selection. However, by studying the
histogram in Figure 62, generalization of feature selection on an unseen test set seems
problematic. This might indicate that the features are somehow dependent on the ordering of
the clusters. This could also be a reason for the low classification performance obtained for
features extracted via method 1 shown in Table 10.

In the second method (method 2) the length of the final vector of features is associated with
the number of clusters (length: 500). This method extracts the maximum standard deviation of
the whole vector of encodings of the CAE (length: 512) within each cluster to define the
vector of features. This method provided the overall best classification results, both when
features were selected from the train set and when feature selection was based on the entire
dataset. This suggests that a high standard deviation of the 512 encodings produced by the
CAE implies presence of abnormal tissue. However, as was also the case for method 1, poor
classification was obtained when the full-length feature vector from method 2 was used for
classification. Hence application of methods for feature selection was necessary. Furthermore,
for method 2 the order of the features is random, i.e., there is no logical connection between
the individual features for the different patients. This is a result of the weaknesses of how the
k-means clustering algorithm divides the LV myocardium into regions, which is explained in
subsection 5.2.2. Nevertheless, a varying amount of information was measured for the
individual features via mutual information statistics and chi squared scores (see Figure 63 and
Figure 64). This indicates that good classification results are feasible if relevant features are
extracted for the individual patients. This claim is strengthened by the high classification
metrics obtained when feature selection was performed on the entire dataset. Furthermore,
this is also an indication that it is the association between the features that are important, and
not the ordering and value of the specific features. Still, as there is no relationship between the
features for the different patients, a pre-prediction of the relevant features for a population
based on information from another population will not be possible. Seen in the perspective of

 78

using the train set to reduce the number of features, this will not be anything but a random
selection from the original set of features.

The high classification performance of method 2 when feature selection was performed on the
entire dataset might also be a result of other mechanisms that come into play. Considering that
the test set was included to extract the most relevant features, it is possible that the selected
features might map the input to the target uniquely, without specifically saying something
about the significance of the stenosis. In that case, it is possible that the performed feature
selection generates a synthetic correlation between the input and target. This is possible as the
number of features is relatively high compared to the number of patients.

The overall results obtained for method 1 were lower compared to method 2. This indicates
that the features extracted by means of method 1 contains less information about the
“unhealthiness” of the LV myocardium tissue compared to method 2. This is also shown in
the histograms visualizing the distribution of MI-values and chi2-values. While method 1
(Figure 61 and Figure 62) revealed to contain some features with higher chi2-values compared
to method 2 (Figure 63 and Figure 64), the distribution of features with chi2-values greater
than zero was much higher for method 2. It is also important to mention that this comparison
is done to the chi2-values of method 2-features which is firstly reduced by means of MI-
statistics. This reduction was not performed for the features extracted via method 1, as the MI-
statistics revealed to contain a very low amount of information for this method. Furthermore,
the better results obtained via method 2 strengthens the claim that all the encodings of the
CAE might be telling something about the significance of a stenosis. This is the case as this
method uses all the encodings of the CAE to compute the features, whereas method 1 assumes
that some of the 512 encodings contain more information than others.

In Zreik et al. however, good classification performance was obtained for method 1 compared
to the results obtained in this thesis. This could be a consequence of the smaller sample size
used in this thesis. In Zreik et al. a sample size of 126 patients was used for the classification,
compared to our sample size of 66 patients. Furthermore, the method used in Zreik et al. for
characterization of the LV myocardium, i.e., how they used the clusters and CAE encodings
to obtain the feature vector, is not explicitly explained. The lower results obtained in this
thesis (for method 1) may therefore also be a consequence of a misinterpretation of the
method used in Zreik et al.

5.2.4 Classification
Multiple classification methods were tested in preliminary experiments, including SVM and
Deep Learning. In Zreik et al. SVM was utilized. However, both GPC and KNN
outperformed this method, and were therefore used instead. GPC and KNN revealed overall
very similar results for all experiments. However, a noticeable difference was revealed for
features extracted via method 2. For feature selection on the train set, GPC seemed to
outperform KNN for the larger patch sizes (i.e., 24x24 – 48x48). For the two smallest patch
sizes (i.e., 20x20 and 16x16), best results were obtained for KNN. For feature selection

 79

performed on the entire dataset, similar performance was revealed for the two smallest patch
sizes. For the largest patch sizes, best results were obtained from using GPC.

For the features extracted via method 1, the performance of the two classification methods
seemed more or less random in relation to the patch size when features were selected from the
train set. For feature selection performed on the entire dataset on the other hand, GPC
outperformed KNN in all experiments for this method.

All the classification results were obtained via 10-fold cross-validation experiments. Smaller
𝑘-values were tested in preliminary experiments, but with lower classification results. This is
reasonable, as a smaller 𝑘-value increases the number of patients in each test-fold, which
again means that there are fewer samples used for training each of the 𝑘 different models.
Furthermore, in the experiments where features were selected from the train set, smaller 𝑘-
values provided very low classification performance. As a smaller 𝑘-value means that there
are fewer samples available to train each model, it also means that there are fewer samples to
select features from. However, using a larger number of folds also reduces the number of
samples available for testing of each model. This may lead to predictions where all the
samples are classified as positive or negative and may explain the high standard deviation of
the classification scores. A 10-fold cross-validation was also utilized for evaluation in Zreik et
al. with a much lower standard deviation for the classification metrics. This might be a
consequence of several factors, including the difference in available data. Another reason
could be the randomness associated with the second method used to define the feature vector
(i.e., method 2). It might be reasonable to assume that the negative impact of those
weaknesses is strengthened when feature selection is performed (both on the train set and the
entire dataset), which could also explain the variable classification performance between the
different folds.

 80

 81

Chapter 6 Conclusion and Future Work
In this thesis, a pipeline for prediction of the significance of coronary artery stenosis has been
developed. A number of experiments have been completed for the different steps of the
pipeline, where both strengths and weaknesses were detected.

For the first step of the pipeline, i.e., the automatic segmentation of the LV myocardium,
results comparable with state-of-the-art were achieved. The best results were obtained with
the U-Net Standard and DSL with an average DSC of 0.877 across all three folds. The single
best model was obtained from for the second fold in the experiment with U-Net Standard and
TL, where a DSC of 0.893 were achieved. In Zreik et al. a DSC of 0.91 was reported using a
larger dataset compared to the dataset used in this thesis.

For the next two steps, which consider the characterization of the segmented LV myocardium
and the final the patient classification, we were not able to reproduce the results presented by
Zreik et. al (AUC ~ 0.74) by applying (our understanding of) their method directly (i.e.,
method 1). However, high classification performance was revealed for method 2 when
features were selected from the entire dataset (AUC of ~ 0.90). Furthermore, reasonably good
performance was achieved when features were selected from the train set (AUC of ~ 0.70).
These results are a good indication that the CAE encodings of myocardium patches might
contain information about the presence of abnormal tissue. However, the method used to
collect these features is a considerable weakness of this step. This applies particularly to the
clustering method, where the numeration of clusters is different for each patient. To improve
this step, a new method for dividing the LV myocardium into consistent regions across
different patients is required. If such a method is developed, the results presented in this thesis
indicate that strong classification performance is achievable. Furthermore, as this will lead to
consistency in the ordering features across different patients, the method will not only be
applicable to the population utilized, but also to a new population of patients.

In future work, it may be possible to use the automatic segmentations of the LV myocardium
and the encodings of the CAE to somehow get boundary conditions for simulations of
coronary blood and see how it unfolds in relation to the stenosis. In that case, local features
that correlate with how much blood flow a region of the myocardium is exposed to, or how
much ability it has to dilate its blood vessels to increase flow when needed, need to be
extracted.

 82

 83

Bibliography
[1] Dariush Mozaffarian, Emelia J. Benjamin, Alan S. Go, Donna K. Arnett, Michael J.

Blaha, Mary Cushman, Sandeep R. Das, Sarah de Ferranti, Jean-Pierre Després, Heather
J. Fullerton et al. «Heart Disease and Stroke Statistics—2016 Update.».

[2] Nico H. J. Pijls, William F. Fearon, William F. Fearon et al. «Fractional Flow Reserve
Versus Angiographyfor Guiding Percutaneous Coronary Interventionin Patients With
Multivessel Coronary Artery Disease.» 2010.

[3] Nico H.J. Pijls, MD, et al. «Experimental Basis of Determining Maximum Coronary,
Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing
Functional Stenosis Severit Before and After Percutaneous Transluminal Coronary
Angioplasty.» 1993.

[4] Majd Zreika, Nikolas Lessmanna , Robbert W. van Hamersvelt, Jelmer M. Wolterinka,
Michiel Voskuil , Max A. Viergever, Tim Leiner, Ivana Išguma. «Zreik et. al.: Deep
learning analysis of the myocardium in coronary CT angiography for identification of
patients with functionally significant coronary artery stenosis.» 2018.

[5] Koh JS, Koo BK, Kim JH, Yang HM, Park KW, Kang HJ, Kim HS, Oh BH, Park YB.
Relationship between fractional flow reserve and angiographic and intravascular
ultrasound parameters in ostial lesions: major epicardial vessel versus side branch ostial
lesions. JACC Cardiovasc Interv. 2012 Apr;5(4):409-15. doi: 10.1016/j.jcin.2012.01.013.
PMID: 22516397.

[6] Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA,
Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F,
Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de
Feyter PJ. Diagnostic accuracy of 64-slice computed tomography coronary angiography:
a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008 Dec 16;52(25):
2135-44. doi: 10.1016/j.jacc.2008.08.058. PMID: 19095130.

[7] Müller LO, Fossan FE, Bråten AT, Jørgensen A, Wiseth R, Hellevik LR. «Impact of
baseline coronary flow and its distribution on fractional flow reserve prediction.» 2019.

[8] Müller, Dominik & Soto-Rey, Iñaki & Kramer, Frank. (2020). Automated Chest CT
Image Segmentation of COVID-19 Lung Infection based on 3D U-Net.

[9] Zhang Zhengxin, Liu Qingjie, Wang Yunhong. 2018. Road Extraction by Deep Residual
U-Net. IEEE Geoscience and Remote Sensing Letters. doi:10.1109/LGRS.2018.2802944.

[10] Kolařík, Martin & Burget, Radim & Uher, Vaclav & Riha, Kamil & Dutta,
Malay.(2019). Optimized High Resolution 3D Dense-U-Net Network for Brain and Spine
Segmentation. Applied Sciences. 9. 404. 10.3390/app9030404.

[11] Myocard. [Internet] Available at: https://sml.snl.no/myokard
[12] Figure 1. Niccoli G, Montone RA, Sabato V, Crea F. Role of Allergic Inflammatory Cells

in Coronary Artery Disease. Circulation. 2018 Oct 16;138(16):1736-1748. doi:
10.1161/CIRCULATIONAHA.118.035400. PMID: 30354461.

[13] Dr Henry Knipe, D. C. M. M., 2019. www.radiopaedia.org. Available at:
https://radiopaedia.org/articles/nifti-file-format

[14] Woods R. Gonzalez, R. Digital Image Processing. Pearson Education International, 2010.

 84

[15] Michael A Nielsen. Neural networks and deep learning, volume 25. Determination press
USA, 2015

[16] Bengio Y. Goodfellow, I. and A. Courville. Deep Learning. MIT Press, 2016
[17] Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization.

International Conference on Learning Representations. doi: arXiv:1412.6980
[18] Clevert, Djork-Arné & Unterthiner, Thomas & Hochreiter, Sepp. (2016). Fast and

Accurate Deep Network Learning by Exponential Linear Units (ELUs). doi:
arXiv:1511.07289

[19] Glorot, X., Bordes, A. & Bengio, Y.. (2011). Deep Sparse Rectifier Neural
Networks. Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, in Proceedings of Machine Learning Research 15:315-323
Available from http://proceedings.mlr.press/v15/glorot11a.html.

[20] Nyúl LG, Udupa JK. On standardizing the MR image intensity scale. Magn Reson Med.
1999 Dec;42(6):1072-81. doi: 10.1002/(sici)1522-2594(199912)42:6<1072::aid-
mrm11>3.0.co;2-m. PMID: 10571928.

[21] S. Roy, A. Carass and J. L. Prince, "Patch based intensity normalization of brain MR
images," 2013 IEEE 10th International Symposium on Biomedical Imaging, San
Francisco, CA, 2013, pp. 342-345, doi: 10.1109/ISBI.2013.6556482.

[22] L. Perez, J. Wang, The Effectiveness of Data Augmentation in Image Classification using
Deep Learning, (2017). doi: arXiv:1712.04621

[23] Isensee F, Petersen J, Klein A, Zimmerer D, Jaeger PF, Kohl S, et al. nnU-Net: self-
adapting framework for U-Net-based medical image segmentation. 2018. doi:
http://arxiv.org/abs/1809.10486.

[24] Isensee F, Maier-Hein KH. An attempt at beating the 3D U-Net. 2019;1–7. doi:
http://arxiv.org/abs/1908.02182.

[25] Heller N, Sathianathen N, Kalapara A, Walczak E, Moore K, Kaluzniak H, et al. The
KiTS19 challenge data: 300 kidney tumor cases with clinical context, CT semantic
segmentations, and surgical outcomes. 2019. doi: http://arxiv.org/abs/1904.00445

[26] Figure 3. K-fold cross-validation method. Ren, Qiubing & Li, Mingchao & Han, Shuai.
(2019). Tectonic discrimination of olivine in basalt using data mining techniques based
on major elements: a comparative study from multiple perspectives. Big Earth Data. 3. 1-
18. 10.1080/20964471.2019.1572452.

[27] Max Kuhn, Kjell Johnson. Applied Predictive Modeling, 2013.
[28] Srivastava, Nitish & Hinton, Geoffrey & Krizhevsky, Alex & Sutskever, Ilya &

Salakhutdinov, Ruslan. (2014). Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Research. 15. 1929-1958.

[29] Shen, Xu & Tian, Xinmei & He, Anfeng & Sun, Shaoyan & Tao, Dacheng. (2016).
Transform-Invariant Convolutional Neural Networks for Image Classification and Search.
1345-1354. 10.1145/2964284.2964316. doi: arXiv:1912.01447.

[30] Springenberg, Jost & Dosovitskiy, Alexey & Brox, Thomas & Riedmiller, Martin.
(2014). Striving for Simplicity: The All Convolutional Net. doi: arXiv:1412.6806

[31] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. doi: arXiv:1603.07285, 2016.

 85

[32] Jordan, J., 2018. www.jeremyjordan.me. [Internett]. Available at:
https://www.jeremyjordan.me/semantic-segmentation/

[33] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak
JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image
analysis. Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub
2017 Jul 26. PMID: 28778026.

[34] Ronneberger O, Philipp Fischer, Brox T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. Lect Notes Comput Sci (Including Subser Lect Notes Artif Intell
Lect Notes Bioinformatics) 2015;9351:234–41. doi:10.1007/978-3-319- 24574-4

[35] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition,"
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
770-778, doi: 10.1109/CVPR.2016.90.

[36] Seyed SSM, Erdogmus D, Gholipour A. Tversky loss function for image segmentation
using 3D fully convolutional deep networks 2017. doi: arXiv:1706.05721.

[37] Chi-squared algorithm [Internet]. Available at: https://github.com/scikit-learn/scikit-
learn/blob/647fcb1ac13abd8c2eb2554d526f4ad41fee6778/sklearn/feature_selection/_uni
variate_selection.py.

[38] Witten, I. H., Frank, E.,, Hall, M. A. (2011). Data Mining: Practical Machine Learning
Tools and Techniques. Amsterdam: Morgan Kaufmann. ISBN: 978-0-12-374856-0

[39] Ian Witten Eibe Frank Mark Hall Christopher Pal. Data Mining: Practical Machine
Learning Tools and Techniques, 4th edition) 2016

[40] Ross, Brian. (2014). Mutual Information between Discrete and Continuous Data Sets.
PloS one. 9. e87357. 10.1371/journal.pone.0087357.

[41] Robust Scaler [Internet]. Available at: https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html

[42] Rasmussen, Carl Edward, and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. Adaptive Computation and Machine Learning Series. MIT Press,
2006

[43] Contributors, W. C., 2017. File:BodyPlanes.jpg. [Internett]. Available at:
https://commons.wikimedia.org/w/index.php?title=File:BodyPlanes.jpg&oldid=266754236

[44] Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann, "EPIC: An
Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure",
arXiv:cs.DC/1912.05848, 2019.

