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Abstract

We investigate the discrepancy principle and the L-hypersurface method as au-
tomated parameter selection methods for image denoising problems. Choosing
optimal regularization parameters is always challenging, and the challenge is even
bigger for multi-parameter regularization. We experiment with total generalized
variation, a multi-parameter regularization functional, and the single-parameter
regularization functional total variation. Total generalized variation is known to
be a good multi-parameter regularization functional for image denoising, as its re-
constructions avoids the piecewise constant property known as ’staircasing’, which
is commonly observed in total variation reconstructions.

The numerical solvers we test are based on convex optimization theory and
use a Chambolle-Pock primal-dual solver. Single-parameter choice experiments
show that the discrepancy principle performs better than the L-curve method for
a RGB-image denoising problem, using a total variation regularization functional.
For high noise levels, the discrepancy principle makes an almost optimal parameter
choice for total variation. The numerical results show that an automated balanced
discrepancy principle with Broyden’s method as numerical solver performs bet-
ter than the existing parameter choice algorithms for single-parameter methods.
For images with fewer details and surfaces with almost constant intensities, total
variation remains a better method. Tests of the L-hypersurface method suggest
difficulties with choosing good parameters for total generalized variation by the
means of this method.

Samandrag

Vi undersøker diskrepansprinsippet og ein L-hyperflate-metode som automatiserte
parametervalmetodar i støyfjerningsproblem for bilete. Å velje optimale regularis-
eringsparametrar er alltid utfordrande, og utfordringa er enda større for regularis-
eringsfunksjonar med fleire parametrar. Vi eksperimenterer med total generalisert
variasjon, ei fleirparameterval-metode, og med einparametervalmetoden total vari-
asjon. Total generalisert variasjon er kjent som ein god støyfjerningsmetode for
bilete, sidan rekonstruksjonar med denne metoden ikkje har den stykkvis konstante
eigenskapen kjent som ”trappeeffekta”, som er vanleg i rekonstruksjonar basert p̊a
total variasjon.

Dei numeriske løysarane som er testa er basert p̊a konveks optimeringsteori
og ein Chambolle-Pock primal-dual-løysar. Eksperiment med einparameterme-
todar viser at diskrepansprinsippet presterer betre enn L-kurvemetoden for eit
støyfjerningsproblem for eit RGB-bilete, n̊ar ein bruker total varisjon som regu-
lariseringsfunksjon. For høge støyniv̊a gjer ein ved bruk av diskrepansprinsippet
nær optimale parameterval for total variasjon. Dei numeriske resultata viser at
ein automatisert versjon av det balanserte diskrepansprinsippet med Broyden si
metode som numerisk løysar presterer betre enn eksisterande parametervalalgor-
timar for einparametermetodar. For bilete med færre detaljar og overflater med
nesten konstante intensitetar, forblir total variasjon ein betre metode. Testar av
L-hyperoverflate-metoden antyder at det er vanskeleg å velje gode parametrar for
total generalisert variasjon med denne metoden.
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1 Introduction

To determine optimal parameters is often essential in order to obtain good results
in numerical optimization. It is in many cases also a challenging process, where it
is hard to determine which set of parameters is the best. If multiple parameters
need to be determined, the dimensionality of the problem is increased, and the
challenge grows in size. In this text we consider such parameter selection methods
on inverse problems, more specifically image denoising problems.

An introduction to image denoising problems is given in Section 2. This section
also introduces the model we use to generate noise images and to evaluate recon-
structions with objective measures. Another problem that arises in optimization
and image denoising is which properties of a solution should be penalized. That is,
how should the cost function be defined? In this text, two different regularization
functionals are discussed and experimented on. These are total variation and total
generalized variaton. Total variation produces piecewise constant reconstructions,
where differences between neighbouring pixels are undesired. Total generalized
variation is to a greater extent preserving existing structures in the image, and
also avoids the piecewise constant effect from total variation.

Another difference between the two regularization functionals is the number of
regularization parameters. Total variation is a single-parameter method with only
one regularization term, whereas total generalized variation is a multi-parameter
method with two regularization terms. These methods and their properties are
discussed in Sections 3 and 4 respectively.

We are considering convex optimization methods, and will depend heavily on
results from convex analysis. A short introduction to convex analysis with some
central definitions and theorems is given in Section 2.6. Specifically, we will dis-
cuss the notion of duality and its use in convex optimization. This leads to the
development of a numerical algorithm called the Chambolle-Pock algorithm, that
we use to regularize images. In Section 5 we present numerical denoising results for
two single-parameter choice methods, the discrepancy principle and the L-curve
method. The discrepancy principle requires prior knowledge about the expected
noise level, and the parameter choice is accordance with that knowledge. The
L-curve method, on the other hand, is purely heuristic. This method chooses pa-
rameters that balance the contributions of the regularization term and the data
discrepancy term.

We then generalize these methods to cope with multi-parameter regularization.
This generalization is performed in Section 6, where we also introduce and suggest
two possible numerical approaches to solve the multi-parameter choice problem.
The balanced discrepancy principle is a generalization of the discrepancy principle
which also requires the different terms to contribute equally to the cost function.
The L-hypersurface method balances all regularization terms and the data discrep-
ancy term, still without prior knowledge of the noise level. The results from these
numerical methods are then finally presented and discussed in Section 7.

6



2 Preliminaries

Noisy signals are a well-studied topic within many areas of engineering. Remov-
ing noisy elements, disturbances or patterns is essential to obtaining precise and
informative signals. Mathematicians have also been concerned with problems of
this type.

In mathematics, noise removal is a special case of what is known as an inverse
problem. An inverse problem is a problem where one has a set of observations,
and wants to determine what caused them, based on the observations themselves.
In this project a particular type of inverse problem is investigated, namely im-
age reconstruction. The aim is to reconstruct an image based on a (possibly only
partially) corrupted measurement of the same image. That is, given a noisy mea-
surement v, one wants to determine the original signal u†. The true solution will
be unknown throughout the process, meaning that different inverse problem tech-
niques will be applied in order to create reconstructions of the original image or
signal.

The noise level is used to describe the size of the noise in a signal. In real-world
problems, this noise level is often unknown. There exist noise removal methods
which require knowledge of the noise level, and there exist methods which do not.
In this text, methods of both types will be used and tested on an image denoising
problem.

2.1 Basics of the image model

Images can be considered as discrete signals. On a given image, we have nm pixels,
which are small squares on the image on which the colour intensity is constant.
We refer to n and m as the dimensions of the image. Moreover, for colour images,
pixel intensities are stored in three different RGB-channels. RGB stands for red,
green and blue, and the value in each of these channels determines the intensity of
that colour in that pixel. So each pixel is a small square at a fixed location of the
image, with a numerical value for the intensity of each of the three RGB-channels.
Moreover, the RGB model is additive. This means that if we have the maximum
intensity in all three channels, the image will be all-white. On the other hand, if
the intensity is 0 in all channels, the image will be all-black.

The bit depth of an image refers to how many bits are used to store the inten-
sities of each pixel. It is common to use an 8-bit depth, meaning that the intensity
could take 28 = 256 different integer values, ranging from 0 to 255. In the numer-
ical calculations performed and explained in this text, this will always be scaled
down to the unit interval [0, 1], on which optimization algorithms and parameter
selection methods will be applied.

The data we will work on will be measurements of digital signals. We will
assume that we have a measurement v ∈ R3nm. Here, n and m are the dimensions
of the image, and vij,k is the measured pixel intensity in position (i, j) for the
RGB-channel k. This means that an image is considered as a discrete signal for all
practical means. From this noisy measurement v, we will try to denoise the signal
and to recreate the original, noise-free signal u†.

We assume that both the original image u† and the measurement v are elements
of the Hilbert spaces U and V respectively. In the case of RGB image processing,
we have that U = V = R3mn. Although this is only a very special situation,
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the derived results will remain valid for data in general finite dimensional Hilbert
spaces, and also be applicable in situations where the two spaces are not identical.

The model we are going to use assume that the measurement v ∈ V is a
linear combination of the original signal u† ∈ U and a random vector σw ∈ V
in which the components are identically and independently distributed according
to a normal distribution with expected value 0 and standard deviation σ > 0.
Throughout this text, it is this standard deviation σ that often will be refered
to as the noise level. The process of adding this Gaussian distributed noise is
equivalent to having a discrete signal with additive white Gaussian noise [GTV11].
Moreover, we assume that A : U → V is a linear operator that is applied to u
before the measurement is performed. This could for example be some kind of
systemic measuring error or an effect caused by a blur on the camera lens. The
suggested expression for the input signal to the image reconstruction problem can
then be summarized as

v = Au† + σw ∈ R3nm. (2.1)

Throughout this project, A will be assumed to be known. This is not neces-
sarily the case or a very realistic scenario, but is a reasonable simplification for
analyzing the problem and to investigate different parameter choice methods and
regularization functionals. If we in particular let A = I ( the identity matrix), we
obtain a pure denoising problem. The task at hand is then only to identify and
remove the noise with standard deviation σ. With these assumptions fulfilled, the
measured data v is written as a linear combination of the original signal and the
noise in the following way:

v = u† + σw ∈ R3nm. (2.2)

We want to reconstruct the original image u† to as great an extent as possible,
based on the noisy measurement v. Note that the expected value E[v] of v is u†, as
the expected value of a sum is linear and the noise w is Gaussian distributed with
mean zero in each component. This is shown by the following trivial calculation:

E
[
u† + σw

]
= E[u†] + σ E[w] = E[u†] + 0 = E[u†].

We recall the definition of a well-posed problem [Bor17]. If U and V are
Hilbert spaces, and A : U → V is a mapping between the two Hilbert spaces, then
the equation A(u) = v is said to be well-posed if the following conditions are met:

• The equation has a solution û ∈ U for every v ∈ V .

• This solution û is unique.

• The solution depends continuously on the input v.

If these conditions do not hold, we say that the equation is ill-posed. In the
setting with image denoising, we will usually have an ill-posed problem due to
non-existence of solutions. Numerical algorithms can produce solutions in R3mn

for the pixel intensities, but not all these solutions generate meaningful images. If
one only considers realistic reconstructions, one is left with a small subset of R3mn

as possible and realistic solutions. Thus the image reconstruction problem is an
ill-posed problem.

8



2.2 Test image

The choice of images for the numerical experiments in this project is highly con-
ventional. The KODAK image data set is a set of 24 8-bit RGB-images, and was
released in 1991 by the American company KODAK. These images have been used
for many purposes within image processing since [And+13]. For most of the exper-
iments in this project, KODAK image number 22 has been used as a test image.
The motif of the image is of a red barn. partly hidden behind some trees, with a
pond in front of the barn. This image contains both areas with almost constant
RGB-values (the barn wall), and areas with high details and many edges (the
leaves of the tree in front of the barn). The original image is presented in Figure
2.1, and extracted from an online collection of the KODAK images presented by
Rich Franzen [Fra10c]. The barn image is 512× 768 pixels, meaning that the pixel
intensities in each channel can be considered as subset of R393216.

Figure 2.1: The orginal KODAK barn image. Photo: Cindy Branham.

2.3 Comparison of images

It will be difficult for the naked eye to distinguish between good reconstructions
of images, so we want to find an objective measure for the quality of different
reconstructions. It is thus important to establish and implement good measures to
compare images, in order to evaluate and compare different reconstruction tech-
niques and algorithms. Throughout this project many image reconstructions will
be produced numerically, and there will be a need for comparing the quality of
those reconstructions and thus also the methods and parameters that have been
applied.

Moreover we should note that the comparison method we use requires knowl-
edge about the original image, which serves as a true solution. In realistic inverse
problems and image reconstructions this is of course not possible, as the true so-
lution is unknown. For the purpose of testing methods and automating parameter
choices however, knowing true solutions is a useful tool to identify good choices.
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2.3.1 PSNR

PSNR, or peak-signal-to-noise-ratio, is a measure for how similar two discrete
signals are. This can among other things be used to analyze and evaluate the
quality of numerical reconstructions of the noisy and/or blurred images.

The first step of calculating PSNR of two images is to determine the mean
square error (MSE) between the true solution u and the reconstructed solution û.
We can recall from for example [SA10, p 196-197] that the mean square error over
a m× n-image is given as

MSE =

3∑
k=1

mn∑
i=1

(uik − ûik)2

3mn
.

Here, k is the channel. This means that we find the mean square error of a
vector of length 3mn, where the image u ∈ R3mn is an n ×m-dimensional RGB
image. The other value that must be determined is the maximum pixel value over
all three RGB channels for the noise-free image, denote this umax. Then, the PSNR
value is given as

PSNR = 10 log
(u2

max

MSE

)
. (2.3)

Basic algebraic reformulations of the logarithmic expression in (2.3) give two
identical formulations of PSNR.

PSNR = 20 log
( umax√

MSE

)
= 20 log(umax)− 10 log(MSE).

From the definitions we observe that the lower the mean square error, the
bigger the PSNR score. The PSNR score is also proportional to the logarithm of
the largest pixel value in the original image, but this is a fixed value for a given
image. Images with high PSNR-scores are thus more similar pixel-wise than images
with lower PSNR-scores.

However, there are challenges related to the use of PSNR as a measure. PSNR
compares the pixelwise intensity. This means that if the images are somewhat
shifted or rotated, PSNR will not ”recognise” the original image. Looking at each
pixel separately, the measure will not take into account the smoothness of pixel
transitions or the preservation of patterns in the image. This is a weakness with
this measure.

In order to illustrate how the PSNR measure works in practice, we perform an
experiment in which we use the KODAK image in Figure 2.1[Fra10c]. We generate
1000 random noise levels from a continuous and uniform distribution between 0.0
and 0.5, and use these to generate 1000 noisy images from the original one. The
PSNR scores of the realizations are calculated, and then plotted against the noise
levels. The results are presented in Figure 2.2a. We observe that the PSNR score
decreases as the noise level increases, as one would expect. In Figure 2.2b, 50
uniformly spaced noise levels between 0 and 0.5 have been applied at the same
image. For each noise level, ten different images have been produced with that
noise level, and then the average PSNR value of those images are plotted against
the noise level. We observe that this curve follows the shape of the one from Figure
2.2a.
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Figure 2.2: Examples of PSNR:

(a) PSNR scores for 1000 randomly gener-
ated noise levels.

(b) Average PSNR value for fixed noise lev-
els.

2.3.2 SSIM

Figure 2.3: Example of greyscale images without and with noise.

(a) Greyscale original KODAK image (b) Noisy greyscale image, σ = 0.1

A measure that does take preservation of structures into account is the socalled
structural similarity index measure, or SSIM for short. This measure was sug-
gested by [Wan+04], and divides the reconstruction evaluation into the comparison
of three different properties, namely contrast, luminance and structure.

The PSNR measure that was introduced in the last subsection compares the
images pixel by pixel. This means that an image that has been reconstructed
accurately, except for a minor shift along one of the axes, may get a bad PSNR
score. By a visual inspection, such a picture does look like a good reconstruction
if it contains the structures of the original image. This is an effect that SSIM
copes with, by combining and including the three different properties of the image,
contrast, luminance and structure.

The SSIM measure is however not applicable directly on RGB images. We
first need to export the image to a greyscale image, and compare greyscale images.
These images are stored as Numpy arrays in Rmn, which only contain one intensity
value in each pixel. THE KODAK image can be seen as a greyscale image in Figure
2.3. The comparison between two images u and v in the SSIM metric is performed

11



by first calculating

µuk =
1

nm

nm∑
1

ui and µv =
1

nm

nm∑
1

vi

as the mean intensity of the respective images u and v. We continue by considering
the standard deviation for the images. We define

σu =
( 1

nm− 1

nm∑
1

(ui − µu)2
) 1

2
.

Similarly, we have that σv =
(

1
nm−1

∑nm
1 (vi − µv)2

) 1
2
. The values σu and σv

are used for contrast comparison of the two images u and v.
Finally, the structure comparison is performed on normalized signals with re-

spect to their standard deviations. That is the vectors u−µu
σu

and v−µk
σk

, where
the mean is subtracted from each component of the vector, before dividing by the
standard deviation.

These are the main vectors and values needed to establish a SSIM measure.
Functions for contrast, luminance and structure is combined, see [Wan+04] for
details. After some simplifications the authors suggest the following formula to
estimate the quality of the reconstruction:

SSIM(u, v) =
(2µuµv + C1)(2σuv + C2)

(µ2
u + µ2

v + C1)(σ2
u + σ2

v + C2)
. (2.4)

Here C1 and C2 are parameters with different purposes. C1 is used to avoid
unstability in pictures with low average pixel values [Wan+04], and is usually
proportional to the bit depth squared. The proportionality constant is positive,
and usually much smaller than 1. C2 is also commonly chosen proportional to the
square of the bit depth, again with a small proportionality constant[Wan+04]. In
all SSIM calculations in this thesis, the built-in SSIM measure in the scikit-image
package have been used, with the standard parameters and constants from that
package. If two images are identical, they will get a value of 1.0 in the SSIM metric.

An example illustrating the properties of SSIM has been produced for a situa-
tion where the shortcomings of the PSNR metric are visible. A constant value K
has been added to all pixel intensities in the barn image. Since we scale images
down to the unit interval, this corresponds to a expected noise level of K

255
. We

can compare how the different metrics behave when analyzing this kind of noise,
compared to the additive Gaussian noise we have considered earlier. Comparisons
to the original image u† are performed in both metrics. Since PSNR only is based
on the pixel intensities, the score in this metric is drastically reduced. In the SSIM
metric however, it is relevant that the structures of the original image and the im-
age with shifted pixel intensities remain the same, and the SSIM score also remains
relatively high. We have tested for ten different values of K, uniformly spaced be-
tween 5 and 50. For each value of K, we have also considered a realization of the
corresponding noise level σ ≈ K

255
, and evaluated this realization in both metrics.

The results are presented in Figure 2.4. From the plots we clearly see that the
structural similarity index is much higher for the image with shifted intensities
than for the image with Gaussian noise, as the key structures of the shifted image
are preserved. In the PSNR metric however, the new approach leads to almost the
same PSNR scores as the Gaussian distributed noise at the same noise level. This

12



is a clear illustration of a situation in which the SSIM metric is a good one, as it
identifies that the structures of the image are preserved after the shift.

Figure 2.4: SSIM and PSNR scores of images shifted by adding constant pixel
intensities.

(a) SSIM (b) PSNR

2.4 Regularization of inverse problems

A key element of solving ill-posed inverse problem, is to regularize the problem.
This is done by creating or designing restrictions for the solutions, ’forcing’ it to
be an element of some smaller subspace that is easier to control and describe. This
regularization will change the problem somehow, and the aim is to obtain an easier
solvable problem, in such a way that the solution remains close to the solution of
the original problem.

Regularization is commonly performed by introducing regularization func-
tionals Ri : U → R+. These functionals penalize different un-desired properties
of the reconstructed solution u. If one applies Tikhonov regulariztion in an opti-
mization problem, there is a total of k regularization functionals Ri(u). Each of the
k regularization functionals has a regularization parameter λi > 0, which is used
to balance the different regularization functionals against each other. Depending
on the choices of the different λi, different properties will be important when the
optimal reconstruction is decided. The optimization problem one obtains when
applying Tikhonov regularization can be written as

min
u

= L(u, v) +
k∑
i

λiRi(u). (2.5)

Here v is the original signal and u is the reconstruced signal. The different λis are
the Tikhonov regularization parameters which take care of the weighting of the
regularization terms. Higher values of λ lead to more regularized solutions, but
possibly also greater deviations from the true solution. L(u, v) is often referred
to as the data discrepancy term, and may for example be a least squares term
1
2
‖u− v‖22.

Exactly how regularization is performed, depends on which property one want
to restrict. In image analysis, a commonly desired property is the smoothness of
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the image [Sch+09, p 116]. Penalizing sharp edges within the image is an example
of a technique that copes with this requirement, and thus many regularization
functionals contain the gradient of the image. [Sch+09, p 115-117] continues by
defining a first order regularization functional as a regularization functional where
the highest order of derivatives of the image is 1. In general, we can consider a
k-order regularization functional as a regularization functional where the highest
order of derivatives of the image is k.

2.5 The gradient operator D and quadratic regularization

A very basic and intuitive regularization functional is one that is based on quadratic
regularization. We will briefly look into this regularization technique, and per-
form some simple numerical experiments. From these experiments we will visualize
the consequences of over-regularization and also show results of image denoising
after a search for the optimal regularization parameter for quadratic regularization.

Quadratic regularization uses the L2-norm of the gradient Du as the regular-
ization term. For a parameter λ ∈ R+, the functional that should be minimized is
given as

S(λ)(v) = arg min
u∈U

1

2
‖Au− v‖22 +

λ

2
‖Du‖22. (2.6)

In our analysis, the noisy measurement consists of RGB-values that are discrete
integers between 0 and 255 in each, discrete pixel. The gradient operator will
also be evaluated in the nm discrete pixels. Each RGB-channel is still treated
separately, and for each channel the gradient consists of horizontal and vertical
derivatives (x-direction and y-direction). Thus, since u ∈ R3mn, we have that
D : R3mn → R3mn×2. We will however scale the signals down to the unit interval.
When we send scaled discrete signals to the different numerical algorithms, we
have that Ran(u) ⊂ [0, 1]3. This means that the signal u(x, y) in each channel is
discrete and scaled to the unit interval, by dividing all pixel values with 255. This
means for example that a pixel with a RGB-value of 153 in one of the channels,
will have the RGB-value 0.6 in the same channel in the scaled image, regardless of
what the maximum value (over the entire image) in that RGB-channel is.

The gradient operator D is an operator based on forward differences in two
dimensions. Forward differences are discretized derivatives, and two-dimensional
forward differences can thus be considered as discretized partial derivatives. We
will observe that this operator is enough to ensure some regularization properties.

As we operate on two-dimensional grids and deal with two-dimensional dig-
ital signals, we need to determine forward differences in multiple directions. In
each pixel, we want to find the forward difference in the x-direction, and the for-
ward difference in the y-direction. We follow the convention given by Owren, and
impose homogeneous boundary conditions at the edges where it not possible to
calculate any forward difference [Owr17]. In practice, this is to impose homoge-
neous Neumann conditions on our gradient operator. The operators Dx and Dy
in the different directions are defined in the following way.

Dx(u(i,j)) =

{
u(i+1,j) − u(i,j) for i < n

0 for i = n
(2.7)
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Dy(u(i,j)) =

{
u(i,j+1) − u(i,j) for j < m

0 for i = m
(2.8)

Combining these definitions, we obtain the following formal definition of the
gradient operator in each RGB-channel:

D(u(i,j)) =


(u(i+1,j) − u(i,j), u(i,j+1) − u(i,j)) for i, j < n

(u(i+1,j) − u(i,j), 0) for i < n = j

(0, u(i,j+1) − u(i,j)) for j < n = i

(0, 0) for i = j = n

. (2.9)

We denote Dx(u(i,j)) = D(u(i,j))
(1) and Dy(u(i,j)) = D(u(i,j))

(2).
Quadratic regularization is the regularization technique in which the only reg-

ularization functional is given by ‖Du‖22, as introduced in Equation (2.6). The
minimization problem in a denoising setting with A = I is given as

QRλ(v) = arg min
u∈U

[1

2
‖u− v‖22 +

λ

2
‖Du‖22

]
. (2.10)

We derive the first order optimality condition of this problem in order to develop a
numerical algorithm to solve the minimization problem. The first order optimality
condition in the case of denoising is

(u− v) + λD∗Du = 0.

This is equivalent to (I + λD∗D)u = v, and thus we have an equation of the
form Mu = v for some linear operator M . This is all we need to apply a simple
numerical solver such as the conjugate gradient method. And we will now ap-
ply just that method, mainly to illustrate some properties and weaknesses with
quadratic regularization. We use the conjugate gradient method, with the matrix
I + λD∗D as the linear operator. For an introduction to the conjugate gradient
method, the reader may consult Appendix A. This is not a very sophisticated nu-
merical method, and is included in this text mainly to illustrate some properties
of quadratic regularization on an actual image.

We need to verify that the matrix (I + λD∗D) is positive definite, in order to
use it as the linear operator in the conjugate gradient method. This is a pretty
straight-forward calculation. Positive definiteness for a matrix M is defined such
that for all vectors u 6= 0, uTMu > 0. We can split uT (I+λD∗D)u into two terms
uT Iu and λuTD∗D. Then we can observe that

uT (I + λD∗D)u = ‖u‖22 + λ‖Du‖2.

This is bigger than 0 for all u 6= 0, as we recall that λ > 0. Thus, I + λD∗D is
positive definite. This result can also be derived by noting that we are solving a
coercive and quadratic optimization problem for which I + λD∗D is the Hessian
of the problem. Since this Hessian is positive, the matrix is positive definite.

The stability of the method is also of interest, as well as its ability to converge
fast. The stability of a numerical method is often measured by the condition
number κ, which measures how much the output is affected by minor changes or
errors in the input. A common definition of this number is given by the fraction
between the maximum and the minimum singular value. In our numerical tests, we
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restrict ourselves to tests for λ ≤ 5 in order to avoid over-regularization. The fact
that we control the regularization parameter gives us, for the matrix I + λD∗D,
that the singular values σi ∈ [1, 1 + 4λ]. In the worst case scenario we have that
σmax = 21, and thus κ ≤ 21. This is a low condition number, and we would expect
the conjugate gradient approach to be a stable one. The low condition number and
the small variance in singular values also cause the conjugate gradient algorithm
to converge fast, without the need for a preconditioning algorithm.

The numerical results from the CG algorithm are shown in Figure 2.5. From

Figure 2.5: Example of quadratic regularization denoising.

(a) Original image (b) Noisy image, σ = 0.1.

(c) Denoised image, λ = 1.25.

the examples of denoised images, we observe that the algorithm is able to remove
some of the noise from the images. However, the images become somewhat more
blurry in the denoising process. This happens in particular if the regularization
parameter λ is big, as the weighting of the gradient term then dominates, and the
minimization algorithm focuses on removing small differences between neighbour-
ing pixels.

If we increase the noise level more, say σ = 0.4, the blurring effect of the
quadratic regularization algorithm becomes very apparent, as illustrated in Figures
2.6.

2.6 Convex analysis

Many numerical results in this paper will depend on knowledge from convex anal-
ysis. The aim of this subsection is to give a short introduction to key concepts of
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Figure 2.6: Example of the blurry effect of quadratic regularization with large
noise level.

(a) Noisy image, σ = 0.4 (b) Image denoised with λ = 5.

convex analysis. Important definitions and theorems will be presented, as well as
some proofs. A few examples, in which convex analysis is used, will also be pre-
sented. The objective is that this chapter will give the reader the knowledge and
background from convex analysis needed to follow the arguments and calculations
later in the paper. In particular, subdifferentials and sub-gradients, duality and
proximal point mappings will be essential to derive optimality conditions. Convex
conjugates will also be introduced, and will become essential at a later stage in
the text. For the entirety of this subsection U is defined to be a finite-dimensional
Hilbert space.

Convex analysis is concerned with convex functions on convex sets, and the
properties of these functions. A natural starting point for convex analysis is thus
to define convex sets and functions.

Definition 2.1. Convex sets.
A convex set C is a subset of a vector space, such that for any x1, x2 ∈ C, and for
any t ∈ [0, 1] we have that tx1 + (1− t)x2 ∈ C.

Definition 2.2. Convex functions.
A convex function f(x) is an extended real-valued function from U to R ∪ {+∞}
such that the following inequality holds for all u1,u2 ∈ U and for all t ∈ (0, 1):

f
(
tu1 + (1− t)u2

)
≤ tf(u1) + (1− t)f(u2).

A relevant property for convex functions in the finite dimensional case is that
all such convex function are (locally Lipschitz) continuous on the interior of their
domains [BL06, p 65].

Definition 2.3. Domain of a convex function
The domain of a convex function f : U → R ∪ {+∞} is the set of all vectors u for
which f(u) is finite. The domain is denoted domf and formally defined as

domf = {u ∈ U : f(u) <∞}

After introducing the domain in Definiton 2.3, we are ready to define a proper,
convex function. This is defined as a convex function with a non-empty domain.
That is, a function f : U → R∪{+∞} for which f(u) <∞ for at least one u ∈ U , is
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proper. The set of proper and convex functions mapping from U that additionally
are lower semi-continuous, is denoted by Γ0(U).

Another important concept that will be essential throughout the paper is the
concept of convex conjugation.

Definition 2.4. Convex conjugates
Let U be a finite dimensional Hilbert space, as before. Then the (Fenchel) convex
conjugate of a proper function f : U → R ∪ {+∞} is f∗ : U → R ∪ {+∞} defined
as:

f∗(p) = sup
u∈U

[
〈u, p〉 − f(u)

]
Definition 2.5. The biconjugate
The biconjugate of f : U → R ∪ {+∞} is f∗∗ = (f∗)∗.

Definition 2.6. Projection on a convex subset
Let C ⊂ U be non-empty, convex and closed. The projection of a vector u ∈ U
onto C is then defined as the unique solution to

min
x∈C
‖x− u‖22

The projection of the vector u on C is denoted πC(u).

Example - Conjugate of characteristic function

A simple example of a convex conjugate which will turn out useful, is the conjugate
of the characteristic function iC(x) of an arbitrary convex set C. We assume C is
a subset of U. Then the characteristic function iC : U → R is defined as

iC(u) =

{
0, if u ∈ C,
∞, if u /∈ C.

Then, from Definition 2.4 we get i∗C(p) = supu∈U

[
〈u, p〉 − iC(u)

]
Whenever, u /∈ C, we have that iC(u) = +∞, and whenever u ∈ C we have

that iC(u) = 0.The expression for the conjugate can then be simplified to

i∗C(p) = sup
u∈C
〈u, p〉,

which is exactly the support function of the set C [HL01, p 134].

2.6.1 Subdifferentials

Subdifferentials are useful whenever the convex functions one considers is non-
differentiable.

Definition 2.7. Let f ∈ Γ0(U). Then the convex subdifferential of f at u is

∂f(u) =

{
{ũ ∈ U : f(v) ≥ f(u) + 〈ũ, v − u〉 for all v ∈ U}, if u ∈ dom(f),

∅, if u /∈ dom(f)
.

Elements of sub-differentials are called sub-gradients.
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A known result is that for a convex, lower semi-continuous function f , which
is Gâteaux differentiable at a point x ∈ U , we have that ∂f(x) = {∇f(x)}. That
is, the only element of the subdifferential coincides with the actual gradient of the
differentiable function.

Theorem 2.1. û ∈ U is a minimizer of f : U → R{+∞} for f ∈ Γ0 if and only if
0 ∈ ∂f(û).

Proof. Assume û ∈ U minimizes f ∈ Γ0. By definition, for any arbitrary element
u ∈ U , we have that

f(u) ≥ f(û). (2.11)

Now, we can add the inner product between zero and u − û, which leads to the
inequality

f(u) + 〈0, u− û〉 ≥ f(û) + 〈0, u− û〉.

Finally we note that this inner product is equal to zero, and remove it from the
left hand side to obtain

f(u) ≥ f(û) + 〈0, u− û〉.

This is precisely the expression from the definition of the convex subdifferential
above, since u is an arbitrary element in U . We have then shown that 0 ∈ ∂f(û)
if û ∈ U is a minimizer of f . However, we can note that all the steps and trans-
formations are valid in both directions, meaning that we can reverse the steps of
the proof to obtain the ’only if’-result of the proof. Thus û ∈ U is a minimizer of
f : U → R{+∞} for f ∈ Γ0 if and only if 0 ∈ ∂f(û).

This theorem gives us a useful result and a connection between minimizers of
proper convex functions and sub-differentials. The result will be used to derive
optimality conditions for the minimization problem.

2.6.2 Duality

We want to solve optimization problems of the form

min
u∈U

[f(u) + g(Bu)], (2.12)

where B : U → V is a linear operator. This kind of optimization problems have
solutions which are described by the Fenchel-Rockafeller theorem, and rely on the
notion of duality. We will state the result of the theorem for general Hilbert spaces
U and V .

Theorem 2.2. Fenchel-Rockafeller theorem
Let U and V be Hilbert spaces. Moreover, let f ∈ Γ0(U) and g ∈ Γ0(V ). Let B :
U → V be a linear operator. Now assume that the primal problem minu∈U [f(u) +
g(Bu)] admits a solution û. Assume also that there exists an ū ∈ dom(f) with
Bū ∈ int(dom(g)). Then:

1. The dual problem
min
p∈V

[g∗(p) + f∗(−B∗p)]

admits a solution p∗ ∈ V ∗.
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2.
min
u∈U

[f(u) + g(Bu)] = max
p∈V

[−g∗(p)− f∗(−B∗p)]

3. ū and p̄∗ are solutions to the primal and dual problem respectively if and
only if −L∗ȳ∗ ∈ ∂f(x̄) and ŷ∗ ∈ ∂g(Lx̄).

The proof of this theorem is long and somewhat technical, and can be found
in [CV20, p 62-64]. The result of the Fenchel-Rockafeller theorem also provides
us with a framework to develop a convergence criteria for numerical primal-dual
methods. We will apply the duality gap as such a convergence criteria. The duality
gap is the absolute value of the difference between the primal and dual solutions
of primal-dual optimization problems. The duality gap is non-negative, and is
zero if and only if we have a strong duality. Strong duality is exactly the second
result of the Fenchel-Rockafeller theorem, that the optimal values of the primal
and dual objective functions are identical. Thus, for the optimal solution to our
dual problem (2.12) satisfying the requirements of Theorem 2.2, the duality gap
will be zero.

The result from Theorem 2.2 will be used to establish optimality conditions for
our problem, which are of the form presented in Equation (2.12). Together with
the results from Theorem 2.1, we now have an approach as to how to derive the
optimality conditions for the minimization problem.

2.6.3 Proximal point mappings

In order to perform numerical optimization and to do the necessary theoretical
analysis to prepare for the numerical implementations of possible solution algo-
rithms, we will need to define, understand and implement a type of mappings
called proximal point mappings.

Definition 2.8. Let U be a Hilbert space, and let f ∈ Γ0(U). Then the proximal
point mapping of f at u is proxf : U → U with

proxf (u) = argminû∈U
1

2
‖û− u‖22 + f(û).

An interesting example of a proximal point mapping is that of the characteristic
function onto a set C. In this case, the proximal point mapping is identical to the
projection operator onto the set.

proxiC (u) = argminû∈U

[1

2
‖û− u‖22 + ic(û)

]
= argminû∈C

1

2
‖û− u‖22 = πC(u)

Optimality conditions and their relation to proximal point operators

We still assume that f ∈ Γ0(U), and that proxf : U → U . Then we can show the
following about the proximal point operator:

proxf (u) = (I + ∂f)−1(û)⇐⇒ u ∈ û+ ∂f(û). (2.13)

This is shown by exploiting that ∂(f + h) = ∂f + ∂h for h(û) = 1
2
‖û − u‖22. We

know that û minimizes (f + h) if and only if 0 ∈ ∂(f + h)(û) = ∂f(û) + ∂h(û).
h is convex and differentiable, thus the only element in the sub-gradient ∂h(û) is
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the gradient of h at û, which is û − u. Thus we obtain 0 ∈ ∂f(û) + û − u, which
is equivalent to

u ∈ û+ ∂f(û) = (I + ∂f)û.

And, directly from the definition of the proximal operator, we have proven (2.13).
Now let u1, u2 be elements of U , and let ε > 0 be an arbitrary positive real

number. Then u2 ∈ ∂f(u1) if and only if u1 = proxεf (u1 + εu2), as a direct
consequence of Equation (2.13). We have thus arrived at a fixed point formulation
yielding that u1 is a fixed point of proxεf if and only if 0 ∈ ∂f(u1). From Theorem
2.1 we recall that the latter occurs if and only if u1 is a minimzer for f . This
means that the fixed point will co-incide with the minimizer. This means that two
optimality conditions for the minimizers û ∈ U have been derived:

0 ∈ ∂f(û) (2.14)

û = proxεf (û) (2.15)

2.6.4 The Chambolle-Pock algorithm

When solving primal-dual optimization problems numerically, it is necessary to
use efficient numerical solvers. The method we will apply, is the Chambolle-Pock
algorithm is a primal-dual algorithm, in which fixed point iterations are performed
both for the primal variable u, and the dual variable p. We will refer to known
convergence results for the algorithm, and parameter choices guaranteeing conver-
gence will be explained and justified.

The method is based on a reasonably simple fixed point iteration for p and u,
originally described by the Arrow-Hurwicz method. We let τ and σ be the stepsizes
for each iteration for u and p respectively. The choices of these stepsizes influence
the convergence of the method, and will be adressed in the paragraph concerning
convergence. For a general minimization problem on the form minu f(u) + g(Bu)
where B is a linear operator, we can start by writing the fixed point iteration in
the following manner:

pk+1 ←− proxσg∗(pk + σBuk)

uk+1 ←− proxτf (uk − τB∗pk+1)

This method is known as the Arrow-Hurwicz method, and origins from work
published by Kenneth Arrow and Leonid Hurwicz in 1956 [AH56]. More recent
work, performed by Chambolle and Pock, tries to improve the Arrow-Hurwicz
algorithm. It is this improved algorithm that will be used as the primary numerical
solver throughout this text. The improvement is mainly done by introducing an
intermediate variable û, which extrapolates the current and previous iterates for
u [CP11]. The Chambolle-Pock method then takes the form

pk+1 ←− proxσg∗(pk + σBûk)

uk+1 ←− proxτf (uk − τB∗pk+1)

ûk+1 ←− uk+1 + θ(uk+1 − uk)

(2.16)
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It is worth noting that the parameter choice θ = 0 restores the Arrow-Hurwicz
method.

It has been shown that a sufficient criteria to obtain convergence of the method
is to choose the parameters τ and σ such that τσ ≤ 1

‖B‖2 [CP11]. Thus, it is

possible to simply choose τ = σ = 1
‖B‖ , to ensure convergence of the Chambolle-

Pock algorithm. These choices of τ and σ are not necessarily optimal, but they
are never the less choices that ensures convergence.
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3 Total variation denoising

A common regularization technique used to make images more smooth is total
variation (TV). Total variation does only contain one regularization term, and
thus also only one regularization parameter λ ≥ 0. Total variation in one channel
for a two-dimensional image u over the area Ω is defined in the following way.

TV(u) =

∫
Ω

‖∇u‖dx =

∫
Ω

√
∂u

∂x

2

+
∂u

∂y

2

dx. (3.1)

Image denoising is however a discrete problem, so we will need to apply the
discretized gradient operator D : [0, 1]mn → R2mn defined in Equation (2.9). Then,
the formal definition of total variation for discrete images is given as

TV(u) =

n∑
i=1

m∑
j=1

√(
Dx(i, j)

)2

+
(
Dy(i, j)

)2

= ‖Du‖1. (3.2)

This is the same as the sum of all the mn pointwise Euclidean norms of the gradient
Du of u, that is obtained by applying the operator D as defined in Equation (2.9)
on u.

Total variation was introduced for noise removal problems in discrete images
by Rudin, Osher and Fatemi in 1992 [ROF92]. Their denoising model is known
as the Rudin-Osher-Fatemi-model (ROF) and uses discretized total variation with
one parameter λ ≥ 0. The minimization problem Tλ given the regularization
parameter λ and the noisy measurement v can thus be expressed as

Tλ(v) = min
Au∈U

[1

2
‖u− v‖2 + λTV(u)

]
. (3.3)

The ROF-model is considered an effective technique for image denoising, with
advantages such as in particular smoothing of edges. The total variation approach
has proven to be effective in combining this smoothing with noise removal in areas
with fewer or less sharp edges [SC03].

We can note that λ = 0 means that no regularization is performed. In this case,
the ROF-model reduces to a least squares minimization problem. Higher values of
λ penalize edges in the image more, aiming to minimize the total variation defined
in Equation (3.2).

One weakness that the total variation model suffers from, is that it may lead
to a staircasing effect [BKP10]. Staircasing means that the reconstructed image
is piecewise constant between the edges. The penalization of edges in the ROF-
model can be ’blamed’ for this feature. In general, total variation is well suited
for regularization of images with few, but sharp edges [Hub+19]. If, however, the
image contains more details and smaller edges, the staircasing effect is more likely
to cause problems while regularizing.

For colour images with three RGB-channels, there are several approaches one
can choose from when selecting the parameter λ. One may choose the same param-
eter in all channels, or one may treat the channels separately. The approach that
will be followed throughout this master thesis is to treat the three RGB-channels
separately in all numerical experiments. That is, the parameter selection in the
three channels will be independent of each other, but follow the same algorithm
and rules. In other words, in all numerical experiments we are performing the
same process three times, one for each channel.
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3.1 Convex conjugates

We recall the minimization problem for total variation denoising from Equation
(3.3). If we write the total variation as the one-norm of the gradient Du instead,
we obtain

Tλ(v) = min
u∈U

[1

2
‖u− v‖2 + λ‖Du‖1

]
. (3.4)

We now want to split the right hand side into two terms. Therefore we introduce
and define f(u) = ‖Au− v‖22 as the data discrepancy term, and g(Du) = λ‖Du‖1
as the regularization term.

We want to use the notion of duality to solve the optimization problem, and to
apply the Fenchel-Rockafeller theorem. In order to do that, we need to calculate
the convex conjugates of the different terms. We start with f , assuming that the
linear operator A is a non-singular and real-valued matrix. Note that when A = I,
this condition is satisfied. First, we find an expression for the conjugate f∗(p)
directly from the definition of a convex conjugate that was given in Definition 2.4:

f∗(p) = sup
u∈U

[
〈u, p〉 − 1

2
‖Au− v‖22

]
The substitution w = Au simplifies the problem to

f∗(p) = sup
w∈V
w=Au

[
〈w,A−∗p〉 − 1

2
‖w − v‖22

]
Then, by differentiating this equation with respect to w to find its supremum

and corresponding value ŵ, the first order optimality condition yields A−∗p = ŵ−v
and therefore ŵ = A−∗p + v. Substituting this, the expression for the convex
conjugate f∗(p) can now be written as:

f∗(p) = 〈A−1(A−∗p+ v), p〉 − 1

2
‖A−∗p+ v − v‖22

= 〈A−∗p+ v,A−∗p〉 − 1

2
‖A−∗p‖22

=
1

2
‖A−∗p‖22 + 〈v,A−∗p〉+

1

2
‖v‖22 −

1

2
‖v‖22

=
1

2
‖A−∗p+ v‖22 −

1

2
‖v‖22,

and thus we conclude that the convex conjugate of f is given as

f∗(p) =
1

2
‖A−∗p+ v‖22 −

1

2
‖v‖22. (3.5)

In the special case of denoising, where A = I, we can continue the calculation to
obtain

f∗(p) =
1

2

(
‖p+ v‖22 − ‖v‖22

)
.

In our total variation model, we also include the regularization term g(Du) =
λ‖Du‖1. Thus we also need to calculate the conjugate of g(w) = λ‖w‖1. In order
to simplify calculations, we introduce this useful lemma.

Lemma 3.1. Let U be a Hilbert space and λ a non-zero real and positive number.
Let g : U → R, and let h = λg. Then h∗(p) = λg∗( p

λ
).
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Proof. For any p ∈ U , by definition

h∗(p) = sup
v∈U

(
〈p, v〉 − h(v)

)
.

From the definition of h, this is equivalent to

h∗(p) = sup
v∈U

(
〈p, v〉 − λg(v)

)
.

Now we can use that inner products are linear in the first term and that λ is
strictly positive to write

h∗(p) = λ sup
v∈U

(
〈 p
λ
, v〉 − g(v)

)
.

Now this supremum is exactly the convex conjugate of g evaluated in p
λ

, and thus
we conclude

h∗(p) = λg∗(
p

λ
). (3.6)

From the lemma above we know that to determine g∗(p), we only need to
determine the convex conjugate of h(u) = ‖u‖1, and then scale the argument
according to the result from the lemma.

Again starting from Definition 2.4, we immediately obtain

h∗(p) = sup
u∈U

[
〈u, p〉 − ‖u‖1

]
.

We can discretize this in each of the nm pixels:

h∗(p) = sup
u∈U

[ n∑
i=1

m∑
j=1

〈u(i,j), p(i,j)〉 − ‖u(i,j)‖2
]
. (3.7)

From here we can apply Cauchy-Schwarz to obtain

h∗(p) =

n∑
i=1

m∑
j=1

sup
u(i,j)

‖u(i,j)‖2(‖p(i,j)‖2 − 1). (3.8)

From Equation (3.8) we draw the following conclusion about the convex conju-
gate of h: If ‖p(i,j)‖2 ≤ 1 for all pixels 1 ≤ i ≤ n, 1 ≤ j ≤ m, then the supremum
of the right hand side is obtained by letting u be identically equal to zero. If,
however, there exists at least one pixel for which ‖p(i,j)‖2 > 1, the parenthesis is
positive, and we can choose an u with an arbitrarily large norm to obtain a larger
supremum. Thus

h∗(p) =

{
0 if ‖p(i,j)‖2 ≤ 1 for all nm pixels

∞ else.
(3.9)

And by the lemma, we can scale this result for h∗(p) to arrive at the following
expression for g∗(p):

g∗(p) =

{
0 if ‖p(i,j)‖2 ≤ λ for all nm pixels

∞ else.
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3.2 Chambolle-Pock algorithm for total variation

The aim of this chapter is to implement and compare some known numerical algo-
rithms for solving the image denoising problem (2.2). The minimization problem
under consideration is the one defined in (3.1). The derivation of the algorithm
does to a great extent rely on the work that already have been done earlier in
this text. The previously derived optimality conditions in Equations (2.14) and
(2.15) give the fixed point iteration for p and u, with stepsizes σ and τ . The
Chambolle-Pock method then takes the form

pk+1 ←− proxσg∗(pk + σDûk)

uk+1 ←− proxτf (uk − τD∗pk+1)

ûk+1 ←− uk+1 + θ(uk+1 − uk)

(3.11)

It is this Chambolle-Pock method that will be used to solve the total varia-
tion minimization problem (3.1) for denoising, with regularization parameter λ.
Choosing the best λ is key to obtain good reconstructions of the original image.
Different parameter choice techniques will be used, in order to identify the optimal
parameter for the total variation denoising problem.

3.2.1 Calculation of prox-solutions

In order to implement the Chambolle-Pock algorithm described in Equation (3.11)
properly, it is necessary to determine how to find the exact proximal point map-
pings that are used in the algorithm.

Prox operator τf

proxτf (u− τD∗p) = arg min
w∈U

[1

2
‖w − u+ τD∗p‖22 +

τ

2
‖Aw − v‖22

]
. (3.12)

This is a simple minimization problem, and we can continue by differentiating
the functional with respect to w without major difficulties. The gradient is given
as

w − u+ τD∗p+ τA∗(Aw − v).

We then use the first order necessary optimality condition for the simple mim-
imization problem in Equation (3.12), and set the derivative equal to zero. We
then solve the linear equation, and obtain the following:

(I + τA∗A)w = u− τD∗p+ τA∗v.

In the case of denoising, with A = I = A∗, this can be simplified to

proxτf (u− τD∗p) =
u− τD∗p+ τv

1 + τ
. (3.13)

In the numerical experiments, we will consider denoising, and thus use the prox
operator found in Equation (3.13). In a more general case, where the linear op-
erator A : U → V is different from the identity operator, we obtain the following
expression for the prox operator:
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proxτf (u− τD∗p) = (I + τA∗A)−1(u− τD∗p+ τA∗v). (3.14)

This requires (I + τA∗A) to be invertible, which we can show in the following
manner: A∗A is symmetric, and so is the identity matrix. Thus (I + τA∗A) is
also symmetric. We know that all positive definite symmetric matrices have only
positive and real eigenvalues, and therefore are invertible. So we only need to show
that (I + τA∗A) is positive definite. This is done by noting that for any u 6= 0,

uT (I + τA∗A)u = uT Iu+ τuTA∗Au = uTu+ τuTA∗Au = ‖u‖2 + τ‖Au‖2 > 0.

Prox operator σg∗

If we now turn our attention to the proximal point mapping of σg∗, we obtain the
following expression from the definition of these mappings:

proxσg∗(pk − σDuk) = arg min
q

1

2
‖q − pk − σDuk‖22 + σg∗(q). (3.15)

To simplify the notation, we remove the index k which denotes the iteration num-
ber, as the results are valid regardless of how many previous iterations that have
been performed. We thus have this expression for the proximal point mapping of
σg:

proxσg∗(p− σDu) = arg min
q

1

2
‖q − p− σDu‖22 + σg∗(q). (3.16)

This can be calculated pointwise in each pixel (i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
Moreover, for the sake of simplicity, we introduce w, which is defined as

w(i,j) = p(i,j) + σD(u(i,j)).

The minimization problem (3.16) can now be rewritten pointwise as

arg min
q(i,j)

[1

2
‖q(i,j) − w(i,j)‖22 + σg∗(q(i,j))

]
, (3.17)

again being valid for all the nm pixels in the image. We recall that the value
of g∗(q(i,j)) depends on the infinity norm of the different Euclidean norms. If
|q(i,j)|2 ≤ λ in all pixels, then g∗(q(i,j)) = 0. Otherwise, g∗(q(i,j)) = +∞. This
means that the pointwise minimization problem now can be rewritten again, this
time as

arg min
‖q(i,j)‖2≤λ

‖q(i,j) − w(i,j)‖22. (3.18)

If the Euclidean norm of w(i,j) is smaller than or equal to λ, then w(i,j) itself
solves the pointwise minimization problem (3.18), and q(i,j) = w(i,j) = p(i,j) +
σD(u(i,j)). In the case where the Euclidean norm of w(i,j) is bigger than λ, we
need to scale the vector, so that it is contained in the convex set Bλ. Intuitively,
we think of keeping the direction of the vector, but scaling the length of the
vector down to λ. In Lemma 4.1, we will prove that this intuition is correct for
convex balls. For now however, we will simply state the result, which gives us that
q(i,j) = λ

w(i,j)

‖w(i,j)‖2
.
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So, to conclude the calculation, we can summarize the pointwise prox operator
on g∗ as

proxσg∗(p− σDu)(i,j) =

{
p(i,j) − σDu(i,j), for ‖p(i,j) − σDu(i,j)‖2 ≤ λ
λ

p(i,j)−σDu(i,j)

‖p(i,j)−σDu(i,j)‖2
, for ‖p(i,j) − σDu(i,j)‖2 > λ

,

(3.19)
and thus the prox operator for both f and g∗ has been determined, and are

given in Equations (3.13) and (3.19) respectively. These are then used as proximal
point operators in the Chambolle-Pock algorithm, see Equation (3.11).

3.2.2 The complete Chambolle-Pock algorithm for TV

We have now calculated the proximal operators that are necessary to perform all
steps in the Chambolle-Pock algorithm that was described in Equation (3.11).
We are thus ready to describe the procedure that will be used to denoise images
with total variation as the only regularization term. The procedure requires the
regularization parameter λ to be chosen. The noisy signal v is also inputted to the
numerical algorithm, which takes the following form:

Choose θ for Chambolle-Pock method
Choose steplengths τ and σ
u, uprev, û← v
p← 0
while not converged do
uprev ← u
p̂← p+ σD(û)
p← proxσg∗(p̂)
∇p← D∗(p)
u← proxτf (u+ τ∇p+ τv)
û = u+ θ(u− uprev)

end while
return u

Algorithm 1: TV denoising algorithm

We see that in each iteration we start by updating the dual variable p, and
then scale it onto to convex set Bλ. We then use the update of the dual variable
to update the primal variable u, and again we apply the proximal point mapping
on the suggested update. The algorithm runs until the pre-selected convergence
criteria is reached, or until it is stopped for other reasons. In the next subsections
we will discuss the convergence of Chambolle-Pock for total variation, and also
develop a criteria for determining whether the algorithm has converged or not.

3.2.3 Convergence of Chambolle-Pock algorithm for TV

Recall that we need to have τσ ≤ 1
‖D‖2 in order to guarantee convergence of the

Chambolle-Pock algorithm for the primal problem minu f(u) + g(Du). So we need
to calculate or estimate the operator norm of D, the gradient operator we apply
in the total variation term. From the definition on operator norms we have that
‖D‖ = sup{‖Du‖ : u ∈ Rnm and ‖u‖ = 1}. Here the operator D is applied on the

28



three different RGB-channels separately. This explains that we operate in Rnm
and not in R3nm. Moreover, we can see that we always have that ‖D‖ <

√
8

[Lud20]. Thus, the convergence criteria can be written as τσ ≤ 1
8
, and choices of

τ and σ must be made in accordance with this criteria.
As convergence criteria for the numerical implementation, the relative duality

gap, compared to the initial duality gap, is used with tolerance 10−6. The duality
gap is calculated as

1

2
‖u− v‖2 + λTV (u)− ‖v‖

2

2
+

1

2
‖f −D∗p‖2, (3.20)

where the two first terms come from the regularization functional, as the solution of
the primal problem. Similarly, the two other terms come from the dual problem,
and is the solution of this. The duality gap is then the difference between the
solution to the primal and the dual problem, and is used as a convergence criteria
in accordance with the Fenchel-Rockafeller theorem ( Theorem 2.2 ).

Also, for bad parameter choices, we simply end the algorithm after 100 it-
erations if the convergence criteria is not yet met. This saves runtime and also
in-depth calculations of many non-optimal parameter choices.
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4 Total generalized variation (TGV) denoising

Total generalized variation (TGV) is a more recent regularization functional
used for denoising of images and other digital signals. Unlike the total varia-
tion method, TGV is a denoising algorithm of second order. That is, the TGV
functional that will be considered in this text contains derivatives of second order
[Li+20]. A general TGV method of order k contains approximations of deriva-
tives up to the order k, and was introduced by Bredies, Kunisch and Pock in 2009
[BKP10].

Total generalized variation has increasingly popular image denoising applica-
tions within medicine, for example in magnetic resonance [Kno+10] and tomog-
raphy [Hub+19]. These are both technologies for which removing noise, blur or
systemic measuring errors may be essential to improving the possibility to, manu-
ally or by a machine learning algorithm, discover illnesses or medical abnormalities
[LL19].

A major advantage with TGV over TV is that the staircasing effect is reduced,
compared to the ROF-model in total variation denoising. [BKP10]. However, the
TGV regularization functional is more complicated. This affects both the runtime
and the efficiency of numerical algorithms. Moreover, TGV denoising also requires
two parameter choices. In order to optimize the performance of TGV denoising, it
is thus necessary to perform multi-parameter optimization, which is more difficult
than single-parameter optimization.

Recalling from Equation (2.5) that after introducing Tikhonov regularization
terms, we can in general express the optimization problem as a minimization prob-
lem containing a data discrepancy term plus some regularization terms. In the case
of total generalized variation, we introduce a regularization functional TGV (u)2.
The index two indicates that the total generalized variation is of order two. The
regularization functional to be considered does now take two variables, u and w.
u(x, y) is, as before, the signal value of the image in each of the mn pixels. The
vector-valued function w(x, y) : R2 → R2 can be considered as an approximation to
the gradient ∇u(x, y) and is denoted by w(x, y) = (w1(x, y), w2(x, y)). We write
the regularization functional as a functional with two variables in the following
way.

R(u,w) = λ1

∫
Ω

|∇u−w|dx+ λ2

∫
Ω

|Ew|dx, (4.1)

where the symmetrised gradient of the vector-valued function w is expressed as in
[GN20]:

Ew =
1

2
(∇w + (∇w)T ). (4.2)

We are going to apply total generalized variation on finite-dimensional and discrete
signals when we perform image denoising, so we will need a discretized version of
the regularization terms R(u,w). We will denote the discretized version of the
regularization terms by TGV(u,w), and it will take the following form:

TGV(u,w) = λ1

n∑
i=1

m∑
j=1

|∇ui,j −wi,j |+ λ2

n∑
i=1

m∑
j=1

|Ewi,j |. (4.3)

The gradient ∇w is given as
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∇w =

[
∂w1
∂x

∂w1
∂y

∂w2
∂x

∂w2
∂y

]
,

and in the discrete case we want to express this gradient by the forward difference
operators Dx and Dy.

∇w =

[
Dx(w1) Dy(w1)
Dx(w2) Dy(w2)

]
, (4.4)

From Equation (4.4) and the definition of the symmetrized gradient in Equation
(4.2), we can express Ew as

Ew =
1

2

[
2Dx(w1) Dy(w1) +Dx(w2)

Dy(w1) +Dx(w2) 2Dy(w2)

]
. (4.5)

In each of the nm pixels (i, j), Ew(i,j) is a symmetric matrix in R2×2. Symmetric
matrices contain no more than three unique values. Thus, the matrix can equiva-
lently be stored as a vector in R3. This saves memory and runtime in numerical
simulations, and does not affect the results of the analytical calculations.

Combining the regularization terms with the data discrepancy term, we obtain
the following minimization problem for second order total generalized variation:

min
u

[
L(u, v) + TGV2(u)

]
= min

u,w

[
L(u, v) + TGV(u,w)

]
.

We denote the last minimization problem by Tλ(v) for a fixed vector λ ∈ R2
(+) of

regularization parameters. The complete minimization problem is then expressed
as

Tλ(v) = min
u,w

[
L(u, v) + TGV(u,w)

]
, (4.6)

where v is the noisy data. And explicitly, the discrete minimization problem can
be written as

û, ŵ = arg min
u,w

(1

2
‖u− v‖2 +λ1

n∑
i=1

m∑
j=1

‖∇u(i,j)−w(i,j)‖2 +λ2

n∑
i=1

m∑
j=1

‖Ew(i,j)‖2.
)

(4.7)
Note that this is a multi-parameter parameter selection problem, for which both
λ1 and λ2 have to be chosen. This is more complicated than a single-parameter
parameter selection problem.

The functional in Equation (4.7) includes three terms. The first term is the
data discrepancy term, measuring the mean square error between the reconstructed
and noisy signal.

The second term contains the norm of the difference between the discretized
forward gradient ∇u of the signal and an approximation w to this gradient. Where
we in total variation try to minimize the norm of the gradient itself, this new
approach instead aims to minimize ‖∇u −w‖2. Consequently, the reconstructed
signal will not be piecewise constant, but may to some extent be piecewise linear.

The third term is the norm of the socalled symmetrized gradient of w, which
is defined above. Why would one want to minimize the norm of the symmetrized
gradient of an approximation of the gradient of the reconstructed signal? This
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symmetrized gradient can be considered as an approximation of the second deriva-
tive of u. By including this term as a separate regularization term, we also require
the (approximation to) the second derivative to be regular. Moreover, the fraction
λ1
λ2

determines how the first and second derivatives are balanced in the regularized

functional[Kno+10]. It is not intuitively clear how this works and what the effects
are. In Appendix B, an example for a one-dimensional signal is included. This ex-
ample can, if needed, be used to get a stronger intuition of how the regularization
terms in the TGV denoising functional work together.

The parameters λ1 and λ2 respectively are used for weighing the second and
third term. Optimal choices of these parameters will vary from signal to signal, and
it is not trivial to determine which parameters are optimal. We can again note that
the choice λ1 = λ2 = 0 will reduce the problem (4.6) to a least squares problem.
The main aim of this text is to develop automated parameter choice methods
for these choices, and to evaluate the performance of the different methods. We
will moreover compare denoising results with TGV multi-parameter regularization
with those from TV single-parameter denoising.

4.1 Convex conjugates

We need to calculate the convex conjugates of the different terms in the total
generalized variation functional, in order to develop a numerical primal-dual solver
similar to the one for total variation. We note that the TGV-functional takes two
primal variables u and w, and that we thus also need two dual variables.

Again, we start by splitting the terms of Tλ(u,w) into different functionals
F (u,w) and G(A1(u,w), A2(u,w)), where A1 and A2 are the linear operators
∇u−w and Ew. Thus we have that G(y, z) = λ1‖y‖1 + λ2‖z‖1, and can express
the primal functional in the form F (u,w)+G(A1(u,w), A2(u,w)). We denote the
data discrepancy term by F (u,w) = ‖u− v‖22.

The data discrepancy term does not depend on w, a fact that can be ex-
ploited when calculating the convex conjugate. We can express F (u,w) := F1(u)+
F2(w) = ‖u − v‖22 + 0. Here F1 is the mean squared difference between the re-
constructed and the noisy signal, while F2 is identically equal to zero. We can use
this ’split’ to determine the convex conjugate of F by considering F1 and F2 as
two separate functions of one variable each, depending on u and w respectively.

F ∗(p, q) = sup
u∈U

(
〈u, p〉 − F1(u)

)
+ sup

w∈R2mn

(
〈w, q〉 − F2(w)

)
.

The first supremum is identical to the one we obtained when performing calcula-
tions for total variation, and has the same conjugate. Thus we obtain, in the case
of pure denoising,

F ∗(p, q) =
1

2
‖p‖22 + 〈p, v〉+ sup

wR2mn

(
〈w, q〉 − 0

)
.

The second supremum will be infinite for any q 6= 0. If q = 0, then naturally also
〈w, q〉 − 0 = 0. This leaves us with the following expression for F ∗(p, q):

F ∗(p, q) =

{
1
2
‖p‖22 + 〈p, v〉 if q = 0

∞ if q 6= 0.
(4.8)
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The convex conjugates of the two regularization terms must also be determined.
We notice that the second and the third term in the TGV-functional (4.7) both
consist of a (weigthed) one-norm over Ω. The results from the regularization term
in total variation can thus be applied also on these two terms, when calculating
the convex conjugates. The result we have is that for a general G(ψ) = λ‖ψ‖1
with λ ≥ 0, the convex conjugate G∗ is given as G∗(s) = I‖·‖∞≤λ(s)[Kno+10].

From Equation (4.1) we observe that the regularization functional is a com-
bination of two terms of this form. We can consider the regularization func-
tional R as a sum of two regularization terms R1 and R2 depending on dif-
ferent and independent variables. Consequently, the convex conjugate of R is
also given as the sum of the convex conjugates of R1 and R2. This gives us
G∗(s, t) = I‖·‖∞≤λ1

(s) + I‖·‖∞≤λ2
(t).

This means that we have the following four primal and dual functionals.

F (u,w) = ‖u− v‖22
G(y, z) = λ1‖y‖1 + λ2‖z‖1

F ∗(p, q) =

{
1
2
‖p‖22 + 〈p, v〉 if q = 0

∞ if q 6= 0.

G∗(s, t) = I‖·‖∞≤λ1
(s) + I‖·‖∞≤λ2

(t)

For the dual functional G∗ with dual variables p and q, we have that the dual
functional is the sum of two indicator functions on balls centered at the origin
with radiuses of λ1 and λ2 respectively. In the numerical algorithm, each update
of these variables will require that the update is projected onto these convex sets.

Projections onto the convex sets

The dual variables p and q are both required to be elements of the convex sets
P = Bλ1 and Q = Bλ2 . Both the convex sets are closed balls centered at the
origin, with radiuses of λ1 and λ2 respectively. This means that updated iterations
of p and q need to be projected onto the convex sets. Projections of vectors onto
balls centered at the origin is among the easiest projections to calculate. In order
to make the result valid generally, we denote by BR a closed ball centered at the
origin with radius R > 0, and introduce the following lemma.

Lemma 4.1. Let x ∈ Rn be an arbitrary vector. The projection of the vector
onto the ball Bλ is given by

projBλ(x) =
x

max(1, ‖x‖
λ

)
. (4.9)

Proof. To determine the projection, we are concerned with the minimization prob-
lem

projBλ(x) = arg min
‖q‖22≤λ2

‖q − x‖22. (4.10)

We can start by consider the Lagrangian of the problem with the Lagrangian
parameter γ.

L(q, γ) = ‖q − x‖22 + γ(‖q‖2 − λ). (4.11)
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The KKT-conditions for this problem are given as

∂L
∂q

= 2(q − x) + 2γq = 0 (4.12)

γ(‖q‖2 − λ) = 0 (4.13)

γ ≥ 0 (4.14)

‖q‖2 − λ ≤ 0. (4.15)

In the case where γ = 0, we get from the first KKT-condition that q = x. This
is the situation where ‖x‖2 ≤ λ and x itself is an element of the closed Euclidean
ball Bλ. The projection of an element x on a set the element in fact is a member
of, is of course the element x itself.

It is thus more interesting to consider the case when γ > 0. Then necessarily,
from the second KKT-condition, ‖q‖2 = λ. That is, q is an element on the bound-
ary of Bλ. If we again consider the first KKT-condition, and multiply from left
with qT , we obtain

(2 + 2γ)qT q = 2qTx.

We can simplify by dividing by two and noting that qT q = ‖q‖22 = λ2. Then

(1 + γ)λ2 = qTx, (4.16)

and

γ =
qTx− λ2

λ2
> 0. (4.17)

From the Cauchy-Schwarz inequality we have that ‖q‖2‖x‖2 ≥ qTx. When we
combine this with the knowledge that ‖q‖2 = λ, we obtain

λ‖x‖2 − λ2

λ2
> 0,

and thus ‖x‖2 > λ. This means that γ > 0 if and only if ‖x‖2 > λ. Now we can
use the expression for γ from Equation (4.17), by inserting it into the first KKT
condition.

q +
qTx− λ2

λ2
q = x

This can be written as

(1 +
qTx

λ2
− 1)q = x,

or even shorter as
qTx

λ2
q = x. (4.18)

Thus we have established that q and x are parallel to eachother in the case where
‖x‖2 > λ. We define the constant α such that q = αx. Then we insert this into
Equation (4.18) in order to determine α.

(αxTx)αx

λ2
= x.

From here we observe that

α2 =
λ2

‖x‖22
< 1. (4.19)
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This means that in the case where ‖x‖2 > λ, the element of the ball with the
shortest distance to x is given as q = λx

‖x‖2
. The projection of x on Bλ can thus be

written as

projBλ(x) =

{
x, if ‖x‖ ≤ λ
λx
‖x‖ , if ‖x‖ > λ,

or even more compact as

projBλ(x) =
x

max(1, ‖x‖
λ

)
, (4.20)

which is exactly what we wanted to prove, and thus the proof is complete.

In each channel, we have that p ∈ R2nm and that q ∈ R3nm. We can consider
the pointwise vectors p(i,j) ∈ R2 and q(i,j) ∈ R3 for all the discrete pixels. We

denote p(i,j) =
[
p

(1)

(i,j), p
(2)

(i,j)

]T
. This is a vector for which the Euclidean norm is

given in the ’normal’ way, and we can express the pointwise norm of the vector as

‖p(i,j)‖2 =

√
p

(1)

(i,j)

2
+ p

(2)

(i,j)

2
. (4.21)

For q, however, the norm is not that straight forward. In each pixel (i, j) we denote

the elements of the three-dimensional vector by q
(1)

(i,j), q
(2)

(i,j), q
(3)

(i,j). This vector is in

the same space as the elements of the symmetric matrix (Ew)(i,j). This space has
a somewhat unusual norm, to make sure that the change from a 2× 2matrix to a
three-dimensional vector does not change the value of the norm. This is however
a property that is easily preserved, because the matrix is symmetrical. We require
that ‖(Ew)(i,j)‖F = ‖q(i,j)‖2 in each pixel. Then

‖q(i,j)‖2 =

√
q

(1)

(i,j)

2
+ q

(2)

(i,j)

2
+ 2q

(3)

(i,j)

2
. (4.22)

With these norms established, and the result from Lemma (4.1), we arrive at the
following pointwise projections on P and Q:

projP (p)(i,j) = projBλ1
(p(i,j)) =

p

max (1,
‖p(i,j)‖2

λ1
)

(4.23)

projQ(q)(i,j) = projBλ2
(q(i,j)) =

q

max (1,
‖q(i,j)‖2

λ2
)

(4.24)

4.2 Adjoint calculations

We now return to the linear operators A1 and A2, and need to calculate their ad-
joints. These adjoint linear operators are used in the dual functional, in accordance
with the Fenchel-Rockafeller theorem. Recall that we denote by A1(u,w) = ∇u−w
the vector of which the one-norm is penalized in the first regularization term. The
immediate observation is that A1 : Rmn × R2mn → R2mn. Thus we know that
A∗1 : R2mn → Rmn × R2mn. Moreover, from the definition given in Definition
2.4, we have that 〈A1(u,w), p〉 = 〈(u,w), A∗1(p)〉. When calulating this adjoint
operator, we split the operator A1 into its two linear terms.
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〈A1(u,w), p〉 = 〈∇u, p〉 − 〈w, p〉.

The adjoint operator of the discrete forward difference gradient operator ∇ is ∇∗,
and we can now rewrite the expression as

〈A1(u,w), p〉 = 〈u,∇∗p〉 − 〈w, p〉.

Finally we combine these term and write out the resulting inner product.

〈A1(u,w), p〉 = 〈(u,w), (∇∗p,−p)〉,

which implies that A∗1(p) = (∇∗p,−p).
For the second regularization term, we denote A2(u,w) = Ew. We want to

find the adjoint operator A∗2, a process which also includes calculating the adjoint
of the symmetrised gradient operator.

〈A2(u,w), q〉 =〈Ew, q〉
=〈w, E∗q〉

And thus A∗2(q) = (0, E∗q). We will need to calculate the operator E∗, and apply
this on the dual variable q ∈ R3nm.

Calculation of E∗

From the definition of an adjoint operator, we have that 〈Ew, q〉 = 〈w, E∗q〉. This
property is essential when we determine how to implement the latter operator, E∗.
From Equation (4.5) we recall that

Ew =
1

2

[
2 ∂w1
∂x

∂w1
∂y

+ ∂w2
∂x

∂w1
∂y

+ ∂w2
∂x

2 ∂w2
∂y

]
.

By inserting this expression directly and recalling that the symmetric matrix Ew
can be treated as a vector in R3, we obtain an expression for the inner product
〈Ew, q〉.

〈Ew, q〉 = 〈∂w1

∂x
, q1〉+ 〈∂w2

∂y
, q2〉+ 〈1

2
(
∂w1

∂y
+
∂w2

∂x
), 2q3〉.

We have that E : R2mn → R3mn. Thus, we need to determine the adjoint
operator E∗ : R3mn → R2mn. We start by rewrting and discretizing the partial
derivatives in the inner products by applying the operators D,Dx and Dy previ-
ously defined in Equations (2.7) to (2.9). Then the discretized inner product is
rewritten as

〈Ew, q〉 = 〈Dxw1, q1〉+ 〈Dyw2, q2〉+ 〈Dyw1, q3〉+ 〈Dxw2, q3〉
= 〈w1, D

∗
xq1〉+ 〈w2, D

∗
yq2〉+ 〈w1, D

∗
yq3〉+ 〈w2, D

∗
xq3〉.

If we consider the terms containing w1 and w2 separately, this can be rewritten
again as

〈Ew, q〉 = 〈w1, D
∗
xq1 +D∗yq3〉+ 〈w2, D

∗
yq2 +D∗xq3〉.
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Finally, from the definition of an adjoint operator, this leads to

〈w, E∗q〉 = 〈w1, D
∗
xq1 +D∗yq3〉+ 〈w2, D

∗
yq2 +D∗xq3〉

and
E∗q =

(
D∗xq1 +D∗yq3, D

∗
yq2 +D∗xq3

)
. (4.25)

Here D∗x and D∗y are the backward difference operators in the x- and y-direction
respectively. Similar to the forward difference operators defined in equations (2.7)
and (2.8), these operators both are operators from Rnm to Rnm, and their defini-
tions are given below.

D∗x(u(i,j)) =

{
u(i,j) − u(i−1,j) for i > 0

0 for i = 0
(4.26)

D∗y(u(i,j)) =

{
u(i,j) − u(i,j−1) for j > 0

0 for i = 0
(4.27)

4.3 Numerical TGV algorithm

With this framework established, we are ready to develop and present the nu-
merical approach we will apply for total generalized variation. The primal-dual
algorithm itself follows the same idea as we saw for total variation, and is also
based on Chambolle-Pock. We will need to define a denoising algortihm based on
the calculations of projections, proximal operators and convex conjugates from the
last subsections, and also to determine the duality gap of the algorithm in order
to develop a convergence criteria.

The numerical algorithm that has been implemented is the one suggested in
[Kno+10], with a few minor modifications. Most importantly, we still treat each
RGB-channel separately in the numerical algorithm. The input to the numerical
algorithm is the noisy signal (or measurement) v ∈ R3nm, but split into three
vectors of length nm, because of the channel-wise approach we have chosen. As
for the total variation denoising, we also terminate the algorithm after R steps if
it has not yet converged, to avoid using too much time on performing denoising
for bad parameter choices.

4.3.1 Proximal point mappings for TGV

We can see from the numerical denoising algorithm that proximal point mappings
are present also for total generalized variation, and that we need to calculate these
mappings. We can reuse much of the work performed for total variation, but
there are also some differences. The biggest difference from the calculations we
performed in Section 3 is that we now have two primal variables, u and w. Again,
we will split the terms of the minimization problems, and consider each of the
terms separately.

We first consider the data discrepancy term F (u,w), and follow the definition
of proximal point mappings given in Definition 2.8.

proxτF (u,w) = arg min
û,ŵ

(1

2
(‖û− u‖22 + ‖ŵ −w‖22) + τF (û, ŵ)

)
. (4.28)
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Choose steplengths τ and σ
u, ū← v
w, w̄, p, q ← 0
while not converged do

p← projP

(
p+ σ(Dū− w̄)

)
q ← projQ(q + σEw̄)
uold ← u

u← proxτF

(
u+ τ(D∗p)

)
ū← 2u− uold

wold ← w
w← w + τ(p+ E∗q)
w̄← 2w −wold

end while
return u

Algorithm 2: TGV denoising algorithm

Now we can once again exploit that F (u,w) = 1
2
‖u − v‖22 is independent of w.

The optimal choice of ŵ is thus the one that minimizes the Euclidean distance to
w, as the second term in (4.28) is the only one containing ŵ. This choice is w
itself, so the proximal point mapping on the second variable is simply the identity
operator. We are now left with a minimization problem only for u.

proxτF (u,w) =

(
arg min

û

(1

2
(‖û− u‖22 + τ‖u− v‖22)

)
,w

)
. (4.29)

Inserting u−τD∗p as the first variable, we obtain exactly the minimzation problem
(3.12). We solved this problem for total variation, and by following the same
procedure here we can conclude that

proxτF (u,w) =

(
u− τD∗p+ τv

1 + τ
,w

)
. (4.30)

Duality gap for TGV

As for the case with single-parameter convex optimization, we apply the Fenchel-
Rockafeller theorem and use the duality gap between the primal and dual functional
as out convergence criteria. This duality gap gives an upper bound for distance to
the optimal value of the objective function.

We can start by simply inserting the discretized primal and dual functionals
from the optimization algorithm, to obtain an expression for the duality gap. From
this expression, however, we will follow the idea presented in [KLV19] to simplify
the duality gap somewhat.

gapTGV(u,w, p, q) =
1

2
‖u− v‖22 + λ1‖∇u−w‖1 + λ2‖|Ew|‖1

+
1

2
‖∇∗p‖22 − 〈p,∇v〉+ I{0}(p− E∗q).

The simplification arises from the observation that if p 6= E∗q, the last term will
become plus infinity, and the duality gap itself would also be infinite. Therefore
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we require that p = E∗q, and obtain a duality gap only depending on the primal
variables and one dual variable q.

gapTGV(u,w, q) =
1

2
‖u−v‖22+λ1‖∇u−w‖1+λ2‖|Ew|‖1+

1

2
‖∇∗(E∗q)‖22−〈E∗q,∇v〉.

(4.31)
We discretize this duality gap to arrive at the following expression for the duality
gap for TGV denoising:

gapTGV(u,w, q) =
(1

2
‖u− v‖2 + λ1

n∑
i=1

m∑
j=1

|∇u(i,j) −w(i,j)|+ λ2

n∑
i=1

m∑
j=1

|Ew(i,j)|

+
1

2
‖D∗(E∗q(i,j)‖22 −

n∑
i=1

m∑
j=1

(Eq(1)

(i,j)∇v
(1)

(i,j) + Eq(2)

(i,j)∇v
(2)

(i,j))
)
.

(4.32)

4.4 TGV as a single-parameter method

It is easier to perform single-parameter selection than multi-parameter selection.
We can develop a TGV-based single-parameter method by defining a fixed rela-
tion γ = λ1

λ2
between the two regularization parameters. Then the vector λ of

regularization parameters can be written as λ = [λ1, γλ1]T The algorithm is now
exactly the same, but without the possibility of balancing the regularization terms
against each other, as we only can vary λ1. In this special case we can rewrite the
regularization terms from Equation (4.3) as

TGV(u,w; γ) = λ

n∑
i=1

m∑
j=1

|∇ui,j −wi,j |+ γλ

n∑
i=1

m∑
j=1

|Ewi,j |. (4.33)

with λ as the only regularization parameter. The minimization problem does also
rely on only one regularization parameter. This problem can be stated as the
functional

Tλ(v; γ) = min
u,w

[
L(u, v) + λ

n∑
i=1

m∑
j=1

|∇ui,j −wi,j |+ γλ

n∑
i=1

m∑
j=1

|Ewi,j |
]
. (4.34)

If one chooses a fixed γ, it is possible to treat the functional (4.34) as a single-
parameter problem, and solve it numerically in a similar manner to the approach
we use in the minimization problem for total variation that was defined in Equation
(3.3). In the next section we will discuss numerical parameter choice algorithms
that can be used on single-parameter problems of this type, in order to determine
the optimal parameter choice λ for obtaining good reconstructions of the original
images.
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5 Numerical experiments with single-parameter choice al-
gorithms

This section aims to give an overview of some of the more common parameter se-
lection algorithms, and to show some examples where these algorithms are applied.
The discrepancy rule and the L-curve method are introduced and implemented,
and used to automate parameter choices. The Chambolle-Pock algorithm for total
variation is used as a numerical solver. The results are compared with results for
a quadratic regularization functional. All algorithms in this section are single-
parameter optimization algorithms.

Choosing optimal or good regularization parameters for total variation in three
RGB channels is far from trivial. In this section we will scale the range of the
regularization parameter λ down to the unit interval in R+. Recalling Equation
(3.3), we now consider it a parameter selection problem, in which the parameter
λ ∈ R+ is the parameter that should be optimized. The set of all positive real
numbers is a big domain to search through for an optimal parameter choice, so a
scaling of the problem is helpful. Therefore a parameter t ∈ [0, 1] is introduced,
which is defined by λ := 1−t

t
. Equation (3.3) can then be rewritten as

S(t)(v) = arg min
u∈U

t

2
‖u− v‖2 + (1− t)TV(u). (5.1)

And this is the equation that we will use for the remainder of this section,
where two different numerical algorithms for choosing the optimal parameter t
are investigated. The discrepancy principle, which is useful when the noise level
is known, and the L-curve rule which is applied in cases where the noise level is
unknown to us.

5.1 Discrepancy principle

The discrepancy principle is a parameter choice method in which the expected
noise level σ > 0 is known. For a discrete image denoising problem, this can
be written exactly in the form of (2.2) with σ as the noise level. Assume that
the known noisy data or measurement is given as v ∈ R3mn. We recall that v is
generated from a Gaussian distribution with standard deviation σ. But because of
the randomness of the method, the actual realized noise level will (most likely) not
be exactly σ. Let moreover the numerical solution of the denoising problem, given
the parameter choice λ, be denoted by uλ. The idea of the discrepancy principle
is then to require the solution to be such that ‖uλ − v‖ ≈ σ. This means that the
residual and the expected noise is of approximately the same size.

In order to produce a more stable version of the discrepancy principle, one
may require ‖uλ − v‖ = Cσ for a C > 1. In the numerical experiments to be
presented, however, we always use C = 1. This gives the following formulation of
the minimization problem given by the discrepancy principle in the general case:

uλ = arg min
u

[
R(u) such that ‖u− v‖22 = Cσ

]
. (5.2)

In the case of total variation, where the regularization term is TV(u), we obtain

uλ = arg min
u

[
TV(u) such that ‖u− v‖22 = Cσ

]
. (5.3)
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Existence of solutions

When applying the discrepancy principle, it is not guaranteed that solutions exist
for all noise levels. In this subsection, we will develop criteria for when a solution
exist, and discuss its properties. We will see that if the noise level is too high,
the discrepancy principle will not result in solutions to the denoising problem. We
recall the functional we want to minimize in the denoising problem, given a general
regularization functional R(u).

1

2
‖u− v‖22 + λR(u). (5.4)

The idea of the discrepancy principle is to rewrite this functional in Equation
(5.4) such that we require the first term to be equal to 1

2
C2σ2, and then minimize

over the second term. Moreover, to ensure a convex constraint, we introduce a
convex relaxation and change this equality constraint to an inequality constraint.
This results in the following (still assumed to be finite-dimensional) minimization
problem:

min
u
R(u) such that ‖u− v‖2 ≤ C2σ2. (5.5)

In the finite dimensional case, this is a convex problem if the regularization func-
tional is convex. For total variation denoising, R(u) is both lower-semi-continuous
and coercive for non-constant u, while the constraint is both convex and closed.
Thus, a solution to the minimization problem (5.5) does exist for all realistic noise
levels, as u is non-constant for low noise levels. We can consider the Lagrangian of
the optimization problem, in order to establish KKT-conditions. The Lagrangian
of this problem is given as

L(u, γ) =
[
R(u)− Cγ

2

(
σ2 − ‖u− v‖2

)]
, (5.6)

with γ as the Lagrangian parameter. We want to minimize the Lagrangian in
order to find the pair (ū, γ̄) such that ū is the solution to (5.3). We do this by
developing KKT-conditions from the Lagrangian itself. The first condition is that
ū minimizes the Lagrangian given a fixed γ̄, and can be written as

ū = arg min
u

[
R(u)− Cγ̄

2

(
σ2 − ‖u− v‖2

)]
. (5.7)

By removing the term γσ2

2
, which is independent of u, this minimization problem

can be further simplified to

ū = arg min
u

(
R(u) +

Cγ̄

2
‖u− v‖2

)
. (5.8)

The other KKT-conditions state that the Lagrangian parameter must be non-
negative, that the constraint must be fullfilled, and that in the case of an strict
inequality in the constraint, we have that γ̄ = 0. Thus, the system of KKT
conditions can be written as
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ū = arg min
u

(
R(u) +

Cγ̄

2
‖u− v‖2

)
(5.9)

‖ū− v‖ ≤ Cσ (5.10)

γ̄ ≥ 0 (5.11)

γ̄ = 0 if ‖ū− v‖ < Cσ. (5.12)

We now consider two different cases for the inequality constraints. In the case
where ‖ū−v‖ < Cσ, we obtain 0 ∈ ∂R(u) and γ̄ = 0. This means that the discrete
signal is constant over the entire domain. A feasible constant solution could be the
constant function whose value is the average of v. Any constant function k ∈ R3mn

such that ‖k − v‖ < Cσ will solve (5.8) in the situation with a strict inequality
in the constraint on the norm. A constant solution can thus only occur when the
variance of the noisy image is smaller than the constant C2 [WC12]. For the noisy
image v, we would expect the variance to be slightly smaller than Var(u) + σ2. In
the case of an strict inequality constraint, we thus have either that σ is very high,
or that the true solution u has (almost) zero variance. Constant solutions will thus
only occur for high noise levels.

We know that if ‖uλ − v‖ < Cσ for all λ ∈ R+, that means that noise level
(multiplied by C) will be bigger than the difference between the noisy and recon-
structed parameter for all parameter choices. It is in this case the first constraint
has a strict inequality, and the discrepancy principle fails to produce a parameter
choice for λ. Numerical experimentation shows that this occur for high noise levels
for the KODAK barn image. We also recall that the possibility of an inequality was
introduced as a convex relaxation to ensure convexity. Thus, a constant solution
will not solve the original minimization problem from Equation (3.1).

When equality holds in the inequality constraint, we have that γ ≥ 0, and more
importantly that ‖ū−v‖ = Cσ. In this case, a solution exists if there is a parameter
λ ∈ R+ which produces ū as the reconstructed solution using total variation. This
parameter then is the solution to the original total variation minimization problem
from Equation (3.1).

Numerical implementation of the discrepancy principle

Recalling that digital images can be considered as digital signals of dimension
n ×m, we turn to an error estimate of the discrepancy principle. In cases where
the noise level σ is known, the size of the error is given as Cσ

√
nm. In the situation

we are dealing with, where the actual noise is a realization of an independently and
individually distributed Gaussian variable, the actual noise level will be distributed
according to a chi-squared distribution with 3nm degrees of freedom. We will be
using Cσ

√
nm as our error tolerance in the numerical implentation. It is common

to let C = 1, and we will follow this convention in all numerical experiments.
[WC12; GK92].

While searching for good parameter choices t, the following procedure is im-
plemented, and described in Algorithm 3:

We can see that the idea is to increase t gradually, until we reach a t such that
û(t) satisfies the convergence criteria. The constants q and r determines how t is
updated, and how large steps that are performed. The following series of ti-s are
formed:
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Initialize i = 0, q = 0.9, r = 1
TOL = Cσ

√
nm

while ‖û(t)− v‖ > TOL do
ti ← 1

1+rqi

λ← 1−ti
ti

û(ti)← chambolle-pock(v, λ)
i← i+ 1

end while
return û

Algorithm 3: Discrepancy rule algorithm

[t0, t1, t2, . . . , tk]T = [
1

1 + r
,

1

1 + rq
,

1

1 + rq2
, . . . ,

1

1 + rqk
]T .

With our choices of r and q, we start with t0 = 0.5, and keep on choosing higher
values as long as ‖û(t) − v‖ > TOL. The steps become shorter as t grows. The
advantage of this will be visible in the figure below.

Figure 5.1: An example of errors with different parameter choices for the noise
level σ = 0.1

Figure 5.1 shows a plot of the Frobenius norm of the difference between the
reconstructed solution û and the noisy solution v for different values of the pa-
rameter t. We see that another advantage of the scaling is that we get to restrict
the length of the first axis, and that it becomes easier to visualize results. The
horizontal line is the upper bound for the error (Cσ

√
nm), and we observe that

higher values of t produce smaller errors. Choices of t close to the blue line will
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be a ’good choice’ according to the discrepancy principle, and the algorithm is
implemented such that it chooses the first t that has ‖û(t)− v‖ < Cσ

√
nm.

The noisy image, still with noise level σ = 0.1, has an PSNR score of 20.10 when
compared to the original noise-free image. The reconstructed image, produced by
the discrepancy rule parameter choice algorithm has a PSNR value of 28.01. The
two images are presented in Figure 5.2. We observe that the reconstruction is less
noisy and more smooth than the noisy image. However, we do also observe that
the reconstruction suffers from the main weakness of total variation, with piecewise
constant domains in the image.

Figure 5.2: Noisy and reconstructed image, using discrepancy principle.

(a) Noisy image, σ = 0.1. (b) Reconstructed image.

We also include an example at a higher noise level, where the discrepancy
principle is known not to be too efficient[BM12]. The noisy image with noise level
0.65 and the reconstruction using the discrepancy principle is compared in Figure
5.3. We can see that the reconstruction is much smoother than the noisy image.
The barn is still visible in both images, but is not very clear in either of them. The
PSNR ratio of the reconstruction is three times larger than for the noisy image,
when compared to the original KODAK image.

Figure 5.3: Noisy and reconstructed image, using TV discrepancy principle.σ =
0.65.

(a) Noisy image, σ = 0.65. (b) Reconstructed image.
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5.2 L-curve method

Another well known method for image denoising is the L-curve method. This
method is used in cases where the noise level is not known. The essence of the
L-curve method is to plot the regularization term and the residuals against each
other on a appropriate scale for different choices of the regularization parameter.
In the single parameter-setting we would obtain a curve in two dimensions. If
there are more than one regularization term and more than one regularization
parameter, the plot will be a hypersurface in M + 1 dimensions, where M is
the number of regularization terms. In this subsection we consider an L-curve
approach for total variation, which is a single-parameter method. Logarithmic
scales are commonly used, and will be used in all L-curve visualizations in this
subsection. The visualizations of the two terms give a visual insight into where
the two terms of the cost functions are reasonably balanced. We will see that the
plot often is L-shaped, and that choosing the regularization parameter for which
the curvature of the curve is highest, will be a viable approach.

We again consider a denoising problem for discrete signals, and a general reg-
ularization functional R(u). We have some fixed v ∈ V , which is a ’noisy’ solution
or measurement to the problem arg minv‖u − v‖22. Introducing a regularization
parameter λ, we can express the problem as a minimization problem

uα = argminu

[1

2
‖Au− v‖22 + λR(u)

]
(5.13)

for some regularization term R(u). As previously discussed, there are different
functionals that may serve as regularization functionals. For now however, we will
let R(u) be a general regularization term.

Note that when λ −→ 0, we will have that ‖Au − v‖22 −→ 0 as well. A
decrease in λ is in other words the same as regularizing less. On the other hand, if
λ −→∞, the minimization will mostly be concerned about minimizing the second
term. In the case where R(u) = ‖u‖22, the consequence would be that ‖u‖22 −→ 0,
and thus ‖Au − v‖22 −→ ‖0 − v‖22 = ‖v‖22. In the case of total variation, that
is R(u) = TV(u), what will happen if λ −→ ∞? We would then have that all
edges are heavily penalized, and the (over-)regularized solution u would become
constant. We would also observe the same for a quadratic regularization term,
when λ −→∞.

The L-curve method exploits this, and states that the best choice of the regular-
ization parameter λ must be somewhere in between the under- and over-regularized
solution. This is where a loglog-plot turns out to be useful. One plots the loga-
rithm of the regularization term versus the logarithm of the norm of the residual,
and will normally obtain a L-shaped curve. Typically, one will choose parameters
in the corner or ’elbow’ of the L-shaped curve, which often looks like the sketch
in Figure 5.4. It has previously been shown, see for example [HO93], that a plot
of the Euclidean norms of the discrepancy term versus the regularization term is
a good starting point for the L-curve method. From this plot, one can start the
visual inspection, or numerically calculate the Gaussian curvature of the resulting
curve.

When choosing parameters in the corner or ’elbow’ of the L-curve, one has by
graphical tools chosen a parameter for which the regularized solution is not too
dominated by neither the residual, nor the regularization term. In [HO93], the au-
thors suggests two useful possible implementations of a L-curve method. One may
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Figure 5.4: A sketch of L-shaped curve illustrating trade-off between residual and
regularization term.

either choose the point on the curve with the shortest distance to the origin, or one
may choose the point on the curve with the highest maximum curvature. More-
over, they warn that the first approach may cause somewhat under-regularized
solutions, due to effects of different perturbation errors. In the numerical imple-
mentation, I therefore use the latter approach, and choose the point on the curve
with the maximum curvature (in absolute value).

Regarding the numerical implementation of the L-curve, it has been performed
by the same principles as for the previous methods. That is, the three RGB-
channels have been treated separately, and parameter selection has been performed
channel-wise. The same procedure as for the discrepancy principle has been im-
plemented, where we have ti = 1

t0qi
and λi = 1−ti

ti
for the i-th parameter being

sent to the Chambolle-Pock solver.
For σ = 0.1, a noisy and reconstructed image (using the L-curve method) is

presented in Figure 5.5. We can see with the naked eye that the reconstruction
is much less smooth than the reconstruction from the discrepancy principle, that
was presented in Figure 5.2.

The L-curves produced by the experiment do however not have the L-shaped
form we recognise from Figure 5.4. Instead we observe that we have an L-shape
with the elbow of the L-curve in the opposite corner of the plot, see Figure 5.6.
This means that there are areas where both the residual and the regularization
term have high values. However, it is still a valid approach in this setting to
use the point with the maximum curvature when performing the parameter se-
lection[JG00]. Therefore, the procedure we use when determining regularization
parameters takes the following form: We plot the logarithm of the residual versus
the logarithm of the regularization term. Then we calculate the Gaussian curva-
ture of the curve, and identify the point in which this curvature is maximized.
The regularization parameter that was used in that point is then chosen to by the
algorithm to be the optimal parameter. It is worth stressing that the approach
of choosing the point with the maximum curvature is not the standard approach,
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Figure 5.5: Noisy and reconstructed image, using L-curve method

(a) Noisy image, σ = 0.1. (b) Reconstructed image.

Figure 5.6: L-curve for total variation with different parameters

but as shown in [JG00], this is a viable approach in the setting where the L-cure
looks like the one in Figure 5.6.

The typical result for the different noise levels that have been tested is that
the parameter t chosen by the L-curve is slightly lower than the one chosen by the
discrepancy principle for low noise levels.

5.3 Numerical experiments with single-parameter TGV

We recall from Section 4.4 that we may consider total generalized variation as
a single-parameter regularization functional if we choose a fixed relationship γ
between the regularization parameters. We derived the minimization problem
(4.34), which is

Tλ(v; γ) = min
u,w

[
L(u, v) + λ

n∑
i=1

m∑
j=1

|∇ui,j −wi,j |+ γλ
n∑
i=1

m∑
j=1

|Ewi,j |
]
.
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We want to investigate if using the discrepancy principle as a parameter selection
rule will give good reconstructions of the original image. We reuse the algorithm
from Section 5.1, which chooses the first λ such that ‖uλ−v‖2 ≤ Cσ. The algorithm
is initialized in the same way, and we let C remain equal to 1. Different values for
γ have been tested and compared, and based on the results from the tests we use
γ = 1

2
in the main numerical experiment for single-parameter methods.

5.4 Comparison of single-parameter methods

An interesting question is of course which of the denoising methods that produce
the best results and the most accurate reconstructions of the original image. We
use the PSNR metric to compare the quality of reconstructions created by the
discrepancy rule, the L-curve method and the single-parameter approach for total
generalized variation.

As a baseline for our comparison we use the results from quadratic regulariza-
tion from before. The results from quadratic regularization have been created by
using the conjugate gradient method (see Appendix A) with tolerance 10−7 for
different parameter choices λ ∈ [0, 5], and then choosing the reconstruction with
the highest PSNR score. The quadratic regularization reconstruction is thus not
the result of a heuristic parameter choice algorithm, unlike the other methods.

The different parameter choice methods have been tested for the uniformly
spaced noise levels 0.1, 0.2, 0.3, 0.4 and 0.5. On each noise level, we have created
ten realizations of a noisy image with the given noise levels. These images have
been used as input to the different denoising algorithms. The average PSNR scores
of the different methods at the different noise levels are presented in Figure 5.7.
For the discrepancy principle and the L-curve method, the previously explained
(and fully automated) parameter search algorithms for total variation denoising is
applied. The discrepancy rule is also used for single-parameter TGV.

The numerical experiments show that the L-curve method performs worse than
both quadratic regularization and the discrepancy principle for a broad range of
noise levels, at least in the PSNR metric. See Figure 5.7 for the results. We can
see that the reconstructed images using an L-curve parameter have higher PSNR
values than the noisy images, but lower values than those reconstructed with other
means. This makes sense, as we in the discrepancy principle have knowledge about
the actual noise level. This knowledge is not present in the L-curve method. We
would thus expect the discrepancy principle to perform better than the L-curve
method.

When we compare the results from the discrepancy principle from the two
different regularization functionals, we observe that TGV produce significantly
better results for σ = 0.2, and that TV and TGV essentially perform equally
well for most other noise levels. For σ = 0.1, both these methods generate better
reconstructions than quadratic regularization, whereas it is harder to distinguish
between the reconstructions at higher noise levels. Comparisons performed in
the SSIM metric do not add any new information, as the graphs follow the same
pattern as for total variation.

We have performed a closer investigation and a statistical analysis of the results
at noise level σ = 0.1. The box plot in Figure 5.8 shows the results from each of
the ten realizations. The plot is zoomed in at the three best-performing methods,
to illustrate the differences in their performance. The methods that are tested
are quadratic regularization, the discrepancy rule for total variation (DR) and the
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Figure 5.7: PSNR values for different methods at 61 different and uniformly spaced
noise levels.

discrepancy rule for single-parameter total generalized variation (TGV) with γ =
1
2
. It is clear from the box plot that total generalized variation beats total variation

for all ten realizations, measured in the PSNR metric. The statistical analysis
clearly shows that the variance in each method is much smaller than the differences
between the methods. Thus, we can be reasonably sure that the parameter choice
method is consistent and that our evaluation measure actually measures the quality
of the methods, and not random effects caused by noise or statistical errors. In
Section 7 we will take a closer look at the visual differences between reconstructions
originating from total variation and total generalized variation respectively, but
first we will introduce the concept of multi-parameter choice methods.
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Figure 5.8: Box plot with denoising results for ten realizations with σ = 0.1. Notice
the truncated y-axis.
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6 Multi-parameter choice methods

Choosing good parameters is essential to most optimization algorithms. Runtime,
efficiency and even the feasability of the numercial solutions may depend on the
choice of such parameters. We have previously considered some parameter choice
methods for single-parameter optimization. In this section, we will consider the
more complicated case of multi-parameter optimization, primarily for total gener-
alized variation. Multi-parameter optimization allows multiple penalty terms to
be included in the cost function, and the choice of parameters decides how the
different penalty terms should be weighted against each other. Having multiple
parameters increases the flexibility of the method and may allow for more accurate
penalizations of multiple propertites of a function, but does also complicate both
analytical and numerical calculations to some extent.

Popular multi-parameter approaches are often extensions of one-dimensional
parameter choice methods, which need to be modified, changed or made more
efficient before being applied in the more complex are of multi-parameter selec-
tion. In this section, we are going to consider and derive Broyden’s algorithm,
a quasi-Newton algorithm we will use as a numerical solver for the discrepancy
principle. Moreover, we will see that a L-curve can be generalized into more di-
mensions by a L-hypersurface. We will also derive a fixed point iteration based on
an L-hypersurface, that can be used to perform multi-parameter selection without
knowledge about the noise level of the image.

In a general Tikhonov regularization setting for image denoising, we consider a
regularization functional with N regularization terms, which can be expressed as
functions of the reconstruction u. We denote these functions by ψ1(u), ψ2(u),
. . . , ψN (u). In the case of total generalized variation, we know that we have two
regularization terms ψ1 and ψ2, with regularization parameters λ1 and λ2.

Denote by λ := (λ1, λ2, . . . , λN )T ∈ RN(+) the vector containing all N regu-
larization parameters. As for total variation, the choice λ = 0 will mean that
no regularization is performed, and that the Tikhonov regularization problem is
reduced to a least squares problem.

6.1 Discrepancy principle for multi-parameter optimization

As in the case with single-parameter optimization, the discrepancy principle for
multiple parameters is applied in situations where we know the expected noise level
σ, and we also assume that the operator A is both linear and injective. We follow
the notation presented in [LP11], where the following multi-parameter functional
is suggested:

û = arg minu‖Au− v‖22 +

N∑
i=1

λiψi(u). (6.1)

The authors also suggest to include a penalty term β‖u‖22, with β > 0 as a
regularization parameter which weighs the norm of the image u[LP11]. We will
not include this term in our model, mainly for two reasons. Firstly, the term ‖u‖22
is a function of u, and could thus be included in the general model as one of the
ψi(u)-terms, if needed. More important, an inclusion of this term would not be
helpful in the models that will be described later. This extra regularization term
will essentially penalize high values in the RGB-channels, a penalty which is not
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desired for our denoising purposes. This penalty would in practice penalize all
images that are not entirely black (0 in all RGB-channels). For reconstruction of
images with many and bright colours, this penalty is therefore not a relevant or
desirable one to include in a denoising functional.

As for the one-dimensional discrepancy principle, a constant c ≥ 1 is intro-
duced, and the generalized discrepancy principle takes the form

‖Aû(λ, β)− v‖ = cσ. (6.2)

Similar to the calculations we preformed for total variation, we let c = 1 in
all further calculations. It is common to use a slightly higher value for c in cases
where one needs to obtain a more stable algorithm.

We denote by uσλ the regularized and denoised numerical solution at noise
level σ with regularization parameters λ. From the discrepancy principle given in
Equation (6.2), we can expect that ‖uσλ − v‖ ≈ σ. The calculations of the KKT
conditions that were performed in the last section are valid for a general regular-
ization term R(u), as long as the regularization term is lower semi-continuous and
coercive.

In the case of total generalized variation, we see that the norm of the sym-
metrized gradient goes to infinity if w does, and moreover the norm of ‖∇u− w‖
also does. From this we conclude that the regularization terms are coercive. They
are also continuous, and thus they are lower semi-continuous, and the calculations
from last section are still valid.

Moreover, we will apply a method known as the balanced discepancy prin-
ciple. This name is given because the method requires each of the regularization
terms to contribute equally to the regularization. That is, we need to choose pa-
rameters λ such that λiψi(u) ≈ λjψj(u) for all i and j. The idea of this is to
ensure that all the undesired properties are penalized almost equally. This is not
always optimal, but is used as a method to design and add another equation to
the system that shall be solved. When we optimize for more than one parameter,
we need a system of equations that contains more than the one equation given in
Equation (6.2). Using the balanced discrepancy principle on our total generalized
variation functional gives two equations and two unknowns, and thus the system
of equations may be solved. We will now introduce a numerical method for solving
systems of equations, namely the Broyden’s method.

6.1.1 Broyden’s method

Introduced by C.G Broyden in 1965, Broyden’s method is a numerical method for
solving multiple non-linear equations simultaneously [Bro65]. In the method, the
zeros of each equation are searched for by performing a line search. This is similar
to the idea we know from the more famous Newton’s method, and the new method
is an extension, or even an improvement, of the Newton method[Bro65].

Broyden’s method is a quasi-Newton method. Similar to the Newton method,
quasi-Newton methods can be used to maximize or minimize functions, or to iden-
tify zeros. It is the latter approach that is applied in Broyden’s method. However,
quasi-Newton methods are different from Newton methods in some essential ways.
It is often computationally expensive to calculate the Jacobian (or even the Hes-
sian) exactly. Quasi-Newton methods cope with this by not calculating these
matrices explicitly in each numerical iteration. Instead, an approximation to the
matrix is estimated, and this approximation is used in the next updates[AK07].
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Consider a function F : Rm → Rn. The input variables to the function can
be denoted x = (x1, x2, . . . , xm)T . When applying a quasi-Newton method on the
function, we can denote the vector of input variables to the function in iteration k
by xk. In Broyden’s method, we want to find the zeros of F , that is, we want to
find the vector x such that F (x) = 0 ∈ Rn.

We can now continue by defining

sk = xk+1 − xk

as the performed step in each iteration. The step length is given as the square
root of the Euclidean inner product of sk with itself,

√
sTk sk. Similarly, we let

Yk = F (xk+1) − F (xk) ∈ Rn be the vector which represents the change in the
function values in the n different components since the previous iteration.

In order to obtain better updates, we need approximations to the Jacobian
matrices. We denote the approximation to the Jacobi matrix Jk in iteration k by
Jk. The update Jk+1 depends on Jk, and is given by Nocedal and Wright [NW06]
as

Jk+1 = Jk +
(Yk − Jksk)sTk
‖sk‖2

. (6.3)

When applying Broyden’s method, the update makes the smallest possible change
(measured in the Frobenius norm) to the approximation of the Jacobian matrix,
under the requirement that the secant equation Jk+1sk = Yk still has to be full-
filled.[NW06] Dennis and Schnabel [DS83] has shown that the choice of Jk+1 given
in Equation (6.3) is the choice that satisfies this criteria. We will also prove this,
by following the main idea and approach in the proof given on page 280 in [NW06].
In the proof, we will need the result of the following lemma.

Lemma 6.1. For any vector s ∈ Rn,
∥∥∥ ssT
sT s

∥∥∥ = 1.

Proof. Let s ∈ Rn.Consider first the eigenvalues of the matrix ssT

sT s
. We observe

that s is an eigenvector to the matrix with corresponding eigenvalue 1, as ssT s
sT s

= s.

Moreover, we know that the orthogonal complement of s is a set Θ in Rn−1.
Thus, for any basis vector θ ∈ Θ, we have that sT θ = 0 and therefore also that
ssT θ
sT s

= 0. So θ is an eigenvector with eigenvalue 0. This means that the eigenspace
corresponding to the eigenvalue 0 has dimension n− 1, and thus the eigenvalue 0
has multiplicity n− 1. This means that the only non-zero eigenvalue is 1.

We can now use the diagonalize the matrix ssT

sT s
by its orthogonal eigenvec-

tors and the matrix Λ which contains the corresponsing eigenvalues. That is,
ssT

sT s
= QΛQT , for Λ = diag(1, 0, 0, 0 . . . , 0). From linear algebra we have that the

Frobenius norm of a matrix is equal to the trace of the matrix multiplied with its
transpose. Thus we can write

‖QΛQT ‖F = Tr
(
QΛQT (QΛQT )T

)
.

We can exploit that Q is orthogonal and that QTQ = QQT = I, and write

‖QΛQT ‖F = Tr
(
QΛ(QTQ)ΛTQT

)
= Tr

(
QΛΛTQT

)
.
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Now, since Λ is a diagonal matrix, then ΛΛT = Λ2. Moreover, we have from
linear algebra that Tr(AB) = Tr(BA) for general matrices A and B. Therefore,
we obtain

‖QΛQT ‖F = Tr(QΛ2QT ) = Tr(Λ2QTQ),

where we again can exploit that QTQ = I. Thus we have that

‖QΛQT ‖F = Tr(Λ2),

which we know is 1.

Theorem 6.1. The matrix Jk+1 defined in Equation (6.3) is the matrix that
minimizes ‖M −Jk‖, subject to the constraint that it satisfies the secant equation
Msk = yk.

Proof. We start by rewriting Equation (6.3) to

‖Jk+1 − Jk‖ =
∥∥∥ (yk − Jksk)sTk

‖sk‖2
∥∥∥.

Now let M be any matrix satisfying the secant equation Msk = yk.

‖Jk+1 − Jk‖ =
∥∥∥ (Msk − Jksk)sTk

‖sk‖2
∥∥∥.

We now have a common factor sk in both terms in the numerator, and can rewrite
the expression as

‖Jk+1 − Jk‖ =
∥∥∥ (M − Jk)sks

T
k

sTk sk

∥∥∥.
By the triangle inequality for norms, the equation can be reformulated as an in-
equality:

‖Jk+1 − Jk‖ ≤ ‖M − Jk‖
∥∥∥sksTk
sTk sk

∥∥∥.
By Lemma 6.1, the last of these norm is equal to 1, and we obtain

‖Jk+1 − Jk‖ ≤ ‖M − Jk‖.

Since M is an arbitrary matrix satisfying the secant equation, we can conclude
that Jk+1 is the matrix that minimizes the distance, in the Frobenius norm, to
Jk.

We can rewrite the (balanced) discrepancy principle for total generalized vari-
ation as

Y =

[
1
2
‖uσλ − v‖22 − 1

2
σ2 + λ2ψ2(w)− λ1ψ1(u,w)

1
2
‖uσλ − v‖22 − 1

2
σ2 + λ1ψ1(u,w)− λ2ψ2(w)

]
. (6.4)

It is a straightforward calculation to determine the Jacobian J of Y with respect
to λ. This Jacobian is given as

J =

[
∂Y1
∂λ1

∂Y1
∂λ2

∂Y2
∂λ1

∂Y2
∂λ2

]
,
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and thus the exact Jacobian is

J =

[
−ψ1(u,w) ψ2(w)
ψ1(u,w) −ψ2(w)

]
. (6.5)

Then Broyden’s algorithm takes the following form for our multi-parameter
choice problem.

Initialize k = 0 and choose λ0 ∈ R2
+.

u0,w0 ← TGV DENOISING(v,λ0)
J0 ← JACOBIAN(u0,w0)
Y0 ← Y (u0,w0,λ0)
J0 ← J0

for k in range (1,K) do
ssugg
k ← −J−1

k−1Yk−1

sk ← STEPCONTROL(ssugg
k )

λk ← λk−1 + sk
uk,wk ← TGV DENOISING(uk−1,λk)
Yk ← Y (uk,wk,λk)
yk ← Yk − Yk−1

Jk ← Jk−1 +
(yk−Jk−1sk)sTk

‖sk‖2

end for
return u0, u1, . . . , uK

Algorithm 4: Broyden’s method for TGV parameter choice

We only calculate the exact Jacobian matrix for the intital parameter choice
λ0, and use the Broyden iterations to update our estimates Jk in the next itera-
tions. Moreover, a step control algorithm is forced upon the suggested step length
ssugg
k for the parameter update. Currently, this algorithm is fairly simple. The

suggested step lengths for each parameter are treated separately, and only step
lengths smaller than a fraction αmax of the current parameter λi are accepted.

The essence of the algorithm is as follows: We consider the different parameters
separately, and update one parameter at the time. We input the current parameter
λi and the suggested step for that parameter, denoted by ssugg. The fraction αmax is
used to determine the maximum valid step in absolute value, which is the product
smax = λiαmax. The suggested step length is then controlled, and we output the
updated parameter, which is given by

λi + min (smax,max (0, ssugg)).

The detailed algorithm for one parameter is given below.
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Input current parameter λ and suggested step ssugg.
Choose 0 < αmax < 1.
Define smax ← λαmax as the maximum step length.
if |ssugg| > smax then

if ssugg > 0 then
return λ+ αmax

else
return λ− αmax

end if
else

return λ+ ssugg

end if
Algorithm 5: A step-control algorithm

6.2 L-hypersurfaces

A L-hypersurface parameter choice method generalizes the L-curve method intro-
duced in Section 5.2. For multiparameter optimization, with multiple regulariza-
tion terms, each of the regularization terms is plotted along an axis. If the number
of regularization terms exceeds 2 in Tikhonov regularization, the hypersurface will
be (at least) three-dimensional, and thus difficult to visualize.

For total generalized variation, with its two regularization terms, the plotted
surface will be two-dimensional. Thus it is still possible to visualize the surface
in a meaningful way. Along the first axis, the residual ‖u − v‖22 is plotted, while
the regularization terms are plotted on the two other axis. Similar to what we did
for the total variation problem, a logarithmic transformation will be applied on all
vectors before plotting them.

Whereas calculating the maximum Gaussian curvature is feasible in two dimen-
sions, larger problems arise in higher dimensions. The calculation of the curvature
itself is computationally expensive, and makes line search approaches less attrac-
tive. In [BKM02], the authors also point out and show that the curvatures often
have many extrema. Therefore, gradient ascent searches are likely to identify lo-
cal maximizers only, and the problem with computationally expensive curvature
calculations remain a problem also for the gradient ascent approach.

A suggested solution to these difficulties is to introduce a minimum distance
function. This concept was introduced by [BKM02], which applies minimum
distance functions and minimizations of these as parameter choice methods both
for single- and multiparameter optimization problems. The key elements and the
central calculations of the approach will be explained here. For details and all
calculations, I refer to chapters 3.1 and 3.2 in [BKM02], where the function first
was introduced.

6.2.1 The minimum distance function

Recall that the a general Tikhonov multi-parameter optimization problem with N
regularization terms and a linear operator A can be denoted

û = arg min
u
‖Au− v‖22 +

N∑
i=1

λiψi(u). (6.6)
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The L-hypersurface is divided into parts of the surface where one of the regular-
ization terms (or the data discrepancy term) dominates the others, and one part
where the trade-off between the regularization terms is more balanced. For each
regularization term ψi, it is possible to choose a coordinate bi, such that for all
b̂i ≥ bi, ψi dominates the other terms in the plot. Similarly, we choose a coordinate
b0 where the same domination begins for the data discrepancy term. We can then
define the origin O of our L-hypersurface plot as

O = (b0, b1, . . . bN )T .

The shortest distance between O and the L-hypersurface itself is given by the
length of the vector between the origin and the point on the hyper-surface closest
to the origin. We introduce and define a function that can be applied to determine
this vector.

Definition 6.1. The minimum distance function v(λ) from the origin O is
given as

v(λ) =

(
log
(1

2
‖uλ − v‖22

)
− b0

)2

+

N∑
i=1

(
log
(
ψi(uλ)

)
− bi

)2

(6.7)

From here we can continue by defining the minimum distance point (MDP)
as the point on the L-curve for which the minimum distance function v has a
local minimizer λ̂ = arg minλ∈RN

(+)
v(λ). In order to find this optimal vector of

regularization parameters λ̂, a fixed point method is considered. The fixed point
method is computationally less expensive than other optimization approaches. It
is common to include calculations of partial derivatives in these methods, and that
is just the calculations we tried to avoid in the first place!

When we defined the minimum distance function, we used the natural logarithm
as the scaling transformation applied before plotting. For the fixed point method
we will consider a more general scaling transformation, to ensure that the results
are valid for a broader range of transformations than the logarithmic one. We
denote the transformation functional by θ. Thus we can express the minimum
distance function with a general scaling transformation θ as

v(λ; θ) =

(
θ
(1

2
‖uλ − v‖22

)
− b0

)2

+
N∑
i=1

(
θ
(
ψi(uλ)

)
− bi

)2

.

We want to find minimizers of this functions, and a natural approach is to identify
point in which the gradient is zero. Therefore, we differentiate v with respect to
all regularization parameters λj for 1 ≤ j ≤ N . The partial derivatives of v with
respect to the different regularization parameters can be expressed as

∂v

∂λj
=
(
θ(

1

2
‖uλ − v‖22)− b0

)
θ′(

1

2
‖uλ − v‖22)

∂( 1
2
‖uλ − v‖22)

∂λj

+

N∑
i=1

[
θ
(
ψi(uλ)

)
− bi

]
θ′
(
ψi(uλ)

)∂(ψi(uλ))

∂λj
,

and whenever the gradient is zero, then all these partial derivatives also are. So
the requirement becomes ∂v

∂λj
= 0 for 1 ≤ j ≤ N , with the expression for ∂v

∂λj
given

above.
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It can now be shown that

∂v

∂λj
=

N∑
i=1

−λi
∂(ψi(uλ))

∂λj
.

This calculation is omitted from this thesis, but can be found in for example
Equations 13-15 in [BKM02]. Note that the authors of that paper uses a different
notation from the one introduced above. The result, however, is the same in
both cases. Our N equations are simplified, and we have the following system of
equations for all j such that 1 ≤ j ≤ N :

N∑
i=1

∂(ψi(uλ))

∂λj

(
θ′(ψi(uλ))

(
θ(ψi(uλ))− bi

)
−λiθ′(

1

2
‖uλ − v‖22)

(
θ(

1

2
‖uλ − v‖22)− b0

))
= 0.

(6.8)

From here, we rewrite the system of equations as a matrix-vector system. We
note that the parenthesis is independent of j, whereas the partial derivatives de-
pend on both i and j. Using the same notation as in [BKM02], we define

[
J
]
j,i

=
∂(ψi(uλ))

∂λj
,

and moreover that
[
r
]
i

is equal to the big parenthesis in Equation (6.8). We have

now described a matrix-vector system Jr = 0. From linear algebra we know that
this system has only the trivial solution r = 0 if J is a non-singular matrix. That
is, if J has rank N , then the linear system only has the trivial solution. It can
be shown via a geometric argument valid on regular surfaces that J in fact is
non-singular[BKM02].

This result means that for 1 ≤ i ≤ N , we have the following equality

θ′(ψi(uλ))
(
θ(ψi(uλ))− bi

)
− λiθ′(

1

2
‖uλ − v‖22)

(
θ(

1

2
‖uλ − v‖22)− b0

)
= 0.

We can solve this equation for λi, and arrive at

λi =
θ′(ψi(uλ))

θ′( 1
2
‖uλ − v‖22)

θ(ψi(uλ))− bi
θ( 1

2
‖uλ − v‖22)− b0

. (6.9)

This expression can be used as a fixed point iteration for the regularization pa-
rameters. We will now consider the special case where θ(t) = log(t), which we will
apply as the scaling transformation in our numerical implementations. Note that
θ′(t) = 1

t
in this case. The fixed point iteration can now be written as

λ
(k+1)
i =

1
2
(‖u

λ(k) − v‖22)

ψi(uλ(k))

log
(
ψi(uλ(k))

)
− bi

log ( 1
2
‖u

λ(k) − v‖22)− b0
. (6.10)
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7 Numerical experiments with multi-parameter optimiza-
tion

We will now turn out attention towards performing numerical experiments with
the two multi-parameter choice method that were introduced in the last section.
Unless otherwise is explicitly stated, we use the noise level σ = 0.1 throughout
this section, and use the denoising algorithm for total generalized variation as the
primal-dual solver. All experiments are performed channel-wise, and the pixel
intensities are scaled down to the unit interval as before. We will investigate
Broyden’s algorithm for the balanced discrepancy principle, as well as the fixed
point iteration based on the minimum distance function on a L-hypersurface. The
algorithms and their resulting reconstructions are compared with the best results
obtained by the existing single-parameter methods tested in Section 5.

The numerical experiments have mainly been concerned with searching for
the optimal vector λ = (λ1, λ2)T ∈ R2

(+) that contains the two regularization
parameters for total generalized variation. The PSNR and SSIM metrics have been
used as the objective comparison tool, which measure how close a reconstructed
image is to the original, noise-free image.

A natural starting point may be to ask whether it is at all feasible to obtain
better denoising results by applying total generalized variation than total variation.
The initial experiment that was performed to test this has the following structure.
Consider a grid of possible parameter choices for λ1 and λ2. For each possible
pair of parameters, we apply the TGV denoising algorithm on a noisy image that
was generated from the KODAK image (Figure 2.1) with noise level 0.1. We then
evaluate the reconstruction in the PSNR-matrix, and plot the results versus the
parameter choices.

The results from the experiments are shown in Figure 7.1. We can see that
the highest PSNR scores exceed 28.20, which was the optimal value for total vari-
ation denoising at that noise level. Thus, we have shown through our numerical
experiments that it is feasible to denoise by TGV, and to perform better than the
optimal reconstructions using TV. Note that this brute force-approach is in no way
optimalized, it simply tests 525 different sets of parameters. The takeaway from
this experiment is that we, by applying TGV denoising, are able to produce better
results than we were with TV. It is not essential at this stage to focus on which
parameter choices have led to the best reconstructions. However, the level curves
in Figure 7.1 give indications on good initial guesses for our parameter selection
algorithms.

Now that we know that good parameter choices exist, we will turn to the multi-
parameter choice methods that were introduced in the last section, in order to
investigate whether they produce better reconstructions in the PSNR metric than
the single-parameter choice methods that have been implemented and described
in Section 5.

7.1 Discrepancy principle with Broyden’s method

The first method that we have applied for multi-parameter optimization is the
discrepancy principle with Broyden’s algorithm for total generalized variation with
a fixed noise level σ = 0.1. The method and the exact algorithm was introduced
in Section 6.1.1. Recall that this method was based on the balanced discrepancy
principle. That is, the noise level is known to the algorithm, and we try to balance
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Figure 7.1: PSNR scores of reconstructions with 525 different parameter sets
(λ1, λ2)

.

the influence of two regularization terms. Broyden’s method is used to find the
zeros of the function Y, that is given in Equation (6.4). Recall that this function
was given as

Y =

[
1
2
‖uσλ − v‖22 − 1

2
σ2 + λ2ψ2(w)− λ1ψ1(uσλ,w)

1
2
‖uσλ − v‖22 − 1

2
σ2 + λ1ψ1(uσλ,w)− λ2ψ2(w)

]
.

The aim of the numerical approach is to find the uσλ that minimizes the Eu-
clidean norm ‖Y‖2 of the function. Algorithm 4 is applied to the initial noisy
data with some initial guess λ0 for the regularization parameters. Based on
the results in from the brute force-simulation presented in Figure 7.1, we choose
λ0 = [0.07, 0.07]T as our initial guess. Moreover, we choose to perform K = 120
steps. As we will see, this is enough to ensure convergence of the algorithm, and
that the PSNR measure of the reconstructed image reaches an acceptable level. It
is worth mentioning that we still perform the denoising separately in each of the
three colour channels.

In order to illustrate the progress of Broyden’s method as iterations are per-
formed, we plot the development of the Euclidean norm of the residual Y. From
Figure 7.2, we can see that Broyden’s method is successful in minimizing the norm
of the function Y. We present the development of the absolute value of the norm,
and can note that the relative norm is improved almost by a factor of 105. The
initial norm ‖Y0‖2 is close to 104, whereas the norm of the vector converges to
approximately 10−1 as the iterations are run.
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Figure 7.2: The norm of the residual Y.

So the method is successful in finding the zeros of the function, but what about
the reconstructions and their PSNR-scores? The reconstruction itself is presented
in Figure 7.3.

Figure 7.3: The reconstructed image after 120 iterations of Broyden’s method.

The reconstructed image has a PSNR score of 28.28, which is higher than the
score for the single-parameter methods that have been tested earlier. Thus, the
multi-parameter TGV approach performs better than total variation approaches,
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at least when Broyden’s method is used as the numerical solver for the system
of equations arising from the balanced discrepancy principle. The results and the
PSNR score also indicate that the multi-parameter optimization produces better
results than the single-parameter TGV approach. We can also consider a plot of
how the PSNR score developed through the 120 iterations of Broyden’s method.
The plot is shown in Figure 7.4, and shows that the method needs relatively few
iterations to produce acceptable and good reconstructions. However, the PSNR
scores continue to increase with the number of iterations, before it stabilizes at
28.28.

Figure 7.4: The development of PSNR scores using Braydon’s method.

7.2 Comparison between reconstructions with TV and TGV

We have previously adressed the difficulties of establishing an objective measure for
the quality of image reconstructions. Both PSNR and SSIM have their strengths
and weaknesses, but another factor is also important to consider when evaluating
images; their visual impressions. Many images will be observed and interpreted by
humans, who tend to have their own subjective means of what a good reconstruc-
tion is. Therefore, we will look into differences between reconstructions created by
total variation and reconstructions created by total generalized variation. Can we
discover and establish some patterns that give insight into the visual differences
between the reconstruction techniques?

We consider first the denoised images at noise level 0.1, using the discrepancy
principle. In Figure 7.5, we present these images. The PSNR scores of these
reconstructions, compared to the original image, is 28.02 for total variation and
28.28 for total generalized variation. According to the objective PSNR measure,
the TGV reconstruction should be ’better’ than the TV reconstruction.

In order to visualize the difference between these reconstructions, there are
several feasible approaches. In Figures 7.6 and the differences in absolute value
between uTV and uTGV in the first RGB-channel are presented. The differences
are plotted pixelwise. This plot is very similar also for the other RGB-channels, so
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Figure 7.5: Reconstructions:

(a) Total variation reconstruction.
PSNR = 28.02

(b) Total generalized variation reconstruc-
tion. PSNR = 28.28

we will base the following discussion about the differences between the denoising
methods on Figure 7.6.

Figure 7.6: Intensity differences in the first RGB channel.

The perhaps most interesting observation from the plot is related to the roof
of the barn. We can see that there are small differences on the roof itself, which
is almost piecewise constant in intensity. On the ridge of the roof however, which
corresponds to edges in the image, we see larger differences between the reconstruc-
tions. This is where we have spikes in the pixel intensities of the original image,
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and it is not surprising to see that different reconstructions are more different on
these transitions.

Figure 7.7 shows the absolute value of the intensity differences in the first RGB-
channel again, but zoomed in at the roof. From this plot it is easier to see that the
differences between the reconstructions are larger on the ridge than on the roof
itself. This is another illustration of how edges are treated differently in the two
denoising methods.

Figure 7.7: Intensity differences in the first RGB channel, zoomed in at the roof

We have however not been able to identify systematic structural differences
between the two methods for the detailed barn image. We have only been able to
state that the differences are larger close to edges.

7.3 Numerical experiments based on L-hypersurfaces

Obtaining good image reconstructions by applying L-hypersurface based approaches
has turned out to be more challenging. We recall from the single-parameter exper-
iments that the L-curve method performed drastically worse than both quadratic
regularization and the discrepancy principle for total variation. These problems
are just increasing in size when the number of regularization parameters also in-
creases. As before, the method has no knowledge of the expected noise level σ,
and is thus a purely data-driven problem.

In our numerical experiment we start with a noisy version of the barn image,
with noise level σ = 0.1. The denoising is, as before, applied channelwise. We
then create a three-dimensional L-hypersurface by testing different regularization
parameters, and for each set of parameters we store the residual and the norm
of each of the two regularization terms in total generalized variation. After per-
forming a logarithmic transformation of all these three Numpy arrays, we make a
three-dimensional plot of the resulting arrays. The appearance of this plot depends
on which regularization parameters that are tested. In Figure 7.8, a L-hypersurface
based on 225 different parameter sets, in one colour channel, is presented. The 225
parameters sets that have been used to create the L-hypersurface are all possible
combinations of λ = (0.01i, 0.01j) for 1 ≤ i ≤ 15 and 1 ≤ j ≤ 15. The idea in
the numerical algorithm is then to use the fixed point iteration that was derived
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in Equation (6.10), in order to update λ and identify the optimal regularization
parameters for this denoising problem.

Figure 7.8: The geometry of the L-hypersurface.

As we can see from Figure 7.8, it is challenging to exactly determine the origin
of the L-hypersurface, that ought to be used as the origin in the minimum distance
function (6.7). This origin is needed for the fixed point iteration, as the algorithm
want to find the set of regularization parameters that minimizes the distance from
the hypersurface to this origin. A three-dimensional scatter plot of the 225 dif-
ferent combinations of the regularization parameters strengthens the intuition of
the geometry of the hypersurface, and is presented in Figure 7.9. The effect of the
discretization is also visible in this figure, where the different colours represent the
value of the product λ1λ2.

From Figure 7.9 it is easier to see that the three-dimensional L-hypersurface has
similar problems as the two-dimensional L-curve, and that the curvature ”bends” in
the opposite direction of what we hoped for. Another problem is that we only have
a visible curvature in one direction. The form of the L-hypersurface is very valley-
like. This is likely to cause numerical unstabilities and also cause non-uniqueness
of solutions that lie within this ’valley’.

We have tested two possible approaches to determine the origin based on Figure
7.9. We have chosen the point r1 on the discretized L-hypersurface that has the
minimum combined distance to the 224 other points. We have also chosen the
point r2 that has the minimum distance to all the 225 points, without requiring
r2 to be on the surface itself. r1 and r2 has then been used as origins in the fixed
point iteration (6.10). Both pre-selected and random starting points have been
tested, and do not seem to affect the results of the fixed point iteration. For the
experiments that have been included in this text, the initial vector of parameters
λ0 have been created by drawing two random numbers between 0.05 and 0.15 from
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Figure 7.9: The L-hypersurface as a scatter plot.

a uniform and continuous distribution.
The results of the fixed point iteration are presented as three PSNR image

comparisons. We compare the reconstruction uL iteration by iteration to the
original image and to the reconstruction uTGV that was produced by the balanced
discrepancy principle and Broyden’s method. Moreover, we add the PSNR score
of uTGV and the original image as a tool of comparison. These results and the
development of the quality of the reconstructions are presented in Figure 7.10 with
origin r1 and Figure 7.11 with origin r2.

Figure 7.10: PSNR scores after the first 30 iterations with origin r1.
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Figure 7.11: PSNR scores after the first 30 iterations with origin r2.

In both cases, the fixed point iteration converges to a parameter choice that
produces reconstructions with PSNR scores of 25.5. We can notice that with origin
r1 we do at one stage have a reconstruction of about the same quality as uTGV.
The fixed point iteration is however far from converged at this stage, and the
algorithm proceeds to choosing worse parameters, without ”discovering” how close
it was, since the original image is unknown to the denoising algorithm.

The reconstructed image obtained by using the origin r1 can be seen in Figure
7.12. We can see clear indications of over-regularization, similar to those we ob-
served in the cases with too high regularization parameters for total variation and
quadratic regularization.

Figure 7.12: Reconstructed image by fixed point iteration and use of L-
hypersurfaces.

The results are thus similar to the results for the two-dimensional L-curve.
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The L-hypersurface method produces worse reconstructions than the (balanced)
discrepancy principle. Again, this is an expected result as the discrepancy principle
has more knowledge (specifically, the noise level) about the problem. The main
conclusion from this subsection, however, is that the L-hypersurface method is not
a well-suited method for image reconstructions with total generalized variation.
The geometry of the hypersurface is not easy to cope with when determining
curvatures or corners, with non-uniqueness of solutions as the most challenging
problem.

7.4 A comparison of the best reconstruction methods

From our analysis until this stage, we have concluded that three of the parameter
choice methods we have tested are able to produce good reconstructions to images.
These three methods are the discrepancy principle for total variation, the discrep-
ancy principle for single-parameter TGV denoising, and finally a multi-parameter
method, namely the balanced discrepancy principle with Broyden’s method, which
also is using TGV denoising. In this subsection we will take a closer look at how
these three methods compare to eachother for the standard noise level σ = 0.1, in
terms of both PSNR scores, runtimes and visual impressions.

For the numerical experiment, we reuse the previously derived and explained
algorithms. For the discrepancy principle, we use Algorithm 3. As before, we
use q = 0.9 and t0 = 0.5, and choose the first reconstruction uTV for which
‖uTV − v‖ <

√
nmσ, where v is the noisy image with noise level σ. We use the

same algorithm for the single-parameter approach with TGV, and we still use
γ = 1

2
as the fixed relation between the parameters λ1 and λ2.

For the balanced discrepancy principle with use of Broyden’s method we com-
bine the algorithm itself (Algorithm 4) with the step-control algorithm in Algo-
rithm 5. We use αmax = 0.05 as the maximum relative stepsize. For the initial
vector of parameters λ0, we use [0.07, 0.07]T . Tests with more randomized initial
values seem to converge to some local minima, so this vector is forced as the value
for λ0. We use a relative convergence criteria for the norm of the residual in Broy-
den’s method, and stop the iterates when this relative norm is reduced to 0.3 ·10−4

or less.

7.4.1 Introducing two new images

All experiments until this point have been performed on the barn images. We now
want to include two more images with different properties. The KODAK data set
remains the source of images, and we have chosen KODAK images number 9 and
13 as the new images[Fra10a; Fra10b]. Image number 9 is presented in Figure
7.13. This shows some sailboats at the ocean, and has relatively few details. The
sail itself is mainly white, whereas the ocean is blue. The somewhat clouded sky
is also a large part of the image. This image will be referred to as ’the sailboat
image’ in the following. The sailboat image has the same number of pixels as the
barn image, but the dimensions are now reversed, being 768 times 512.

The other new image, KODAK image number 13, will be referred to as ’the river
image’. This image has many details and is a complicated image to reconstruct.
Both small details as rocks and streams in the river, the trees and bushes behind
the water and the mountain makes this image a more complicated one than the
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Figure 7.13: KODAK image number 9, sailboats on the ocean. Photo by: John
Menihan.

ones previously introduced. The image has the same dimensions as the barn image,
with 562 times 768 pixels. The river image is seen in Figure 7.14.

Figure 7.14: KODAK image number 13, the river image. Photo by: Norm Kerr.
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7.4.2 Results for the barn image

Method PSNR score Runtime

TV DP 28.02 107 s
Single-parameter TGV with DP 28.23 98 s
Broyden’s method for balanced DP with TGV 28.28 533 s

Table 7.1: Results for the barn image.

The results for the barn image have been discussed to some extent earlier in the
text, in terms of quality of the reconstructions. The full results are presented in
Table 7.1, and the only new relevant information is the runtime of the different al-
gorithms. We notice that the single-parameter choice algorithms use less than two
minutes to choose a parameter and to reconstruct the image. Broyden’s method
for the balanced discrepancy principle uses up to eight minutes, but produces a
better reconstruction. It is worth noting that Broyden’s algorithm needs this extra
time to improve an already good reconstruction. As we may recall from Figure
7.4, Broyden’s method does not use many iterations to obtain a good reconstruc-
tion. But slowly, and using some time, the reconstruction is improved to a level
where it becomes a superior reconstruction compared to those created by the other
methods.

Figure 7.15: Original and reconstructed barn images.

(a) Original image (b) Discrepancy principle TV.

(c) Single-parameter TGV with discrepancy
principle.

(d) Balanced discrepancy principle with
Broyden’s method.
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7.4.3 Results for the river image

Method PSNR score Runtime

TV DP 23.87 117 s
Single-parameter TGV with DP 23.92 104 s
Broyden’s method for balanced DP with TGV 24.40 435 s

Table 7.2: Results for river image.

The results for different methods for the river image are presented in Table 7.2.
The immediate observation is that Broyden’s method for the balanced discrepancy
principle is superior to the two others also for this image. Moreover, we observe
that the PSNR scores are lower than for the barn image. The images are of the same
size, so it is reasonable to believe that the difference is caused by the more complex
details of the river image, which are more difficult to reconstruct. The runtimes are
similar for this image. Again, Broyden’s method is able to produce a reasonable
reconstruction within the same time period as the two other methods, but when
it runs for between seven and eight minutes it produces a superior reconstruction.

The reconstructed images themselves are presented in Figure 7.16. It is es-
pecially worth noting that the total variation reconstruction (Figure 7.16b) again
shows indications of being blurry and unclear, in particular in the bushes. In par-
ticular the best reconstruction, created by Broyden’s method and seen in Figure
7.16d, contains more details and visible differences between the pixels.

7.4.4 Results for the sailboat image

Method PSNR score Runtime

TV DP 29.42 109 s
Single-parameter TGV with DP 29.34 91 s
Broyden’s method for balanced DP with TGV 29.19 442 s

Table 7.3: Results for sailboat image.

The results for the different parameter choice methods for the sailboat image
are presented in Table 7.3. These results are immediately interesting, as they chal-
lenge our current understanding of which algorithms that are best suited for image
denoising. We can see that the total variation algorithm has the highest PSNR
score, and a visual inspection of the reconstructions strengthen that impression.
The reconstructions can be seen in Figure 7.17. This is an image for which where
the staircasing property of total variation turns out to be advantageous. Both
the TGV reconstruction approaches fail to remove noise to the extent that the
TV-approach does. The image contains few areas with almost constant intensity
of different colours, which is the perfect situation for a total variation approach
that often produces staircased results [Hub+19].

The visual impression from the reconstructed images is that the sky is recon-
structed and denoised best in the total variation reconstruction (Figure 7.17b),
while the ocean is a bit too smooth in that reconstruction. The total variation
method fails to accurately reconstruct the details of the waves and colour nuances
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Figure 7.16: Original and reconstructed river images.

(a) Original image (b) Discrepancy principle TV.

(c) Single-parameter TGV with discrep-
ancy principle.

(d) Balanced discrepancy principle with
Broyden’s method.

in the water. When only considering the ocean, the Broyden’s method reconstruc-
tion again contains the most details, as it did for the water in the river image.
It is also an interesting observation that the people in the boat are much clearer
in (in particular) the Broyden reconstruction than the total variation reconstruc-
tion. This points to the fact that total variation is a well-suited method for larger
surfaces and images with close to piecewise constant pixel intensities, whereas the
method has major shortcomings for images with more details and edges.

These differences touch the most relevant differences between total variation
denoising and the TGV-based approaches. We can zoom in on the images to make
the differences even more visible and easier interpretable. In Figure 7.18, the
bottom part of the sailboat image is shown, for the total variation reconstruction
and the TGV-based Broyden reconstruction respectively. The images are clearly
different, and the TGV reconstruction contain mnay more details and also show a
more realistic transition between the water and the sailboat.

If we also zoom in at the sky and ocean, we see the strengths of total variation
more closely. This is done in Figure 7.19, where we can see that the piecewise
constant approach pixel intensities on the sail and in the background leave a better
visual impression than the more noisy TGV reconstruction. The staircasing effect,
which we normally consider a disadvantage for denoising purposes, becomes an
advantage as the original image mainly consist of areas with piecewise constant
intensities. The denoising results for this image is particularly interesting, as they
illustrate the strengths and weaknesses of the different regularization functionals.
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Figure 7.17: Original and reconstructed sailboat images.

(a) Original image (b) Discrepancy principle TV.

(c) Single-parameter TGV with discrep-
ancy principle.

(d) Balanced discrepancy principle with
Broyden’s method.
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Figure 7.18: Zoom at the ocean in the reconstructions.

(a) Total variation. (b) TGV.

Figure 7.19: Zoom at the sails and sky in the reconstructions.

(a) Total variation. (b) TGV.
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8 Conclusions

The two numerical multi-parameter methods we have tested tell quite different
stories. The L-hypersurface method experiences many of the same challenges as
the two-dimensional L-curve, also in relation to the topology of the curve. It is
challenging both to determine an accurate origin for the multi-dimensional fixed
point iteration, and to decide on an objective criteria for how to choose this ori-
gin. The fixed point iteration itself does converge to a choice of regularization
parameters that restore some of the lost information in the signal. However, the
reconstructed signal is more noisy than the reconstructions originated from the
optimal choices of regularization parameters.

Broyden’s algorithm for the balanced discrepancy principle method, on the
other hand, turns out to be very effective in denoising images at low noise levels.
In about 100 iterations, depending on the properties of the relevant image, the
norm of the residual is reduced by a factor of almost 105. The images that are
reconstructed using this method are in general more similar to the original and
noise-free images than the reconstructions that are generated using the existing
single-parameter methods, at least in the situations where the images contains
many edges and details.

Single-parameter total variation remains the best method for images with few
details and many areas with close to constant pixel intensities, such as the sailboat
image. The discrepancy principle is an efficient parameter choice method in this
situation. Total variation is capable of producing better reconstructions of im-
ages than quadratic regularization, given good parameter choices. An automated
parameter choice implementation of the discrepancy principle, for a known noise
level, performs better than both the optimized quadratic regularization and the L-
curve method. For high noise levels, the discrepancy principle made near optimal
parameter choices for total variation.

The best numerical results, both for one and two regularization parameters,
have been produced by applying different approaches based on the discrepancy
principle. The challenge in a more general denoising process is that we can not
always expect the (expected) noise level to be known. We have not been able
to identify equally efficient parameter choice methods for situations where the
expected noise level is unknown.

All tests have been performed on RGB-images with 393216 pixels. The run-
times of the methods are not worrying. For the single-parameter approach, the
discrepancy principle-based algorithm makes its parameter choice in less then two
minutes. For Broyden’s method in the multi-parameter setting, the algorithm runs
for seven to eight minutes before reaching convergence.
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Appendices

A The conjugate gradient (CG) algorithm

The conjugate gradient algorithm is an iterative algorithm which is used to linear
equation systems. The linear equation system can be written as Au = v, where we
require the (known) matrix A to be positive definite [HS52]. The purpose of the
iterations is to find an u such that the system of equations is solved exactly. We
denote by uk the solution after k iterations with the conjugate gradient algorithm.

In the algorithm, it is usual to define a tolerance TOL that is used as a conver-
gence criteria. We consider the relative residual of the solution, compared to the
residual for the initial guess. More specific, we terminate the algorithm for the
first k which satisfies ‖rk‖‖r0‖

= ‖Auk−v‖
‖Au0−v‖

< TOL.

We start by defining an initial residual r0 = ‖Au0 − v‖ from the initial guess
u0 for u. From here, the algorithm takes the following form [HS52]:

Choose a tolerance TOL and let k = 0.
Make an initial guess u0.
r0 ← Au0

p0 ← r0

Calculate ‖r0‖2.

while ‖rk‖2‖r0‖2
≥ TOL do

k ← k + 1
αk ← ‖rk−1‖2

〈pk−1,Apk−1〉
uk ← uk−1 + pk−1

rk ← rk−1 − αkApk−1

βk ← ‖rk‖2
‖rk−1‖2

pk ← rk + βpk−1

end while
return uk

Algorithm 6: Conjugate gradient algorithm

76



B An intuition of the TGV functional in a one-dimensional
setting

It may be challenging to get a grip of what the total generalized variation algorithm
actually does and is. The aim of this part is to strengthen the readers intuition
for total generalized variation, by considering a one-dimensional situation.

We will consider a TGV-functional for which λ1 = λ2 = 1, meaning that we can
remove the parameters from the equation. Moreover, we assume u, v, w : R → R.
That is, all functions takes real numbers as inputs, and also return real numbers.

v plays the role of the noisy measurement, from which we want to determine a
reconstructed solution u. The function w is an approximation to the gradient of
u. In one dimension, however, gradients can be called derivatives, and we will use
Newtons notation to denote the derivatives. Moreover, the symmetrized gradient
of w is in one dimension simply the derivative of w. Thus the minimization problem
can we written as

T (v) = min
u

∫
R

[
(u− v)2 + |u′ − w|+ |w′|

]
dx. (B.1)

Let W ′ = w, and then rewrite u as W + (u−W ), to obtain

T (v) min
u,W

∫
R

[
(W + u−W − v)2 + |(u′ −W ′)|+ |W ′′|

]
dx. (B.2)

Now we introduce another variable Z. We let Z = u − W . That is, Z is the
reconstructed signal minus the anti-derivative of w. The idea is now to observe
that u can be split into to parts:

u = W + Z.

Both the first and the second parenthesis in Equation (B.2) contain a term u−W
or (u−W )′. Now these terms can be replaced by Z and Z′ respectively, to obtain
a new minimization problem without u:

min
W,Z

∫
Ω

(W + Z − f)2 + |Z′|+ |W ′′|dx. (B.3)

We see that we have split u into two parts. One part for which we want to
minimize the first derivative, and one part for which we want to minimize the
second derivative.

For image denoising we can consider Z as the parts of the image where there
are few changes between pixels. This is the area where we are most likely expect
constant reconstructions due to staircasing when we apply total variation. In areas
where the image does have transitions or spikes however, it does not make too much
sense to minimize the gradient, since the original, noise-free image probably has
quite a large gradient here. Instead we try to minimize the second derivative in
these areas, such that the gradient itself does not vary to much, and we get a
relatively smooth gradient on the edges of the image.
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